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Preface

This book was written in response to the increasing interest in smart city technology 
and its deployment worldwide. There is a strong belief that smart city technology 
will produce an all-win solution with regard to environmental, social, and eco-
nomic impact.

Major environmental, economic, and technological challenges such as: climate 
change; economic restructuring; pressure on public finances; digitalization of the 
retail and entertainment industries, and the growth of urban and ageing populations 
has generated huge interest for cities to be run differently and smartly. The term 
“smart city” was coined to describe such cities, and they promise a significant 
improvement in the quality of life of its citizens through the combination of infor-
mation and communication technology (ICT), new services and improved city 
infrastructure. The evolutionary process in the development of a smart city is mainly 
driven by an innovative, user-centric vision—specifically by tackling urban issues 
from the perspective of citizens and taking into account their need to engage with 
city management and planning. The approach is based on emerging technology, 
whereby the solution obtained through integration of human and social capital 
allows their significant interaction as it is adopted to a city. The application of the 
Internet of Things (IoT) to city operation is of special interest to support the aim of 
efficiently transforming cities to acquire substantial and sustainable development as 
well as high quality of life.

The mission of building smart cities is based on achieving improved utilization 
of renewable energy, safeguarding of the environment, and waste reduction. At the 
same time, fostering cohesion between citizens to obtain shared benefits derived 
from the eco-sustainability vision which is headed by effective industrial and urban 
development to allow pressing needs to be met without compromising the imminent 
generations’ capacity. When considering an eco-sustainable method, practicality is 
essential in the various facets and at different layers of the development process 
such as environment, social services, and mobility. A smart city employs various 
kinds of electronic IoT sensors to amass data and such data is used to control 
resources and assets efficiently. The data is often sourced from devices, assets, and 
citizens and is processed and studied to then understand and improve crime 



vi

detection, transportation and traffic systems, water supply networks, hospitals, 
information systems, waste management, power plants, and additional community 
services.

Smart city is now a popular term; however, its definition and specifics remain 
unclear. This has led to different interpretations of a smart city. Most commonly, a 
smart city can be described by six important pillars, namely smart people (social 
and human capital), smart living (quality of life), smart economy (competitiveness), 
smart mobility (transport and ICT), smart governance (participation), and smart 
environment (natural resources). Smart city programs and technologies have now 
been developed in many cities worldwide including London, New  York, Hong 
Kong, Singapore, Paris, Tokyo, Amsterdam, Barcelona, Dubai, Stockholm, and 
Copenhagen—some of which will be discussed in more detail in case studies.

This book focuses on delivering comprehensive and detailed analysis of the fol-
lowing areas of smart cities: smart energy, smart mobility, smart health, and smart 
water. The purpose is to inform the reader firstly through more general but compre-
hensive coverage of the concept of smart cities before diving into more specific 
areas without excessive specialization as to avoid merely not only presenting quali-
tative data and numerical techniques, but also providing, where feasible, practical 
case studies and project discussions.

Chapter 1 discusses what a smart city should be. In this chapter, characteristics, 
functionality, and domain of smart city will be explained. Different elements of a 
smart city, such as smart energy, smart water, smart health, smart infrastructure, and 
big data analytics will be examined. Case studies will be used to demonstrate the 
work done to help to establish a smart city deployment and some benefits derived 
from the effort spent. Some examples of smart cities worldwide will be reported. 
Challenges and opportunities derived from future smart city projects will be discussed.

Due to the need to use a large number of renewables in the near future and the 
requirement to have a stable energy system, Chapter 2 covers data analytics for solar 
energy in promoting smart cities. In this chapter, a comprehensive review of high 
penetration of photovoltaic (PV) and an overview of electrical energy storage (EES) 
for PV systems is presented. Solar power forecasting techniques for operation and 
planning of PV and EES are included. A deterministic approach for sizing PV and 
ESS with anaerobic digestion (AD) biogas power plant is developed to achieve a 
minimal levelized cost of energy (LCOE). The aim is to minimize energy imbalance 
between generation and demand due to AD generator constraint and high penetra-
tion of PV. For data analytics, the chapter presents the issues in correlation analysis 
due to imbalanced data and data uncertainty in real-life solar data. A robust correla-
tion framework was proposed and tested on real-life solar irradiance and weather 
condition data. For solar data cluster analysis, a novel method with Fuzzy C-Means 
with dynamic time warping distance was proposed to determine patterns in daily 
clearness index (CI) profiles. CI profiles could be varied significantly in different 
seasons.

Based on high security, transparency, tamper-proof, and decentralization, block-
chain is suitable for microgrids with high renewable penetration and advanced 
supervisory control and data acquisition (SCADA) sensors as there is a need for a 
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new market approach to facilitate the power generation and load balance and make 
the optimal use of low carbon energy sources. Chapter 3 presents blockchain appli-
cations in microgrid clusters. Microgrids with blockchain can give a more resilient, 
cost-efficient, low-transmission-loss, and environment-friendly grid. Smart 
contract-based hybrid peer-to-peer (P2P) energy trading model with cryptocurrency 
named localized renewable energy certificate (LO-REC) will be discussed. The 
advantages and challenges of combining blockchain with microgrids are identified. 
This chapter serves as a guide for future research on blockchain applications in 
microgrids.

Water management is a critical task and impacts on the environment and eco-
nomics. Chapter 4 deals with a time-synchronized ZigBee building network for 
smart water management. It is essential for the development of a flexible, reliable, 
and scalable sensor network to install and replace water sensors in buildings. 
Wireless communication will be of utmost importance. Nevertheless, incorrect net-
work time synchronization will create packet loss and long latency which reduces 
the network performance. In this chapter, time-synchronized ZigBee building net-
work is proposed for water management according to the node-to-node time syn-
chronization. The simulation result shows that the mean synchronization error and 
variance are reduced. Also, an interference-mitigated ZigBee-based advanced 
metering infrastructure solution was created for high-traffic smart metering.

Without energy, any city cannot be in proper operation. Also, for the convenience 
of the citizens, electrical vehicles would be needed. As a result, there will be many 
batteries within a city. However, this could give risk to human and it is essential to 
minimize the damage. Chapter 5 reports a narrowband internet of things (NB-IoT)-
based temperature prediction for valve-regulated lead-acid battery (VRLA). Due to 
its huge market, VRLA gained a significant part in industries. However, VRLA 
safety has been a wide concern since it is prone to self-heating problems which 
generate extra cost or even cause accidents when the internal temperature (IT) of 
VRLA is exceeded. To prevent potential hazards, effective internal VRLA tempera-
ture monitoring methods are required. In the method, the internal temperature is 
estimated by ambient temperature (AT) and input current (IC) through a pre-trained 
prediction model. The measured temperature data will be sent to the backend server 
using NB-IoT. A kind of recurrent neural network, namely nonlinear autoregressive 
exogenous is applied to determine the potential relationship between the input AT, 
IC, and the output IT.

It is learnt that over 60% of adult drivers experienced sleepiness during driving 
and over 40% of traffic accidents are created by intoxicated drivers. Chapter 6 
reports a health detection scheme for drunk drivers. The integration of the wearable 
sensors facilitates the real-time monitoring of human conditions under different sce-
narios including patient tracking and human safety. In this chapter, an electrocardio-
gram (ECG)-based status of human detection (ECG-HSD) scheme was proposed to 
sense both drowsy and intoxicated conditions. In ECG-HSD scheme, resemblances 
of ECG signals during ordinary, drowsy, and intoxicated conditions are collected 
and the equivalent feature vector was constructed. The essential data points on ECG 
samples are weighted to improve detection accuracy. With multiple criteria 
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decision-making approach, the results showed that ECG-HSD scheme could achieve 
acceptable accuracy and rapid testing time.

This book addresses the most up-to-date problems of a smart city and their solu-
tions in a cohesive manner. It is the product of contributions from world-class 
experts, educators, and students so to cover all levels of understanding to optimize 
its delivery. Therefore, we are confident that it will provide invaluable insight for 
decision-makers, engineers, doctors, educators, system operators, managers, plan-
ners, and researchers across all levels of career and academic progression.

London, UK�   Chun Sing Lai 
Guangzhou, China �   Loi Lei Lai 
Oxford, UK �   Qi Hong Lai 
25 May 2020
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Chapter 1
Smart City

1.1  �Introduction

Major technological, economical, and environmental changes have generated inter-
est in smart cities, including climate change, economic restructuring, the move to 
online retail and entertainment, aging populations, urban population growth, and 
pressures on public finances. A smart city is considered as an idealistic city, where 
the quality of life for citizens is significantly improved by combining Information 
and Communication Technology (ICT), new services, and new urban infrastructures 
[1]. The main innovation in the smart city evolutionary process includes a user-cen-
tric vision and accounting urban issues from the perspective of the need of the citi-
zens with their engagement in the city management and operation. That is, smart city 
concept may be defined as an integrated solution in which human and social capital 
heavily interact, using emerging technology. The application of the Internet of Things 
(IoT) paradigm to urban scenarios is of special interest to support the smart city 
vision that aims to efficiently achieve sustainable and resilient development and a 
high quality of life on the basis of a multi-stakeholder, municipality-based partnership.

The mission is to accelerate city transformation processes to obtain a better use 
of renewable resources, reducing wastes and safeguarding the environment, while at 
the same time promoting the cohesion between citizens that are to be joined to 
obtain shared benefit in terms of quality of life.

Turning to an eco-sustainable vision, it consists of promoting a respectful urban 
and industrial development, able to address current needs without compromising 
the capacity of future generations. The eco-sustainable approach has to be applied 
in several aspects and at several layers of the evolutionary process, such as mobility, 
environment, and social services. A smart city uses different types of electronic 
Internet of things (IoT) sensors to collect data and then use these data to manage 
assets and resources efficiently. This includes data collected from citizens, devices, 
and assets that are processed and analyzed to monitor and manage traffic and 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52155-4_1&domain=pdf
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transportation systems, power plants, water supply networks, waste management, 
crime detection, information systems, schools, libraries, hospitals, and other com-
munity services.

In brief, a smart city integrates information and communication technology 
(ICT), and various physical devices are connected to the IoT network to optimize 
the efficiency of city operations and services and connect to citizens. Smart city 
technology allows city officials to interact directly with both community and city 
infrastructure and to monitor what is happening in the city and how the city is evolv-
ing. ICT is used to enhance quality, performance, and interactivity of urban ser-
vices, to reduce costs and resource consumption, and to increase contact between 
citizens and government. Smart city applications are developed to manage urban 
flows and allow for real-time responses. A smart city may therefore be more pre-
pared to respond to challenges than one with a simple transactional relationship 
with its citizens. However, the term itself remains unclear to its specifics and, there-
fore, open to many interpretations. Examples of smart city technologies and pro-
grams have been implemented in Singapore, Dubai, Milton Keynes, Southampton, 
Amsterdam, Barcelona, Madrid, Stockholm, Copenhagen, China, and New York.

A smart city may be described by six fundamental pillars, namely, smart econ-
omy (competitiveness), smart people (social and human capital), smart governance 
(participation), smart mobility (transport and ICT), smart environment (natural 
resources), and smart living (quality of life), as shown in Table 1.1.

As detailed in Table 1.2, each characteristic is defined by a number of factors, 
which are described by a number of indicators.

Based on the above six characteristics, the following could be derived:

•	 A smart city uses innovative connectivity model and high technology-based 
infrastructure are used to enhance its economic efficiency, promoting social, 
urban, and cultural development.

Table 1.1  Characteristics of a smart city

Smart economy

Productivity; entrepreneurship; innovation attitude; 
international dimension; ability to transform; labor 
market flexibility

Smart people Openminded; participation in public life; creativity; 
adaptability; lifelong learning; social and ethnic 
pluralism

Smart governance Transparent governance; public and social services; 
participation in decision-making; political strategies 
and viewpoint

Smart mobility Efficient, innovative, sustainable and safe 
transportation; accessibility

Smart environment Low carbon economy; pollution; sustainable 
resources management and planning; environmental 
protection; natural resources exploration 

Smart living Safety; health conditions; housing quality; education 
facilities; social cohesion; cultural; cultural 
integration; tourist attractions

1  Smart City
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Table 1.2  Categories and aims for smart city initiatives

Category Aim

Understanding smart cities: research and 
evaluation

Improve the knowledge base for and provide lessons 
for European policy

Designing smart city initiatives and 
strategies

Design of initiatives and city-level action plans

Smart city governance Provide governance guideline and facilitate learning
Supporting the development of smart 
cities

Measure other than direct support that can be used to 
stimulate smart city development

Promoting smart cities: replication, 
scaling and ecosystem seeding

Create conditions to the expansion and extension of 
the most promising smart city approaches

•	 A smart city must be attractive and friendly toward the new business realities that 
intend to promote urban progress.

•	 A smart city must promote social inclusion, allowing a homogeneous develop-
ment along the entire city.

•	 A smart city must invest in high technology-based instruments and in the educa-
tional process finalized to create high-skilled people.

•	 The people, in the meanwhile of this evolutionary process, must be encouraged 
to use modern technologies.

•	 A smart city must consider the social and environment sustainability as the most 
important strategy to pursue.

New community and technology leaders, managers, and solutions providers are 
needed to develop the smart city ecosystem. They need to operate in the intersection 
of technology, innovation, business, operations, strategy, and people. Smart cities 
are comprised of a “system of systems.” These can include smart lighting systems, 
building automation systems, emergency management systems, security and access 
control systems, smart grids, renewables, water treatment and supply, transporta-
tion, and more.

Data are the lifeblood of the smart city. Open data, generated by municipal orga-
nizations, are only one source of data. When supplemented with data created by 
businesses and private citizens, it yields richer insights and better outcomes. Smart 
city ecosystem architects utilize the full extent of the ecosystem to create city data. 
They plan and build data marketplaces, robust data sharing and privacy policies, 
data analytics skills, and monetization models that facilitate the sourcing and usage 
of city data. The age of the internet of things (IoT) has brought with it an increas-
ingly broad range of sensors and IoT platforms. Many of these have made their way 
into the smart cities sector. In the industrial internet of things architecture, smart city 
platforms perform many functions, including analytics, data management, remote 
asset monitoring, performance management, decision support, cybersecurity, device 
management, and visualization. IoT technology holds the best promise for provid-
ing unification and context to the huge array of data generated by smart cities and 
turns this data into actionable, contextualized information that can be used to reduce 
energy consumption, lifecycle cost, and operational costs while improving the 
safety and quality of life of citizens. For example, LED lighting systems provide a 

1.1 � Introduction



4

good value proposition because of overall reduced energy consumption and dra-
matically reduced maintenance schedule. With the combination of IoT-enabled 
smart lighting systems, this could further deliver even greater value.

The technology infrastructure must be in place. Information collected must be 
protected and used in accordance with the wishes of the owners. Effective architects 
unite the needs of policymakers, technologists, and innovators to create sensible 
policies that create the right outcomes. That is, policies, legislation, and technology 
must be continuously aligned to maintain the right balance of protection, privacy 
and transparency. The infrastructure must be robust, resilient, and reliable. 
Cybersecurity and technology policies, processes, and systems must be revised to 
be smart city focused. Digital skills, from data analytics, machine learning to soft-
ware engineering, must be the new competencies of the smart city.

In a data-driven society, the large volume of data is accelerating fast. The reli-
ance on human–machine collaboration to be successful will require the velocity, 
veracity, value, speed, security, and the universal interoperability of data. The explo-
sion in hardware vendors, the number of communication protocols, and the lack of 
standardization of metadata and labeling among system integrators have created an 
environment in which data brokering between devices may be lost in translation. 
The desired flow of data back and forth between databases, levels of the technology 
stack, applications, industries, regions, countries, and freely throughout the global 
economy does not yet exist. Situational awareness is one of the future huge chal-
lenges. The need for interoperability is essential and important.

1.2  �Functional Domains

1.2.1  �Sensors and Intelligent Electronic Devices

Sensors can provide data required by smart applications to improve system effi-
ciency. Intelligent Electronic Devices (IEDs) have been deployed extensively in 
power automation systems recently due to the integration and interoperability fea-
tures of the IEDs. IED handles additional features like self and external circuit mon-
itoring, real-time synchronization of the event monitoring, local and substation data 
access, programmable logic controller functionality, and an entire range of software 
tools for commissioning, testing, event reporting, and fault analysis.

1.2.2  �Communication Networks and Cyber Security

Communication network technologies are constantly evolving and underpin almost 
everything. The next generation of network and security must be able to support and 
enhance the world economy—whether that be through social developments, 
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medical systems, and low carbon development. One of the major challenges is cyber 
security which is the application of technologies, processes and controls to protect 
systems, networks, programs, devices, and data from cyberattacks. It aims to reduce 
the risk of cyberattacks and protect against the unauthorized exploitation of sys-
tems, networks, and technologies.

1.2.3  �Systems Integration

System integration is defined in engineering as the process of bringing together the 
component subsystems into one system. With an aggregation of cooperating sub-
systems cooperating so that the system is able to deliver the required functionality 
to ensure the sub-systems function together as a system, and in information technol-
ogy as the process of linking together different computing systems and software 
applications physically or functionally.

1.2.4  �Intelligence and Data Analytics

Data have intrinsic value which is essential to extract that value and convey the 
information in the data through presentable visualizations. Organizations and gov-
ernments want to exploit data to predict behaviors and extract valuable real-world 
insights. Billions of devices and social media conversations are accelerating the rate 
at which data are produced. There is an urgent need to understand data and make 
systems, policies, and governance models more efficient and effective.

1.2.5  �Management and Control Platforms

Data management and control platform are used to monitor and control smart 
objects in the internet of things (IoT). By combining IoT-specific features and pro-
tocols such as HTTP, the platform allows anomaly detection in IoT devices and 
real-time error reporting mechanisms.

1.2.5.1  �Smart City Domains and Sub-domains

Table 1.3 shows the relationship between smart city domains and sub-domains with 
five different smart cities functionalities. “X” means that there is a close relationship 
between the domains/sub-domains and functionalities.

1.2 � Functional Domains
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Table 1.3  Smart city domains, sub-domains, and functionalities

Sensors and 
intelligent 
electronic 
devices

Communication 
networks and 
cyber security

Systems 
integration

Intelligence 
and data 
analytics

Management 
and control 
platforms

Energy

Advanced 
demand response

X

Microgrid/
nanogrid

X X

Smart and 
energy-efficient 
buildings

X X X X

Distributed 
energy resources 
integration

X

Energy analytics 
and visibility

X X

Energy services X X
Smart and 
energy-efficient 
lighting

X X

Transportation

Smart traffic and 
congestion 
management

X X

Fleet 
management

X X

Smart public 
transit system

X X X

Shared mobility 
solutions

X

EV charging 
station network

X

Connected 
vehicles and 
transport

X X

Vehicle to grid X
Smart parking X
Pedestrian 
management

X

Health and safety

Smart crowd 
management

X X

Smart security 
system

X X

(continued)
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Table 1.3  (continued)

Sensors and 
intelligent 
electronic 
devices

Communication 
networks and 
cyber security

Systems 
integration

Intelligence 
and data 
analytics

Management 
and control 
platforms

Disaster 
management and 
emergency 
services

X X

Environmental 
monitoring and 
response systems

X X X

Wellness services X
Food and agriculture

Open data and 
urban info 
systems

X

Smart retail 
solutions

X X

Connected 
community

X

Virtual learning X
Economic 
development

X X

Command center X
Infrastructure 
planning

X X

Digital city work 
management

X

Public service 
management

X

Digital citizen 
self-service

X X

Water

Water 
reclamation

X X

Water AMI X X
Water services X
Smart agriculture X X
Connected water 
monitoring and 
response systems

X X

Waste

Smart waste 
collection

X

Waste to energy X
Smart recycling X

(continued)
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1.3  Elements of a Smart City

It is forecasted that the total population living in cities will be increased by 75% by 
2050, as a result, there is an increased demand for smart, sustainable environments 
that offer citizens a high quality of life. This leads to the evolution to smart cities. A 
smart city will bring together technology, government and society to enhance ele-
ments, namely smart energy, smart economy, smart mobility, smart environment, 
smart economy, smart living and smart governance.

1.3.1  �Smart Energy

In this sub-section, few areas associated with smart energy will be presented.

1.3.1.1  Hourly Unit Commitment with Resilience-Constrained

In this part, hourly unit commitment with resilience-constrained electricity grids 
will be presented.

Nomenclature 

Variables and Functions
Ck Total cost for scenario k

C Average total cost for overall sampled scenarios

F(⋅) Probability function for accumulated outage
Fci(⋅) Fuel consumption function for unit i
h0(⋅) Baseline function for PHM
h(⋅) Proportional hazard model function
H(⋅) Power flow entropy function

Table 1.3  (continued)

Sensors and 
intelligent 
electronic 
devices

Communication 
networks and 
cyber security

Systems 
integration

Intelligence 
and data 
analytics

Management 
and control 
platforms

Battery second 
life/recycling

X X

Waste diversion 
(lifestyle 
extension)

X

Total count 14 13 10 15 15
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Ii, t Commitment state for unit i at time t
LSd, t Load shedding amount for load d at time t
nm, t Total number of lines with line loading rate falls into mth interval [(m − 1) ∗ u, m ∗ u) 

at time t
Pi, t Generation for unit i at time t
PLl, t Real power flow for line l at time t

PLl
max Thermal limit for line t

Pb t,
inj

Net real power injection for bus b at time t

rl, t Loading rate for line l at time t
T Outage time
Z2(t) Line loading rate at time t
um, vm Auxiliary variables used to linearize |rj, t + rk, t| for the objective function (1.11)

u vn n
′ ′,

Auxiliary variables used to linearize |rj, t − rk, t| for the objective function (1.11)

u vj j
″ ″,

Auxiliary variables used to linearize |rj, t| for the objective function (1.11)

ω1, ω2 Penalty term coefficients
γ1, γ2 Weight coefficients for the Z1(t) and Z2(t)
ψ(⋅) Link function of PHM
Z1(t) Weather condition for each line at time t
σ Average hourly power flow entropy
D Average hourly line power flow variance
Ea Average loading rate for all lines
Es Average loading rate for affected lines
Constants and Sets
a, b Scale and shape parameters for h0(⋅)
Dd, t Real power demand for load d
ns Scenarios Number
SFl, b Shift factor for line l to the bus b
M Successive intervals number used to calculate H(⋅)
NL Total transmission lines number
NAL Lines number affected by extreme weather
NCL Number of pair combinations of transmission lines
NT Number of times
NG Generation units number
ND Load number
NB Bus number
SUi(SDi) Start-up (shutdown) cost function for unit i
SL All system transmission lines set
SAL Transmission lines affected by weather set
Sm Auxiliary variables um, vm set

Sm′
Auxiliary variables  um′, vm′ set

Sn Auxiliary variables un, vn set
VOLL Value for lost load
ε Convergence threshold for Monte Carlo process

91.3  Elements of a Smart City
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Introduction

A large number of cascading outages and blackouts has exhibited the vulnerability 
of power systems and the shortcoming to sustain major outages under catastrophic 
circumstances. Generally, the power system infrastructure is designed to be highly 
reliable under normal conditions and often not highly resilient under extreme condi-
tions [2]. Therefore, resilience-based operation strategies will provide more specific 
and cost-effective approaches in critical conditions and play a decisive role in initi-
ating blackout preventions and resilience enhancements.

Resilience has different definitions [3–6] according to the context of extreme 
events. In general, the definitions can be divided into two types. One is expressed as 
the ability for a power system to bounce back after certain disturbances have 
occurred, i.e. restoration. The other one is represented as the power system capabil-
ity to change its state to respond to some unexpected events, i.e. adaptation. 
Figure 1.1 shows the resilience index curve in which an extreme event starts at time 
t0 and forced outages occur at time t1. Power system resilience will start corrective 
or preventive strategy. Corrective strategies mainly focus on power grid islanding 
[7] and reconfiguration [8, 9]. However, preventive strategies, as illustrated in 
Fig.  1.1, can boost the resilience curve more effectively. This section presents a 
preventive option instituting a resilience-constrained unit commitment (RCUC) 
strategy is used for power system stability enhancement under extreme conditions.

Previously, research mainly focused on the coordination of preventive SCUC 
operation strategies with N −  k contingencies [10–13], maintenance scheduling 
[14], reliability indices [15–17], and risk indices [18, 19], etc. Benders decomposi-
tion was proposed in [10] for coordinated SCUC with maintenance scheduling and 
N-1 contingencies. The stochastic SCUC, which was modeled based on mixed-inte-
ger programming (MIP) with robust optimization [11] to guarantee a balanced 
power under any N − k contingencies. Reference [12] proposed a two-stage robust 
optimization for N − k contingency. The unit commitment and transmission switch-
ing were simultaneously optimized in [13] with N − 1 contingency. Reference [14] 
proposed and integrated the SCUC framework with maintenance scheduling con-
sidering severe weather effects. Stochastic forced outages and reliability indices 
were considered in [15]. Reference [16] sought the trade-off between cost and reli-
ability in which the cost of maintaining a certain reliability level was quantified. 

Resilience

Index

Robustness Restoration time

t1 t2 Time

Preventive 

Strategy

Restoration 

Strategy

Extreme 

events
Forced outages

t0

Fig. 1.1  Power system 
resilience curves
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Reliability constraints were modeled, linearized, and applied using an MIP method 
in [17].

The reliability-based SCUC was widely discussed in the literature. However, 
there are limited studies on SCUC considering extreme events and cascading out-
ages. A proactive SCUC model under hurricane events was proposed in [20] in 
which the operation cost and expected recourse cost were optimized in a two-stage 
stochastic MIP framework. An integration of preventive and emergency strategies 
was studies in [21] to coordinate the preventive action and emergence response. A 
proactive SCUC framework presented in [22] introduced a Markov process to 
model power system state transitions in extreme events. SCUC was sequentially 
solved within each system state. Researches have discussed the impact of microgrid 
on power system operation resilience [23, 24]. Reference [25] proposed a proactive 
microgrid management for enhancing the power system resiliency in which a two-
stage adaptive and robust pre-disturbance scheduling takes into account several 
uncertainties for reducing the damaging consequences of islanding events.

Although these works have studied preventive strategies for SCUC under extreme 
conditions, SCUC strategies would require additional work to consider more uncer-
tain energy resources, cascading outages, the coordination of electricity and other 
large infrastructures, potential malfunctions in protection systems as we add more 
phasor measurement units, and enhance the automation in electric power systems. 
In essence, it is imperative to model SCUC for enhancing the resilience of power 
systems and optimize its solution for reducing the probability of component outages 
in blackout types of incidents.

Secure and effective preventive strategies against extreme events could reduce 
the probability of cascading outages and boost the power system resilience. Large-
scale power transfers resulting from the outages of heavily loaded lines are the main 
causes of cascading failures. Moreover, heavy transmission loading rate tends to 
increase the probability of relay malfunctions and transformer outages. 
Approximately half of the recorded blackouts are triggered by weather-related 
events. Therefore, managing the power system operations in extreme weather con-
ditions and reducing the transmission loading rate often signify effective preventive 
strategies in power system operations.

The self-organized criticality (SOC) [26] is a critical state in a large system 
where a minor event can lead to a catastrophe. Reference [27] demonstrated that the 
SOC is an essential characteristic of blackouts in large power systems. Reference 
[28] illustrated that power system loading that is close to the system operating limit 
is the key condition leading to cascading outages. According to the system structure 
and operating state, Ref. [29] proposed an entropy-based metric to evaluate the 
robustness of power grid with respect to cascading failures. References [30, 31] 
studied the network entropy in terms of its topology and structure. Reference [32] 
showed the correlations between SOC and the heterogeneity of power flow distribu-
tion by introducing the power flow entropy index. Accordingly, the larger the power 
flow entropy, the more routinely a power system state can lead to SOC. Therefore, 
lower power flow entropy can prevent power systems from evolving into SOC.
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This part focuses on developing an RCUC solution towards cascading outage 
preventions, power flow entropy reductions, and resilience promotions. The main 
contributions of this study are summarized as follows:

•	 Develop a proactive and sequential RCUC framework that considers interactions 
among power system operation states and random component outages, in which 
power flow entropies, component forced outages, and system operation costs are 
simultaneously addressed.

•	 Develop two penalty terms, modeled by the absolute value function, for improv-
ing the homogeneity of power flow distribution and regulating power line load-
ing rate affected by extreme weather.

•	 Develop a general linearization method for representing the absolute value func-
tion in MIP model.

•	 Introduce the proportional hazard model (PHM) to quantify the effect of weather 
conditions and line-loading rate on component-forced outage rates. In addition, 
present a recursive sampling process in order to meet sequential simulation 
framework requirements.

The rest of the sub-section is organized as follows. Section “Description of the 
Proposed RCUC Framework” describes the proposed framework. Section “Proposed 
RCUC Model” presents the RCUC model. Section “RCUC Solution Methodology” 
introduces the solution method. Section “Case Studies” illustrates case studies. 
Section “Conclusions” draws conclusions.

Description of the Proposed RCUC Framework

The most effective operation strategy under extreme weather events is to adjust 
RCUC and power flow solutions proactively. Before we proceed with the develop-
ment of the proposed framework, we present the forced outage rate and the sam-
pling method as follows:

Forced Outage Rate of Transmission Lines

Transmission lines are subject to random outages which are affected by weather 
conditions and real-time loading. The proportional hazard model (PHM) [33] is 
introduced to represent the forced outage rate in (1.1) below:

	

h t Z t h t Z t

a b t Z t Z tb b

, ( )( ) = ( ) ⋅ ( )( )
= ⋅ ⋅ ⋅ ⋅ ( ) + ⋅ ( )( )− −
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γ γexp
	

(1.1)

where h0(t) is the baseline function for the basic degradation process, the Weibull 
hazard rate function is adopted here, in which a is the scale parameter, and b is the 
shape parameter of the distribution. ψ(Z(t)) is the link function to quantify the 
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impact of influencing factors Z(t) (i.e., covariates). Here two covariates, weather 
condition Z1(t) and line loading rate Z2(t), are considered, γ1 and γ2 are the weight 
coefficients of the two covariates. For Z1(t) ∈ {0, 1, 2} and Z2(t) ∈ [0, 1], in weather 
condition function Z1(t), 0 means normal weather, 1 means severe weather, and 2 
means major storm disaster. To address the nonlinear relationship, a quadratic func-
tion is added to the load rate Z2(t) which poses a minute failure impact if the line is 
lightly loaded.

In this section, weather conditions are assumed to be known in advance through 
meteorological services and line loading rate is dynamically obtained by the RCUC 
solution. The main contributions of this study are not specific to certain weather 
events and the corresponding SCUC solutions. Instead, the proposed model is con-
cerned with the overall system performance in terms of SOC which provides an 
effective preventive solution toward resilience enhancement. Reference [34] nor-
malizes the weather intensity into three categories which are used widely in the 
power system reliability evaluation. Without the loss of generality, we follow this 
classification instead of specifying individual weather events.

Sequential Sampling Method

Given a component survived until t0, the reliability function at time t is calculated as
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(1.2)

The inverse transform sampling is adopted in the proposed sequential sampling 
process which includes two steps.

	1.	 Sample u from the uniform distribution unif(0, 1) interpreted as probability.
	2.	 Return the maximum t such that F(t) ≤ u.

In the second step, we accumulate the hourly outage probability F(t) as
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(1.3)

This is a recursive process in which the outage probability F(t) is determined by 
F(t − 1) and the covariates conditions are stated at hour t. For example, if we find 
F(t) ≥ u at hour t while F(t − 1) < u, then one sampled random outage is obtained. 
For simplicity, the outage is assumed to begin at the end of hour t, i.e. the line is 
tripped at hour t + 1 upon any outage, and a repair time is sampled according to an 
exponential distribution. We consider minimal maintenance in which forced outage 
rates before and after maintenance remain the same.
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Random outages have an impact on RCUC and power flow solutions which can 
alter the outage process of remaining lines. Furthermore, the RCUC solution and 
the sampling process interact with each other. RCUC and power flow solutions 
affect the accumulated outage probability at hour t. In turn, the sampled outages 
affect the next-hour RCUC solution. Therefore, the RCUC solution and sampling 
process are executed alternatively and sequentially.

Proposed RCUC Framework

The proposed RCUC framework is sequential and Monte Carlo-based. By sequen-
tial, we mean an initial RCUC is calculated for the first period and the scenario 
within the period is dynamically generated according to the weather state and line 
loading rate, which is used for processing the initial status of the next period. The 
sequential process is shown in the dashed box in Fig. 1.2. By applying a Monte 
Carlo-based method, we assert that if the generated samples cannot represent the 
global feature, the sequential simulation process will be repeated until the conver-
gence condition is met.

The RCUC framework in Fig. 1.2 includes three steps which are discussed as 
follows:

	1.	 The area weather conditions and the information on line loading and network 
availability are identified at the initialization step. The initial status of all compo-
nents is assumed to be in normal operation.

	2.	 The line status sampling and RCUC are executed sequentially as follows:

	(a)	 Calculate RCUC and line loadings at period t.
	(b)	 Evaluate the accumulated outage probability of normal lines by the proposed 

sequential sampling method based on the weather conditions and line-
loading rates.

	(c)	 Determine whether any random outage of normal lines has occurred. If so, 
sample repair times; if not, record the accumulated outage probability for the 
next sequential sampling.

	(d)	 Update the remaining repair time for the lines that are under repair. In this 
way, the status of all lines is generated which will be used as the initial status 
for the next period.

	(e)	 Repeat steps to (d) until the optimization horizon is concluded in which an 
RCUC solution is obtained for one generated scenario.

	3.	 The coefficient of variation (CV) of costs over multiple scenarios is used as con-
vergence condition. If the condition is not met, go back to Step 1 for engaging 
additional Monte Carlo iterations.

The CV is used as a measure of relative uncertainty in the Monte Carlo simula-
tion [35] and judge whether the sampled results can represent the global features for 
the RCUC solution. The CV of total costs is adopted as convergence condition,
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If ε is larger than 0.05, a new scenario should be generated.

Proposed RCUC Model

In this section, power flow entropy is introduced and the proposed RCUC model is 
solved in each Monte Carlo iteration using power flow measurements. The follow-
ing formulations are applied to individual iteration. Therefore, we omit the iteration 
index in presenting the following model.

Step 1: Initialization

CV≤ 0.05

End

Accumulate failure

probability 

Generate outage 

status of lines

Solve RCUC

Accumulate failure

probability 

Generate outage 

status of lines

Solve RCUC

Accumulate failure

probability 

Generate outage 

status of lines

Solve RCUC...

...

...

Step 2 : Sequential and Alternating Simulation Process

1th period 2th period NPth period

Y

Step 3: Monte Carlo iteration

Fig. 1.2  Sequential and Monte Carlo-based RCUC framework
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Power Flow Entropy and Proposed Penalty Terms

Power flow entropy is proposed as a measurement of the global heterogeneity for 
the power flow distribution in an electricity grid [32]. It is defined as

	
H t
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m

M
m t m t( ) = −

=
∑

1
2

, ,log
NL NL 	

(1.5)

where M is the total number of successive intervals stated as [0, u), [u, 2 ∗ u), …, 
[(M − 1) ∗ u, M ∗ u). nm, t is the total number of lines with a loading rate absolute 
value rl t l t l, ,

max/= PL PL  that falls into the mth interval [(m − 1) ∗ u, m ∗ u) at time 
t. NL is the total number of transmission lines.

The power flow entropy H(t) provides a measure of power flow distribution uni-
formity. Accordingly, Hmin(t) = 0 when all transmission lines loading rates are within 
the same interval. In this case, the grid load distribution is homogeneous and all 
lines carry loads within their rated capacities. The maximum entropy Hmax(t) = log2M 
occurs when nm, t/NL = 1/M, i.e., number of lines in arbitrary interval is identical. 
Therefore, higher power flow entropy means greater heterogeneity in power flow 
distribution.

When entropy is high, a few transmission lines could be carrying heavy loads 
while others are lightly loaded. The heavily loaded lines could fail more easily and 
the mass transfer of power flow on such lines could trigger cascading failures. 
Reference [32] showed that the power flow entropy has a close relation with both 
the dynamic propagation course and the static black size of cascading failures. The 
power flow entropy can represent an index for the short-term operation defense 
against large-scale blackouts.

In would be difficult to append (1.5) to the SCUC formulation and optimize the 
power flow entropy directly. Therefore, we consider a penalty term that would 
reflect the heterogeneity of power flow distribution as the sum of the absolute value 
of the difference between any two absolute transmission loading rates, states as
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(1.6)

The minimum value of (1.6) could reduce H(t) and improve the power flow dis-
tribution. Since (1.6) is non-convex, it would require convexification. Using ||rj, 

t| − |rk, t|| ≤ |rj, t + rk, t| and ||rj, t| − |rk, t|| ≤ |rj, t − rk, t|, we have

	
r r r r r rj t k t j t k t j t k t, , , , , ,− ≤ + + −( )1

2 	
(1.7)

In (1.7), a lower value of 
1

2
r r r rj t k t j t k t, , , ,+ + −( )  could reduce (1.6). So, (1.8) is 

the first penalty term adopted in the objective function where SL is the set of all 
transmission lines.
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(1.8)

In addition to the effect of the global heterogeneity of power flow distribution, 
outages of heavily loaded lines which could result in large-scale power transfers are 
the one of the critical causes of cascading failures. Since weather-related events 
could often trigger blackouts, it is imperative to reduce the loading rate of transmis-
sion lines in areas affected by extreme weather. Therefore, the second penalty term 
is established as
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l tr ,

	

(1.9)

where SAL is the set of weather-affected transmission lines.
The two penalty terms fulfill different tasks in power system operation states. 

However, additional compromise and coordination would be required between the 
two penalty terms as reductions in certain line flows could increase the flow in other 
lines. In essence, we would reduce power flows through weather affected areas in 
order to lower the power flow entropy effectively.

Proposed RCUC Objective Function

In the DC power flow model, the loading rate rl is presented as a linear function of 
generator outputs Pi,t using the power flow tracing method [36] as
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where SFl, b is shifter factor which is the sensitivity of line flows to changes in bus 
injections. Shift factor reflects how a line power flow changes with a change in bus 
injection power. Shift factor matrix only depends on the grid topology, grid param-
eters, and the location of reference bus.

The objective function for NT operation periods is shown as
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(1.11)

where F P a b P c P i tci i t i i i t i i t, , , , ,( ) = + ⋅ + ⋅ ∀ ∀2  is the cost of unit i at hour t. To con-
struct a proactive defense strategy, the two penalty terms are introduced into the 
RCUC objective function. The first penalty term indicates the difference in trans-
mission loading rates which can improve the power flow homogeneity and reduce 
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the power flow entropy. The second penalty term represents local power flows in 
areas affected by extreme weather conditions. If we substitute (1.10) into (1.11), the 
penalty terms are the absolute value functions of the linear combination of generator 
outputs.

Using (1.11), we simultaneously consider operation cost, power flow homogene-
ity, and weather-affected power flows. One can adjust ω1 and ω2 to find an appropri-
ate trade-off between economics and resilience. Higher ω1 and ω2 means a larger 
power flow homogeneity and a more resilient operation state. The downside in this 
case is that more expensive generators could be dispatched. In extreme weather 
conditions, ω1 and ω2 will increase to enhance the system resilience.

RCUC Constraints

The RCUC model may include the following constraints, with the extended list of 
constraints made available in [14].

•	 Generation capacity constraints
•	 Unit startup/shutdown cost
•	 Unit ramping up/down capability
•	 Unit minimum ON/OFF time constraints
•	 System power balance
•	 Transmission flow constraints

The proposed RCUC model is deterministic and its solution varies in each Monte 
Carlo iteration. However, the proposed penalty terms and operation strategy, which 
can improve the power flow distribution and reduce the blackout risk, pertain to the 
overall system performance rather than individual Monte Carlo solutions.

RCUC Solution Methodology

This section proposes a solution methodology to smooth the model (1.11) and solve 
it more efficiently. A more general form of the programming model shown as model 
(P) is used,
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(1.12)

Alternatively, we consider the following programming model (Q) where we 
prove that its optimal solution is the same as that of model (P).
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Lemma  If (x∗, y∗, u∗, v∗) is the optimal solution of model (Q), then u v ii i
∗ ∗⋅ = ∀0,  

and the optimal objective value is
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Proof  (Proof of contradiction) If u vi i
∗ ∗⋅ ≠ 0 , then u vj j
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∗ ∗≤ , 
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It is easy to verify that the constructed solution is feasible. Since 
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which contradicts the hypothesis that (x∗, y∗, u∗, v∗) is the optimal solution. The same 
reasoning applies to the situation where u vj j

∗ ∗≥ . Hence u vk k
∗ ∗⋅ = 0  for arbitrary k.

According to the equality constraint in (1.13), if uk
∗ = 0 , then 
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equation into q∗ and the lemma is proved.  ■

Theorem  If (x∗, y∗, u∗, v∗) is the optimal solution of model (Q), then (x∗, y∗) is nec-
essarily the optimal solution of model (P).
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Proof: If (x∗, y∗, u∗, v∗) is the optimal solution of model (Q), (x∗, y∗) is necessarily 
a feasible solution of model (P) since (x∗, y∗) satisfies all the constraints of model 
(P). Let ˆ ˆx y,( )  be the optimal solution of model (P), then
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Construct a feasible solution of model (Q) based on the presumed optimal solu-
tion ˆ ˆx y,( )  of model (P) as
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It is easy to verify that (x∗, y∗, u∗, v∗) is a feasible solution of model (Q) since 
ˆ ˆ ˆ ˆx y u v, , ,( )  satisfies the model (Q) constraints. Comparing the objective function 

value q̂  of ˆ ˆ ˆ ˆx y u v, , ,( )  with the optimal objective function value (1.11), we have
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Since q* is the optimal (minimum) objective value of model (Q). By comparing 
(1.15) and (1.16), we conclude that ˆ ˆp q p q= = =∗ ∗ . So, (x∗, y∗) is the optimal solu-
tion of model (P).  ■

So far, (1.6) which measures the power flow entropy is changed to a convex for-
mulation (1.7). Further, penalty terms in (1.11) are changed to linear smooth formu-
lations. Accordingly, the penalty terms of (1.11) are stated as
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Fig. 1.3  IEEE 30-bus system and weather moving trajectory

Table 1.4  Regions, transmission lines and weather intensity

Affected area Impacted transmission line Weather intensity

A1 L3, L7, L11, L12, L13, L14 Z1(t) = 1
A2 L13, L16, L18, L19, L20, L21 Z1(t) = 2
A3 L20, L21, L22, L33 Z1(t) = 2
A4 L33, L34, L35 Z1(t) = 1
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where NCL NL= C2  is the number of pair combinations of all transmission lines and 
NAL is the number of weather-affected lines. To smooth one absolute value func-
tion term, two auxiliary variables and one auxiliary constraint are introduced. In 
total, 4NCL + 2NAL auxiliary variables and 2NCL + NAL auxiliary constraints are 
added for one period. Note that our proposed method is not specific to any form of 
the original objective function F(x, y) or model constraints. Therefore, the linear and 
smooth transformation approach applies to any optimization model.

Case Studies

In this section, we perform case studies on the modified IEEE 30-bus system. The 
cases are tested with the MATLAB R2014b and the Gurobi solver on a desktop 
computer with a 3.20 GHz i5 processor and 8 GB RAM.

The IEEE 30-bus system is composed of six generators, 21 load buses, and 41 
transmission lines. The topology of the system and the moving trajectory of the 
tempest are shown in Fig. 1.3. Table 1.4 shows the affected region, transmission 
lines, and different intensities in the moving path.

IEEE 30-Bus System

The following three cases are discussed to verify the value of RCUC model and 
solution methodology.

Case 1: Test RCUC versus conventional SCUC without considering random out-
ages (Monte Carlo framework). Case 1 is studied to verify the feasibility of the 
linearization method for absolute value functions and the effectiveness of penalty 
terms in the proposed RCUC model.

Case 2: Add random outages to Case 1. The interactions between forced outages and 
system operation states are addressed.

Case 3: Add varying weather intensity and moving trajectory to Case 2. The validity 
of the sequential and alternating process between RCUC and outage sampling is 
demonstrated.

These cases are presented as follows:

Case 1

In this case, no weather effect is considered, i.e. all transmissions lines are consid-
ered to be available in the 24 h horizon. However, we still assign a specific area to 
reduce the local power flow within the area. The area A1 in Fig. 1.3 is selected and 
the affected lines are shown in Table 1.4. The Case 1 results are shown in Fig. 1.4 
and Tables 1.5, 1.6, 1.7.

Figure 1.4 consists of four subfigures. For the traditional model, there is no pen-
alty term which means ω1 = ω2 = 0. Figure 1.4(a) shows the 24-h power flow entropy 
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when only the first penalty term is considered, i.e. ω1 varies and ω2 = 0. Here, the 
power flow entropy drops as ω1 increases, which demonstrates the effect of improv-
ing the uniformity of power flow distribution. Figure 1.4(b) illustrates that the power 
flowing through one specific area can be adjusted by the second penalty term. 

Fig. 1.4  Case 1 results in the 24-h horizon. (a) Power flow entropy. (b) Average loading rate for 
A1. (c) Power flow entropy. (d) Average loading rate for A1

Table 1.5  Results of Case 1 when ω1 varies and ω2 = 0

ω1

Generation cost 
($)

Power flow 
entropy σ

Power flow 
variance D

Average rl, t of all 
lines Ea

Maximum rl, 

t

1 550,709.86 4.396 0.035 0.36 1.00
10 558,898.06 4.152 0.027 0.31 0.83
100 603,284.47 3.607 0.017 0.28 0.60
100 605,339.59 3.561 0.016 0.28 0.60
1000 608,620.29 3.507 0.015 0.29 0.60
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Figures 1.4(c), (d) demonstrate the power flow entropy and the power flow rate in 
the selected area when two penalty terms are considered. The proposed model will 
find a trade-off between the power flow uniformity of total lines and the local power 
flow in the selected area.

Table 1.5 shows the detailed results of generation cost and the uniformity of 
power flow distribution. Three indices are adopted, including the average hourly 
power flow entropy σ, average hourly line flow variance D, and average loading rate 
of all lines Ea, to measure the power flow uniformity in 24 h. In Table 1.5, the gen-
eration cost increases while σ and D decrease as ω1 increases. Moreover, Ea and 
maximum loading rate become smaller because the proportion of the first penalty 
term in the objective function becomes larger as ω1 increases. The optimal solution 
tends to reduce the first penalty term to minimize the objective function. Similarly, 
the average loading rate in a selected area Es and the maximum loading rate of 
affected transmission lines become smaller in Table 1.6 when ω2 is increased, which 
is due to the higher proportion of the second penalty term.

There are a compromise and coordination between the two penalty terms as dem-
onstrated in Table 1.7. As ω1 and ω2 increase, the flow homogeneity of all lines and 
line flows through specific areas can be reduced simultaneously. The larger the ω1 
and ω2, the higher the generation cost and the better the power flow distribution will 
be. However, if ω1 and ω2 exceed 1000 and 10,000, respectively, the power flows 
cannot be improved any further. That is, the resilience enhancement margin has its 
own limitations considering a preventive operation strategy. The limitation depends 
on capacities of generators and lines, network topology, system load, etc. In such 

Table 1.6  Results of Case 1 when ω2 varies and ω1 = 0

ω2 Generation cost ($) Average rl, t of selected area Es Maximum rl, t of selected area

1 550,695.04 0.48 0.78
10 550,695.11 0.48 0.78
100 550,699.56 0.48 0.79
1000 564,342.52 0.28 0.62
10,000 593,952.91 0.19 0.62

Table 1.7  Results of Case 1 when ω1 and ω2 are considered together

ω1  and  ω2

Generation 
cost ($)

Power flow 
entropy σ

Power flow 
variance D

Average rl, t 
of all lines 
Ea

Average rl, t 
of selected 
area Es

Maximum 
rl, t

ω1 = ω2 = 0 550,824.17 4.4 0.035 0.365 0.479 0.995
ω1 = 10
ω2 = 100

560,503.63
(+1.76%)

4.118
(−6.41%)

0.026
(−27.50%)

0.310
(−14.96%)

0.383
(−20.10%)

0.678

ω1 = 100
ω2 = 1000

602,575.51
(+9.40%)

3.706
(−15.76%)

0.017
(−50.69%)

0.280
(−23.22%)

0.268
(−44.08%)

0.597

ω1 = 1000
ω2 = 10, 
000

604,652.35
(+9.79%)

3.651
(−17.03%)

0.016
(−54.3%)

0.282
(−22.73%)

0.274
(−42.79%)

0.597
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cases, additional power system dispatch and unit commitment will not improve the 
resilience. However, considering new generators and transmission lines, enlarging 
line capacities, and developing enhanced demand response programs can support 
the resilience enhancement.

In Table  1.7, for the traditional SCUC (ω1  = ω2  =  0), the generation cost is 
550,824.17 and σ = 4.4, D = 0.035, Ea = 0.365 and Es = 0.479. For the proposed 
model when ω1 = 1000 and ω2 = 10, 000, the uniformity indices σ, D, and Ea decrease 
by 17.03%, 54.3%, and 22.73%, respectively, the average loading rate of selected 
area decreases by 42.79%, whereas the generation cost increases by merely 9.79%. 
This is because higher ω1 and ω2 corresponds to additional expenses for scheduling 
more costly generators to enhance the power flow homogeneity and a reduction in 
specific line flows. Therefore, in the proposed RCUC, ω1 and ω2 represent a trade-
off between operation cost and system resilience. Cases 2 and 3 will show the ben-
efits when power systems are under extreme events.

Case 2

In this case, the proposed sequential and proactive framework of RCUC is studied 
when the system is subjected to extreme events. To obtain better system resilience, 
we choose ω1 = 1000 and ω2 = 10, 000 in Case 2. In PHM, we set γ1 = 2, γ2 = 5, 
a = 10,950, b = 1. The parameters are adopted as [37]. If exhaustive historical data 
are considered a, b,  γ1 and γ2 can be obtained using the maximum likelihood estima-
tion method [33]. The weather is assumed major storm disaster, i.e., Z1(t) = 2 in the 
link function for the 24-h simulation horizon. The weather-affected area is A1. The 
repair rate is 2 and the mean repair time is 1/2 day, i.e., 12 h.

In Table 1.8, the expected line outage time and duration, the expected generation 
cost, and the expected load shedding over all Monte Carlo iterations are demon-
strated. Table 1.8 shows the results for two load profiles. In the fourth row, the out-
age duration means expected total repair time in one scenario which is calculated as 
the average of the total repair time in one scenario over all sampled scenarios. There 
is an evident decline in the expected outage times, outage duration, and load 

Table 1.8  Results for different load in Case 2

System load Base case load Increase base case load by 50%

Model
Traditional 
model Proposed model

Traditional 
model Proposed model

Number of 
outages

0.91 0.35 (−61.54%) 2.48 1.14 (−54.03%)

Outage duration 
(h)

6.69 2.23 16.27 7.18

LS (MW) 143.248 31.549 (−77.98%) 1382.094 615.411 (−55.47%)
Generation cost 
($)

549,884.83 601,251.49 
(+9.34%)

778,727.40 833,649.51 
(+7.05%)

Total cost ($) 836,381.16 664,349.70 
(−20.57%)

3,542,915.4 2,064,471.7 
(−41.73%)
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shedding when the proposed model is applied as compared with those of the tradi-
tional SCUC model. This is because line flows are much more homogeneous and 
line loadings are in proportion to line capacities when the proposed approach is 
applied. Thus, the traditional situation is avoided when some lines undertake heavy 
loading while others undertake lighter loading. In extreme events, the probability of 
relay malfunction and cascading outages will increase. For the traditional SCUC 
model, after heavily loaded lines are tripped, the power flow will be shifted to 
remaining lines rather than becoming more uniform, which gives rise to more forced 
outages and load shedding.

In Table 1.8, the generation cost in the proposed RCUC approach is only 9.34% 
higher than that of traditional SCUC model. However, RCUC introduces a 77.98% 
reduction in load shedding cost and lowers the total cost by 20.57%. When the base 
case system load is increased by 50%, the proposed model is still effective as indi-
cated in Table 1.6. In this case, the load shedding increase is distinctly nonlinear 
which is because there are more transmission lines with high loading rates as the 
load demand increases. In the traditional SCUC model, at hour 18 with the highest 
loading, there are 5-line flow rates that exceed 0.8 and 13 lines over 0.7. A higher 
system load and line loading rate could lead to additional relay malfunctions and 
cascading outages.

In extreme conditions, the proposed RCUC model gains a more efficient power 
system operation strategy which is due to the effectiveness of penalty. However, the 
effectiveness of the proposed model will decrease when comparing the two loading 
cases. The load shedding decreases by 77.98% for the base case load and 55.47% 
for the higher load. The same trend is followed by other system performance indi-
ces. There is a limit on the enhancement of power system resilience which depends 
on the characteristics of generation resources, power network, and individual loads. 
In general, a heavier loading will result in a smaller available margin for generation 
and line flow capacity and a smaller chance for attaining higher resilience.

Case 3

In this case, the moving trajectory and varying intensity of the tempest are shown in 
Fig. 1.3 and the impacted transmission line in the path of tempest at different time 
periods is considered in Table 1.4. The simulation horizon is expanded to 48 h. At 
the same time, base hourly loads in 24 h used in Cases 1 and 2 are extended to 48 h 
in this case. Assume each area is impacted by weather events for 12  h and the 
weather intensity in areas A1, A2, A3, A4 is 1, 2, 2, 1, respectively.

Table 1.9 demonstrates the results in Case 3 where the proposed sequentially 
proactive RCUC framework can consider the effect of line loading rate and time-
varying extreme weather events. Compared with the total cost decrease in Case 2, 
the total cost decline in Case 3 is a bit smaller. Two reasons may be stated for this 
phenomenon. First, the weather-affected area is moving, which precludes certain 
lines from being exposed to severe weather. The weather impact is dispersed to 
some extent. Second, weather conditions are set to vary from severe to extreme in 
the 48 h horizon while the weather in Case 2 was set to be extreme in the horizon. 
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Therefore, Case 3 not only proves the effectiveness of the proposed model for con-
sidering the real-time status of the system, but also indicates that the proposed 
model can offer more resilient in response to extreme events. A significant advan-
tage in resilience is obtained by increasing the generation cost which is no more 
than 10% in all three studied cases.

Convergence Performance of RCUC

Figure 1.5 shows the convergence trend of the proposed RCUC framework. The 
Monte Carlo’s convergence condition, i.e., the CV of total cost to be less than 0.05, 
is satisfied in about 150–200 iterations. For each iteration, the running time for the 
30-bus system is about 40  s which is slightly longer than that of the traditional 
SCUC since pair combinations of all lines are considered by adding C41

2 820=  
absolute value functions. One can select certain transmission lines, including a few 
heavily loaded lines to construct the penalty term for obtaining a higher power flow 
homogeneity and acceptable computation burden. The Monte Carlo iterations are 
independent which could be subject to parallel computation and a lower CPU time. 
In general, the proposed RCUC framework would provide a reliable solution and 
gain a better insight on power system operations within a reasonable CPU time.

Fig. 1.5  Convergence 
trend of CV

Table 1.9  Obtained results in Case 3 with different models

Model
Number of 
outages

Outage 
duration (h)

LS 
(MW)

Generation cost 
($) Total cost ($)

SCUC 
model

1.262 15.396 317.763 1,105,296.76 1,740,822.74

RCUC 
model

0.713 6.624 225.807 1,193,989.76 
(+8.02%)

1,645,602.87 
(−5.47%)
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Conclusions

In this section, a Monte Carlo-based proactive and sequential RCUC framework is 
introduced. A sequential sampling method is proposed to generate random outages 
base on PHM.  To address the non-convexity caused by the penalty terms in the 
RCUC model, a convex approximation approach is presented and its validity is 
discussed. The major findings are as follows:

	1.	 The sequential optimization considering the real-time system status is an effec-
tive means for dealing with extreme weather and enhancing the system resilience.

	2.	 The power flows are concentrated excessively in certain lines in order to improve 
the uniformity of the power flow distribution. This approach can reduce the risk 
of relay malfunctions and cascading outages consequently reduce the required 
load shedding during extreme weather conditions. Particularly, generator outputs 
are adjusted to reduce flows in those transmission lines that are affected by 
extreme weather.

	3.	 The relationship between load shedding and system load demand, under extreme 
weather conditions, is not a linear function. In essence, the required load shed-
ding for resilience would be much higher when demand increases.

	4.	 There is an adjustment limit for the power flow distribution homogeneity which 
depends on the network topology and parameters, generator capacities, and sys-
tem load demand. Generally, higher load levels correspond to smaller generation 
margins for resilience improvement.

1.3.1.2  �Managing Transactive Energy in a Multi-microgrid System

In this section, a reconfigurable distribution network for managing transactive 
energy in a multi-microgrid system for smart energy is introduced.

Nomenclature 

Variables and Functions
C(⋅) Microturbine generation cost function

Cij
del ⋅( )

Transfer cost function

ΔEi The trading adjustment amount at bus i

P iD
t
pur,

Power purchased by MGi from DSO at time interval t (kW)

P ij
t
pur,

Power purchased by MGi from MGj at time interval t (kW)

P i
t
sel,

Power sold by MGi at time interval t (kW)

L(⋅) Lagrangian function
K Iteration number in bi-level programming model

P i
t
MT,

Microturbine (MT)i output at time interval t
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Constants and Sets
a, b, c Coefficients of MT generation cost function

dij
t

Equivalent electrical distance between MGi and MGj at time interval t

p, q Lagrangian multipliers update parameters
Al

g b bl l l
2 2

2+ +( )sh /
Bl

g bl l
2 2+

bl
sh Series conductance and susceptance of a line l

Cl

g b b bl l l l
2 2+ +( )sh /

Dl
g bl l

sh / 2
gl, bl Series conductance and susceptance of line l
Imax Maximal current flow allowed through a line
L Set of branches
N Set of buses
N(m) Set of buses that connected to bus m
Ns Set of substation buses
Nswitch The maximum times of the change of switch status between every two adjacent 

scheduling time
NT Length of a scheduling interval
NMG Number of MGs

PMT
min , 

P iMT,
max

Minimum and maximum MT output of MGi

PD, QD Forecasted load (MW, MVAr)
φm Reactive and real power ratio at bus m
Vmax, Vmin Maximal and minimal voltage amplitude

ηLMP
t LMP at time t

Pdi
t Equivalent load of MGi at time interval t

Pm
inj Power injection at bus m, equal to 0 if m ∈ N\Ns

Pmn The active power flow from bus m and n
qmn The reactive power flow from bus m and n
rl Auxiliary variable, equal to VmVn cos (θm − θn) where Vm, Vn are voltage amplitude 

and θm, θn are voltage angles of the two terminal buses of line l
tl Auxiliary variables, equal to VmVn sin (θm − θn)

um
l Auxiliary variables, equal to um if line l is connected, and 0 otherwise.

um Voltage amplitude at bus m
αl Binary variable for network configuration; 1 if the line l is connected, and 0 

otherwise
βmn Binary variable; equal to 1 if bus n is the parent of bus m, and 0 otherwise.
λi Lagrangian multiplier for subproblem i, indicate the sale price of MGi
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Introduction

In traditional power systems, power is generated centrally by large power plants and 
flown unidirectionally to load centers through transmission and distribution sys-
tems. With the increasing penetration of distributed energy resources and MGs, 
transactive energy emerges in a new power market which enables end-to-end energy 
trading in a coordinated and distributed system operation [38–40].

In recent years, researchers are pushing forward the coordination between 
microgrids (MGs) and power grid. Some literatures focus on using MGs to support 
the main grid’s operation. Reference [41] employed the corrective control to relieve 
post-contingency overflows to support main grid’s security control with MGs. 
References [42–46] enhanced the system resilience by using MGs. In [42], control-
lable and islandable MGs were used to enhance the resiliency of power grid. Four 
resilience indices were introduced to measure the impact of extreme conditions 
from different aspects. Reference [43] quantified and enabled the resiliency of a 
power distribution system with multiple MGs by using analytical hierarchical pro-
cess and percolation theory. Reference [44] proposed a resilience-oriented service 
restoration method using MGs to restore critical load after natural disasters. 
Reference [45] proposed a two-level hierarchical outage management scheme for 
resilient operation of multi-MGs while the autonomy of MGs was guaranteed. In 
[46], dynamically forming MGs was proposed to continue supplying critical loads 
after natural disasters to enhance the resilience of distribution system.

However, these aforementioned studies only focused on the system operation 
optimization with MGs. With the development of power market, MGs could partici-
pate in power market for transactive energy trading, which was also attracting 
researchers’ concerns. Reference [47] modeled wholesale and local markets by con-
sidering the MG electricity auction in energy communities. Reference [48] defined 
a virtual energy sharing coordinator among prosumers. Not using dual prices, a 
pricing model was presented based on the feed-in tariff, grid electricity tariff, and 
the supply and demand ratio. However, the trading decision of MGs in [47, 48] was 
made in a centralized manner. The autonomy of MGs was ignored.

To guarantee the MGs’ autonomy, Ref. [49] presented a multi-MGs energy man-
agement strategy where the dual variable of total power balance constraint was used 
as the distribution marginal cost. But the model does not provide the trading price 
for each MG. Reference [50] adopted Lagrangian relaxation to describe the transac-
tive energy trading process among multi-MGs where Lagrangian multipliers were 
interpreted as clearing prices for each MG. Reference [51] expanded the model in 
[50] with augmented Lagrangian relaxation and proposed an energy management 
model for multi-MGs. Reference [52] proposed a two-stage energy exchange strat-
egy for multi-MGs which makes use of electric vehicles for curbing peak power 
exchanges. The power exchange constraints between MGs and the power distribu-
tion grid are modeled whose dual variables are used as price signal. Not treating the 
energy as a homogeneous product, Reference [53] classified the energy demand into 
several classes according to their preference for source/load. Augmented Lagrangian 
relaxation was introduced to obtain a distributed structure where Lagrangian 
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multipliers were used as trading prices. Reference [54] designed an incentive mech-
anism using the Nash bargaining theory to encourage proactive energy trading and 
fair benefit sharing in multi-MGs. Reference [55] adopted the game theory to design 
a seller level game for MGs where trading strategies and pricing mechanisms were 
discussed. However, these studies only considered the transactive energy trading 
among multi-MGs. The system operation is ignored. In practice, the energy trading 
among multi-MGs will have an impact on the system operation, which may affect 
the energy trading among multi-MGs conversely.

Fewer works considered distribution system operation in the transactive energy 
market among MGs [56–61]. In the limited works, two issues are mainly concerned: 
transactive energy management [56–59] and transactive energy trading and pricing 
[60, 61]. Reference [56] proposed a bi-level transactive energy model where the 
upper and lower levels are the operation of distribution and multi-MG, respectively. 
Distflow equations were used to model the power flow in the upper level. The power 
losses were ignored, which may lead to serious error in distribution systems. 
Reference [57] considered energy interactions among MGs and between MGs and 
the distribution system. The former was described by a bi-level model, the latter was 
modeled by the game theory. The genetic algorithm was used to solve the bi-level 
problem. Reference [58] developed the coordinated operation of multi-MG in a 
power distribution system. Both grid-connected and islanded modes were consid-
ered in MGs. However, distribution power losses were ignored in order to apply 
convex power flow equations. Reference [59] decomposed the distribution system 
operation into power distribution and multi-MG subproblems with an alternating 
direction for multipliers. References [56–59] addressed the coordinated energy 
management of networked MGs and the distribution system. However, the end-to-
end energy sharing and trading among MGs were not taken into account. Reference 
[60] developed an inter-MG auction in electricity market to manage the excess sup-
ply or residual demand where market imbalances were assigned to the utility grid. 
In this case, although a distribution level market was devised, the distribution power 
flow was ignored. In [61], a distribution system operator (DSO) acted as an interme-
diary for MG energy exchanges. DSO calculated a reference trading level for MGs 
based on which a penalty term was added to market objectives to minimize the trad-
ing mismatch. In this case, all MGs traded with DSO by considering the reference 
trading level. However, in [60, 61], MG trading models were not peer-to-peer, and 
the MG autonomy was limited.

In practice, energy trading among MGs needs the support from the grid facility. 
Moreover, energy trading among MGs may account for line congestions. Thus, it is 
reasonable and fair that MGs should make a payment to DSO for their energy trad-
ing. In [50], the cost of trading energy between MGs was considered. The trading 
cost was assumed to be common for each MG. However, the impact of network 
topology on the energy trading among MGs was ignored. MGs locate at different 
nodes in practical distribution system. In this study, we consider that MGs’ trading 
cost is related to the trading amount and the distance between the traders. Different 
network topology will lead to different distances among MGs, and MGs may make 
different trading decisions.
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The contribution made is shown in Table 1.10 by comparing with the reviewed 
literature. The main contributions of this study are summarized below:

•	 The distribution reconfiguration is considered in the transactive energy market 
for multi-MGs. The distribution reconfiguration manages the trading among 
MGs by calculating the proper path dynamically.

•	 A distributed end-to-end multi-MG trading model is proposed considering MGs 
positions in the distribution network. The trading level is updated dynamically in 
bi-level iterations according to the equivalent distance between MGs.

•	 The impact of network topology on the energy trading among MGs is consid-
ered. We consider that MGs’ trading cost is related to the trading amount and the 
distance between the traders to make the trading model more practical.

•	 The proposed transactive energy market framework would ensure the individual 
MG autonomy while maintaining the cooperation among MGs and the power 
distribution system.

Proposed Framework for Transactive Energy

The proposed framework is depicted in Fig. 1.6 where the DSO and multi-MG are 
independent entities representing their individual objectives. MGs consider trading 
with their peers at the lower level and with the DSO at the upper level. A distributed 

Table 1.10  Contribution comparisons

References

Realizing 
decentralized trading 
decision for MGs

Considering 
distribution system 
operation

Considering 
network 
reconfiguration

Considering 
energy trading 
cost

[47, 48] × × × ×
[49–55] √ × × ×
[56–61] × √ × ×
[50] √ × × √
This work √ √ √ √

Transactive energy market for Multi-microgrid

MG 1 MG 2 MG n

Distribution operation level

Network Reconfiguration for DSO

Equivalent Load
Transmission path

Required trading adjustment

Others MGs 

price and demand

Multi -microgrid trading level

MG1 price 

and demand

Fig. 1.6  Proposed bi-level 
framework
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end-to-end energy trading and pricing model is established using Lagrangian relax-
ation and decomposition methods, respectively. MGs make their trading decisions 
independently and submit their equivalent load to DSO. The DSO reconfigures the 
network and determines the flow path between MGs. If network constraints cannot 
be satisfied at the upper level, the trading adjustment will be considered iteratively 
at the lower level. The iterations at the lower level and between lower and upper 
levels will continue until the convergence criterion is satisfied.

The proposed multi-MG transactive energy trading model considered at the 
lower level is described as follows:

•	 Each participating MG is represented by an equivalent dispatchable microtur-
bine (MT) in the distribution system.

•	 MGs trade energy in an end-to-end process (without the DSO’s trading interven-
tion). Each MG can also buy energy from the DSO.

•	 Transactive energy purchaser will bear the energy delivery cost considering net-
work and trading constraints.

•	 Each MG offers transactive energy quantity and price and updates its strategy 
using other MGs offers.

The DSO’s network reconfiguration considered at the upper level of Fig.  1.7 
affects the transactive energy delivery cost and correspondingly changes the multi-
MG behavior as well as the transactive energy trading quantity and price. The use of 
AC power flow equations ensures the accuracy of distribution but introduces non-
convexity. We consider a convex problem by applying a feasible convex superset in 
the proposed optimal distribution reconfiguration. Different supersets could be con-
sidered for the relaxation method including the second-order cone programming 
(SOCP) and the semi-definite programming. When the distribution network is 
radial, SOCP is the tightest relaxation which gains the fastest solution [62, 63]. 
Accordingly, we apply the mixed-integer SOCP in this study to optimize the distri-
bution network reconfiguration.

Multi-Microgrid Transactive Formulation

The multi-MG trading at the lower level is modeled by Lagrangian relaxation in 
which each MG forms a decomposed subproblem, while the network reconfigura-
tion at the upper level is modeled by SOCP. The proposed bi-level transactive energy 
problem for multi-MGs is formulated as follows:

	

min .

. . . .

argmin .

. . . .

1 31

1 32 1 51

1 19

1 21 1 27

( )
( ) − ( )

( )
( ) −

∈
s t

s t

Pdi
t

(( ) ( ), .1 52
	

(1.18)
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where the upper level in (1.18) is to minimize the operation cost and trading 
adjustment requirement. The lower level is to minimize the total trading cost of all 
MGs. Next, we will present the detailed objectives and constraints for the transac-
tive energy trading process.

Lower Level: Lagrangian Relaxation Solution for Multi-microgrid

At the lower level, the primal objective function of multi-MG trading is

	

min , ,
t i

i
t t

iD
t

j
ijC P P C P

= = =
∑∑ ∑( ) + ⋅ +

1 1 1

NT NMG

MT LMP pur

NMG
del

purη ,,ij
t( )









	

(1.19)

where the first term is the MTi generation cost stated as Ci(x) = aix2 + bix + ci. The 
second term is the power purchase cost from DSO. The third term is the delivery 
cost of MGi power purchase. This item considers power losses which have a qua-
dratic relationship with power transfer. Accordingly, Cij

del  is defined as

	

C
P Q

V
d P dij ij
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t

i

ij ij ij
t

i
del pur pur

pur=
+

= +( )⋅σ σ ϕ, ,
,

2 2

2
2 21



jj

	

(1.20)

where Vj is the voltage of node j, assumed to be 1 in the delivery cost estimate. 
In addition, we assume that when a MG buys active power, it also imports reactive 
power Qpur, ij = φPpur, ij in proportion to its power factor. We use a coefficient σij to 
estimate the delivery cost. The unit of σij is $/(kW2·Ω) and it affects the marginal 
delivery cost if MG i buys power from j and is predetermined for exchanging trans-
active energy. dij

t  is the equivalent distance between MGs i and j which represents 
the transmission path resistance between the two MG nodes. The transmission path 
between node i and node j is dynamically calculated based on the latest topology. 
The proposed transmission path searching method is as follows:

Initialization
•  Input the latest network topology and the node-branch incidence 

matrix, the initial node m and the target node n.
•  Define the set Nf denoting the nodes that have been found before. The 

starting Nf = {m}.
•  Define the set Nnf as the nodes that have not been found before. We have 

Nf ∪ Nnf = N, Nf ∩ Nnf = ∅.
•  Let the set Nk denotes the neighbor nodes found in the k-th search.
•  Initialize the route record matrix R ∈ NL × NB.
Repeat the iteration while {target  node  n ∉ Nf}
  for each node i∈Nk-1

     find the node j ∈ Nnf that next to node i;
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The constraints for (1.18) are shown as
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where (1.21) and (1.22) are the MGi’s active and reactive power balance, respec-
tively. Equations (1.23)–(1.25) are trading constraints. Since we use separate vari-
ables to denote the MG trading behavior, the variables in (1.23)–(1.25) are 
nonnegative. In the active power balance (1.21), buying variables are added and 
selling variables are subtracted. Constraint (1.26) is the limit on the MT generation 
capacity. Constraint (1.27) shows the trading balance among MGs. In other words, 
Eq. (1.27) represents that the total purchase by MGi is equal to its cumulative sale. 
The constraint (1.27) denotes the MG trading balance in the transactive energy mar-
ket. Although MG can also buy from DSO using the location marginal price (LMP) 
in this section.

By relaxing (1.27), the transactive energy problem will be decomposed for each 
MG using the Lagrangian function,

      Add the branch Lij to the transmission path from initial node m 
to node i;

     Record the transmission path in the j-th column of R;
     add node j to the set Nk;
  end
  Update Nf = Nf ∪ Nk, Nnf = NB/Nf;
  k = k + 1;
End
Output: The n-th column of matrix R which represents the transmission 

path between initial node m and target node n.
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The relaxed transactive energy problem can be decoupled into separate MG sub-
problems. Accordingly, the objective function of the decoupled subproblem i is
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Solve the subproblem (1.29) for each MG. The solutions of (1.29) may not sat-
isfy the relaxed constraints (1.27). Therefore, we modify the multipliers in order to 
achieve the primal feasibility, i.e., satisfy the relaxed (1.27). The Lagrangian multi-
pliers are updated by the subgradient method,
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(1.30)

where k is the iterations.
Lagrangian multipliers represent the trading price in the proposed MG trading 

model. In (1.30), when the total power the MGi’s sale exceeds its available supply, 

j
ji

t
i

tE E
=
∑ >

1

NMG

pur sel, , , then λi[k + 1] will exceed λi[k]. Otherwise, λi[k + 1] will be smaller 

than λi[k]. The trend matches that of bulk market price which will be lower for buy-
ers and higher for sellers. Hence, multipliers provide the transactive electricity 
price. Moreover, since λi is the sale price of MGi, the second line in (1.29) denotes 
the MGi’s purchase cost from other MGs (purchase price multiplied by the quan-
tity) minus the MGi revenue (sale price λi multiplied by the quantity E i

t
sel, ). In this 

way, costs and revenues are considered in each MG’s decision. Note that the trading 
price is decided by MG rather than DSO.

Once we find a feasible solution, the primal objective function value provides the 
upper bounds on the optimal value P∗ of the problem (1.19). The optimal value of 
relaxed primal problem (1.28) yields lower bounds on P∗. The difference between 
the objective function value of the primal and dual problem is called the duality gap. 
Relative duality gap (RDG) is used to estimate how far the feasible solution is from 
the optimal solution. The RDG is calculated as follows:
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where z(k) and ϕ(k) are the objective function values of problems (1.19) and (1.28) 
at iteration k, respectively. By setting prespecified tolerance ε of RDG, it is guaran-
teed that the final solution is close enough to the optimum. In this study ε = 0.05. If 
the RDG convergence criterion is not satisfied, the Lagrangian multipliers should 
further be adjusted to achieve a solution as close to the global optimality of the final 
solutions as possible.

Upper Level: Distribution System Reconfiguration

The optimization objective is
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(1.32)

where PDi is the constant load and equivalent load for non-MG nodes and MG 
nodes, respectively. Pinj is the power injection at the substation bus. ∅Ei

t  is the 
adjustment requirement of trading amount for MGi. The absolute value function is 
needed since ∅Ei

t  can be positive or negative. γ is a big constant to make sure that 
the trading adjustment is required only when the network constraints cannot be 
satisfied.

Constraints (1.33)–(1.36) guarantee that the distribution network has a tree struc-
ture. αl is binary variable where αl = 1 if the line l is connected and 0 otherwise. βmn 
is a binary variable where βmn = 1 if bus n is the parent of bus m and 0 otherwise. The 
root node in each tree can be substation buses.
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Constraints (1.37) and (1.38) represent nodal real and reactive power balances. 
Constraints (1.39) and (1.40) denote real and reactive power flow from node m to 
node n, respectively. By defining auxiliary variable u Vm

l
i= 2 2/ , ri = ViVj cos θij, 
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tl = ViVj sin θij where Vi is the voltage at node i, we calculate linearized power flow 
constraints (1.39) and (1.40). Constraint (1.41) represents the conic relaxation rela-
tionship of rl, tl, and um

l , un
l .
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Constraints (1.42) and (1.43) link the network configuration variable αl to the 
auxiliary voltage variables u um

l
m,  so that ∝m

l  can be set to 0 when αl is 0 and um 
when αl is 1. Equation (1.44) sets the current flow limit on each line. Equations 
(1.45)–(1.47) set upper and lower bounds for the auxiliary variables rl, tl and um.
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Constraints (1.48)–(1.52) ensure the number of switching status changes between 
every two adjacent hours is less than a certain threshold Nswitch in order to reduce the 
switching cost and extend the life of switches. α̂l  represents the last status of switch 
i. Hl is an auxiliary variable to apply the XOR operation of αl and α̂l .
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By solving the problem stated in (1.32)–(1.52), the network topology as well as 
the trading quantity adjustment are obtained. If the trading adjustment amount ΔEi 
is not 0, the following constraint is generated and added to MGs trading model.
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Flowchart for Multi-Microgrid Trading

The overall flowchart is shown in Fig. 1.7. At the multi-MG level, the process of the 
designed end-to-end trading process is shown in the lower dashed box of Fig. 1.7 
which is described as follows:

	(a)	Each MG solves (1.29) for the given multipliers λi
t i,∀ ∈MG . That is, each MGi 

calculates its buy E jij
t
pur, ,∀  and sell E i

t
sel,  volumes according to other MG prices. 

Repeat Step (a) for all MGs.
	(b)	 Submit trading results to transactive energy market. If the trading decisions for 

all MGs do not change much in two consecutive iterations, go to Step (c). 
Otherwise provide each MG’s latest trading variables to other MGs and go to 
Step (d).

	(c)	 The relative duality gap (RDG) ε is evaluated. In this study, ε   ⩽  0.05 is the 
convergence criterion. If the condition is satisfied, send the nodal equivalent 
load of MGs to DSO without publishing trading details. Otherwise go to 
Step (d).

	(d)	 Each MG updates its selling price λi
t  using the trading variables in (1.30). 

Repeat Step (d) for all MGs. Provide each MG’s latest price λ j
t j,∀  to other 

MGs. Then go to Step (a).

For the distribution level, shown on the top section of Fig. 1.7, solve the recon-
figuration problem (1.32)–(1.52) using the nodal equivalent load of MGs. Determine 
the latest network topology and evaluate the requirement of trading adjustment if 
the network security index is violated. Calculate the distribution path and the equiv-
alent distance between MGs.

The basic processes in the proposed framework are: multi-microgrids make trad-
ing decisions and submit to DSO; then, DSO calculates the equivalent load of the 
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nodes where multi-microgrids locate; finally, DSO conducts the network reconfigu-
ration to minimize the transmission loss of the distribution system. However, there 
are some existing problems: The network reconfiguration may change the network 
topology such that the equivalent distance between microgrids may change and 
affect the trading decisions of multi-microgrids. Therefore, two outcomes are pos-
sible after running the proposed bi-level optimization model: (1) the network recon-
figuration does not change the network topology. It means the equivalent distance 
between microgrids does not change; (2) the network topology changes after net-
work reconfiguration, but the equivalent distance between microgrids does not 
change. It means the transmission path between every two microgrids keeps the 
same; (3) the network topology changes after network reconfiguration and the 
equivalent distance between microgrids will also be changed.

MG1 

subproblem

MG2 

subproblem

MGn 

subproblem
...

Each microgrid solves its subproblem

MG1 updates 

1

MG2 updates 

2

MGn updates 

n

...

Each microgrid updates its selling price

Trading decisions 

change?

Y

N

N

Distribution level

Y

Multi-microgrid level

Global 

convergence? End
Y

N

Optimize network topology Determine trading amount adjustment

Calculate transmission path and equivalent distance between microgrids

Add trading amount adjustment constraints and update the microgrids 

trading model

RDG 0.05?≤

Fig. 1.7  Flowchart of proposed multi-microgrid trading
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For the first and the second situations, the trading decision of multi-microgrids 
will not be changed. The convergence criterion 1 is satisfied and the bi-level itera-
tion process can be stopped.

For the third situation which is much more likely to occur, the trading decisions 
of multi-microgrids will be reconsidered due to the change of the equivalent dis-
tance between microgrids. The bi-level iteration process should be continued. Noted 
that for each line there are two states, i.e., on and off. It is known that the number of 
combinations of n lines is 2n which is very large but still limited. Especially for a 
distribution system with n lines, the number of combinations is less than 2n. So we 
can make a conclusion that (1) in the proposed bi-level iteration process, the net-
work reconfiguration result will be the same as the previous one after a certain 
number of iterations; (2) the convergence of the proposed bi-level iteration can 
always be achieved. It means the trading decisions of multi-microgrids will be 
repeated after a certain number of iterations. At this time, the convergence criterion 
2 is satisfied and the bi-level iteration process can be stopped.

Note that the proposed bi-level programming problem can be transformed into 
an equivalent single-level mixed-integer SCOP problem by replacing the lower 
level optimization problem with its Karush–Kuhn–Tucker (KKT) optimality condi-
tions. However, for the independency of each entity in the transactive energy mar-
ket, multi-MG level, and distribution level are solved respectively in this situation.

Case Studies

To demonstrate the effectiveness of the proposed model and algorithm, the IEEE 
33-bus [64] is used for simulation. The simulation is conducted using MATLAB 
R2014b with Gurobi solver. The distribution system topology is shown in Fig. 1.8. 
The three MG1, MG2, and MG3 are connected to nodes 9, 11, and 29, respectively. 
For simplicity, we assume each MG has one MT with the same quadratic generation 
cost function parameters ɑ = 0.0005 $/(kWh)2, b = 0.1809 $/kWh, and c = 1.223$. 
In addition, P iMT,

min  is 0 kW for three MTs. The P iMT,
max  are 400, 500, and 500 kW, 

respectively for MG1, 2, and 3. The hourly LMPs at PJM are shown in Fig. 1.9.
Two cases are considered. Case 1 is to identify the impact of transactive energy 

trading among MGs without any network reconfiguration. Case 2 will add distribu-
tion reconfiguration to Case 1.

Case 1: MG Trading Without Network Reconfiguration

In Case 1, three scenarios are discussed as follows:

Scenario 1: MG participants use self-generation and do not trade any electricity, i.e., 
E ij

t
pur, = 0 , E i

i
sel, = 0 , and E iD

t
pur, = 0 .

Scenario 2: MGs trade transactive energy but not trade with DSO, i.e., E ij
t
pur,  0 , 

E i
t
sel,  0 , and E iD

t
pur, = 0 .
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Scenario 3: MGs trade transactive energy with other MGs and DSO, i.e., E ij
t
pur,  0 , 

E i
t
sel,  0 , and E iD

t
pur,  0.

In Case 1, Scenario 1 leads to the largest power consumption cost of $1601.052 
since no transactive energy between multi-MG is considered. Each MG supplies its 
load by own MT without any cooperation and coordination.

Scenario 2 leads to a lower consumption cost of $1555.663 as transactive energy 
is considered among MGs. Take hour 19 for example. In the final transactive energy 
trading, Lagrangian multipliers are 0.2815, 0.2796, and 0.2872, representing sale 
prices for MG1, MG2, and MG3, respectively. To increase the payoff, MG3 buys 
27.734 and 24.063 kW from MG1 and MG2, respectively. For MG1, it generates 
100.579 kW, buys 11.405 kW from MG2, and sells 27.734 kW to MG3. That is, 

Fig. 1.9  Hourly LMPs
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Fig. 1.8  Modified IEEE 33-bus distribution power system
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11.405 kW of 27.734 kW sold by MG1 is generated by MG3. Accordingly, lowest 
generation and delivery cost can be obtained by dispatching the MG3 demand 
appropriately. If no delivery cost is considered, each MG will trade transactive 
energy based on its incremental generation cost and buys power from other produc-
ers. Otherwise, trading decisions will be based on generation cost and electrical 
distance among MGs.

In Scenario 3, shown in Fig. 1.10, MGs have more options to buy power as DSO 
supplies part of the demand. MGs trade with each other between hours 14:00 and 
19:00 according to the hourly LMPs. Take hour 19:00 for example. MG3 with the 
heaviest load generates 91.900 kW and buys 11.549, 11.156, and 52.268 kW from 
MG1, MG2, and DSO, respectively. MG1 buys 9.800  kW from MG2 and sells 
11.549 kW to MG3. MG2 generates 83.533 kW and sells 11.156 kW to MG3. The 
consumption cost is $895.909 in this case.

Case 2: MG Trading with Network Reconfiguration

DSO not only participates in transactive energy market but also reconfigures the 
distribution network as proposed in the bi-level coordination framework. Two sce-
narios are discussed.

Scenario 1: DSO reconfigures network and coordinates with three MGs located at 
bus 9, 11, and 29.

Scenario 2: MG3 is shifted from bus 29 to bus 33 to analyze the impact of MGs 
locations.

Figure 1.11 shows the hourly total cost of MGs and DSO with and without dis-
tribution reconfiguration which demonstrates the merits of reconfiguration. The cost 
of MGs is calculated by the primal objective function (1.19) and the cost of DSO is 
evaluated by the distribution network loss multiplied by LMPs. This observation 
indicates that the proposed framework can effectively reduce the social cost of dis-
tribution system with using MGs. It should be noted that network reconfiguration 
cannot always reduce MG trading costs which depend on the network topology and 
MG locations and operating conditions.

Figure 1.12 shows the MG total cost for different MG3 locations, which is 
impacted by network losses. An obvious reduction in the MG total cost is obtained 
when MG3 is relocated from bus 29 to 33. Although distribution losses are fairly 
close in most of the hours, Fig. 1.13 shows that the total power losses over 24 h are 
reduced after MG3 relocated. Hence, MG locations can have a major impact on 
trading and consumption costs. This conclusion also suggests that the MG operation 
and planning, market trading mechanism, and distribution system planning and 
operation, must all be coordinated in market operations.

Table 1.11 shows the interaction process between DSO and MGs at hour 14:00. 
At the initial iteration k = 0 transactive energy trading is set to 0 and the network is 
initiated. It takes three iterations to converge the bi-level solution. In each iteration, 
λi

t  and trading behaviors are updated based on the last network topology. 
Accordingly, based on the transactive energy trading results, the network 
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reconfiguration applies line switching and changes the electrical distance between 
MGs. The DSO cost is calculated by the first two terms in (1.32). In the column of 
MG trading behavior, variables that are zero are not shown for simplicity. As itera-
tions continue, network losses will decrease further until DSO and MGs reach a 
stable point. At the last iteration k = 3, the electrical distance between MGs remains 

Fig. 1.11  Total cost with 
and without distribution 
reconfiguration

Fig. 1.10  Multi-MG trading behavior in Case 1 Scenario 3. (a) MG1 generation and trading. (b) 
MG2 generation and trading. (c) MG3 generation and trading. (d) MGs cost
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the same as that of k = 2 though the open switches are different. The convergence 
criteria are satisfied in the last transactive energy trading.

Table 1.12 shows the final results at hour 14:00 when MG3 is shifted from bus 
29 to 33. Compared with Table 1.11, the MG relocation leads to different trading 
behavior and the reduction in the MG’s total cost. The proposed model can help 
decision makers consider various scenarios for MG locations and the coordination 
and interaction among DSO and MGs.

Interpretation of Trading Behaviors

The MG’s trading behavior is affected by marginal prices. The MGi’s objective 
function (1.29) consists of four parts, i.e., MT generation cost, power purchase cost 
from DSO, power purchase from other MGs, and revenue for power sale to other 
MGs. For MGi, the derivation of each part is shown as (1.54)–(1.57):

	
M P C P a P b Pi

t
i

t
i i

t
i i

t
MT MT MT MT, , , ,( ) = ( ) = +′ 2

	
(1.54)

Fig. 1.12  MGs total cost 
at different MG3 locations

Fig. 1.13  Network loss at 
different MG3 locations
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where (1.54)–(1.56) are the marginal price of microturbine generation, power pur-
chase from other MGs, power purchase from DSO, respectively. Equation (1.57) is 
the marginal income for MGi sales. The above four parts will individually lead to 
different choices for MGi. Here, M P i

t
MT,( )  and M P ij

t
pur,( )  increase with P i

t
MT,  and 

P ij
t
pur, , respectively. Before M P i

t
MT,( )  and M P ij

t
pur,( )  grow to be equal to M P iD

t
pur,( )

, i.e., ηLMP
t , an MG will prefer to trade with other MGs. After that, the MG will buy 

from DSO.  If M P i
t
sel,( )  is higher than M P i

t
MT,( )  and M P ij

t
pur,( ) , an MG will 

sell energy.
In Scenario 1 of Case 2, LMP is 0.273 $/kW at hour 14:00. The MG3 load is 

166.873 kW which is supplied by purchasing 14.244, 9.850, and 50.880 kW, from 

Table 1.12  Case 2 Scenario 2 results at 14:00

k

MG trading behavior (kW)

Open switches DSO cost ($)Buying Selling

3 Epur12 = 7.443
Epur31 = 0.903
Epur32 = 4.977

Esel,1 = 0.903
Esel,2 = 12.420
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Table 1.11  Results at 14:00 in Case 2 Scenario 1

k

MG trading behavior (kW)

Open switches DSO cost ($)Buy Sell

0 0 0 0 6, 8, 9, 17, 27 154.86
1 Epur12 = 5.962

Epur31 = 8.342
Epur32 = 15.631

Esel,1 = 8.342
Esel,2 = 21.593

0.267
0.265
0.267

6, 14, 17, 21, 29 64.81

2 Epur12 = 10.057
Epur31 = 11.133
Epur32 = 11.010

Esel,1 = 11.133
Esel,2 = 21.066

0.265
0.265
0.266

7, 10, 17, 29, 34 56.65

3 Epur12 = 6.965
Epur31 = 9.850
Epur32 = 14.244

Esel,1 = 9.850
Esel,2 = 21.209
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6, 9, 12, 15, 37 63.37
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MG2, MG1, and DSO, respectively. We apply the final iteration results listed in 
Table 1.10 to (1.54)–(1.57) and depict the marginal cost of MG3 for suppling its 
load in Fig. 1.14. Here, the slope of marginal consumption cost has incorporated the 
impact of Lagrangian multipliers according to (1.54)–(1.57). When MT3 is dis-
patched at 83.800 kW, as shown by point 1 in Fig. 1.13, the incremental cost of MT3 
is 0.265 $/kW which is the same as the price for buying power from MG2.

Next, MG3 will increase the dispatch of MT3 as the load increases and buys 
power from MG2 until MT3 reaches 86.300  kW and the purchase from MG2 
reaches 2.500 kW, as depicted by point 2. Note that the incremental cost of MT3 and 
purchase price from MG2 have remained the same in order to minimize the cost as 
the load increases. At point 2, the incremental cost of MT3 and the purchase price 
from MG2 are 0.267 $/kW which is equal to that of purchasing from MG1.

The higher load will be supplied by MT3 dispatch and purchases from MG2 and 
MG1 simultaneously. When MT3 dispatch increases to 91.900 kW, purchases from 

Fig. 1.14  Marginal consumption cost of MG3
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MG1 and MG2 increase to 9.850 kW (point 3) and 14.244 kW (point 4). In this 
case, the incremental cost of MT3, as it purchases from MG2 and MG1, is equal to 
that of the power purchase from DSO, i.e., LMP at 0.273 $/kW. If the load continues 
to grow beyond 91.90 + 9.850 + 14.244 = 115.994 kW, MG3 will buy power from 
DSO to supply the load in excess of 115.994 kW.

Convergence Performance

Consider Case 2, Scenario 1, hour 14:00. Figure 1.15 shows the convergence trend 
and Fig. 1.16 shows the evolution of the Lagrangian multipliers in the last bi-level 
iteration. The proposed bi-level framework contains the distribution reconfiguration 
problem and multi-microgrid trading problem. The computer burden of each part 
and the whole framework is described as follows:

	1.	 The reconfiguration problem is solved with a mixed integer second-order cone 
programming and takes about 2 s.

	2.	 The Lagrangian relaxation iteration for MG trading problem converges in about 
120 iterations and takes 100 s generally.

	3.	 One bi-level iteration takes about 100 + 2 = 102 s. In general, it takes about three 
bi-level iterations to converge. Therefore, for each scheduling point, it takes 
about 102 × 3 = 306 s. And for a 24-h scheduling, it takes about 306 × 24 = 7344 s.

The main computation burden lies in the microgrids trading level. Note that the 
proposed end-to-end microgrids trading model has a distributed structure. If parallel 
computation is adopted to solve each Lagrangian subproblem, the total CPU time 
would be significantly reduced. Moreover, the proposed approach is implemented 
with a general solver in this test. The calculation efficiency can be further improved 
with algorithms particularly developed for this kind of problem. To sum up, with the 
development of fast computational and communication techniques, the computation 
burden would not be a challenge for the implementation of the proposed model.

Fig. 1.15  Objective 
function and relative 
duality gap
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Conclusions

This section devises an end-to-end transactive energy market to highlight the coop-
eration among MGs and the coordination between the distribution system and MGs. 
The following conclusions can be drawn.

•	 Using the proposed bi-level transactive energy framework, MGs can trade energy 
to lower their costs and make more payoff by coordination their trades with DSO.

•	 Lagrangian relaxation and decomposition techniques provide an effective end-
to-end transactive energy trading mechanism where Lagrangian multipliers pro-
vide price signals in transactive energy market.

•	 The MGs trading decisions are based on marginal consumption costs. The distri-
bution path between MGs and Lagrangian multipliers determine the marginal 
costs and transactive energy trading behaviors.

•	 The locations of MGs in a distribution system pose a great impact on transaction 
costs and trading behaviors. The distribution reconfiguration should be consid-
ered effectively when multi-MGs are considered.

•	 The proposed bi-level framework can coordinate the DSO’s operation with that 
of the multi-MG trading, reduce network losses, and enhance the MGs’ payoffs 
effectively.

1.3.1.3  �Resilience-Constrained Power Systems in Extreme Conditions

In this section, impact of cascading and common cause outages on resilience-
constrained economic operation of power systems in extreme conditions will be 
explained.

Fig. 1.16  Lagrangian multipliers (sale price) convergence
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Nomenclature 

Variables and Functions
Ci(⋅) Fuel consumption function of unit i
LCj Load curtailment at load j
i Index for generator unit
j Index for bus load
l, p, q Index for transmission line
Pi Generation of unit i
PLl Real power flow of line l

PL c
l
p Line flow on l, due to an outage in line p

PL c
l
p q− , Line flow on l due to common-cause outages in line p 

and q

pk
cf Weather-dependent outage probabilities of conductor k

pk
tf Weather-dependent outage probabilities of tower k

pl
wf Weather-dependent outage probabilities of 

transmission line l

pp q,
cco

Probability of common-cause outage of line p and q

pl
hf Hidden outage probability of line l

rl Absolute loading rate of line l
sl, tl Auxiliary variables to linearize (1.73c)
ul, vl Auxiliary variables to linearize (1.66a)
σl Auxiliary binary variables to linearize constraint 

(1.66c)

∅PL c
l
p Slack variable for line flow on l due to a single outage 

of p

∆PL c
l
p q− , Slack variable for line flow on l due to common-cause 

outages of p and q
Constants and Sets
α Coefficient of generation cost
β Coefficient of the first penalty term
γ Coefficient of the second penalty term
PDj Real power demand of transmission load j
KD Bus-load incidence matrix
KL Bus-line incidence matrix
KP Bus-generator incidence matrix
NL Number of total transmission lines
NG Number of generation units
ND Number of transmission loads
NCl Number of conductors on line l
NTl Number of towers connected to line l
Pmin, i Lower limit of real power generation of unit i
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Pmax, i Upper limit of real power generation of unit i
PLmax, l Capacity limit of line flow of line l
SAL Set of extreme weather affected lines

Introduction

An increasing number of cascading outages in extreme conditions indicate that 
power system vulnerabilities are continuously exposed to serious weather condi-
tions which could culminate in extensive power blackouts. Resilience would evalu-
ate the performance of an ecosystem affected by external changes and continually 
confronted by unexpected events. Similarly, power system resilience describes the 
capability of power systems to change itself to withstand major events with high 
impact and low probability [2, 5, 65].

Figure 1.17 shows a typical power system resilience curve which is divided into 
three development stages, i.e. adaptation, absorption, and restoration, with specific 
resilience indices [4, 66, 67]. For example, the BC slope denotes how fast the sys-
tem deteriorates, CD segment denotes the system robustness, DF segment denotes 
how promptly the network recovers, and BCDEF area denotes the system loss. 
According to the definition of power system resilience, the adaptation in Fig. 1.17 
describes the power system capability to adapt to prevailing conditions in response 
to unexpected events. However, the adaptation stage lacks indices that describe the 
adaptive capacity of power systems in extreme events which may lead to cascading 
outages. In this study, a new resilience index is introduced to describe adaptation 
performance and establish a preventive resilience-constrained economic dispatch 
(RCED) strategy to improve power system adaptability.

Some previous studies proposed preventive strategies for enhancing the power 
system resilience. In [22], a sequential proactive operation strategy was proposed 
where the system state transition follows a Markov process. Reference [68] consid-
ered cascading outages and N − k contingencies to establish a risk-based operation 
strategy. In [69], an N − k contingency screening method for economic dispatch was 
proposed with multi-objective optimization where maximized system load shed-
ding and minimized system load shedding are considered. In [70], the economic 
dispatch contingency set was constructed based on risk assessment under a bi-level 
framework. Reference [25] studied the proactive microgrid dispatch strategy to 
enhance resilience in which the islanded operation time is modeled as uncertainty 
set. To further enhance power system resilience, Reference [71] studied the power 
system economic dispatch integrated with microgrids in extreme conditions. 
Reference [72] proposed the optimal resilience operation in terms of line hardening. 
Different hardening methods were determined to reduce line outage probabilities 
and load shedding costs. Reference [73] studied the resilience enhancement strategy 
considering the line hardening and the formation of multiple islanded provisional 
microgrids. Reference [74] proposed an N  −  k contingency screening method 
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considering the hidden outages. Reference [75] proposed an approach to construct 
the constraints for contingency events using line outage distribution factors to 
reduce the computational burden. Reference [76] considered the extreme events and 
established a robust model to achieve optimal hardening strategy in integrated elec-
tricity and nature gas transportation systems.

Aforementioned references studied the power system resilience and security 
considering N − k contingencies. Such resilience operation strategies could improve 
the system performance toward specific contingencies. These studies have had an 
implicit assumption that improving the power system reliability, such as implement-
ing the N − k contingencies, could lead to more resilient power system operations at 
certain circumstances. This view may be true when a power system is subject to 
typical outages. However, when a power system is subject to extreme conditions, 
such as severe weather with common-cause outages and cascading outages, the tra-
ditional N − k reliability security strategies may not be effective.

In extreme situations, power system operation characteristics and forced outage 
modes could change [77]. Forced outages occur randomly with certain effects on 
reliability, but presumed outages could be much more profound if they demonstrate 
cascading effects and outage correlations in extreme circumstances. Moreover, con-
tingencies representing typical power system outages would usually be more com-
plicated in extreme events due to the extent of common-cause outages and cascading 
outages. Thus, if reliability-based operation strategies are instituted without consid-
ering the unique features of extreme events, the severe impacts of cascading out-
ages, could more readily culminate the power system in blackouts (e.g., North 
America on August 14, 2003, Europe on November 12, 2006, Brazil on November 
10, 2009, and India on July 30, 2012). To enhance the system resilience, the 
common-cause outages and cascading outages besides the typical outages should be 
considered in the operation strategy.
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Fig. 1.17  Typical resilience curve
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Common-cause outage refers to simultaneous outages of multiple components 
due to a common cause [78]. For example, the outage of two or more circuits on the 
same transmission tower can occur due to a single cure and the outage of multiple 
lines on the same substation due to lightning invasion wave overvoltage accident. 
Also, a major physical disturbance such as tornado can result in the outage of two 
or more transmission circuits on the same right-of-way. Such outages can be classi-
fied as common-cause outages since a single cause results in an outage of two or 
more elements [79, 80]. Cascading outages with inherently complex nature could 
have a compounded effect on power system operations. Some references linked 
power system operating conditions to cascading outages. Reference [27] demon-
strated that self-organized criticality is an essential characteristic of large blackouts. 
Reference [28] illustrated that power system loading that is close to the system 
operating limits is the key contingency attribute that could lead to cascading out-
ages. According to the system structure and operating states, Ref. [29] proposed an 
entropy-based metric to evaluate the power grid robustness with respect to cascad-
ing outages. Reference [32] showed the correlations between self-organized criti-
cality and the heterogeneity of power flow distribution by introducing the power 
flow entropy index. Accordingly, the larger the power flow entropy, the more rou-
tinely a power system state can lead to self-organized criticality and eventually lead 
to cascading outages. Therefore, to improve the power system resilience, a compre-
hensive operation strategy is needed where the power flow distribution and custom-
ized contingencies under extreme events should be addressed simultaneously. This 
study fills the gap in which penalty terms and customized contingency constraints 
are established by considering extreme events to improve the uniformity of power 
flow distribution, reduce the impact of common-cause outages and cascading out-
ages, and boost the system adaptability.

Reference [81] presented a resilience-constrained unit commitment model where 
the power flow entropy was considered to improve the power system resilience. The 
main difference between [81] and this study lies in the following points. Firstly, new 
penalty terms are proposed in this study. The required terms to be added are much 
less than that in [81], which leads to better computation performance. Secondly, the 
convexification method of penalty terms is different. An approximation method is 
established at the price of optimality loss in [81]. In this section, a transformed 
problem is established to solve original problem and prove that the two problems 
are equivalent when a necessary and sufficient condition is satisfied. Moreover, a 
new contingency set containing three types of contingency events is established. 
Furthermore, a new resilience evaluation index is proposed to reflect the adaptabil-
ity of power systems under extreme conditions.

The main contributions of this work are summarized as follows:

•	 Considering common-cause outages and cascading outages, a resilience index is 
proposed to quantify the power system adaptability to extreme events. The evalu-
ation index is utilized in the adaption stage.

•	 An RCED model for blackout prevention and resilience enhancement is pre-
sented in which the system security subjected to common-cause outages and 
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cascading outages is addressed simultaneously. Two penalty terms are intro-
duced to improve the system resilience under hidden cascading outages. The 
common-cause outages and cascading outages types of contingencies are evalu-
ated to improve the power system performance under reliability types of outages.

•	 A convexification method is proposed to linearize the RCED model without the 
loss of optimality. Although the linearized problem is not equivalent to the origi-
nal one, a sufficient and necessary condition is introduced to ensure that the 
optimal value of linearized problem is the same as that of the original problem.

This session is organized as follows: Section “Resilience Evaluation for 
Cascading Outages” describes the proposed cascading-based resilience evaluation 
approach and index. Sections “The Proposed RCED Model” and “Solution 
Methodology of RCED Model” introduce the proposed resilience constrained eco-
nomic dispatch and its convexification solution. Section “Case Studies” presents the 
case studies and the work is concluded in section “Conclusion”.

Resilience Evaluation for Cascading Outages

A resilience index is proposed in this study for quantifying the adaptation perfor-
mance, which is based on the probability distribution of blackout size. Blackout size 
in this study refers to the scale (severity) of blackout, which is defined as the per-
centage of load curtailment (LC), i.e., load curtailment/system load. A resilience 
evaluation approach considering the common-cause outages and cascading outages 
is established.

Random Outages in Extreme Conditions

The proposed process for considering random outages in power systems includes 
three stages. The first state considers extreme events, such as severe weather, to 
determine initial line outages. The second stage considers the common-cause out-
ages of adjacent lines. The third stage considers cascading outages in which a simu-
lation model is introduced to determine whether the remaining lines are subject to 
cascading outages. The details of each state are as follows:

Weather-Dependent Initial Line Outages

Without the loss of generality, we apply the generic wind-related fragility curves for 
transmission lines and towers [4]. For a real power system, the fragility function of 
each component in different weather conditions can be derived empirically from 
statistical analysis based on observed failures. The wind speed can get from meteo-
rological monitoring system or derived from prevailing wind field model. Assume 
the failure probability of a single conductor and tower is pcf and ptf, respectively. 
Since individual failure of a conductor and transmission tower both will lead to out-
age of a transmission line, the outage probability of a transmission line structure is
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Common-Cause Outages

In practice, common-cause outages occur when one event causes multiple outages 
which are not statistically independent. In this study, we only consider the common-
cause outages of adjacent components in the weather-affected areas. The two lines 
could be either in a common right-of-way or connected with the same bus. The 
common-cause outages of transmission line p and line q can be derived from the 
following equation [82].
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where λp and λq are the failure rate (failures/year) of the transmission lines p and q, 
respectively, μp and μq are the repair rate (repairs/year) of the transmission lines p 
and q, respectively. λp q,

c  and ∝p q,
c  are the common-cause failure rate and repair of 

the transmission lines p and q, respectively.

Hidden Outages

A hidden outage remains undetected in normal operating conditions but exposed 
after the occurrence of a power system disturbance, which may cause relays to trip 
erroneously [83]. According to [84, 85], the components connected to tripped lines 
would also be exposed to incorrect tripping. The hidden outage probability, which 
has an approximate linear relationship with the line loading when the corresponding 
flow exceeds its limit [83], is stated as
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(1.60)

where p0 is the initial hidden outage probability which depends on line parame-
ters, k0 and b are the coefficients of the linear function, and rl

t  is the thermal limit 
of line l.

Proposed Resilience Evaluation Indices

Figure 1.19 shows two different complementary cumulative distribution function 
(CCDF) of blackout size distribution of a system in different operating strategies, 
where x could be any blackout measure, such as load curtailment percentage, tripped 
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lines percentage, y is the probability of X ≥ x. Initially, curve 1 drops more sharply 
as blackout gets larger, which indicates that curve 1 has higher proportion of small 
accidents but fewer major accidents. On the contrast, curve 2 has a relatively flat tail 
which means that curve 2 has a higher proportion of large accidents but fewer small 
accidents. Therefore, from the perspective of preventing large blackout in extreme 
conditions, the first operational strategy is more resilient.

However, the reliability indices of the two strategies, such as the expected load 
curtailment, may be similar. Therefore, traditional reliability evaluation indices 
underestimate the risk of large blackout and are not suitable to evaluate system 
resilience. Resilience considers the performance when power system suffers from 
extreme events, conventional reliability index cannot reflect the resilience charac-
teristics effectively. To fill the gap, we propose a resilience index

	
RI

NX

= ⋅ ≥( )
=
∑
k

k kx P X x
1 	

(1.61)

where NX is the number of points to evaluate (1.61). In this study, NX = 100. RI 
is evaluated by changing xk from 0% to 100%, which ensures that large blackouts, 
which pose a greater influence on resilience, are represented by larger RI (though 
the two expected load curtailments are similar). The incremental resilience index 
considering two different strategies is stated as

	
∆RI x P X x P X x
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(1.62)

The blackout size x in (1.61) and (1.62) is defined as load curtailment/system 
load which is dimensionless. Thus, RI is dimensionless. To calculate the RI, the 
input information includes system parameters, forecasted weather-affected areas, 
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Fig. 1.18  Two blackout distributions
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dispatch condition, and failure characteristics. The output information includes 
sampled scenarios, probability distribution of load curtailment, and resilience index.

To calculate x, we apply the Monte Carlo technique to the proposed resilience 
evaluation method. The overall flowchart of the simulation process is shown in 
Fig. 1.20. For each Monte Carlo simulation:

	1.	 Sample weather-related initial line outages according to (1.58). The initial 
tripped transmission lines are simulated by comparing pl

wf  with a uniformly 
distributed random number ρ1 ∼ U(0, 1). Trip line l if pl

wf > ρ1 .
	2.	 Sample common-cause outages adjacent to outage lines according to (1.59). 

Compare pp q,
cco  with ρ2(ρ2 ∼ U(0, 1)), trip line i and line j if pp q,

cco > ρ2 .
	3.	 Check network connectivity, calculate the blackout size in each island if the 

network is partitioned, and end the process. Otherwise, go to Step 4.
	4.	 Calculate power flow and check thermal limit violations. Trip the lines with load 

rates exceeding rl
t .

	5.	 Sample hidden outages. Identify lines connected to tripped lines and calculate 
hidden outage probability according to (1.60). Trip individual lines when 
p Ul
hf ,> ∼ ( )( )ρ ρ3 3 0 1 . Go to Step 3.

The Proposed RCED Model

Penalty Terms Based on Power Flow Entropy

The power flow entropy provides a measure of power flow distribution uniformity. 
Reference [32] showed that the power flow entropy has a close relation with the 
blackout size in cascading outages. When the entropy is high, transmission lines 
which carry heavy loads can fail and trigger cascading outages more easily. 
However, it is difficult to optimize the power flow entropy directly in a mathemati-
cal programming model. Therefore, to reduce the power flow entropy and homog-
enize the power flow distribution, we consider two penalty terms as
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The first penalty term pn1 denotes the absolute loading rate of weather affected 
lines. This term is introduced to adjust the power flow and avoid the weather affected 
lines undertaking heavy loads. The second penalty term pn2 denotes the mean abso-
lute deviation (MAD) of lines load ratio which is a measure of statistical dispersion 

defined as 
1

1n
y y

k

n

k
=
∑ −  where y  is the mean of {y1, y2, …, yn}. pn2 is established to 
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reduce the power flow heterogeneity and the cascading risk when lines are subject 
to extreme events. By including the above two penalty terms, the transmission net-
work is operating at a more resilience loading level. That is, each component has a 
minimum impact upon failure and larger operating margin. Note that the term is 
nonconvex where its convexification and linearization methodology are proposed in 
the next subsection.

Reference [81] presented a resilience-constrained unit commitment model where 
the power flow entropy was considered to improve the power system resilience. 
However, the two penalty terms proposed in [81] are approximated to make them 
solvable at the price of optimality loss. In this work, new penalty terms and solution 
methodology are proposed without loss of optimality. Moreover, the penalty terms 
have much less terms than before which will lead to faster computation 
performance.

Input system operational data

Sample initial line outages caused by weather

Any island?

Run DC power flow 

and calculate line loading rates  

Run DC OPF with the objective of  

minimizing load shedding

?

end

Yes
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More hidden failures occur?
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Update lines 

status
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Sample common-cause outages 
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Fig. 1.19  Overall flowchart of the proposed resilience evaluation method
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Contingency Set for RCED

In here, common-cause outages of two adjacent lines and cascading outages are 
considered to construct contingency set. For common-cause outages contingency, 
assuming that bus i has k connected lines and Ck

2  contingencies are added to this 
bus. Traverse all buses in the weather-affected areas and establish the contingencies 
accordingly. Practically, there are few lines connected to one bus and the proposed 
common-cause outage contingencies will not lead to the curse of dimensionality. 
For cascading outages, the heavy loading lines upon the weather-induced initial out-
age are identified and added into contingency set in case of hidden outages.

Constraints corresponding to each contingency are constructed using line outage 
distribution factor [75]. The corresponding contingency constraints for initial out-
ages are shown in (1.65) and (1.66). Given line p is failure, the lines adjacent to line 
p and the lines undertaking heavy load upon p failure are denoted as q. The con-
straints for common-cause contingency and cascading contingency are shown in 
(1.67) and (1.68).
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where PL c
l
p  is line flow on l, due to an outage in line p. PLl, PLp, and PLq are line 

flow on l, p, and q in steady state, respectively. PL c
l
p q− ,  is the line flow on l due to 

common outages in lines p and q. ∅PL c
l
p  and ∆PL c

l
p q− ,  are slack variables for line 

flow on l due to the outage of p and outages of p and q, respectively. LODF c
l p
p
,  is line 

outage distribution factor between the flow of line l and flow of line p when line p is 
on outage. LODF c

l p
p q
,

,−  and LODF c
l q
p q
,

,−  are line outage distribution factor between 
the flows of line l and line p, line l and line q, respectively.

The line outage distribution factor of the single outage and multiple outages can 
be calculated by the following equation referred to Reference [86].
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where E is an identity matrix of ν × ν, ν is the number of outage lines. PTDF is 
power transfer distribution factor which determines a change in the power flow at 
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each branch when one unit of power is transferred from on bus of the network to 
another. XM and XO are diagonal matrices with elements representing the reactance 
of lines that are monitored and those on the outage, respectively. Φ is a bus to moni-
tored line incidence matrix and Ψ is bus-to-outage line incidence matrix.

The contingency screening and constraints construction process are shown in 
Fig. 1.20 and described as follows. The method starts by calculating the proposed 
RCED without contingency constraints and obtaining the pre-contingency line 
flows. Then the contingency filter uses (1.65) and (1.67) based on LODF to calcu-
late all the post-contingency line l power flow PL c

l
p  and PL c

l
p q− ,  when the line p is 

on outage or line p and q are failure simultaneously. Then, if all post-contingency 
power flow is under the maximum value and it is no need to include more pre- and 
post-contingency combinations and the final solution is obtained. If the above con-
dition is not fully filled, then every combination between the failed line p and over-
loaded line l are stored and afterward added to the RCED model using the 
corresponding constraints (1.65) and (1.66) or (1.67) and (1.68). After solving the 
RCED with the binding combination of (1.65) and (1.66) or (1.67) and (1.68), the 
new pre-contingency flows are analyzed again to verify if additional combinations 
should be added. This iterative approach checks all the contingency of lines in 
extreme events area and common-cause contingency of any adjacent line which are 
in a common right-of-way or connected the same substation or tower located in 
extreme area at each iteration. Then if the estimated power flow on line l due to an 
outage in line p or line simultaneous outage of p and q is higher than its maximum 

Solve the RCED without contingency 

constraints

Update the contingency set and estimate the 

post-contingency flow upon contingency events

Add the security constraints for those contingency 

Solve the RCED

End

For all lines

Yes

No

Fig. 1.20  Flowchart of the LODF post-contingency filter for the proposed RCED problem
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capacity, those contingencies are added to the RCED in the next iteration. In a real 
power system, it is expected, from the experience of the ISO, that only a short list of 
active line outages is required to establish a secure operation.

The Proposed RCED Model

The proposed resilience-constrained economic dispatch model is formulated as fol-
low with established penalty terms and contingency constraints.
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The model constraints are shown in (1.72b)–(1.72l) which the common-cause 
outages and cascading outages contingency constraints are included. Constraint 
(1.72c) ensures the power balance. Constraint (1.72d) limits the upper/lower bounds 
of generation output. Constraint (1.72e) limits the upper/lower bounds of load cur-
tailment. Constraints (1.72f)–(1.72h) represent line power flows and capacity limits. 
Constraints (1.72i) and (1.72j) are constructed for N − 1 contingency in the weather-
affected areas. Upon the weather-induced initial outages, constraints (1.72k)–(1.72l) 
are constructed for the common-cause outages and cascading outages.

Solution Methodology of RCED Model

Note that the non-convexity of objective function (1.72a) is due to the nested 

absolute function of the third term. We substitute rl
l

l

=
PL

PLmax,

 into (1.72a), the 

problem (1.72a)–(1.72l) yields to
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A general optimization method is proposed in [81] to linearize the objective 
function with absolute value functions. Accordingly (1.73a)–(1.73c) yields to 
(1.74a)–(1.74e) while the optimal solution remains the same.
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We further linearize constraints (1.74e) which include absolute functions without 
the loss of optimality.

Consider a more general form of the proposed mathematical programming model 
as shown in (1.75a)–(1.75c).
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Define auxiliary variables sk, tk, k  =  1, 2, …, K, to construct the model in 
(1.76a)–(1.76e).
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Theorem 1  If (x, s, t) is the feasible solution of the model in (1.76a)–(1.76e), the 
sufficient and necessary condition for x as the feasible solution of the model in 
(1.75a)–(1.75c) is sktk = 0, ∀ k.

Proof of Necessity  If (x, s, t) is the feasible solution of the model in (1.76a)–(1.76e) 
and x is the feasible solution of (1.75a)–(1.75c), then
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The three equal signs in (1.77) are due to (1.76b), (1.75b), and (1.76c), respec-
tively. Since sk   ⩾  0, tk   ⩾  0, we have
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s t s t s tk k k k k k− + = +

	
(1.78)

According to (1.77) and (1.78), we have |sk − tk| = sk + tk, ∀ k. Thus, at least one 
term in a pair of sk, tk, is 0, i.e., sktk = 0.

Proof of Sufficiency  If (x, s, t) is the feasible solution of (1.76a)–(1.76e) and 
sktk = 0, ∀ k, then
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The second equal sign is true because of (1.76c). Substitute (1.79) into (1.76b), 
then (1.76b) yields to (1.75b). Therefore, x is the feasible solution of (1.75a)–(1.75c) 
when sktk = 0 and (x, s, t) are the feasible solution of (1.76a)–(1.76e).  ■

Add the sufficient and necessary condition to (1.76a)–(1.76e) to get (1.80a)–
(1.80e). The big-M method is used to relax sktk = 0, ∀ k.
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Theorem 2  The optimal objective function value of (1.80a)–(1.80e) is equal to that 
of (1.75a)–(1.75c).

Proof  If x is the feasible solution of (1.75a)–(1.75c), it is also feasible in (1.76a)–
(1.76e) since we can always assign sk, tk to make (1.76b) yield to (1.75b). Recalling 
Theorem 1, we conclude that the feasible region of x in (1.80a)–(1.80e) is the same 
as that of (1.75a)–(1.75c). So, the optimal objective function value of (1.80a)–
(1.80e) is exactly equal to that of (1.75a)–(1.75c), although the two models are not 
essentially equivalent.  ■

According to Theorem 2, problem (1.81a)–(1.81e) can be constructed with the 
same optimal solution as that of (1.74a)–(1.74e) which is equivalent to (1.73a)–
(1.73c) and (1.72a)–(1.72l).
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Case Studies

Case Studies on IEEE-30 Bus Test System

To verify the effectiveness of proposed model, the modified IEEE 30-bus system is 
introduced and tested in MATLAB 2016a using the Gurobi solver on a personal 
computer with a 3.20 GHz i5 processor and 8 GB RAM. The IEEE 30-bus system 
is composed of 6 generators, 21 loads, and 41 transmission lines. Without the loss 
of generality, all transmission lines are assumed to be exposed to the same weather 
conditions. We generate 1000 scenarios in order to calculate blackout performance 
distributions.

The following four cases are discussed.

Case 1: Solve the model in (1.69) without contingencies. This case is to study the 
regulating effects of penalty terms on the uniformity of power flow distribution.

Case 2: Based on the dispatch solution in Case 1, perform a resilience evaluation to 
calculate the proposed resilience index. This case is to verify the effectiveness of 
penalty terms and the rationality of proposed resilience index.

Case 3: The introduced contingencies constraints are added to Case 2. The system 
resilience is further studied under the proposed RCED strategy.

Case 4: Evaluate the impact of weather severities on the system resilience.

For the sake of brevity, in the following discussion, NCED denotes the networked-
constrained economic dispatch without penalty terms and contingencies constraints. 
SCED denotes the NCED with N − 1 contingency constraints. RCED denotes the 
dispatch model with penalty terms. C-RCED denotes the dispatch model with both 
penalty terms and the contingencies constraints. We vary the coefficients in the 
objective function, to demonstrate two RCED models: RCED I with α = 1, β = 100, 
γ = 1000; RCED II with α = 1, β = 1000, γ = 10, 000. The results for four cases are 
presented as follows:
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Case 1

Case 1 is performed to verify the feasibility of linearization method and the effec-
tiveness of the proposed penalty terms embedded in the RCED model. The optimi-
zation preference between generation cost and power flow distribution can be 
adjusted by varying β, γ. The two penalty terms are studied separately and the results 
are shown in Table 1.13. Table 1.14 shows the results with both penalty terms in 
place. Since the penalty terms are introduced to adjust the power flow, four indices 
are calculated including the average line loading rate (Ave.  rl), maximum line load-
ing rate (Max.  rl), number of heavy loaded lines (Num.  rl > 0.7 for rl > 0.7), and 
mean absolute deviation of line loading rate (MAD  rl).

In Table 1.13, four power flow distribution indices are improved when β is larger 
than 100. This is because when β = 1, pn1 is 16.669 and the corresponding genera-
tion cost is $8495.18. As β increases, pn1 becomes larger and makes up a higher 
proportion of the objective function. Thus, larger β which increases the generation 
cost, results in a more effective penalty term and more homogeneous power flow. 
When β is 10,000, the average loading rates are lowered to 0.304. However, the 
adjustment in power flow distribution is limited by generation and line capacities, 
network topology, system loading, etc. The results corresponding to β = 100, 000 
are the same as those of β = 10, 000. In addition, MAD of rl which represents the 
homogeneity of power flow distribution decreases first as β increases and then 
increases when β becomes very large. This outcome indicates that although the first 
penalty term can reduce the average loading rate, its impact on power flow distribu-
tion is not uniform.

The results with varying γ are also shown in Table 1.13. Both MAD of rl decreases 
as γ increases. Compared with the results with β varies, the smallest MAD is reduced 
by about 46%. Both the maximum loading rate and number of heavy loaded lines 

Table 1.14  Results when both β and γ vary

Model NCED RCED I RCED II

Gen. cost ($) 8495.17 8982.11 (+5.73%) 9219.44 (+8.52%)
Ave. rl 0.407 0.366 (−10.07%) 0.356 (−12.50%)
Max. rl 1.00 0.74 0.64
Num. of rl > 0.7 5 1 0

Table 1.13  Results when β, γ vary

β varies, α = 1,  γ = 0 γ varies, a = 1,  β = 0

Ave. rl MAD rl Max. rl

Num. of 
rl > 0.7 Ave. rl MAD rl Max. rl

Num. of 
rl > 0.7

1 0.407 0.220 1.00 5 0.406 0.218 1.00 5
100 0.388 0.190 1.00 4 0.407 0.137 1.00 1
1000 0.315 0.173 0.87 3 0.367 0.097 0.75 1
10,000 0.304 0.179 0.87 3 0.357 0.096 0.64 0
100,000 0.304 0.179 0.87 3 0.357 0.096 0.64 0
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are also lower than that with β varies. When γ = 10,000, line loading rates are all 
below 0.7 with a maximum loading rate of 0.64. This is because heavily loaded lines 
will have a higher priority to be optimized in our case which would lower pn2. 
However, the average loading rate is deteriorated which indicates that the two pen-
alty terms fulfill different tasks for adjusting power flows.

Table 1.14 shows the comparison of conventional NCED and the proposed 
RCED in which the proposed RCED model performs better than the traditional 
NCED. In Table 1.14, there are five lines with a loading rate that exceeds 0.7, while 
there are only one in RCED I and none in RCED II. Besides, the maximum rl of 
NCED is 1, which indicates that certain lines are operated at their capacity, which is 
more prone to hidden outages when power flows fluctuate, especially when line out-
ages occur in extreme weather conditions. Even at higher dispatch costs, the opera-
tion security remains to be the primary consideration in extreme conditions.

Case 2

In this case, the three models, NCED, RCED I, and RCED II, are tested without 
contingencies. Accordingly, the reliability and resilience performances are com-
pared and discussed. The weather condition is assumed to be a major storm at an 
average speed of 35 m/s. The wind-dependent line and tower outage probabilities 
are calculated according to fragility curves. The hidden outage probability is 
p0 = 0.02 when rl ≤ 1 which increases to 1 when rl = 1.4. The generation ramping 
limit is set at 10% in each island. The number of cascading simulation scenarios is 
1000, i.e., kmax  =  1000  in the resilience evaluation process. The blackout size is 
denoted by load curtailment amount/system load × 100%.

Figure 1.21(a) shows the probability distribution of blackout size. Both RCED I 
and RCED II perform better than the traditional NCED. The maximum load curtail-
ment percentage of NCED is 60%, while it is only 40% in RCED I and 30% in 
RCED II. Moreover, the probability distribution of NCED in Fig. 1.21(a) shows a 
relatively flat tail when load curtailment percentage is over 30. To further investigate 
this situation, the log–log plot of blackout size is shown in Fig. 1.21(b). The NCED 
curve in Fig. 1.21(b) shows the characteristics of power law distribution with the 
power tails. A long flat tail generally implies a higher risk of large blackouts [83]. 
The two RCED curves drop exponentially with the blackout size in Fig. 1.21(b). 
Therefore, the RCED model reduces the risk of large blackouts effectively by 
improving the power flow distribution.

Table 1.15 shows the outage results for NCED and RCED. The weather-induced 
outage scenarios are similar since the weather conditions are assumed identical for 
triggering initial outages in the three models. However, different dispatch strategies 
could lead to various hidden outage scenarios and blackout sizes. There are 186 hid-
den outage scenarios in NCED, while there are only 78 and 74  in RCED I and 
RCED II. Furthermore, the average numbers of lines with hidden outages are 3.02, 
1.15, and 0.90, respectively. This indicates that both numbers of overload and hid-
den outage scenarios and lines are improved in the RCED models, even though the 
initial triggers are the same. Moreover, the proposed resilience index distinguishes 
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the three models more effectively than expected load curtailment does. The expected 
load curtailment of RCED I and II is similar. However, their resilience indices are 
very different.

The traditional NCED aims to determine the least production operation cost of 
power systems but pays little attention to the power flow distribution. In this way, 
there could be a few dangerous states in which some of the transmission lines are 
heavy loaded in which any minor power flow fluctuations or transfers would lead to 
cascading outages. That situation will be magnified further under extreme events. 
The proposed RCED model can be adopted as a more resilient operation strategy 
under normal and extreme conditions for blackout prevention.

Case 3

In Case 3, the N − 1, common-cause contingency and cascading outage contingency 
security constraints are further added to illustrate its effect on blackout prevention. 
Based on the generation dispatch plan in Case 2, we follow the contingency check 
with an optimal load shedding model. It is not surprising that neither RCED I nor 
RCED II model used in Case 2 satisfies the contingency constraints. The load cur-
tailed in the two models is 24.9 and 20.97 MW, respectively, which indicate that an 
improved uniformity in power flow distribution cannot always ensure a higher 

Table 1.15  Results in different dispatch models

Model NCED RCED I RCED II

Generation cost ($) 8495.17 8982.11 9219.44
Weather-induced outage scenarios N0 554 582 572
Hidden outage scenarios, Nh 186 78 74
Average hidden outage lines 3.02 1.15 0.90
Expected load curtailment (%) 9.65 6.91 5.35
Resilience index RI (%) 194.19 81.96 50.29

(a) (b)

I
II

I
II

Fig. 1.21  Distribution of blackout size in NCED and RCED. (a) In linear plot. (b) In log–log plot
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reliability in response to typical outages. Hence, contingency for typical outages 
and penalty terms for power flow adjustment should be considered simultaneously 
in power dispatch strategies.

Figure 1.22 shows the blackout size distribution in different models. Comparing 
NCED (in blue) and SCED with N − 1 contingency (in red), the power tail of blue 
curve gets improved in the red case. However, the resilience in both NCED and 
SCED cases is still worse than that in RCED models due to higher proportion of 
large blackouts. Comparing RCED I (in yellow) with C-RCED I (in purple), we can 
see that the purple curve is lower than yellow, which means the CCO contingency 
constraints lead to less blackout and could improve the system resilience. On the 
contrary, the resilience of C-RCED II (in black) is worse than that of RCED II (in 
green). In this case, contingency constraints pose negative effect on resilience. This 
observation indicates that the impact of contingency constraints on resilience is 
uncertain. The results show that the addition of contingency constraints might not 
always improve resilience and sometimes it could even make worse under certain 
circumstances.

This interesting phenomenon can be explained in terms of the power flow distri-
bution as shown in Table 1.16. Comparing the line flow distribution of different 
models, we encounter that the power flow distribution of RCED I is improved when 
contingency constraints are added. However, the distribution indices of RCED II are 
deteriorated when contingency constraints are added. Accordingly, contingency 
constraints can improve the power system resilience if they improve the power flow 

C-RCED   I 

RCED   II 

Fig. 1.22  Blackout size distribution in different models
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uniformity. This observation further demonstrates that the power system resilience 
has a close relationship with power flow distribution and the traditional SCED can-
not prevent blackouts effectively with only the N − k reliability strategy is pursued.

Case 4

Case 4 studies the influence of wind speed on resilience. This case helps find the 
effectiveness of dispatch strategies when weather condition varies. Figure  1.23 
shows the expected LC percentage over all scenarios for different wind speeds in 
which the system is resilient (i.e., LC percentage is under 10%) when wind speed is 
below 30 m/s. The LC percentage has a sharp increase as wind speed increases. For 
wind speed below 40 m/s, the LC percentage in the proposed C-RCED is obviously 
below that of NCED and SCED. As wind speed increases, the gap between C-RCED 
and SCED becomes smaller which indicates that the operational strategy would 
have a weaker influence on the system resilience. When the wind speed is over 
60 m/s, there is no difference among dispatch strategies. That is, the resilience can-
not be improved by enhancing operational strategies. However, the infrastructural 
improvements, such as hardening of lines and towers will have a more profound 
impact on resilience when extreme events become destructive.

Case Studies on Large Test Systems

The added penalty terms and contingency constraints are suitable for large power 
systems. To show the computational efficiency and validity, we apply the model to 
more complicated test systems, including RTS-96, IEEE 118-bus, and Polish 
2383wp test case. The parameters of IEEE 118-bus test system and Polish 2383wp 
test system are from Matpower 5.0.

Table 1.17 demonstrates the computation time of the proposed method in differ-
ent test systems and the simulation time for the resilience index evaluation.

As seen from Table 1.17, the proposed penalty terms and common-cause contin-
gency constraints will result in a longer computing time, but even for the Polish 
2383wp test system, the time extension is still within the acceptable range of the 
scheduling department. However, the improvement of system resilience of the pro-
posed method is obvious. Tables 1.18 and 1.19 demonstrate the load flow distribu-
tion and resilience index of the proposed strategy and conventional NCED in 
RTS-96 and Polish 2383wp test system, respectively. Figures 1.24(a), (b) show the 
blackout size distribution of different strategies in RTS-96 and Polish 2383wp test 

Table 1.16  Power flow distribution and RI in different models

Model Ave. rl MAD rl Num. of rl > 0.7 LC (MW) RI (%)

RCED I 0.366 0.097 1 19.604 81.96
C-RCED I 0.348 0.098 0 15.938 56.96
RCED II 0.356 0.096 0 15.168 50.29
C-RCED II 0.350 0.098 1 18.331 70.79
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system, respectively. From Tables 1.18 and 1.19, we can see that the load flow 
derived from the proposed strategy RCED and C-RCED is better than that of 
NCED. The maximum loading rate in NCED is up to 1 in both RTS-96 test system 
and Polish 2383wp test system while it is only 0.675 and 0.741 in RCED, respec-
tively. The heavy loaded lines of RCED and C-RCED are both less than that of 
NCED. It can be seen from Fig. 1.24, the blackout size distribution of the proposed 
strategies is better than that of NCED. The C-RCED is better than RCED, with the 
consideration of preventive contingency constraints. The resilience index of NCED, 
RCED, and C-RCED in Polish 2383wp test system is 42.42, 17.26, and 9.85, 
respectively.

Conclusion

This study proposes a resilience-constrained economic dispatch and corresponding 
set of resilience indices for blackout prevention. The following conclusions can 
be drawn.

•	 The proposed resilience indices demonstrate the power system adaptability to 
extreme events and distinguish different dispatch strategies even their LC are 
similar. The proposed indices can serve as adaptation indices in resilience evalu-
ation effectively.

•	 The N − k reliability strategy cannot always obtain a better resilience, especially 
when a power system is subject to extreme events. On the contrary, the N − k 

Fig. 1.23  Influence of 
wind speed on 
blackout size

Table 1.17  Computational time of different dispatch strategy and resilience evaluation

Time(s) RTS-96 IEEE 118 Polish 2383wp

NCED 0.25 0.39 4.06
RCED 100.34 150.16 322.07
C-RCED 496.45 500.93 856.35
Resilience index calculation 134.17 153.99 14,469.02
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reliability strategy could make system resilience performance worse in certain 
cases. The impact of N − k strategy on resilience may also depend on power flow 
distribution.

•	 The proposed RCED simultaneously considers set and power flow distribution 
uniformity. The synergy of penalty terms and contingency constraints can 
achieve higher system resilience in extreme conditions.

•	 When extreme weather conditions land, the effectiveness of operation strategies 
becomes less critical than those of infrastructural for resilience.

Table 1.19  Load flow distribution and resilience index of different strategies in Polish 2383wp 
test system

Model SCED RCED C-RCED

Gen. cost ($) 1,799,400 1,885,100 1,883,980
Ave. rl 0.3524 0.3382 0.321
Max. rl 1 1 1
Num. of rl > 0.7 584 523 528
Max. LC (%) 22.94 17.68 13.87
Resilience index 42.42 17.26 9.85

Table 1.18  Load flow distribution and resilience index of different strategies in RTS-96 test system

Model SCED RCED C-RCED

Gen. cost ($) 10,258 16,311 13,021
Ave. rl 0.4956 0.2998 0.3233
Max. rl 1 0.6754 0.741
Num. of rl > 0.7 51 5 6
Max. LC (%) 61.64 37.08 30.39
Resilience index 317.04 102.84 45.16

(a) (b)

Fig. 1.24  Blackout size distribution of different strategies in (a) RTS-96 and (b) Polish 2383wp 
test system
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1.3.1.4  �Reliability Evaluation of Communication-Constrained 
Protection Systems

In this section, reliability evaluation of communication-constrained protection sys-
tems using stochastic-flow network models will be given.

Introduction

The relay protection systems in service generally use object-oriented layout to trip 
associated circuit breakers in response to faults. These relays utilize local measured 
signals provided by the cable and add hardware redundancy to ensure reliability. 
Long-term practice shows that the failure rate of protective relays caused by hard-
ware and software is very low and such failure events usually can be detected by the 
built-in monitoring and self-checking facilities. Considerable works have been done 
to examine different reliability aspects of conventional protection systems, such as 
the routine test, self-checking intervals, and the redundant configuration, or even 
hidden failures [87–89].

Conventional protection devices adopt closed and independent arrangement and 
their working state can be described as being in operation or failure. In the smart 
grid, protection and control systems will be widely constructed upon wide area or 
local area networks. These communication-based protection layouts are decentral-
ized, while devices are linked via the information flow. Under the new circum-
stance, the communication network architecture and the available information 
resources are changing heavily. The information flow becomes the important part in 
maintaining the high level of system reliability [90–92].

Modern protection schemes in a typical IEC61850-based substation have more 
components than the conventional one that is mainly composed of several intelli-
gent electronic devices (IEDs) such as merging units, Ethernet switches, intelligent 
terminals of breakers, digital protective relays, and Ethernet communication media 
[93, 94]. Some progress have been made recently in the reliability evaluation of 
IEC61850-based substation protection systems. Reference [95] introduces the 
Markov model to calculate the reliability indices of all-digital protection systems 
including the impact of repair. Lei et al. present cyber-physical interface matrix to 
implement the protection system reliability analysis [96]. These reliability studies 
are meaningful; however, the reliability models are built under Markov state space 
theory or reliability block diagram in which each unit has only two states, that is, the 
flawless state or the completely unavailable state. This general binary-state descrip-
tion cannot reflect the performance degradation of the information flow that may 
cause protective function failure and cannot completely express the complexity of 
protection reliability based on communication networks.

In an IEC61850-based substation relay protection system relies on the Ethernet 
network, whose performance is more subject to the information flow fluctuation. 
The influence of various information disturbances can be simply classified as the 
decline in the level of transmission capacity. The capacity level that can be run up to 
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each component in the network may be changeable. If the maximum capacity can 
be reached, it indicates the component is in an intact state that can operate properly. 
And if the operating capacity can only be zero, it means that the component is in a 
complete failure state. If the maximum capacity cannot be reached due to perfor-
mance degradation such as transmission delay increasing and network throughput 
decreasing and so on, it can be defined as some middle states in which the compo-
nent is not disable and still in service. Hence it is necessary to consider the multi-
state of components along the information flow path while analyzing the protection 
reliability in intelligent substations.

In fact, almost all networks are stochastic in nature and they can be modeled as 
stochastic-flow networks in which the performance of network devices varies from 
working properly to complete failure. A lot of algorithms based on minimal cut 
(MC) or minimal path (MP) have been developed to evaluate the reliability of a 
stochastic-flow network with multivalued random capacities [97–103]. An MP/MC 
is a path/cut set such that if any edge is removed from this path/cut set, then the 
remaining set is no longer a path/cut set. The reliability of stochastic-flow networks 
can be computed in terms of level d where a lower boundary point for d means the 
maximum flow passing through the network is not less than d units. And the reli-
ability for level d is the probability that d units of flow can be transmitted from the 
source to the sink.

Stochastic-flow network model exploits multistate classification for the system 
components to describe the communication network under the degradation and even 
congestion circumstances. Hence it is suitable for reliability analysis of 
communication-based protection systems. The reliability of communication-
constrained protection systems based on stochastic-flow network models can be 
defined as the probability satisfied the demand flow by the sink while ensuring net-
work connectivity between the source node and the sink node.

A new and practicable reliability analysis method for future protection layout is 
presented in this section that can preferably take into account the influence of infor-
mation flow. Firstly, the multiple states for components are put forward using 
continuous-time discrete-state Markov Chain. Secondly, the stochastic-flow net-
work model of protection system is established and the system availability and reli-
ability are defined. Thirdly, the improved depth-first searching method is proposed 
to optimize the search process. And all lower boundary points for d are judged by 
the maximum flow calculation and all valid system states for required demand can 
be determined. Finally, the reliability analysis approach upon SFN models is built 
and the specific computing procedure of reliability indices of protective systems is 
discussed.

The remainder of this section is organized as follows. Section “Stochastic-Flow 
Network Modeling” introduces the stochastic-flow network model with limited 
demand and variable edge capacities into reliability analysis for communication-
based protection systems and takes multistate dynamic division of components via 
Markov process. Section “Reliability Calculation of Stochastic-Flow Network 
Model” presents the computational procedures of the proposed method, also gives 
the availability and reliability definition and calculation, and the specifics of 
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improved depth-first state-tree searching. Section “Reliability Analysis of Protective 
System in Intelligent Substation” discusses the reliability index calculation of the 
typical protective structures in intelligent substations using the proposed algorithm. 
And it also gives a comparison of the performance of different structures. Section 
“Conclusions” gives the conclusion.

Stochastic-Flow Network Modeling

Mathematical Statement

According to Graph Theory, relevant definitions of stochastic-flow network models 
are stated as follows:

Definition 1  Let G  =  (V, E, C, P) be a stochastic-flow network, where 
V = {vi| 1 ≤ i ≤ n} is a n-node-set with s and t defined as the source node and the sink 
node respectively, E = {ei| 1 ≤ i ≤ a} is an a-edge set, all nodes and edges are the 
components of G, C c i n a j hi

j
i= ≤ ≤ + ≤ ≤{ }| |,1 0  is a set of multistate limited-

capacity with hi being the largest state of component i, and 
P p t i n a j hi

j
i= ( ) ≤ ≤ + ≤ ≤{ }| |,1 0  is the set of the probability function of each 

component in different states.

Note that the capacities of different components are statistically independent. 
And there are hi + 1 independent states for component i including 0-state, and the 
maximum capacity of components is an integer-valued random variable that takes 
values 0  <  1  <  2  < ⋯  <  hi according to a given distribution. In particular, it is 
assumed that the set of stationary distribution is P i n a j hi

j
iπ π= ≤ ≤ + ≤ ≤{ }| |,1 0 .

Definition 2  Let Y = (y1, y2, …, ya + n) be system state vector, X = (x1, x2, …, xa + n) be 
the capacity vector under current system state Y, then the universal set of system 
state vector constitutes the system state space Ω = {Y1, Y2, …, YM} of a stochastic-
flow network system where M is the total number of system states, yi ∈ {0, 1, …, hi} 
and x c c ci i i i

hi∈ …{ }0 1, , ,  are the current state and the corresponding capacity of com-
ponent i, respectively.

For any given Y, a reliable stochastic-flow network can be generally denoted by

	
f Y d:= ( )  ≥ϕ

	
(1.82)

where f is the maximum flow transmitted successfully from the source node to 
the sink node under current state Y, φ is an operator to solve the maximum flow 
which can satisfy the flow-conservation law, and d is the demand level required at 
the sink node.

751.3  Elements of a Smart City



76

Multistate Dynamic Division of Components

In the former related literatures, multistate division of components adopts static 
partitioning method, which can be assumed that reasonable ranges are evenly 
divided according to the historical data, and then the number of data samples falling 
in certain intervals is counted, so the probability under each state of components can 
be obtained and hi + 1 states are allocated eventually.

This classification method uses samples to establish the discrete distribution of 
components, only reflects the static probability distribution, and only the static 
probabilistic reliability index such as availability can be derived. The time-varying 
reliability index, such as reliability degree and mean time to first failure (MTTFF) 
are unable to calculate with this model. For comprehensive assessing the reliability 
of protection systems, Markov process is firstly introduced to form the components’ 
multistate model of stochastic-flow network, which is more reasonable than the 
conventional static partitioning.

State-space models are always used to represent time-varying systems, and the 
multi-state of the random flow passing through the components can also be described 
by Markov chain because the future state is independent of the past, but only given 
by the current state. It is assumed that the state process of components is Markovian. 
Supposed for component i, including a sequence of random state vectors ci

j

j hi
{ }

=1:
, 

there is a related observation flow sequence Fi. Based upon the sequence of known 
observations, the sequence of unknown latent states can be inferred.

Let Δt be sampling interval, Tm be observation duration, fmax and fmin be the 
observed maximum and minimum flow respectively. To be discretized into hi flow 
states, the total flow interval [fmin, fmax] is divided into hi nonoverlapping partitions. 
Assume the capacity of component i in state j be the mean flow over jth interval 
f fi
j

i
j−( 

1,  as follows:

	
c

f f

ti
j i

j
i
j

=
+ −1

2∆ 	
(1.83)

where j = 1, 2, …, hi. When considering the physical failure of component i, the 
zero state ci

0  can be included and it means that the capacity is limited to zero and 
could not pass flow through the component. So the state space of component i can 
be written as C c c c ci i i i i

hi= …{ }0 1 2, , , , .

Let Tg
k  be the kth sojourn time of target component in g-state which obeys the 

exponential distribution, Kg be the number of occurrences in g-state, and Kgu be 
number of state transitions from g-state to u-state. Then, the transition rate matrix A 
can be obtained, and among them, the unbiased estimation of state transition rates 
is calculated by

	

ˆ ˆ, ; ,a
K

T
g u a a u ggu

gu

k

K

g
k gg

u

h

gu
g

u

= ≠ = − ≠
=

=∑
∑

1
1

	

(1.84)
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A general process of states dividing is shown in Fig.  1.25. The Markov state 
transition diagram can be formed by counting the number of state transitions and the 
staying time of the target component in each state, as shown in Fig. 1.26.

The probability of component i being in state j has already defined as p ti
j ( )  and 

the probability vector as P p t p t p ti i i i
h T
i= ( ) ( ) … ( ) 

1 2, , , . So according to the 

Kolmogorov backward equations, the linear differential equations P APi i=  can be 
solved by setting the initial value and p t i n a j hi

j
i( ) ≤ ≤ + ≤ ≤{ }| |,1 0  can be 

obtained. Then, the steady-state probability is as follows:

	
π i

j

t i
j

ip t j h= ( ) = …
→∞
lim ; , , ,0 1

	
(1.85)

and there is 
i

h

i
j

i

=
∑ =

1

1π .

Table 1.20 provides the allocation of component i in each state.

Topology Construction of a Stochastic-Flow Network

When the practical system architecture is transformed into an SFN model, it is nec-
essary to consider the actual devices as the nodes and edges in the network. Different 
topological models can be constructed by the corresponding equivalent ways, but 
the results are consistent for reliability analysis [97]. In this study, the stochastic-
flow network models are built, in which each edge has several capacities and may 
fail, but nodes are considered permanently reliable and are used only for forward-
ing, whose delivered flow is equal to the sent flow.

In order to highlight the impact of network performance degradation on protec-
tion reliability, the devices in communication-based protection system that may be 
invalid or degraded are equivalent to the edge components, while the connection of 
devices without flow-constraint are considered as nodes. Therefore only the 

Fig. 1.25  Schematic diagram of states classification

771.3  Elements of a Smart City



78

multistates of edges need to be discussed, and the dimension of system state vector 
can be reduced from n + a to a consequently. Consider the merging units as edges 
that connected with the virtual source node directly, protection and intelligent ter-
minal IED also act as edges and linked with the virtual sink node on the other side. 
Thus, the stochastic-flow network model is constructed for the studied protection 
structure. The process translating a real system to an SFN model with reliable nodes 
and unreliable edges is shown in Fig. 1.27.

Reliability Calculation of Stochastic-Flow Network Model

Protection Reliability Index

From the definition of a reliable stochastic-flow network as given in Eq. (1.82), 
relay protection system reliability based on information-flow can be defined as the 
probability of protection and terminal IEDs receiving data no less than d units 
within the prescribed time while ensuring the system topology connectivity. In other 
word, every protection IED must receive a certain amount of data to issue a tripping 
instruction in time, and terminal IED to act effectively.

Definition 3  If φ(Y) ≥ d , then Y is a valid system state, and if φ(Y) < d , then Y is 
an invalid system state. Let YX be all valid states of the system. If there are two sys-
tem state vectors Yi, Yj ∈ YX satisfying φ(Yi) ≤ φ(Yj), then the relation between these 

0
10
a

1

hi

...

01
a

1 ih
a

1ih
a

0ih
a

0 ih
a

Fig. 1.26  A state-
transition diagram of 
component i

Table 1.20  Allocation of component i in each state

State no. Capacity Probability function Steady-state probability

0
ci
0 p ti

0 ( ) ≠ i
0

1
ci
1 p ti

1 ( ) ≠ i
1

… … … …
hi

ci
hi p ti

hi ( ) ≠ i
hi
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two state vectors is simply denoted as Yi ≤ Yj. In particular, if there is a system state 
Y ∈ YX satisfying Y ≤ YX, then this state is a critical state, denoted as Yd. Let Yd be a 
lower boundary point for d.

Obviously, if the current system state Y ∈ Ω satisfies Y ≥ Yd, the system is reli-
able. Therefore once all the lower boundary points for d are located, which means 
that all the valid states of the system can be learned accordingly. The reliability of 
the whole system can be evaluated by computing the probability of the valid states. 
Assume that there are l lower boundary points for d on the system state space Ω, the 
set of all lower boundary points is shown as L Y Y Yd d d

l= …{ }1 2, , , . Then the availabil-
ity and reliability of the protection system under stochastic-flow network model can 
be defined with (1.86) and (1.87) respectively as below:

	
A td t

= ( ) =( )
→∞
limPr ϒ 1

	
(1.86)

and

	
R t T t td ( ) = > ( ) ≡( )Pr sys |ϒ 1

	
(1.87)

where Pr(⋅) is the probability operator, Tsys is a random variable that represents the 
continuous running time of the system, ϒ(t) is a two valued function, if the system 
satisfies φ(Ω) > d at the t moment, its value is equal to 1, otherwise its value is equal 
to 0. The system availability is the probability that the system can work at time t, 
which covers the process of failure and repair. When t tends to infinity, the 
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Fig. 1.27  Translate a real 
system to an SFN model
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availability only reflects the probability of the system being in steady state and it can 
be solved with the stationary distribution. However, the reliability of the system is 
the probability that the system can work normally in the specified time period [0, t], 
which is a measure of the system being in good condition continuously while the 
system changes with time. And there is no need to take into account the repair 
period, instead, the probability function of components should be incorporated.

Reliability Computation Method

In order to compute system availability and reliability under the SFN model, the set 
of all lower boundary points for d should be found out. There are two things that are 
needed to do, the first is to determine whether a system state is valid or invalid by 
identifying a d-lower boundary point. The second is to find all d-lower bound points 
in the state space Ω that ensures the completeness of the state set.

Maximum Flow Algorithm

The maximum flow φ(Y) through a stochastic-flow network needs to be computed, 
in order to detect whether such a transmitted flow from the source node to the sink 
node can satisfy the minimum demand d at the sink or not, and judge whether the 
current system state Y is valid or not. Ford–Fulkerson algorithm, based on Max-flow 
Min-cut Theorem, is used to solve the maximum flow of network [104]. The algo-
rithm can be generally described as two parts, namely, the first part is locating, find-
ing out paths that are suitable to augment; the second part is augmenting, increasing 
network flow–volume along the paths located in the first part.

Improved Depth-First State-Tree Searching

The following describes how to search the state space Ω to have all the d-lower 
boundary points. The obvious difficulty in searching the target space is its direct 
dependence on the size of the network, and needless to say the complexities are 
enormous while dealing with multistates, that easily get into the “Curse of 
Dimensionality.” Therefore, the heuristic algorithms are generally adopted to tra-
verse the state-tree based on depth-first search (DFS) or breadth-first search (BFS) 
that both can work effectively.

For a given state tree, suppose that depth-first searching starts from zero-state 
node Y = (0, 0, …, 0), it searches from left to right on the same state layer for valid 
state identification and moves downward to the deeper layer after the test of this 
layer is completed. Once reach to the deepest one, then trace back to its parent node 
and start searching the next branches on the right. And finally going through the 
whole state tree without skipping any node and obtain all the valid states. However, 
if too many branches exist, there will be a heavy burden during the searching which 
leads to low efficiency.

The improved depth-first state-tree search is presented in this section to reduce 
the workload during traversing. Because the crucial kernel of depth-first search is 
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backtracking, two theorems are given below in order to set up reasonable backtrack-
ing conditions. While combining the searching order with the characteristics of 
stochastic-flow network, it can perform a trace-back operation at more upper level, 
which can improve the efficiency of the algorithm.

Theorem 1  Let MP be the set of minimal paths between the source node and the 
sink node. If there is a state Y = (y1, y2, …, yk, 0, …, 0), yk ≠ 0, existing in which k is 
the maximum index of nonzero state element in Y. Mark those elements with zero-
state on the left of yk as set B including failure elements. And if MP ∩ B = Ø, there 
is no need to go through the sub-tree generated by Y.

Theorem 1 states that if there is no minimal path between the source and the sink, 
it shows that the topology of the network is without connectivity under Y and no 
need to calculate the maximum flow to testify Y and its generated sub-tree are 
invalid states or not, so just stopping going deeper and implementing the backtrack-
ing operation directly. For example, in Fig. 1.32 the states with green strikethrough 
and their generated sub-tree are invalid as checked by Theorem 1.

Theorem 2  During the depth-first searching, if the current state vector Y first satis-
fies φ(Y) ≥ d, then this state is denoted as a generalized d-lower boundary point. 
Let Γ(Y) be the state set extended from current Y, and the states in Γ(Y) must be 
valid, and there is no need to continue searching Γ(Y).

Since the states number of components is allocated according to the ascending 
order, therefore, the state nodes in the state-tree on deeper layer have more capaci-
ties than those on upper layer. Once the first appearance of φ(Y) ≥ d, the current 
state Y must be a lower boundary point and the capacity of the state extended by Y 
will be greater than that of under Y, so there is no need to search down, then per-
forming backtrack.

A further supplement is a generalized d-lower boundary point from Theorem 2 is 
not precisely a d-lower boundary point given by Definition 3, but the two are con-
sistent in nature that they and their subsets are valid states. From the whole state 
space, the generalized lower boundary points cannot guarantee accurate because the 
maximum flow under these states is not exactly equal to d, which is greater than or 
equal to d, so they must be valid. For example, in Fig. 1.32, the states with red hori-
zontal line below the numbers represent the generalized lower boundary points and 
two horizontal lines of red and blue for exact lower boundary points. By Theorem 
2, these d-lower boundary points and their subsets are valid states.

By using Theorems 1 and 2, searching can be performed more effectively. Main 
steps of improved state-tree searching are as below:

Step 1. Initialize the state-tree and regard Y  =  (0, 0, …, 0) as the top node that is 
denoted as the starting point and the first parent node. Define Y(r) ∈ {0, 1, …, hr} 
as element yr in the state vector Y representing rth edge of the model and for 
1 ≤ r ≤ a. Initialize the state variable and let r = 1. Set up STACK to record the 
order of depth extending in which top data is noted as TOP.
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Step 2. Perform the depth extension. If Y(r) < hr, then Y(r) = Y(r) + 1; otherwise, 
let r = r + 1, and then Y(r) = Y(r) + 1. Push the current value of r into STACK and 
determine whether the current state meets MP ∩ B = ∅ or not. If satisfied, then 
backtracking; otherwise, go to Step 3.

Step 3. Calculate the maximum flow of current state. If φ(Y) ≥ d, that means the 
current state Y is a d-lower boundary point Yd, so mark this state into the state set 
L, then backtracking; otherwise, go to Step 4.

Step 4. If STACK is empty and r = a, the searching algorithm is ended. Meanwhile, 
the set L stores all of the d-lower bound points of the stochastic-flow network. 
Otherwise, go to Step 2.

The specific backtracking operation is as follows:

•	 If r < a, then pop TOP out stack, let Y(TOP) = Y(TOP) − 1, trace back to the par-
ent node on upper layer, and let r = TOP + 1.

•	 If r = a, then pop TOP out stack, let Y(TOP) = Y(TOP) − 1, and let r = TOP + 1. 
And If r > a, then repeat the popping operation till r < a.

•	 Finally, recall back to Step 4.

System Availability Calculation

The availability index represents the probability for the system being in steady-state 
taking into account the devices’ maintenance. So the availability of the system 
defined in (1.86) can be calculated based on all the available states accessed by the 
searching algorithm. If Yd is used as a parent node, by Theorem 2, the states in its 
downward-extended sub-state set Γ(Yd) are also effective. Then the collection of the 
state set generated by all the d-lower boundary points in set L contains all the valid 
states in the whole state space, marked as W Y Y Yd d d

l= ( ) ( ) … ( ){ }Γ Γ Γ1 2, , , . Thus, 

Algorithm 1.1 Improved Depth-First State-Tree Searching
Input: hr, a, d
Output: L
Main
1:  STACK←null; Y ← zeros(1, a); r ← 1; i ← 1;
2:  DO{
3:   if Y(r)< hr do
4:    Y(r) ← Y(r) + 1
5:   else
6:    r ← r + 1; Y(r) ← Y(r) + 1
7:   end if
8:   STACK ← r [push]
9:   if Theorem_1(Y) is null do
10:   Backtrack(Y)
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the calculation formula of the protection system’s availability under the stochastic-
flow network model can be refined into

	
A W Yd

i

l

d
i= ( ) = ( )








=
∪Pr Pr

1

Γ
	

(1.88)

Because the state tree is arranged in order, the states in the tree are mutually 
disjoint. And the states generated by a d-lower boundary point also have this prop-
erty and there is no need to apply inclusion-exclusion rule to delete the duplicated 
states. So, Eq. (1.88) can be further expressed as
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(1.90)

in which, let g Y rd
i= ( )  be the serial number for current state of component r, k be 

the maximum serial number corresponding to nonzero element in Yd
i , ≠ r

g ,  and ≠ r
j  

be the steady-state probability in state g and j of component r.

11:  else if φ(Y) ≥ d
12:   {L(i) ← Y; i ← i + 1; Backtrack(Y)}
13:   else
14:    goto 3
15:   end if}
16:   WHILE STACK is null and r = a
17:      return L
18:  END Main

Backtrack
1:  if r < a do
2:    {TOP ← STACK [pop] ; Y(TOP) ← Y(TOP) − 1; r ← TOP + 1}
3:  else
4:  {TOP ← STACK [pop] ; Y(TOP) ← Y(TOP) − 1
5:    if TOP + 1 > a
6:       goto 4
7:    end if
8:    r ← TOP + 1}
9:  end if
10: END Backtrack
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System Reliability Calculation

If considering the performance of the system continuous operation without failure, 
the reliability index should be adopted for the system evaluation. In order to get the 
continuous probability distribution, the zero state of components is set to the absorb-
ing state firstly, means that the state transition rate of the certain line where the zero 
state is located in the transition rate matrix A is set to 0, that is

	
ˆ ˆ ˆa a a hi01 02 0 0= = = =

	
(1.91)

In solving the Kolmogorov backward equation P APi i= , by setting the initial 
value of component i being in the best condition that there is no congestion or deg-
radation for passing flow, the obtained probability function of component i in each 
state can be expressed as

	
P p t p t p ti i i i

h T
i= ( ) ( ) … ( ) 

1 2, , ,
	

(1.92)

Because of the topological complexity caused by the large states number of com-
ponents in the system, it is difficult to derive the analytic expression of Rd(t) directly. 
In this study, an indirect method is used to get the reliability curve by observing the 
reliability at discrete time points. Let T be the total observation period, and Δt be the 
observation interval, at tk (for tk ∈ [0, T]), the reliability can be calculated by
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Then, the unreliability of system is presented by

	
Q t R td k d k( ) = − ( )1

	
(1.95)

Based on all observed values of Rd over the period T, a fitting curve denoted as 
R̂ td ( )  can be formed, and the mean time to first failure is

	
MTTFF = ( )

∞

∫
0

R̂ t dtd

	
(1.96)
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Component Importance

In the reliability analysis of binary-state system, the Birnbaum importance is gener-
ally used to identify the vulnerable points of the system and determine the mainte-
nance priority of the components. For multistate system, the Birnbaum importance 
with extended definition is adopted [105]. And for component i, the Birnbaum 
importance is calculated as
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(1.97)

Reliability Calculation Procedure

After translating the physical structure of protection system into a stochastic-flow 
network model with reliable nodes and unreliable edges, using adjacent matrix to 
indicate the connected relation among components, setting the demand level at the 
sink node, the reliability evaluation of the target system can be started. The proce-
dure for system assessment is shown in Fig. 1.28.

Reliability Analysis of Protective System in Intelligent Substation

Typical Protection Structure and Its SFN Model

The relay protection structures based on Ethernet in intelligent substations are used 
as the study cases. The process bus in the intelligent substation undertakes the time-
critical messages transmission, such as raw data messages and trip messages, which 
directly determines the reliability of protection systems. According to pilot projects 
of smart substations in recent years, six typical protective structures are developed 
[106–108], as shown in Fig. 1.29, including merging units (MUs), Ethernet switches 
(SWs), intelligent terminal of circuit breakers (ITs), and protective relays (PRs), in 
particular, SVA/B and GSA/B refer to switches for SV (sampled value) and GOOSE 
(generic object-oriented substation event) packets transmission respectively, and 
SV communication is shown with solid lines whereas dashed lines show 
GOOSE path.

Structure 1 adopts the architecture with double-star topology, networked sam-
pling, and networked tripping, SV and GOOSE decoupled transmission; Structure 2 
with double-star topology, networked sampling, and networked tripping, SV and 
GOOSE coupled transmission; Structure 3 with star topology, networked sampling, 
and networked tripping, SV and GOOSE coupled transmission; Structure 4 with 
point-to-point sampling and networked tripping; Structure 5 with networked sam-
pling and point-to-point tripping; and Structure 6 with point-to-point sampling and 
point-to-point tripping.
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In order to highlight the influence of the sampling and tripping data flow on the 
reliability of protective scheme, the GOOSE upgoing flow from the intelligent ter-
minal of circuit breakers and synchronizing signal flow over process bus are ignored. 
There is no consideration for the potential failure of the instrument transformer and 
circuit breaker operating mechanism. The storage and forwarding process of the 
switch are also without concern. Packets are transmitted in time since Ethernet 
medium with enough capacity can always work properly, for it is more reliable than 
the other components. So these medium lines are regarded as nodes in the stochastic-
flow network models. Accordingly, the other devices are as edges. Therefore 
stochastic-flow network models corresponding to the six structures are shown in 
Fig. 1.30, in which dashed lines represent the virtual links with infinite capacity so 
as to distinguish redundant devices in adjacency matrix.
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Fig. 1.28  Reliability 
calculation procedure
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Apparently there are two different types of information-flow in stochastic-flow 
network model recorded as SV flow and GOOSE flow. According to the developed 
custom switching technology in smart substation sharing the same Ethernet network 
to realize decoupling transmission based on MPLS (multiple protocol label switch-
ing) labels [109], those stochastic-flow network models can be separated into SV 
flow and GOOSE flow subnet models, as shown in Fig. 1.29. By calculating the 
reliability of the two subnets, the reliability index of the whole network can be 
obtained.

Let ASV be the availability of SV flow subnet, AGS be the availability of GOOSE 
flow subnet, then the reliability of the whole network can be worked out by

Fig. 1.29  Typical structures of protection system in intelligent substations: (a) Structure 1, (b) 
Structure 2, (c) Structure 3, (d) Structure 4, (e) Structure 5, and (f) Structure 6
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	 A A ASYS SV GS= × 	 (1.98)

Similarly, the reliability of the system is replaced by

	
R t R t R tSYS SV GS( ) = ( )× ( ) 	

(1.99)

And the unreliability is

	
Q t R tSYS SYS( ) = − ( )1

	
(1.100)
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States Division of Components

A lot of aspects can cause the switch performance degradation, such as throughput 
capacity, data saturation, broadcast strategy, and collision conflict, etc. In this study, 
all these aspects affecting the work performance of the switch are taken into consid-
eration with various capacity constraints. Usually, it is a random variable whose 
distribution can be determined through continuous observation and forecasting. For 
component i, if the historical data Fi are known, the transition rate matrix A can be 
obtained using the multistate dynamic division stated earlier, and Kolmogorov 
backward equations P APi i=  can be solved by Runge–Kutta iterative method. 
Then, the steady-state probability can be obtained by (1.85).

In fact, due to the smart substation is currently in the pilot stage, it is hard to get 
the traffic flow statistics. According to the network structure and operating charac-
teristics, multiple levels along with steady-state probability values for switches are 
assumed as shown in Table 1.21. The level defined as 100% capacity means packets 
sent into switches can be processed and forwarded at the prescribed time. And 90% 
means the switch is overloading and can only deal with the 90% data in time while 
the remaining 10% of the data needs additional delay to complete the transmission. 
So it can be seen that the representation of multistate constrained capacity can 
reflect not only the traffic throughput of switches directly but also indicate the 
response time and network latency indirectly.

The steady-state probability values are used as the original input data. Then the 
Markov Chain, whose stationary distribution is consistent with the known assumed 
distribution, can be constructed based on the idea of Markov chain Monte Carlo 
[110]. And the transition rate matrix A can be obtained, as shown in Table 1.22. 
Furthermore, the reliability can be calculated based on A.

This study focuses on the switches with a variety of constrained state and the rest 
components in models other than switches just have two capacity levels with the 
failure state 0 and the operating state 1. The annual failure rates of MU, PR, and IT 
are set to 0.0067, 0.0067, and 0.01 respectively [96] and repair time is 24 h.
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State-tree Searching

After constructing the stochastic-flow network model, d-lower boundary points can 
be gained by searching the state tree in order to study its reliability analysis. 
Although protection structures have some degrees of redundancy, lack of informa-
tion may also be caused by equipment failure or switch performance degradation. 
The protective function can be realized only receiving enough data, embodied in the 
algorithm is the demand d transmitted. If the minimum demand flow d is set to be 
60 units of data, then the corresponding steps of the state-tree generation and verifi-
cation process can be expressed partly as shown in Fig. 1.32, which takes the SV 
flow subnet of Structure 3 shown in Fig. 1.30 as an example. The figure only shows 
the front steps of the search process.

The sequence with five numbers represents the current system state, in which 
each number indicates the state of MU1, MU2, SW, PR1, and PR2. The number in 
brackets means the maximum flow sending under the current state. And the number 
on the arrows shows clearly the search order. The state with a strikethrough 

Table 1.22  Transition rates of switches (hour-1)

Components State no. 0 1 2 3

SVA/B 0 −0.0402 0.0141 0.0129 0.0132
1 1.1435 × 10−6 −0.9490 0.0943 0.8547
2 1.0760 × 10−6 0.0506 −0.9060 0.8533
3 1.2710 × 10−6 0.0509 0.0940 −0.1450

GSA/B 0 −0.0343 0.0187 0.0156 –
1 1.1432 × 10−6 −0.9095 0.9095 –
2 1.1760 × 10−6 0.0905 −0.0905 –

SW 0 −0.0381 0.0131 0.0108 0.0142
1 1.0415 × 10 − 6 −0.9285 0.1712 0.7573
2 1.1680 × 10−6 0.0711 −0.8290 0.7578
3 1.1520 × 10−6 0.0716 0.1709 −0.2425

Table 1.21  The levels and parameters of switches

Components State no. Capacity (%) Steady-state probability (%)

SVA/B 0 0 0.003
1 60 5.095
2 90 9.402
3 100 85.50

GSA/B 0 0 0.003
1 80 9.047
2 100 90.95

SW 0 0 0.003
1 60 7.147
2 90 17.10
3 100 75.75
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indicates all child nodes generated from it and brother nodes at the right side are 
invalid. Finally, all lower boundary points can be found out. The 18 lower boundary 
points for 60 units of flow are obtained: 11310, 11301, 11210, 11201, 11110, 11101, 
10310, 10301, 10210, 10201, 10110, 10101, 01310, 01301, 01210, 01201, 01110, 
and 01101. The last six states are generated by 01000 and cannot be fully displayed 
in Fig. 1.32.

Results Analysis

Availability Analysis

The availability index of each structure with the different flow requirements at the 
sink is shown in Fig. 1.33, in which Fig. 1.33(b) is the partial enlarged drawing of 
Fig.  1.33(a). It can be seen that six structures’ availability are relatively perfect 
without considering the influence of information flow. When considering the influ-
ence of the capacity constraints of switches, the availability of the protective archi-
tecture on communication network is decreased in varying degrees. Therefore, it is 
necessary to take into account the information flow performance of the network 
when analyzing the reliability of the protection system in intelligent substations. 
Otherwise, the reliability evaluation will tend to be optimistic.

Specifically, when the demand is 60%, the availability of each structure is almost 
consistent with that of the traditional binary-state one which does not consider the 
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flow-constraint. However, with the increase of the demand, the index of all but 
Structure 6 is a certain degree of decline, but the availability of Structure 3 has been 
reduced rapidly, which is mainly due to its SV and GOOSE coupled transmission 
using one common network while lacks of network redundancy.

In practice, the performance requirements for SV and GOOSE flow dominated 
by IEC61850 standards are quite strict. If no packet loss is allowed, that is, the sink 
point such as the protection IED will be able to gain timely access to all the data sent 
by the source device. In other words, the system still has a high availability when the 
d is set to 100%. In Structure 3, the availability is only about 50% under d = 100%, 
obviously this cannot meet the requirements, whereas the other structures are basi-
cally available. Structure 6 adopts the point-to-point connection for sampling and 
tripping. It does not rely on network transmission and therefore it is not subject to 
the variations of d.

Structures 1 and 2 adopt the architecture with SV and GOOSE decoupled and 
coupled transmission respectively, when d is lower, the height of the two structures 
is very close, and when d is increased from 60% to 100%, the height of Structure 2 
reduces obviously. It shows that if coupled transmission for SV and GOOSE flow is 
used, for some design decisions, such as enhancement of equipment redundancy or 
capacity, it might reasonably be updated in response to network congestion, even 
network storm and other adverse events. Generally speaking, suppose the network 
transmission should be implemented, the performance of SV and GOOSE decou-
pled transmission would be better.

Fig. 1.33  Availability degree of six protective structures
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Reliability Analysis

The time-varying curves of unreliability of six protective structures for d = 100% 
are shown in Fig. 1.34. Correspondingly, the mean time to first failure (MTTFF) of 
these structures is shown in Table 1.23.

Therefore the results show that, under the same demanded flow, all structures 
except Structure 3 are comparatively highly reliable with descending order listed as 
Structure 6, Structure 5, Structure 4, Structure 1, Structure 2, and Structure 3. 
Among them, Structure 3 with single-star topology is the least reliable because it 
lacks network redundancy and deals with large amount of information in the com-
mon network that easily leads to traffic overloading. Structures 1 and 2 with double-
star decoupled and coupled transmission respectively are much more reliable than 
Structure 3 because of the redundancy configuration in the communication network 
and they are not too inferior if compared with Structures 4–6 which partly or entirely 
depend on point-to-point communication. However, the arrangement with point-to-
point sampling and/or point-to-point tripping follows the traditional protection 
design ideas. As compared with the double-star structures of networked sampling 
and networked tripping, there is no significant improvement in reliability, but they 
have lost a lot of opportunities to realize more intelligent power grid advancements.

Fig. 1.34  Unreliability over time of six structures under d = 100%

Table 1.23  MTTFF of six structures under d = 100%

Structures 1 2 3 4 5 6

MTTFF (year) 44.39 37.53 17.53 59.90 52.12 73.82
Qsys (1000 h) 8.42 × 10−4 1.88 × 10−3 5.01 × 10−1 6.09 × 10−4 2.79 × 10−4 4.62 × 10−5
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Importance Analysis

Taking Structures 1, 2, and 6 as examples, the results of component importance are 
shown in Table 1.24. It can be seen that PR is the most important component for 
network transmission, that is, whether with SV and GOOSE decoupled or coupled 
transmission, the change of the working state of PR has the greatest impact on the 
reliability of the whole protection system. This is mainly because PR is the sink of 
SV flow, and can only work in the operation or failure state, so once PR fails, the 
information cannot be used, and protection system cannot work properly. In addi-
tion, for Structures 1 and 2, the next important components ranking are switches, 
because the performance of the switches has a direct impact on whether or not the 
sink can receive the demand traffic flow in a given time.

Structure 6 uses point-to-point connect without depending on network transmis-
sion and its importance order is basically proportional to the failure rate of compo-
nents. Generally, there are obvious differences in the ranking of components’ degree 
of importance between the communication-based and the traditional protection 
schemes. When the maintenance strategy for the communication-based protection 
systems is formulated, it is recommended to give priority to maintain the protection 
IED and switches.

Discussion

As for the low reliability problem of Structure 3, if broaden the switch capacity and 
replaced by the Gigabit switch, and demand level d is still set to 100%, the unreli-
ability curve of Structure 3 is shown in Fig. 1.35. With respect to 100M-Ethernet 
networks, the data-exchange capability of Gigabit switch can be improved signifi-
cantly with few performance deficiencies, the simulation results can be equivalent 
to that with measurements using a binary-state model. And the reliability for 
Structure 3 based on Gigabit switch is almost equal to that of Structure 2 with 
double-star arrangement and 100M-Ethernet-coupled transmission.

Table 1.24  Birnbaum importance of Structures 1, 2, and 6

Structure Rank Component Birnbaum importance

1 1 PR 1.450 × 10−1

2 SV 4.482 × 10−2

3 GS 4.453 × 10−2

4 IT 2.740 × 10−5

5 MU 1.826 × 10−5

2 1 PR 2.425 × 10−1

2 SW 1.421 × 10−1

3 IT 2.740 × 10−5

4 MU 1.826 × 10−5

6 1 IT 2.739 × 10−5

2 PR 1.826 × 10−5

2 MU 1.826 × 10−5
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Above all, from the reliability level of relay protection and fully sharing of infor-
mation to achieve interoperability, it is recommended to use Structures 1 and 2 in 
intelligent substations. For current substation layout, the double-star architectures 
of process bus constructed on 100 M-Ethernet network with networked sampling 
and networked tripping, can be separated or use a common network transmission 
for SV and GOOSE flow. If only Structure 3 can be adopted, then at least Gigabit 
Ethernet networking should be adopted.

Conclusions

In the future, the application of relay protection in power grid is more concerned 
with the functional constraints under whatever circumstances due to network per-
formance degradation. Effective analytical model is a key design under such unex-
pected circumstance and the properties of stochastic-flow networks are available to 
the activities executing in decision-making by communication-based protec-
tion system.

The presented model mainly considers the influence of the information flow into 
the constrained capacity, by improved measures such as multistate division, state-
tree searching, index description, and calculation. Further developing the reliability 
computation method for next-generation protection and control technologies based 
on information transmission mechanism has been conducted. As compared with 
other ways with only considering topological connectivity, the proposed approach 
can comprehensively include the network adequacy, flow characteristics, and the 
protective business requirements.

Fig. 1.35  Unreliability of the different switch capacity

951.3  Elements of a Smart City



96

1.3.1.5  �Power Market Load Forecasting

In this section, power market load forecasting based on neural network with benefi-
cial correlated regularization will be presented.

Nomenclature 

⊙ Matrix doc product operator
× Matrix cross product
Fj() Activation function in hidden 

layer neurons of NN
Fp() Activation function in output 

layer neurons of NN

Introduction

The Background

Deregulation of power market is a slow but solid trend in power system develop-
ment. In power market, pricing is agreed between energy buyers and sellers instead 
of official formulation. Cost variation of power generation and transmission is able 
to be transferred to consumer side. Power system deregulation is also recognized as 
a platform for competition enhancement so that asset utilization in power system is 
optimized and efficiency is improved [111].

In deregulation environment, electricity markets are intricate systems that con-
sist of multiple market modes. There are three typical dominant conceptual modes, 
which are pool model (day-ahead and intraday markets), bilateral transactions (for-
wards, futures, options, and contracts for difference) and mix model [112, 113]. 
Nord pool spot market in Nordic Europe [114], market in Austria, early British 
power market [115], PJM, CAISON, and ERCOT in North America electricity mar-
kets adopt the pool-based auction mechanisms [114]. Bilateral market is utilized in 
most of the Nordic electricity markets and California [116]. The Nordpool in 
Scandinavia, the MIBEL in Portugal and Spain are examples of mixed trading sys-
tem [117]. Other than modes mentioned above, China has constructed a special 
deregulated mechanism. Since 2015, China has initiated its second power market 
revolution. In the document of this reform which is published by Chinese govern-
ment in Several Opinions on Further Deeping Electricity System Reform, China put 
forwards price differences as products for power trading [118–120].

The competition in the electricity market is mostly realized by concentrated spot 
trading on electric power. This spot trading system consists of the day-ahead market 
and real-time market. In the day-ahead biding transaction, the generator and the 
purchaser quote the respective prices through the dispatch of electrical network and 
then the day-ahead market form. The quotation is based on the forecast about 
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uncertain electric power demand, so there may be some deviations [121, 122]. The 
calculation of day-ahead prices and real-time prices is based on locational marginal 
pricing (LMP), which contains system energy, congestion, and loss cost [122].

Electrical power load forecasting is vital to the operation and planning of a utility 
company influencing decisions such as purchasing and generating electric power in 
power market, load switching, and infrastructural development. Classified in time 
span, load forecasts can be divided into short-term forecast, medium-term forecast, 
and long-term forecast [123]. Nearly all load forecasting techniques are trying to 
improve the prediction accuracy by attempting on new feature space, new models, 
or new application domain. Accuracy seems to be the only target from implementa-
tion for decision maker to verify performance of different models, such as artificial 
neural network (ANN) [124–126], fuzzy logic [127–129], support vector machine 
(SVM) [130–132], and other time series forecasting models [133–135], etc. For 
example, authors of [136] deploy an ANN-based model to improve load forecasting 
accuracy in PJM market and ISO New England market. An accuracy-based predic-
tion model using hybrid adaptive fuzzy neural system has been proposed in [137]. 
Reference [138] presents a hybrid method using period refinement scheme and 
adaptive strategy, which is also focusing on accuracy. Reference [139] has intro-
duced another accuracy-based model on daily schedule behavior pattern analysis 
and context information for load forecasting, which is different from traditional 
model based on pure historical load data and weather data.

In historical load forecasting methods, accuracy nearly becomes the only pur-
sued target for load forecasting models. Though in general, a better accuracy will 
achieve a better decision making. But in research on Load Serving Entities’ (LSEs) 
behavior in day-ahead power market, we find that the accuracy of load forecast in 
day-ahead power market schedule submission is not always synchronized with the 
LSEs benefit, though the accuracy and benefit are both computed by output of fore-
casting model. The optimal point of accuracy and that of LSEs’ power purchasing 
cost do not coincide. This phenomenon is named inconformity between load accu-
racy and LSEs’ benefit. Thus, a more accurate performance based on pure accuracy-
based model may not lead to optimal benefit of decision maker. Output of pure 
accuracy-based load forecasting techniques may decrease benefit of decision maker. 
In this case, a new load forecasting technique is required for LSEs’ benefit improve-
ment other than pure accuracy-based methods.

Original Contribution

In fact, accuracy and benefit nonlinearly relate to each other. They are both com-
puted from output of load forecasting model. But the optimal point of accuracy and 
LSEs’ benefit do not coincide together. This phenomenon is named inconformity in 
this study. So when traditional accuracy-based model gets results closer to the opti-
mal accuracy in training, pure accuracy-based model would provide a solution with 
the best accuracy instead of a solution with the best benefit.

Facing this inconformity of accuracy and benefit, this section puts forward a 
regularization model named beneficial correlated regularization (BCR) for 
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feed-forward neural network’s (FFNN) prediction to improve LSEs’ benefit with 
accuracy insurance. In this model, a market-based regularization term with virtual 
neuron is created for objective function optimization. Also, this section initiates a 
modified Levenberg–Marquardt algorithm for non-quadratic optimization in back-
propagation network training of FFNN with BCR. This model provides a load fore-
cast solution which ensures the required accuracy and improves the power 
purchasing benefit. Numerical study is carried out with PJM historical data from 
2014 to 2016. FFNN with BCR provides up to 2–3% cost reduction.

The content of this section is summarized below. The overview of problem is 
given in section “Problem Definition: Inconformity Between Accuracy and Benefit 
on Load Forecast in Day-Ahead Power Market”; detailed introduction of FFNN 
with BCR is presented in section “Feed Forward Neural Network with Beneficial 
Correlated Regularization”; section “Modified Levenberg-Marquardt Training” 
introduces details of modified Levenberg–Marquardt (MLM) algorithm; and sec-
tion “Numerical Study” presents a numerical study to support the performance of 
FFNN with BCR.

Problem Definition: Inconformity Between Accuracy and Benefit on Load 
Forecast in Day-Ahead Power Market

Power Market Introduction

Two settlement market structure is one of the most accepted market pattern world-
wide, consisting of day-ahead market and real-time balancing market. It encourages 
market participants to preschedule their multiple-day future operation in day-ahead 
market. This market matches the trading by considering optimal power system oper-
ation (unit commitment and dispatch) with network stability constraints. Uncertainty 
and fluctuation between one-day future operation and real-time operation are settled 
in real-time market, whose information is released much closer to the actual opera-
tion. Locational marginal pricing (LMP) is the pricing model for pricing processes 
in both markets [140].

The day-ahead market (DAM) is a forward market in which hourly clearing 
prices are calculated for each hour of a future operating day. Before daily account-
ing deadline, each LSE should submit their hourly consumption schedule on the 
target day to market operator. Before submission, LSEs use load forecast techniques 
to predict their hourly load in the target day. After receiving all load schedules and 
power generation bids, market operator follows procedure of LMP to find out the 
selected power generation with bid-winning capability and the price of each net-
work node for LSEs in DAM [140]. Taking PJM as an example, Table 1.25 intro-
duces the daily accounting deadline of PJM market for LSEs in the United 
States [141].

Real-time market (RTM), named balancing market, calculates the clearing prices 
at minute’s level based on the actual system operations. Real-time LMPs are calcu-
lated based on actual system operating conditions as described by the market 
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operator. LSEs will pay real-time LMPs for any demand that exceeds their day-
ahead scheduled quantities and will receive revenue for demand deviations below 
their scheduled quantities. All spot purchases and sales in the balancing market are 
settled at the real-time LMPs [141].

Inconformity Between Accuracy and Benefit

In hourly consumption schedule submission in DAM, LSEs need to utilize load 
forecast techniques to predict the future load. The aim of LSEs is to purchase suf-
ficient power for their downstream consumers with least cost. This cost consists of 
two components. The first component is the fee paid in DAM and the other is the fee 
paid/received in RTM. In fact, a more accurate schedule submission may not lead to 
a lower cost level. The following case study is performed to verify this phenomenon.

The load of a large consumer in Pittsburgh USA, DAM price and RTM price in 
the same area are selected for analysis. Data from 2014 to 2015 are adopted for the 
study. A traditional FFNN is used to predict the load two days ahead. Within the 
training process, sensor of cost is inserted to each iteration for observing the varia-
tion of cost while the accuracy is improving. Figure 1.36 shows the training process 
of the load forecast model.

From Fig. 1.36, the cost of load output from FFNN does not always reduce while 
the error of load is decreasing. After the 13th iteration, the variation directions of 
accuracy and benefit appear to be completely different. This phenomenon can also 
be revealed by Eq. (1.101) and Table 1.26. In Eq. (1.101), msei and csti represent 
the mean square error (MSE) and the cost at the ith iteration. Thus, variables mse_
vari and cst_vari describe the accuracy changing direction and cost changing direc-
tion of FFNN output. If an FFNN training step improves both accuracy and benefit 
together, changing direction of MSE and cost will be the same and thus correlation 
between mse_vari and cst_vari is strictly positive 1. Oppositely, correlation becomes 
negative if changing direction of MSE is different from that of cost. Table  1.26 
shows that the correlation between iterations 1 and 13 is positive but not strictly 1. 
It represents that a small section of sample pairs still appears to have a diverse 
changing direction, such as the third iteration and the seventh iteration. Between 
iterations 14–29, correlation becomes strong negative correlation. It means that 
accuracy and cost change oppositely when FFNN is close to its accuracy optimal. 
Thus, traditional accuracy-based load forecast model does not guarantee the opti-
mal of power cost. This phenomenon reflects the inconformity between accuracy 
and benefit.

Table 1.25  Daily accounting deadline of PJM market for LSEs

General 4:00 PM for schedule changes from two business days prior.
Load schedule Monday–Thursday Operating Days due two business days 

later, by 4:00 PM.
Friday–Sunday Operating Days due on the following Tuesday, 
by 4:00 PM.
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(1.101)

The aim of LSEs is to achieve a lower cost of power purchase with acceptable 
accuracy. But accuracy pursuing prediction model may miss the cost reduction 
requirement. Thus, a model that considers both power cost and accuracy satisfaction 
is much more preferred for LSEs load schedule submission.

Feed-Forward Neural Network with Beneficial Correlated Regularization

The Aim of LSE’s Load Schedule Submission

For the aim of LSEs, cost of energy purchase and the accuracy of load forecast 
should both be considered. The accuracy and cost should both be included in train-
ing process, either in objective function or constraints. Equation (1.102) introduces 
the aim-satisfied objective function for model training.

Fig. 1.36  Cost variation while accuracy improvement in FFNN training

Table 1.26  Correlation 
between mse_vari and cst_
vari on traditional FFNN

Iteration 1–13 Iteration 14–29

Pearson correlation 0.7748 −0.9871
Kendall correlation 0.5758 −0.9000
Spearman correlation 0.6014 −0.9794
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	 min : obj Err PC= + ⋅µ 	 (1.102)

where Err is a term to reflect the differences between actual load and predicted 
load. PC is the power cost of the predicted load, which is the term of BCR. μ(MIU) 
is the penalty coefficient, which controls the weight of cost. In Eq. (1.102), “Err” is 
not removed, leaving “Err” together with “PC” and “MIU” in objective function to 
adjust the importance between accuracy and benefit. Naturally, market operator pre-
fers better accuracy of submitted load schedule. An extreme low accuracy of sub-
mitted load will deeply interrupt market operation and will be punished by market 
operator. Different markets will have different capability of error acceptance and 
have different minimum accuracy requirements. For this reason, “Err,” “PC,” and 
“MIU” are combined into the same objective function to provide a function to adjust 
training importance between accuracy and benefit for minimum accuracy require-
ments. When facing a market with strict accuracy requirement, decision maker may 
decrease the “MIU” so that a more accurate solution can be obtained. Oppositely, 
decision maker may increase the “MIU” to obtain a more economical solution. If 
“Err” is removed, this adjusting function is lost. On the other hand, effect of “Err” 
removal can be obtained by selecting a very large “MIU.”

Term PC is computed by predicted load, price of DAM, and price of RTM. In 
fact, when submitted load schedule is changed largely, the price of both markets will 
not stand still. Also, price in DAM will possibly be larger than price in RTM. For 
example, price of DAM is larger than price of RTM at 64.37% time between 2010 
and 2016. Only 36.6% time appears to be a reversing case. This phenomenon 
reflects that generation resources are comparatively abundant in RTM. Thus, price 
variation of buying in RTM is smaller than selling under a similar trading quantity 
unit. So this model assumes the price will not change with two insuring schemes:

Scheme 1 is that the final accuracy of load prediction by Eq. (1.102) should not be 
far from the traditional model. Because price changes will be sufficient small 
with sufficient prediction accuracy.

Scheme 2 is that LSEs will not get paid if its submitted load schedule exceeds its 
actual load. This scheme not only contains more price inertia, but also ensures 
the amount of LSEs benefit. Any result under this scheme will be less beneficial. 
If this scheme can still reduce cost, then the actual cost will be even smaller.

FFNN Training with BCR

Back-propagation training is selected as training process for FFNN with BCR. In 
forward calculation in each training iteration, FFNN with BCR performs the same 
as general FFNN.  In back-propagation, the objective function is shown in Eq. 
(1.103) below.
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(1.103)

In NN with BCR, assume dimension of feature space is I, dimension of output 
space is P, number of neurons in hidden layer is J, number of data samples in train-
ing data is N.

In Eq. (1.103), T is a P by N matrix representing the training target, which is the 
actual load. Y is a P by N matrix representing the output of neural network, which is 
the predicted load. PDA is a P by N matrix representing price of DAM. PRT is a P 
by N matrix representing price of RTM. DAMC and RTMC are the cost in DAM and 
RTM, which are new terms other than those in traditional FFNN. Function sum() 
receives a matrix or vector input and compute the summary of all input elements. 
This summery is output of this function.

Following the second scheme mentioned above, ε(Acc) is a step function as 
shown by the blue curve in Fig. 1.37, which ensures that no payment is received 
when schedule load is larger than the actual load.

Back-propagation is a derivation-based optimization method. But ε(x) is not 
derivable, therefore a substitute function in Eq. (1.104) can be used instead of 
ε(Acc). Figure 1.37 shows the function output with coe = 0.5, 0.8, and 1.3. The 
substitute function can obtain a better approximation with larger coe.

Fig. 1.37  Step function and its approximation function
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(1.104)

The substitute function is similar to the activation function for neurons in 
FFNN. But this function does not take effect in forward calculation. It only appears 
in back-propagation procedure. Thus, it is called virtual neuron in network training, 
which is specified for power cost computation.

Considering Eqs. (1.103) and (1.104), the structure of FFNN with BCR is given 
in Fig. 1.38. For practical requirements, network output should be positive as load 
is always a positive number. Scheme 1 should be considered too. Thus solution 
selection range should satisfy requirements in Eq. (1.104).
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(1.105)

where K is the limit for prediction error set by network user. Function mean() 
receives a matrix or vector input and compute the mean value of all input elements. 
This mean value is output of this function.

Modified Levenberg–Marquardt Training

Levenberg–Marquardt (LM) algorithm is used to solve nonlinear least squares prob-
lems, which is widely used in FFNN training. It uses Jacobian matrix to construct 
the approximation of Hessian matrix in Newton method. LM algorithm is widely 
used in FFNN training. In FFNN with BCR, the objective function in Eq. (1.103) is 
not pure least square problems because of the cost term. Thus, this section intro-
duced a modified Levenberg–Marquardt (MLM) algorithm for network training. 
Figure  1.39 provides the flow chart of MLM.  In Fig.  1.39, procedure of back-
propagation is constructed by two components. The first component is the accuracy 
contributed adjustment (ACA) of weight and bias. The second component is the 
cost contributed adjustment (CCA) of weight and bias, which is different from tra-
ditional FFNN.

Forward Calculation in MLM

Assume that dimension of FFNN’s input space is I and that of output space is 
P. Number of neurons in hidden layer is J. There are N data samples in training data 
set. Thus, the output of the whole network in forward calculation is the same as 
traditional LM algorithm. Details can be found in [144].
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Using the same forward calculation with traditional LM algorithm represents 
that network operation after training does not require participation in market price. 
This feature means that implementation of FFNN with BCR does not require to 
obtain price information ahead.
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Fig. 1.38  Structure diagram of FFNN with BCR
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Variable Rearrangement in MLM

This step is specified for back-propagation preparation. It computes the derivation 
and transfer variables into suitable format. In FFNN with BCR, training process is 
to adjust the weights and bias to achieve the optimization. Weights and bias include 
Wjp, Wij, Bj, Bp.

Initialize 

Weights and bias

Accuracy

rearrange

r=r+1

Virtual 

neuron
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Forward 

calculation

reduction

stop

Yes

NoIteration

Stop?

Cost

CCA

Traditional procedure in 

FFNN
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FFNN with BCR

Back-

propagation

MLM

r=0

Fig. 1.39  MLM flow chart for FFNN with BCR
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Rearrangement step 1: Derivation of Wjp

As Jacobian matrix is constructed by derivation for error only, deviation of each 
argument should be computed first. The equation can be found in [144].

Rearrangement step 2: Flattening the variables

For computation with Jacobian matrix in MLM, arguments and relevant variables 
are preferred to be of vector structure. So matrices model is needed to be 
transferred into vector format. Equation (1.111) shows the vector format 
transformation.
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= ×
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 	

(1.107)

where X is the vector of optimization arguments whose elements number is 
H. Equation (1.107) gives the computation of H. Yf is the vector of output in 
training data set whose elements number is Q. Tf is the vector of target in training 
data set. Vector E represents the error. Vectors E and Tf are Q by 1.

In Eq. (1.106), function L() is called flattening function. This function receives a 
matrix input and sequentially moves each column of input matrix to the end of the 
first column. Finally, all columns in the input matrix are put together into the first 
column, establishing a column vector that contains all elements in input matrix. 
This column vector is the function output. If dimension of input matrix is i by j, then 
dimension of output vector is i ∗ j by 1.

Back-Propagation in MLM

MLM algorithm adopts Newton method to obtain the variation of arguments. Back-
propagation in MLM uses four steps to complete the arguments variation.

Step 1. Objective Function Transformation

After flattening the network output, target and the optimization arguments, the 
objective function can be transformed into Eq. (1.108).
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where pdafq is the qth element in vector L(PDA). prtfq is the qth element in vector 
L(PRT). yfq is the qth element in vector Yf. Equation (1.108) shows that objective 
function of MLM is not least square problem, which is different from traditional 
LM algorithm.

Step 2. Gradient Computation
Deriving from Eq. (1.108), the gradient of objective function on argument can be 

shown in Eq. (1.109).
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(1.109)

Different from traditional LM algorithm, a new term constructed with Θ1 is intro-
duced for cost representation.

Step 3. Hessian Computation
Derived from Eq. (1.109), Hessian matrix is given in Eq. (1.110) with order of argu-

ment greater than or equal to 2.
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(1.110)

where function COPY() receives a vector with any dimension and outputs a matrix 
in which the dimension of rows and column are both equal to the dimension of 
input vector. Also, each column of output matrix is the same as that in input vector.

Comparing to use JT × J in traditional LM algorithm, Hessian matrix approximation 
in MLM selects Eq. (1.110) instead. In Eq. (1.110), a new term COPY(Θ) is 
introduced, which is constructed by virtual neurons in Eq. (1.105) and the price 
data of DAM and RTM.

Step 4. Argument Updated

With gradient in Eq. (1.109) and Hessian in Eqs. (1.110) and (1.111), this produces 
the expression of argument updates.
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(1.111)
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where λI is a term ensuring that Hess(r) + λI is positive. After computation of X(r + 1), 
the update of Wjp, Wij, Bj, Bp can be obtained from the corresponding elements 
from X(r + 1).

Numerical Study

Background

Load prediction for weekdays on Pittsburgh, USA is selected for numerical study to 
verify the capability of FFNN with BCR and MLM training algorithm. Load data of 
network training and testing set are selected from PJM’s “Metered Load Data” 
[142]. DAM and RTM price data are selected from PJM’s “Hourly Real-time & 
Day-ahead LMP” [143]. Training set of FFNN with BCR is constructed by data 
from 2014 to 2015 and testing set is constructed by data from 2016.

Feature space of network input is established by historical load section and target 
day weather section. In historical load section, the latest weekday’s 24 hourly load 
data within data acquisition capability is selected as network’s input. In target day 
weather section, hourly temperature and humidity are selected as network’s input, 
which assumes the weather prediction accuracy is sufficiently high. Data of weather 
are selected from “Local Climatological Data” in National Oceanic and Atmospheric 
Administration (NOAA) [144].

Due to the rules of PJM schedule submission of DAM in Table 1.25, the data 
acquisition capability for each weekday is different. Weekday load forecast in this 
case study is a mix step ahead load forecast problem. The historical load input for 
each weekday is shown in Table 1.27.

FFNN with BCR is a non-convex model, therefore, the multiple extremums will 
cause training instability. To improve the training stability, a framework containing 
multiple networks is selected for each training set. This framework selects C differ-
ent networks for each training set. The predicted load is the average value of output 
from each network. In this study, number of hidden layer neurons is 10. Matlab is 
used for model programming and simulation. Table 1.28 provides initial condition 
for network training.

Table 1.27  Historical load input of FFNN with BCR for each weekday

Weekday Historical load input Day step ahead (days)

Mon 4:00 PM in last Wed to 3:00 PM in last 
Thur.

4

Tue 4:00 PM in last Thur to 3:00 PM in last Fri. 4
Wed 4:00 PM in Sun to 3:00 PM in Mon. 2
Thur 4:00 PM in Mon to 3:00 PM in Tue. 2
Fri 4:00 PM in Mon to 3:00 PM in Tue. 3
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Load Forecast on FFNN with BCR

With training data and initial condition given in Table 1.28, the training process is 
shown in Fig. 1.40.

In Fig. 1.40, FFNN’s converging level on accuracy is slightly better than FFNN 
with BCR. But FFNN with BCR performs better in benefit converging. It shows that 
BCR term in Eq. (1.101) is effective. Also, adding cost in objective function will 
reduce the focus of accuracy. This effect is verified by the accuracy reduction in 
Fig. 1.40. This phenomenon can also be revealed by the benchmark between FFNN 
with BCR and other traditional load forecast techniques in Table 1.29. FFNN with 
BCR can achieve lower cost with small accuracy reduction.

In Table 1.29, the same training and testing data set are used for different load 
forecasting models, including radial basis function network (RBF), feedforward 
neural network (FFNN), binary decision tree for regression (BDTR), and linear 
regression (LR). The negative value in “cost relative diff” means that benefit of 
FFNN with BCR is better than any other prediction model with “a not bad” accu-
racy level. When MIU = 10−4.4 and coe = 10−2.2, FFNN with BCR can receive a 
maximum 0.8% accuracy reduction with up to 2.8% benefit improvements. The 
reason for best cost reduction in new model is that the cost of schedule load is added 
into the objective function as BCR term in model training. The BCR terms add 
consideration of cost into model learning so that cost of predicted load will be con-
sidered in FFNN’s prediction. Decision maker of LSEs should consider if the 
reduced accuracy is acceptable. For further analysis, Fig. 1.41 shows the forecasting 
load in a typical day.

In Fig. 1.41, predicted load of FFNN with BCR is smaller than target load when 
price of DAM is higher than price of RTP. The largest load bias between target load 
and FFNN with BCR in Fig. 1.41 is up to 70 MW, which is about 4.52%. Figure 1.41 
reveals that the new training objective function is trying to reduce load at period 
when price of DAM is higher than RTM with accuracy consideration. In this situa-
tion, LSEs may purchase more power at a lower price.

Table 1.28  Parameters for network training

Stop condition Epochs 100
MSE goal 10−4

Cross-validation continuously miss 
time

3

Minimum updates 10−10

λ 10−2

Number of hidden layer neurons 10
Activation function for hidden layer neurons Log-Sigmoid
Activation function for output layer neurons Linear
Arguments initialization method [145] Random with normal 

distribution
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Fig. 1.40  Training process 
of FFNN and FFNN 
with BCR

Table 1.29  Benchmarking between FFNN with BCR and other methods (μ = 10−4.4, coe = 10−0.2)

Network
Training set 
accuracy (%)

Test set 
accuracy 
(%)

Test set cost 
relative diff 
(%)

Training set 
annual cost ($)

Test set annual 
cost ($)

FFNN with 
BCR

92.07 90.11 0 5.2992 × 108 4.0409 × 108

BDTR 97.05 90.12 −2.38 5.4850 × 108 4.1646 × 108

FFNN 95.83 90.92 −2.84 5.5406 × 108 4.1589 × 108

LR 93.89 89.33 −2.34 5.5551 × 108 4.1628 × 108

RBF 95.92 88.68 −2.50 5.5121 × 108 4.1446 × 108

Fig. 1.41  Load forecast 
comparison in a 
typical day
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MIU Analysis of Cost Sections

MIU is a weight coefficient controlling the relative importance of power cost in Eq. 
(1.101). The variation of MIU deeply influences the training effect. Theoretically, 
the cost of predicted load will decrease further with larger MIU as PC term in Eq. 
(1.101) is paid larger attention in model training. But the accuracy will be worse. 
Table 1.30 shows the effect of new network training under different MIU. As the 
result of highly nonlinearity of training effect under different value, the value MIU 
is set shown with a log expression. Figure 1.42 shows the variation of accuracy.

From Fig. 1.42, the error of FFNN with BCR increases when MIU increases. 
Because MIU has increased the importance of cost and decreased the impact from 
accuracy in optimization, the accuracy of FFNN with BCR decreases. Decision 
maker can select any value whose error is below the error accepting line.

Reversely, Fig. 1.43 shows the cost reduction under different MIU value. From 
Fig. 1.43, cost reduction tends to decrease when MIU increases. This is the opposite 
effect of accuracy decreasing. Because the increasing proportion of cost in objective 
function will directly lead to higher cost reduction level. Considering the error 
accepting line, decision maker may select an MIU value with maximum cost reduc-
tion. For example, if decision maker’s error accepting line is 85% as shown in 
Fig. 1.42, the maximum test set cost reduction can be found as $4.0145 × 108 in 
Fig. 1.43.

In implementation of FFNN with BCR, MIU is an important variable that deeply 
influences the model performance. So a procedure of MIU selection is necessary for 
decision maker. The spirit of MIU selection is trying to obtain lower cost within 
accuracy constraints. But the relationship between MIU and accuracy constraint 
deeply depends on constraint level selection and data set selection. Figure  1.44 
introduces the MIU selection procedure.
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Fig. 1.42  Accuracy variation of FFNN with BCR under different MIU
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In Fig. 1.44, a large value span of MIU is set for MIU boundary initially. Within 
this span, several sample values are selected for MIU experiments. By verifying the 
accuracy and cost of training sets and testing sets from all experiments, two MIU 
values are picked out: one is from the experiment whose accuracy is the positively 
closest to accuracy constraint (within constraint). The other one is the negatively 
closest to accuracy constraint (constraint broken). The optimal MIU should be 
located within these two values. If ending condition is met, the procedure will stop. 
Otherwise, the two picked values will be set as new MIU boundary and similar 
processes above will be repeated.

If experiments of all MIU values are all within constraint, a new value span with 
larger MIU values will be selected to repeat the processes. If experiments of all MIU 
values are all constraint broken, a new value span with smaller MIU values will be 
selected to repeat the processes. The procedures above can obtain a lower cost 
within accuracy constraint. In other words, the procedure is to draw a line with the 
value of minimum accuracy requirement in Fig. 1.42. There will be a cross point 
between this line and line of accuracy variation. The target MIU value is the hori-
zontal ordinate of the cross point.

Conclusion and Future Work

Conclusion

Facing the inconformity between accuracy and benefit in DAM power scheduling 
submission, this study introduces a feed forward neural network with beneficial cor-
related regularization to improve LSEs’ benefit with acceptable accuracy 
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Fig. 1.43  Accuracy variation of FFNN with BCR under different MIU
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consideration. Results show that FFNN with BCR can reduce the power cost with 
acceptable accuracy.

In the numerical study, around 90% accuracy for testing set could be achieved. 
Practically, LSEs may construct a more relative feature space or a more details 
model framework to enhance the accuracy, including a more accurate environmen-
tal data, local high-influenced event indices, separated entire load to multiple con-
sumer sets. In those cases, with more accuracy, decision maker may have a more 
cost reduction by using BCR in the prediction model.

One important feature of the proposed model is that price information of DAM 
and RTM is not required to be obtained ahead. It is only required in historical data 
set for training. Actually, BCR term with price information is only a regular factor 
inside the training optimization process. The reason of generalization effect on cost 
reduction without future price information is that PJM is a mature market as many 
other power market in the US. Behaviors of market participants converge to a com-
paratively stable regulations when facing many different kinds of market events. 
Market stability represents that price information at future predicted time can be 
obtained from historical price information via training.

MIU Experiments 
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MIU range 

Determination

Minimum 

Accuracy 

Constraints

MIU Boundary 
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Good Enough Cost?

Too Much Iteration?
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Y N

Fig. 1.44  MIU selection procedure
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Future Work

In FFNN with BCR, decision maker of LSEs decides its error acceptance line to 
ensure its accuracy level and selects the value of MIU to get the optimal cost reduc-
tion. But the price of DAM and RTM may change significantly if the permitted error 
is large. It means that the cost reduction effect may gradually lose effectiveness 
when acceptance error increases significantly. Though there is selection up to 20% 
cost reduction in Table 1.29, it is not suggested for over 100% error increasing. 
Facing this issue, one future work of this study is to expand the model effective 
range by considering the price–load elasticity of DAM and RTM with an economic 
model, so that the effect of price change can be considered.

1.3.1.6  �Electricity Pricing Classification

In this section, cost-sensitive weighting and imbalance-reversed bagging for stream-
ing imbalanced and concept drifting in electricity pricing classification will be 
presented.

Introduction

Electricity pricing plays a key role in determining short-term operating schedules 
and bidding strategies in competitive electricity markets [146]. Hence, many data-
driven machine learning methods have been developed to predict short-term elec-
tricity market prices [147–150]. However, current methods tend to predict the exact 
value of prices while not all participants in the electricity market are interested in 
knowing the exact value of future values. For examples, demand-side market par-
ticipants may only react when prices exceed certain thresholds considering the on/
off nature of most electric loads [147]; some facilities only purchase electricity from 
the grid if the electricity price is below the marginal cost of operating the on-site 
electricity generation equipment [151]. In these types of applications, the exact 
value of prices is not primarily required and the price forecasting problem is turned 
into a price classification problem in which the task is to classify future prices into 
several classes of interest, for instances, whether the future price is higher than a 
threshold so that one should turn off most electric loads or whether the prices in a 
city will be higher than the other city so that a better schedule of electricity transmit 
between these two cities should be planned ahead of time.

Electricity pricing classification problem is not an easy task due to its streaming 
nature [152]. Data generated from the grid form a data stream, which introduces 
new challenges to traditional machine learning approaches, such as limited training 
and testing time, constraint of memory usage, and a single scanning of incoming 
samples [153]. More importantly, concept drift in streaming environment changes 
statistical characteristics of target concept over time which may lead to accuracy 
drop of classifiers being trained using past samples. Pattern classification problems 
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in streaming environments become more complicated when both concept drift and 
class imbalance occur. In this work, electricity pricing classification refers to the 
prediction of the future electricity price to be higher or lower than the current time 
which is a classical two-class classification problem (high or low) in machine learn-
ing. In imbalanced classification problems, classifiers tend to classify most of sam-
ples into the majority class (In a two-class problem, a class containing more training 
samples than the other class is referred as the majority class while the other one is 
referred as the minority class) to gain a high overall accuracy and ignore the low 
accuracy in the minority class. This is not preferable when misclassifying a minor-
ity sample is much more expensive than misclassifying a majority sample. Current 
research studies focus on dealing with concept drift in streaming learning environ-
ments while very few efforts have been made to deal with the imbalanced streaming 
classification problems with concept drift.

Concept drift refers to the change of the joint probability distribution between 
inputs and true classifications in different time moments in a data streaming setting 
[154]. Classifiers trained using outdated samples would yield very poor generaliza-
tion capability on samples in the future. Ensemble methods are often applied to 
relieve this problem because of their high performance and usefulness for streaming 
learning owing to the ease of being integrated with drift detection methods and 
dynamic updates [155].

Class imbalance problem is another major issue in data streaming environments. 
Class imbalance problems occur when the number of samples in at least one class is 
either much more or less than other classes. When class imbalance happens, classi-
fiers trained using traditional methods (e.g., by the minimization of overall training 
error) yield poor generalization performance on the minority class. Therefore, 
proper techniques like data processing should be employed to deal with the class 
imbalance problem. Data processing is one of the key elements for the successful 
operation of complex systems such as smart grids [156, 157]. In the context of smart 
grid, classification with machine learning has been applied to fault cause identifica-
tion [158, 159], future electricity market prices [147–150], electrical machines 
[160, 161], power quality disturbances classification [162], and cyberattacks detec-
tion [163, 164]. However, to date, the concepts of imbalanced streaming data and 
concept drifting in smart grid have rarely been studied. Seldom work has been done 
on imbalanced classification for power system problems. Authors in [165] claimed 
to be the first researches on investigating the outliers in electricity demand time 
series with imbalanced classification techniques. To assess power system short-term 
voltage stability, an oversampling technique and a cost-sensitive learning method 
are applied to deal with the predictions of the rarely-occur instability events [166].

Very few works focus on dealing with both the concept drift and class imbalance 
issues. Existing methods can be distinguished into two types. One is to retrain a new 
model using the most recent samples so that the trained classifier can react to the 
concept change fast, for example, the SERA (SElectively Recursive Approach) 
[167]. The SERA reserves all the minority samples seen so far, from which the most 
relevant ones are selected to combine with the most recent majority samples so that 
a preselected post-balance ratio is met. A classifier or ensemble is trained from this 
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rebalanced data set. The other type is to dynamically update the model, for example, 
the Learn++.CDS (Concept Drift with SMOTE), Learn++.NIE (Nonstationary and 
Imbalanced Environments) [168] and the DWMIL (Dynamic Weighted Majority for 
Imbalance Learning) [169]. The CDS rebalances the most recent data chunk (A data 
chunk refers to a block of consecutive samples in between some time interval for the 
learning model to train or to predict) using the SMOTE (Synthetic Minority 
Oversampling TEchnique) [170] to tackle the class imbalance problem by generat-
ing new samples along a line connecting a minority sample and its nearest minority 
sample, while the NIE uses a bagging variation method to create several relatively 
balanced data set to train a classifier ensemble. Regarding the adaptation to the 
concept drift, both the CDS and the NIE apply a dynamic weight assignment scheme 
so that classifiers yielding high performance on the current data environment receive 
high weights. The major drawback of the Learn++ family is that all classifiers are 
maintained which increases the computational costs and lowers the prediction 
speed. To avoid this kind of problem, the DWMIL applies a time–decay function to 
its weight assignment scheme so that the weight of each classifier decreases auto-
matically. When weights are lower than a threshold, corresponding classifiers are 
removed so that the number of classifiers maintained is much lower than the number 
of time moments.

The major concern of classifier training is their generalization abilities for future 
unseen samples in incoming data stream. However, current learning methods do not 
take generalization error of the classifiers into account when training classifiers. 
Therefore, we propose an incremental ensemble of ensembles learning with a Cost-
sensitive Weighting and an Imbalance-reversed Bagging, i.e. CWIB, to deal with 
imbalanced classification problems in streaming environments with concept drifts, 
which significantly enhances the performances than the state-of-the-art methods in 
terms of accuracy, F1-measure, and G-Mean and ranks the first in terms of all per-
formance metrics applied in this work. The CWIB relieves the class imbalance 
problem by applying an imbalance-reversed bagging method which builds a set of 
diversified base classifiers to form a component ensemble classifier. In comparison 
with methods building a single classifier with each data chunk and update weights 
of classifiers (e.g., CDS in the experiment), the proposed CWIB yields significantly 
better results in accuracy, F1-measure, and G-Mean value. This shows the effective-
ness and satisfactory results of the CWIB using ensemble of classifiers. Ensemble 
of classifiers usually yields lower error rate in comparison with a single classifier 
[171]. Moreover, training an ensemble of classifiers using the current chunk looks 
to be very time-consuming, but these component classifiers are independent from 
each other and can be trained in parallel as suggested in [172]. In this way, time 
consumption will be roughly similar to that of training a single classier. Therefore, 
training an ensemble of classifier instead of a single classifier with each data chunk 
is a better choice. Then, component classifiers are fused together to form the final 
ensemble for the CWIB using the weighted sum method. To adapt to the concept 
changes across time, the weight of each component classifier is computed according 
to their cost-sensitive classification performances and stochastic sensitivities with 
respect to the current data chunk. Major contributions of this work are as follows:
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	1.	 An imbalance-reversed bagging (IRB) method is proposed to relieve the class 
imbalance issue in a data chunk. The IRB boosts the true positive rate while 
maintains a relatively low false-positive rate.

	2.	 A new cost-sensitive stochastic sensitivity measure (ST-SM) is proposed to 
weight samples in different classes differently based on their ST-SM and a cost 
computed by the imbalance ratio.

	3.	 A dynamic cost-sensitive weighting scheme based on the cost-sensitive ST-SM 
is applied to compute fusing weights of component classifiers. A larger weight is 
assigned to a component classifier yielding a good cost-sensitive performance on 
the current data chunk.

	4.	 A fixed size of classifier ensemble is maintained, which is much smaller than the 
time moments and requires both less computational resources and less storage.

The section is structured as follows. The CWIB is proposed in section “Cost-
Sensitive Weighting and an Imbalance-Reversed Bagging”. Section “Experimental 
Studies with Electricity Price Classification” shows experimental results and dis-
cussion. Section “Conclusions and Future Work” gives the conclusion.

Cost-Sensitive Weighting and an Imbalance-Reversed Bagging

Algorithm 1.2 shows procedures for training the CWIB at time t. The CWIB train-
ing method consists of two components: one is to handle the class imbalance issue 
and the other one is to dynamically assign different weights to each component 
classifier for adaptation to changes in data. The overall procedure of the CWIB is as 
follows:

At time moment t, the current Ht−1 is an ensemble of ensembles which consists 
of a set of component classifiers fused by a weighted sum while each component 
classifier consists of a set of base classifiers fused by a simple majority voting. 
When a new data chunk arrives, a new component classifier is trained using the 
IRB. The new component classifier ht is expected to be more relevant to the current 
data environment, thus its weight is set to 1 (the largest weight). Existing compo-
nent classifiers in Ht−1 are then weighted according to their classification perfor-
mance based on a cost-sensitive loss and their stochastic sensitivities on the current 
data chunk. Then, the Ht−1

 is combined with the ht along with newly computed 
weights to from the Ht. If the number of component classifiers in Ht is larger than 
the preselected ensemble size, the worst-performing component classifier yielding 
the smallest weight is removed. The IRB and the dynamic weighing scheme are 
proposed in sections “Imbalance-Reversed Bagging” and “Dynamic Weight 
Assignment”, respectively.
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Imbalance-Reversed Bagging

When a new data chunk arrives, u data sets are sampled from the original data chunk 
with replacement based on a probability distribution. The probability of a minority 
(majority) sample being sampled is equal to the number of samples in the majority 
(minority) class divided by the total number of samples in the current data chunk. 
Such that, the minority samples become the majority in the sampled data set. In this 
way, the class imbalance is reversed which forces the base classifier being built 
using this data set to bias to the minority class for improving its true positive rate. 
Then, a component classifier of the CWIB is built by fusing all u base classifiers 
using a simple majority voting.

However, in electricity pricing problems, the number of samples in the minority 
class may be larger than that of the majority class in some data chunks. In these 
anomaly cases, the probability of sampling will not be reversed as aforementioned 
to let the system to keep focus on the original minority class.

The random sampling with replacement from both classes creates diversified train-
ing datasets for base classifiers. By favoring the minority class in the IRB, each base 
classifier may yield a high false-positive rate. The bagging of diversified base classi-
fiers maintains a low false-positive rate [173] to relieve this problem. By applying the 
IRB, the representation of the minority class is enhanced while a relatively low false-
positive rate is maintained. The algorithm of the IRB is given in Algorithm 1.3.

Algorithm 1.3 Imbalance-Reversed Bagging
Inputs: u, number of base classifiers in a component classifier; D, current 
data chunk.
Outputs: A classifier ensemble h
1: Reverse the imbalance ratio of D if the number of minority samples is not 
larger than that of the majority class (anomaly case).
2: Randomly sample u data sets with replacement from D according to the 
imbalance ratio in Step 1.
3: Build u base classifiers using the u training datasets and form the classifier 
ensemble h with a simple majority vote fusion.

Algorithm 1.2 Training CWIB at Time Moment t
Input: t, current time moment; u, number of base classifiers in a component 
classifier; Dt, current data chunk; Ht−1, current classifier ensemble; M, maxi-
mum ensemble size.
Output: Ht, classifier ensemble at time t.
1: Apply the IRB on Dt to build the component classifier ht and set its 
weight to 1
2: Compute the weight of each component classifier in Ht−1 based on its cost-
sensitive loss and stochastic sensitivity
3: Combine ht and Ht−1 with their newly computed weights to form Ht

4: If the number of component classifiers in Ht is larger than M then removes 
the component classifier yielding the smallest weight
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Dynamic Weight Assignment

The IRB proposed in the previous section builds a new component classifier when-
ever a new data chunk arrives. The adaptation to concept drifts in the nonstationary 
streaming data environment is achieved by a dynamic weighting of component clas-
sifiers according to their classification performances and stochastic sensitivities 
with respect to the current data chunk. The weight is ranged between [0, 1]. A larger 
weight is assigned to a component classifier if it yields a higher classification per-
formance for the current data environment with smaller stochastic sensitivity with 
respect to small input perturbations. The final classifier ensemble of the CWIB is 
fused by the weighted sum method as follows:
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where xb
t , h xj

t
b
t( ) , wj

t ,  and lt denote the bth training sample, the predicted out-
put of the jth component classifier given xb

t , the weight of the jth component clas-
sifier and the number of component classifiers, at time t, respectively. For simplicity, 
the time t will be ignored in the following part of this section because all computa-
tions are finished within the same time moment. Therefore, Eq. (1.112) is rewritten 
as follows:
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The classification performance of hj (the jth component classifier) is evaluated by 
a cost-sensitive loss function. In class imbalance problems, misclassifying a minor-
ity sample is usually more costly than misclassifying a majority one. Therefore, a 
misclassification of a minority sample yields a larger penalty in the loss function. 
The logistic loss function is used in this work:

	
ϕ h x y y h xj b b b j b( )( ) = + −( )( ), log exp1

	
(1.114)

where yb ∈ {−1, +1} and hj(xb) ∈ {−1, +1} denote the true label and the predicted 
label of xb, respectively. Then, the cost-sensitive loss function is defined as follows:
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The misclassification cost (Cb) is equal to 
N

N

−

+  if xb belongs to the minority class 

and 1 otherwise where N−(N+) denotes the number of majority samples (minority 
samples). Then, the classification weight (wc ∣ j) is inversely proportional to the cost-
sensitive loss and written as follows:
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where lt − 1 denotes the ensemble size of H at time moment t − 1. The weight of 
the newly trained component classifier at t is equal to 1. Therefore, only weights for 
the lt−1 component classifiers in Ht−1 need to be computed.

On the other hand, the sensitivity of a component classifier is evaluated by the 
cost-sensitive stochastic sensitivity measure (ST-SM). The ST-SM [174] has been 
widely applied in different applications, for instances neural network architecture 
selection [174], sample selection [175], MLPNN training [176], feature selection 
[177], steganalysis [178], and business intelligence [179]. The ST-SM of the jth 
component classifier is defined as the expectation of squared differences between 
outputs of training samples and samples located within a distance of Q in each 
dimension:
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where Δx ∈ [−Q, +Q]n denotes the perturbation of the training sample and f is the 
real-valued outputs before thresholding to {−1, +1} of a component classifier. 
Intuitively, the ST-SM measures the fluctuation of classifier outputs with respect to 
input perturbations, that is, it measures the stability of the classifier. Therefore, a 
classifier yielding a large ST-SM value is easily affected by small perturbations of 
inputs and more unstable. As a result, a smaller weight should be assigned to a clas-
sifier yielding a higher ST-SM value.

In this work, we propose the cost-sensitive ST-SM which is defined as follows:
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A quasi-Monte Carlo-based method is adopted to calculate the cost-sensitive 
ST-SM of a classifier as in [176]. Specifically, Δx is generated via an n-dimensional 
Halton sequence [180] with each coordinate ranging from [−Q, Q] using MatLab 
and 50 Halton points are used in the calculation of the expectation term in (1.118). 
According to experiments in [176], 50 Halton points yield only around 4% estima-
tion error and the computational time is fast. Higher number of Halton points can be 
used for more accurate estimation but with higher computational costs.

It is difficult to automatically select the Q value theoretically. In implementa-
tions, Q = 0.1 is usually used which indicates a maximum of 10% of deviation from 
the training samples for data set with input features being normalized to [0, 1].

In the theory of the Localized Generalization Error Model [174], a good classi-
fier should minimize both the classification error and the ST-SM.  Therefore the 
proposed weighting scheme assigns larger weights to classifiers yielding smaller 

1211.3  Elements of a Smart City



122

cost-sensitive ST-SM values. The sensitivity weight is inversely proportional to the 
cost-sensitive ST-SM and written as follows:
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Then, the fusion weight of the final ensemble of the CWIB is defined as the com-
bination of the classification weight and the sensitivity weight as follows:
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where η is a trade-off coefficient between the classification performance and the 
stability of component classifiers. In our experiment, η = 0.5 is used to represent an 
equal importance of these two factors. The final decision of the ensemble is the 
weighted sum of outputs of all component classifiers:
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Experimental Studies with Electricity Price Classification

As mentioned in [149], electricity price is a complex signal due to its characteristics 
of nonlinearity, time variant, and nonstationary behavior. More robust and accurate 
price classification and forecasting methods are still needed. As an example, for 
electricity price forecasting, authors in [149] proposed a complex electricity price 
forecasting technique based on feature selection and cascaded neuro-evolutionary 
algorithm (CNEA). The CNEA consists of cascaded forecasters, with each fore-
caster made up of an evolutionary algorithm and neural network. The adjustable 
parameters in the feature selection algorithm and the CNEA are fine-tuned with an 
iterative search procedure. However, the data segmentation for model training, i.e. 
optimal data size for training, was not well studied. To predict the day-ahead price, 
authors used a rule-of-thumb and the model was trained according to previous 
50 days of data. The nature of the data, i.e. data imbalance or concept drift has not 
been considered prior training the model.

The work in [148] investigated several data mining approaches for electricity 
price classification. This includes correlation-based feature selection, multilayer 
perceptron, K-nearest neighbors, etc. Similar to forecasting problems, the data seg-
mentation for classification problems has been arbitrary. For example, the authors 
used 20 historical days for the model training, with an argument as a fair compari-
son to the previous work in [147]. Evidently, it has been observed that previous 
research efforts have not considered electricity market price classification in data 
streams.
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In this section, the CWIB is compared with other existing methods designed for 
imbalanced data streaming classification problems with concept drift. The electric-
ity data set used in the experiment is introduced in section “Electricity Dataset”. 
Section “Effects of Different Parameters” studies the effects of parameters to the 
CWIB. Section “Experimental Results” presents and discusses experimental results 
of the CWIB and other methods. The CWIB is compared with the following state-
of-the-art methods in experiments: Learn++.CDS [168], Learn++.NIE [168], SERA 
[167], and DWMIL [169]. There are three variations of the Learn++.NIE using dif-
ferent error metrics: the weighted recall, the F1-measure, and the geometric mean. 
In our experiments, they are named as the WRM, the FM, and the GM, respectively. 
The default values for the parameters are used as suggested in the literatures. A 
short description on the methods used in the experiment is given in Table 1.31:

The numbers of component classifiers and base classifiers used in the CWIB are 
set to be 10 and 5, respectively. Larger numbers of component and/or base classifi-
ers could be used to better adapt to the gradual drifts if higher computational costs 
are allowed. Radial Basis Function Neural Networks (RBFNN) with 10 hidden neu-
rons are used as the base classifiers in all algorithms for fair comparisons. Neural 
networks have been successfully applied in future electricity forecasting [150, 181]. 
RBFNN is used here for its universal approximation capability [182] and its fast 
training speed compared with other types of neural networks, e.g. multilayer per-
ceptrons. Ten independent runs are performed for all methods to reduce random 

Table 1.31  Short descriptions on the methods used in the experiments

Methods Short description

CWIB When a new data chunk arrives, a new sub-ensemble is trained using the IRB to 
relieve the class imbalance problems. Each sub-ensemble is weighted according to 
their classification performance based on a cost-sensitive loss and their stochastic 
sensitivities on the current data chunk. The worst sub-ensemble is removed if a 
pre-selected ensemble size is reached.

CDS 
[161]

When a new data chunk arrives, a new classifier is trained using data rebalanced by 
the SMOTE. Each classifier is weighted based on a time-decay function and its 
performance on current data chunk.

NIE 
[161]

The differences between CDS and NIE are that NIE trains a sub-ensemble when a 
new data chunk arrives and NIE uses different error metrics to evaluate its sub-
ensembles. By using different error metrics, the NIE can be distinguished into three 
variations, which are WRM (weighted recall measure), FM (F1-score measure), and 
GM (geometric-mean measure).

SERA 
[160]

When a new data chunk arrives, the SERA trains a new ensemble using the current 
data chunk and the most relevant historical minority samples. All minority samples 
seen so far are preserved and those with the smallest Mahalanobis distance from 
current minority samples are selected as part of the training samples so that a 
preselected post-balance ratio is met.

DWMIL 
[162]

The DWMIL trains a new sub-ensemble for each data chunk using UnderBagging 
and weights each sub-ensemble based on their performance to the current data 
chunk. The weights are reduced based on both a poor performance and/or the age of 
the sub-ensemble over time.
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effects. The AUC (area under curve), the F1-measure, the G-Mean (geometric 
mean), and the accuracy are used to compare performances of each method.

Electricity Dataset

The Electricity Pricing data set Elec2 [183] is used in our experiment to simulate the 
concept drifting and class imbalance environment, which originally contains 45,312 
samples drawn from May 7, 1996 to December 5, 1998 with one sample for each 
half-hour from the electricity market in New South Wales, Australia. Samples with 
missing features have been removed so the remaining data set contains only 26,975 
samples. This data set provides time and demand fluctuations in the price of elec-
tricity in New South Wales, Australia. The day, period, New South Wales electricity 
demand, Victoria electricity demand, and the scheduled electricity transfer between 
the two states are used as the input features to predict whether the price of New 
South Wales will be higher or lower than that of Victoria’s in a 24-h period. Usually, 
a data chunk consists of 336 samples. However, samples with missing values are 
removed. Therefore, some data chunks may consist of fewer samples.

The concept drifts in this data set are natural and unavoidable because the elec-
tricity prices change with demand over different time periods. Moreover, the imbal-
ance ratio between two classes changes over time and the majority and the minority 
classes may swap over time.

Table 1.32 shows the characteristics of the data set.
The imbalance ratio is defined as the ratio of the number of minority samples 

over that of majority samples. A special case of concept drift for this data set occurs 
when the imbalance ratio exceeds 1 because of the minority positive class becomes 
the majority class in some time moments. Figure 1.45 shows the imbalance ratios of 
the Elec2 data set over time, where the y-axis represents the imbalance ratio and the 
x-axis represents the time moment/time step of each data chunk arriving which con-
tains roughly 1 week of data (since some data with missing values are removed). 
The effects of imbalance drift on the performance of learning models have been 
systematically analyzed in [184, 185], showing that without properly handling the 
drift of imbalance, changes in imbalance status would negatively affect the perfor-
mance. In this work, we propose to apply the IRB to handle the class imbalance 
problem to avoid severe performance deterioration caused by the drift of class 
imbalance.

Table 1.32  Characteristics of the Elec2 data set

Dataset Size of data chunk # Features # Time moments Imbalance ratio

Elec2 328–329 5 82 0.27–1.63
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Effects of Different Parameters

The CWIB uses two parameters: the number of component classifiers and the num-
ber of base classifiers in a component classifier. Experiments are carried out to show 
different behaviors of the CWIB by using different sets of parameters.

Figures 1.46(a), (b) show the true positive rate (TPR) and false-positive rate 
(FPR) of both the minority and majority class by varying numbers of component 
classifiers and base classifiers, respectively. From Fig. 1.46(a), with the increment 
of the number of component classifiers, the true positive rate of the minority class 
increases while the false-positive rate of the minority class decreases. Both curves 
of the true positive rate and the false positive rate of the minority class tend to con-
verge when the number of component classifiers is around 10. In contrast, the true 
positive rate of the majority class decreases and the false-positive rate of the minor-
ity class increases when the number of component classifiers increases. This is 
because the IRB reverses the class imbalance ratio and the representation of minor-
ity class is enhanced while the representation of majority class is diminished. The 
performance gained on the minority class is higher in comparison to the minor 
classification performance loss on the majority class. So, the overall performance of 
the CWIB is enhanced. Therefore, the number of component classifiers is set to 
10 in our experiments to yield relatively high true positive rates and relatively low 
false-positive rates for both classes.

From Fig. 1.46(b), with the increment of the number of base classifiers, all four 
curves are quite stable and start to converge when the number of base classifiers is 
around 5. The number of base classifiers seems to have very minor effects on the 
performance of the CWIB. Hence it is set to 5 to maintain a low computational cost 
and achieve a high classification performance.

1.8

1.6

1.4

1.2

1

0.8Im
b
al

an
ce

 r
at

io

0.6

0.4

0.2
0 10 20 30 40

Time moment
50 60 70 80 90

Fig. 1.45  Imbalance ratios 
of Elec2 data set over time

1251.3  Elements of a Smart City



126

80

70

60

50

40

30

20

10

0
0 5 10 15 20 25 30

80

90

70

60

50

40

30

20

10

0
0 5 10

number of component classifiers number of base classifiers

T
P

R
 / 

F
P

R

T
P

R
 / 

F
P

R

15

(a) (b)

20 25

TPR of minority class
FPR of minority class
TPR of majority class
FPR of majority class

TPR of minority class
FPR of minority class
TPR of majority class
FPR of majority class

30

Fig. 1.46  Different behaviors of the CWIB by varying the parameters. (a) TPR and FPR of both 
classes by varying the number of component classifiers. (b) TPR and FPR of both classes by vary-
ing the number of base classifiers

Experimental Results

Figures 1.47(a)–(d) show average values of the four performance metrics of differ-
ent methods over 10 independent runs over time, respectively. Table 1.33 shows the 
mean and the standard deviation values of different metrics for different methods 
over all data chunks. The bolded value of each column indicates the best result 
yielded for this metric and the symbol “*” indicates a statistically significant differ-
ence between the CWIB and the corresponding method by Student’s t-test with 95% 
confidence. The number in the parenthesis is the rank of the method in terms of 
corresponding performance metric. The last column gives the average rank of each 
method over four metrics.

From Table 1.33, the CWIB yields the best average rank in terms of all metrics. 
The CWIB outperforms the FM, GM, WRM, and SERA significantly in terms of all 
metrics. In comparison to the CWIB, both the DWMIL and the CDS yield only a 
small degraded performance in AUC, but much worse performances in all 
F1-measure, G-Mean, and Accuracy (at least 2.74% differences). The high values of 
G-Mean and F1-measure yielded by the CWIB indicate that the combination of the 
IRB and the cost-sensitive weighting scheme in the CWIB enhances accuracies of 
both classes (i.e., true positive rate and true negative rate). The SERA yields a rela-
tively high Accuracy (ranks the third) but very poor ranks of seventh in the AUC, the 
F1-measure, and the G-Mean. It may be due to the fact that decision boundaries 
created by the SERA are too biased to the majority class. This makes the SERA 
classify most samples as the majority class to achieve a high average accuracy but 
ignore the performance on the minority class. In contrast, the CWIB enhances the 
representation of the minority samples by applying the cost-sensitive weighting 
scheme, reversing the imbalance ratio, and at the same time a bagging method is 
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Fig. 1.47  Experimental results of different methods for the Elec2 data set. (a) Accuracy. (b) 
AUC. (c) F1-measure. (d) G-Mean

employed to maintain a low false-positive rate. Numerical results confirm the effec-
tiveness of the proposed CWIB.

From Figures  1.47(a)–(d), performances of all methods fluctuate severely 
because of the type of concept drift is unknown and can be highly complicated. 
Moreover, the swapping between the minority and the majority classes further 

Table 1.33  Performance of different methods on the Elec2 data set

Accuracy AUC F1-measure G-Mean
Mean 
Rank

CWIB 75.80 ± 0.52(1) 85.47 ± 0.36(1) 73.47 ± 0.44(1) 72.20 ± 0.37(1) 1
DWMIL 73.06 ± 1.12*(2) 85.14 ± 0.37(3) 68.68 ± 1.30*(6) 64.74 ± 1.48*(6) 4.25
CDS 72.37 ± 0.54*(6) 85.40 ± 0.29(2) 70.00 ± 0.60*(3) 68.90 ± 0.68*(3) 3.50
FM 72.15 ± 0.51*(7) 83.30 ± 0.42*(5) 69.66 ± 0.49*(4) 68.41 ± 0.53*(4) 5
GM 72.84 ± 0.58*(4) 83.37 ± 0.45*(4) 70.37 ± 0.60*(2) 69.13 ± 0.59*(2) 3
WRM 72.41 ± 0.41*(5) 83.29 ± 0.41*(6) 69.47 ± 0.36*(5) 67.63 ± 0.44*(5) 5.25
SERA 72.98 ± 0.44*(3) 71.83 ± 0.75*(7) 65.53 ± 0.62*(7) 57.70 ± 1.73*(7) 6
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increases the difficulty of this learning task. The SERA yields the worst perfor-
mance in all metrics and sometimes yields 0 value in terms of G-Mean because the 
SERA maintains too many outdated minority samples which consistently deterio-
rate its performance. The rest of methods perform similarly and fluctuates severely 
as time varies.

In summary, experimental results show that the CWIB is effective and yields 
statistically significantly better results in comparison to state-of-the-art methods. 
Moreover, the CWIB uses fewer storage and computational costs by using a small 
fixed size ensemble in comparison to the very large ensemble size (equal to t) used 
by the CDS, the WRM, the FM, and the GM for a large t and the variable ensemble 
size used by the DWMIL.

Conclusions and Future Work

Concept drifts occur commonly and are unavoidable in data streaming-based pat-
tern classification problems, such as electricity price classification. The consider-
ation of concept drift and imbalanced data for electricity price is a novelty of this 
work. In general, the problem is more complicated when numbers of samples in 
different classes are imbalanced. Therefore, the CWIB is proposed to deal with 
these two problems simultaneously. The CWIB dynamically weights component 
classifiers according to their classification performances and stochastic sensitivities 
with respect to input perturbations. New component classifier is trained using the 
Imbalance-Reversed Bagging (IRB) method to cope with the imbalance issue in a 
data chunk. The ensemble of the CWIB maintains a constant size by removing the 
component classifier yielding the smallest weight.

Experimental results show that the proposed CWIB yields better Accuracy, AUC, 
G-Mean, and F1-measure than state-of-the-art methods with statistical significance 
on an electricity pricing data set. This shows that the proposed method is useful to 
energy and power researches when the classification problems have a data set in a 
streaming form with class imbalance occurring in data chunks, e.g., prediction of 
outliers of electricity demand, fault diagnostic in power distribution system, and 
stochastic renewable energy generation, e.g., wind and solar. They are the future 
areas to be studied.

On the other hand, removing the component classifier yielding the smallest 
weight may not be the best method because it may reduce the diversity of the clas-
sifier ensemble. In our future works, we will research on the possibility of adding 
time as a component of the weight computation. The diversity between base classi-
fiers and between component classifiers may also be added to the weight computa-
tion to enhance the overall diversity of the ensemble of ensembles of the CWIB.

In this work, the RBFNN is used as the base classifier. However, it may be more 
powerful to use multiple types of classifiers to create the classifier ensemble for the 
CWIB. The optimal combination and selection method will be one of an important 
future works.

1  Smart City



1.3.1.7  �Application of Big Data to Smart Energy

Introduction

The terms “big data” and “data analytics” can mean very different things, depending 
on the problems to be solved [186–189]. Many researchers and practitioners man-
age “big data” challenges by focusing on its high volumes of information rather 
than the information management. In general, big data is a term used to recognize 
the exponential growth, availability, and use of information in the data-rich environ-
ment of today and beyond. The term “big data” puts a focus on the issue of informa-
tion volume. Many researchers and practitioners manage “big data” challenges by 
focusing on its high volumes of information rather than the information manage-
ment and this can lead to short-sighted decisions that will restrict the information 
architecture in which decision makers and managers try to expand and upgrade to 
meet changing needs for the society, environment, and business. Too narrow a focus 
will force massive reinvestment to address other factors due to big data to reduce 
risks and increase costs. Data volume is growing annually at a minimum rate of 
59% worldwide annually. Although volume is a significant challenge in managing 
big data, data information variety, and velocity must be focused on as well.

Volume: The increase in data volumes comes from traditional data types and new 
types of data. A very large size is a storage issue and too much data is also a massive 
analysis problem.

Variety: It is always a logical sequence to obtain data, derive information from it, 
and then make decisions. There are now many more varieties of information to ana-
lyze. The varieties include tabular data, documents, metering data, video, images, 
audio, financial transactions, and others.

Velocity: This involves streams of data, structured record creation, and availabil-
ity for access and delivery. In some cases, real-time decision making is needed. 
Therefore, it is important to have the required velocity to produce the data and pro-
cess it to meet the need.

Big Data technologies as a new generation of technologies and architectures 
designed to extract value economically from very large volumes of a wide variety of 
data by enabling high velocity capture, discovery, and/or analysis. The total amount 
of data has grown exponentially, it has been estimated that more data was produced 
between 2010 and 2012 than in all of preceding human history [190]. It is essential 
to make sense of big data and get patterns from it to help organizations to make bet-
ter decisions. The big data in Smart Grid is generated from various sources, such as 
(1) power utilization habits of users, (2) phasor measurement data for situational 
awareness, (3) energy consumption data measured by the widespread smart meters, 
(4) energy market pricing and bidding data collected by automated revenue meter-
ing (ARM) systems, (5) management, control and maintenance data for devices and 
equipment in the power generation, transmission, and distribution networks acquired 
by intelligent electronic devices, (6) operational data for running utilities, such as 
financial data and (7) very large data sets, not directly obtained through the grid 
measurement but widely used in decision making, such as weather data, data from 
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the National Lightning Detection Network (NLDN), and Geographic Information 
System (GIS) data.

The application of big data in power utilities is just started. By 2020, the number 
of installed smart meters in Europe will reach 240 million while North America will 
have 150 million smart meters in use, China is forecasted to install about 400 mil-
lion smart meters by that date. Japan would deploy about 60 million smart electric-
ity meters and South Korea would plan to deploy between 500,000 and 1.5 million 
smart meters per year in homes before 2020. With so many smart meters being 
deployed, utilities’ data center will increase the amount of data by several TB per 
day. Research has shown that many of the current utilities have not fully explored 
the value of “big data.” However, serious attention has been given to this field and 
some well-known institutions have updated their teaching and research programme 
to education students who have can take up the challenges of big data research and 
applications in the near future. Data analytics competitors are competing to bring a 
set of IT tools and capabilities that are largely new to the utility industry.

Related Techniques and Tools

Over the past few years, nearly all major companies, including IT giants like 
Oracle&IBM, grid giants such as General Electric, Siemens/eMeter, ABB/
Ventyx&Schneider Electric/Telvent, and startups like AutoGrid, Opower, and C3. 
All have started their big data projects and are competing to bring a set of IT tools 
that are largely new to the utility industry. Scientists have developed a wide variety 
of techniques and technologies to capture, curate, analyze, and visualize Big Data. 
Big Data needs powerful techniques to efficiently process very large volume of data 
within limited time. The techniques involve a number of disciplines, including sta-
tistics, data mining, machine learning, signal processing, pattern recognition, opti-
mization methods, and visualization method.

Techniques

Optimization methods have been applied to solve quantitative problems in a lot of 
fields, such as engineering, economics, physics, chemistry, and biology. In smart 
grid area, to tackle communication problems [191–194] and data processing prob-
lems [195], a variety of new scalable and distributed architectures or frameworks 
have been proposed. Data mining is a set of techniques to extract valuable informa-
tion (patterns) from data, including clustering, classification, and regression. For 
meter data analytics, data mining methods have been adopted. The applied methods 
can be grouped in two classes, namely statistical methods to make estimation based 
on historical data, and AI methods to model risk and uncertainty [196]. Recently 
developed data mining methods include fuzzy wavelet neural network [197] and 
nonparametric estimation [198]. Customers are grouped according to their electric-
ity consumption patterns and/or other characteristics, such as activities. Clustering 
methods are applied in generating residential load profiles [199] and to differentiate 
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pattern variations due to seasonal and temporal impacts [200]. Fuzzy decision tree 
is used to classify power quality disturbances [201]. Data mining approaches have 
been used for price classification [148]. Machine learning is an important area in 
artificial intelligence. It is used to discover knowledge and make intelligent deci-
sions automatically. Visualization method is used to create tables, images, and dia-
grams to understand data.

Tools

One of the most famous and powerful batch process-based Big Data tools is Apache 
Hadoop. It provides infrastructures and platforms for specific Big Data applications 
in business and commerce. For stream data applications, for example, electric power 
system operation, would require real-time response for data processing platforms 
such as Storm which is designed especially for real-time stream data analytics. For 
interactive analysis processing, the data are presented in an interactive environment. 
Users are directly connected to the computer and can interact with it in real time. 
Apache Drill is a distributed system for interactive analysis of Big Data. It has the 
capability to process petabytes of data and trillions of records in seconds.

Technologies

The ongoing or emerging technologies that are closely related to big data include 
cloud computing, Internet of things (IoT), granular computing, data center, and 
quantum computing [202].

Cloud Computing

Cloud computing delivers applications and services over the Internet. Cloud com-
puting is closely related to big data. Big data puts stress on the storage capacity of a 
cloud system. The main objective of cloud computing is to use huge computing and 
storage resources to provide big data applications with fine-grained computing 
capacity [203]. The emergence of big data also accelerates the development of cloud 
computing. The distributed storage technology and the parallel computing capacity 
can effectively manage big data and improve the efficiency of acquisition and analy-
sis of big data. CloudView is a framework for storage, processing, and analysis of 
massive machine maintenance data in a cloud computing environment, which is 
formulated using the Map/Reduce model and reaches real-time response. Cloud 
computing promotes transferring and sharing data.

Internet of Things (IoT)

The Internet of Things (IoT) is the network of physical objects or “things” embed-
ded with electronics, software, sensors, and connectivity to enable it to achieve 
greater value and service by exchanging data with the manufacturer, operator, and/
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or other connected devices. The internet of things represents an enormous amount 
of networking sensors embedded into various devices and machines in the real 
world. Such sensors deployed in different fields to collect various kinds of data, 
such as environmental data, geographical data, operation data, customer data in 
power utilities. Many devices including mobile equipment, home appliances could 
be used for data acquisition. IoT enables advanced applications for smart grid. The 
big data generated by IoT has special characteristics because of the different types 
of data collected, which have the characters of heterogeneity, variety, unstructured 
feature, noise, and high redundancy. It is expected that by 2030, the IoT data will be 
the most important part of big data, big data in IoT has three features that conform 
to the big data paradigm: (1) huge amount of data is generated from terminals; (2) 
data generated by IoT is usually semi-structured or unstructured; (3) the data pro-
cessing capacity of IoT has fallen behind so it is extremely urgent to promote the 
development of IoT based on the introduction of big data technologies.

Granular Computing

In granular computing (GrC), granules such as classes, clusters, subsets, groups, 
and intervals are used to build computational models for complex applications with 
huge amounts of data, information, and knowledge. Granular computing can reduce 
the data size into different level of granularity. However, not all the Big Data appli-
cations can use the GrC techniques. It depends on the confidence and accuracy of 
results required. For example, power network sensor data needs to be processed and 
responded in time and with high accuracy for decision making.

Data Center

The data center is in charge of acquiring, managing, and organizing data, and lever-
aging the data values and functions. The emergence of big data brings development 
opportunities and great challenges to data centers. Organizations are experiencing 
rapid IT growth but their data centers are aging. International Data Corporate (IDC) 
puts the average age of a data center at 9 years old. Gartner, another research com-
pany says data centers older than 7 years are obsolete [204]. As the electric grid gets 
smarter, vast quantities of data arrive at utility companies, which promote the explo-
sive growth of the infrastructure and related software of data center. The big data 
has more requirements on storage capacity and processing capacity, as well as net-
work transmission capacity. Enterprises must take the development of data centers 
into consideration to improve the capacity of rapidly and effectively processing of 
big data under limited price/performance ratio.

Quantum Computing

Quantum computing studies quantum computers that make direct use of quantum-
mechanical phenomena, such as superposition, to perform operations on data [205]. 
Quantum computers are different from digital computers which require data to be 
encoded into binary digits. Quantum computation uses quantum bits. The 
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development of actual quantum computers is still in its infancy, but experiments 
have been carried out in which quantum computational operations were executed on 
a very small number of qubits. It is foreseen that large-scale quantum computers 
will be able to solve certain problems much more quickly than any classical com-
puters that use even the best currently known algorithms such as integer factoriza-
tion using Shor’s algorithm. Small-scale quantum computers are existed, for 
example, D-Ware Systems Company developed their quantum computer, called 
“D-Wave one” with 128 qubits processor and “D-Wave two” with 512 qubits pro-
cessor in 2011 and 2013, respectively.

Challenges and Opportunities

When handling Big Data problems, difficulties lie in data capture, transmission, 
processing, storage, searching, sharing, analysis, and visualization. Data are increas-
ing at exponential rate, but the improvement of information processing methods is 
relatively slow. In many important Big Data applications, the state-of-the-art tech-
niques and technologies cannot solve the real-life problems practically, especially 
for real-time analysis. Some of them are listed below:

Uncertainty

Utilities are uncertain about the costs and requirements for building a big data ana-
lytics infrastructure. There is also uncertainty about how big data analytics will fit 
into the current systems. There is a lot of data and people do not know how to man-
age, store it, and at what point does it become useless. Data curation needs to be 
considered. The data management through its lifecycle of interest and usefulness is 
to power utilities. Curation activities enable data discovery and retrieval, maintain 
quality, add value, and provide for reuse over time. The existing database manage-
ment tools are unable to process Big Data that grow so large and complex. The size 
of Big Data keeps increasing exponentially, but current capability to work with is 
only in the relatively lower levels of petabytes, exabytes, and zettabytes of data. 
New framework for modeling uncertainty and predicting the change of the uncer-
tainty is required.

Security

Most Big Data are stored in a distributed way, cloud data storage is often used. 
However, the network bandwidth capacity is the bottleneck in cloud and distributed 
systems, especially when the volume of communication is large. Smart meter instal-
lations have generated concerns about data privacy. Tremendous amounts of data 
about individuals, e.g., internet activity, energy usage, social interaction, are being 
collected and analyzed, which have the risk to cause damage to data provider. 
Significant security problems include data security protection, intellectual property 
protection, personal privacy protection, commercial secrets, network security, and 

1331.3  Elements of a Smart City



134

financial information protection. Most developed and developing countries have 
already made related data protection laws to enhance the security.

Data Quality

As the size of data set is very large, sometimes in the region of several gigabytes or 
more and also the data origin is from many sources, real-world databases include 
inconsistent, incomplete, and noisy data. Therefore, a number of data preprocessing 
techniques, including data cleaning, integration, transformation, and reduction need 
to be applied to minimize noise, inconsistencies, and incompleteness in data. In 
many cases, the current techniques will be too slow to achieve a workable solution 
for real-life problems.

Data Analysis and Visualization

For real-time Big Data applications such as power system operation and protection, 
it is necessary to guarantee the time response requirement when the data volume is 
very large. Presently, it is a big challenge for stream processing. Big Data has 
encouraged the development of the hardware and software architectures such as the 
advancement in cloud computing which distributes multiple workloads into a large 
cluster of processors. In this direction, distributed computing is being developed at 
a very high speed. It is required to understand how Big Data works with real-time 
systems. However, it is not easy to link system state, measurements, and network 
topologies together with respect to time. It is particularly difficult to conduct data 
visualization because of the high dimension and size of Big Data since the current 
Big Data visualization tools mostly have poor performance in functionalities, scal-
ability, and response time.

Data Explosion

Data from the UK Department of Energy and Climate Change [206] are used to 
describe appliance ownership patterns. These data enable energy efficiency ratings 
to be accounted for. However, smart metering will create an explosion in data avail-
ability. For example, in the UK, the 27 million domestic electricity consumers cur-
rently just have over 100 million data points per year collected quarterly or 
half-yearly for energy suppliers to record, store, and use in billing and other busi-
ness operation. When smart metering fully deployed and operated at a 30-min sam-
pling rate, energy suppliers will need to ingest, store, and process at least around 
4500–9000 times more of the current data size, reaching 50 TB. To manage data sets 
in such a large volume, the main problem of using relational database management 
systems is its low scalability [207] and this requires a scalable solution that can 
grow for practical use.
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Lack of Standards

To take advantage of these large new data sets, it is essential to gain access to data; 
develop the data management; and programming capabilities to work with large-
scale data sets. New approaches to summarize, describe, and analyze the informa-
tion contained in big data must be developed [208]. Integration of many different 
forms of data from systems like meter data management, outage management, cus-
tomer management, billing platforms, and asset management is required. Standards 
for data description and communication are essential. These facilitate data reuse by 
making it easier to import, export, compare, combine, and understand data. 
Standards also eliminate the need for each data originators to develop unique 
descriptive practices [209]. The lack of worldwide industry standards around data 
from smart grids and meters could lead to concerns about sharing data with com-
petitors, it also brings worry around data ownership, and concerns about data accu-
racy. A further worry is on data privacy and data protection.

Lack of Talents

The shortage of talent will be a significant constraint to obtain values from Big 
Data. Big Data is expected to rapidly become a key element of competition interna-
tionally. This kind of specialist is difficult to educate as it takes many years to train 
Big Data analysts that must have strong mathematical background and related pro-
fessional knowledge. Specialized resource is a critical success factor for better data 
management. Utilities are concerned about the shortage of available data specialists 
and will need to undertake efforts to locate or develop such talents. To ensure a 
continued supply of skills in the future, in-house training is a likely means but a tal-
ent war is likely to get bigger.

Current Workers May Be Reluctant to Use New Technologies

Big Data Application Examples in Smart Grid Worldwide

Table 1.34 summarizes some potential application areas of big data in smart grid.
The key goals of U.S. utilities’ big data efforts, mainly focused on converting the 

tens of billions of data points coming from the millions of smart meters deployed 
around the country and turning them into actionable information for the grid opera-
tions. For U.S. utilities most of the data analytics focus on improving grid reliabil-
ity, outage response, and lowering the cost of distribution operations. European 
utilities can either be vertically integrated service providers for entire nations or 
contenders in deregulated and competitive energy markets. For example, Italy and 
the Scandinavian countries have largely completed their smart meter rollouts while 
the UK, France, Germany are just getting started. For European utilities, they 
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concentrate on integrating large-scale renewables and distributed generations and 
managing new loads such as plug-in electric vehicles.

EDF [210]

EDF has applied big data technology for weather forecasting for risk assessment 
and modeling the impacts of energy operations on the environment. As EDF begins 
its plan to roll out 35 million smart meters across France, it will incorporate this data 
into doing business. Smart meter data will be used to better estimate the condition 
of the grid, promote demand response, predict the lifetime of power lines, trans-
formers, and other equipment. Demand response is an important part of managing 
grid assets in a world where new customer loads such as plug-in electric vehicles 
and the increasing share of power being generated by customers via distributed 
generations are altering supply-demand balances.

E.ON [211]

In September 2013, IBM announced that it has been selected by E.ON Metering to 
operate its Smart Metering IT infrastructure in a private cloud. The new platform 
will improve the deployment and management of smart meters, simplify the inte-
gration of renewables, and other innovative services, while also allowing E.ON to 
deliver personalized services that will put customers in better control of energy 
usage. Customers will have the ability to view their usage profiles for information 
about time-of-use-rates and changes in use patterns that can be compared with his-
torical data. In addition, the platform's scalability and low start-up and operation 
costs will provide the flexibility for future growth. Real-time data evaluation in a 
smart grid is growing increasingly important for energy utilities due to the increased 
use of intermittent renewable energy.

Table 1.34  Potential application areas of big data in smart grid

1 Prediction and analysis of economic situation and social impact
2 Development of scientific reasoning for decision making
3 Performance analysis for generation and storage systems
4 Load management with demand response and energy utilization 

& efficiency analytics
5 Consumer behavior analysis
6 Using AMI and intelligent electronic devices for state 

estimation
7 Pricing analytics and incentive implementation analysis
8 Grid infrastructures optimization
9 Demand and generation forecast under high uncertainties
10 Asset management
11 Service quality analytics
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USA EXELON [212]

In 2014, Baltimore Gas & Electric (BGE) started a project in the hope to save hun-
dreds of millions of dollars by using C3’s cloud-based data analytics to manage 
operations of the 2 million smart meters deployed and by tapping their data to dis-
cover and prevent energy theft and revenue losses. Trillions of data points are 
regressing and correlating against each other to extract values. BGE believes it can 
better detect, isolate, and reduce meter tampering and unbilled energy delivery. 
BGE parent company Exelon also plans to apply the same C3 platform for projects 
at its Chicago-based Commonwealth Edison and Philadelphia-based PECO utili-
ties, which are deploying a collective 8 million smart meters between them. 
Integration of many different forms of data from systems like meter data manage-
ment, outage management, customer management, billing platforms, and asset 
management is required. On the smart grid side, C3 is working with utilities includ-
ing Southern California Edison, Northeast Utilities, and Entergy. It will be very 
difficult if not impossible to encode every rule for theft patterns because they change 
over time. Machine learning is used where you have to learn from the data without 
being able to code an algorithm. C3 is a grid data analytics company to cite machine 
learning as part of its suite of tools, this is a cutting-edge claim to apply techniques 
as yet untested fully in the utilities.

Pacific Gas and Electric Company [213]

Smart meters are providing utilities with unprecedented amounts of energy data. 
Utilities across the US, including Pacific Gas and Electric Company (PG&E) in 
California, are revolutionizing the use of such data to empower their customers. 
PG&E’s groundbreaking work with its interval data analytics (IDA) program was 
developed to maximize the value of data captured by 9.4 million smart meters. 
PG&E is the largest US utility to install smart meters across its entire service terri-
tory. PG&E captures hourly or sub-hourly reads from each home. With more robust 
data, PG&E is also able to provide detailed advice to help customers better manage 
their energy use. PG&E’s My Energy portal, which is available online to all custom-
ers, demonstrates the energy-saving benefits of personalized data and insights. 
Customers can examine their time-specific energy use, see how they compare within 
their neighborhood, understand how and why their consumption varies over time, 
set their usage goals, and, of course, discover more ways to save energy.

KEPCO [214]

In 2014, State-run electric utility Korea Electric Power Corp (KEPCO) launched 
two pilot projects on ways to use big data to improve demand management and risk 
forecasting. The first pilot set up an energy consulting business based on advanced 
metering infrastructure (AMI) data while the second established a risk forecasting 
system analyzing social networking service data. The objective of the first project is 
to help customers save electricity by providing comparable data on energy usage for 

1371.3  Elements of a Smart City



138

similar business types based on AMI big data, while allowing KEPCO to manage 
demand and reduce brownouts. The second project aims to analyze a variety of busi-
ness risks including blackouts, customer complaints, and climate change by merg-
ing information from social network service data, internet data, and complaints. 
KEPCO has stated it aims to train 300 big data professionals by 2016. To summa-
rize, power utilities have diversity in the application of big data due to different, 
business structure, technology development, etc. Having more completed opera-
tional data, most of the companies put the demand side response and user service in 
a higher priority. It can be seen that in general, power utilities are cooperating with 
IT companies to develop big data applications.

Conclusions

Big data is still unclear for many power utilities. Smart grid operation and future 
energy management will be huge data intensive. There are many obstacles which 
affect the success of big data applications in smart grid. Presently experience in 
integrating big data with smart grid is limited. The utilities need to focus on turning 
the data that they collect into business intelligence to improve processes and cus-
tomer experience. For example, the detected patterns of spatial and temporal elec-
tricity consumption can be used to help optimizing demand response management. 
This will lead to solutions that improve efficiency and enable alternative approaches 
to handle various aspects of the utility to drive company performance and minimize 
risks from new regulations and political interference under a low carbon economy.

1.3.2  �Smart Water

With the United Nations reporting that 60% of the global population will call an 
urban area home by 2030, the key challenge for cities will be to manage the growth 
while transitioning to a sustainable reliable energy supply with very limited finan-
cial and spatial resources. This means that a city has to balance sustainable and 
stable supply of water, electricity, heat, and housing, while also integrating new 
sources of urban renewable energy. Cities will also need to update, renew, and 
expand their water and waste water networks and reorganize the city’s transporta-
tion. These are huge challenges where advanced digital solutions can help to achieve 
the three goals: increase sustainability, resilience, and efficiency.

Proper water and energy efficiency often dictate a citizen’s quality of life in any 
environment, the importance of a clean and sustainable water and energy supply is 
getting more and more attention across the globe to manage the growing population 
in cities. Not only to meet climate and safety goals, but especially to ensure the 
future economic competitiveness of a city. Therefore, control and monitoring of 
water networks will need to be improved to address water and waste water chal-
lenges. However, we can go beyond the basic technology. Digitalization helps in the 
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coordination of the operation of all infrastructure assets in a city in order to mini-
mize the operational costs associated with them.

Public authorities can bring smart city solutions to businesses and citizens by first 
defining a clear objective. For example, “What do we want to achieve in our city, how 
and why?” To define these objectives, public authorities should bring together key 
stakeholders including citizens, businesses, and companies as well as service and 
technology providers. Collaboratively, city-wide goals, a vision, strategy, and regula-
tion can be defined with a robust road map for real innovation. Power and water utili-
ties should be active players in these collaborative leadership teams, as they provide 
experience and expertise to improve operations both securely and sustainably.

Without a collaborative approach, only urgent needs will be addressed without 
any plan to better the lives of citizens in the long term. The installation of the foun-
dation technologies like EV-Chargers, urban renewable generation, building auto-
mation, water metering, and leakage detection systems or even Free WiFi in public 
squares is very cost-intensive. However, to bring true value to citizens by combining 
and optimizing these technologies together, the backbone is the digital infrastruc-
ture. Only with smart connection and joint operational optimization with digital 
services, can a city free up financial resources that are otherwise tight, inefficiently 
and uncoordinatedly running all of these services in parallel. The money saved from 
digital integration can be re-invested to benefit citizens in the long term.

Water plays an essential role in the everyday lives of people, communities, and 
businesses. Without investment in water infrastructure, smart cities have limited 
room for development.

1.3.3  �Smart Health

1.3.3.1  �Introduction

The advent of information and communication technology (ICT), IoT, and wearable 
devices, has shed new lights on the healthcare sector in recent years. Reference 
[215] offers some insights about IoT and wireless sensor network (WSN) in health-
care context. Wireless sensors are used to monitor and collect healthcare-related 
information. The information may include vitals, mobility, location, food consump-
tion, fluid consumption, and sleeping time, etc. These sensors could be deployed at 
home, office, hospital, or anywhere else. A wireless sensor network consists of a 
large number of sensors or sensor nodes. Each sensor node of a wireless sensor 
network is connected to at least one and possibly several other neighboring nodes 
and each sensor node is capable of collecting, processing, transmitting, and receiv-
ing information. Therefore, each node must have an antenna, a processor, source of 
energy, and some mechanism to be uniquely identified. Sensor networks, with big 
data analysis combined, can bring evolutionary innovations to the healthcare sys-
tem, not only at personal level, but also at community level or hospitals. Figure 1.49 
gives a simple WSN application scheme for healthcare.
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Wireless sensor network technologies have the potential to change the way of liv-
ing with many applications in entertainment, travel, retail, industry, medicine, care of 
the dependent people, and emergency management, and many other areas. Wireless 
sensors and sensor networks, pervasive computing, and artificial intelligence research 
together have built the interdisciplinary concept of ambient intelligence in order to 
overcome the challenges we face in everyday life [215]. One of the major challenges 
of the world for the last decades has been the continuous elderly population increase 
in the developed countries. It was forecasted that in the next 20 years, the 65-and-
over population in the developed countries will be nearly 20% of the overall popula-
tion [216]. Hence the need of delivering quality care to a rapidly growing population 
of elderly while reducing the healthcare costs is an important issue. One promising 
application in that area is the integration of sensing and consumer electronics tech-
nologies which would allow people to be constantly monitored. In-home pervasive 
networks may assist residents and their caregivers by providing continuous medical 
monitoring, memory enhancement, control of home appliances, medical data access, 
and emergency communication. Constant monitoring will increase early detection of 
emergency conditions and diseases for at-risk patients and also provide wide range 
of healthcare services for people with various degrees of cognitive and physical dis-
abilities. Not only the elderly and chronically ill but also the families in which both 
parents have to work will derive benefit from these systems for delivering high-
quality care services for their babies and little children. Researchers in computer, 
networking, and medical fields are working together in order to make the broad 
vision of smart healthcare possible. The importance of integrating large-scale wire-
less telecommunication technologies such as 3G, Wi-Fi Mesh, and WiMAX, with 
telemedicine has already been addressed by some researchers. Further improve-
ments will be achieved by the coexistence of small-scale personal area technologies 
like radio frequency identification (RFID), Bluetooth, ZigBee, and wireless sensor 
networks, together with largescale wireless networks to provide context-aware appli-
cations. Besides providing pervasiveness with existing and relatively more mature 
wireless network technologies, the development of unobtrusive small sensor devices 
enabling not only accurate information but also reliable data delivery is of great 
importance. Moreover, the glue combining all these technologies is the application, 
which is the coordinator between the caregivers and the caretakers and between the 
sensor devices and all of the actors in the overall system cycle. Since the application 
is the core of the high-quality healthcare service concept, the need for intelligent, 
context-aware healthcare applications will be increased.

Given the importance of the subject, there are already several applications and 
prototypes on the subject. For example, some of them are devoted to continuous 
monitoring for cognitive disorders like Alzheimer’s, Parkinson’s, or similar cogni-
tive diseases. Some focus on fall detection, posture detection, and location tracking 
and others make use of biological and environmental sensors to identify patients’ 
health status. There is also significant research effort in developing tiny wireless 
sensor devices, preferably integrated into fabric or other substances, and be 
implanted in human body.
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1.3.3.2  �Smart Healthcare Deployment Scenarios

Smart Wearables

Medical professionals who would like to monitor their patients for a longer duration 
for data collection can prescribe use of a wearable device for a specific function 
such as monitoring heart/pulse rate, glucose level, physical activity, etc. The patients 
wear the prescribed devices for several hours/days. The devices with embedded sen-
sors collect the data for a specified duration and the data are either retrieved from 
the device or transmitted to a medical professional. The data can be used for analy-
sis, assessment, and/or for diagnosis. Having different components of data over a 
longer duration of time, medical professionals are equipped with the advantage to 
analyze and diagnose some of the conditions that occur infrequently or occur only 
under certain conditions.

Smart Homes

A smart collection of smart appliances in a smart home can make life a bit easier 
and improve many aspects of daily living. The aging population is rapidly growing. 
It was reported that by year 2050 the number of people aged 60 years and over is 
expected to reach 2 billion. This represents a growth from 12% of the world popula-
tion in this category in 2015 to about 22% in 2050. To serve this segment of the 
population and to maintain or even improve their quality of life, smart home should 
become a dwelling that deploys emerging technologies including sensor networks 
and IoT to facilitate healthcare monitoring of its residents and facilitate their living 
independence. The smart home technologies cover many aspects, including smart 
appliances, assistive devices, smart controls, and integration of health monitoring 
with smart systems.

Smart Hospitals

Reference [217] discussed that by including smart devices to hospitals can save the 
operation cost, enhance the medical experience of patients, and reduce the labor 
intensity of medical staff. Here are a few examples.

	1.	 Ward care: In the ward, the patient’s real-time physiological sign like heart rate 
or the environmental information like the cleanliness can be collected by wear-
able devices or smart sensors. These data are then sent to the monitoring and 
supervision center by wireless communication. If the patient’s physiological 
sign is abnormal, the paramedics can make the corresponding treatment in time.

	2.	 Outpatient medical treatment: Outpatient doctors can get a comprehensive 
understanding of the patient’s health based on physiological sign data collected 
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by wearable devices, which can assist doctors to make accurate diagnosis, 
improve the efficiency of doctor’s diagnosis, and save the patient’s time.

	3.	 Outdoor posture recognition: When the patient is outdoors, the patient’s body 
and motion posture can be identified by posture sensors to identify whether a 
dangerous pose has occurred, which can also determine whether the abnormal 
physiological sign is a false alarm for normal situation.

	4.	 Telemedicine monitoring: Some of the discharged patients need to be monitored 
at home. Wearable devices can monitor the patient’s physiological sign remotely. 
When the patient’s physical condition is abnormal, the device can notify the 
patient’s family or the attending doctor in time to prevent accidental occurrence.

	5.	 Other applications: We can realize intelligent meter reading by adding wireless 
communication module to the traditional electricity and water meters in the hos-
pital. Some expensive medical equipment like gamma rays can be connected to 
the IoT system, then the equipment checking can be regularly completed. When 
some valuable medical item or medical waste is removal, the installed sensors 
can deliver the real-time location and status data to the cloud platform for effec-
tive monitoring.

1.3.3.3  �Smart Healthcare Examples

Medicine Reminder

Patients can be alerted about taking their medications in a timely manner. Many 
elderly individuals forget to take their medicine regularly and on time. A smart 
medical device, like smart watch, can send alerts/reminders to the patients about 

Fig. 1.48  A simple WSN application scheme for healthcare
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the time to take a specific medicine. Apart from medicine taking notification, it can 
also assess if some of the medications should not be taken together and avoid seri-
ous medical errors. As an educational component, it can also generate a pattern of 
medicine intake based on prescription and the patient’s habits. In case of some 
lapses, it can assess and share potential health risks. Such an information can pos-
sibly lead to more regular pattern of taking prescribed medicine as needed. NB-IoT 
smart watch proposed by China-Mobile is a great example for this application 
scenario [218].

Assistance for the Disabled

Residents with physical disabilities can make use of assistive devices that are con-
nected to the home network. For instance, eye movement can be used to type com-
mands, radio frequency identification (RFID) can be used in conjunction with 
sensor networks to open doors, or call for help, if needed, and provide identification 
information stored or appropriately implanted somewhere on a human body. These 
assistive technologies are priceless for individuals who are unable to communicate 
with objects and people, like healthcare providers, families, and friends otherwise.

Dementia

Older adults may experience cognitive decline but because they still retain a high 
degree of autonomy in their lives, this change may be too subtle to catch and treat. 
Nevertheless, patients in their early stage of dementia are prone to be spatially and 
temporally disoriented and forget important daily tasks [219]. With smart healthcare 
system, these changes translate into abnormal mobility patterns. The smart health-
care system analyzes these mobility patterns to communicate detected abnormali-
ties to patients and care providers.

Depression

Another disease with subtle manifestations is depression. In some cases, symptoms 
are too faint for a person to note. With ICT-based psychiatry, changes in behavioral 
patterns such as lower activity levels, degrading sleep, decreased phone conversa-
tions, and even mobility patterns may point to a possible diagnosis of depression. 
Smart healthcare system intervenes when these changes are detected by recom-
mending that the user contact a health care professional. ICT-based assistance can 
further extend from diagnosis to intervention by monitoring treatment compliance 
and medication effects.
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Asthma

In Louisville, KY, USA, mobile ICT combined with citizen sensing helped the city 
to respond to asthma triggers and thus circumvent possible long-term chronic con-
ditions for its residents. To identify where asthma triggers might be located through-
out the region, sensor-enabled inhalers were distributed to asthma sufferers 
throughout Jefferson County. When the inhaler is used, the use is recorded on a 
smartphone app and the sensor monitors the nearby air for particulates that might be 
triggering the episode.

The sensor data spotlighted one particular road where inhaler use was three times 
as high as throughout the rest of the city. The city was able to respond to this infor-
mation and planted trees that separate the congested road from residential neighbor-
hoods. The result was a 60% decrease in particulate matter, addressing a major 
contributor.

Walkability

Urban planning can have huge impact on city residents’ behavior and health. 
Specifically, the relationship between a community’s “walkability” and a resident’s 
behavioral routine and health profile is worth exploring. The impact of the built 
environment on lifestyle choices and resulting health is increasingly noticeable. In 
the smart healthcare at community level, information from smartphones to monitor 
daily routines in combination with neighborhood walkability for a population sam-
ple. Machine learning-based activity models label the captured sensor data with 
activity names and data mining techniques are used to analyze the relationship 
between walkability, activity, and demographics. To generate continuous monitor-
ing information, participants wore GPS devices for 1–2 weeks while performing 
normal daily routines.

Based on the test and analysis, it is concluded that there does exist a relationship 
between the detected activities (including exercise and work) and body mass index 
(BMI) and that the correlations are not obtained by chance. The results of this study 
offer insights that city planners can use to generate urban analytics and modify city 
design to improve the health of city residents.

1.3.3.4  �Smart Health Big Data Analysis

The greatest challenge of building a comprehensive healthcare system is handling 
the heterogeneous healthcare data captured from multiple sources. Reference [220] 
discussed the healthcare data classification, data-driven healthcare services, and the 
methods to manage the healthcare big data.

According to the data sources, data nodes can be divided into the following 
four groups.
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	1.	 Research data. Drug, medical equipment research and development institutions 
and other scientific research institutions have accumulated a large amount of 
research data, such as clinical trial data and high-throughput screening data. 
These data, including individual or clinical gene or protein data, can help iden-
tify the side effect and the new effect of a therapy.

	2.	 Medical expense data. Medical treatments generate massive expense data, such 
as medical bills and medical insurance reimbursement. They are not the tradi-
tional healthcare data, but they can be used to analyze and estimate the medical 
cost, which is helpful for the government to formulate medical subsidy planning 
to alleviate patients’ burden effectively. These data are generally stored in differ-
ent databases of medical institutions, which are geographically dispersed and 
adopt unified data formats.

	3.	 Clinical data. This kind of healthcare data is typical of medical data. These data 
could be clinical diagnosis such as electronic medical record (EMR), and medi-
cal images collected by medical service providers like hospitals, clinics. These 
data can be unified, managed, and opened to researchers with a necessary pre-
condition for ensuring the privacy of the patient, to maximize the value of clini-
cal medical data mining.

	4.	 Individual activity and emotion data. This kind of data is not necessarily gener-
ated from the healthcare sector, but it is also relevant to personal health. For 
instance, individual retail consumption records reflect the individual’s living pat-
terns, habits, which can be used to assess individual’s health status and make a 
personalized health plan. Furthermore, based on the physiological data collected 
by wearable devices, the health status of a user can be easily monitored and 
traced. The individual emotion data are can be extracted from the posts of their 
social media networks, as well as changes in behavioral patterns such as lower 
activity levels, degrading sleep, decreased phone conversations. These data can 
be used in mental health assessment and affective computing to reveal the 
patient’s feelings and emotion states. Especially, for the recovering patients, a 
doctor may be able to adjust the treatment plan according to a patient’s emotion 
indications. An emotion-aware healthcare service promotes the innovation of 
modern medical with humanistic treatment.

In terms of data management, distributed file storage (DFS) module and distrib-
uted parallel computing (DPC) module are supposed to support efficient manage-
ment and analysis of heterogeneous data. DFS distributed file storage module 
uniformly manages multisource heterogeneous healthcare data. DPC distributed 
parallel computing module analyzes and processes data from DFS and ultimately 
discovers knowledge. DPC not only provides offline computation for massive 
unstructured data, but also supports real-time data analysis and query, and integrates 
various data mining and machine learning algorithms.

According to the technical complexity and commercial value, the data-oriented 
healthcare applications and services can be divided into the following four groups.
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	1.	 Statistics-based applications only provide basic statistics and report services. For 
example, an individual health status report is the representative application. In 
addition, drug misuse and outdate reports are available through the statistics of 
clinical trial data.

	2.	 Monitoring-based applications are typically utilized to monitor individual vital 
signs. Through real-time analysis, a user’s physiological changes can be imme-
diately detected to avoid sudden diseases. Through offline analysis of historical 
data, the recovery procedure can be traced, which supports treatment 
optimization.

	3.	 Knowledge-based applications are the most representative big data application. 
Supported by data mining and machine learning techniques, it is available to 
discover data correlation and dependence. Typical applications include chronic 
disease diagnosis, genetic disease analysis, treatment evaluation, side effect 
identification, and public health warning.

	4.	 Prediction-based applications have the highest technical complexity and greatest 
commercial value. For example, individual eating habits can be deduced through 
retail records, and some potential health risks can be predicted, particularly diet-
related diseases, such as obesity and high blood pressure. In addition, consider-
ing individual physiological features, individual treatment simulation is available 
to assess risk and make the optimal medical plan.

1.3.3.5  �Issues and Challenges of NB-IoT Healthcare

Reference [217] introduced the background about NB-IoT based intelligent medical 
electronics and their limitations. The existing architecture cannot connect all types 
of devices in hospitals due to the limitation of wireless protocols. The promising 
NB-IoT technology well maybe bring formalized architecture to connect all intel-
ligent things in smart hospitals and smart healthcare systems. Reference [221] 
argues that NB-IoT is extremely suitable for healthcare sector, because of its low 
power consumption and unharmful low power radiation. However, challenges still 
exist in the following.

Accuracy and Reliability of Data

Accurate and reliable data collection is a major challenge. Many of the current sen-
sor techniques are beneath medical standards and inaccurate data are valueless in 
medical applications. The intrinsic sensor error and the external interference are two 
main contributors to the issue. External interference is difficult to be eradicated 
from sensing devices. For example, the change of the patient’s posture may have 
significant effect on the measurement of blood pressure. In addition, the wearable 
devices have great limitations on the wearing position while bringing comfort and 
accuracy to patients. The medical devices’ technical limitations, environmental fac-
tors, and network attacks altogether will possibly lead to data loss and faults of IoT 
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devices. Faults and missing data will render incorrect diagnosis or false alarms, 
which could be fatal to the patients.

Security and Privacy

Large amount of valuable data generated by smart healthcare sector inevitably 
attracts attackers. Terminal devices and wireless communications are especially 
vulnerable to cyberattacks. On the one hand, the terminal devices are usually unable 
to run complex algorithms limited by the size and poor processing ability. On the 
other hand, the wireless communication protocols need to pass a large amount of 
data and open wireless channels for data transmission, which might lead to data 
interception and replay. In addition, medical data contain sensitive and private infor-
mation about the patients, so security and privacy protection are a real challenge for 
NB-IoT smart healthcare. We need to improve the encryption mechanism of termi-
nal devices, develop effective encryption algorithms to strengthen authentication, 
ensure the legal identity, and prevent illegal nodes to send, forge, and tamper infor-
mation. In addition, there should be a complete data backup mechanism to restore 
data in time when unexpected situations occur.

Energy Consumption of Terminals

Terminal devices need to collect information with a relatively high frequency and 
transmit data to the cloud platform with wireless communication. However, it is a 
major challenge for IoT devices to work continuously for a long time due to its 
limited size, low battery capacity, and the inability to constantly replace the battery 
or charge. Therefore it is worth exploring new energy saving or energy self-
generating technologies to make NB-IoT based smart healthcare devices more ver-
satile and universal.

Ethics

The increased pervasiveness of smart healthcare systems e.g., wearable devices and 
autonomy of decision making raises serious moral–ethical concerns about the use of 
such technology [222]. Smart healthcare research primarily focuses on identifying 
lucrative business markets while social and moral considerations of the technology 
are ignored. We have to propose mechanisms that are able to implement the moral, 
ethical, legal, or cultural policies in smart healthcare context. According to ethical 
norms, only selective information should be shared with family members and doc-
tor. For example, economic costs of a health condition like loan, etc. are to be dis-
closed only to a specific relative/guardian in case of emergency.
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1.3.3.6  �Other Factors

Other main issues of NB-IoT healthcare applications include: (1) lack of robust 
real-time provisioning and other real-time applications due to the latency, (2) band-
width insufficiency, (3) requiring additional doctors and nurses training for IoT 
practice [221]. Table 1.35 proposed in Refs. [217, 223] listed some requirements for 
NB-IoT in healthcare could only meet the data transmission rate requirement of 
certain healthcare applications, rather than all the situations.

Intravenous Infusion Monitoring System

Reference [217] proposed an architecture to connect intelligent things in smart hos-
pitals based on NB-IoT and introduced edge computing to meet the low-latency 
requirement in certain medical process. In case study, they developed infusion mon-
itoring system based on NB-IoT. It pointed out that the many intelligent devices in 
the hospital are numerous, and sensitive to power consumption, which fits NB-IoT 
characteristics.

It discussed the proposed architecture of smart devices in smart hospitals, which 
is comprised of sensing layer, base station layer, edge computing layer, and cloud 
computing layer. Sensing layer is where lots of terminal devices integrated with 
NB-IoT module collect and process data. Base station layer is where NB-IoT base 
stations are deployed, which need mechanisms of routing, congestion control, traf-
fic scheduling, and security measures. Edge computing layer is especially worth 
mentioning. Traditionally, computing and storage of big data are carried out on the 
cloud platforms or cloud servers. However, the massive connections scheme in 
NB-IoT might make the centralized data processing mechanism a disaster. In addi-
tion, some healthcare applications have high requirements on latency control. 
Therefore, edge computing was introduced in the architecture to reduce latency and 
accomplish the real-time data processing. The edge server is relatively close to the 
terminals, the round-trip time of data is relatively short which greatly reduces the 
latency. Also, the edge server can increase the reliability of the NB-IoT based smart 
healthcare system and reduce energy consumption of the terminal devices.

Table 1.35  Application and 
data range and duration 
requirements

Sensor Data range Duration

Heart rate 0–150 BPM 5 min
Respiratory 2–50 breaths/min 5 min
Blood pressure 10–400 mm Hg 30 min
Blood pH 6.8–7.8 pH units 30 min
Body temperature 24–44 °C 5 min
GPS position 0–180° 2 h
Motion sensor – 2 h
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Finally, in case study, the intravenous infusion monitoring system based on 
NB-IoT and infrared sensor is proposed. The injection monitoring system can count 
the drops and measure the remaining drug volume. It uses NB-IoT to transmit data 
from the monitoring terminal to the monitoring platform.

Fall Detection

Reference [224] is concerned about incorporating NB-IoT into fall detection sys-
tem. An age-related risk is falling. Falling happens due to various reasons, including 
leg muscle degradation, loss of balance, and inability to walk. Falls lead to other 
adverse conditions, including fractures, closed head injuries, and even death. A fair 
amount of research already emerged, dedicated to falling detection and minimizing 
the harm that falling has on the elderly. Some researches tried to explain how to 
utilize sensors and microcontrollers to identify the occurrence of a fall, some tried 
to identify a fall by detecting and analyzing the vibration of the floor, or the sudden 
change of the electromagnetic wave in the room.

Some recent monitoring system with microcontroller unit receives inputs from 
the sensor and compare their values to the preset threshold and determine whether a 
fall occurs, enabling the system to have the ability to immediately recognize a fall. 
And then, the data are transmitted via advanced information service narrowband 
IoT network, and stored on the platform, which allows users to add or detract 
devices to the system. Once a fall occurs, the patient’s location is automatically 
available without the need for voice contact by the patient. This NB-IoT based fall 
detection system can be used in hospitals or at the elderly’s homes. This device will 
expedite the dispatch of a responder or a medical unit without the need for voice 
communication by the patient and this will result in earlier treatment and better 
patient outcomes.

Blood Glucose Measurement

A blood glucose measurement method was proposed with NB-IoT network. The 
traditional blood glucose monitoring scheme requires patients frequently collect 
and record blood glucose information manually. There are lots of disadvantages in 
such scheme. The blood glucose data collection mainly relies on manually record-
ing or simply memory of patients, therefore, the recorded data are difficult to keep 
for a long time. Furthermore, doctors and healthcare providers could not obtain the 
patient’s data promptly. In the traditional scheme, only when patients are in hospital 
monitoring blood glucose, doctors can get patients’ data in time, but this adds time 
and cost burden to patients, and it is also easy to generate psychological pressure, 
which is not conducive to the patients’ health condition. In the long run, data mining 
technology could not be used to analyze the collected blood glucose data and pro-
vide treatment suggestions based on data analysis since there is no decent dataset. 
To alleviate the blood glucose data collection and management problem, a blood 
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glucose measurement system could incorporate with NB-IoT network. The blood 
glucose measurement module uses electrochemical detection method to measure 
blood glucose. When the patient uses the blood glucose meter to measure and col-
lect blood glucose information, the microcontroller unit will calculate the blood 
glucose concentration value and then transmit the encapsulated information to the 
base station through the NB-IoT communication module, and then forward it to the 
Internet of things cloud platform. Doctors can use mobile phones or computers to 
have access to the relevant databases on the Internet of things cloud platform and 
view and manage the patient information.

Investment in Data Science

Nowadays, cancer could be considered as multiple subtypes of disease, so the need 
to generate evidence in each individual subtype means there are more questions 
need to be answered. This will demand high-quality data, shear of mistakes, and 
inconsistencies, which will be trusted by regulators such as the European Medicines 
Agency. Securing access to data from electronic health records is not that compli-
cated. Making that data fit for use is the hard part. It is just over a decade since the 
American Recovery and Reinvestment Act spurred the widespread take-up of elec-
tronic patient records. Combining with AI, data offer hope of expanding the number 
of patients who can benefit from existing medicines or even unearthing entirely new 
drugs. Medical applications for data and AI have rapidly become attractive to inves-
tors. However, taking a drug from bench to bedside can cost $2.6 billion. According 
to the Tufts Center for the Study of Drug Development, this may take up to 14 years.

Digital data will be the fuel for the twenty-first century, but what will be the 
carbon footprint of the AI and machine learning revolution be? As the FT has 
reported, training up Google’s Transformer model (which supports Google trans-
late) could use as much as 626,155 lb of CO2, which equates to about 315 New York–
San Francisco return flights. If artificial intelligence is the twenty-first century 
equivalent as a disruptive technology, it is critical that we do not ignore the risks 
[225]. Digital transformation will build capacities, opportunities, and resilience for 
some organizations but increase vulnerability, exposure, and risks for others. We 
must seriously consider the economic, environmental, social, and normative risks of 
new technology.

1.3.4  �Smart Mobility

Urbanization and growing population in most cities are causing more and more 
problems for the movement of the citizens in their city. Commuting or driving to 
work and home has become a hassle; congestion in the EU is often located in and 
around urban areas and costs nearly EUR 100 billion, or 1% of the EU’s GDP, annu-
ally as estimated by the European Commission.
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The mobility challenges are plenty and not limited just to traffic congestion. 
They are also about efficiently connecting (time, cost, effort) different neighbor-
hoods with public means of transport, helping citizens and professionals at the last 
mile journey, giving access to the critical stations (train, airport, buses) with multi-
ple means and from multiple regions, offering a variety of options to the people to 
move around (including bicycle), offering of parking slots, and many more. It is also 
about understanding how citizens move every day in order for city officials to plan 
accordingly the location of stations, bike routes, and traffic lights, as well as to opti-
mize the schedule of each city activity without disturbing others.

By adopting IoT and AI-enabled solutions, cities can be improved and solve or at 
least reduce some of the main urban transportation issues. Here are some examples:

•	 Optimize availability of public parking slots through real-time parking sensors 
that can show to the drivers where the nearest parking is without going around 
blindly. Finding parking in less time can reduce both traffic jam and air pollution.

•	 Understand how and when people are moving in the city, from where to where 
and what is their profile. A city authority which can have this knowledge is able 
to take much better planning decisions based on data and facts. Some ways to 
achieve this are by analyzing the anonymous and aggregated mobile data from 
consumer phones. If these data are combined with other data generated by con-
nected city furniture, then the insights are priceless. Smart city furniture could be 
connected lights, smart benches, and connected traffic lights, while other city 
assets could be connected bikes and buses, connected buses, and rubbish bins. 
The analysis of all these combined data can generate insights and automations 
that we could never think otherwise.

•	 Plan maintenance and improvements in the road and public transport network 
efficiently based on the collected data by the IoT enabled assets. For example, 
big halls on a street can be identified by the data generated from smart bikes/
lights due to the shaking sensors. No need to send employees to check or ask citi-
zens to report it (usually after accidents). At the same time, the schedule of when 
a local authority is appropriate to send the workers to cover the halls can be 
planned based on the available data from the sensors around that street, so traffic 
interruptions can be avoided.

Of course, there are even more IoT applications that can improve the mobility in 
the city. By improving mobility can improve also air quality. Based on European 
Commission statistics, urban mobility accounts for 40% of all CO2 emissions of 
road transport and up to 70% of other pollutants from transport. The smart traffic 
systems throughout Amsterdam will be used as an illustration.

Amsterdam is the largest city in the Netherlands, with a population of 2.4 mil-
lion. The city is also one of Europe’s leading tourist destinations, attracting around 
6 million people a year. Amsterdam’s oldest quarter, the medieval center, is very 
small and has an incredibly complex infrastructure, with roads, tunnels, trams, 
metro, canals, and thousands of bicycles.

This creates one of the world’s most challenging traffic management environ-
ments, which the office for Traffic and Public Space (Verkeer en Openbare Ruimte) 
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meets through vision, action, and modern technology. This is typified by the new 
intelligent data communications network being installed to support the city’s traffic 
control system, for which they have selected advanced Ethernet switching and rout-
ing technology from Westermo.

In 2015, the municipality of Amsterdam created its own team that was respon-
sible for the development and operation of the data communication network that 
supports the intelligent traffic systems (ITS) in the city. Previously, this was man-
aged by an external partner, but due to rising costs, and increasing performance and 
cybersecurity requirements, it was decided the best way forward was to take back 
full responsibility for the network. Some case studies are summarized below:

1.3.4.1  �Traffic Light Control

There are several hundred traffic light systems throughout Amsterdam. These work 
autonomously, but can also be controlled centrally, which is one of the most critical 
tasks for the city’s department for traffic and public space. In the event of traffic 
congestion, traffic control center operators can manage the flow of traffic and if 
necessary, reroute traffic to less crowded roads.

The traffic light control systems interconnect several traffic lights. The infra-
structure connecting the traffic lights is a mix of existing copper cables and new 
fiber cables. However, in order to connect a string of traffic lights back to the control 
room, the city has been relying on leased lines. This solution is not only expensive, 
costing around EUR 2 million per year, but also does not provide the reliability 
required for a system of this magnitude. The savings made as a result of replacing 
the leased lines with the Westermo cellular routers is estimated to cover the cost of 
the network upgrade project within just 3 years.

1.3.4.2  �Environmental Zone Enforcement 
and Zero-Emission Transportation

An environmental zone has been established in the central part of Amsterdam with 
the aim of decreasing pollution from motor vehicles. Vehicles that are not environ-
mentally friendly are prohibited to enter the “green zone” and automatic number 
plate recognition cameras have been installed to ensure that the restriction is fol-
lowed by motorists. Approximately 80 control points have been established at the 
entrances to the city to monitor about three million cars every day. Between one and 
five cameras automatically read the vehicle registration numbers as they pass the 
control points. The photos are processed inside the camera, converted into simple 
text information, and sent to the control center through a secure encrypted VPN tun-
nel using a cellular router.

The City of Amsterdam plan to participate in the European C-ITS smart traffic 
project, which will allow real-time traffic optimization. This will mean that there 
will be a requirement for more bandwidth and lower latency so in time, the mobile 
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connections will be replaced with a fiber optic network, using for example the Lynx 
and RedFox switches.

Turing to zero emission, there are a few major trends that shape the future of 
smart cities: renewable energy, e-mobility solutions, energy and waste management 
(using data analytics), etc. The question is how fast all of these will be scaled up.

Renewable energy sources are projected to account for more than one-quarter of 
global electricity production by 2020. The growth in electric vehicles (EVs) and 
hybrid electric vehicles (HEVs) is climbing, and by 2025, EVs and HEVs will 
account for an estimated 30% of all vehicle sales.

Today, about 17% of the world’s buses are electric—425,000 in total. Ninety-
nine percent of them are in China, which adds a London-sized electric bus fleet to 
its roads every 5 weeks. In the United States, a few cities have bought some electric 
buses, or at least run limited pilots, to test the concept out. California has even man-
dated that by 2029 all buses purchased by its mass transit agencies be zero emission.

1.3.4.3  �Traffic Observation and Situation Assessment

The Amsterdam traffic is continuously monitored from the control center to help 
operators maintain the flow of traffic, reduce congestion, and minimize the risk of 
accidents. Operators make decisions based on the information provided by hun-
dreds of cameras installed across the city. Many of the regular surveillance cameras 
are connected to the network via Westermo switches.

The real-time video feed from the cameras can also be viewed for traffic control-
ling purposes. These are connected to the control room using Westermo cellular 
routers, which provide secure encrypted VPN tunnels. When traffic congestion 
occurs, the traffic control managers are permitted to disable the environmental mon-
itoring system and activate predefined scenarios that reroute the traffic to dissolve 
the congestion.

1.3.5  �Smart Infrastructures

Sensing technologies are embedded in infrastructure and in which its devices inter-
act with each other is defined as smart infrastructure. Sensors are connected to a 
communication backbone which allows real-time data acquisition and analysis. The 
information gathered is analyzed, interpreted, and delivered as reliable, robust, and 
meaningful information to infrastructure providers who can then make better deci-
sion making about the health and management of their assets.

In this sensing environment, smart infrastructure is able to respond in real time 
to the needs of the users. Self-aware infrastructure assets direct their own mainte-
nance, leading to condition-based maintenance, reduced down time, and greater 
operational efficiency of the infrastructure overall.
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Better information leads to an enhanced understanding of the behavior of infra-
structure. The impact of this will lead to transformations in the approaches to design 
and construction as well as step changes in improved health and productivity, greater 
efficiency in design and performance, a low-carbon society, and sustainable urban 
planning and management.

The rollout of smart cities is well underway, however, to make a city truly smart 
all the individual elements need to work together, not just independently. Connecting 
these elements is the infrastructure which, like the IoT devices themselves, is full of 
sensors but with their own challenges to ensure they work successfully. These may 
be motion sensors, pollution sensors, parking sensor, or moisture sensors to name 
just a few, and all require safe, reliable, and energy-efficient power.

Imagine traveling into a smart city in your autonomous car. With connected 
devices controlling the car and city, you can sit back and relax. But behind the 
scenes, there is a lot going on to make this possible. Lots of sensors are working flat 
out in both the city and car to ensure everything runs smoothly. The car sensors 
ensure it can read reference points like roadworks, parking, and smart traffic lights. 
These, in turn, are full of sensors that can read the arrival of autonomous and non-
autonomous cars. They gather data on vehicle movement and quantity to ensure 
smooth traffic flow through the city—safe and efficient movement being a key ben-
efit of smart cities.

On public transport, sensors on the rail tracks monitor where the trains are at all 
times ensuring smoother running of the trains and more up-to-date information for 
the passengers. In addition, sensors enable remote condition monitoring of tracks 
and points collecting data that will flag problems and maintenance issues before 
they become costly to repair.

Lampposts in a smart city not only light the streets but also provide the opportu-
nity for city management to monitor them. The EU program Sharing Cities is trial-
ing smart city technology in various European cities. They state Europe’s existing 
lighting network costs €3 billion a year to operate. Installing smart street lighting 
could reduce electricity costs to €900 million.

Sensors on lampposts can detect movement so they only light when required thus 
providing cost and energy savings. Sensors will also provide maintenance and fault 
detection data in advance so engineers will only need to visit a particular lamppost 
when it needs maintenance rather than on a scheduled health check routine.

Smart building technology is also on the rise with a predicted increase of approx. 
30% a year. Buildings are becoming more complex with interconnected IoT sys-
tems offering energy and cost-efficient buildings. IoT infrastructures are being 
developed to offer many benefits, including optimizing room occupancy, turning 
lights on/off as needed, monitoring assets movement, and thus increasing security 
by knowing where people are located.

However, these automated systems will have more complex infrastructure requir-
ing more communication technologies and wiring. Sensors will monitor the health 
of the building, providing predictive maintenance data. Especially in the case of 
retrofitting existing buildings, these can be in hard to reach locations creating their 
own set of challenges.
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A smart city will also have elements outside the city. To ensure its population has 
safe, clean drinking water, wastewater, and water treatment plants will benefit from 
increased sensing and communication technology adoption. Sensors at these facili-
ties will remotely monitor a range of equipment (such as water composition control 
testers), sending data back to a central control point. It is not feasible to have engi-
neers at each location full time on the off chance there is a problem and the time and 
expense of them proactively driving round to the different locations is both costly 
and inefficient.

While it is clear that smart cities offer many benefits, a major challenge is mak-
ing it happen to reap the full benefits. Just thinking about each individual IoT device 
does not work. We need to think about the infrastructure connecting the whole smart 
city and how it is installed and maintained. Key to this is powering all the sensors 
that will be required in the infrastructure. If the sensors required keep powering 
down and need constant maintenance the city will never be truly smart. City offi-
cials do not want to incur costs of frequently sending out engineers to change bat-
teries powering the ever-increasing number of sensors. They need a form of power 
that is as smart and intelligent as the devices being powered.

Cabling power to the sensors is costly and often impractical. Installing batteries 
can also be difficult as sensors can be located in hostile conditions where they need 
to function despite high temperatures, dust, oil, and vibration. Smart lampposts 
need to be powered in an energy and cost-efficient way that can handle the intense 
heat from the bulbs. Batteries powering sensors on rail tracks need to function 
despite being located in dirty, hot environments covered in oil and dust. Autonomous 
vehicles will have so many sensors cabling isn’t feasible as the weight of the cabling 
required will be too great. This is especially key as there are global environmental 
targets to lower the weight of cars in order to make them more efficient and environ-
mentally friendly. Batteries need to be lightweight, able to work in high 
temperatures.

In addition, they need to power the sensors for a long time as frequently changing 
the batteries can be very expensive negating the cost benefits of a smart city. One of 
the main goals of intelligent cities and buildings is to be more cost, energy, and time 
efficient. A smart city is not smart if the elements that make it smart keep power-
ing down.

Traditional batteries do not have the lifespan required and vibrations can cause 
dangerous leakages. Some batteries can handle extreme temperatures but these are 
often large and heavy. Fortunately, battery technology innovation has moved for-
ward. Solid-state batteries are designed for powering wireless sensors in connected 
IoT devices. They offer:

•	 Long lifespan up to 10 years with minimal maintenance
•	 Efficient in hostile environments with extreme temperatures or humidity
•	 Nonflammable
•	 Scalable size from miniature to large scale
•	 Increased energy density
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Smart cities need smart infrastructure to become truly smart and as invisible as 
possible. Infrastructure with “Fit and Forget” powering that is safe, reliable, and 
long lasting is vital to making this a reality. Then not only will all the connected 
devices work effectively and efficiently but will also produce accurate data that will 
be used to make the city even smarter. Solid-state batteries offer the power required 
to make this happen.

1.4  �Smart Cities Examples Worldwide

The digital transformation of cities and regions is its early stages. Utility companies 
will play a critical and strategic role with their regional scale, infrastructure, capa-
bilities, and presence. “Business as usual” is not an option. Utility companies need 
to develop a new vision and strategies. They will lead and thrive in the new era with 
new skills, business models, operational processes, and partnerships. The smart 
region journey starts now.

Cities play a significant role in global consumption, production, and pollution. 
To become sustainable, cities need to plan, innovate, and invest in their future. There 
are many aspects to discuss when it comes to sustainable urban transformation: 
governance, planning, innovation, consumption, etc.

Clean technology is one of the critical assets of a green economy. Renewable 
energy (especially solar and wind energy), e-mobility solutions, and IIoT (used in 
energy and waste management) have a vast potential to help fight climate change 
and create more resilient and sustainable cities.

Because we have crossed the price points where all these technologies make 
sense, a transformation in the next few years is going to happen very quickly. In my 
opinion, it is a matter of raising awareness, understanding, and experience. As these 
things develop and increase, clean technology grows exponentially, much faster 
compared to the industrial revolution.

C40 Cities published a report titled Cities leading the way: Seven climate action 
plans to deliver on the Paris Agreement. This showcases seven cities with climate 
action plans that put the city on a path to becoming emissions neutral by 2050 and 
more resilient to the impacts of climate change.

Cities included in the report are Barcelona, Copenhagen, London, New  York 
City, Oslo, Paris, and Stockholm.

1.4.1  �Barcelona Has Set a Zero-Energy Poverty Target by 2030

One of the biggest challenges Barcelona will face is a major increase in the vulner-
able population impacted by climate change and energy poverty. The city has 
already started implementing a series of actions targeting the most vulnerable citi-
zens. From 2019, facilities in the Barcelona Metropolitan Area and up to 20,000 of 
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the city’s residents will have access to sustainable energy supplied by Barcelona 
Energia, the public electricity distributor for the Barcelona Metropolitan Area.

1.4.2  �Copenhagen Aims to Become the First Carbon-Neutral 
Capital by 2025

Despite a population growth of 16%, Copenhagen managed to reduce the annual 
CO2 emissions by 38% compared to 2005 levels. As mentioned in the C40 Cities 
Report, “Most savings were achieved through increasing the share of green energy 
from biomass used in the city’s combined heat and power plants and wind energy. 
Furthermore, the conversion of a power plant unit from coal to sustainable biomass 
is underway and is expected to be completed by the end of 2020.” According to the 
same source:

•	 20,000 street lamps have been replaced with LED lights, resulting in an energy 
saving of 57% compared to 2010

•	 Copenhagen introduced its first electric buses and
•	 The city plans to build more bicycle lanes

1.4.3  �London Sets the Target for a Zero-Emission Transport 
Network by 2050

London bought 100 new electric double-deckers from China, which were delivered 
in July 2019. In 2020, London will see the introduction of the world’s first hydrogen 
double-decker buses as part of London’s push for zero-emission transportation. 
According to a report published in January, by the end of 2019, London will have 
240 purely electric buses, less than 2.6% of its overall bus fleet. The city also plans 
for at least 300 rapid charge points to be installed by 2020, and it is also exploring 
the next generation of road user charging systems.

1.4.4  �Oslo Aims to Cut City Emissions by 95% by 2030

According to C40 Cities Report, Oslo aims to reduce total city emissions by 36% by 
2020, by 50% as soon as possible after 2020, and by 95% by 2030.

Since transport in the city accounts for more than 60% of total emissions, Oslo 
plans to make walking, cycling, and public transport more attractive, phasing out 
fossil fuels for public transportation and introducing road user payment systems.

Over the next 4 years, Oslo aims to reduce CO2 from the energy and buildings 
sector, which accounts for 20% of total emissions. This will be achieved by phasing 
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out fossil oil for heating through national and local support schemes. Almost 99% 
of energy sources at this moment consist of heat from the sewer system, recovered 
heat from waste, bioenergy, and electricity from hydropower.

Concerning waste management, 200,000 additional tonnes of CO2 are expected 
to go unused by reusing, recycling, and sharing more and by applying carbon cap-
ture and storage technologies to Oslo’s waste-to-energy plants. A pilot project has 
already demonstrated that 90% of CO2 emissions can be captured.

1.4.5  �Stockholm Plans to Achieve Net-Zero Emissions by 2040, 
Paris by 2050

By 2022, Stockholm intends to replace all fossil fuels with renewables. There is also 
a potential for 10% of the power used in the city to be generated from solar power 
produced in buildings and from bioenergy in combined heat and power plants. 
About 43% of emissions reductions must come from transport. By 2021, 70% of all 
food waste will be collected for conversion into biogas and automatically sorted in 
a plant using near-infrared technology.

To attain zero emissions at the local level, Paris’ energy consumption will need 
to be halved, and 100% of the energy consumed will need to come from renewables 
by 2050, states the C40 Cities Report.

1.4.6  �Others

New York is investing in electric vehicle infrastructure—a minimum of $10 million 
will be spent toward the installation of 50 fast-charging hubs across all five bor-
oughs by 2020 (C40 Cities Report).

Santiago, the capital city of Chile, recently procured 200 electric buses, the larg-
est electric bus fleet in Latin America, according to the Santiago Times.

In Nepal, the government has announced a decision to procure 300 pure electric 
buses for its capital of Kathmandu.

Singapore is considered as the world’s smartest city with its innovative health-
care ecosystem, free public housing, and impressive transportation infrastructure. In 
2019, several Singapore-based startups announced their plans to enhance the smart 
city systems with blockchain-powered solutions. In the future, Singapore citizens 
are expected to get digital wallets, secure payments, general insurance, and health-
care records handled by the distributed ledger systems.

Taipei City, the capital of Taiwan, has established the Taipei Smart City Project 
Management Office in 2016 to enhance smart transportation services, healthcare, 
public housing, education, and payment systems. Since 2018, Taipei City 
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Government signed a memorandum of cooperation with IOTA to create a blockchain-
based sightseeing application to attract more tourists. Also, IOTA participates in the 
Taipei City Hall Waste Management project. The Tangle will be used for storing 
data collected by IoT sensors that will measure the fill levels of their waste bins in 
real time.

Austin, a city in Texas, is becoming a smart city pioneer in the state after the 
2019 Texas Smart Cities Summit, sponsored by IOTA. The transportation depart-
ment in the city of Austin has recently partnered with the IOTA Foundation. The 
goal of their collaboration is to use IoT and blockchain to improve the interoperabil-
ity between various transportation systems.

The Smart City Long Beach projects aim to leverage advancements in technol-
ogy, data management, and user-centered design in order to improve residents’ 
quality-of-life and promote digital equity. Smart Long Beach will better prepare the 
city to utilize emerging technologies, which will be deployed responsibly to meet 
community-sourced needs. With a purpose to foster civic engagement and allow for 
improvements in service delivery to residents, the smart city project has developed 
the rightful guiding principles to support this effort. In 2019, the city of Long Beach 
was named a Top 10 Digital City in a survey conducted by the Center for Digital 
Government. This recognition refers to the efforts to build modern technology infra-
structure and efficient foundational systems; protect public safety using technology; 
and improve public engagement through open data and enhanced payment systems.

Sweden’s fifth largest city, Västerås, has embarked on an ambitious digitalization 
strategy to develop smart city solutions that will make it more attractive as a com-
munity for citizens and industry. The project is being led by Mälarenergi, who pro-
vided a broad range of essential services for the city’s 150,000 residents and its 
businesses. The utility operates hydropower plants, the local power grid, a waste-to-
energy plant, heating and cooling networks, water and wastewater treatment plants, 
a water distribution network, and a fiber-optic network.

In Trier Germany, they have developed a smart energy management system for 
the city’s diverse range of generation sources—wind power, hydropower, solar pho-
tovoltaic, biomass, combined heat and power (both large-scale conventional and 
micro CHP), as well as for battery storage, heat pumps, electric vehicle chargers, 
and industrial loads.

Trier also connects the city to three other municipalities in France, Belgium, and 
Luxembourg, each of which operates its own power pool of diverse types of genera-
tion and storage. The solution will enable the compensation of fluctuations due to 
renewable energy by exchanging power with each other and using storage capacity 
intelligently. This, in turn, will maximize their use of renewables and minimize their 
dependency on the national grids.

Now, Trier is connecting the wastewater plant, the water network, on-site PV 
generation, and the CHP plant to reduce operating costs. This is another instance of 
how the coordination of utilities and services—in line with the city’s vision, strat-
egy, and targets—creates value for the municipality and its citizens.
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1.4.7  �Challenges

Urbanization is evolving with a variety of challenges that cities must address. Long 
Beach City faced the difficulty of improving energy distribution, streamline trash 
collection, traffic congestion, and air quality. Also, other, more sensitive facets of 
the community had to be addressed, including homelessness, mobility, climate 
change, government transparency, and operational efficiency. City faces challenges 
with infrastructure and its maintenance, city services such as street cleaning, the 
lack of mobility, etc.

Smart meters and smart appliances (which can respond to or initiate dynamic 
demand) need to be standardized. There is a concern on the use of suboptimal tech-
nologies and current technologies are changing too fast.

There is a need to determine what data should be communicated back to the util-
ity or to the consumer and what immediate control actions would be necessary.

There is a lack of evidence to suggest that people will make firm decisions to 
save money and carbon emissions.

Training and informing customers about change of customers’ behavior could 
incur significant costs. There is also a shortage of talented person to implement 
smart cities.

1.4.8  �Some Practical Applications

In Los Angeles, where traffic has been a tremendous problem for decades, data from 
an array of magnetic road sensors and hundreds of cameras feed through a central-
ized computer system to control 4500 traffic signals citywide to help keep traffic 
moving. Completed in 2013, the $400-million system is credited with increasing 
travel speeds around Los Angeles by 16% and shortening delays at major intersec-
tions by 12%.

In San Francisco, SFpark uses wireless sensors to detect parking-space occu-
pancy in metered spaces. Installed in 8200 on-street spaces in the pilot areas, the 
wireless sensors detect parking availability in real time. In 2013, 2  years after 
launching SFpark, San Francisco published a detailed report showing that the pro-
gram reduced weekday greenhouse gas emissions by 25%. Traffic volume went 
down and drivers cut their search time nearly in half. By making it easier for people 
to pay for their parking and reducing loss due to broken parking meters, San 
Francisco also increased parking-related revenue by about $1.9 million.

London has begun tests on a smart parking project that allows drivers to quickly 
locate parking spaces and remove the need for lengthy searches for an open spot. 
This significantly alleviates urban traffic congestion, saves fuel and reduces harmful 
emissions [226].

In 2011, Autolib debuted an electric car-sharing program in Paris that has grown 
to over 3000 vehicles. The connected cars can be tracked via GPS, and drivers can 
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use the car’s dashboard to reserve parking spaces in advance, saving time and reduc-
ing the waste associated with long searches for parking spots.

Copenhagen uses sensors to monitor the city’s bike traffic in real time, which 
provides valuable data on improving bike routes in the city. This is crucial, as more 
than 40% of the city’s residents commute by bike each day.

To save water, the drought-plagued town of Fountain View, California imple-
mented the FlexNetcommunication system, smart residential and commercial 
meters to cut water usage by 23% [227].

1.5  �Conclusions

It can be seen that cities can benefit tremendously from technological advances that 
utilize the Internet of Things. It is also easy to see that as cities continue to grow and 
more devices get added to the infrastructure, the amount of data will be voluminous. 
In order to manage these demands, and to fully utilize the new technology, cities 
will need information management systems. The data alone will benefit nobody 
without a seamless system to analyze and aggregate the vast amount of information. 
An efficient messaging system will help cities take advantage of the new technology 
and improve city life for residents and businesses while reducing costs for everyone 
involved.
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Chapter 2
Data Analytics for Solar Energy 
in Promoting Smart Cities

2.1  �Solar Energy for Smart City

There is an increasing interest in installing solar photovoltaic (PV) systems com-
bined with battery energy storage to provide backup power during electric grid out-
ages; however, decision-makers are often unsure how to assign value to the lost 
power anticipated during an outage. As a result, the resilience benefit that a PV 
system with storage could provide is in general not accounted for when considering 
project cost-effectiveness.

Reference [1] explored the impact of resilience on the economics of PV and 
energy storage systems for commercial buildings. As storage costs decrease, and as 
outages occur more frequently, PV and storage are likely to play a larger role in 
planning, operation, design, and management investigation.

As severe weather events such as sand storm, low temperature, hurricanes, and 
heat waves become common, interest is increasing in resilient electric power sys-
tems. For a power system to be resilient, it must be capable of islanding and operat-
ing independently from the grid during outages. Installing additional devices, for 
example, transfer switches and critical load, these systems can act as self-sufficient 
microgrids, generating energy and powering critical loads until utility services are 
restored. Recent natural disasters such as Hurricanes Harvey, Irma, and Maria have 
reinforced the need for reliable power for essential services (namely, air condition-
ing, medical operation, and water pumps) and to keep critical businesses in place 
(such as gas stations and grocery stores).

Diesel generators are often viewed as the default solution for providing resilient 
energy, but they might not always be the most reliable or cost-effective solution. 
Reliance on traditional fuel reduces the resilience of an energy system because a 
disruption or contamination in the fuel supply can cause disasters.

While sustainability has not previously been a top priority in city planning, the 
current state of the environment is quickly changing that trend. Innovators and 
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technologists are focusing on energy efficiency and their environmental impact 
more than ever before. Smart solution providers are providing high-tech infrastruc-
ture options that can help city governments save on energy costs even as they reduce 
their carbon output. This is an especially smart win-win situation because it allows 
municipalities to consolidate efforts to improve the quality of life and sustainability 
under one scheme.

Some countries incorporate solar energy, electric cars, and sensors, and mobile 
apps to improve public transportation, security, parking, lighting, and waste man-
agement. In addition to maximizing renewable energy sources like solar power, 
there is a focus on electric buses, green construction, smart grids, and rooftop farms 
in the city.

By adopting renewable energy to power smart cities is not without pain. Solar 
power is great as long as the sun is shining, but cloudy days can minimize the output 
from the solar panels. A single grid-tied home losing solar efficiency is not a huge 
problem, but when a city-wide infrastructure is tied to solar power production, 
being able to plan around periods of low efficiency is critical and essential.

Increased accuracy has the potential to save money and reduce reliance on coal 
and natural gas power plants that often have to pick up when clouds roll in.

With more solar power output in the future, a smart city is going to be more effi-
cient, more connected, and more sustainable. Making cities smarter and greener will 
change the way to operate and help citizens maximize their potential as responsible, 
sustainable members of a global community.

Using solar power to charge on-site energy storage offers unique benefits that 
traditional diesel-fueled backup power systems do not have. As a result, solar tech-
nology combined with energy storage is increasingly being implemented in power 
system designs.

Unfortunately, although the benefit of having a resilient power system is clear 
when the electric grid goes down, putting a monetary value on additional resilience 
investments can be difficult. Each individual business or service provider might 
have widely varying values of resilience. Determining the expected utility cost sav-
ings and potential for revenue generation associated with an investment in a PV and 
battery energy storage system can be relatively straightforward; however, assigning 
a value to the improved resilience associated with a PV and storage system is much 
more challenging. When solar and energy storage technologies are configured to 
provide backup power, they create value by allowing businesses to stay open. When 
powering critical facilities such as hospitals and emergency shelters, resilient power 
systems might even prevent losses of life.

To quantify the effect of valuing resilience on PV and battery energy storage 
system design, researchers at the U.S. Department of Energy National Renewable 
Energy Laboratory (NREL) incorporated the avoided cost of a grid outage into the 
economics of determining cost-optimal system sizing for buildings in Anaheim, 
California [1]. For each of the building types analyzed, two scenarios were explored: 
one that places no value on resilience and one that values resilience in terms of dol-
lars lost per hour of outage.
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For each scenario, a solar and energy storage system is designed to maximize 
economic benefit during an assumed system lifetime of 20 years. The lifetime eco-
nomic benefit is measured in terms of the net present value (NPV) of the system, 
which is the net difference between the benefits and the costs of the project. The 
project benefits include the bill savings delivered by the PV and storage systems 
during normal grid-connected operation as well as the additional benefit of surviv-
ing a grid outage. The project costs include the capital costs of installing PV and 
storage, system operating and maintenance expenses, and the cost of any outage 
period not survived.

A project with a negative NPV indicates that it would cost more to install and 
maintain the system than the savings realized throughout time. A system with a 
positive NPV indicates that it would be less expensive to build and operate the sys-
tem than to continue normal operations without it. Systems costs, benefits, and opti-
mal system sizes for each customer scenario was determined by balancing the cost 
of the system, the cost of electricity from the utility, and the cost of outages. For 
scenarios in which resilience is not valued by the customer, the cost associated with 
the outage is assumed to be zero (i.e., no assets were damaged, and no business was 
disrupted). When resilience is assigned a value, the cost of outages can be reduced 
by the ability of a resilient power system to survive some parts, or all, of anticipated 
grid disruptions.

When sizing solar system and storages, a number of variables must be consid-
ered, for example, the number of hours that a given PV and storage system can 
power critical loads which depend on several factors such as current electricity 
price, load profile, the average duration of outages, time of day when outages occur, 
time of year when outages occur, critical loads, other uses for storages, and the aver-
age cost of outages and amount of energy stored in a storage.

Turning to islanding a PV system is critical for resilience. PV panels on a rooftop 
that are grid-connected do not ensure that a building will have power during a grid 
outage. Any stand-alone PV and storage system require additional expenses that are 
more than the cost of a stand-alone system. These added costs depend on many fac-
tors. These might include additional hardware components, such as transfer switches 
and critical load panels; software components; and electrical design, and safety con-
siderations. These must be factored when determining whether a resilient system is 
the most economical solution.

The costs to island can be highly variable and depend on a multitude of site-
specific factors. The cost to island a system might add incremental expenses ranging 
from 10 to 50% of the stand-alone PV and storage system cost. The benefit of any 
avoided losses during grid outages must be balanced with these added costs of 
designing a system.

For a resilient power system to result in a net economic benefit for a customer, 
the cost to island must be no more than the added savings delivered by the system. 
Under current technology price assumptions, battery energy storage systems are 
often only cost-effective in locations that have relatively high utility demand charges 
or where there is a viable market for the grid services storage can provide. It dem-
onstrates that even though a PV and storage system might not appear to be 
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economical under traditional cost-benefit calculations, placing a value on the losses 
incurred from grid disruptions can make a PV and storage system a fiscally sound 
investment. In most cases, incorporating the value of resilience will increase the 
optimal sizing of both the PV and battery systems, but the added cost to make a 
system stand-alone must also be considered. Recent major weather events and 
widespread outages have raised awareness of and interest in the need for localized, 
resilient power systems as well as the limitations of current solutions such as the use 
of diesel generators. With technology costs declining and extended outages becom-
ing increasingly common, more businesses and building owners are likely to con-
sider the value of resilience and the viability of PV and storage to avoid 
outage-related losses.

2.2  �Global Developments on PV Systems

Several countries are aiming to maximize their solar energy portfolios. Greenpeace 
states that it is possible to become 100% renewable by 2050 and therefore experi-
encing a very sharp increase in installations [2]. Figure 2.1 presents the trends for 
global penetration of solar PV systems from different literatures and case scenarios. 
Greenpeace has provided a forecast of global PV penetration under two scenarios, 
namely the “revolution scenario” and “reference scenario”. It can be seen that there 
is a sharp linear increase in solar power capacity.
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Fig. 2.1  Trends for global penetration of solar PV systems [3]
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United States  Solar energy represents the largest renewable resource base in the 
United States, with the potential that considerably exceeds the total demand for 
electricity. The Energy Secretary has announced that up to $87 million will be made 
available to support the development of new solar energy technologies and the rapid 
deployment of available carbon-free solar energy systems [4]. Solar Grand Plan 
states that the country aims to meet 69% of the country’s electricity demand by 
2050 from PV while reducing CO2 emission by 60% from 2005 levels; the PV con-
tribution to this plan was assessed to be 250 GW by 2030 and 2900 GW by 2050 [5].

China  China has abundance of solar energy. Solar energy is currently mainly used 
in solar water heaters, solar stoves, and passive solar houses within the country. 
Solar power generation technologies are developing quickly in China. China pro-
duces approximately 18% of the PV products worldwide, as a result of more than 
400 Chinese PV companies’ production. Hainan’s largest PV power plant is in oper-
ation since 2009. However, the amount of electricity generated with solar power 
within China is so far comparatively small. According to the plans unveiled by the 
National Development and Reform Commission (NDRC) in 2007, China’s installed 
solar power capacity was originally planned to be 1.8 GW by 2020 [6]. By 2050, 2.7 
TW of solar power will be installed with a total annual output of 9.66 trillion kWh, 
a contribution of 64% for China’s total power generation [7].

India  In India, the Jawaharlal Nehru National Solar Mission has been initiated to 
promote the deployment of solar PV energy. It is expected that 20 GW of power will 
be produced by Solar PV by 2022 [8].

Australia  By the end of 2014, nearly 1.4 million Australian homes had photovol-
taic (PV) systems on their roofs [9]. As a countrywide average, the installed cost of 
PV on household roofs declined from around AU$12/watt in 2008 to fewer than 
AU$2/watt in 2014. The decline in costs may be attributed to three main factors: an 
appreciation of the Australian dollar, large reductions in the price of solar panels, 
and greater competition among system installers in Australia.

Germany  Germany has the largest amount of installed PV capacity in the world 
[10, 11]. The country aims for PV penetration to reach 52 GW by 2020. The high 
PV installation rate during 2009–2012 has caused significant issues for some 
German distribution grids, with installed generation capacities exceeding the annual 
peak load on many occasions. Despite the expanding market for such PV battery 
systems, the market still lacks standards and approaches for comparing their perfor-
mance and efficiency.

Germany’s goal is to transform its electrical energy supply to one that is based on 
a renewable energy share of more than 80% by 2050.

Japan  The Japanese government began planning a completely new energy strategy 
following the nuclear power plant failures in Fukushima after the March 2011 earth-
quake [12]. The Innovative Energy and Environment Strategy was discussed in the 
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cabinet on 14th September 2012. The main idea of the strategy is that all available 
efforts and resources are to be used to reduce the generation share of nuclear power, 
including the maximum deployment of all types of renewable energy. The FIT pro-
gram went into effect on 1st July 2012 has brought about a significant change in the 
expansion of PV system installations in Japan. The national targets are to increase 
PV power generation to ten times its 2008 level, to 14 GW, and to 40 times the 2008 
level, or an estimated 53 GW, by 2020 and 2030 respectively. In April 2009, the 
government formulated an economic stimulus measure named the J-Recovery Plan. 
By 2020, the country aims to increase 20 times the cumulative installed capacity as 
of 2009, to a level of 28 GW.

Figure 2.2 presents the future prediction for PV systems penetration of various 
countries in GW as reported by different organizations. It is expected that the share 
of PV will increase with time for many developed and developing countries.

Figure 2.3 presents the long-term average daily and annual solar irradiance 
received by the earth. It can be seen that Africa and Australia receive the highest 
proportion of solar irradiance compared to other continents. In general, the coun-
tries near the equator will benefit more from the solar resource. Subject to govern-
mental policy, the global connection of PV and energy sources will be a feasible 
solution to improve asset management and fully utilize resources for countries with 
abundant solar irradiance. The term “Energy Internet” has been proposed to achieve 
flexible energy sharing for consumers in a residential distribution system with dis-
tributed renewable energy and distributed energy storage devices [13]. The develop-
ment of the global energy internet and interconnection (GEI) is based on ultra high 
voltage AC/DC and smart grid technology [14].
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Table 2.1 presents the top ten largest large-scale PV installation projects world-
wide till 2016. It is noted that from 2011, the size of large-scale PV plants has sig-
nificantly increased and reached 580 MW by the end of 2015.

Fig. 2.3  The global long-term average of daily and annual solar irradiance in kWhm−2 [15]

Table 2.1  Top ten largest solar farms across the globe as of 2016

Location (State, 
Country) Description

Size 
(MW)

Construction 
starting date

Completion 
date

USA, Rosamond, CA Solar Star Projects [16] 579 2013 2015
USA, Riversize County, 
CA

Desert Sunlight Solar 
Farm [17]

550 2011 2015

USA, San Luis Obispo 
County, CA

Topaz Solar Farm [18] 550 2011 2014

China, Longyangxia 
Dam, Qinghai Province

Longyangxia Hydro-
Solar PV Station [19]

480 2014 2015

India Charanka, Patan 
District

Charanka Park PV 
power plant [20]

345 2010 2016

France, Cestas, 
Bordeaux, Gironde

Centrale solaire de 
Cestas [21]

300 2014 2015

USA, Yuma County, AZ Agua Caliente Solar 
Project [22]

290 2010 2014

USA, Boulder City, NV Copper Mountain III 
Solar Facility [23]

250 2013 2015

USA, San Luis Obispo, 
CA

California Valley Solar 
Ranch [24]

250 2011 2013

USA, Lancaster, CA Antelope Valley Solar 
[25]

242 2011 2014
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2.3  �Photovoltaic Cell Technology

A PV cell is an electrical device that converts the energy of light into electricity via 
the photovoltaic effect. The cells are the building blocks of PV modules, known as 
the solar panels. There are several challenges in photovoltaic cell technologies [26]. 
The crystalline-silicon photovoltaics heavily rely on an abundant amount of silicon 
and their production costs are relatively high. The thin-film solar cells can be pro-
duced more cheaply, but they use materials of limited availability. Cadmium tellu-
ride thin-film modules are the cheapest to produce, but there are concerns about the 
future availability of tellurium, and about the toxicity of cadmium used as a precur-
sor to CdS and CdTe. Similarly, there are concerns about the availability of materi-
als for Copper indium gallium (di)selenide (CIGS) technologies (i.e., gallium, 
indium), and its toxicity (i.e., cadmium, selenium). Some silicon technologies use 
potent greenhouse gases for reactor cleaning (e.g., NF3). Figure 2.4 presents the 
market share of various solar cell technologies. At present, Silicon-based solar cells 
are the most dominant with a total market share of over 90%.
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Fig. 2.4  Market share penetration of PV technologies in various years [27, 28]

In general, PV cell technology can be broadly classified into Fig. 2.4 four cate-
gories, namely the wafer-based, multi-junction, thin film, and the emerging PV cell 
technology. The wafer-based cells are made of crystalline silicon, the commercially 
predominant PV technology as shown in Fig. 2.4. The second-generation cells are 
thin-film solar cells. They are widely used in utility-scale PV power stations, 
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building-integrated PV, or in small stand-alone PV power systems. The multi-
junction solar cells are constructed with multiple p-n junctions from different semi-
conductor materials. Since each material’s p-n junction will produce an electric 
current in response to different wavelengths of light, the heterojunctions allow the 
absorbance of a broader range of wavelengths, improving the cell’s sunlight to elec-
trical energy conversion efficiency. As of 2016, the current highest solar cell effi-
ciency is 46% from multi-junction technology [29].

Detailed literature on mature PV solar cell materials and technologies can be 
found in [30]. The emerging solar cell technologies include a number of thin-film 
technologies. Most of them have not yet been commercially available and are still 
in the research or development phase. Many use organic materials, often organome-
tallic compounds as well as inorganic substances. Although their efficiencies had 
been low and the stability of the absorber material such as Perovskite was often too 
short for commercial applications, there is a lot of research invested into these tech-
nologies as they promise to achieve the goal of producing low cost, high-efficiency 
solar cells [31].

Table 2.2 presents an overview of current and emerging PV cell technologies. 
The following section gives a review of the emerging PV technologies that could be 
of significant interest.

Dye-sensitized cells  The dye-sensitized cell [32] is a type of thin-film solar cell. It 
is based on a semiconductor formed between an electrolyte and a photo-sensitized 
anode. The cell is simple to manufacture using conventional roll-printing tech-
niques, is semitransparent and semiflexible which increases the use in applications, 
and most of the materials used are low cost (such as TiO2). However, in practice, it 
has issues to eliminate the usage of a number of expensive materials, such as plati-
num (catalyst) and ruthenium (dye), and the liquid electrolyte is a serious issue in 
making a cell suitable for use under all weather conditions.

Perovskite cells  Perovskite cells first appeared in 2012 [33]. It was coined as a 
“meso-superstructured solar cell” and described as a low cost, solution-processable, 
based on a highly crystalline perovskite absorber with intense visible to near-
infrared absorptivity cell. When it was first developed, it has a power conversion 
efficiency of 10.9% in a single-junction device under simulated full sunlight. It has 
an efficiency of 22.1% by 2016 [31].

This solar cell contains perovskite structured compound, most commonly a 
hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting 
active layer. Perovskite materials such as methylammonium lead halides are simple 
to manufacture and inexpensive to create. One of the main advantages in compari-
son to previous cell technologies is it has a simplified device architecture, as it does 
not need the complex nanostructures [34, 35].

A major concern is the potential toxicology issue of lead, a crucial element for 
the light-harvesting active layer. Good semiconducting behavior could be achieved 
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with organic–inorganic tin halide perovskites, but the instability of tin has proved to 
be an overwhelming challenge [36]. Another major challenge is the aspect of short-
term and long-term stability due to the environment humidity. Under moisture envi-
ronments, the water-solubility of the organic constituent of the absorber material 
causes the cell to rapidly degrade. A method to overcome this issue is to encapsulate 
the perovskite absorber with a composite of carbon nanotubes and an inert polymer 
matrix. However, no comprehensive encapsulation techniques and long-term stud-
ies are demonstrated for perovskite solar cells [37].

Organic cells/organic tandem cells  Organic cells are built with organic electron-
ics, a branch of electronics that deals with conductive organic polymers or small 
organic molecules. Polymer solar cell is an example of an organic solar cell. The 
reason for using organic cells in photovoltaics is the possibility of high throughput 
module manufacture by printing or coating from solution in continuous production 
[38]. Inexpensive manufacturing process together with the low quantities of organic 
semiconductors required could reduce the cost of modules to less than 1.1 $/watt. 
Therefore, it is possible to accelerate the process of photovoltaic electricity genera-
tion adoption. The features of flexibility, lightweight, and potential to tune the trans-
parency and color of organic cells are reasons for the integration of PV into building 
components or other appliances. The hybrid tandem solar cell is presented in [39]. 
This solar cell is composed of an inexpensive and low temperature processed solar 
cell, such as an organic or dye-sensitized solar cell, that can be printed on top of one 
of a variety of more traditional inorganic solar cells. Organic solar cell can be added 
on top of a CIGS cell to improve its efficiency from 15.1 to 21.4%.

Quantum Dot cells (QDC)  QDC [40] is a solar cell design that uses quantum dots 
as the absorbing photovoltaic material. QDC is highly recommended for the imple-
mentation of solar cells due to tunable bandgap, which could be achieved by chang-
ing the dots’ size. The bandgap of the conventional bulk materials is fixed by the 
choice of a chemical element. Single junction implementations with lead sulfide 
(PbS) carbon quantum dots have bandgaps that can be in the range to far-infrared, 
these frequencies that are difficult to achieve with traditional solar cell 
technologies.

2.4  �Clear Index Clustering

Solar photovoltaic distributed generation (PV-DG) systems are being integrated 
worldwide into distribution systems at a rapid rate [41]. Due to the intermittent 
nature of PV sources which are generally densely connected in a low-voltage distri-
bution network. Voltage and power fluctuations on the grid must be considered. To 
study the fluctuations, statistical evaluation, and localized spectral analysis of the 
fluctuation power index should be further investigated [42]. As a result of the ana-
lytical monitoring costs, there are a limited number of studies on PV systems 
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operation in remote areas. To reduce the costs, clustering results are needed for 
analyzing the performance and sizing of PV systems.

Given the statistical distribution of the solar irradiance, a large quantity of data 
can be characterized with only very few parameters. An example of the practical 
application of solar irradiance statistical modeling is provided in [43], for a case 
study in Tahifet, Algeria. It is learned that the installed PV system produces excess 
energy in October and energy storage is required in June and December.

Solar irradiance is characterized by short fluctuations mainly introduced by pass-
ing clouds. The analysis of these fluctuations with regard to solar energy applica-
tions should focus on the instantaneous clearness index (CI) [42]. CI can effectively 
characterize the attenuating impact of the atmosphere on solar insolation by speci-
fying the proportion of extraterrestrial solar irradiance that reaches the surface of 
the earth. Performance analysis of the PV systems studied with the classification 
scheme of CI profiles provides useful insights [44, 45]. The ability of generalization 
of this technique allows the proposed method to be applied to other system configu-
rations for evaluation purposes, such as sizing energy storage system [46]. In par-
ticular, it is shown that cloud-induced fluctuations in CI can be treated by statistical 
analysis.

This sub-section provides the grouping of daily CI profiles and to construct cen-
troids with cluster analysis. Section 2.2 provides the literature review on the statisti-
cal analysis of PV and renewable energy sources. Section 2.3 presents the clear-sky 
solar model and real-life solar data collected for CI calculation purposes. The 
research problem and preliminary understanding will also be provided. Section 2.4 
gives the clustering algorithms and distance metrics used for the clustering of daily 
CI profiles. Section 2.5 will present the clustering results for the four seasons with 
the five clustering techniques. To evaluate the usefulness of the clustering results for 
PV system planning, a case study based on sizing a stand-alone solar PV and stor-
age system with anaerobic digestion biogas power plants is given in Section 2.6. 
Section 2.7 provides the conclusion and future work of the research.

Fractal analysis of daily solar irradiance measured with a time step of 10 min at 
Golden and Boulder located in Colorado is provided in [47], with the aim to per-
form the classification of daily solar irradiance. These results lead to three classes, 
namely clear-sky, partially covered sky, and overcast sky. The daily distributions of 
CI were classified by estimating a finite mixture of Dirichlet distribution in [48]. 
The results display four distinct classes of distributions corresponding to different 
types of days. However, in the two studies, the CI in different seasons or months has 
not been studied or given.

The use of models with CIs for any solar system applications, such as solar 
hydrogen production is appropriate and simple. This is due to the CI only needs the 
global solar irradiance data [49]. The knowledge of the statistical behavior of short-
term variability of solar irradiance will provide a more accurate evaluation of the 
uncertainty in the long-term annual energy production of solar power plants [50]. CI 
can be used to train the Markov transitions matrix, in order to approximate the daily 
irradiance value with the Markov model [51]. Irradiance sequences can be gener-
ated via this method. Reference [52] uses CI to separate forecasting complexity into 
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the prediction of solar geometry and the prediction of cloudiness and aerosol. The 
quadratic and cubic equations which are based on global solar irradiance data have 
the highest accuracy in predicting the diffuse fraction as a function of CI [53–55].

Wavelet analysis is applied to the daily CI profiles in [56], and which is decom-
posed into components to evaluate the endurance and magnitude of various fluctua-
tions of the solar irradiance. The classification of typical meteorological days from 
global irradiance data is given in [57]. The classification was performed with aggre-
gation Ward’s method. It is learned that the recorded days are clustered in three, 
four, or five groups for monthly time step and three groups are classified for annual 
time-step. The authors relied on discriminant analyses to evaluate the number of 
clusters and this was achieved by visual inspection.

PV generations are commonly presented by Beta distribution [58]. This assump-
tion has been widely used for system planning purposes. However, in reality, the 
underlying distribution may vary widely due to the hemisphere and climate of the 
location [59]. Reference [60] determined the parameters of the appropriate distribu-
tion that provide the best fit for CI. The global solar irradiance is thereafter pre-
dicted from CI using the inverse transformation of the cumulative distribution 
function. The proposed method is effective in predicting the monthly average global 
solar irradiance.

Pattern recognition and cluster analysis have been applied to other renewable 
sources. A statistical approach was proposed for the improvement of short-term 
wind electric power forecasts based on pattern recognition technique [61]. The pre-
dictions on wind speed and direction to identify patterns of the wind behavior at the 
location considered to obtain a stochastic distribution of the daily wind speed were 
studied in [62]. A statistical hybrid wind power forecast technique was proposed in 
[63], where weather events are clustered with respect to the most important weather 
forecast parameters.

2.4.1  �Data Acquisition of Real-Life Solar Irradiance

The CI is developed with the solar irradiance data collected from the Skye 
Instruments SKS 1110 Pyranometer sensor [64, 65]. The cosine-corrected head, a 
sensor consists of a semiconductor diode, and a light filter system for the wave-
length range 350–1100 nm was used to construct the pyranometer. Cosine-corrected 
head is required to avoid measurement errors when the sensor is not directly below 
the sun. The pyranometer can be used for energy balance studies, as the head is 
perfectly sealed and can be placed indefinitely in outdoor conditions. World 
Radiometric Reference [66] is used for the calibration of a sensor under open sky 
conditions.

The pyranometer sensor was placed on a perfectly flat surface in order for the top 
light-collecting surface to be exactly horizontal. Four years of solar irradiance data, 
from 2009 to 2012 were obtained in Johannesburg for this research. Johannesburg 
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has a latitude of 26.21°S, longitude of 28.05°E and with an altitude of 1753 m. The 
data sampling rate is at 1 sample/30 min.

2.4.2  �Clear-Sky Solar Irradiance Model

Under perfect atmospheric conditions, the earth will absorb the solar irradiance 
which is equal to the solar constant minus the amount absorbed by the atmosphere 
of the earth. The solar constant is at a value of 1367 Wm−2. The global solar irradi-
ance on a horizontal surface has two main components, namely the direct beam 
component and the diffuse sky irradiance.

The other factor in the attenuation of the atmosphere is a function of the concen-
trations of the various elements in the atmosphere [67]. Their impacts can be 
assessed by comparing the actual observed optical depth with the theoretical optical 
depth of a perfectly clean dry scattering Rayleigh atmosphere. The ratio of the two 
optical depths is known as the Air mass 2 Linke turbidity factor, TLK. The clear-sky 
beam irradiance normal to the beam Imodel at the surface is calculated as mentioned 
in [68, 69].
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Io is the solar constant, ε is the correction factor to mean solar distance, m is the 
optical air mass corrected for station height, γs is the solar altitude angle in degrees 
and δr is the Rayleigh optical depth, J is the Julian day and j' is the Julian day angle. 
p/po is the pressure correction for station height and is calculated with Eq. (2.5) 
given below:
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z is the site elevation above sea level in meter and HR is a constant at 8400 m. δr 
is calculated as follows [70]:
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The solar altitude angle is calculated as a function of time of day with Eq. 
(2.8) [68].

	
γ φ δ φ δ ωs = +( )−sin sin sin cos cos cos1

	
(2.8)

	
ω = −( )15 12t

	
(2.9)

ϕ, δ, and ω are the latitude of the location, solar declination angle, and solar hour 
angle respectively. All are in degrees. t is the instantaneous time of the day in an 
hour with values between 0 and 23.

2.4.3  �Real-Life Solar Irradiance Data Analysis

Solar irradiance data acquisition  The SKS 1110 Pyranometer sensor developed 
by Skye Instruments [64, 65] was used to collect the solar irradiance data for the 
study. The sensor consists of a semiconductor diode, cosine-corrected head, and a 
light filter system for the wavelength range 350–1100 nm. Cosine-corrected head is 
built-in to eliminate measurement errors which may arise when the sun is not 
directly above the sensor, but at any angle within the hemisphere of measurement. 
The head is completely sealed and can be left indefinitely in exposed conditions in 
making it perfect for weather or energy balance studies. The sensor has been cali-
brated under open sky conditions against World Radiometric Reference [66]. The 
pyranometer sensor should be mounted perfectly leveled, so that its top light-
collecting surface is exactly horizontal. The sensor is usually mounted in the same 
plane as the solar panel, in order to measure the radiation falling on its surface. Four 
years of solar irradiance data between 2009 and 2012 were collected in Johannesburg 
for the study. The sampling rate is at 1 sample/30 min.

Solar irradiance data analysis  To examine the nature of the real-life irradiance 
data, the clear-sky model is used to provide comparisons. TLK has been set to 5 to 
model the diffuse irradiance. A comparison of solar insolation data from different 
sources is summarized in Fig. 2.5. Further comparisons are made with the NASA 
data obtained in [71]. The maximum amount of insolation received is in December 
and the minimum amount is in June. The insolation is generally higher in Summer 
(Dec, Jan, Feb) season as compared to other seasons such as Spring (Sept, Oct, 
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Nov), Autumn (March, Apr, May), and Winter (June, Jul, Aug). NASA provides 
solar insolation for clear-sky conditions. The solar model and NASA data will have 
a higher monthly averaged insolation incident as compared to the real-life data. It 
can be seen that the three sources give a similar trend and this gives a good indica-
tion that the data is statistically accurate.

Clearness Index  CI at instantaneous time t is expressed as a ratio between 0 and 1, 
where 1 signifies there is no loss in irradiance, i.e., all the insolation is of direct 
beam irradiance, and 0 means there is no irradiance due to a complete cloud cover. 
It is worth mentioning that CI can be undefined when no irradiance is available, 
such as before sunrise and after sunset. These conditions are not considered in this 
work as they are not applicable to the study. CI is calculated with Eq. (2.10).
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Ipyranomter is the real-life solar irradiance and Imodel is the clear-sky solar irradiance 
from the solar model. To calculate the solar model irradiance for CI, the TLK is set 
to 1 to remove the effect due to the clear-sky solar irradiance atmospheric absorp-
tion and scattering. These phenomena can be reflected in the CI, as it takes into 
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account the total irradiance reduction from the clear-sky irradiance. Fig. 2.6 pres-
ents the clear-sky and real-life solar irradiance for a typical day in January.

CI for four different seasons between 2009 and 2012 is shown in Fig. 2.7. Each 
color represents a CI profile for a day. Twenty profiles were plotted for each season 
due to the space limitation. It can be seen that in winter there are significantly more 
clear days, i.e., higher CI. In contrast, CIs in summer are mostly below 0.3. CI also 
displays the nature of uncertainty and the daily fluctuation.

2.4.4  �Clustering Methods

This section describes the two clustering families.

Distribution-based clustering  In distribution-based clustering, clusters can be 
defined as objects belonging most likely to the same distribution. A Gaussian 
Mixture Model (GMM) is a weighted sum of m components, i.e., the number of 
clusters. The Gaussian mixture densities for vectors x is given in Eq. (2.11) [72]:
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w is the mixture weight with the constraints wi > 0 and 
i

m

iw
=
∑ =

1

1 . g x wx w i ii i; ,θ θ;, ;,( )  

is known as the component Gaussian densities. The parameter θ contains the com-
ponent weights wi, mean vectors, μi and the covariance matrices Σi. This is expressed 
with Eq. (2.12) [72]:
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For hn to be the number of elements in the vector xn, the log-likelihood function 
is given in Eq. (2.13) [72]:
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The expectation-maximization (EM) algorithm aims to calculate the maximum 
likelihood estimation of the marginal likelihood in an iterative process. The process 
consists of two stages, the expectation step, and the maximization step.
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	1.	 Expectation step: Calculate the expected value of the log-likelihood function 
under the current estimate of the parameters θ(t) at t iteration [72, 73].

	
B E Lt

X tθ θ θ
θ

; ( )( ) = ( ) ( ), 	
(2.14)

	2.	 Maximization step: Find the parameter that maximizes the following quantity 
[72, 73]:
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Partition-based clustering  K-Means clustering aims to classify the objects into 
the clusters with the nearest mean. It is an iterative algorithm and begins with choos-
ing K initial cluster centers. The distances of all observations to each centroid are 
computed. The object is assigned to the cluster with the closest centroid. The new 
centroid locations are determined by calculating the average of the objects in each 
cluster. Given data with n vectors of equal lengths, X  =  {x1, x2, …, xn}, K-Means 
determines cluster centers for k clusters of vectors with equal lengths 
V = {v1, v2, …, vk}, by minimizing the objective function as given in Eq. (2.16) [74]:
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where D is the distance function, such as Euclidean distance (ED), Manhattan 
distance (MD), and dynamic time warping (DTW), etc.

The fuzzy C-Means (FCM) algorithm is an extended version of the K-Means 
algorithm by including the fuzzy-partition matrix. Each object can belong to more 
than one cluster. The iterative process is similar to K-Means. The objective function 
is given in Eq. (2.17) [74]:
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The fuzzifier m determines the level of cluster fuzziness, where 1 ≤ m ≤ ∞. A 
large m results in smaller membership values. The centroid for FCM is calculated 
with Eq. (2.18) [74].
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The fuzzy-partition matrix is given in Eq. (2.19) [74].
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One of the crucial elements in partition-based cluster analysis is the function 
used to measure the similarity between time series. The distance metric can have a 
profound effect on the clustering of times series and their respective clusters.

Euclidean distance and Manhattan distance  ED and MD are the most frequently 
used distance measures for data mining. Although both have been deployed in many 
time series application fields, the metric has many pitfalls for time series analysis. 
They can only be used for time series of equal length and are prone to noise and 
outliers, which are common in real-life temporal sequences especially when noise 
and uncertainty exist in the data source [75]. Another major issue with ED is that the 
metric is based on the comparison between data points at the same time interval. 
Time series regularly suffer transformations in the time axis although the series are 
in a similar shape, i.e., due to the perturbation to the solar irradiance and in the con-
text of CI, there will be time discrepancies for sunrise and sunset in the clear-sky 
solar model and real-life solar irradiance data. Let xi and vj each be a d-dimensional 
vector, the ED and MD between the two vectors are presented in Eqs. (2.20) [74] 
and (2.21) [76], respectively.
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Dynamic time warping  Dynamic time warping (DTW) has many features that 
may overcome the drawbacks of ED and MD. In essence, the objective of DTW is 
to find the optimal alignment between the two series by searching for the minimal 
path in a distance matrix that defines a mapping between them, whilst satisfying the 
moving restrictions during the searching process, i.e., only vertical, horizontal, and 
diagonal moves are allowed. This results in stretching and compressing of time 
series. The mapping for every pair of points in the series can be determined by dis-
tance metrics such as ED and Manhattan, etc. The distance metric used for FCM 
DTW is ED. The outputs of DTW are the cost matrix that denotes the cost values, 
i.e., the DTW distance between the two coordinates and the warping path. The main 
weakness of DTW is computational complexity. The algorithm for calculating the 
DTW for two-time series is given in [77].
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The main challenge in applying DTW distance to partition-based clustering tech-
niques is to calculate the average of a set of time series. To overcome this issue, 
DTW barycenter averaging (DBA) is used for DTW averaging. Unlike the tradi-
tional centroid calculation method where the mean is directly determined, DBA 
aims to minimize the sum of squared DTW distances between the centroid sequence 
and the set of sequences to be clustered. This is essentially achieved by performing 
two iterative procedures. The first stage is to perform DTW to the sequence to be 
clustered and the centroid to be refined. The associations between them are kept and 
will be stored in the vector or known as the association table. The second stage is to 
update each coordinate of the centroid with the barycenter of coordinates associated 
with it from the association table, by calculating the mean. The standard deviation 
of the centroid can also be calculated with the association table. The algorithm for 
DBA can be found in [78].

As previously explained, the cluster centers cannot be calculated with the tradi-
tional method in Eq. (2.18) when considering DTW as the distance function in Eq. 
(2.17). The cluster centers are calculated with DBA instead. To initialize the cluster 
centers in each cluster, the time series are assigned to the cluster having the maxi-
mum membership degree. The cluster centers will be refined in the iterative FCM 
optimization process. The partition matrix is calculated with Eq. (2.19), where D 
stands for the DTW distance.

Comparison of computational complexities  Let N, I, and d be the number of pro-
files, number of iterations, and dimension of profiles respectively. The K-Means 
computational complexity (CC) for ED or MD is approximated as O(NKdI) [79]. For 
FCM with ED, the CC is approximated as O(NK2dI). The FCM suffers higher com-
putation costs compared to K-Means, this is due to the need for updating the fuzzy-
partition matrix in each iteration [80]. For GMM clustering, the CC is mainly 
associated with the EM algorithm. This is approximated as O(INK(1 + d2) + K) [75], 
which is higher than the partition-based clustering methods for high dimensional data 
[81, 82]. The covariance and mean matrix grow in the size of Kd2 and Kd respec-
tively. For FCM DTW, the differences in CC per iteration with respect to the standard 
FCM algorithm are the distance and centroid calculations. The CC of DTW is qua-
dratic, d2, unlike the linear computation costs for ED and MD [78]. Therefore, the 
total complexity for distance calculation is O(Nd2). The centroids are calculated with 
the DBA method and have a computation cost of O(INd2) [78]. The resulting FCM 
DTW computation cost is, therefore, O{Nd2I(K2Nd2)}, which simplifies to O(IN2K2d4). 
FCM DTW has the highest CC compared to other clustering methods and future 
research should look for more efficient methods in using DTW for FCM clustering.

2.4.5  �Cluster Analysis and Discussions

Cluster analysis aims to determine the smallest number of clusters for the daily CI 
profiles while minimizing the intra-cluster distance. To achieve this, it is required to 
minimize the total distance between each clustered profile with respect to their 
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centroids. Five clustering methods described previously are studied and compared. 
These are FCM with Euclidean distance (FCM ED), FCM with Dynamic Time 
Warping (FCM DTW), K-Means with Euclidean distance (K-Means ED), K-Means 
with Manhattan distance (K-Means MD), and GMM. The cluster number to be eval-
uated is from 2 to 15. The total intra-cluster distance is calculated with Eq. (2.22) 
and is used as an indicator of merit.
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Due to the clustering algorithms contain random variables, 50 repeated tests 
were made and the minimum results are kept. The total intra-cluster distance with 
respect to the different number of clusters for the four seasons is provided in Fig. 2.8. 
Compared with different clustering methods, there is a huge difference in total intra-
cluster distance for Winter and Summer cases. This can be explained by the level of 
uncertainty associated with the season. There is significantly more fluctuation in the 
Summer season, hence, the total intra-cluster distance will be increased. It is learned 
that FCM DTW has a significantly smaller total intra-cluster distance for all cases. 
FCM ED performs marginally better than K-Means ED in most cases, given the fact 
that it provides better performance in analyzing uncertainty, i.e., clusters with vari-
ous sizes and shapes due to the fuzzifier used for calculation, where the profiles may 
belong to more than one cluster. It is worth mentioning that the intra-cluster dis-
tance for K-Means MD should not be compared with other intra-cluster distances, 
as ED and MD are different metrics.

ED is used to compute the intra-clusters distance for GMM. It can be seen that 
the total intra-cluster distance for GMM is marginally higher than K-Means meth-
ods. K-Means aims to minimize the intra-cluster distance with ED, while GMM 
aims at maximizing the maximum-likelihood via EM algorithm, which does not 
consider minimizing the distance.

Fuzzy decision-making  One of the major challenges in using cluster analysis is to 
determine the optimal number of clusters. Traditionally, this is achieved by using 
the criteria such as Silhouette index, Dunn’s index, and Calinski–Harabasz index. In 
essence, these indices aim to determine some form of relationship between the 
within-cluster cohesion and the cluster separation in order to evaluate the clusters’ 
validity. The details of these indices and the distance suitability are provided in 
[76]. It is learned that the criteria are deemed ineffective for the data set with a sig-
nificant amount of noise or uncertainty [77]. Also, the optimal number of clusters is 
problem dependent and the mentioned criteria rarely provide the same results. A 
technique in determining the optimal number of clusters is provided in this research, 
by first evaluating the number of clusters that provides the best trade-off for mini-
mizing the total intra-cluster distance. Consequently, if the resultant centroids have 
similar characteristics, i.e., mean and standard deviation, the similar clusters will be 
grouped together with the new centroid calculated. Given no prior knowledge for 
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the selection of candidate partitions in Pareto set, an un-weighted fuzzy logic 
decision-making strategy [83] is employed to yield the best trade-off solution.

It is assumed that the preferences for minimizing the number of clusters and total 
intra-cluster distance are unbiased. Fuzzy logic decision-making is formulated as 
follows. m is equal to 15 and stands for the number of non-dominated solutions and 
n is the number of objective functions. In this case, n is equal to 2 due to the objec-
tive is to minimize the number of centroids and the total intra-cluster distance. The 
fuzzy membership is defined below:
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fi stands for the solutions in the ith objective function. The normalized member-
ship for each solution is expressed as below:
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The most satisfactory solution in this case is selected with the minimum fuzzy 
membership value [83]. The normalized fuzzy memberships for the four seasons, 
calculated with the intra-cluster distances given in Fig. 2.8 are presented in Fig. 2.9. 
The clustering methods show a similar trend for the normalized fuzzy membership 
with respect to cluster number. This explains that the optimal number of clusters is 
similar for the different clustering techniques.

Figure 2.10 shows the centroids for the Winter case with different clustering 
techniques. The centroids for FCM ED and K-Means ED in the Winter case show a 
similar shape. Recall the results in Fig. 2.8, the total distance for the two approaches 
are very similar. The number of representations for clear days are different. It is one 
centroid for GMM, two centroids for FCM ED and K-Means ED, and three cen-
troids for K-Means MD and FCM DTW.  A method is required to minimize the 
number of centroids with similar shapes and magnitude to reduce redundancy.

According to Fig. 2.11, the centroids in the Summer case show that the clustering 
performance of FCM ED, K-Means ED, K-Means MD, and GMM are similar. It is 
worth noting that the clustering problem for Summer cases is significantly more 
challenging than Winter cases. This is due to the fact that CI in Summer has more 
fluctuations.

Reduction of clusters with centroid evaluation  The K-Means related clustering 
techniques consider solely the intra-cluster compactness, i.e., the distances between 
the objects and the centroids [84]. The inter-cluster separation, i.e., the distances 
between the centroids are not well considered during the clustering process.

2.4  Clear Index Clustering
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Fig. 2.9  Fuzzy decision-making for both case studies
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Fig. 2.10  Centroids for different clustering techniques in the Winter case
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Fig. 2.11  Centroids for different clustering techniques in the Summer case
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Redundant or similar clusters and centroids can be eliminated by evaluating the 
centroid’s standard deviation and mean. In the first step, a mean similarity matrix 
and standard deviation similarity matrix, both with size K by K are constructed to 
determine if the clusters are similar. If the element in the matrix falls below a pre-
defined threshold, in this case, 0.1 for both variables, then the element will be set to 
1. This signifies that the two clusters have similar characteristics. The correspond-
ing elements in the two matrices with binary numbers will be multiplied together to 
give the similarity matrix, M. Once the similar clusters are grouped together, the 
new centroid is calculated by calculating the average of the centroids by considering 
the weights with the number of profiles in the original cluster. The procedure is 
presented in Table 2.3.

Figure 2.12 shows that the centroids for FCM DTW Winter case can be reduced 
from the original five centroids as shown in Fig. 2.10 to three centroids. It also pres-
ents the daily CI profiles with their respective centroids for FCM DTW in the Winter 
case. The percentage day covered for clear days in Cluster 3 is 78%, which is the 
highest compared to other seasons. The black, blue, and red lines in Figs. 2.12 and 
2.13 give the centroids, the centroids with plus one and minus one standard devia-
tion respectively, calculated with the association table in DBA.

Figure 2.13 presents the daily CI profiles with respect to their centroids for FCM 
DTW Summer case. The clear days are presented in Cluster 5, which takes into 
19.10% of the days of the season. Cluster 3 shows that the perturbation takes place 

Table 2.3  Algorithm for 
reduction of redundant 
centroids

Input: C = {c1, c2, …ck}: the set of all centroids
 �       card: the cardinality of each cluster

Output: C′: the reduced set of centroids
1.  Calculate the similarity matrix M
2.  s = {1, 2, …k}
3.  Find the all-zero rows of M

 �   s′←the indices of all-zero rows

 �   C′ = {ci|i ∈ s′}

4.  s = s − s′

5.  while s is non-empty

 �   ′ = = ={ }s s i M
i s i1 1

1
or ,

 �   C
c card
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i i
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 �   C′ = C′  C _ new

 �   s = s − s′

 � end
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Fig. 2.12  CI Profiles in respective centroids for FCM DTW Winter case
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Fig. 2.13  CI Profiles in respective centroids for FCM DTW Summer case
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during the late afternoon. Cluster 6 presents the CI profile where the CI is generally 
low for the whole day. The clustering results display an interesting pattern and could 
be understood and quantified. The optimal number of clusters for the four seasons 
with the five clustering techniques is provided in Table 2.4.

2.4.6  �Case Study: Sizing of Stand-Alone PV and Storage 
System with Anaerobic Digestion Biogas Power Plants

In contrast with using the actual real-life daily solar irradiance profiles for system 
sizing in [85], this sub-section uses the daily solar irradiance profiles constructed 
from the cluster centroids with CIs. The daily clear-sky solar irradiance profile for 
Autumn, Spring, Winter, and Summer are calculated with the equinoxes (20th 
March and 23rd Sept.), the Winter solstice (21st June) and the Summer solstice 
(21st Dec.) respectively. The equation for the calculation of constructed solar irradi-
ance is given in Eq. (2.25):

	
I t t I tconstruct modelCI( ) = ( )∗ ( ) 	

(2.25)

The constructed solar irradiance profiles for FCM DTW Winter and Summer 
cases are presented in Figs. 2.14 and 2.15 respectively. To consider the dispersion of 
the clustered data, the plus one and minus one standard deviation of the centroids 
are included for sizing purposes.

Sizing of solar panels  The required PV solar panel areas to meet the energy deficit 
of the solar PV hybrid energy system are determined with Particle Swarm 
Optimization with Interior Point Method [85]. Figure 2.16 presents the panel area 
results with the irradiance profiles developed from five different clustering tech-
niques. The population of results in a form of boxplot for PV panel sizing for the 
four seasons is represented in Fig. 2.16 and the PV farm power capacities are given 
in Fig. 2.17. The calculation of PV capacity from the panel area can be referred to 
[85]. In Fig. 2.17, it can be realized that FCM DTW and GMM need a required PV 
capacity of 5 MW, whereas FCM ED and K-Means ED need a 4 MW PV capacity, 
and finally K-Means MD needs a PV capacity of 3 MW. The energy balance of 
generation and demand are highly related to the shape and arbitrariness of the solar 

Table 2.4  Optimal number of clusters

Spring Summer Autumn Winter

FCM ED 5 6 6 4
FCM DTW 4 6 5 3
GMM 6 6 6 5
K-Means ED 5 6 6 4
K-Means MD 5 6 5 4
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irradiance profile. These are better captured by GMM and FCM DTW clustering 
methods, which are reflected in the PV panel sizing results in Fig. 2.16 and the cen-
troids in Figs. 2.10 and 2.11.

Sizing of storage  Turning to the sizing of storage, the aim is to determine the 
maximum energy deficit of the system with the centroid profiles. For a 5 MW solar 
farm, the maximum energy deficit with GMM results is 4.14 MWh and occurs in 
Summer. The maximum energy deficit with FCM DTW results is 3.49 MWh and 
also occurs in Summer, at Cluster 6 in Fig. 2.15 with the minus one standard devia-
tion. To understand the implications of the energy deficit results, Fig. 2.18 shows the 
energy deficit computed with 4 years of real-life solar irradiance data.

The real-life solar irradiance profile study shows that the energy deficit can reach 
5 MWh. It is also worth mentioning that the total number of clusters for FCM DTW 
is less than GMM. The total number of sizing cases, i.e., the total count is 1457. The 
number of additional cases where 4.14 MWh meets the energy demand in contrast 
to 3.49 MWh is 16. At 3.49 MWh, 1436 cases of energy deficit are covered. The 
difference in energy storage capacity between FCM DTW and GMM is 
(4.14 −  3.49)/3.49  =  18.62%. By increasing the storage capacity from 3.49 to 
4.14 MWh, the additional cases of energy deficit covered is 16/1436 = 1.11%. This 
concludes that the system can meet an additional 1.11% cases of energy deficit with 
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Fig. 2.14  Constructed irradiance from centroids in FCM DTW Winter case
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an additional 0.65 MWh storage capacity. This may not be an economical solution 
and the issue with energy deficit can be overcome by optimal scheduling or demand-
side management, which will be future work.

2.4.7  �Conclusion and Future Work

This sub-section presents feature extraction for daily clearness index profiles with 
five different cluster analysis techniques. An optimal sizing case study for a PV 
system with energy storage and anaerobic digestion biogas power plants is used to 
compare the clustering results for PV system planning. As different to the 1457 
daily irradiance profiles used in [85] for the system sizing, the data set can be repre-
sented with 36 and 46 profiles, with Fuzzy C-Means (FCM) dynamic time warping 
(DTW) and Gaussian mixture model clustering respectively. It is worth mentioning 
that the optimal number of clusters is problem dependent and may vary depending 
on the application.

For future work, it is possible to include an extra-temporal constraint in DTW, by 
limiting the number of vertical or horizontal steps that the path can take consecu-
tively. This adjustment avoids the matching of points that are very far from each 
other in time and, in addition, it reduces the computation cost. The fuzzifier 
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Fig. 2.15  Constructed irradiance from centroids in FCM DTW Summer case
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parameter for FCM can be further explored. The centroids can be used for other 
planning and operation purposes for PV systems, such as optimal placement of pha-
sor measure unit and evaluation of scheduling algorithms.

2.5  �Robust Correlation Framework

Correlation analysis is one of the fundamental mathematical tools for identifying 
dependence between classes. However, the accuracy of the analysis could be jeop-
ardized due to variance error in the data set. This sub-section provides a mathemati-
cal analysis of the impact of imbalanced data concerning Pearson Product Moment 
Correlation (PPMC) analysis. To alleviate this issue, the novel framework Robust 
Correlation Analysis Framework (RCAF) is proposed to improve the correlation 
analysis accuracy. A review of the issues due to imbalanced data and data uncer-
tainty in machine learning is given. The proposed framework is tested with an in-
depth analysis of real-life solar irradiance and weather condition data from 
Johannesburg, South Africa. Additionally, comparisons of correlation analysis with 
prominent sampling techniques, i.e., Synthetic Minority Over-Sampling Technique 
(SMOTE), and Adaptive Synthetic (ADASYN) sampling techniques are conducted. 
Finally, K-Means and Wards Agglomerative hierarchical clustering is performed to 
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study the correlation results. Compared to the traditional PPMC, RCAF can reduce 
the standard deviation of the correlation coefficient under imbalanced data in the 
range of 32.5–93.02%.

With the exponential increase in the amount of data introduced by an increasing 
number of physical devices, the large-scale advent of incomplete and uncertain data 
is inevitable, such as those from smart grids [86, 87]. For sparse data, the number of 
data points is inadequate for making a reliable judgment. This has been an issue for 
the successful delivery of megaprojects [88]. In machine learning and data mining 
applications, redundant data can seriously deteriorate the reliability of models 
trained from the data.

Data uncertainty is a phenomenon in which each data point is not deterministic 
but subject to some error distributions and randomness. This is introduced by noise 
and can be attributed to inaccurate data readings and collections. For example, data 
produced from GPS equipment are of uncertain nature. The data precision is con-
strained by the technical limitations of the GPS device. Hence, there is a need to 
include the mean value and variance in the sampling location to indicate the expected 
error. The major opportunities and challenges for learning from imbalanced data are 
also highlighted in [89]. The number of publications on imbalanced learning has 
increased by 20 times from 1997 to 2007. Imbalanced data can be classified into two 
categories, namely, intrinsic and extrinsic imbalanced. Intrinsic imbalance is due to 
the nature of the data space, whereas extrinsic imbalance is not. Given a data set 
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sampled from a continuous data stream of balanced data with respect to a specific 
period; if the transmission has irregular disturbances that do not allow the data to be 
transmitted during this period, the missing data in the data set will result in an 
extrinsic imbalanced situation obtained from balanced data space. An example of 
intrinsic imbalanced could be due to the difference in the number of samples of dif-
ferent weather conditions, i.e., in general, the “Clear” weather condition has the 
most occurrences throughout the year, whereas “Snow” may only have a few 
occurrences.

There is a growth of interest in class imbalanced problems recently due to the 
classification difficulty caused by the imbalanced class distributions [90, 91]. To 
solve this problem, several ensemble methods have been proposed to handle such 
imbalances. Class imbalances degrade the performance of the derived classifier and 
the effectiveness of selections to enhance classifier performance [92].

This sub-section proposes and validates a new framework for the impact of 
imbalanced data on correlation analysis. The impact of imbalanced data is described 
using a mathematical formulation. Additionally, RCAF is proposed for correlation 
analysis with the aim of reducing the negative effects due to an imbalanced ratio. 
This will be investigated with a theoretical and real-life case study.

Section 2.5.1 provides a literature review on the imbalanced data problem, fol-
lowed by the correlation analysis of imbalanced data. Section 2.5.2 provides an 
overview of the critical features and the impacts on correlation analysis. Simulations 
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will be conducted to support the findings. Section 2.5.3 proposes a new framework 
for correlation analysis. Section 2.6 provides a real-life case study, based on solar 
irradiance and weather conditions, to evaluate the new framework. Different imbal-
anced data sampling techniques will be used to compare the correlation analysis 
performance. Cluster analysis of weather conditions will be given to understand the 
implications of the correlation results.

2.5.1  �Correlation Analysis for Imbalanced Data Problems

Imbalanced data refers to unequal variable sampling values in a data set. For exam-
ple, 90% of sampling data can be in the majority class, with only 10% of the sam-
pling data in the minority class. Therefore, the imbalanced ratio is 9:1. Imbalanced 
data appears in many research areas. As mentioned in [93], when TV recommender 
systems perform well, the number of interactions for users to express positive feed-
back is anticipated to be greater than the number of negative interactions on the 
recommended content. This is known as class imbalanced. The misclassification of 
the unwanted content can be recognized by TV viewers easily, therefore, system 
performance could decrease.

Commonly, modifying imbalanced data sets to provide a balanced distribution is 
carried out using sampling methods [90, 94, 95]. From a broader perspective, over-
sampling and under-sampling techniques seem to be functionally equivalent, since 
they both can provide the same proportion of balance by changing the size of the 
original data set. In practice, each technique introduces challenges that can affect 
learning. The major issue with under-sampling is straightforward, classifiers will 
miss important information with respect to the majority class, by removing exam-
ples from the majority class [96]. The issues regarding over-sampling are less 
straightforward. Since over-sampling adds replicated data to the original data set, 
multiple instances of certain samples become “tied,” resulting in overfitting. As pro-
posed in [97], one solution to the over-sampling problem is to add a small amount 
of random noise to the predictor so the replicates are not duplicated, which can 
minimize overfitting. This jittering adds undesirable noise to the data set but the 
negative impact of imbalanced data sets has been shown to be reduced. Under-
sampling is a favoured technique for class-imbalanced problems; it is very efficient 
since only a subset of the majority class is used. The main problem with this tech-
nique is that many majority class examples are ignored.

Class imbalanced learning is employed to resolve supervised learning problems 
in which some classes have significantly more samples than others [91]. The study 
of multiclass imbalanced problems and the dynamic sampling method (DyS) for 
multilayer perceptron is provided in [98]. The authors claim that the DyS method 
could outperform the pre-sample methods and active learning methods for most 
data sets. However, a theoretical foundation is necessary to explain the reason a 
simple method such as DyS could perform so well in practice.
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Support Vector Machine (SVM) is a popular machine learning technique that 
works effectively with balanced data sets [99, 100]. However, with imbalanced data 
sets, suboptimal classification models are produced with SVMs. Currently, most 
research efforts in imbalanced learning focus on specific algorithms and/or case 
studies. Many researchers use machine learning methods such as support vector 
machines [99], cluster analysis [101], decision tree learning [97, 102], neural net-
works [103–105], etc., with a mixture of over-sampling and under-sampling tech-
niques to overcome the imbalanced data problems [95, 106]. A novel machine 
learning approach to assess the quality of sensor data using an ensemble classifica-
tion framework is presented in [107], in which a cluster-oriented sampling approach 
is used to overcome the imbalance issue.

The issues of class imbalanced learning methods and how they can benefit soft-
ware defect prediction are given in [108]. Different categories of class imbalanced 
learning techniques, including resampling, threshold moving, and ensemble algo-
rithms, have been studied for this purpose. Medical data are typically composed of 
“normal” samples with only a small proportion of “abnormal” cases, which leads to 
class imbalanced problems [94]. Constructing a learning model with all the data in 
class imbalanced problems will normally result in a learning bias toward the major-
ity class.

Imbalanced data can influence the feature selection results. As mentioned in 
[109], traditional feature selection techniques assume the testing and training data 
sets follow the same data distribution. This may decrease the performance of the 
classifier for the application of adversarial attacks in cybersecurity. For real-life 
applications, the distribution of different data sets and variables may be significantly 
different and should be thoroughly studied. Feature selection based on methods 
such as feature similarity measure [110], harmony search [111, 112], hybrid genetic 
algorithms [113], dependency margin [114], cluster analysis [115] has been devel-
oped. The methods have contributed to the quality enhancement of feature selec-
tion. However, the fundamental issues of the uncertainty and imbalanced ratio in 
data sets have not been studied.

Many correlation analyses have been conducted on imbalanced data sets. For 
example, community question answering (CQA) is a platform for information seek-
ing and sharing. In CQA websites, participants can ask and answer questions. 
Feedback can be provided in the manner of voting or commenting. Reference [116] 
proposed an early detection method for high-quality CQA questions/answers. 
Questions of significant importance that would be widely recognized by the partici-
pants can be identified. Additionally, helpful answers that would attain a large 
amount of positive feedback from participants can be discovered. The correlation of 
questions and answers was performed with the Pearson R correlation to test the 
dependency of the voting score. The classification accuracy with imbalanced data, 
i.e., the ratio between the number of data for positive and negative feedbacks has not 
been addressed.

Gamma coefficient is a well-known rank correlation measure that is frequently 
used to quantify the strength of dependency between two variables in the ordinal 
scale [117]. To increase the robustness of this measure in data with noise, Ruiz and 
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Hüllermeier [117] studied the generalization of the gamma coefficient based on 
fuzzy order relations. The fuzzy gamma is advantageous in the presence of noisy 
data. However, the authors did not consider the imbalanced data issue for correla-
tion analysis.

In clinical studies, the linear correlation coefficient is frequently used to quantify 
the dependency between two variables, e.g., weight and height. The correlation can 
indicate if a strong dependency exists. However, in practice, clinical data consists of 
a latent variable with the addition of an inevitable measurement error component, 
which affects the reproducibility of the test. The correlation will be less than one 
even if the underlying physical variables are perfectly correlated. Francis et al. [118] 
studied the reduction in correlation due to limited reproducibility. The implications 
of experimental design and interpretation were also discussed. It is confirmed that 
with large measurement errors, the measured correlation for perfectly correlated 
variables cannot be equal to one but must be less than one [118]. Francis et al. [118] 
described a method which allows this effect to be quantified once the reproducibil-
ity of the individual measurements is known. However, the sub-section has not 
resolved the correlation inaccuracy problem and only provides an indication of the 
effect of noise on the correlation in an imbalanced data set. The sub-section con-
cludes that the designers of experiments can relieve the problem of attenuation of 
correlation in two ways. First, the random component of the error should be mini-
mized, with the aim of improving reproducibility. Technical advances may allow 
this to occur, but relying on them is not always practical. Random measurement 
error can also be attenuated statistically but this requires care and logical judge-
ment. Note that some variance errors in the data are inevitable, such as solar irradi-
ance where unexpected phenomenon such as birds flying cannot be avoided.

2.5.2  �Impact of Imbalanced Ratio and Uncertainty 
on Correlation Analysis

Classes exist in various machine learning models and can be in the form of dichoto-
mous variables. The features can be represented by binary classification, i.e., 0 or 1. 
For example, different weather conditions for solar irradiance prediction can be 
classified (0 for “Clear” and 1 for “Rain”).

In statistical analysis, a dependency is defined as the degree of the statistical 
relationship between two sets of data or variables. Dependency can be calculated 
and represented by correlation analysis. The most commonly used formula is para-
metric and known as the Pearson Product Moment Correlation (PPMC) coefficient. 
By definition, the PPMC coefficient has a range from the perfect negative correla-
tion of negative 1.0 to the perfect positive correlation of positive 1.0, with 0 repre-
senting no correlation [110].

The following problem is used to describe this research issue.
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Assumption: Given two variables X and Y, where X x x Ya b= { } ∈ +, , 0 . In the 
obtained sampling data set, the number of samples in xa is na and the number of 
samples in xb is nb, with na + nb = N. The noise, i.e., sampling error, occurs in Y. The 
relationship between each value of Y(yi) and each value of X(xi) is yi = f(xi) + Erri, 
i = {a, b}. Each noise Erri follows a certain distribution K with the mean error μme. 
The square of noise error Erri

2  follows the distribution L with mean square error μmse.
Figure 2.19 presents the PPMC correlation with a variable, i.e., weather being 

dichotomous. The regression line depicts a negative correlation between Clearness 
Index (CI) and the two weather conditions. This means the weather transition from 
“Clear” to “Mostly Cloudy” will reduce the number of solar resources received.

The PPMC coefficient is given in Eq. (2.26):
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(2.26)

For C to become zero, possible factors include na + nb = 0 and all x are zero. 
Based on Fig. 2.19, if there is no data, i.e., na + nb and the sample size is zero, it is 
impossible to conduct the correlation. All x equal to zero signifies there is no value 
in the variable. Similarly, for D to become zero, possible factors include na + nb = 0 
and all y are zero. The average value of the sampling set is equal to the expectation 
of the distribution. Equation (2.27) depicts this relationship while Eqs. (2.28) and 
(2.29) are true.
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By considering yi = f(xi) + Erri in Eq. (2.26), further expressions are presented in 
Eq. (2.30).
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By considering nb = α ∗ na, where α is the number ratio between the value xa and 
value xb, Eq. (2.30) can be transformed into Eq. (2.31).

Fig. 2.19  Correlation analysis with a dichotomous variable
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If xa ≠ xb and f(xa) ≠ f(xb), the type of correlation can be expressed by Eq. (2.32).
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Equation (2.31) shows the correlation may not be +1/−1 given there is an increas-
ing/decreasing linear relationship between X and Y. It is also related to the 
Momentum Ratio R. For the case f(xa) = f(xb), based on Fig. 2.19, this means the 
“actual” (excluding error variance) CI for “Clear” is the same as the actual CI for 
“Mostly Cloudy.” Since the variance of Y is zero, the denominator is zero which 
makes the correlation coefficient undefined.

The imbalanced ratio in the data set is presented by α in Eq. (2.32). Equation 
(2.33) extracts the section of R in Eq. (2.32) as given below:
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(2.33)

In Eq. (2.33), the minimum point occurs at α = 1. This indicates R is maximized 
if the sampling data set contains an equal number of xa and xb. In this section, two 
functions are employed to study the imbalanced data sets and the correctness of Eq. 
(2.32). Equation (2.34) introduces the two functions. The error of each sampling 
point is assumed to follow a standard normal distribution N(0, 1). The first function 
in Eq. (2.34) establishes a negative relationship while the second function estab-
lishes a positive relationship. The correlation can be computed using two methods. 
Method 1 uses the derived Eq. (2.32) and Method 2 uses the conventional Eq. (2.26).
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Figure 2.20 shows the simulation results for the two functions in Equation (2.34). 
nb is fixed at 100 and a sensitivity analysis is conducted for na from 1 to 3000. For 
Function 2, the correlation absolute value increases from 1 to 100 and decreases 
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from 100 to 3000. This shows that Method 1 and Method 2 produce similar results. 
The simulations in Fig. 2.20 have proved that Eq. (2.32) is valid. The maximum 
absolute value of the correlation occurs at na = nb = 100, where α = 1.

Figure 2.20 indicates that although variables X and Y have a confirmed depen-
dence, the correlation may be distorted by imbalanced data. The reason the correla-
tions obtained from Method 1 have more fluctuations than Method 2 is due to the 
assumption made with Eq. (2.27). A general recognition of correlation with high 
dependency is usually between 0.7 and 1.0, neutral dependency is between 0.3 and 
0.7, and low dependency is between 0 and 0.3. However, for Function 2  in Eq. 
(2.34), the correlation reaches 0.12 when na is 3000 (α = 30), which is far from the 
maximum value of 0.37. This may misinterpret the correlation from “neutral depen-
dency” to “low dependency.” The optimal correlation can be realized when the data 
sets have equal sizes.

The contribution of noise to the correlation is presented by Eq. (2.35). Noise 
represents an unconsidered impact that can cause deviation from the actual value of 
a variable, which contributes to variance error. It can be recognized as the inaccu-
racy of the measured data.

	 coenoise mse me= −µ µ 2

	 (2.35)
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Fig. 2.20  Correlation for the two functions with imbalanced data set
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As shown in Eq. (2.32), correlation may be distorted by the imbalanced ratio, 
with an exceptional condition that coenoise in Eq. (2.35) is equal to zero. If all noise 
is rejected by a perfect sensor, Eq. (2.32) indicates the correlation will not be influ-
enced by an imbalanced ratio and the resultant Momentum Ratio becomes 1. A 
simulation is conducted with Eq. (2.34) without noise. The correlation results with-
out noise are presented in Fig. 2.20. The correlations of the two functions in Eq. 
(2.34) are shown to be perfectly correlated, i.e., 1 (or −1) when noise does not exist. 
As na increases, the no-noise correlations maintain a value of 1 (or −1). This phe-
nomenon indicates the imbalanced ratio does not influence correlation when noise 
is removed. Noise is one of the key factors that affect correlation with respect to the 
imbalanced ratio.

The contribution of the output difference to correlation is presented by Eq. (2.36).
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In Eq. (2.34), coeout _ diff decreases and R in Eq. (2.32) increases if the difference 
between f(xa) and f(xb) increases. This indicates that R can be controlled by the out-
put difference. A larger output difference can counteract the effect of an imbalanced 
ratio. Similar to Eq. (2.32), for the case f(xa) = f(xb), the correlation coefficient is 
undefined when the variance of Y is zero.
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Figure 2.21 presents the simulation results for Eq. (2.37). Note that [f(xa) − f(xb)]2 
increases as β increases. In addition, the correlation at the same imbalanced ratio is 
closer to a strong correlation (1 or −1) with an increased β. This indicates that a 
larger output difference may increase R and counteract the impact of imbalance.

2.5.3  �Robust Correlation Analysis Framework

This sub-section introduces a novel correlation analysis framework to alleviate the 
negative impact of imbalanced data with noise in the correlation analysis. Figure 2.22 
presents the structure of the framework. In Fig. 2.22, X has two values (xa, xb) in the 
sampling data set. The number of data points in xa and xb are na and nb, respectively. 
Each x value and its corresponding y value construct a data pair (x, y). The correla-
tion analysis framework consists of the following two main steps:

•	 Step 1: Creating groups of balanced data sets: The first step is to determine 
which variable X has the largest amount of data. For example, xa is selected if 
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na > nb, then, select nb amount of xa and combine them into pairs with xb. In this 
data set, the number of data points in xa and xb is equal to nb. The procedure is 
repeated M times to construct a group of balanced sets. To prevent the loss of 
information from the removal of data and to fully utilize all the data, the method 
to determine M is shown in Eq. (2.38). In the non-repeated random selector, 
sampling without replacement is used for sampling purposes to prevent “tied” 
data. The ceil function is used to round the value M toward positive infinity.
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•	 Step 2: Correlation integration: Corri, which is nonzero, is the correlation of a 
balance set i calculated with Eq. (2.26). Assume there are M balanced sets, the 
final correlation can be computed by Eq. (2.39) as below:
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Fig. 2.21  Correlation on specified function with imbalanced data set

2  Data Analytics for Solar Energy in Promoting Smart Cities



215

Table 2.5 presents a detailed algorithm for RCAF. The implementation and 
pseudocode were developed with MATLAB.

As depicted in Table 2.5, the computational complexity (CC) for RCAF is rela-
tively low. According to Eq. (2.26), the CC for PPMC is linear [119] at O(n) with 
data size n. Since RCAF consists of converting the majority class data into M data 
sets, with each data set having the size of the minority class, the CC for RCAF is 

approximately O M
n

M
















  or O(n). Although RCAF has a higher CC due to 

additional computations, e.g., Eqs. (2.38) and (2.39) and the requirement of more 
data storage, the improved correlation analysis under imbalanced data can justify 
the use of RCAF.

The Momentum Ratio R should be maximized as explained above. In Step 2 of 
RCAF, R is calculated with correlations from all balanced sets, as shown in Eq. 
(2.40). μmse_i denotes the μmse of each balanced set. μme_i denotes the μme of each bal-
anced set. αi is α of each balanced set.
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(2.40)

For each balanced data set, since the number of data points in xa and xb are equal, 
ai = 1. Equation (2.40) can be rewritten as Eq. (2.41).
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Assuming the sample size, i.e., na is large, the noise terms in Eq. (2.41) can be 
expressed as Eq. (2.42).
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(2.42)

By considering Eqs. (2.32), (2.41), and (2.42); Eq. (2.43) gives the equations of 
R for the original correlation and the new correlation. Note that the term α disap-
pears in the Momentum Ratio under RCAF.
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Fig. 2.22  Robust correlation analysis framework
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Table 2.5  Algorithm for RCAF

Input:
ya = (ya1, ya2, ya3, …, yan);
yb = (yb1, yb2, yb3, …, ybn);
na = size(ya);
nb = size(yb);
xa = zeros(na, 1) + 1;
xb = zeros(nb, 1) + 0;
Output:
corr _ final: PPMC for x and y
Algorithm:
If ρxy is negative  % Use Eq. (2.26) to determine if the correlation is positive or negative.
 � sign = −1;
else
 � sign = +1;
end
If na ≥ nb then
 � M = ceil(na/nb);
 � For counter = 1 : M
 �   posi = randperm(na, nb);
 �   xk = xa(posi);
 �   yk = ya(posi);
 �   x = [xk; xb];
 �   y = [yk; yb];
 �   cori(1, counter) = corr(x, y); % Eq. (2.26)
 �   cori(1, counter) = 1. /(cori(1, counter). ^ 2);
 � end
else
 � M = ceil(nb/na);
 � For counter = 1 : M
 �   posi = randperm(nb, na);
 �   xk = xb(posi);
 �   yk = yb(posi);
 �   x = [xk; xa];
 �   y = [yk; ya];
 �   cori(1, counter) = corr(x, y); % Eq. (2.26)
 �   cori(1, counter) = 1. /(cori(1, counter). ^ 2);
 � end
end
reg = mean(cori);
corrfinal =  sign  ∗ (1. /(reg. ^ 0.5));
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Base on Eq. (2.34), the correlations under RCAF are much more stable and slant-
ing does not occur with respect to the increase of the imbalanced ratio. Figure 2.23 
shows the simulation results. The imbalanced ratio increases as na increases. 
However, the correlations under RCAF do not have a large variation and the optimal 
value is maintained.

2.6  �Real-Life Case Study: Correlation for Weather 
Conditions and Clearness Index

Weather condition is one of the major factors affecting the amount of solar irradi-
ance reaching earth. As a consequence, one of the most important applications 
affected by solar irradiance due to weather perturbation is the Photovoltaic (PV) 
system. Weather condition changes affect the electrical power generated by a PV 
system with respect to time. Due to the nature of climate and the hemisphere of the 
earth, the number of samples for each weather condition, e.g., “Overcast” and 
“Heavy Rain,” is expected to be disproportional for a given location.

The data structure for the correlation analysis is presented in Table 2.6. The data 
pairs in each row represent an observation. Column 1 represents the type of weather 
condition, i.e., 0 and 1 for weather conditions 1 and 2, respectively. Column 2 is the 
CI value.

The corresponding weather condition information (in string format) for the solar 
irradiance data in Johannesburg was obtained from Weather Underground [120]. 
There are 41 types of weather conditions in Johannesburg from 2009 to 2012. The 
sampling size of all weather conditions in Johannesburg can be found in Reference 
[A] in Acknowledgments. The same weather conditions can results in different CI 
values due to other perturbation effects that are factored out by the weather. The 
solar altitude angle range studied is between 0.8 and 1. The correlation results under 
the traditional approach and the novel correlation framework are provided in 
Figs.  2.24 and 2.25, respectively. The entire correlation matrix is a 41  ×  41 
square matrix.
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The correlation between X and Y represents the variation of CI for the two 
weather transitions. A high correlation absolute value means the CI changes signifi-
cantly with weather condition transitions. In contrast, if the absolute value of the 
correlation is low, CI changes slightly when the weather condition changes.

2.6.1  �Clearness Index and Weather Conditions 
Statistical Analysis

The following section of this sub-section examines the correlation results in 
Figs. 2.24 and 2.25. To understand the uncertainty and stochastic properties of CI 
with respect to weather conditions, it is crucial to provide statistical measures and 
mathematical description of the random phenomenon for the variables.

The mean and standard deviation with error bars are presented in Fig. 2.26 for 
the weather conditions and CI for a solar altitude angle between 0.8 and 1.0. 
Bootstrapping is used to quantify the error in the statistics. The bootstrapped 95% 
confidence intervals for the population mean and standard deviation are calculated. 
Eight weather conditions selected from the correlation matrix are studied. The mean 
and standard deviation are calculated using Eqs. (2.44) and (2.45), respectively, for 
the weather conditions. s is the sample size of the weather condition. To compute 
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Fig. 2.23  Correlation comparison between traditional approach and RCAF
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the 95% bootstrap confidence interval of the mean and standard deviation, 2000 
bootstrap samples are used.
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Table 2.6  Typical representation of a data set for the correlation analysis

Weather type (binary)
X = 0 for weather type 1
X = 1 for weather type 2 Y = CI

1 0.71
1 0.69
0 0.43
1 0.61
0 0.32
1 0.54

Clear
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Partly Cloudy
Mostly Cloudy

Overcast
Light Drizzle

Drizzle
Light Rain Showers

Rain Showers
Light Rain

Rain
Light Thunderstorms and Rain

Thunderstorms and Rain
Heavy Thunderstorms and Rain

Thunderstorm
Light Snow

Correlation matrix under traditional approach
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Fig. 2.24  Correlation matrix under traditional PPMC
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A graphical representation of the distribution of variables is presented in the 
histograms in Fig. 2.27. This effectively displays the probability distribution of CI 
for the weather conditions. The histogram shows that different weather conditions 
result in different distributions. The “Clear” case is a monomodal distribution with 
a peak at 0.8 CI, whereas “Mostly cloudy” has a peak at 0.3 CI. CIs are generally 
high for the “Clear” weather condition due to the frequency of high CI occurrences. 
In contrast, “Mostly Cloudy” has a high frequency of lower CI value occurrences.

Due to the highly stochastic nature of CI, as shown in the histogram, it is impos-
sible to use a parametric method where an assumption of the data distribution is 
made. Kernel Density Estimation (KDE) is a non-parametric method to estimate the 
probability density function (pdf) of a random variable. KDE is a data smoothing 
problem where inferences about the population are made, based on a finite data 
sample. Let (x1, x2, …, xn) be a sample drawn from distributions with an unknown 
density ƒ. The kernel density estimator is:
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where n is the sample size. G(⋅) is the kernel function, a non-negative function that 
integrates to one and has a mean of zero. h is a smoothing parameter called the 
bandwidth and has the properties of h > 0.
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The kernel smoothing function defines the shape of the curve used to generate 
the pdf. KDE constructs a continuous pdf with the actual sample data by calculating 
the summation of the component smoothing functions.

The Gaussian kernel is:
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Therefore, the kernel density estimator with a Gaussian kernel is:
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The aim is to minimize the bandwidth, h. However, there is a trade-off between 
the bias of the estimator and its variance. The bandwidth is estimated by completing 
an analytical and cross-validation procedure. The bandwidth estimation consists of 
two steps:

	1.	 Use an analytical approach to determine the near-optimal bandwidth;
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Fig. 2.26  Error bars for mean and standard deviation with eight types of weather conditions
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	2.	 Adopt a log-likelihood cross-validation method to determine the optimal 
bandwidth.

This adopted method has the advantage of avoiding the use of the expectation-
maximization iterative approach to estimate the optimal bandwidth. The near-
optimal bandwidth can be calculated with the analytical approach and could be 
further improved by using the maximum likelihood cross-validation method. This 
simplifies the estimation process and could potentially reduce the computational 
effort as this method is not an iterative approach.

Analytical method  For a kernel density estimator with a Gaussian kernel, the 
bandwidth can be estimated with Eq. (2.49), the Silverman’s rule of thumb [121].
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where σ is the standard deviation of the data set. The rule of thumb should be 
used with care as the estimated bandwidth may produce an over-smooth pdf if the 
population is multimodal. An inaccurate pdf may be produced when the sample 
population is far from a normal distribution.

Maximum likelihood tenfold cross-validation method  The maximum likelihood 
cross-validation method was proposed by Habbema [122] and Duin [123]. In 
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essence, the method uses the likelihood to evaluate the usefulness of a statistical 
model. The aim is to choose h to maximize pseudo-likelihood 
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h if x
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A number of observations xK = {x1, x2, …, xk} from the complete set of original 
observations x can be retained to evaluate the statistical model. This would provide 
the log-likelihood log f xk i



− ( )( ) . The density estimate constructed from the train-
ing data is defined in Eq. (2.50).
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where nt = n − nk. Let nt and nk be the number of sample data for training and 
testing, respectively. The number of training data will be the number of the entire 
sample data set minus the number of testing data. Since there is no preference for 
which observation is omitted, the log-likelihood is averaged over the choice of each 
omitted data sample, xK, to give the score function. The maximum log-likelihood 
cross-validation (MLCV) function is given as follows:
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The bandwidth is chosen to maximize the function MLCV(h) for the given data 
as shown in Eq. (2.52).

	
h h

h
mlcv argmaxMLCV= ( )
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(2.52)

KDE has been applied to compute the continuous pdf of CI for different weather 
conditions. Figure  2.28 shows the density estimation with the maximum log-
likelihood cross-validation method for the “Clear” weather condition. The top fig-
ure shows the histogram and the density function fitted on the histogram. The 
bottom left figure shows the shape variation of kernel density with various band-
widths shaded in grey. The best bandwidth is highlighted in red. The bottom right 
figure shows the log-likelihood plot with respect to the bandwidth. The red circle 
identifies the bandwidth with the highest log-likelihood. The cross-validated pdf has 
a good fit with the histogram and has been confirmed with the log-likelihood. The 
optimal bandwidth estimation approach is shown to be effective and the density 
function gives a good representation of the histogram. The optimal bandwidth for 
the weather conditions can be found in Table 2.7.

The pdfs produced using KDE for the eight weather conditions are given in 
Fig. 2.29. Note that the pdf (such as for “Light rain”) could be in the range of nega-
tive CI due to the nature of a fitted function. In practice, CI cannot be negative as 
this means the irradiance will have a negative value. This will give a negative value 
for solar power estimation. Hence, negative CI values should not be considered.
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2.6.2  �Comparison of Sampling Techniques 
in Correlation Analysis

To compare the proposed framework with previous sampling methods for correla-
tion analysis, the prominent sampling techniques: Synthetic Minority Over-
Sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) sampling are 
employed in this study. SMOTE [124] was introduced in 2002 and is an over-
sampling technique with K-Nearest Neighbors (KNN). First, the KNN is considered 
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Fig. 2.28  Kernel density estimation for “Clear”

Table 2.7  Optimal bandwidth 
for PDFs Weather condition

Optimal 
bandwidth h

“Clear” 0.0124
“Partly Cloudy” 0.0132
“Scattered Clouds” 0.0224
“Mostly Cloudy” 0.0313
“Light Rain” 0.0316
“Overcast” 0.0291
“Light Rain Showers” 0.1023
“Drizzle” 0.0260
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for a sample of the minority class. To create an additional synthetic data point, the 
difference between the sample and the nearest neighbor is calculated and multiplied 
with a random number between zero and one. The randomly generated synthetic 
data point will be within the two specific samples. In 2008, He et al. [125] intro-
duced ADASYN for the over-sampling of the minority class. ADASYN is an 
improved technique that uses a weighted distribution for individual minority class 
samples depending on their level of learning difficulty. As such, additional synthetic 
samples are generated for minority class samples that are more difficult to learn. 
SMOTE generates an equal number of synthetic data points for each minor-
ity sample.

In this study, the number of nearest neighbors for SMOTE is produced according 
to the imbalanced ratio, as this suggests the number of data points needs to be gener-
ated. If the number of nearest neighbors for over-sampling is greater than five, 
under-sampling by randomly removing samples in the majority class will be simi-
lar; as the number of nearest neighbors would be too large for effective sampling 
[124]. In this work, the K-Nearest Neighbors for both ADASYN and SMOTE are 
considered to be five, which is the value used in the original work.

The constructed pdfs in Fig. 2.19 are useful for studying PPMC with different 
sampling methods. A sensitivity analysis is conducted to provide comparisons of 
the traditional approach and the RCAF approach. Data are generated from the pdf 
with random sampling. This analysis aims to understand the influence of the 
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variation of data set size on correlation results. The size of the data set for each 
weather condition, at a solar altitude angle between 0.8 and 1.0, can be found in 
Reference [A] in Acknowledgments. The data set size for “Clear” is determined to 
be 1993 data points. A range of samples from 1 to 1993 is generated from the 
“Clear” pdf to study the impact of imbalanced data on correlation. Seven weather 
conditions are studied for this purpose. The data set size for the seven weather con-
ditions is fixed throughout the analysis. As shown in Fig. 2.30, the correlation cal-
culated with one data point for RCAF, SMOTE-under-sampling, and under-sampling 
is at perfect correlation, i.e., 1. This can be explained by the fact that the correlation 
between two data points at two different classes (except for the case where the two 
data points are equal) will be a perfect positive or perfect negative correlation.

As expected, the traditional PPMC and RCAF correlation at the end of the sensi-
tivity analysis given in Fig. 2.30 can refer to the correlation of the correlation matrices 
in Figs. 2.24 and 2.25. The deviation between the correlation for all methods increases 
as the imbalanced ratio increases. This is also shown in Table 2.8. Additionally, the 
high standard deviation and mean error in Fig. 2.26 can result in a larger sampling 
range, and consequently will result in increased correlation inaccuracy.

The correlation reaches a steady state as the imbalanced ratio decreases, where 
the imbalanced ratio will have an insignificant effect on the correlation in the tradi-
tional approach. The SMOTE-under-sampling and ADASYN sampling methods are 
competitive with the proposed RCAF. However, SMOTE may generate data between 
the inliers and outliers. ADASYN focuses on generating more synthetic data points 
for difficult trained samples and may focus on generating from the outlier samples 
and deteriorate the correlation. Reference [126] suggests the previous sampling 
techniques should investigate outliers for optimal performance.

To quantify the variation in correlation with imbalanced data, Table 2.8 presents 
the standard deviation of the correlations with respect to different methods, as pre-
sented in Fig. 2.30. The correlation with one sample data is excluded in the standard 
deviation calculation since it can be considered an outlier as explained above.

2.6.3  �Cluster Analysis of Weather Conditions

Classes with high correlation should be separated and in contrast, classes with weak 
correlation should be clustered together. According to the rule of thumb, a correla-
tion of less than 0.3 [127] is considered a weak correlation. As shown in Fig. 2.24 
and considering the case for “Clear”, i.e., the column for “Clear,” most of the cor-
relations under the traditional approach are in the range 0–0.3. This signifies that 
they can be clustered as one weather group. However, the correlations computed 
with RCAF, as shown in Fig. 2.25, signify that only two other weather conditions, 
i.e., “Partly Cloudy” and “Scattered Clouds,” are weakly correlated with “Clear.” 
The following part employs two clustering approaches, K-Means and Ward’s 
Agglomerative hierarchical clustering, to cluster weather conditions and understand 
the implications of the correlation results. However, since the number of data points 
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is different for the weather conditions, the mean calculated with Eq. (2.44) is used 
to duplicate an equal amount of data points to match the majority class, i.e., “Clear,” 
for cluster analysis.

K-Means is an iterative unsupervised learning algorithm for clustering problems. 
The basis of the algorithm is to allocate the data point to the nearest centroid. The 
centroid is calculated as the mean value; based on the data in the cluster at the 
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Fig. 2.30  Sensitivity analysis of correlation with no sampling (traditional) and different sam-
pling methods
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current iteration. The K-Means algorithm with Euclidean distance for time-series 
clustering can be referred to [128]. The K-Means clustering results for weather con-
ditions with K = 2 is shown in Fig. 2.31. As shown, the CIs are generally higher for 
“Clear,” “Partly Cloudy,” and “Scattered Clouds” conditions. Due to the insufficient 
amount of data in minority classes, e.g., “Partly Cloudy,” the values after the 740th 

Table 2.8  Standard deviation of correlation coefficients with imbalanced data

Traditional
Under-
sampling ADASYN

SMOTE-
Under-
sampling RCAF

Percentage difference 
between Traditional 
and RCAF (%)

“Partly 
Cloudy”

0.040 0.026 0.049 0.036 0.027 32.50

“Scattered 
Clouds”

0.047 0.030 0.035 0.035 0.023 51.06

“Mostly 
Cloudy”

0.057 0.025 0.041 0.030 0.018 68.42

“Overcast” 0.129 0.029 0.016 0.024 0.012 90.70
“Light Rain” 0.095 0.029 0.051 0.026 0.020 78.95
“Light Rain 
Showers”

0.122 0.066 0.069 0.050 0.048 60.66

“Drizzle” 0.129 0.069 0.008 0.044 0.009 93.02
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Fig. 2.31  K-Means clustering results for weather conditions
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data point will be denoted with the mean value of its data set. The mean value will 
not deteriorate the clustering results since the K-Means algorithm calculates the 
centroid as the mean value.

In Ward’s Agglomerative hierarchical clustering [129], the clustering objective is 
to minimize the error sum of squares, where the total within-cluster variance is 
minimized. At each iteration, pairs of clusters are merged which leads to a minimum 
increase in total within-cluster variance. The results for the hierarchical clustering 
of weather conditions are depicted in Fig. 2.32. The weather conditions can be sepa-
rated into two major branches with “Scattered Clouds,” “Partly Cloudy,” and “Clear” 
as one cluster. The results are consistent with the correlation results from RCAF.

The absolute value of the correlation may be very high if the sample size is 
extremely low, such as the case for “Heavy drizzle” in which only one data point is 
available. The correlation of “Heavy drizzle” under RCAF becomes 1 while the 
coefficient is less than 0.1 using the traditional approach. Numerous small sample 
balanced data sets are created in RCAF. A challenging research question that remains 
is that a severe lack of data points can be an issue for the correlation analysis. The 
limitations of RCAF and methods to overcome such issues need to be investigated.

The theoretical study of the imbalanced data effect on PPMC for continuous 
variables should be a focus in future work. This may provide a broader application 
in PPMC analysis and the method may be generalized.

The study of imbalanced data and noise in rank-order correlations will greatly 
benefit exploring relationships involving ordinal variables. PPMC measures the lin-
ear relationship between two continuous variables (it is also possible for one vari-
able to be dichotomous as studied in this research) and Spearman-Rank measures 
the monotonic relationship between continuous or ordinal variables. Additionally, 
rank correlations such as Kendall’s τ, Spearman’s ρ, and Goodman’s γ will be 
explored. Since a dichotomous variable is a special form of a continuous variable, 
i.e., by treating the continuous data as binary values, providing a mathematical 
deduction for the correlation measures with the continuous variable is challenging 
and will be future work.

2.7  Energy Storage for High Penetration of Solar

2.7.1  �Electrical Energy Storage for PV Power 
System Applications

IHS Technology has reported that there is a total of 2 GW grid-connected energy 
storage projects worldwide by 2016, a 20% increase since the end of 2015 [130, 
131]. The surge is due to government funding programs, EES costs reductions, and 
utility tenders [132]. Several countries aim to maximize their EES portfolio in order 
to counteract the adverse effect of solar PV systems. Hence, this leads to a sharp 
increase in the deployment of EES across the globe. In the United States, 111.8 MW 
of EES has been built by the end of 2015. The EES market in the US will exceed 

2  Data Analytics for Solar Energy in Promoting Smart Cities



231

2  GW per year by 2021. This value is higher than the cumulative total of EES 
deployment in 2013 and 2014 [133]. India has ambitious targets for adopting renew-
able PV energy and one of the cornerstones to meet these challenges is to use energy 
storage technologies [134]. It is expected that 250 GW of EES will be built by 2030 
[135]. In China, EES is already used for smoothing wind turbine output in wind 
farms. A demonstration project of 14 MW lithium iron phosphate battery system is 
fully constructed in Zhangbei, China [136]. The complete project is expected to 
have 110 MW of energy storage. China is aiming to deploy additional mature energy 
storage technologies into their grid in the near future. The country expects that EES 
performance could achieve significant breakthroughs by 2020, resulting in reduced 
investment costs. Figure 2.33 presents the installation energy storage capacity for 
worldwide, India and United Kingdom and United States. The scales of x axes 
(year) are different due to separate forecasting horizons from different sources.

The average cost of installing residential energy storage systems will fall from 
1600 $/kWh in 2015 to 250 $/kWh by 2040 [139] and it is expected to see the price 
with a 70% reduction by 2030 [140]. Figure 2.34 presents the projected costs for 
EES. It shows that the costs of ESS could be constant at around 2030, at 350 $/kWh. 
The storage technology will be matured by then and the costs associated will be 
manufacturing and maintenance costs.

Unlike conventional generators which have the only use of creating electrical 
power and situates at generation level, electrical energy storage systems have a 
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variety of use cases in a modern electric system. They could be found in the genera-
tion, transmission, and distribution levels of a power system [143, 144].

A study on the impact of short-term frequency stability of distributed autono-
mous micro-grid with EES is given in [145]. Improvements in the micro-grid short-
term frequency stability could be achieved with a novel EES control scheme, by 
considering both an adaptive droop characteristic during battery state of charge 
(SoC)/depth of discharge (DoD) limitations and inertial response. The relationship 
is expressed in Eq. (2.53) [145].

	

∆ ∆f
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(2.53)

Δf(s) is the micro-grid system’s frequency deviation, ΔPi is the input power dis-
turbance from a renewable source, GMG(s) and GEES(s) are the frequency response 
for the micro-grid and the EES respectively. The frequency deviation could be mini-
mized by increasing the frequency response from the EES.

Reference [146] investigated the trade-off between the storage capacity and out-
age probability due to the power imbalance between generation and demand. Under 
mild assumptions, the outage probability decreases exponentially with respect to 
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Fig. 2.33  UK, India, United States and global energy storage penetration [137, 138]
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the square of the storage capacity. This finding implies that energy storage is an 
effective and economically viable solution to maintain the stability of a smart grid 
network, even in the presence of many volatile and intermittent renewable energy 
sources. The relationship between minimum storage capacity m and the target out-
age probability Pt is given in Eq. (2.54) [146]:
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(2.54)

V is the cardinality of the set of uncertainty source and ks is the ratio between the 
protection function and the degree of protection. The protection function is used to 
characterize the confidence region such that the resulting solution remains feasible 
when the random solution of the uncertain parameters belongs to the confi-
dence region.

This sub-section focuses on EES for PV integration purposes. For PV system 
integration applications, the EES should have the following characteristics [147]:

•	 Having the energy and power capacity to meet the demands of unstable 
grid energy

•	 Robust to heavy cycling (charging and discharging)
•	 Very quick response time (milliseconds to seconds) and
•	 Susceptible to irregular full recharging
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Fig. 2.34  Blended price project for EES in grid-scale applications [141, 142]
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The EES that are suitable for PV integration applications is Redox flow battery 
(RFB), Lead-acid battery, Lithium-ion (Li-ion) battery, nickel–cadmium (Ni-Cd) 
battery and sodium–sulfur (NaS) battery. The following section gives an overview 
of these EES technologies. Tables 2.9 and 2.10 summarize the technical specifica-
tions and the capital and operating costs for different EES technologies.

Redox flow battery  Flow batteries contain two electrolyte solutions in two sepa-
rate tanks, circulated through two independent loops. When connected to a load, the 
migration of electrons from the negative to positive electrolyte solution creates a 
current. The sub-categories of flow batteries are defined by the chemical composi-
tion of the electrolyte solution; the most prevalent of such solutions are vanadium 
redox and zinc-bromine (Zn-Br). New zinc–iron (Zn–Fe) RFB, based on double-
membrane triple-electrolyte design is estimated to have a system capital cost of 
under 100 $/kWh [148]. The low cost is achieved by a combination of high cell 
performance and the use of inexpensive materials (i.e., iron and zinc). The RFB 
technology shows a promising future and it is expected that it will be highly 
deployed for PV systems integration. The advantages of RFB are that the power and 
energy ratings are highly and independently scalable. Also, there is no degradation 
in energy storage capacity. The disadvantages are the relatively high balance of 
system costs and reduced efficiency due to rapid charge/discharge. The energy and 
power density is generally lower compared to other EES.

Table 2.9  Technical specifications for different EES technologies [143, 149, 151–156]

Type
Maximum 
size (MW)

Cycles at 80% 
DoD (×1000)

Expected useful 
lifetime (years)

Maximum 
DoD (%)

Round trip 
efficiency (%)

Vanadium 
RFB

10 10–13 15–20 100 65–85

Zn–Br RFB 2 5–10 5–15 60–70 72–80
Lead-acid 20–70 2–4.5 5–15 60–80 65–90
Li-ion 10 1.5–4.5 5–15 80–100 85–95
Ni–Cd 40 2–2.5 10–20 80 60–75
NaS 8 2.5–4.5 10–15 80–85 75–90

Table 2.10  Typical capital and operation and maintenance costs for different EES technologies 
[143, 149, 152, 155, 156]

Type
Capital cost ($/
kWh)

Fixed O&M cost ($/
kWh-year)

Variable O&M cost ($/
MWh)

Vanadium 
RFB

530–675 3.8–19.4 0.22–3.14

Zn–Br RFB 200–595 3.6–7.7 0.34–2.25
Lead-acid 206–950 3.6–14.5 0.17–0.58
Li ion 527–1435 2.2–15.3 0.45–6.29
Ni–Cd 632–1256 4.5–26.9 Unknown
NaS 200–632 2.2–19.4 0.34–6.29
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Lead-Acid battery  Lead-acid batteries were invented in the nineteenth century 
and are the oldest and most commonly used EES; they are low cost and could be 
found in a range of applications, such as electric vehicles, off-grid power systems, 
and uninterruptible power supplies. Advanced lead-acid battery technology uses the 
standard lead-acid battery technology with the additional of ultra-capacitors. Lead-
acid battery is a mature technology with established recycling infrastructure. 
However, it has an issue of poor ability to operate in a partially charged state, hence 
efficiency may be reduced with each charge. It has a relatively poor depth of dis-
charge and a short lifespan.

Lithium-Ion (Li-ion) battery  Li-ion batteries have historically been used in the 
electronics and advanced transportation industries. Li-ion batteries are increasingly 
replacing lead-acid batteries in many applications. They have the features of rela-
tively high energy density, low self-discharge, and high charging efficiency. Li-ion 
storage systems remain relatively high costs compared to other available storage 
technologies.

Sodium-sulfur (NaS) battery  NaS batteries are one of the most proven EES in 
MW scale, with projected total installations of 606 MW by 2012 [149]. NaS has a 
high energy density, high efficiency of charge/discharge and long cycle life, and is 
fabricated from inexpensive materials. The main issues with NaS are the need to 
operate at a high operating temperature of 300–350  °C, and the requirement for 
thermal management to maintain the ceramic separator and cell seal integrity, which 
otherwise crack at a lower temperature. The highly corrosive nature of the sodium 
polysulfides presents another challenge for ceramic insulator protection.

Nickel–cadmium (Ni–Cd) battery  Ni–Cd batteries are among the oldest EES 
technologies that are further developed since the 1990s. Ni-Cd batteries have served 
in different applications uninterruptable power supply to telecommunications sys-
tems. The world’s largest Ni-Cd battery at 27 MW rated power, and the US largest 
EES, has been running since 2003 in Fairbanks, Alaska, USA [150]. The technology 
is currently very expensive as compared to other EES technologies and there are 
severe issues with disposal handling associated with the toxicity of the heavy metals 
(Ni and Cd).

2.7.2  �Storage Sizing

This sub-section presents a deterministic approach for sizing a solar photovoltaic 
(PV) and energy storage system (ESS) with Anaerobic Digestion (AD) biogas 
power plant (BPP) to meet a proportional scaled-down demand of the national load 
in Kenya, Africa. The aim is to achieve a minimal Levelized Cost of Energy (LCOE) 
for the system while minimizing the energy imbalance between generation and 
demand due to AD generator constraints and solar resources. This system also aims 

2.7  Energy Storage for High Penetration of Solar



236

to maximize the sizing of PV to follow the future trend of high penetration of 
PV. LCOE for the system and Levelized Cost of Delivery (LCOD) are calculated for 
the hybrid energy system with the presence of energy storage. Four years of solar 
data collected from Johannesburg, Africa are used for system sizing purposes. An 
in-depth study of the optimization problem has been given and Particle Swarm 
Optimization with Interior Point Method is chosen for solar panel sizing. The opti-
mal sizing ratio for the generation sources AD and PV is 2.4:5. The results show that 
the hybrid system will be cost-effective compared to the AD-only system when the 
discount rate drops below 8% with the current technology costs.

Determining the optimal solution for a stand-alone hybrid renewable energy sys-
tems optimization problem is a complicated task because of the high number of 
variables and the non-linearity in the performance of some of the system compo-
nents [157]. The use of the AD Biogas power plant has not been included in the 
study. A model aimed to minimize the cost of the PV system according to the mini-
mization of the PV array area and storage battery is presented in [158]. The method 
calculates the minimum number of storage days and the minimum PV array area. A 
comparison between stand-alone and hybrid system sizing is presented here. It is 
noted that the cost has not been evaluated for the system. The study uses average 
solar irradiance to determine the PV module characteristics which does not take the 
daily fluctuation of solar irradiance and daily energy storage requirement into 
account.

Reference [159] presents a PV-diesel hybrid power system with battery backup 
for a village with the computer package HOMER. HOMER [160] is an optimization 
software package which simulates different renewable energy sources system lay-
outs and sized them on the basis of net present cost. It uses a sensitive analysis to 
consider different generation capacities and battery storage capacity to determine 
the optimal size of the system. The issue with this program is the high computa-
tional requirement, due to the large number of cases needed to be computed. The 
study required a total of 448,000 runs based on 28 sensitivities, where sensitivities 
are defined as the sizing control parameters such as the size of PV, diesel generator 
etc. Also, the software is of “Black Box” code utilization, where knowledge of its 
internal workings and optimization algorithm is unknown [161]. In the present 
study, it aims to use all renewables by replacing diesel with AD which is a control-
lable renewable.

An optimal sizing method for the wind-solar-battery hybrid system with stand-
alone and grid-connected modes was proposed in [162]. A brute force technique is 
used to determine the optimal sizing by searching for the best combinations of the 
PV-wind-battery while satisfying the proposed constraints. Loss of power supply 
probability and the fluctuation rate of the total output of renewable sources relative 
to the average load power were calculated for every probable combination. The 
optimal combination is chosen with a minimum system cost. This method has a very 
high computation complexity and will scale up if detail sizing is required. A com-
parison of the sizing method has been made with HOMER, and the authors claimed 
the proposed approach has higher computational costs. Generators have not been 
considered for the sizing purposes
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The techno-economic feasibility studies of utilizing PV-diesel–battery hybrid 
systems to meet the load of a residential building, with an annual electrical demand 
of 35.12  MWh and a commercial building with an annual electrical demand of 
620 MWh are presented in [163, 164] respectively. HOMER software has been used 
to carry out the studies. It concluded that the hybrid system offers several benefits 
such as PV penetration is high; load can be fulfilled in the optimal way; diesel main-
tenance can be minimized and reliable power supply could be increased. The study 
uses monthly average daily solar global irradiance as input for the sizing purposes. 
The uncertainty aspect has not been included in the solar PV generation. The dis-
count rate and financing costs have not been considered when performing economic 
analysis.

An optimal sizing methodology for a stand-alone and grid-connected PV-biomass 
hybrid energy system that serves the electricity demand of a typical village is pre-
sented in [165]. The results obtained show that the grid-connected hybrid system 
may be a cost-effective electrification solution for numerous villages in developing 
countries. However, in practice, it is impossible to be grid-connected in numerous 
locations, especially for remote areas. An energy storage system should be employed 
to overcome this issue. The technical constraints from the biomass gasifier have not 
been considered in the study and also the average global solar irradiance was used 
for the study.

A study on the optimal sizing of a hybrid wind-PV-diesel stand-alone power 
system is given in [166]. The consideration focused on the investment cost (instal-
lation and unit costs) and fuel cost minimization with constraints on the reliability 
requirement and CO2 emission limit. The output power of the diesel generator 
ranges from 0 kW to the rated capacity, the technical and environmental constraints 
of diesel generator have been neglected in the study.

An algorithm for the economical design of a utility-scale photovoltaic power 
plant via compromising between the cost of energy and the availability of the plant 
was proposed in [167]. This sub-section introduces the effective Levelized Cost of 
Energy (ELCOE) index as the core of the proposed design algorithm. ELCOE is an 
improved index based on the conventional LCOE that includes the availability of a 
power plant in economical assessments. However, the ELCOE proposed did not 
consider the use of storage systems.

2.7.2.1  �Context of the Sizing Problem

Due to the diurnal, stochastic effect of solar irradiance, and the constraints from the 
BPP, the optimal sizing has become a complicated issue. A schematic figure of the 
hybrid system to be sized is shown in Fig. 2.35. The hybrid system aims to dispatch 
the maximum available solar power at each instantaneous time interval to meet the 
load demand. The problem arises when the solar power starts increasing and 
decreasing during the morning and afternoon respectively, this will change the 
required output from the BPP.
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A technical constraint for partial load operation of gas turbine power plants is the 
minimum emissions-compliant load (EMCL). This is the lowest output at which the 
gas turbine power plant can operate and still meet environmental limits for nitrous 
oxides (N2O) and carbon monoxide (CO) emissions. Operation at lower loads can 
result in reduced combustion temperature, less conversion of CO to CO2 and poten-
tial emissions permit exceedances. The EMCL for most gas turbines is about 50% 
[168, 169] of full output. To enable a wider range of gas turbine output, manufactur-
ers have introduced control systems designed to extend emissions-compliant turn-
down while minimizing efficiency impacts at part load. Part load is when the 
generator is at some specified load value below 100% of its rated capacity. The 
approach is to produce higher combustion temperatures at low loads. Higher com-
bustion temperatures not only enhance the conversion of CO to CO2 but also boost 
steam production and thus output from the steam turbine, improving overall part-
load plant efficiency. As a result, some gas turbine models such as (Siemens 
SGT6-5000F) [170] can achieve emissions-compliant turndown to about 40% of 
baseload power [169, 171].

Additionally, if without enough cylinder pressure to maintain oil control at low 
loads, gas engines can develop ash deposits, a reduced detonation margin, and dam-
aged engine components. Similar to diesel generator sets, deposit build-up on 
valves, spark plugs and behind piston rings can occur, which may cause cylinder 
liner polishing, power loss, poor performance, and accelerated component wear 
[172, 173].

In the afternoon, it is most likely there will be surplus energy. This energy should 
be stored and used to meet energy demands. In the late afternoon, the solar irradi-
ance reduces and there is a need to increase the BPP output to meet the load. There 
are two occasions where there is not enough energy supply from both PV and 
BPP. BPP shuts down due to the operating constraint and not enough solar irradi-
ance is available. Figure 2.36 presents a typical solar power curve from real-life 
irradiance data, the BPP power from AD, and a down-sized load curve. The BPP has 
been used to compensate the energy deficiency when solar energy is not available. 
The surplus and deficit energy are highlighted in green and purple, respectively.

Fig. 2.35  Schematic diagram of the hybrid energy system
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2.7.2.2  �Optimization Problem Formulation and Methodology

Without loss of generality, optimal sizing is defined as the sizing to achieve minimal 
LCOE. For the standalone hybrid renewable power system, this is achieved by 
determining the balance of energy supply and demand. When the system is over-
sized (surplus energy more than the deficit energy), energy wastage will occur and 
LCOE will increase. The undersized system will cause the energy imbalance issue 
and leads to a high risk in power supply security.

The objective function is:

	
min
area Battery DeficitE E−

	
(2.55)

where,

	
E EBattery Surplus= .η

	
(2.56)

EBattery is the energy produced from the PV system to be stored in the storage 
system to meet EDeficit with round trip energy efficiency η considered.

Fig. 2.36  Power curves of hybrid system
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(2.57)

ESurplus is the additional energy produced from the PV system. PSurplus is the instan-
taneous PV power subtracted by the instantaneous load demand when load demand 
is less than the PV power.

	
E P t

t

Deficit Deficitd=
=
∫
0

24

	
(2.58)

EDeficit is the energy required from storage to meet the load that cannot be met by 
PV and AD during time t. PDeficit is the deficit power when no solar or AD power is 
available to support load demand. The constraints for the AD system are given in 
Eqs. (2.59)–(2.61):

	
P P t PADmin AD ADmax≤ ( ) ≤ 	

(2.59)

	 P PADmin ADmax= ∗0 4. 	 (2.60)

	
P t P t P tAD Load Solar( ) = ( ) − ( ) 	

(2.61)

It is assumed that BPP will not produce power when the power output drops 
below 40% of the rated capacity, as shown in Eq. (2.60). Equation (2.61) states that 
the output power from AD plant PAD will be used to support the load demand after 
PSolar has reached the output capacity during time t. Reasonable assumptions have 
been made for case studies that the rated capacity of BPP, PADmax is at 2.4 MW [174] 
with η at 70% [151, 155]. The output power of the solar panel, PSolar is shown in 
Eq. (2.62).

	
PSolar Irradiance Wm Area m Efficiency= ( )∗ ( )∗ ( )−2 2 %

	
(2.62)

2.7.2.3  �Comparison of Optimization Methods

To have a better intuition of the optimization problem, Fig. 2.37 shows a plot of the 
objective function and the variable to be minimized for a case on 27th December 
2012. Initially, as not shown in the figure, the objective function is at its minimum 
because the system’s energy balance is achieved due to enough deployment of AD 
power to support the load demand. As the penetration of solar energy increases, AD 
will switch off due to the constraint given in Eqs. (2.59)–(2.61).

The solar power curves used for the case studies are from the practical irradiance 
data and not the clear sky model, hence it contains perturbations. This will influence 
the switching of AD in an unsystematic manner. The cost function will become 
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infinite as the panel areas approach infinity; this means there will be too much sur-
plus energy. The optimization function is highly non-linear with multiple 
local minima.

Seven different types of optimization techniques have been studied for the opti-
mal sizing problem. These are Interior Point Method (IP), Pattern Search (PS), 
Genetic Algorithm (GA), Genetic Algorithm with Interior Point Method (GAIP), 
Particle Swarm Optimization (PSO), Particle Swarm Optimization with Interior 
Point Method (PSOIP) and Simulated Annealing (SA). Two different search bound-
aries are used to study the optimization problem. The lower bound (LB) case is from 
10,000–50,000 m2 and the upper bound (UB) case is from 50,000 to 200,000 m2. 
The reason for the LB to be 10,000 m2 is to make sure the hybrid system has a rea-
sonable penetration of solar PV energy. For IP, SA, and PS, the initial point needs to 
be predefined. For this study, initial points are 30,000 and 120,000 for LB and UB 
cases, respectively.

The results for 17th, 21st, and 22nd in Fig. 2.38 are errnoeuous as the cost func-
tion values are high and the resulting panel area is at the search boundary, i.e., 
10,000 or 50,000 m2. The x-axis represents the day for the daily case sizing and the 
y-axis is the cost function to be minimized. The optimal solution is not in the search 
boundary, hence the required panel area is significantly higher. This is due to the 
poor weather conditions of the day and the lack of solar irradiance. There is a 
requirement for more solar panels to provide enough solar energy. The majority of 
the results are similar with a few cases where there are high discrepancies. The 
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Fig. 2.37  Objective function with solar panel area variation for 27th December 2012 (LB case)
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optimization results for 4th June 2012 have been given in Fig. 2.39. It can be con-
cluded that PSOIP has the lowest cost function value.

A UB case is used to size the solar panels for extreme weather conditions. 
Figure 2.40 shows the results for the June 2012 case. In the converse manner to 
Fig. 2.28, the cost function values are high for all days except for 17th, 21st, and 
22nd. This signifies there are feasible solutions for these days and the cost function 
can be minimized. The optimization results for 22nd June 2012 are shown in 
Fig. 2.41.

By considering the factors of minimal cost function value and the ability to reach 
global optimal, it can be concluded that PSOIP is the best candidate for this optimi-
zation problem. However, it should be noted that the choice of the optimization 
algorithm is problem-dependent as explained in [161].

2.7.2.4  �Optimization Framework and Result

The optimization process begins with data treatment and input of data to the optimi-
zation algorithm. Four years of solar irradiance data have been segmented into indi-
vidual days to determine the required panel area for each day. LB and UB cases are 
computed for each day. If there is a feasible solution in the UB, this result will be 
replaced in the LB result as this signifies the required panel area is much higher. The 
4 years of daily case optimization results are shown in Fig. 2.42. The red crosses in 
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the box plot mark the “outliers” of the sizing results, and have a large contrast to the 
mean. The explanation of the outliers is due to the low solar irradiance on the day 
and the requirement of a high panel area to produce enough surplus energy.

The search boundary needs to be divided into two known cases, namely, the LB 
case and the UB case. As shown previously, this is because the search boundary is 
too large for the optimization algorithms to converge and to determine the correct 
optimal point. PSO parameters such as the inertia range and minimum fraction 
neighbors have been tuned for the optimization algorithm to give accurate results. 
The inertia range determines the contribution rate of a particle’s previous velocity to 
its velocity at the current time step. The proper selection of the neighborhood size 
affects PSO’s trade-off between exploration and exploitation, and unfortunately, 
there is no formal procedure to determine the optimal size. The parameters and 
values for the PSO algorithm, for the daily case sizing are given in Table 2.18.

2.7.2.5  �Component Sizing of Hybrid System

Sizing of Solar Panels

The solar panel to be used for the hybrid system is the Sharp ND-R250A5. It has an 
efficiency of 15% and has a rated power of 250 W/panel [175].
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Annual Sizing Case Study

The daily solar irradiance profiles are connected as one annual profile for the annual 
sizing case study. The daily load curve is repeated according to the number of days 
in the annual case. The optimization is performed with PSOIP. Table 2.11 shows a 
consistent number of panels for the 4 years of data. It is safe to assume the number 
of panels required is 20,000 m2 and the system is equivalent to 5 MW. When com-
pared to the daily sizing case, it can be seen that the annual sizing case gives a 
“smoothing effect” since it averages the load and solar data first before the optimi-
zation performs. The implications of the energy balance are less well understood 
with this sizing approach.

Daily Sizing Case Study

Due to the stochastic effect and inconsistent solar irradiance level in different sea-
sons, it is impossible to determine the exact rated capacity of the solar farm to pro-
vide enough supply to the grid. It is impractical to install a PV system that is capable 
of providing a solution to all events at all times; either the events would have to be 
very modest or the ESS is very large.

From Sect. 2.7.3.4, it is difficult to draw conclusions and insights from the box 
plot in Fig. 2.42. A method is proposed to determine the solar farm capacity by 
forming a histogram and considering the rated capacity of each day for the 4 years 
of data. The solar farm power rating for an individual day is calculated with 
Eq. (2.63).

	
P P NSolarFarmday Panel rated PVday= ∗_ 	

(2.63)

NPVday is the panel area for the given day and PPanel _ rated is the rated capacity of the 
PV panel. Figure 2.43 shows the solar farm power rating for 4 years of the daily case 
in a histogram plot calculated with Eq. (2.63). This effectively displaying the prob-
ability distribution function for the required sizing of the solar panels. The calcu-
lated value is then rounded up to the nearest positive infinity. Most of the required 
capacity is in the range of 2–6 MW with few cases above 10 MW. This can be 
explained due to the poor weather and low irradiance. It will be uneconomical to 
size the PV system to provide solar energy to these extreme cases. The AD genera-
tor could be used to meet the energy requirement in this case.

Table 2.11  Annual case sizing results

Year Panel area (m2)
Rated capacity of 
PV Farm (MW)

2009 19,770 4.95
2010 19,851 4.97
2011 19,468 4.87
2012 19,051 4.77
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Table 2.12 provides the percentage at different solar power rating. At 2 MW, only 
1.304% of days in 4 years have enough solar energy supply and up to 90% of days 
are covered when the sizing is at 5 MW. The capital cost increases significantly by 
increasing the solar farm by a megawatt. Since the total percentage cover increases 
slightly when above 5 MW and by taking the daily and annual case sizing results 
into consideration, it can be concluded that 5 MW is the best choice for sizing the 
solar farm. The deficit energy could be compensated by temporary running BPP at 
low efficiency.

Sizing of Storage

After the size of the PV farm has been determined, EDeficit is calculated for each day 
to determine the energy required to be stored in the storage system. Table  2.13 
shows the results for EDeficit with the maximum value for the corresponding year. It 
shows that in 2011 the deficit energy is significantly lower and in 2009 has the high-
est deficit. Figure 2.44 shows the solar irradiance curves with the Julian day number 
for the maximum EDeficit during the daily sizing case. The irradiance curve for 2011 
has less fluctuation compared to the other 3 years. This could reduce the number of 
switching of the AD system and deficit energy could be reduced, resulting in a lower 
energy storage requirement.
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Fig. 2.42  Optimization results for the daily case PV system sizing
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Table 2.12  Percentage day 
covered at different 
power ratings Power rating (MW)

Percentage for 
4 years (%)

Accumulated 
percentage covered 
(%)

2 1.304 1.304
3 45.5731 46.8771
4 36.582 83.4591
5 7.0693 90.5284
6 2.8826 93.411
7 1.6472 95.0582
7+ 4.9418
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Fig. 2.43  Count for daily case solar panel sizing

Table 2.13  Maximum EDeficit for 2009–2012

Year EDeficit (MWh) EPV (MWh)

2009 4.96 2.32
2010 4.82 2.15
2011 3.98 2.62
2012 4.71 2.01
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The storage is to be sized at 5  MWh by considering that the EDeficit is under 
5 MWh for the 4 years of results

Sizing of Inverter and Controller

The following constraints in Eqs. (2.64) and (2.65) need to be fulfilled for the pro-
posed hybrid system. The power output of total inverters and controllers need to be 
larger than the rated capacity of solar PV.

	 P N PInv Inv solar≥ 	 (2.64)

	 P N PCon Con solar≥ 	 (2.65)

PInv and PCon are the rated power of the inverter and controller respectively. NInv 
and NCon are denoted for the number of inverters and controllers. For the hybrid 
system, the required number of inverters and controllers for the hybrid system is 
1250 and 2500 respectively. The optimal sizing result for each component of the 
hybrid system is presented in Table 2.19.
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Fig. 2.44  Solar irradiance curves for 2009–2012 at maximum EDeficit
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2.7.2.6  �Levelized Cost of Energy

LCOE is a measure of costs which attempts to compare different methods of elec-
tricity generation on a comparable basis. It is an economic assessment of the aver-
age total cost to build and operate a power-generating asset over its lifetime divided 
by the total energy output of the asset over that lifetime.

The economic projections on complex hybrid systems utilizing these three tech-
nologies are challenging and no comprehensive method is available for guiding 
decision-makers [176]. The authors claimed to have provided a new method of 
quantifying the economic viability of off-grid PV-battery-CHP systems by calculat-
ing the LCOE of the technology to be compared to centralized grid electricity. The 
proposed LCOE for the hybrid system is given in Eq. (2.66) below [176]:
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n is the lifetime of the hybrid system in years, r is the discount rate on the hybrid 
system per year, I is the total installation cost which includes the cost of solar PV, 
battery and the CHP module, i is the interest rate on the hybrid system for 100% 
debt financing. O is the total operation and maintenance cost. Fchp is the annual fuel 
cost of the CHP unit. Etpv and Etchp are the rated annual energy production from solar 
PV and CHP unit respectively. d1 and d2 are the degradation rates for solar PV and 
CHP unit respectively. The energy produced by the PV system is not discounted. It 
does not reflect the actual value of solar PV energy in the future. Cost implication 
due to storage has not been included in the analysis in detail. Although storage does 
not generate energy, the total energy production will be affected by storage due to 
round trip efficiency. This section presents the cost calculation of the system and 
comparisons for two different systems will be made. Table 2.14 gives the cost speci-
fication of the components for the hybrid system.

The general equation for LCOE [180] is given in Eq. (2.67). The cost and energy 
calculation of the system components is given in Eqs. (2.68)–(2.76).
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In this study, the lifetime of the hybrid system is assumed to be 20 years, with the 
storage system degradation rate, DRedox at 0.1% per year [181] and PV panel 

Table 2.14  Cost specification of the system

PV (sharp 
ND-250QCS)

Vanadium 
redox flow 
battery (VRB)

AD 
biogas 
power 
plant

Inverter 
(Schneider 
electric 
XW4024)

Controller 
(outback FM 
80)

Capital cost 
(Cap)

120 ($/unit) 
[175, 177]

760–1600 ($/
kWh) [151, 
155]

$7.5M 
[174, 178]

812.05 ($/unit) 
[175]

335 ($/unit) 
[175]

Installation 
cost (Inst)

108 ($/unit) 
[175]

N/A N/A 24.2386 ($/unit) 
[175]

6.7 ($/unit) 
[175]

O&M cost 
(O & M)

6 ($/unit/year) 
[175]

100–140 ($/
kWh) [151]

350 ($/
kW) [179]

2.43615 ($/unit/
year) [175]

1.005 ($/unit/
year) [175]
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degradation rate, DPV at 0.05% [167, 182]. There is an inverter lifetime extension to 
at least 20 years of full operation by 2013 and 30 years by 2020 [183]. The control-
lers and inverters are assumed to be replaced once during the lifetime of the system, 
and the replacement cost is the same as the capital cost [175]. Npvdirect, Npvsurplus, NInv 
and NCon are the number of units of PV panels for generating energy for direct con-
sumption, surplus energy for storage, inverters, and controllers respectively. Edirect is 
the energy generated from PV and directly supplied to the load without going 
through storage. EAD _ total is the total lifetime energy output from BPP powered by 
AD. Cpvsurplus and Cpvdirect are the total lifetime costs of PV generation that produce 
the surplus and direct consumption of energy for the system respectively.

2.7.2.7  �Levelized Cost of Delivery

The term Levelized Cost of Storage (LCOS) was explored in [152], which is solely 
used for comparing storage technologies. The equation is of similar nature to 
LCOE. Levelized Cost of Delivery (LCOD) is proposed to compare the cost-
effectiveness of storage for the system [184]. The LCOD is given in Eq. (2.77).
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By splitting Eq. (2.77) into two individual components, the final form of LCOE 
for the ESS is given in Eq. (2.78).

	
LCOD LCOE LCOSsurplus= ( ) +1

η
E

	
(2.78)

In practice, the energy flowing into ESS, Ein will be the surplus energy Esurplus. 
The cost of storing the surplus energy into ESS, Cin will be Cpvsurplus plus the cost of 
the controller CCon.

2.7.2.8  �Levelized Cost of Energy for System

For a hybrid renewable and storage power system, the following LCOE relationship 
will hold:
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C
tsystem  and E

tsystem  are the total cost and total energy production from the system 
at year t respectively. The total cost of the renewable system is the sum of PV, BPP 
generation, power conversion, and storage costs. The total energy produced by the 
system is the energy output of ESS, the energy directly delivered to the load by PV, 
and the energy produced by BPP to support the energy deficit. Therefore, the LCOE 
for the system is given in Eq. (2.80).
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2.7.2.9  �Cost Analysis for PV Hybrid System

The LCOE at different discount rates 2, 8, 10, and 15% are studied for three case 
studies and the results are presented in Tables 2.15, 2.16, and 2.17. The AD-only 
system is a micro-grid system that generates energy solely by BPP, with no PV, 
ESS, inverter, and controller installed. The hybrid system is the micro-grid proposed 
in Fig. 2.36. Storage is an expensive component and also the energy stored in gen-
eral is a small proportion as compared to generated energy, so the ratio between 
battery cost to its amount of stored energy will be bigger as compared to that 
LCOEsystem.This is the reason that LCOD is significantly higher than the LCOE of 
the system. Using sensitivity analysis, the cross-over point for the system’s LCOE 
can be determined. The results show that by considering the Redox storage at lower 
bound cost, the hybrid system could be cheaper than running an AD only system 
when the discount rate is below 8%. At a higher bound cost, the discount rate needs 
to be below 2%.

As reported in [151], the LCOS for the Redox storage system in renewable 
energy system integration is between 0.373 and 0.950 $/kWh, with a discount rate 
of 8%. Since there is a fixed cost, while both variable cost and energy are affected 

Table 2.15  AD only case

r (%) LCOEsystem ($/kWh)

2 0.383
8 0.403
10 0.409
15 0.427

2  Data Analytics for Solar Energy in Promoting Smart Cities



253

equally by the discount rate, therefore LCOS increases as the discount rate increases. 
The LCOD of the system is much higher than LCOS when the cost of storing the 
energy is included. As reported in [185], the current discount rate for Solar PV and 
AD is 6–9% and 7–10% respectively. The discount rate for technologies that are 
supported by policy could be as much as 2–3% lower over the next decade and 
could fall by a further 1–2% by 2040. The LCOE for the hybrid system has been 
given the assumption that the capital cost of PV will be reduced by 50% as com-
pared to that for PV system in [175] due to Swanson’s law [177]. At high discount 
rates, capital intensive generation sources such as PV is at a disadvantage due to the 
value of energy and money is lower in the future.

In general AD-only system can have a smaller LCOE but may be different for a 
smaller discount rate. This is likely to be a future trend. If there are incentivizes for 
example, for equipment cost, there could be a reduction in capital cost and as such 
it could be better to have a hybrid system as this leads to a lower LCOE (Tables 2.18 
and 2.19).

2.8  �Standards, Recommended Practices and Guidelines

Some standards, recommended practices and guidelines related to Energy Storage 
and its applications are given below:

•	 IEEE 1679–2010—IEEE Recommended Practice for the Characterization and 
Evaluation of Emerging Energy Storage Technologies in Stationary Applications: 
provides a common basis for the expression of performance characteristics and 
the treatment of life testing data

Table 2.16  Hybrid system with VRB at lower bound cost

r (%) LCOD ($/kWh) LCOEsystem ($/kWh)
2009 2010 2011 2012 2009 2010 2011 2012

2 0.830 0.886 0.797 0.736 0.339 0.343 0.337 0.334
8 1.156 1.233 1.110 1.025 0.389 0.393 0.386 0.383
10 1.275 1.359 1.224 1.130 0.407 0.411 0.404 0.401
15 1.579 1.683 1.516 1.401 0.543 0.458 0.451 0.447

Table 2.17  Hybrid system with VRB at upper bound cost

r (%) LCOD ($/kWh) LCOEsystem ($/kWh)
2009 2010 2011 2012 2009 2010 2011 2012

2 1.210 1.292 1.161 1.070 0.358 0.362 0.356 0.353
8 1.753 1.871 1.681 1.550 0.418 0.423 0.416 0.412
10 1.949 2.080 1.870 1.724 0.440 0.445 0.438 0.434
15 2.456 2.621 2.356 2.172 0.497 0.502 0.494 0.490
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•	 IEEE 2030.2–2015—IEEE Guide for the Interoperability of Energy Storage 
Systems Integrated with the Electric Power Infrastructure: provides useful indus-
try derived definitions for ESS characteristics, applications, and terminology 
that, in turn, simplify the task of defining system information and communica-
tions technology (ICT) requirements.

•	 IEEE P1547.9—Guide to Using IEEE Standard 1547 for Interconnection of 
Energy Storage Distributed Energy Resources with Electric Power Systems: pro-
vides information on and examples of how to apply the IEEE Std 1547, for the 
interconnection of Energy Storage Distributed Energy Resources.

•	 IEEE P2686—Recommended Practice for Battery Management Systems in 
Energy Storage Applications: includes information on the design, installation, 
and configuration of battery management systems in stationary applications, 
including both grid-interactive, standalone cycling and standby modes.

•	 IEEE P2814—Recommended Practices on Techno-economic Terminology for 
Hybrid Energy and Storage Systems.

2.9  �Conclusion and Future Work

This section proposes a sizing methodology with a deterministic approach for a 
stand-alone high penetration PV system with support from ESS and AD biogas 
power plant. The costs have been calculated with the proposed levelized cost of 
energy methods and it shows that the hybrid energy system could be more economi-
cal than using a stand-alone AD biogas power plant.

The load curve is assumed to be the same for all days in the year due to the users 
have a consistent consumption in the small community. Future studies could con-
sider when the load is irregular or less than the minimum AD output power. The 

Table 2.18  Parameters for 
PSOIP for daily case 
optimization

Max iteration 500
Inertia range [0.1 1.0]
Self-adjustment weight 1.49
Social-adjustment weight 1.49
Function tolerance 1e − 6
Minimum fraction neighbors 0.5

Table 2.19  Summary of optimal size for the hybrid system

System component Optimal size

PV 5 MW (20,000 units)
Vanadium Redox Flow battery (VRB) 5 MWh
Inverter (Schneider Electric XW4024) 1250 units (4 kW/unit)
Controller (Outback FM 80) 2500 units (2 kW/unit)

2  Data Analytics for Solar Energy in Promoting Smart Cities



255

conventional approach to sizing the power system is to use the cost of energy as the 
objective function. This approach could also be studied and comparisons could be 
made as to future work. State of charge, depth of discharge, and state of health of 
battery need to be considered in depth in the future work.

As technology advances, smartness is introduced to the cities and leads to trans-
forming their infrastructure, systems, management, and operations to capitalize on 
new technologies and integrate connected solutions into how to operate and care for 
the citizens. Through advances in data collection and analytics, they can anticipate 
and respond to daily challenges like traffic flow and potential emergencies.

There is a need to incorporate sustainability and energy efficiency in developing 
smart city solutions. It is foreseen that the integration of solar power and energy 
storage is quickly is becoming a focal point of smart city planning. By looking at 
some of the innovative ways, smart city initiatives and decision-makers are adopting 
solar power and storage as a serious workable solution.
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Chapter 3
Blockchain Applications in Microgrid 
Clusters

3.1  �Introduction

Renewable energy is a potential solution to environmental pollution and resource 
exhaustion problems caused by fossil fuel generation [1, 2]. The increasing amount 
of renewable energy calls for a clean energy trading mechanism. Due to the inter-
mittent and non-dispatchable characteristics of the renewable energy sources 
(RESs), it is difficult for the wholesale market to trade in real-time [3] and thus 
brings great challenges to the safe and stable operation of power systems.

To investigate the smart city development, this chapter presents a smart grid 
architecture to enhance the energy distribution ability for various stakeholders 
including grid operators, prosumers, and consumers. In the architecture, the nodes 
denote the energy exchanging points and the monetary transactions are regulated by 
Blockchain. Mobile application is implemented to provide the stakeholders access 
to the Blockchain network. This chapter focuses on the microgrid. Microgrids inte-
grate renewable energy locally and promote renewable energy utilization and elec-
trical power supply reliability in a distributed manner [4]. Microgrids are developed 
with the inclusion of but not limited to advanced control methods, power electron-
ics, microelectronics, and big data analytics.

Integrated fault-tolerant Information and Communications Technology (ICT) 
systems can improve consumers’ quality of services and guarantee their needs 
whilst minimizing cost and resource consumption.

Microgrids are highly dependent on information technologies and high-
performance telecommunications networks for the exchange of data between nodes. 
The stringent requirements require network automation and Artificial 
Intelligence (AI).

Distributed generation could be achieved as primary energy resources including 
wind and solar are widely available. Microgrid as a portion of an intelligent smart 
power network can maximize renewable energy resources usage and simultaneously 
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meet the consumers’ energy demand. The microgrid does not need to be geographi-
cally large and can be local (e.g., home or small community) with photovoltaic 
panels, energy storage, and household appliances.

Microgrids have bi-directional power and data flow and are capable of monitor-
ing power plants and individual appliances. Distributed computing and communica-
tions allow the delivery of real-time information and enable the instant supply and 
demand balance at the local level. New communication protocols, electronic 
devices, and ICT technologies promote microgrid transformation. The following 
features can be achieved:

•	 The integration of heterogeneous power generation and energy storage systems 
with universal interoperability standards to support “plug-and-play” 
convenience.

•	 The advent of new electricity markets and business models allow prosumers to 
export their energy resources to secure revenue and reduce energy cost.

•	 Real-time monitoring and system diagnostics enhance power quality, reduce 
energy utilities financial loss, and enables automated maintenance.

•	 Technical performance enhancements include the increased load factors, reduced 
system power losses, and system outage time.

Microgrids play a critical role to address global warming and to meet the ever-
increasing energy demand including high penetration of electric vehicles. Microgrids 
consist of the following main functions:

•	 Active Network Management (ANM): Consist of software, automation, and con-
trol systems that monitor the grid in real-time to guarantee the system operates 
within limits.

•	 Automatic Voltage Control (AVC): Voltage and reactive power of the system 
buses are within the defined values and minimize the power loss.

•	 Advanced Metering Infrastructure (AMI): Includes communication networks in 
various levels of the infrastructure hierarchy, smart meters, Meter Data 
Management Systems (MDMS), software application platforms, and interfaces 
to transmit and process data.

•	 Dynamic Line Rating (DLR): Transmission owners can determine thermal 
capacity and estimate line rating in real-time.

•	 Phasor Measurement Unit (PMU): Electronic devices that measure AC phasors 
and synchronize these measurements with Global Positioning System (GPS).

•	 Reactive Power Compensation (RPC): Power electronic devices for the control 
and compensation of reactive power.

In distributed generations, new business models are needed to manage RES and 
load consumption. Microgrid clusters or multi-microgrids [5, 6] are made up of 
many adjacent interconnected microgrids within a certain region, which could sup-
ply energy to each other for the optimal RESs usage. This timely review focuses on 
blockchain applications in microgrids and microgrid clusters.

The common approach of utilizing renewable energy locally is peer-to-peer 
(P2P) energy trading among agents within microgrids and microgrid clusters [7–9]. 
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Traditional consumers could only buy electricity that is transmitted over a long 
distance from energy suppliers. P2P energy trading makes renewable energy bal-
ancing possible, in which prosumers (generate and consume electricity agents) not 
only meet their own electricity demand with RESs but also sell surplus energy to 
other consumers who are in short of supply within microgrids and microgrid clus-
ters, instead of feeding the surplus energy into the power grid [10]. Energy trading 
between prosumers and consumers is called P2P energy trading [11]. Noted that 
P2P energy trading is not only in closed form and consumers could purchase elec-
tricity from the main grid and other microgrids within a microgrid cluster. The tran-
sition to a renewable energy era requires a clean energy market trading mechanism, 
to incorporate technologies upgrade and secure energy and monetary transactions 
[12]. Apart from these, systematic verification also needs to be implemented for the 
security and efficiency of electricity trading.

Blockchain technology uses Internet of Things (IoT) to facilitate negotiation 
between agents for distributed energy transactions. With wireline or wireless data 
links distributed across the mesh network, meaningful real-time services will be 
accessible to consumers, such as information about over energy usage. Consumers 
can automatically respond to their needs. Blockchain-based ledger has the advan-
tage of letting consumers and vendors energy transactions, whilst actors have no 
access to each other’s identity.

Blockchain technology is very suitable for P2P energy trading as the decentral-
ized structure of the blockchain naturally matches with the implementation of con-
trol and business processes in microgrid [13]. Nakamoto [14] created blockchain 
technology and the Bitcoin system. The P2P electronic money system, i.e., Bitcoin 
is the original application of blockchain technology. The blockchain is a type of 
database technology. It is revolutionary to find a simple and resourceful method that 
blockchain guarantees the underlying data remains true as time progresses [15]. A 
blockchain is combined with cryptographically linked blocks. The newly created 
block is linked to preceding blocks to avoid information being tampered. Although 
blockchain initially focuses on recording transaction logs in the blockchain, con-
tents in each block can record other data or even logistic information. Moreover, a 
Smart contract [16] is a certain algorithm defined by users and contains some opera-
tional procedures. A smart contract could run a specific program automatically, 
which could complete negotiation, settlement, and payment between prosumers and 
consumers automatically [17]. These characteristics make blockchain ideal ICT for 
P2P energy trading.

Blockchain technology composes a list of principal functionalities, such as:

•	 Monitoring—When signed in, the user can view a list of parameters in real-time, 
such as live energy usage of the domestic appliance; the energy consumed by the 
network (microgrid); the energy output by the photovoltaic panels; ratio of 
energy used from local production and microgrid.

•	 Trading—The user can examine the amount of energy stored with the energy 
storage, and choose an available energy supplier to receive the corresponding 
daily sales rate. Once the supplier has been identified, the user can set the amount 
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of energy to be sold. The user can permit the sale transaction after identifying the 
revenue for the transaction. The transaction will be recorded in the Blockchain 
ledger.

•	 Recording—The user can record the data regarding system operation (e.g., 
energy export and import from the microgrid) and transactions with energy sale.

Cities can be smarter by adopting innovative ICT solutions for accumulating and 
processing big data created by IoT devices, wearable devices, and sensor networks. 
A dedicated simple mobile application will promote the consumer to participate in 
the grid, share information, and buy/sell energy between the involved nodes (energy 
providers and consumers) with Blockchain ledger.

In 2018, the Chinese blockchain industry white paper [18] stated that blockchain 
is leading a new round of technological and industrial revolutions around the world. 
A survey published by the German Energy Agency [19] also stated that 21% of the 
respondents think blockchain is a revolutionary technology for the energy industry 
while 60% believe that it will be further disseminated. A report published by the UK 
Government Chief Scientific Adviser [20] stated that blockchain would help the 
government to reduce fraud in transactions, enhance security against cyber-attack, 
and reduce the cost of paper-intensive processes. Blockchain technology has many 
advantages as follows:

	1.	 Decentralization: With each participant holding a decentralized ledger that 
records all the transaction information, each participant could get complete logs 
of transactions, which will guarantee transparent transactions.

	2.	 Automation: Smart contract, a programmable code stored in the blockchain 
could be executed automatically when the agreements between different parties 
are met and record changes in the decentralized ledgers.

	3.	 Security: With distributed consensus algorithms, cryptographic hash functions, 
and public-private key cryptography, it is possible for secure transactions 
between different parties and the ledgers would not be tampered by malicious 
nodes or cyber-attack, which will maintain database security.

	4.	 Compatibility: Decentralized ledger will not only store the logs of transactions 
but also the information such as usage of resources and Internet of Things (IoT) 
devices.

It should be noted that this chapter is different from the preceding review wrote 
by Andoni et al. [12], which focuses on blockchain applications of the whole energy 
sector and gives a list of recent blockchain research projects and startups. In com-
parison to Ref. [11] which focuses on comparisons between different microgrid 
trials and projects, this chapter provides a comprehensive review of blockchain 
applications in microgrids. In addition, this review focuses on state-of-the-art 
researches of blockchain applications, while Ref. [21] focuses on analyzing differ-
ent business models of P2P electricity trading. This review focuses on blockchain 
applications in microgrids and microgrid clusters and introduces the schematic 
operational mechanism about the P2P energy trading model with blockchain. The 
main contribution of this chapter can be summarized as follows:
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	1.	 The drivers and technical background of blockchain for microgrid P2P energy 
trading are analyzed.

	2.	 The state-of-the-art of blockchain applications in the energy sector are reviewed.
	3.	 The schematic operational mechanism of the P2P energy trading model is intro-

duced. A novel smart contract-based hybrid P2P energy trading model with 
cryptocurrency is described.

	4.	 The future applications of blockchain in microgrids are envisioned.
	5.	 The advantages of using blockchain with microgrids are summarized and the 

challenges with blockchain-based P2P energy trading are discussed.

The rest of this chapter is organized as follows. Section 3.2 presents the motiva-
tions for blockchain and P2P energy trading. Section 3.3 provides the fundamental 
of blockchain, such as the technical framework and key elements. Section 3.4 gives 
an overview and classification of state-of-the-art blockchain applications in the 
energy sector. Section 3.5 introduces the schematic operational mechanism of the 
P2P energy trading model and presents a new smart contract-based hybrid P2P 
energy trading model with cryptocurrency. Section 3.6 envisions the future applica-
tions of blockchain in microgrids. Section 3.7 discusses the advantages of using 
blockchain with microgrids and the challenges for blockchain-based P2P energy 
trading. Section 3.8 concludes the chapter.

3.2  �Motivations for Blockchain and P2P Energy Trading

The increasing number of distributed energy resources, electrical energy storage 
(EES) systems, and smart meters serve as the underlying motivation for blockchain 
and P2P energy trading. This section presents the historical and future development 
of these resources to demonstrate that there is a need for blockchain in P2P energy 
trading.

3.2.1  �Distributed Renewable Energy Resources and Electrical 
Energy Storages

The technological advancement (e.g., improved efficiencies) in distributed RESs 
would help to establish a distributed energy market. P2P energy trading is the most 
popular form of the distributed energy market with blockchain. As fossil fuel elec-
tricity generation declined for the fifth consecutive year in 2017, there was also a 
boom for renewable electricity generation such as solar (+21.9%) and wind 
(+15.1%) [22]. As reported by the International Energy Agency (IEA) as shown in 
Fig. 3.1, solar power showed a 40% development in power generation in 2017 with 
respect to 2016. To meet the IEA’s sustainable development scenario (SDS) target, 
it needs average yearly growth of 17% from 2017 to 2030 [23]. Figure 3.2 shows the 
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global cumulative residential PV installations [24] and there will be a boom for resi-
dential solar PV in the coming-future energy sector [25].

Moreover, battery prices have decreased by 22% from 2016 to 2017 and are 
continuing to reduce [26]. The average residential energy storage system installa-
tion cost is estimated to reduce from $1600/kWh in 2015 to $250/kWh by 2040 [27, 
28]. The global installed capacity of EES is increasing rapidly to alleviate the 
adverse effects of PV systems [28].

The development of distributed RES and EES provides the basis for blockchain 
development in the distributed energy market.

3.2.2  �Smart Meters and Wireless Communication

A smart grid is integrated by intelligent control, monitoring, and communication of 
energy consumption data. Smart meters are vital components of a smart grid by 
helping consumers to minimize electricity cost and consumption in real-time, and 
accurate billing. Compared to the traditional automatic meter reading (AMR), 
Advanced Meter Infrastructure (AMI) with smart meters enables an efficient way to 
control and communicate different participants [29]. The smart meter deployment is 
growing rapidly in the world as shown in Fig. 3.3 [30].

Fig. 3.1  Solar power generation on historical development and targets [23]
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The wireless sensor networks (WSNs), such as the Zigbee devices network is 
used in smart grid communication [31]. With great security and reliability, the 
Zigbee devices are widely used for monitoring energy systems and energy manage-
ment of buildings and homes [32].

Blockchain is a great tool to deal with the problems of security and privacy con-
cerns during the share of information and data authentication [33]. Minoli et al. [34] 
claimed that blockchain is important in IoT environments. Reference [35] proposed 
a secure energy trading system within an industrial IoT environment through con-
sortium blockchain.

With the increasing deployment of IoT devices, we could foresee that IoT devices 
will facilitate the blockchain technology in the energy sector. Reference [36] pro-
vides a communicating power supply (CPS), by which electricity metering, compu-
tation, and communication between IoT devices are achieved with a very low cost. 
CPS provides a promising way to enable energy management of buildings or other 
entities for great energy savings. As discussed earlier, using blockchain with smart 
meters or other IoT devices would bring significant benefits to all participants.
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3.3  �Fundamentals of Blockchain in Microgrids

Blockchain is a novel technology and the fifth disruptive innovation following 
mainframes, personal computers, internet, and social network [37, 38]. In this sec-
tion, we examine the technical background of blockchain technology, focusing on 
the technical framework, the operational mechanism of blockchain, and the con-
tents of a block. Comparisons of different consensus mechanisms and the classifica-
tion of blockchain in admission mechanisms are given.

3.3.1  �The Blockchain Framework

Blockchain uses distributed consensus algorithms, hash function, and asymmetric 
cryptography which is suitable for the Internet where there is a trust issue. Without 
third-party interventions, blockchain could ensure the data in the blocks stay true 
over time by solving the challenges of double-spending [39] and the Byzantine 
Generals Problem [40]. Byzantine Generals Problem will lead to different nodes 
with different ledgers, which breaks the rule of consistency. There is a group of scat-
tered client nodes contained in the blockchain network, and each node holds a 
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Fig. 3.3  Global cumulative installations of smart meters [30]
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distributed database that is the record of all transactions with the characteristics of 
security, tamper-proof, and decentralization [41]. The transaction is firstly verified 
when transaction data is converted into a “data block” or “block”. Based on the 
confirmation mechanism for the blockchain, the transaction was irreversibly con-
firmed after a continuous verification of 6 blocks [42, 43]. With the linked block in 
a chronological structure, blockchain would record all the transaction information 
that have accomplished and use cryptography technologies to protect data integrity 
and tamper-proof.

As Fig. 3.4 shows, the framework of the blockchain contains six layers consist-
ing of data, network, consensus, incentive, contract, and application layers [44]. The 
details of the individual layer are discussed as follows:

•	 Data layer: contains all transaction data which is stored in the blocks. The layer 
secures the data with asymmetric cryptography [45], to encrypt data and time-
stamp the block to ensure the chronological sequencing order of the transaction. 
Merkel tree [46] verifies the data integrity and to ensure the data is 
non-tampered.

•	 Network layer: contains the whole P2P network of all nodes. The transmission 
and verification mechanism of the data are defined in this layer [47].

•	 Consensus layer: includes all consensus mechanism algorithms, which are core 
technologies of blockchain for solving the problem of how to achieve consistency 

Fig. 3.4  The blockchain framework
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of data in distributed scenarios [48]. Consensus mechanism [49] ensures the 
blockchain nodes reach the consensus in the whole network on the block infor-
mation. The recent block is included in the blockchain. The blockchain informa-
tion saved by the nodes is consistent and immune from malicious attacks [50]. 
The most famous consensus mechanisms include Proof-of-Work (PoW), Proof-
of-Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT) [51]. The imple-
mentation of these consensus mechanisms and in general the operational 
protocols of blockchain systems are agreed from the platform community and 
executed by different platforms automatically. More advanced projects led by 
companies, often develop their own platform, with their own consensus (and 
sometimes their own cryptocurrency, etc.)

•	 Incentive layer: incents nodes in the network to be miners or validator nodes, 
who record or validate the transactions and information in the new block accord-
ing to record regulations. When the miner or validator node completes its task 
and the new block is verified by the network, the validator or miner will get the 
monetary rewards of newly generated cryptocurrencies and the transaction fees 
paid by the traders. The transaction fees depend on how rapidly the transactions 
are confirmed by the miners [52].

•	 Contract layer: contains all kinds of script code, programming algorithms, and 
smart contracts. The smart contract is a critical aspect of the blockchain, which 
could be implemented with the Ethereum platform [53, 54]. Ethereum is a public 
and open-source distributed computing platform that allows smart contract 
functionality.

•	 Application layer: represents the applications that are derived from blockchain 
such as Bitcoin. Blockchain has been used in several industries including finance, 
logistic, IoT, and energy [55].

3.3.2  �Blockchain Operational Mechanism: A Case Study 
with Bitcoin

This section presents the blockchain operational mechanism with a Bitcoin case 
study. The Bitcoin system is a peer-to-peer network that stores all transaction infor-
mation in the blockchain. The first block of Bitcoin is known as the Genesis block. 
The Bitcoin system completes the first P2P electronic cash system where participa-
tors could trade with each other without any intermediaries, as blockchain will 
secure transactions [56]. Bitcoin is one of the cryptocurrencies that can be traded in 
the exchange for fiat currencies. It is decentralized without third-party control in the 
bitcoin network [57]. Bitcoin has reached its maximum total market capitalization 
of around 273.62 billion USD in 2017 [58], while the market capitalization is only 
about 0.04 billion USD in 2012.
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Anyone can join the Bitcoin network with the same technical standards and 
include their own transaction information to extend the blockchain. The blockchain 
operational mechanism is shown in Fig. 3.5. A transaction will be submitted to the 
Bitcoin network while participant A transmits bitcoins to participant B. If the trans-
action is viable, then the node will broadcast the transaction to other nodes through 
verification. Secondly, validated nodes, also called miners, would collect all the 
transaction information in the past 10 min and add them to a block with a time-
stamp of each transaction. Validator nodes would compete with each other based on 
the computational power to solve a cryptographical puzzle for adding a new block 
to the blockchain. The challenge of solving the problem is a variable parameter, 
which is determined by the network setting [59]. The average speed of generating a 
new block is 10 min/block. Bitcoin network will re-calculate and set a new diffi-
culty value at every 2016 blocks (Eq. 3.1) [41, 60]. The miner will announce the 
solution to the entire network when it solves the puzzle and other nodes will confirm 
the solution. The new block is directly included in the blockchain if there is only one 
legitimate block. Multiple branches will occur when there is more than one block 
generated simultaneously. In this case, the chain with the most workforce or to be 
the longest will eventually win. Other branches of the blockchain will be isolated 
and eventually eliminated.

Step 1: Peer A would like to transmit bitcoins to peer B;
Step 2: Validator nodes compete with each other to earn the right to add a new block 

to the blockchain;
Step 3: The newly generated block is transmitted to all the nodes for verification;
Step 4: The block successfully passes through the verification;
Step 5: The block is included to the blockchain;
Step 6: Peer B gets bitcoins transmitted from peer A.

Fig. 3.5  The operational mechanism of the Bitcoin system

3.3  Fundamentals of Blockchain in Microgrids



276

3.3.3  �The Block Content

The contents in a block (especially the first block) represents the blockchain mecha-
nism. A block is classified into two components including block header and block 
body (Fig. 3.6) [61]. A block header data takes up 80 bytes of storage space, which 
contains information of Bitcoin protocol version, pre-block hash, Merkel tree root, 
time-stamp, difficulty, and nonce. Pre-block hash is received from the prior block 
with the cryptographic hash function, i.e., Secure Hash Algorithm SHA256 [62]. 
Merkel tree root is the digest of transaction information stored in the block body 
through hash function [63]. Time-stamp presents the time when the block was cre-
ated. Blockchain defines the difficulty to limit the time spent for generating a new 
block [64]. Nonce is used for adjusting hash outputs of the block header to satisfy 
the difficulty limit [65].

According to the blockchain operational mechanism, pre-block hash and time-
stamp provide chronological linking of blocks. The block header can represent the 
whole block with the Merkle tree root and can be transmitted and processed inde-
pendently. Although the transaction information stored in the blockchain is in a 
chronological sequencing order, each node could only check the last block to vali-
date that all blocks have not been tampered and simplify the verification process.

Block Header Block Body
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Fig. 3.6  The contents of a block in the blockchain
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As the difficulty is adjusted at every 2016 blocks, Xn is the time (in seconds) of 
the nth block being mined. Then the difficulty is adjusted at X2016i times for i = 1, 2, 
…. The new difficulty value is based on the previous difficulty value calculated with 
Eq. (3.1) [66].
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where Di and Di − 1 (unitless) are the difficulty in the ith segment (X2016(i − 1), X2016i) 
and (i − 1)th segment (X2016(i − 2), X2016(i − 1)), respectively. The difficulty stipulates that 
a block is valid only if the hash output of the block is less than the difficulty. The 
hash output will eventually become less than the difficulty by adjusting the time-
stamp, Merkel tree root, and nonce. It should be noted that the average block gen-
eration rate of 10 min/block refers specifically to the Bitcoin system that uses the 
PoW consensus mechanism. In other systems such as Ethereum, the average block 
time is much faster and at the rate of 15–20 s. There are energy blockchain projects 
aiming for close to real-time clearing and execution, such as the Tobalaba test net-
work build by the Energy Web Foundation where block time varies between 3 and 
10 s [67].

3.3.4  �Consensus Mechanisms

It is crucial to maintain credible information in a distributed ledger. In a distributed 
network, when two parties communicate with each other, it would be difficult to 
confirm whether the message is correct or has not been tampered, which is a famous 
problem called Byzantine Generals Problem. There is a need for different consensus 
mechanisms to obtain consistency in the distributed ledgers of different nodes.

There are many different consensus mechanisms that would determine the per-
formance of blockchain, not only in scalability but also speed to reach consensus. 
Therefore, different applications require different consensus mechanisms. Famous 
consensus mechanisms consist of Proof of Stake (PoS), Proof of Work (PoW), 
Practical Byzantine Fault Tolerance (PBFT), and Delegated Proof of Stake (DPoS). 
In PoW, miners compete to solve complex mathematical problems to receive 
rewards such as for Bitcoin. The node has a higher chance to become the block vali-
dator in PoS mechanism when there is more stake; this statement applies in PPcoin 
[67], Nxt [68], and BlackCoin [69]; As for DPoS mechanism, witnesses would vali-
date all signatures and generate blocks of information, which is applied in BitShares 
[70]. PBFT is used for solving the Byzantine Generals Problem, which is applied in 
Hyperledger [71] and Tendermint [72]. Details of different consensus algorithms on 
architectures, performances, and applications could be found in [73, 74].
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3.3.5  �Admission Mechanism in Blockchain

There are three categories of blockchain considering the admission mechanism 
namely public blockchain, consortium blockchain, and private blockchain [75]. 
Accordingly, blockchain can also be categorized into two types based on the per-
mission privilege: permissioned blockchain that includes private blockchain, con-
sortium blockchain, and non-permissioned blockchain, i.e., public blockchain [76]. 
A public blockchain is transparent and open. Any individuals or groups can transact 
in the public blockchain and compete for billing rights. Ethereum and Bitcoin are 
typical representations of the public blockchain. A consortium blockchain is semi-
public that applies to a certain group or organization. It is necessary to pre-specify 
several nodes as validated nodes. The mission of generating blocks is accomplished 
by all defined validated nodes. Other nodes in the consortium blockchain could 
trade with each other but without billing rights. One of the famous applications in 
consortium blockchain is the Hyperledger project initiated by Linux Foundation 
[77]. The private blockchain is in closed form. A private blockchain is a distributed 
ledger and reversible, which is exclusive to companies or individuals [78]. Only 
internal transactions or information within the companies or groups are recorded in 
a private blockchain. The categories of blockchain in the admission mechanism are 
presented in Fig. 3.7.

In summary, this section reviews blockchain considering blockchain framework, 
operational mechanism, consensus mechanism, and admission mechanism. These 
technologies would change the energy sector significantly.

Fig. 3.7  Categories of blockchain in admission mechanism
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3.4  �Recent Research of Blockchain in the Microgrids

This section provides a state-of-the-art review of blockchain applications in 
microgrids. This review spans from operational mechanisms to applicational inno-
vations of blockchain. These focuses are classified into four categories: P2P energy 
trading between consumers and prosumers, vehicle-to-vehicle energy trading, car-
bon emission trading, and energy demand-side management.

Figure 3.8 presents the percentage share of worldwide blockchain initiatives in 
the energy sector between March 2017 and March 2018 [79]. As shown in Fig. 3.8, 
most blockchain initiatives focused on five applications, i.e., P2P transactions, grid 
transactions, energy financing, sustainability attribution, and electric vehicles. P2P 
transactions are the dominant application.

3.4.1  �P2P Energy Trading Between Prosumers and Consumers

Currently, most low-carbon electricity is transmitted across the grid [6]. Recently, 
there were projects demonstrated that microgrids promote renewable energy local 
utilization and enhancing power supply reliability and efficiency. Successful proj-
ects include Brooklyn Microgrid operated by Transactive Grid in Brooklyn, 
New York [80], and Power Ledger project operated in Australia [81] Power Ledger 
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Fig. 3.8  Percentage share of blockchain initiatives in the energy sector worldwide between March 
2017 and March 2018 [79]

3.4  Recent Research of Blockchain in the Microgrids



280

(POWR). These projects demonstrate that microgrids will bring economic interests 
to both consumers and prosumers [82].

POWR [81] is an Australian start-up that focuses on the use of distributed energy 
sources (DERs) like solar and wind energy inexpensively. Different from traditional 
methods, Power Ledger appeals for P2P energy transactions by recording the con-
sumption and generation in real-time and trading in a transparent platform that 
allows participants to select the power source. POWR is a transparent and secure 
energy trading platform that uses two different tokens, i.e., POWR and Sparkz to 
trade energy between consumers and prosumers. POWR is the utility token that 
allows participants access to and use the platform, while Sparkz represents the 
tokenized value of electricity, which is used for energy transactions [83]. The dual 
token ecosystem model is created to synchronize the ecosystem globally. The trans-
action platform is powered by a public Ethereum blockchain with a smart contract.

The focuses in P2P energy trading could be categorized into two categories 
(based on the trading models and the optimization methods) as follows:

•	 Trading models: Literature [84] has listed and discussed the motivations, chal-
lenges, and market structures of three different P2P trading markets, including 
the full P2P market, community-based market, and hybrid market. In brief, it 
means that participants or communities could merely trade with each other, or 
participants and communities could trade in a hybrid way. Literatures [7, 85] 
proposed a four-layer system architecture of the P2P energy trading model with 
three dimensions, which are categorized by key functions involved in P2P energy 
trading, the size of the peers participating in P2P energy trading, and time 
sequence of the P2P energy trading process. The simulation results demonstrate 
that P2P energy trading could minimize the energy exchange with the utility 
grid. Local generation and demand would be more balanced by increasing a 
variety of peers in a microgrid, which would enhance the advantages of P2P 
energy trading.

•	 Optimization methods: The authors in [86] analyzed two separate competitions 
include (1) price competition among the sellers and (2) choice of seller among 
the buyers. A new game-theoretic model is presented to deal with these two prob-
lems. To maximize the utility of participants as well as social welfare, an effi-
cient double auction mechanism was proposed in [87]. A smart contract is also 
an efficient technique to implement P2P energy trading, literature [88, 89] pro-
posed an auction model incorporating smart contract for energy trading between 
prosumers and consumers. Literature [17] deems smart contract as an energy 
supplier which would complete negotiation, settlement, and payment automati-
cally and balance the system through settlement procedure. Different from ear-
lier, there are many papers [90–92] that are focused on physical impacts in the 
microgrid. Di Silvestre et  al. [92] proposed a new method for calculating the 
energy losses and attribution during energy transactions between consumers and 
prosumers. Similarly, Liu et al. [90] aimed at minimizing the overall energy cost 
and P2P energy sharing losses in the distribution network.
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In summary, there are many publications focus on P2P energy trading with 
blockchain whatever in electricity trading models and market optimization meth-
ods. More different trails with different market mechanisms need to have experi-
mented. More different factors that affect P2P energy trading should be considered, 
such as power lines congestion and participants’ privacy protection.

3.4.2  �Vehicle-to-Vehicle Energy Trading

Electric vehicles (EVs) can charge their batteries through localized vehicle-to-
vehicle energy trading. In general, we could classify the different EVs with different 
usage patterns into two sets: EES could satisfy the users or not. EVs that could not 
satisfy their power demand could trade with other EVs that have unused electricity, 
by which it would enhance the energy utilization efficiency and avoid the energy 
losses caused by long-distance electricity transmission. In addition, it is also an 
effective method to minimize the impact of charging from the main grid and reduce 
the payments for users in the day time [93]. Blockchain technology will enable 
vehicle-to-vehicle energy trading in preserving privacy and securing payments.

Literature [94] proposed a localized vehicle-to-vehicle electricity trading mecha-
nism among plug-in hybrid EVs. The work illustrated that it could use consortium 
blockchain to obtain trustful and secure electricity trading. Within consortium 
blockchain, there are multiple pre-specified nodes called local aggregators (LAGs) 
to publicly audit the transaction data and perform the consensus process. LAGs act 
as energy brokers and auctioneers to do statistics of the energy demand and supply 
and carry out iterative double auction among EVs to increase social welfare.

Literature [95] presented a new vehicle-to-vehicle energy trading system between 
EVs, which aimed to minimize the impact of the charge of EVs on the power grid 
during the peak period in the day time. The work focused on two sets of drivers: 
those who finished their daily trips with energy surplus in their batteries and those 
required to charge their vehicles during some daily stops. Two optimization algo-
rithms are proposed to determine the best charging schedules and optimal P2P 
delivery prices. The case study shows that it will reduce the total daily energy cost 
by up to 71% through vehicle-to-vehicle energy trading with the optimization 
algorithms.

Considering mobile charging vehicle-to-vehicle (MCV2V), vehicle-to-vehicle 
(V2V) and grid-to-vehicle (G2V) scenarios, Huang et al. [96] proposed an optimal 
charging planning framework to maximize users’ satisfaction and reduce users’ 
cost. The framework is based on consortium blockchain to guarantee the privacy 
and security of electricity trading. A novel improved Non-dominated Sorting 
Genetic Algorithm is developed to solve the optimization problem.

In summary, most of the V2V energy trading has considered the EV electricity 
usage optimization and minimize the electricity cost for the EV owners. But more 
experiments should test the performance effects introduced by V2V energy trading 

3.4  Recent Research of Blockchain in the Microgrids



282

on the EV batteries. What’s more, how to match different trading EVs should also 
be considered.

3.4.3  �Carbon Emission Trading

Carbon credits are the tokens as permission for the entities to emit the greenhouse 
gas. Entities with excess credits could sell to other entities that have emitted excess 
greenhouse gas [97]. As such, different entities would have a different cost for car-
bon emission. Carbon emission trading is an efficient way to reduce emissions and 
motivate entities to upgrade technology [98]. But how to process the carbon emis-
sion information is a difficult problem. Blockchain would provide a new method to 
manage the information of carbon emission trading and avoid fraud issues [99]. All 
information on transactions would be recorded in the distributed ledgers and could 
not be tampered [100].

There are many companies and startups developing blockchains for the carbon 
market, such as Power Ledger, CarbonX [101], IBM [102], and Veridum [103]. 
Power Ledger creates a trading platform for carbon trading. Enabled by blockchain 
and smart contracts, entities could trade carbon credits or certificates between dif-
ferent organizations in a secure way. The immutable distributed ledger would help 
to promise the credibility of an asset [81]. Energy Blockchain Labs cooperated with 
IBM created a carbon asset development platform [104]. The trading platform aims 
to ensure that the data is traceable, transparent, and visible to all stakeholders in 
real-time. It will help not only participants to track their carbon footprints in the 
distributed ledger but also regulators to easily monitor that participants meet their 
carbon reduction goals. CarbonX is the first P2P personal carbon trading company 
in the world that aims to motivate people against climate change by rewarding low-
carbon behaviors of individuals. People who propose carbon-friendly decisions 
including riding a bicycle as an alternative to driving and using electrical appliances 
instead of a fossil fuel one would get the rewards of CarbonX Tokens (CxTs) [105]. 
Blockchain can build a secure and transparent marketplace for personal carbon 
trading.

Literature [106] demonstrated that blockchain technology has the potentials to 
easily track the circulation of carbon credits from generation via ownership trading 
to ultimate redemption. In this way, three main signs of progress would be achieved 
including (1) regulators could easily audit the trials; (2) traders may significantly 
reduce the related time and cost; and (3) renewable energy producers convert their 
credits into money instantly after electricity generation.

Literature [107] proposed a blockchain enhanced emission trading scheme for 
the manufacturing industry with the aim of minimizing the carbon emission. The 
carbon emission could be measured and recorded in the distributed ledgers with the 
characteristics of transparent, secure, and immutable. A novel evaluation technique 
is proposed to examine the advantages and disadvantages of the proposed system 
considering four aspects, including supply, labor, wastes, and energy.
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Different from the above-mentioned papers, a blockchain-enabled reputation-
based emission trading system is proposed in [108]. Participants with a high reputa-
tion have the chance to pick a desirable trade offer and to complete the trade quicker. 
Blockchain technology would provide a rigid and transparent record of permits and 
reputation. The case study concludes that the proposed model is a feasible scheme 
to implement emission trading.

In summary, blockchain would help to manage the carbon emission trading 
information, which would provide a transparent and secure market for fair transac-
tions. But how to match the carbon emission trading entities and maximize the 
environmental benefits should be further researched.

3.4.4  �Energy Demand-Side Management

Demand-side management (DSM) assists the power balance of the power system 
with a series of measures at the consumption side [109]. DSM avoids expensive 
spending on building new power plants and delay to upgrade the transmission lines. 
Literature [110] gave a review of DSM techniques, including frequency regulation, 
direct-load control, demand bidding, and Time-of-use pricing. The study gives a 
conclusion on the advantages of DSM, including to reduce the generation margin 
and transmission grid investment and increase operational efficiency and improve 
distribution network investment efficiency.

Blockchain technology would influence the DSM in two ways:

	1.	 introduce a new virtual cryptocurrency for trading;
	2.	 blockchain enables P2P energy trading.

With the first approach, literature [111, 112] proposed that prosumers in the 
smart grid could trade with each other using a new digital currency, NRGcoin. 
Prosumers who generate renewable energy are rewarded with a certain amount of 
NRGcoins that could trade for energy or trade for fiat money on the exchange mar-
ket. The rewarded ratio of the NRGcoin is variable according to local supply and 
demand, which strives prosumers and consumers to balance supply and demand, 
i.e., achieve demand-side management. Because the more energy supply meets 
demand, additional NRGcoins prosumers would get and the less NRGcoins con-
sumers would pay.

With the second approach, literature [113] presented a new way to keep supply 
and demand balancing over P2P energy trading. Blockchain enables P2P energy 
trading but also causes a problem of energy balance in the network. This paper pro-
posed a game-theoretic model for DSM that considered storage and supply con-
straints in the form of power outages.

In addition, Liu et al. [114] presented an energy sharing model among neighbor-
ing PV prosumers and proposed an internal price and cost model of prosumers. 
Although the model has not integrated the blockchain into the P2P energy trading 
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model, this paper presented another method to achieve DSM through an energy-
sharing model with a price-based demand response.

Most of the research work on Blockchain is concentrated on how to increase the 
efficiency of energy utilization and maximize the utility of participants. As is known 
to all, blockchain is a new-born technology and has many aspects to improve, 
including technology fields and people acceptance. It will be of great benefit for us 
to improve blockchain technology and carry out more experiments in energy fields 
(Table 3.1).

3.5  �The Schematic Operational Mechanism of P2P Energy 
Trading Model in Microgrid Clusters

This section presents the schematic operational mechanism of P2P energy trading in 
microgrids and microgrid clusters. The comparisons of different P2P energy trading 
frameworks are given in Table 3.2. In this section, the authors present a framework 
that includes four different layers for the operational mechanism of the P2P energy 
trading model. The framework consists of a smart contract-based hybrid P2P energy 
trading model with cryptocurrency.

3.5.1  �The Framework and Components of the P2P Energy 
Trading Model

The framework of the P2P energy trading model presents how to implement P2P 
energy trading in the real world. The framework consists of four parts as shown in 
Fig. 3.9. Different from the frameworks showed in Table 3.2, this framework gives 
a comprehensive presentation of how to apply blockchain into the P2P energy trad-
ing model in microgrids and microgrid clusters. The four-layer framework shows 
the schematic operational mechanism of the blockchain-based P2P energy trad-
ing model.

3.5.1.1  �Physical Layer

The physical layer is liable for physical connections, sensing, and gathering the 
information between prosumers and consumers in the model. The main parts of the 
physical layer include transmission lines, converters, and smart meters. Transmission 
lines and converters are deployed on the premises of participants to achieve power 
transmission. Smart meters are the main sensors for tracking the energy generation 
and consumption. Noted that literature [91] had mentioned that several transactions 
occurring at the same time can create heterogeneous operation conditions, it must 
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propose an efficient method to attribute the energy losses to an individual transac-
tion. When the power is transmitted in the transmission lines, the information 
detected by smart meters will help to calculate the power losses during the transmis-
sion. In addition, microgrids should link with each other. One or several common 

Table 3.1  The classification of blockchain applications in the energy sector

Blockchain 
applications References

Traditional 
methods Benefits Challenges

P2P energy 
trading

[7, 9, 35, 
86, 115, 
116]

1. Buy energy 
from the energy 
retailers
2. Consume the 
self-generated 
renewable energy

1. Avoid the 
long-distance 
transmission of 
electricity
2. Promote electrical 
power supply 
reliability
3. Decrease carbon 
emission by using 
renewable energy

1. It is difficult to 
predict the 
renewable 
generation and 
consumption
2. High investment 
to upgrade the 
infrastructure

Vehicle-to-
vehicle energy 
trading

[94, 95, 
117]

1. Charge the 
power in the 
charge stations
2. Charge the 
power at homes 
or corporations 
that have 
installed charging 
piles

1. Reduce the impact 
of charging from the 
main grid
2. Promote electrical 
power supply 
reliability

1. Potential to 
reduce the total life 
of batteries
2. Guarantee to 
safety energy 
transmission

Carbon emission 
trading

[107, 108, 
118]

1. Trade the 
carbon credits in 
the carbon 
exchange

1. Provide a new 
method to manage 
the information of 
carbon emission and 
avoid fraud issues
2. Facilitate the 
management of the 
carbon trading 
market
3. Facilitate the P2P 
personal carbon 
trading

1. Attract more 
persons to join the 
carbon trading 
market
2. It is difficult to 
meter the amount 
of carbon emission 
of personal 
behaviors

Virtual 
cryptocurrency

[111, 119] 1. Use fiat 
currency

1. Provide a new 
method to facilitate 
supply and demand 
balance

1. Protect the 
security of 
cryptocurrency

Blockchain 
enables energy 
demand-side 
management

[113, 120] 1. Direct-load 
control
2. Time-of-use 
pricing
3. Demand 
bidding

1. Guarantee the 
seamless and secure 
implementation of 
demand-side 
management

1. Coordinate the 
preference of 
energy use of all 
the consumers
2. Coordinate the 
energy distribution 
from power 
suppliers

3.5  The Schematic Operational Mechanism of P2P Energy Trading Model…



286

Table 3.2  The advantages and limitations of different P2P energy trading frameworks

Reference Focus Descriptions

[80] Classification 
of layers

Microgrid setup; Grid connection; Information system; Market 
mechanism; Pricing mechanism; Energy management trading 
system; Regulation

Major 
components

Microgrid; Superordinate grid; Blockchain; Energy supply system; 
Microgrid energy market; Energy management trading system; 
Legislative rules

Advantages The layers are able to establish a secure blockchain-based 
decentralized microgrid energy market with the whole operational 
processes and implementation procedures.

Limitations The market design needs additional examination. The socio-
economic incentives of community members to participate 
in localized energy markets need to be studied further to adapt the 
market design to achieve an efficient allocation of local energy 
generation.

[7] Classification 
of layers

Power Grid layer; ICT layer; Control layer; Business layer

Major 
components

Physical components of the power system; Communication devices, 
protocols, applications, and information flow; Control functions; 
Peers, suppliers, distribution system operators (DSOs) and energy 
market regulators

Advantages The layers can reduce the energy transmission between the utility 
grid and microgrid and balance local demand and generation.

Limitations Have not considered how to protect the security of P2P energy 
trading with blockchain. Since P2P energy trading is a typical type 
of decentralized energy transaction, it will lead to insecurity in 
transactions and a lack of transparency. Blockchain would be a 
promising tool to deal with this problem.

[121] Classification 
of layers

Physical layer; Cyber layer

Major 
components

Blockchain; IoT; Cloud; Energy entities in all energy generation, 
transmission, and delivery side

Advantages The layers are able to facilitate the data acquisition and data 
exchange by popular sensing technology and wireless sensor 
network. Decentralized and distributed processing environment 
achieves data processing in a decentralized manner.

Limitations Current energy laws, policy, and energy trading systems need 
reform to support P2P energy trading. The proposed framework 
also has the prospective to change the prosumers’ and consumers’ 
energy consumption behaviors. The consumption changes will 
provoke conflicts between social dissatisfaction and economic 
performance.
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couple points should be set for microgrids toward the main grid. It will help to 
improve the efficient usage of energy and balance the generation and demand within 
microgrids and microgrid clusters.

3.5.1.2  �Network Layer

The network layer is responsible for information communication and value trans-
mission. Prosumers and consumers within microgrids would get access to the P2P 
energy trading market. A secure and transparent communication method is neces-
sary for the P2P energy trading model. Blockchain is an ideal instrument for P2P 
communication and transaction. Blockchain enables many secure distributed led-
gers that are unalterable and holds by each participant. When a transaction is fin-
ished, the earned value would transmit to a certain account of prosumer through 
blockchain. More precisely, we could choose different types of blockchain and dif-
ferent consensus mechanisms mentioned in Sect. 3.2 of this chapter for a certain 
blockchain network. The measured and monitored data of smart meters would 
transmit to blockchain and the data would write into the blocks in the blockchain.

3.5.1.3  �Market Layer

The market layer is liable for the market mechanism and business model. The mar-
ket mechanism means how to implement transactions between prosumers and con-
sumers. In general, prosumers and consumers could trade in the electricity exchange 
market (EEM). Participants would submit their orders with the necessary informa-
tion, including participant ID, the amount of surplus or demand energy, the avail-
able or demand time for the energy, etc. Noted that the prices for the energy would 
be set at an upper limit market price and a lower limit market price sometimes, 

Fig. 3.9  The framework of the P2P energy trading model
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which are corresponding to utility price and feed-in tariff respectively. It would be 
an efficient method to attract prosumers and consumers to join the EEM within the 
microgrid.

As for the business model, it means the procedures for implementing P2P energy 
trading. In general, the procedures could be classified into three parts, including 
bidding, implement, and settlement. Participants would submit their bid orders and 
ask orders in the bidding procedure. The bid orders and ask orders would be matched 
in a certain way defined by EEM. Noted that not all of the bid orders would find 
their matched ask orders. So, LAGs will act as managers to deal with this problem 
by trading with other microgrids or the main grid. The corresponding bills will be 
delivered to these unmatched consumers. During implement procedure, electricity 
will be transmitted from prosumers to certain consumers. LAGs would monitor the 
transmission network in real-time and keep the energy balanced. In the settlement 
period, energy bills will give away to each participant. Blockchain will implement 
payments according to the energy bills with the cost of energy balance.

3.5.1.4  �Management Layer

The management layer is liable for the security of energy supply and balance of 
generation and consumption under the network constraints. Renewable energy 
would facilitate self-sufficient energy supply and reduce the reliance on the main 
grid, which enhances the security of energy supply. Energy trading within the 
microgrid cluster is also an efficient way to secure energy supply. The price respond-
ing mechanism is suitable for participants to maximize their revenues and minimize 
energy bills. The more energy supply matches the demand, the less should be paid 
by the consumers for a certain amount of energy. What’s more, while the network 
constraints are violated, LAGs would balance the network by rejecting the orders or 
introducing energy outside the network, etc.

The main components of a P2P energy trading model could be classified into six 
parts as follows:

•	 Blockchain is the main ICT of the P2P energy trading model. With blockchain, 
two main aims would be achieved: reduce the entrance threshold for participants 
and secure the information and property, which makes P2P energy trading a real-
ity. P2P energy trading is a decentralized market. Blockchain technology offers 
a chance to establish a decentralized market and makes decentralized decisions.

•	 Smart meters are deployed to measure the production and consumption of renew-
able energy of each participant in real-time and transmit the data to the block-
chain system. Moreover, smart meters will help to calculate the power losses 
during the transmission.

•	 EEM is necessary for participants to submit their amount of supply and demand 
and corresponding bid and ask prices, which provides a marketplace and market 
access to trade local renewable energy. What’s more, EEM is also a marketplace 
for LAGs to supervise the balance of the supply and demand and offer a signal 
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for a certain microgrid to purchase the electricity from other microgrids or the 
main grid. When renewable energy is oversupplied in a microgrid, the microgrid 
could trade with other microgrids that have a short supply within the microgrid 
cluster through LAGs or feed into the main grid directly. All of the transactions 
are implemented in the EEM.

•	 LAGs can help to conduct energy trading and electricity transmission. As elec-
tricity is not a virtual commodity, there are specific physical constraints for trans-
mission lines and generators. Each microgrid would need a LAG for energy 
management. What’s more, LAGs would act as a microgrid operator on behalf of 
a certain microgrid to trade with other LAGs of microgrids within the microgrid 
cluster and conducts transactions between microgrids and the main grid.

•	 Transmission lines and converters must be deployed in different renewable 
sources. All of the renewable sources would link with each other to transmit 
electricity. Converters would be used for controlling the transmission direction 
of the current.

•	 As for renewable energy sources, the energy trading model could combine PV 
energy generation and wind power generation. Considering the size and structure 
of the system, the PV plant is the most common renewable energy source within 
a microgrid.

3.5.2  �A Smart Contract-Based Hybrid P2P Energy Trading 
Model with Cryptocurrency

The recent publications on P2P electricity trading can be found in Table  3.3 of 
Appendix. Driven by the enabling renewable energy localized usage maximization 
and enhancing energy supply reliability by P2P energy trading, the authors devel-
oped a smart contract-based hybrid P2P energy trading model with cryptocurrency, 
named “localized renewable energy certificate (LO-REC)”. This model could be 
conducted with the same framework as proposed in Sect. 3.5.1.

As energy trading and electricity transmission between different microgrids 
could go through LAGs, P2P energy trading could be conducted within a microgrid 
or microgrid cluster. Prosumers could not only trade electricity with consumers in a 
microgrid but also trade with another microgrid within a microgrid cluster through 
LAGs, which make up the hybrid P2P energy trading market. Meanwhile, LAGs 
would act as managers to deal with the problem of unmatched orders by trading 
with other microgrids or the main grid.

Traditional renewable energy certificate (REC) is a type of carbon credits with 
the ambition of facilitating the usage of renewable energy and reducing carbon 
emission. REC is an instrument that proves that renewable electricity used by elec-
tricity consumers. A REC is issued when one megawatt-hour (MWh) of electricity 
is generated and delivered to the electricity grid from a renewable energy resource 
[122]. Different from traditional REC, LO-REC is another type of currency which 
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is applied in decentralized renewable energy trading with the same ambition of the 
REC mentioned earlier. LO-REC is proposed to appeal to consume generated 
renewable energy locally instead of feeding renewable energy into the main grid 
and act as the cryptocurrency of P2P energy trading.

Prosumers and consumers could trade electricity with each other in the EEM 
using the LO-REC. The orders are matched (based on Sect. 3.5.1) in the EEM. LAGs 
manage the energy supply and balance the electricity generation and consumption 
under the network constraints. Noted that EEM and LAGs are service providers that 
facilitate the hybrid P2P energy trading in this model.

A smart contract could perform the interface between prosumers and consumers, 
which is an efficient way to implement the P2P electricity trading mechanism with-
out any third-party oversight and complete the transactions automatically. A set of 
rules for the match of the orders, settlement, and payment could be defined in the 
smart contract and implement automatically. There are five key procedures for the 
smart contract to achieve its functions as follows:

	1.	 Receive the bid orders and ask orders for transactions in time slot t;
	2.	 Wait for a certain time for acquiring all of the orders;
	3.	 Match the orders within a microgrid;
	4.	 LAG on behalf of a certain microgrid to trade with another LAG in microgrid 

clusters or main grid for unmatched orders;
	5.	 Settlement for all of the orders.

The schematic operational mechanism of the smart contract is shown in Fig. 3.10.
The pricing of the bid and ask orders could be defined based on the supply and 

demand ratio of the electricity [114]. It is an efficient method to keep the balance of 
the power system through the demand response. Participants could adjust their 
usage time of the electric appliances to maximize their pay off. During the pricing 
time period, a non-cooperative game model could be used to optimize the hybrid 

Fig. 3.10  The schematic operational mechanism of the smart contract
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P2P energy trading model [7]. A Nash equilibrium is a solution to the model for 
each participant to maximize their pay off. Noted that other typical pricing mecha-
nisms and optimization methods for the P2P energy trading model could refer to the 
references listed in Table 3.3 of Appendix.

From the future perspective, the hybrid P2P energy trading model could be inte-
grated with the carbon credits to encourage the reduction of greenhouse gas 
emissions. It is an efficient way to reduce carbon emission by utilizing renewable 
energy instead of fossil fuel, which is an activity of carbon offsetting. The amount 
of renewable energy generated and consumed could be measured by smart meters, 
which paves the way for the future decentralized personal carbon trading. Producers 
who generate renewable energy and consumers who consume renewable energy 
locally would be rewarded with a certain amount of carbon credits. It provides a 
win-win situation to achieve benefits for the energy consumers and the environ-
ment. More systematic analysis and case studies are necessary for application in the 
future. A schematic diagram of the hybrid P2P energy trading model is given in 
Fig. 3.11.

3.6  �Envision Future Applications of Blockchain 
in Microgrids

This section presents a prospect of potential applications of blockchain in microgrids 
and microgrid clusters based on state-of-the-art research. This review gives an anal-
ysis of three areas that blockchain may have significant impacts on.

Fig. 3.11  A schematic diagram of the hybrid P2P energy trading model for microgrids and 
microgrid clusters
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3.6.1  �Machine-to-Machine (M2M) Micropayments

With smart IoT devices and autonomous electric vehicles, there is a challenge to 
achieve auto-payments between different autonomous devices. For example, when 
commercial electric autonomous vehicles run out of energy on the road, these vehi-
cles can find other electric vehicles or unmanned charging piles to purchase the 
power for themselves. In this scenario, blockchain will automate billing and settle-
ment for transactions with transparent and secure features. It will significantly 
improve the efficiency of automated IoT devices and autonomous electric vehicles 
without human intervention.

Reference [123] proposed a novel charging and billing mechanism for electric 
autonomous vehicles (EACs) to charge their batteries. This paper proposed a vision 
of M2M micropayments and implemented a proof-of-concept based on Tangle 
[124], which is an underlying technology of the IOTA [125] cryptocurrency. This 
paper illustrated a framework to achieve M2M micropayments, which consists of 
three major layers: (1) physical and user layer, which is responsible for sensing and 
gathering information concerning the charging process; (2) network and communi-
cation layer, which chooses Tangle as decentralized database and IOTA support 
flash transactions; and (3) services layer, which provides charging services for 
EACs and data insight for service providers.

Reference [126] also focused on using IoT devices to achieve M2M trading. The 
work presented a summary of ideas and applications to introduce transactional 
functionality to the IoT. Then the paper showed an M2M electricity market in the 
context of the chemical industry between two electricity producers and one electric-
ity consumer in detail.

Machine to machine trading is a trend of share economy in microgrids, espe-
cially for commercial electrical autonomous vehicles. It is necessary to execute a 
trial that includes larger networks and implement a more sophisticated pric-
ing model.

3.6.2  �Combined Artificial Intelligence and Blockchain 
for Smart Buildings Energy Optimization

A smart building uses different sensors to collect data about heating, air condition-
ers, and lightings, etc. It uses automated processes to control the building’s opera-
tion according to business functions and services. Sensors can collect information 
concern the status of various devices of the building, and make a better decision of 
using available resources with higher efficiency while incorporating the desired 
behaviors [127]. With more renewable energy sources deployed in smart buildings, 
such as rooftop PV panels, smart buildings would have the potential to operate in a 
more efficient way and decrease the energy cost [128]. Smart buildings can use AI 
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to analyze meteorological data, holiday schedules, including public transport and 
traffic information to reduce energy losses and improve the efficiency and comfort 
of occupants. For example, Verdigris [129], an IoT startup, applied AI technology to 
building management. It can use AI algorithms to offer predictive analysis and 
anomaly detection of the buildings.

In the scenario of smart buildings like office buildings, hospitals, and stadiums, 
it could use blockchain technology to introduce a novel business model for P2P 
energy trading by selling excess energy. Combining AI and blockchain would create 
a new approach to manage renewable energy and lower the energy cost in smart 
buildings.

3.6.3  �Full Life-Cycle Management for Energy Storage Systems

It is important to obtain exact knowledge of EV battery utilization. EV manufactur-
ers like Tesla [130] or BYD Auto [131] use lithium-ion batteries to supply electric 
power. But these batteries must be carefully operated, or it will lead to loss of capac-
ity, reduced efficiency, and lifetime. Operating conditions affect battery perfor-
mance including cycling rate and temperature. Therefore, the performance of the 
battery can vary greatly. Blockchain would be suitable for accurately recording the 
conditions that the battery has faced, with the characteristics of being transparent 
and immutable. Combining these immutable records in the blockchain with the 
physics-based model of batteries can obtain the current health of the batteries 
through accurate state estimation and performance prediction. In addition, it will 
help the insurance company to price premiums and EV leasing dealers to price the 
vehicles fairly according to actual usage and operating conditions [15].

In September 2016, Wanxaing Group unveiled the “Innovative Energy City” plan 
[132]. The company has received many visions of the project, including a project 
proposed by Fujitsu Research and Development Center Co., Ltd. Suzhou Branch 
with main ideas about battery life cycle management of EVs based on blockchain 
technology. The proposal is about saving battery’s history in blockchain for immu-
table and traceable and using a smart contract to evaluate its value for the fair 
transaction.

There are many battery application scenarios in microgrids, such as store suffi-
cient energy produced by PV panels on the rooftop and EV power supply. It is 
important to manage the health of these batteries. Currently, most of the companies 
focus on how to use blockchain to optimize the usage of batteries such as Sonnen 
[133] and WePower [134] but do not explicitly consider the health of batteries. 
Companies should find an efficient and effective way to obtain information on the 
health of batteries.
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3.7  �Standards, Recommended Practices, and Guidelines

Blockchain establishes an open, transparent, and secure P2P network, which has 
significant positive effects on the usage of distributed energy sources. Blockchain 
applications in microgrids will not only achieve value exchange but more impor-
tantly, it achieves P2P information exchange in a more secure, efficient, and trans-
parent fashion. This paper showed the synergy of microgrid and blockchain could 
achieve the following:

	1.	 Blockchain could keep the transactions between prosumers and consumers 
secure and remove the intermediaries to prevent single-point-failure;

	2.	 Transparent and secure decentralized ledgers could trace the origins of energy 
consumed or supplied, deliver prices and supply-demand information to partici-
pants and reduce operating cost by improving business processes;

	3.	 A smart contract could enable automated and decentralized microgrid energy 
management to achieve the balance of demand and supply [113] and provides 
prosumers and consumers optimal bid or ask prices automatically [135];

	4.	 By using self-generated power, consumers could receive a higher revenue by 
purchasing deficient electricity from prosumers at a reduced price than utility;

	5.	 Reduce transmission losses by achieving self-sufficient and use energy in a more 
efficient and low-carbon manner.

Previous works have implied that blockchain-based P2P energy trading between 
prosumers and consumers could provide environmental benefits and cost-saving for 
the participants. Moreover, P2P energy trading can provide economic benefits for 
both prosumers and consumers who engage in energy trading. In a community 
energy system, not everyone can join this network as it has topology and geographi-
cal limitations. In this way, prosumers and consumers will have restricted access to 
the energy trading network, which would help to protect the security of the transac-
tions and keep the privacy of participants secure. Moreover, a permissioned block-
chain system would be required to restrict access to private data of consumers.

Blockchain-based P2P energy trading is suitable for high renewable penetration 
systems. Nevertheless, it also leads to some challenges with respect to security, 
efficiency, and regulation. Firstly, P2P energy trading is a good way to consume 
renewable energy locally, but there is a challenge on how to manage these unpre-
dictable and irregular electricity flows between different prosumers and consumers. 
Secondly, with intermittent renewable energy generation, there is a potential for 
contract violation between bid orders and ask orders. Although we could buy elec-
tricity from the grid to meet the electricity demands, there are challenges for the 
power plants to schedule the generation sources and the power grid to optimize the 
power flow. Thirdly, there is a lack of adequate market regulations and grid manage-
ment of these decentralized energy trading.

Moreover, from the utility companies’ perspective, the usage of renewable 
energy and decentralized energy trading could be seen as a threat. However, it also 
provides a new opportunity for these utility companies to earn profits by providing 
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ancillary services to decentralized energy trading. For example, the utility compa-
nies could construct the necessary grid infrastructures for decentralized energy trad-
ing and provide the grid management and earn the service fee from their consumers.

For future research, this comprehensive review brings the following points to be 
solved in the future:

•	 It must be considered that different market mechanisms and optimization meth-
ods suit different scenarios of P2P energy trading. For example, different domains 
would have different types of load profiles or even have different climates, which 
should propose diverse pricing strategies to suit different scenarios.

•	 To expand the P2P energy trading in a larger territory, the security problems 
caused by diverse bi-directional power flows should be considered seriously. The 
methods for local aggregators to keep the power flows and voltage in the safety 
range should be proposed in the future.

•	 A series of reforms and regulations should be designed for the future P2P energy 
trading market. For example, the third party that regulates the decentralized 
energy trading market should be set up and the related service fee required needs 
to be examined.

•	 The evaluation methods of different P2P energy trading models. The evaluation 
criteria should consider the cost-saving for the participants, the flexibility of the 
proposed model for different scenarios (e.g., renewable penetration), and the 
security and reliability of the power system. The evaluation results would serve 
as the basis for the selection of the most suitable P2P energy trading model for 
different domains.

•	 Big data technologies in blockchain are related to data accuracy and security 
enhancement. These features are core aspects of the blockchain model. Data 
sharing will become easier and more common as accountability and security are 
ensured. Researchers examined the complexities including the continuous expan-
sion of a blockchain system with big data technologies.

•	 Machine learning techniques can be used to identify any abnormal and illicit 
activities that might be happening on the blockchain in real-time. Machine learn-
ing and blockchain have many synergies and interactive applications. The two 
technologies can work together for data mining and security enhancement.

3.8  �Conclusions

This chapter presents a comprehensive review of blockchain applications in 
microgrids and microgrid clusters. The development of decentralized renewable 
energy sources, storages, and smart meters, etc. provide the basic motivations for 
decentralized electricity trading and blockchain applications in microgrids. The 
state-of-the-art review of blockchain applications in the energy sector is reviewed. 
Among these research works and trials, the most promising application is P2P 
energy trading for prosumers and consumers. We present a four-layer framework to 
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demonstrate the operational mechanism of blockchain-based P2P energy trading. 
Under this framework, we discuss a smart contract-based hybrid P2P energy trading 
model with cryptocurrency named localized renewable energy certificate (LO-REC) 
to maximize renewable energy localized usage and enhance energy supply reliabil-
ity. Furthermore, future applications of blockchain in microgrids are envisioned and 
the techniques for blockchain application in P2P energy trading are discussed. As 
low carbon energy will be the primary energy source, this chapter paves the way for 
a number of future researches about blockchain applications in microgrids.

�Appendix

Table 3.3  A systematic review of P2P electricity trading with blockchain

This chapter Li et al. [35] Zhang et al. [7] Tushar et al. [116]

Research 
context

Proposed a smart 
contract-based 
hybrid P2P energy 
trading model. The 
LO-REC is 
proposed to appeal 
to consume 
renewable energy 
locally.

A secure energy 
trading system 
named “energy 
blockchain” and a 
credit-based 
payment scheme, 
to reinforce 
frequent and fast 
energy trading is 
proposed.

Proposed a 
four-layer 
hierarchical 
system 
architecture model 
and determined 
the important 
technologies in 
P2P energy 
trading. 
Blockchain is not 
discussed.

Reviewed the 
adoption of 
game-theoretic 
approaches in P2P 
energy trading, as an 
effective and viable 
energy management 
solution.

Optimal 
pricing 
methods

Noncooperative 
game.

Proposed a 
Stackelberg game.

Noncooperative 
game.

Discussed 
noncooperative and 
cooperative games 
for smart energy 
management.

Price 
consensus 
mechanism

The pricing of the 
bid and ask orders 
are according to 
the electricity 
supply and 
demand.

Energy 
aggregators set 
transaction prices 
according to the 
present energy 
market.

Each peer submits 
its bid/ask order 
with the traded 
price to the energy 
trading market.

Negotiate the energy 
transactions and 
prices among peers 
within the energy 
network.

P2P energy 
trading 
domain

Microgrids and 
microgrid clusters.

Microgrids, 
energy harvesting 
network, vehicle 
to a grid network.

Microgrid. Distributed energy 
resources and 
storage, service, and 
vehicle to a grid 
network.

P2P energy 
trading 
architecture

Prosumers within a 
microgrid or 
microgrid cluster.

N/A Prosumers and 
consumers in a 
microgrid.

Prosumers in a P2P 
network.

(continued)
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Table 3.3  (continued)

This chapter Li et al. [35] Zhang et al. [7] Tushar et al. [116]

Objective 
function

To minimize the 
electricity cost of 
prosumers and 
maximize the local 
usage of renewable 
energy.

To maximize the 
economic benefits 
of credit banks.

To maximize its 
own economic 
benefits for each 
peer.

To maximize the 
social welfare for 
each peer: to 
maximize the payoff 
to each user and the 
revenue of each 
utility company.

Findings P2P energy trading 
within the 
microgrid and 
microgrid cluster 
has the benefits of 
cost-efficient, 
enhancing the 
security of energy 
supply, and 
reducing carbon 
emission.

“Energy 
blockchain” can 
be used in general 
P2P energy 
trading scenarios, 
and avoid to use a 
trusted 
intermediary. The 
proposed scheme 
is efficient and 
secure in the 
industrial internet 
of things.

P2P energy trading 
is able to enhance 
the local balance 
of energy 
consumption and 
generation for a 
low voltage 
grid-connected 
microgrid. The 
increased diversity 
of load and 
generation profiles 
can make energy 
balancing better.

Energy-trading 
distribution 
mechanism in P2P 
networks is needed 
that avoids privacy 
and security threats 
to the end-users and 
sellers.

Kang et al. [94]
Thakur and 
Breslin [136] Park et al. [137] Noor et al. [113]

Research 
context

To enhance 
transaction 
privacy and 
security 
protection, a 
consortium 
blockchain 
method is 
presented to 
achieve localized 
P2P electricity 
trading for 
plug-in hybrid 
electric vehicles.

Microgrids form 
a coalition and a 
microgrid could 
trade renewable 
energy with 
another 
microgrid instead 
of trading with 
the utility grid.

A blockchain-
based P2P energy 
transaction 
platform is 
developed to 
establish a secure 
P2P trading 
environment 
within a smart 
home environment.

A demand-side 
management model 
incorporating 
storage components 
is proposed to align 
supply and demand.

Optimal 
pricing 
methods

Proposed an 
iterative double 
auction 
mechanism.

N/A N/A Non-cooperative 
game.

Price 
consensus 
mechanism

Local aggregators 
work as energy 
brokers for 
electric vehicles 
to execute energy 
bidding.

A peer signals a 
transaction to 
transfer funds to 
other peers.

Each energy 
transaction is 
conducted between 
consumers and 
prosumers. The 
prices are affected 
by the level of 
supply and 
demand.

The price of 
electricity depends 
on the amount of 
energy consumed 
and/or time of day 
of energy utilization.
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Table 3.3  (continued)

Kang et al. [94]
Thakur and 
Breslin [136] Park et al. [137] Noor et al. [113]

P2P energy 
trading 
domain

Vehicle to vehicle 
energy trading.

Microgrids. Smart homes. Microgrid.

P2P energy 
trading 
architecture

Localized P2P 
electricity trading 
system.

Energy trading 
among 
microgrids 
within a 
coalition.

Energy transaction 
between prosumers 
within the smart 
home environment.

Prosumers within 
the microgrid, 
especially for 
environments with 
energy supply 
constraints.

Objective 
function

To maximize 
social welfare.

To maximize the 
total utility of the 
coalitions in a 
coalition 
structure.

To minimize the 
total cost of smart 
homes.

To minimize the 
consumers’ total 
cost.

Findings Consortium 
blockchain 
improves the 
security and 
privacy protection 
of P2P electricity 
trading for 
plug-in hybrid 
electric vehicles. 
The iterative 
double auction 
mechanism 
maximizes social 
welfare.

The coalition 
formation 
algorithm could 
quickly converge 
and produces 
improved 
coalition 
structure, with 
higher scalability 
than a centralized 
coalition 
formation 
algorithm.

Blockchain allows 
a more cost-
efficient P2P 
trading 
environment. The 
P2P energy-
transaction unit 
price is cheaper 
than the unit price 
set by utility 
energy providers.

Demand-side 
management helps 
to maintain the 
supply and demand 
balance and reduce 
stress on the grid. It 
also reduces the 
utility bill of 
consumers by P2P 
energy trading.

Long et al. [9] Luo et al. [135] Zhou et al. [115] Ghosh et al. [138]

Research 
context

Developed a 
two-stage control 
method to achieve 
P2P energy 
sharing in 
community 
microgrids. 
Provided an 
assessment 
framework to 
quantify the 
advantages of 
P2P energy 
sharing. 
Blockchain not 
considered.

Proposed a 
two-layered 
distributed 
electricity 
trading system, 
with the upper 
layer, is based 
on a multi-
agent system 
trading 
negotiation 
mechanism and 
the lower layer 
is based on a 
contract 
settlement 
system.

Proposed a 
multiagent 
framework to 
simulate the 
behaviors of 
prosumers and a 
novel index system 
that includes three 
technical indexes 
and three economic 
indexes to evaluate 
the performance of 
P2P energy sharing 
mechanisms. 
Blockchain not 
considered.

Formulate the selling 
or buying strategy 
selection problem of 
a prosumer as a 
game-theoretic 
problem and 
proposed a 
distributed algorithm 
for each prosumer 
select its own optimal 
strategy.

(continued)
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Table 3.3  (continued)

Long et al. [9] Luo et al. [135] Zhou et al. [115] Ghosh et al. [138]

Optimal 
pricing 
methods

Proposed 
constrained 
non-linear 
programming.

Proposed a 
multi-agent 
coalition 
formation 
algorithm.

Proposed a 
multi-agent 
simulation 
framework.

Nash equilibrium.

Price 
consensus 
mechanism

The supply and 
demand variation 
is used to 
compute the P2P 
trading prices.

Negotiation 
between sellers 
and buyers.

The coordinator 
agent facilitates the 
pricing model to 
produce the internal 
trading price for 
prosumer agents.

There is a platform 
that sets the prices 
for exchange among 
the prosumers.

P2P energy 
trading 
domain

Community 
microgrid.

Active 
distribution 
network.

The microgrid, 
distribution network.

Geographically 
adjacent prosumers.

P2P energy 
trading 
architecture

Prosumers in a 
community 
microgrid.

Prosumers in 
an active 
distribution 
network.

Part of the 
distribution network 
or prosumers in a 
microgrid.

Peer-to-peer energy 
trading or peer-to-
grid energy trading.

Objective 
function

Minimize the 
total energy cost 
of the community.

Minimize the 
total electricity 
cost within the 
active 
distribution 
network.

Minimize the 
electricity cost of 
electrical devices of 
prosumers or 
maximize its 
revenues in the P2P 
energy sharing.

From an economic 
perspective, the 
method maximizes 
the user’s total 
payoff. From the 
technical perspective, 
the method 
maximizes the 
transmission of 
energy between the 
prosumers or 
minimizes energy 
consumption.

Findings P2P energy 
trading promotes 
the benefits of 
communities and 
each individual 
than peer-to-grid 
energy trading, 
increase the 
self-sufficiency, 
and decrease the 
bill of consumers.

The proposed 
distributed 
electricity 
trading system 
can promote 
energy sharing 
among the 
prosumers and 
overall enhance 
the energy 
efficiency of 
the distribution 
network.

P2P energy sharing 
among residential 
consumers has the 
potential to bring 
many economic and 
technical benefits to 
Great Britain in the 
future, compared to 
the conventional 
paradigm.

The distributed 
algorithm determines 
the Nash equilibrium 
and optimal 
transaction price. The 
total energy 
consumption the 
peak load is reduced 
with the optimal 
transaction price.
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Chapter 4
A Time-Synchronized ZigBee Building 
Network for Smart Water Management

4.1  �Introduction

Water is essential and important to improve the health of people. It is an invaluable 
resource and therefore smart water management is necessary to keep water usage 
efficiently. To provide the public with a more comfortable and healthier environ-
ment, the methods and solutions to enhance water management have attracted a lot 
of interest and are being developed intensively. The basic idea of enhancing water 
management is to control the related parameters that are water flow, period, tem-
perature, quality, leakage, etc. Good water management benefits all. For example, 
indoor air quality (IAQ) is a good indicator to determine whether the public could 
have a healthy life or not. As such, to achieve good IAQ, two perspectives are pro-
posed, which are greenery concept [1, 2] and intelligent control [3–5]. Greenery 
concept is to use the natural processes of the plants inside the buildings. The plants 
are mainly planted at roof, wall, balcony, sky garden, and indoor garden. The natural 
processes will reduce the heat content, improve the ventilation, and also save the 
energy consumption from heating, ventilating, and air conditioning (HVAC) sys-
tem. These improvement schemes are highly related to water control, such as the 
automatic irrigation system, the water flow in HVAC, water cooling system, etc. 
Therefore, developing water management will be the first step to achieve a better 
quality of life.

Smart metering (SM) supports distributed technologies and consumer participa-
tion and extracts energy data based on two-way communication [6, 7]. The wireless 
sensor network (WSN) is a vital component in SM communication [8, 9]. The 
ZigBee wireless protocol is commonly used in WSN and adopted as one of the 
standards in SM [10]. Figure 4.1 shows the real-time bi-directional communication 
between customers and the water industry. Figure 4.2 shows the scheme for Smart 
Water Management (SWM) and Advanced Metering Infrastructure (AMI).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52155-4_4&domain=pdf
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To realize the intelligent water control, many sensors monitoring water-related 
parameters are required, and thus, the wireless sensor network is considered due to 
its high scalability, high flexibility, easy installation, and replacement. To have scal-
able, reliable, low power consumption, and low production cost, ZigBee is an 
appropriate wireless protocol to develop the wireless sensor network [11]. ZigBee 
is a short-range communication implemented on Wireless Personal Area Network 
(WPAN) and is recognized by the US and Europe as a wireless communication 
technique for energy management. Figure 4.3 shows the reasons in adopting ZigBee 
in terms of the bit error rate and signal to noise ratio.

However, the time synchronization of the network has not been addressed for 
timely data transmission that can lead to degraded network performance such as 
packet loss, collision, and low latency. In this subchapter, a time-synchronized 
ZigBee building network (TS-ZBN) will be proposed for water management. The 
objective of TS-ZBN is to collect the remotely-sensed data of the whole building 
and transfer them to the backend server. However, some key issues have to be 
addressed. The first one is the huge data flow of the building and the second one is 
the time synchronization of each sensor node. By adapting the idea of high-rise 
building network for advanced metering infrastructure [12], a three-core network 
that consists of a normal layer network (NLN), transverse layer network (TLN), and 
unity area network (UAN) will be proposed and integrated to form ZBN. In order to 
synchronize the nodes properly, a node-to-node synchronization including 

Fig. 4.1  Real-time bi-directional communication

Fig. 4.2  Smart water management (SWM) and advanced metering infrastructure (AMI)
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coordinator-to-coordinator synchronization and end-to-end synchronization will be 
discussed. It is essential to estimate the clock difference and make use of the com-
mon clock.

In most smart cities, there are many tall buildings. Figure 4.4 shows a compari-
son between low-rise and high-rise buildings in terms of communication network 
requirements.

These high-rises normally present a hostile environment for wireless signals. 
ZigBee is dedicated to smart energy applications and has been extensively adopted 
in smart energy applications. By taking advantage of ZigBee smart energy open 
standard and its mesh capability for scalability, researchers find it superior and well 
organized to use ZigBee in SM applications. It was pointed out that, in an urban 
area, a huge aggregation of data creates the need to investigate building-area 

Fig. 4.3  Robustness ZigBee

Fig. 4.4  Low rises (small network) versus high rises (large network)
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networks (BANs) [13, 14]. However, high rises are typically comprised of hard 
reinforced concrete and this leads to signal propagation problems in general. A 
modern smart city is full of people with a busy life that normally demand commu-
nication using WiFi and Bluetooth for wireless delivery in the same frequency band. 
Thus, the application of ZigBee to advanced metering infrastructure (AMI) in high-
traffic areas needs to be dealt with the potential interferences.

A former design of high-traffics AMI (HTAMI) did not consider interference 
[15]. However, the high attenuation and dispersive characteristics of concrete con-
struction in ZigBee BAN (ZBAN) demand AMI features that mitigate interference. 
In this investigation, an interference model will be investigated. A new design and 
implementation of interference-mitigated ZBAN for HTAMI will be proposed and 
developed.

In this design, there are multiple parameters for consideration, for instance, high 
power and high throughput for fast data transmission and low latency for good qual-
ity of service (QoS). QoS refers to the technology that manages data traffic to reduce 
packet loss, latency, and jitter on the network. However, the magnitude of these 
factors may have contradictory requirements, e.g., the high-power transmission that 
causes the feeling of potential health hazard versus the well-accepted low power, the 
high throughput demanded by users versus the low throughput generally achieved 
in a hostile environment, the low latency commonly requested versus the high 
latency normally occurs in noisy communications. A noticeable and practical solu-
tion can be achieved by optimizing these key parameters. In this investigation, 
experimental work was conducted to acquire the background data applicable to the 
characteristics of the ZBAN.

In the experiment, measurements of a five-story building were conducted to col-
lect good quality data to make it easier for the large-scale modeling and analysis of 
the complicated high traffics scenario to happen. The interference mitigation model 
for ZigBee transmission will also be derived. It will be explained that the nondomi-
nated sorting genetic algorithm-II (NSGA-II) is customized to obtain the pareto 
fronts (PFs) from which the appropriate design will be developed. The optimized 
network engineering tool which is a packet-level network simulator (OPNET) is 
employed for the large-scale evaluation and analysis. The measured data are used 
for optimization and model generation in the OPNET environment. Measurement 
results show that the developed IMM2ZM satisfies the demand-response require-
ment of the US standards among the hostile environment of HTAMI.

The contribution of this study is as follows:

	1.	 A measurement was performed to obtain the data for the formulation of objec-
tive functions of the optimal solution.

	2.	 An interference mitigation model has been derived.
	3.	 A modification to NSGA-II [16] optimization algorithm has been conducted.
	4.	 OPNET evaluation has been carried out for large-scale analysis.
	5.	 A channel-swapping interference-mitigated multiradio multichannel ZigBee 

metering (IMM2ZM) system has been implemented for IMM2ZM system for 
HTAMI.
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This chapter is organized as follows. Fundamental background is given in Sect. 
4.2. The design of IMM2ZM is presented in Sect. 4.3 and the system IMM2ZM 
model is given in Sect. 4.4. The multiobjective optimization for the IMM2ZM using 
NSGA-II is described in Sect. 4.5. The analysis and evaluation of the IMM2ZM are 
shown in Sect. 4.6. Finally, the conclusion is given in Sect. 4.7.

4.2  �Fundamental Background

When considering the communication protocol of the control system, flexibility, 
scalability, and reliability should be included. To make the control system flexible, 
the devices should be installed, adjusted, and replaced easily. Therefore, the wire-
less technique is the right choice to form a communication link. Among various 
wireless communication protocols, ZigBee is a kind of open standard dedicated to 
sensor networks due to its scalability and mesh capability [11]. The control system 
using ZigBee can be realized in a short time and low cost. ZigBee, a WPAN stan-
dard of IEEE 802.15.4 and is similar to Bluetooth, a widely employed communica-
tion protocol in the mobile devices. Both have features such as short-distance 
communication, low cost, low data rate, and low energy consumption. Besides the 
similarity, ZigBee has a longer battery life due to its lower energy consumption than 
that of Bluetooth. The ZigBee device can be operated for at least 2 years and sup-
ports more than 65,000 devices simultaneously. Its scalability and low power con-
sumption are highly suitable for monitoring systems. The ZigBee network mainly 
has three configuration architectures, namely, star, cluster tree, and mesh.

The star network is basically a radial network composed of the main coordinator 
and a series of terminal nodes. The core nodes are mainly responsible for data 
exchange and issuing commands. In a star network topology, all nodes except the 
central node must establish a wireless transmission connection with the central 
node, but the central node may become the bottleneck of the entire network. Once 
the central node fails or transmission is blocked, the reliability of the system net-
work will decrease significantly. Since the star network has three characteristics, for 
example, less frequently implementing upper-layer protocols, lower hardware costs, 
and lower upper-layer routing maintenance costs, its implementation is relatively 
simple. But because of this, its central node needs to perform many data operations, 
such as giving certificates, remote control, and so on. However, the shortcomings of 
this kind of network are also obvious. When the terminal nodes are outside the com-
munication radius of the central node, they cannot achieve communication, which 
makes the system inflexible and greatly limits the coverage and extension of the 
network. In addition, when all the messages in the network are converged to the 
central node simultaneously, it will cause problems such as communication conges-
tion, packet loss, and transmission abnormality.

In a star network topology, the network coordinator is usually defined as the 
central node, and the other nodes in the network are the end nodes. They can only 
communicate with neighboring network coordinator points. Therefore, the 
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establishment of a network coordinator is the first step in the formation of a star 
network, and then the upper layer of the network coordinator determines the net-
work coordinator. In practice, any kind of full-function device (FFD) can be used as 
the central node. When an FFD device is activated for the first time, the first step is 
to send a broadcast signal to find the network coordinator in the network, that is, to 
lock the central node. As long as there is a network coordinator in the wireless net-
work, it can certainly receive its response to verify the password and establish a 
connection link to make this FFD as a normal device in the network. On the other 
hand, if the FFD device does not receive a reply message, then the network coordi-
nator of the central node cannot be found in the entire network. At this time, this 
FFD device can make itself a network coordinator and establish a network with 
itself as the central node. If the network coordinator fails, the entire network system 
will be affected. In addition to this, it cannot be ruled out that if several network 
coordinators produce time synchronization errors or blockages when the errors or 
blockages are eliminated, then there may be multiple central nodes in the network 
at the same time, which will cause conflicts in the decision.

To solve this problem, the network coordinator is given a unique identifier to 
distinguish its identity relationship with each other. The mutual communication 
between two different star networks is completed by the respective network coordi-
nators. The communication within the network is transmitted from the bottom to the 
network coordinator and then to the network coordinator of the other network.

In fact, a tree network is an integration of a V network in which the subordinate 
is allowed to communicate with his immediate superior as well as with the superi-
or’s superior. However, the communication between the subordinate and the supe-
rior’s superior is limited. Multiple star networks can be combined into a tree 
network, and multiple tree structures can be combined into a more complex tree 
network. Therefore, the tree structure is more suitable for cases with large coverage 
areas and a wide range of information transmission. However, the realization of the 
tree structure needs to meet several requirements. First, the address structure must 
be given a dynamic address to each node; second, there must be an effective route 
between each node in the tree structure network to ensure information transmission; 
finally, to indicate the resource situation of the network equipment, a configurable 
tree range must be given.

The advantages of the tree structure are low cost, large coverage, and scalability, 
but it is also difficult to avoid problems similar to the star structure, that is, when any 
node in the network fails or moves outside the coverage, the nodes connected to it 
and subsequent nodes will be separated from the network, causing a collapse in the 
entire network. Therefore, improving network stability has become the goal of the 
tree structure.

When a tree-like topology is used in a ZigBee network, the network coordinator 
is required to function as a relay route and to implement functions such as new node 
joining and basic network management. Because FFD nodes can play any role in the 
network, they can implement data exchange and coordinate control links. As such 
FFD devices dominate the tree network and the number is the largest. The Reduced 
Function Device (RFD) can only transmit data and does not process the data. At the 
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same time, FFD can play the role of RFD coordinator, which is network coordina-
tor; only one FFD can replace the network coordinator in the entire network.

The cluster (mesh) network is a topology with a high degree of extension and can 
be applied in many different scenarios. In a cluster network structure, each node has 
a routing function and their status is the same. They can directly establish commu-
nication links with other nodes within the communication radius. However, its 
shortcomings are also readily noticeable. The wireless communication module of 
the node must be online at all times, and the state must be continuously detected and 
refreshed, which causes the node to consume a lot of energy.

When a cluster network is created, the first step is to determine a cluster head, 
and for other nodes to receive the broadcast information to join the network; the 
second step is to collect and detect environmental information, and finally summa-
rize the information to the cluster head. Compared with tree and star networks, 
cluster networks have stronger self-healing ability, which greatly improves reliabil-
ity. At the same time, network configuration and maintenance are also easier and 
faster to be carried out.

As mentioned earlier, ordinary ZigBee networks, such as star networks or tree 
networks, are more sensitive to single node failures. In addition, problems such as 
the overall unreliability of the network and short information transmission distances 
have limited the application of ZigBee. In this case, the cluster network brings new 
opportunities to ZigBee. The cluster network can provide multiple routes as well as 
the function of automatic routing, which ensures that multi-level hopping can be 
achieved under low energy consumption conditions. Compared with point-to-point 
networks, cluster networks are more suitable for large area coverage wireless net-
works. It has a higher data throughput rate and better fault self-recovery capabili-
ties, which greatly expand the application range of ZigBee technology. Such a 
multi-hop network provides the possibility of multi-link selection for data transmis-
sion between devices, thereby avoiding the obstacles in nodes selection, and reduc-
ing energy consumption. This provides a solution to the operation and management 
of the entire network and the self-recovery of communication failures. Cluster net-
works are the most efficient type of all current network structures. They become a 
focus in wireless sensor network research. The familiar wireless networks such as 
WiFi (IEEE802.11s), WiMAX, and mobile 4G wireless communication networks 
are all based on a cluster structure.

In summary, among the three configurations, mesh network ensures the data 
transmission from source to the destination even when some links fail accidentally. 
Basically, the communication path will be chosen according to power consumption, 
latency, and throughput, etc. However, when the path between two nodes is blocked 
or hidden, the transmission will be dynamically routed to another node with a clear 
path and targets to the destination. The mesh property provides connectivity between 
devices and guarantees the network reliability. In summary, the ZigBee sensor net-
work can provide high scalability on device connection, low power consumption, 
and production cost, high reliability due to its mesh capability. Hence, ZigBee is 
selected as the core protocol in TS-ZBN. TS-ZBN will be illustrated based on two 
parts. The first part is the construction of the building network and the second one is 
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the mechanism of the time synchronization for coordinator-to-node and 
node-to-node.

4.2.1  �ZigBee Building Network

Because of the inherent nature of scalability and mesh capability of ZigBee, a 
ZigBee building network can be set up quickly in most existing buildings at a lower 
cost. Such an adaptive and scalable wireless structure will certainly help to build up 
an efficient demand response for various smart water management applications. A 
good demand and response smart water management system will help the gross 
domestic product (GDP) grow healthily (less carbon emission) to a great extent.

Attention should be drawn to the fact that traffics in a high-rise building network 
is a few hundred times more than in a traditional building network used for indi-
vidual houses or low rises. Since data are normally collected every 15–30 min, the 
major challenge presented to the time-synchronized ZigBee building network in a 
high-rise building is the design of high-density traffic for smart water management.

The general model of a high-traffic building network has been presented in [12]. 
Inspired by this, to facilitate the wireless control system that can be implemented to 
the whole building, three networks, namely, UAN forming unity communication, 
TLN forming horizontal communication, and NLN forming vertical communica-
tion are proposed. The design of ZBN is shown in Fig. 4.5.

	1.	 UAN is a ZigBee mesh network that connecting the unity coordinator (CU) and 
all water sensors within a unity. Typically, the coverage area of UAN is deter-
mined geographically. For example, a typical room is the coverage area of 

CF

CU

UAN

TLN

NLN

Server

Fig. 4.5  The design of ZigBee building network
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UAN.  If the size of the room is relatively large, two or more CU will be 
implemented on the same network. The responsibility of UAN is to collect and 
transmit all sensed data to CU for further processing. By packing well, the sensed 
data from each node at CU, the throughput can be increased and the power con-
sumption and latency can be reduced as well. Mesh topology is proposed for the 
complex environment and also guarantees the communication reliability.

	2.	 TLN is another ZigBee mesh network that connects the floor coordinator (CF) 
and all CU on the same floor. This configuration can remove the external cost of 
implementing relay to extend the coverage area and can guarantee the stability 
of the horizontal network. TLN responses to focus all sensed data from each 
unity and its CU to CF on the same floor. Similar to TLN, CF will gather all the 
information from CU and be ready to transmit to the server. TLN can ensure low 
power consumption and latency as well.

	3.	 NLN is the third network formed by the backend server and all CF. This network 
will have a little different from the previous networks. Compared to unity and 
horizontal communication, vertical communication of NLN is required to deal 
with the signal penetration of the thick wall between two floors. Since ZigBee is 
a kind of short-range transmissions that will be attenuated by the thick wall seri-
ously, hence, NLN will be linked by WiFi or powerline as they have much higher 
penetrating ability compared to ZigBee.

Utilizing UAN, TLN, and NLN, the data from all water sensors can be transmit-
ted to the backend server continuously. The information on the server will be sent 
via the internet to clouds. The authorized users can access the information for ana-
lyzing and make the corresponding control to enhance water management, which is 
one of the goals of the proposed scheme.

A water sensor can detect the presence of water, often by measuring the electrical 
conductivity of the water present and completing a circuit to send a signal. Some 
water sensor systems can be programmed to shut off the water to the house to pre-
vent a small leak from becoming a large one. A water detector is an electronic 
device that is designed to detect the presence of water to provide an alert in time to 
allow the prevention of water leakage. These are useful in a normally occupied area 
near any infrastructure that has the potential to leak water, such as HVAC, water 
pipes, drain pipes, vending machines, dehumidifiers, or water tanks.

4.2.2  �Node-to-Node Time Synchronization

Time synchronization is a critical issue in wireless communication, especially, for 
distributed measurement networks. All nodes within the network should be equal or 
close to the reference clock as the coordinator. Practically, the clock time of the 
devices is generated by crystal oscillator that can be affected by temperature, volt-
age, tolerance, etc. [17]. The time synchronization issue will be addressed in 
TS-ZBN. In fact, the synchronization can be considered as a kind of master/slave 
clock synchronization [18]. The master coordinator will transmit the beacon frame 
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consisting of timestamp data, which can be treated as a reference clock signal, to 
every slave coordinator periodically for synchronization. The concept of master/
slave and beacon frame will be modified. First, the timestamp slot will be imple-
mented to the data frame, which will be followed by the data slot. Because of the 
embedded timestamp slot, the time difference between the transmitting side and the 
receiving side can be estimated by comparing the timestamp slot. For TLN, the 
locations of all CF and all CU are known and defined. Before the data transmission 
is set up, the receiving node will act as a temporal master and send the reference 
signal to the transmitting node, which acts as a slave, for n times with period TM as 
shown in Fig. 4.6.

The slave will receive the reference signals with interval Ts. Then, the clock dif-
ference between two nodes can be calculated as follows:
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where τp represents the propagation delay during wireless transmission. In the ideal 
case, τp can be simply calculated by the transmission distance divided by the light 
speed. However, in practice, it cannot be estimated directly and so τp will a variable 
with the following consideration:

	1.	 The length of transmission d: Since the coordinates of the two nodes are known, 
the length of transmission will provide the most basic information on determin-
ing the propagation delay.

	2.	 Multipath propagation M(t): The signal can be reflected or blocked during wire-
less propagation. The receiving node may receive the bounded signals from all 
directions and so multipath propagation has to be considered.

	3.	 Path loss model PL(d): The signal strength will decay during wireless transmis-
sion practically which is related to the length of transmission d, path loss expo-
nent ρ, noise n(t), etc. Therefore, analyzing the path loss model will give the 
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more practical propagation model and it is useful to distinguish the interested 
signal from the multipath signal as well. Besides, the geodesic-blinded nodes 
within the mesh network will be much more difficult to process synchronization. 
It is hard to find and define the dedicated reference clock signal in a mesh net-
work because each node can communicate with another node without a master/
slave concept.

It is expected that the sensor can be adjusted freely, which means that the sensor 
can be placed everywhere at any time. Therefore, the clock offset computation is 
required in the end-to-end synchronization.

The demand for HTAMI in modernized cities has significantly increased. 
Wireless data delivery basically meets the “versatility” need of HTAMI. Due to the 
open-standard nature and mesh capability, ZigBee is the populated candidate 
adopted by the industry [15]. It is evidenced that ZigBee has been applied to SM [6].

Derived for practical needs, generic design for HTAMI, namely, multiinterface 
ZBAN (MIZBAN), was developed by partitioning the network into two parts, 
namely, the Backbone Network and the Floor Network, and multiple interfaces 
were developed [15]. In the MIZBAN, interference was not particularly treated. It is 
well evidenced that WiFi, Bluetooth, and ZigBee operate in the same frequency 
band [19]. In addition, mobile signals such as 3G and LTE also operate in the vicin-
ity which may cause adjacent channel or cross-channel interference. In order to 
provide a good quality of service, interference mitigation for HTAMI must be 
developed.

Limited former work was devoted to interference in ZigBee [20–25]. For 
instance, ZigBee deployment guidelines that include the safe distance and the safe 
offset frequency for smart grid applications were developed in an attempt to miti-
gate the potential WiFi interference [20]. However, the WiFi interference in the 
high-rises environment is much more complex, since the apartments are close to one 
another and WiFi signals scatter around the environment. Therefore, deployment 
guidelines alone as given in [20] are not sufficient. In general, an optimal solution 
to mitigate interference is difficult to be obtained.

A generic cross-layer optimization for caching was also discussed for multiinter-
face multiradio (M2) WSN [25].

However, only limited discussions were focused on IEEE 802.15.4. A compara-
tive study of WiFi and IEEE 802.15.4 for M2 was provided in [26]. A M2 MAC 
layer design for IEEE 802.15.4 was also presented in [27], but the discussion was 
only based on the MAC layer of ZigBee, and the network layer and application layer 
were not considered. It can be seen that there is still much room for further develop-
ment. In this study, based on IEEE 802.15.4, a cross-layer design into the network 
layer and application layer will be investigated. Particular interest will be devoted to 
the interference mitigation design for HTAMI. An interference mitigation solution, 
namely IMM2ZM, has been developed.

4.2  Fundamental Background



318

4.3  �Design of IMM2ZM

4.3.1  �IMM2ZM Basic Structure

Similar to MIZBAN [15], the proposed architecture of IMM2ZM is also divided 
into the backbone network and the floor network. The architecture of IMM2ZM is 
shown in Fig. 4.7.

The backbone network refers to a multiradio ZigBee mesh network that is formed 
by a reading centralizer (RC) with multiple reading meter terminals (RMTs) 
deployed into the meter room on each floor (this is a common configuration in 
Asia). Multiple radios were used in the IMM2ZM backbone network to share the 
traffic loadings to facilitate fast data delivery. The backbone network interacts with 
the meter data management system (MDMS) to provide the utility services such as 
meter management (MM), meter record order (MRO), and load profile (LP). Apart 
from the backbone network, RMTs are connected wirelessly with in-home displays 
(IHDs) to form another ZigBee single-radio network, namely, floor network, to 
facilitate end-users to obtain real-time meter readings. The functions of each com-
ponent are summarized as follows:

The IMM2ZM incorporates multiple channels to achieve good latency [15]. 
Also, channel-swapping is incorporated to facilitate interference mitigation.

Fig. 4.7  Architecture for IMM2ZM
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4.3.2  �Multilayer Design of IMM2ZM Backbone 
Communication

The network layer and the application layer of the M2 backbone network have been 
designed to interoperate with the current ZigBee standard. ZigBee implements two 
layers on top of the 802.15.4 MAC layer, namely, the Network layer and the 
Application security layer. The IMM2ZM design consists of network initialization, 
swappable channel registration, address distribution, routing control, and applica-
tion security. The process tasks and protocol architecture will be described later.

The Network layer is situated above the IEEE 802.15.4 MAC. One of the mis-
sions of the network layer is to empower IEEE 802.15.4 devices to deal with a vari-
able network size application. There are three main tasks for the network layer such 
as (1) network initialization; (2) address distribution; and (3) routing control. The 
network initialization includes the management of network formation and devices. 
Address distribution aims to arrange a unique network address for each device in the 
ZigBee network. Routing control is a mechanism to maintain the end-to-end reli-
ability and transfer packets through the network.

	1.	 Network Initialization: Basically, this design is mainly applied to multiradio 
devices, e.g., the RC and RMTs. Generally, RMT is the backbone infrastructure 
that aims to relay the information across different floors to the RC.
When an interference source is detected at an occupied channel, the channel-

swapping process will be activated to ensure the reliability of the IMM2ZM system. 
For example, if the ZigBee radio 1 of RMT A at channel B is jammed by strong 
interference and experiences continuous transmission failure, the ZigBee radio 1 of 
RMT A will issue the Channel_Jam_Report to the RC with the jammed channel 
ID. Then, the RC will broadcast the Channel_Scan_Req (channel ID) to all RMTs 
through channel A. After the channel scanning, the RC will send Channel_Result_
Req to each RMT to collect the scan results and then select a new channel and 
broadcast Channel_Update_Req to all RMTs.

The selection of the new channel is mainly based on the principle that channels 
with larger frequency separation will intercept with less cochannel interference. 
Normally, there are 16 frequency channels available in IEEE 802.15.4, namely, 
channel 1–channel 16.

Initially, channel 1 will be assigned as the operating channel. If a traffic jam is 
detected, the channel swapping will be incurred based on Eq. (4.2)
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where CHnew refers to the channel to be selected and CHold is the previous channel 
with jam before channel swapping.

4.3  Design of IMM2ZM



320

The channel-jamming issue will be detected on the new channel until no 
Channel_Jam_report is received.

Figure 4.8 shows the initialization process for the channel swapping.
After the initialization process, the RMT has been assigned multiple channels 

and also registered to the RC to identify the data exchange definition of each chan-
nel. Generally, there are two categories of channels defined in CSA, namely control 
channel and operation channel. The control channel carries not only the data but 
also transmits system management commands. While the operation channel only 
carries the meter reading data. The major role of the control channel is to distribute 
the meter reading collection schedule from the utilities and coordinate the channel 
swapping.

In order to avoid broadcast storming, RC assigns the RMTs into various groups 
and each group shares the same control channel and operation channels. As a result, 
the control broadcast message is sent to RMTs using a multicast transmission. 
Typically, the best channel is selected to be the control channel and if the control 
channel is jammed, the second-best channel will take up the role of the control 
channel.

Figure 4.9 illustrates the registration process for the channel swapping.
Initially, the RC will send Device_Info_Req to each RMT in turn to collect the 

detailed information of the RMT.  The RMT will reply Device_Info_Rsp to the 
RC. RMT will assign the remaining occupied channels as the operation channel 
according to the control channel ID. When an interference source is detected at an 
occupied channel, the channel-swapping process will commence ensuring the reli-

Fig. 4.8  Channel swapping (initialization process)
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ability of the proposed system. For example, if the ZigBee radio 1 of RMT A at 
channel b is jammed by strong interference and has continuous transmission failure, 
the ZigBee radio 1 of RMT A will issue the Channel_Jam_Report to the RC with 
the jammed channel ID. Then the RC will broadcast the Channel_Scan_Req (chan-
nel ID) to all RMTs through channel a. After the channel scanning, the RC will send 
Channel_Result_Req to each RMT, in turn, to collect the scan result and then select 
a new channel and broadcast Channel_Update_Req to all RMTs.

	2.	 Address Distribution: When a device joins the network, it is given a 16-bit short 
address (network address). Such an address is a unique address in the ZigBee 
network. Two distributed addressing schemes are available in the ZigBee net-
work, they are the tree address assignment scheme and the stochastic address 
assignment scheme.

	3.	 Routing Control: Basically, ZigBee supports two routing mechanisms, that is, 
hierarchical (also known as a tree) and table-driven (also known as mesh) rout-
ing. In particular, mesh network routing (table-driven routing) is basically simi-
lar to the ad hoc on-demand distance vector (AODV) routing protocol [28, 29] 
for general multihop ad hoc networks. For the design of IMM2ZM, the address 
distribution and routing mechanism should be considered together since these 
two schemes affect each other.

Fig. 4.9  Channel swapping (registration process)
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4.4  �IMM2ZM Model

In this section, a system model of IMM2ZM is presented. The purpose is to help a 
system designer to estimate the performance of IMM2ZM. An IMM2ZM is consid-
ered with k channels in an n-floor building experiencing the interference from x 
WiFi devices, y ZigBee devices, z Bluetooth devices, and m other wireless devices 
such as 3G and LTE devices from both adjacent channels of IMM2ZM and non-
IMM2ZM network. The total interference power, Pin(x, y, z, m), receipted by a sin-
gle IMM2ZM ZigBee receiver is calculated as [28].
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where PN0, PRX,WiFi, PRX,ZB, PRX,BT, and PRX, others are the noise power, WiFi inter-
ferer power, ZigBee interferer power, Bluetooth interferer power, and interferer 
power from other sources, respectively.

The bit error rate (BER) of a single IMM2ZM ZigBee receiver interfered by x 
WiFi devices, y ZigBee devices, z Bluetooth devices, and m other wireless devices 
including from both adjacent channels of IMM2ZM and non-IMM2ZM network, 
Bx,y,z,m, is evaluated as
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where [30].
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Pfading is the fading loss, PG is the process gain, and γ ≈ 0.85 [31].
The derivation of BER of ZigBee packets among the interference of all potential 

sources is studied. The extreme cases are considered in which the packets are trans-
mitted successfully (Psucc) and all IMM2ZM devices are busy (Pbs). It is assumed 
that the packet length is L bits and h IMM2ZM devices are competing with each 
other. Psucc is the probability of a correct packet successfully transmitted (with every 
bit in the packet correctly transmitted) and Pbs is the probability that all IMM2ZM 
devices are busy when a packet is sent to a specific ZigBee transceiver of IMM2ZM 
devices. Psucc and Pbs are evaluated as
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ZigBee performs clear channel assessment (CCA) four times before reporting 
failure; thus, the transmission probability τ is evaluated from the channel busy prob-
ability α. In this study, four channels are used; hence, α is defined as follows:

	 τ α= −1 4
	 (4.8)

For the purpose of performance evaluation, the packet error rate Perr is evaluated 
by incorporating Pbs into consideration.

Hence, Perr is now defined as

	 P P Perr succ bs= −1 / 	 (4.9)

In IMM2ZM, the channel busy probability α is then derived as
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where α IMM ZM
BT

2 , α IMM ZM
WiFi

2  and α IMM ZM
ZB

2  denote the CCA busy probability of a 
given IMM2ZM device due to Bluetooth devices, WiFi devices, and ZigBee, respec-
tively. α IMM ZM

others
2  refers to other interferers such as 3G and LTE devices.

The tagged IMM2ZM device is modeled as M/G/1 queuing system. It is assumed 
that (1) h IMM2ZM devices are competing; (2) each IMM2ZM device generates 
packet conforming to the Poisson process of packet generation rate λM; and (3) data 
packet size is constant with bM seconds. By incorporating TBO, Tturn, TSW, TACK, and 
following [32], α IMM ZM

ZB
2  is expressed as
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(4.11)

where TBO, Tturn, TSW, and TACK are the time for back off, turn around, switching, 
and transmit acknowledgment, respectively. In Eq. (4.10), channel-swapping has 
specifically addressed to ensure the busy probability of IMM2ZM devices been 
taken into consideration of the interference. E[Γ] is the average number of packets 
served by the tagged IMM2ZM device in a busy period and is defined as 
E[Γ] = 1/(1 − ρ), where traffic intensity ρ = λM(E[Dq] + bM + 2Tturn + TACK). E[Dq] 
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denotes the queueing delay which refers to the duration that the packet in the system 
queues before transmission or discarded. Substituting E[Γ] into Eq. (4.11), α IMM ZM

ZB
2  

is given by
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With the newly defined Perr in Eq. (4.9), the single-hop transmission channel 
throughput S for an IMM2ZM device with single radio is expressed as below.
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	 P P P Pc i s f= − − −1 	 (4.17)

where Lp is the payload of a packet in bytes; Pi is the probability that the time slot 
is idle; Ps is the probability of successful transmission without channel error and 
collision in a time slot; Pf is the probability of channel error occurs in a time slot; Pc 
is the probability that collision occurs in a time slot; δ is the duration of idle time 
slot; Ts is the average channel busy time due to successful transmission; Tc is the 
average channel busy time due to collision; and Tf is the transmission failure time 
due to channel error. Ts, Tc, and Tf follow the meanings from [33], and the relation-
ship between Ts, Tc, and Tf is given by

	 T b T Ts M ACK IFS= + + 2 	 (4.18)

	 T T b T Tc f M ACK IFS/ = + + 	 (4.19)

The overall transmission of IMM2ZM with k radios is now investigated. Consider 
a high-rise building with n floors and each floor has Na apartments. By assuming 
that a smart meter stores Nr records for data recovery and the record length is Nb bits. 
The sleep-to-join time for each node is Ts2j. Therefore, the meter reading collection 
duration for a specific floor demanding c hops from transceivers T (c) is newly 
derived according to the detailed construction of the building as
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T(c) gives an account of multiple hops and multi-channels. The general knowl-
edge of the average delay D is the amount of time required to transmit all the pack-
et’s bits successfully. D is the primary parameter for wireless communication 
network design. For SM, a large D largely impacts the effectiveness of the system 
[32]. To facilitate more advanced applications such as real-time pricing, a low value 
of D is demanded. In IMM2ZM, D is also defined as the time of collection of the 
meter readings of the entire building
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where Tcs,i is the channel-swapping time of the respective Na,i, Tcs,i will be defined 
in Sect. 4.5.

In general, the transmission rate and the number of bits transmitted successfully 
in a unit time, are important performance indicator for wireless communication. In 
essence, data overlay the entire network on the application layer from which they 
are processed. With high traffics in high-rises, the quantity of data transmitted in a 
time slot is bulky. Thus, the transmission rate on the application layer affects net-
work performance significantly.

Therefore, the application-layer transmission rate σ a pertinent descriptor of 
IMM2ZM is defined as

	
σ =

N N N

D
a r b

	
(4.22)

From the analysis, the descriptors provide a holistic view of the latency perfor-
mance that takes the total number of hops and the interference mitigation into 
account. Thus, D and σ are indicative figures to quantify the performance of the 
IMM2ZM in a BAN.

4.5  �Multiobjective Optimization Based on NSGA-II

To investigate the performance of IMM2ZM, the system requirement will be formu-
lated and optimization is needed. It is well known that the genetic algorithm (GA) 
is a powerful optimization technique. GA is commonly used to generate high-
quality solutions to optimization and search problems by relying on biologically 
inspired operators such as mutation, crossover, and selection. In most practical 
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engineering problems including wireless network design, global optimum can 
hardly be found. Therefore, the problem cannot be formulated into a single-objec-
tive optimization problem. Also, most of the problems in engineering demand the 
consideration of multiple conflicting objectives to give a comprehensive and excel-
lent performance. Compared to single-objective optimization, multiobjective opti-
mization has super advantages such as the diversity of multiobjective optimization 
is much wider than single-objective optimization [9]. As a result, multiobjective 
problems lead to the launch of multiobjective evolutionary algorithms (MOEAs). 
The MOEA could be a kind of GA that always searches for a set of non-dominated 
optimal solutions, which is referred to as PF [34].

MOEAs were successfully applied to the optimization of wireless local area net-
work (WLAN) [35]. It is well evidenced that NSGA-II is proven to outperform 
other MOEAs in terms of convergence and diversity functional analysis [36]. It is 
envisaged that NSGA-II is powerful and will provide a wider distribution of the 
solutions during the search for optimal solutions. Thus, NSGA-II [16] is employed 
in this study for a custom design for an optimal IMM2ZM. The developed model 
will minimize the influence of potential interference with optimal throughput and 
minimal latency.

The following tasks illustrate the main design concept behind.

4.5.1  �Initialization

During the initialization, the population size, constraints, objective functions, and a 
number of parameters are determined. The crowding distance, the average distance 
of the two nearest points representing optimal solutions, are calculated to estimate 
the number of optimal solutions.

4.5.2  �Multiobjective Searching Process

The main scope in the multiobjective searching process aims to generate a new 
population for further optimization to reach optimal solutions. Selection, crossover, 
and mutation imitate the process of natural evolution [16]. The objective values of 
each objective function of the individuals in the new population are estimated based 
on the designed objective functions. The ranking of the individuals in the same 
population is based on domination. Recall from [34] that solution u dominates solu-
tion v, if and only if two conditions are true, that is (1) all the objectives in u should 
perform no worse than v; and (2) at least one objective in u should perform better 
than v. Solution u does not dominate solution v if either of the conditions is violated. 
Solutions that are not dominated by other solutions in the population have the high-
est ranking.
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The iteration process will be completed when the maximum generation is reached 
or the output converges, and thus, the PF is obtained. Every solution in the PF is an 
optimal solution and does not dominate each other.

Owing to the simplicity of computation in optimization, prioritized objective 
functions are sometimes used, and weighting factors are assigned to the objective 
functions. In contrast, multiobjective optimization has a wider diversity to search 
for optimal solutions in a wider range. An investigation is made to explore the effec-
tiveness of these two schemes. The comparison will be shown later.

4.5.3  �Network Representation

To model the network, important information such as the number of floors and the 
maximum number of channels will firstly be obtained. The NSGA-II optimization 
will then be customized and incorporated to evaluate the optimal solution.

4.5.4  �Design Constraints

To facilitate the search, it is necessary to assign reasonable upper and lower limits 
of the parameters, which conform to the unique design of the network. Reasonable 
limits may effectively reduce the number of undesirable individuals during the oper-
ation, thus reducing the computing time significantly.

4.5.5  �Design of Fitness Values

In general, for multiobjective optimization, the objective functions are 
expressed as [16]

	

Minimize F x f x f x

x

m

T( ) = ( ) … ( )( )
∈

1 , ,

Subject to Ω 	

(4.23)

where fm(x) is the objective values for each individual in the whole population, 
and Ω is the variable range.

A feasibility study was carried out. However, it is impracticable, if not impossi-
ble, to perform a full-scale measurement in high-rises. Therefore, a prior measure-
ment was performed for the provision of realistic data to support the model 
construction of IMM2ZM. For the same reason described in [15], the performance 
of the large-scale IMM2ZM is analyzed using the OPNET model and simulation 
[37]. Interference mitigation model developed in Sect. 4.4 will be incorporated into 
the OPNET to achieve a full-scale performance evaluation of IMM2ZM.
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There are mainly two parts of the feasibility study, namely (1) A small-scale 
IMM2ZM prior measurement using four ZigBee physical channels; and (2) a large-
scale simulation of the IMM2ZM using OPNET model. The feasibility study is 
mandatory since it analyzes the performance of the developed IMM2ZM. Besides, 
the measured data in the prior measurement also play an important role in the ini-
tialization of the parameters in objective functions for the optimization. For exam-
ple, in Eq. (4.3), PN0, PRX,WiFi, PRX,ZB, PRX,BT, and PRX,others, each varies at numerous 
wireless environment within the floors. These parameters will be estimated based on 
the measured data in the prior measurement to give a more accurate formulation for 
ZBAN at large-scale. In essence, α in Eq. (4.10), TBO, Tturn, TSW, and TACK in Eq. 
(4.12), and Ts2j in Eq. (4.20) were evaluated in the prior measurement in the feasibil-
ity study and, provided good estimates in the large-scale model.

To facilitate testing, an IMM2ZM was set up in a residential building. In the prior 
measurement, a five-floor IMM2ZM using four ZigBee physical channels was 
developed and measured. The five-floor IMM2ZM consists of five four-radio RMTs 
and one four-radio RC. The experimental setup is shown in Fig. 4.10.

Fig. 4.10  Experimental setup for feasibility test

4  A Time-Synchronized ZigBee Building Network for Smart Water Management



329

The data measured in the prior measurement were employed in the formulation 
of objective functions of the optimal solution at large-scale (n = 10, 20, 30). As 
such, a thirty-floor building with eight apartments on each floor, i.e., n = 30 and 
Na = 8, is considered at large-scale. The RC collected the meters’ data once every 
30 min, and the smart meter stored the latest ten records, i.e., Nr = 10. The system 
specifications of IMM2ZM for both the experiment and simulation are summarized 
in Table 4.1.

In the prior measurement, testing was carried out in the meter room from the first 
to the fifth floor to identify the potential WiFi, Bluetooth, ZigBee, LTE, 3G, and 
other interference sources. The measured data from the prior measurement form the 
important trustworthy parameters for objective function analysis. Based on the mea-
sured data, important parameters such as the transmitter and receiver gains, the 
packet generation rate, and the transmission power are optimized (“genes” in the 
algorithm) for the network and device design. On the other hand, D, BER, and σ are 
designed as objective functions.

The objective functions are designed to minimize average D (F1), average BER 
(F2), and maximize average σ (F3). The three objective functions are formulated as
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Subject to , dBi , dBi , dBmRX TX ZBG G P∈[ ] ∈[ ] ∈ −[ ]0 2 0 2 20 20, ,

	

where num is the number of replication of the experiment.
Constraints for each objective function:

Table 4.1  System specification of IMM2ZM

Description Experimental data Simulation data

Number of floor, n (n-floor) 5 30
Number of apartment per floor, Na 8 8
Number of record stored by smart meter, Nr 10 10
Record length, Nb, (bits) 32 32
AES 128bit enabled payload length, Lp, 
(bytes)

60 60

Packet length, L, (bytes) 127 127
Transmission power PZB(dBm) 19.6 [−20,20]
Receiver antenna gain GRX(dBi) 0 0
Transmitter antenna gain GTX(dBi) 0 0
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To fulfill the demand response (DR) requirement for SM, D ≤ 0.5 s [38].

	 BER kb s≤ × ≥−5 10 204; /σ 	

In the Hong Kong environment, a data rate of ∼10–20 kb/s is normally adopted; 
hence, σ ∼ 20 kb/s is employed for evaluation. The NSGA-II scheme is then cus-
tomized to optimize the network. The key parameters are listed in Table 4.2.

With the inclusion of the number of floors (n) and the number of channels (k), the 
performance of the IMM2ZM is optimized for n = 5, 10, 20, 30 and k = 1, 2, 3, 4, 
and simulated values for each objective are obtained to search for optimal solutions. 
As an illustration, the PF for n = 5, k = 4 is shown in Fig. 4.11.

It is reiterated that every solution in PF does not dominate each other. As a rep-
resentative value for SM wireless communication network, BER is chosen as 
5 × 10−4 [7]. From Fig. 4.11(a), D = 0.04 s and σ = 2.1 × 104 b/s. Coupled with the 
objective functions (4.23), (4.24), and (4.25), PZB = 100 mW.

The comparison between prioritized objective functions and multiobjective opti-
mization is now investigated.

Objective functions with prioritized weighting factors are formulated as in [34].
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where ωm is the weight of the mth objective function. fm(x) is the normalized objec-
tive function. gj, hk, and xi are constraints.

The prioritized objective function is now investigated, and weighting factors are 
assigned to explore the effectiveness to obtain the optimum solution. As an illustra-
tion, indicative designs of assigning weighting factors ωm to the corresponding 
objective functions Fm(x) are analyzed, and the corresponding results are shown in 
Table 4.3.

For ω1 = ω2 = 0.1, ω3 = 0.8, the priority of transmission rate σ is the highest 
among D, BER, and σ, the BER exceeds the limitation of SM, i.e., 5  ×  10−4. 
Similarly, when ω2 = ω3 = 0.1, ω1 = 0.8 (i.e., the priority of delay is more important). 

Table 4.2  Parameters setting 
of NSGA-II

Population size 100
Maximum number of generations 200
Crossover type Uniform
Crossover rate 1
Mutation rate 0.2
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Fig. 4.11  (a) PF of BER versus D for five-floor. (b) PF of BER versus σ for five-floor
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Besides, when ω1  = ω3  =  0.1, ω2  =  0.8, BER can be guaranteed within the SM 
requirement; in contrast, the delay D will be increased and exceeds the limitation of 
0.5 s. For cases with an average priority of the three objectives, BER is confined to 
an acceptable level. From Table 4.3, it is concluded that if the priority of the objec-
tives is assigned, there are negative impacts as follows:

	1.	 The limitation of BER, D may not be guaranteed.
	2.	 The diversity of PF will be reduced.
	3.	 D (multiobjecitve) − D(prioritized) > 43%.
	4.	 σ (multiobjective) − σ(prioritized) > 9%.

Thus, the performance of multiple objective optimizations surpasses priority-
based optimization.

The same optimization process was applied to IMM2ZM and reiterated for n = 6, 
. . ., 30, and the corresponding PFs were obtained. The respective optimized values, 
namely, D, BER, σ, and PZB are evaluated and plotted in Fig. 4.12.

Figure 4.12(a) shows the variation of PZB and λM versus the network size n. When 
n increases, a higher received power Pr is needed to overcome the complex interfer-
ence environment and significant fading.

Figure 4.12(b) shows the variation of D and σ versus n. It is seen that D increases 
and σ decrease when n increases. It is important to point out that D < 0.5 s in all 
cases and, thus, fulfills the U.S. standard for SM.  As an illustration, from 
Figs. 4.12(a), (b), when n = 10 and Na = 8, PZB = 91 mW and σ = 2.1 × 104 bps, 
D = 0.2 s which falls within specifications. Alternatively, when n = 10 and Na = 8, 
PZB = 93 mW and σ = 2 × 104 bps, D = 0.4 s which also falls within specifications. 
Thus, the optimization analysis here provides the design platform for the scalable 
and versatile development of IMM2ZM model essential to HTAMI.

The large-scale analysis of the IMM2ZM is investigated with OPNET based on 
the characterized five-floor model data for HTAMI in the Hong Kong environment. 
The large-scale wireless environments are then simulated by incorporating a com-
prehensive consideration of interference sources in a practical situation. In the 
IMM2ZM model, the consideration of the interference sources is based on the com-
mon specifications of real products as well as the HTAMI nature in the densely 
populated area as measured in the five-floor experiment. Typically, in Hong Kong, 

Table 4.3  Design of weighting factors for the objective functions and corresponding results

ωm Fm(x) Description

ω1. ω2 ω3 F1(x)
(D,s)

F2(x)
(BER)

F3(x)
(σ,kbps)

1/3 1/3 1/3 0.07 3.4 × 10−4 19.2 D is 42.8% worse than obtained by IMM2ZM; σ is 
9.5% less than obtained by 1MM2ZM

0.1 0.1 0.8 0.03 6.2 × 10−4 22.8 BER > limitation
0.1 0.8 0.1 0.71 1.2 × 10−4 17.5 D > limitation
0.8 0.1 0.1 0.03 6.3 × 10−4 23.2 BER > limitation

N/A 0.04 5.0 × 10−4 21.0 Optimal result
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there are eight apartments in a high-rise. Normally, one WiFi router is sufficient to 
represent the WiFi coverage of one apartment, thus one WiFi interference source per 
apartment is considered. Moreover, from the analysis of population census by the 
Hong Kong government [39], the average domestic household size in Hong Kong is 
2.9; hence, three cellular phones and three Bluetooth sources per apartment are 
assigned. The simulation condition incorporating the interference sources is listed 
in Table 4.4.

The interference will cause delay overshoot, and thus, the IMM2ZM will activate 
“channel-swapping.” Define Tcs as the “channel-swapping time” for the duration of 
channel-swapping. Figure 4.13 shows the simulated results from OPNET regarding 
D against time for n = 5, 10, 20, 30 under the wireless environment as shown in 
Table 4.4.

Figure 4.13 reveals that, at the turn of the IMM2ZM, there is an unstable period 
of delay overshoot due to Tcs. It can be seen that Tcs = 21, 25, 30, and 80 s for n = 5, 

Fig. 4.12  (a) Optimized parameters PZB and λM versus n. (b) Optimized parameters D and σ 
versus n
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10, 20, and 30, respectively. The delay overshoot aims to reduce interference and is 
mainly caused by channel-swapping. After the lapse of delay overshoot (Tcs), the 
transmission remains stable, hence signifying that the channel-swapping process 
has been completed. It is seen that Tcs increases significantly with an increasing n 
due to the large network-cluster size in HTAMI, and this requires long transmission 

Table 4.4  Wireless environment design in OPNET simulation

Description
Assigned values according to findings from feasibility testing in a prior 
experiment
WiFi Bluetooth Cellular phone signal

Number of 
interference 
sources per floor

8 24 24

Interference 
sources

One router per 
apartment

Three nodes per 
apartment

Three devices per apartment 
(3G:LTE = 2:1)

Power level of 
each interference 
source

20 dBm 4 dBm 33 dBm (3G) 27 dBm (LTE)

Wireless 
standards

IEEE 802.11n IEEE 802.15.1 3G & LTE

Modulation QPSK GFSK EDGE
Frequency 
channels

Randomly assigned 
channels (2.4–
2.4835 GHz from CH 
1 to CH 13)

Randomly assigned 
channels (2.4–
2.4835 GHz from 
CHI to CH 79)

Randomly assigned in UMTS 
frequency bands (2.1 GHz as 
central frequency with CH 1 
to CH 26)

Fig. 4.13  Simulated D for n = 5, 10, 20, 30 by OPNET
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time between nodes. It can also be observed that when the number of interference 
sources increases or when PZB is smaller, Tcs increases.

Define PRX as the receiving sensitivity of the IMM2ZM. PRX is related to the 
gains and losses incurred in the link budget, the transmitting power of interference 
sources, and its associated distance, as well as the distance away from the interfer-
ence sources.

PRX is expressed as

	
P P G G L L L LRX ZB TX RX FS I TX RXdBm( ) = + + − − − −

	
(4.28)

where PZB, GTX, and GRX are given in Table 4.1. LFS (dBm) is the path loss and 
fading, which is related to the transmission distance and wavelength. LI (dBm) 
refers to the loss due to interference, and LTX (dBm) and LRX (dBm) are the transmit-
ter loss and receiver loss, respectively. It can be concluded from Eq. (4.28) that PRX 
increases with an increasing PZB or a hardware design of larger GTX and GRX. However, 
with fixed LTX and LRX, as well as LFS, PRX certainly decreases tremendously due to 
serious interference.

The relationship of Tcs versus n and PRX is plotted in Fig. 4.14, when PZB = −20 
to 20 dBm and n = 1 to 30.

From Fig. 4.14, it is seen that PRX and n affect Tcs significantly. When n increases, 
Tcs increases significantly, because the channel-swapping process requires time to 
detect channel condition and reiterates network-traffics information between RC 
and RMT in high-traffics networks in HTAMI. The improvement of PRX will reduce 
Tcs. It is evaluated that when PRX = −12 dBm, Tcs will be increased tremendously, 
because the link budget reaches the bottom margin of the sensitivity of IMM2ZM.

Fig. 4.14  Relationship between Tcs and n, PRX
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4.6  �Analysis and Evaluation

To investigate the performance of IMM2ZM, an interference mitigation study and a 
latency study were conducted. It was shown that the latency study accounted for the 
IMM2ZM system performance.

4.6.1  �Interference Mitigation Study

Interference under high-traffic conditions weakens signal reception. However, the 
potential interference cannot be ignored for high-rises as a result of the ever-
increasing number of wireless users. As a result, interference mitigation is impor-
tant for high performance, and thus, a study is necessary.

With the experimental setup as shown in Fig. 4.10, the interferers were estab-
lished in the vicinity of the RMT. The RMT was located in the meter room, and the 
access point operated at the same frequency channel as the operating channel 
of IMM2ZM.

During the experiment, D and Tcs were measured from the meter reading collec-
tion. In order to investigate a comprehensive performance of IMM2ZM, five build-
ings with n = 3, 4, and 5, were measured. The results are shown in Fig. 4.15.

Figures 4.15(a)–(c) show the real-time performance of D with the introduction of 
interferers into the buildings for n = 3, 4, and 5, respectively. On each floor, the real-
time delays of a maximum of ten individual hops (referred to as “Hop_<floor_
No.>_<hop_No.>”) are recorded and analyzed. It is seen that D increases by 
60–70% between t = 0 and t = 5 s for n = 3, 4, and 5, since IMM2ZM collects meter 
readings using a single channel. The channel-swapping period ends at t = 15, 20, 
and 25 s for n = 3, 4, and 5, respectively, and D becomes relatively constant after-
ward. This phenomenon is attributed to the fact that the IMM2ZM has successfully 
found a channel with insignificant interference for transmission. When t ≤ Tcs, the 
delay is high since data delivery enters the overshoot period. When t > Tcs, D returns 
to a stable lower value. As an illustration, Tcs(n = 5) = 25 s is longer than Tcs(n = 3) 
and Tcs(n = 4) by 10 and 5 s, respectively. Thus, a larger network obviously occupies 
a longer swapping period and leading to a higher delay. Nevertheless, for all sce-
narios, IMM2ZM recovers its normal transmission after channel-swapping is com-
pleted. It is noted that Tcs is relatively small with respect to the data-collection 
period, i.e., 15–30 min. Therefore, an IMM2ZM generally with a small Tcs is a fig-
ure to reflect a robust HTAMI.
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Fig. 4.15  (a) Real-time D under interference for n = 3 (b) n = 4 (c) n = 5 when the maximum of 
hop = 10
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4.6.2  �Latency Study

In this investigation, analysis of IMM2ZM with n = 5, 10, 20, and 30 has been stud-
ied to give a holistic view of the effectiveness. The results of D and σ versus k (k = 1, 
2, 3, 4) are plotted in Figs. 4.16 and 4.17, respectively. For k = 4, the performance 
improvement of IMM2ZM, with and without interference mitigation over MIZBAN 
[15] is shown in Fig. 4.18.

Figure 4.16 shows the variation of D against n (n = 1–30) and k (k = 1–4). In 
general, D increases as n increases, since the average number of hops for the routing 
path as well as the traffic loading increases. In contrast, D decreases as k increases 
because the traffic loadings can be shared by the multiple operation channels. It is 
seen from Fig.  4.16 that the improvement of D for 5-floor (n  =  5) buildings is 
approaching saturation when k = 2. At k = 2, the improvement of D for 5-floor build-
ings is not significant as compared to 10-floor and 20-floor buildings. These find-
ings are attributed to the low-density traffic characteristics at n = 5. Besides, when 
k increases, in particular at k = 4, it is seen that the probability of finding a busy 
channel for RMTs is extremely low. The channel-access delay will be minimized, 
and thus, D reaches a minimum.

Figure 4.17 shows the variation of σ against n (n = 5, 10, 20, 30) and k (k = 1, 2, 
3, 4). In general, σ increases as k increases since IMM2ZM transmits data in parallel 
via multiple channels simultaneously.

The strength of IMM2ZM versus MIZBAN is now analyzed. The maximum 
capacity should be examined, and thus, k = 4 is investigated. Figure 4.18 shows the 
performance improvement of IMM2ZM (k = 4), with and without interference miti-
gation over MIZBAN [15]. It can be seen that as n increases (n = 5, 10, 20, 30), σ 
increases from 174% when n = 5 to 329% when n = 10; 280% when n = 20; 274% 
when n = 30. It is seen that the gradient increase of σ is tremendous from n = 5 to 
10. Thus, it is concluded that IMM2ZM performs very well at increasing network 
size (say, n = 30). The performance of D is also investigated. The improvement of D 

Fig. 4.16  Investigation of D when k = 1, 2, 3, 4
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increases rapidly from 37% at n = 5 to 72% when n = 10; 65% when n = 20; 56% 
when n = 30. Hence, it is concluded that the performance of the optimized IMM2ZM 
well surpasses MIZBAN. In Hong Kong, the Hong Kong Housing Authority of the 
Census and Statistics Department of the Government of Hong Kong [40] revealed 
that n ∼ 12 in 2014. Apparently, n will increase significantly with urban moderniza-
tion in the future. From the analysis here, it is evidenced that the IMM2ZM should 
be adopted for high-performance HTAMI.

Fig. 4.17  Investigation of σ when k = 1, 2, 3, 4

Fig. 4.18  Performance improvement of IMM2ZM (k = 4), with/without interference mitigation 
over MIZBAN [15]
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4.6.3  �Performance of TS-ZBN

To evaluate the performance of TS-ZBN, ten floors building with 100 m*100 m per 
floor is designed with OPNET to simulate the building environment. Each floor 
contains ten unities and ten water sensors were employed to each utility randomly. 
ZigBee is chosen for the wireless protocol for UAN and TLN. WiFi is chosen for the 
wireless protocol for NLN.

During coordinator-to-coordinator synchronization, each CU will send the infor-
mation to CF for 100 times. Since that TLN is a mesh network, a number of CCS 
may be processed which depends on the path from source to destination. For exam-
ple, if the signal from the source is required to pass through m CU before it reaches 
CF, the number CCS will be m + 1.

Based on the simulation result, the maximum number of CCS is found as 9. For 
end-to-end synchronization, each sensor node sends the sensed data to CU for 100 
times. Similar to the previous simulation, the number of node-to-node synchroniza-
tion (NNS) depends on the transmission path from the source node to destination 
CU. The maximum number of NNS is also found as 9 after simulation. Figure 4.19 
shows the delay in interference coexistence study while Fig. 4.20 gives the latency 
performance.

Fig. 4.19  Interference coexistence study results
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4.7  �Conclusion

The simulation result shows that TS-ZBN achieves low mean synchronization error 
and variance. Current SM solutions focus on low traffic for individual houses. SM 
traffics are ever growing, in particular, for buildings in Asia. This study proposes the 
IMM2ZM, a new multiobjective optimization interference-mitigated ZigBee-based 
AMI as a SM solution for high-traffics data. The contribution of this study is five-
folded. First, a prior measurement was performed to obtain the essential data for the 
formulation of objective functions for the optimal solution at large-scale. Second, 
an interference mitigation model has been derived. Third, customization to NSGA-II 
optimization has been developed. Fourth, the OPNET evaluation has been imple-
mented for large-scale analysis. Fifth, a channel-swapping IMM2ZM system has 
been implemented and analyzed for HTAMI.

Tcs evaluates the efficiency of channel-swapping, hence giving an account of the 
latency performance of the network due to interference. It is concluded that when 
the IMM2ZM sensitivity (PRX) is less than −12 dBm, Tcs increases tremendously. It 
is important to highlight that the IMM2ZM achieves an effective performance in a 
HTAMI and results in a significant improvement in the performance of the 
application-layer transmission rate (σ) and the average delay (D). The improvement 
figures are σ > ∼300% and D > 70% in a 10-floor building; σ > ∼280% and D > 65% 
in a 20-floor building; and σ > ∼270% and D > 56% in a 30-floor building. In con-
clusion, this confirms the feasibility to adopt time-synchronized ZigBee building 
network for water management.

Fig. 4.20  Latency performance
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Chapter 5
A Narrowband Internet of Thing-Based 
Temperature Prediction for Valve-
regulated Lead Acid Battery

5.1  �Introduction

5.1.1  �NB-IoT

The Third-Generation Partnership Project (3GPP) introduced the first IoT-specific 
user equipment (UE) in Long-Term Evolution (LTE) Release 12, known as LTE-M 
with features including peak data rate at 1 Mb/s over 1.08 MHz bandwidth and sup-
port UEs with the half duplex operation and power-saving mode. Recently, in the 
LTE Release 13, 3GPP has standardized a new radio access network (RAN) tech-
nology called narrowband IoT (NB-IoT) [1]. The narrow-band internet of things 
(NB-IoT) is a massive low power wide area (LPWA) technology proposed by 3GPP 
for data perception and acquisition particularly for intelligent low-data rate applica-
tions [2].

It inherits basic functionalities from the LTE system, while it operates in a nar-
rowband. With a software upgrade, the existing LTE network can be enabled to 
support NB-IoT. This is essential for reducing deployment cost and time.

Technically, NB-IoT is developed under the specification of LTE. The bandwidth 
of NB-IoT is about 180 kHz, and the coverage is less than 10 km in practice. NB-IoT 
protocol can be deployed in not just LTE, but also GSM or UMTS, whose downlink 
speed is from 160 to 230 kbps and uplink speed is from 160 to 250 kbps. Moreover, 
the NB-IoT communication protocol is half-duplex. The maximum transport block 
size in the downlink is 680 bits, and the uplink is 1000 bits.

NB-IoT has three deployment methods, namely, Independent Deployment, 
Guard-band Deployment, and In-band Deployment. In Independent Deployment, 
the 180 kHz frequency band is located out of the LTE carrier. While for Guard-band 
Deployment, the 180  kHz frequency is on the edge of LTE carrier. Regarding 
In-band Deployment, the frequency band is located in the LTE carrier. 
Communication operators define the deployment method. Mobile network operators 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52155-4_5&domain=pdf
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generally tend to operate the NB-IoT technology in the in-band mode due to the low 
cost and lower deployment complexity.

5.1.1.1  �NB-IoT Features

Super Coverage

In IoT application scenarios such as water meter reading, smart parking, the require-
ment for wide coverage exceeds the performance of the traditional 2G/3G/4G net-
work. Therefore, 3GPP proposed that NB-IoT should have 20  dB coverage 
enhancement compared to GSM [2, 3].

The 3GPP standardization adopted two solutions to enhance the coverage for 
NB-IoT. The first method is using reduced bandwidth to promote the user equip-
ment’s (UE) transmission Power Spectral Density (PSD) and bring additional gains 
of coverage enhancement. The second method is the repeat transmission. Putting 
the two technologies together, NB-IoT could have 20 dB gains of coverage enhance-
ment, as compared to GPRS. However, there are side effects of these two technolo-
gies. Reduced bandwidth degrades the data rate and repeat transmission could lead 
to more severe latency [4, 5].

Low Power Consumption

There are a large number of internet of things terminals. Some terminals are in the 
environment where replacing battery or battery charging is impossible, therefore, 
low power consumption is an essential feature of internet of things terminals. In TS 
45.820, in combination with the industrial demand, for periodical report services, 
3GPP demands a low power consumption requirement for IoT terminals. The nor-
mal working time should be about 10 years.

There are two main features, that is, power-saving mode (PSM) and extended 
discontinuous reception (eDRX), which are used to extend the battery life of NB-IoT 
devices for up to 10 years. Both technologies leverage the advantage of a low fre-
quency of data transmission.

There are three operation states in NB-IoT devices, CONNECT, IDLE, and 
PSM. PSM state is added as a sub-state of the original IDLE state. When working 
in PSM, a device will go into deep sleep mode and could not receive any signal 
since the radio frequency unit is completely shut off and the downlink is inaccessi-
ble. It could only wake up when the UE needs to transmit mobile-originated uplink 
data or when it is triggered by an exterior RTC wakeup signal. PSM is similar to 
power-off, but the UE remains registered with the network. Because PSM resembles 
UE powered off, and the maximum PSM duration time in NB-IoT is 310 h, UE’s 
energy consumption is slashed considerably, making it feasible to adopt battery as 
UE’s only power source during its lifetime.
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Discontinuous reception (DRX) indicates that the UE turns on the receiver and 
works in CONNECT state only when necessary and works in IDLE state, turns off 
the receiver, stops receiving downlink data during the rest of the time. The extended 
version aims at increasing the paging monitoring interval. With eDRX adopted, in 
each eDRX cycle, the UE only needs to monitor the paging frame at the prescribed 
Paging Time Window (PTW) to check whether there is a paging-radio network tem-
porary identity on the physical downlink control channel.

Power consumption is closely related to every electronic component and every 
module in every terminal equipment. And the power consumption optimization is an 
accumulative process since it is affected by numerous factors, ranging from the 
operating system to the hardware devices. Communication protocol optimization 
also contributes to power saving.

Low Cost

Low Power Wide Area Network (LPWAN) IoT market has the highest potential in 
the whole IoT field. Low cost is an outstanding feature of LPWAN IoT. As a mobile 
IoT technology designed for LPWAN, NB-IoT inevitably needs to realize a low cost.

In order to realize the ultra low cost of NB-IoT devices, it is necessary to con-
sider lowering the complexity of protocols and products, because NB-IoT originates 
from the complicated LTE specification. To simplifying protocol volume, it removes 
many features of LTE, including physical uplink control channel, Physical Hybrid 
ARQ Indicator Channel, and Measurement Report. NB-IoT only supports Frequency 
Division Duplex and Half Duplex, and only requires one antenna. All these modifi-
cations together lead to the low cost of the NB-IoT module and NB-IoT chipset. 
This will definitely drive a huge boost in the NB-IoT business applications.

Apart from the cost of the chipset and module, there is another cost factor worth 
considering, which is the network installation and maintenance cost. Fortunately, 
NB-IoT does not need to construct the network from scratch because it can be 
deployed in three different operation modes within the existing LTE carrier. A com-
plete industrial chain has been formed for LTE and LTE is still prospering. NB-IoT 
can take advantage of LTE technology to effectively lower the cost.

Massive Connections

Traditional human-based telecommunication has almost reached the ceiling, due to 
the limited number of terminals held by each person. It is forecasted that by 2025, 
international IoT connection number will reach 27 billion, and most of the IoT con-
nections are sensors, monitoring, and control use cases, rather than human-based 
connection. They are widely distributed, insensitive to delay, sensitive to cost, and 
energy consumption, having a low data transmission rate.

According to [6], the supported connection number is 52,547 per cell site sector, 
based on the calculation and assumptions for London, where the area of cell site 
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sector is 0.866  km2, the household density per km2 is 1517, and the number of 
devices in a household is 40. However, such capability does not allow for high 
user-concurrency.

In actual use cases, the deployment scheme must avoid different UEs requesting 
for data upload at the same time. The massive connection capacity requires reas-
sessment based on the actual service scheme, which will give different data 
packet sizes.

NB-IoT users transmit a small amount of data and they can tolerate latency. 
Therefore, over 50,000 users can camp on the same cell. In addition, NB-IoT sup-
ports two schemes multi-tone and single-tone transmission simplifies signaling 
overhead, to further sustain a large capacity.

Since 2017, many IC manufacturers like Qualcomm, MediaTek have put NB-IoT 
chips into production, like MT2625, and correspondingly, NB-IoT module manu-
facturers are manufacturing NB-IoT modules for the market, such as BC26, BC95, 
and BC28. Three communication carriers in China have all been deploying NB-IoT 
base stations nationwide. The NB-IoT industries including chips, modules, and 
platforms are prospering. There are also lots of PaaS, SaaS IoT platforms, such as 
Microsoft Azure, Cisco Jasper, Telit, and China Mobile OneNet.

5.1.1.2  �Comparisons with LoRa and eMTC

Reference [7] made a comparison between LoRa and NB-IoT. Among Low Power 
Wide Area Network, LoRa and NB-IoT are the two leading emergent technologies. 
LoRa, designed by Semtech Company, is built on proprietary spread spectrum tech-
niques and Gaussian frequency shift keying (GFSK). LoRa is a non-cellular net-
work while NB-IoT is a cellular network. LoRa operates in a non-licensed band 
below 1 GHz for long-range communication link operation whereas NB-IoT uses 
the licensed frequency bands, which are the same frequency bands in LTE. Though 
NB-IoT is integrated into the LTE standard, it is kept more simply simple than LTE 
in order to reduce device costs and minimize battery energy consumption.

In general, NB-IoT has better Quality of Service (QoS) because of its licensed 
band spectrum, but its advantage in low cost is no longer prominent compared with 
LoRa. In terms of battery life, because NB-IoT needs to upload and synchronize 
data regularly, so it is also a little less advantageous compared to LoRa. In summary, 
LoRa and NB-IoT have their respective advantages in different aspects of IoT.

Each application has its specific requirements, which lead to a specific technol-
ogy selection. Both LoRa and NB-IoT can cater to more use cases spreading from 
the low-end to the high-end scenarios in a variety of fields and play important roles 
in the LPWAN IoT market. LoRa focuses on low cost applications, whereas NB-IoT 
is dedicated to applications that require higher QoS, wider coverage, and lower 
latency. Most importantly, NB-IoT can get support from the operators due to the 
licensed attribute [4]. In contrast, LoRa just lacks such powerful business drivers. 
Especially, NB-IoT still manifests some advantages in both peak rate and coverage 
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range, which can also help it to win more market share in the future competitions 
with LoRa.

Reference [8] studied two technologies built from LTE, namely Enhanced 
Machine Type Communication (eMTC) and NB-IoT. eMTC targets the applications 
such as VoLTE, mobility with tracking devices, tasks that need high data rate and 
low power consumption with wide area coverage. NB-IoT targets the applications 
such as wireless sensors and meters with low complexity and low power consump-
tion with wide area coverage. Both technologies have power saving features.

Later, simulation experiments were conducted to compare the two technologies 
in three aspects. Considering the energy consumption, NB-IoT is a good choice for 
simple sensors and low data transmission rate applications in medium to poor cov-
erage cases, while eMTC is for applications transmitting a large amount of data in 
good to medium coverage cases. A battery lifetime of 8 years can be achieved by 
both technologies in a poor coverage case with daily reporting interval. As far as the 
end-to-end latency and scalability, the delay of transmitting a packet in eMTC is 
lower than the delay of transmitting a packet in NB-IoT, and eMTC can serve more 
devices in a network than NB-IoT.

In general, eMTC has the highest speed due to the widest bandwidth but also 
suffers from the highest cost, so it is only fit for high-end applications without sen-
sitivities to prices [4].

5.1.1.3  �NB-IoT Application Scenarios

Advanced information technology will be used to consolidate and renovate the 
infrastructure of the smart city. Intelligent collaboration, resource sharing, intercon-
nection, and comprehensive perception, will provide the intelligent service manage-
ment of the city to better solve the problems of urban development and realize the 
sustainable development of the city. Comprehensive perception of the smart city 
requires the infrastructure to collect various data and information for further data 
analysis and integration. These massive cross-region and cross-industry data and 
information are potential resources for urban services and management decisions. 
To be more specific, each city needs numerous cameras, sensors, detectors, and 
other devices to form the perception layer, to help city administrators to better 
understand the city and carry out the corresponding actions.

NB-IoT fits for services that are not sensitive to latency, requiring little data 
transmission, located in places inconvenient for power supply, with high installation 
density and number, and strong signal shielding. Smart cities will digitize the infra-
structure such as street lamps, manhole covers, underground pipelines, parking lots, 
and make full use of the network, database, and other technical means to make the 
information technologies more widely and comprehensively applied in the field of 
city management and operation. These applications rely on using NB-IoT combined 
with sensors to transmit a huge amount of structured and unstructured data that can 
be used for automation, decision-making, and analysis. Smart city not only imple-
ments smart applications, but it also fosters a data-driven and low carbon economy. 
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Smart city benefits not only its residents but also its citizens, tourists, investors, and 
government.

Designing a smart city is a top-down intelligently engineered process, whereas 
city evolution is unpredictable, not following the way it was once designed. 
However, evolution is highly integrated with the activities of humans. This section 
introduces several typical smart cities and municipal applications of NB-IoT, includ-
ing smart street lights, smart parking, smart meter reading, and other businesses. 
Current status, existing problems and challenges, solutions based on NB-IoT, and 
the advantages are discussed.

Smart Manhole Cover

The problem of stolen and poorly managed urban well covers has become increas-
ingly prominent. It is frequently reported in the news that manhole cover missing, 
and damage can cause accidents. Also, the communication or electric cables, sew-
age tubes under the manhole covers will face threats.

Smart manhole cover system can monitor the manhole cover, detecting its move-
ment and integrity, as well as the situation under the cover, then report the data 
periodically via the NB-IoT network to the cloud platform. As a result, the smart 
manhole cover system could reduce a fair amount of accidents caused by a broken 
or stolen manhole, contributing to the smart city development [9, 10].

The cover detector is attached to the inner side of the cover, fixed with screws. It 
can detect the inclination angle as well as the displacement of the cover. If there is 
any irregularity, it will immediately send the emergency message to the back end. 
Opening the cover is permitted only if the administrator applies to the cloud plat-
form for unlocking and receives permission. After inspection and maintenance with 
manhole cover closed, the cover detector will send messages to the cloud platform, 
notifying that the cover is locked.

Apart from these basic functions, the detector could be further equipped with 
various sensors that collect information such as pressure, water level, flammable gas 
like CH4, CO concentration, and temperature. And transmit the data back to the 
operation and maintenance cloud platform via the NB-IoT network. The cloud plat-
form displays the status, location of the covers, as well as the situation beneath the 
cover. With the information, the municipal administration staff can assign workers 
to the field to deal with the situation.

NB-IoT is extremely suitable for smart manhole cover for the following reasons. 
Usually, a specific urban area requires a large number of manhole covers, and the 
data generated by each cover for transmission is relatively limited. In addition, the 
cover state perception can tolerate the latency of several seconds. Figure 5.1 shows 
an application of NB-IoT to smart manhole management.
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5.1.1.4  �Smart Meters

Traditionally, water meter, gas meter, and electricity meter are read manually, usu-
ally on a monthly or seasonal basis. Manual meter reading demands intense labor-
ing work, causing extremely low efficiency and low accuracy due to human error. In 
general, the metering data could not be collected and analyzed in real-time. As a 
result, differentiated and tiered pricing could not be implemented easily. Furthermore, 
electricity and water thefts could hardly be prevented. The integration of NB-IoT 
technology and conventional meters is an effective solution.

NB-IoT smart metering is a system where the measured value of water, electric-
ity, and gas usage is sent to NB-IoT module embedded in the meter, and transmitted 
to the cloud platform through the wide-covering NB-IoT network. Usually, water 
meters, gas meters, and electricity meters are numerous and placed in a hidden envi-
ronment such as the basement, and connection to a power source is not always avail-
able or easy. Due to the huge number of meters in urban areas, the cost must be low 
enough. In such conditions, NB-IoT effectively solves all these problems. NB-IoT 
is especially advantageous in terms of massive connections, wide coverage, low 
power consumption, and long battery life. Since the meters only send a small 
amount of data and transmission delay is bearable, the relatively long latency and 
low transmission rate of NB-IoT is acceptable in meter reading applications [11].

It is possible to modify the conventional meters by embedding NB-IoT modules 
and sensors, connecting the meters to the NB-IoT network, and, further, to the core 
network and IoT cloud platform. Therefore, the users can acquire information about 
water, gas, and electricity usage and pay their bills by simply scrolling the screen on 
their phones. The water and gas supply companies and the property management 
companies can read the meters more accurately, efficiently at a higher frequency, 
and receive payment in a much more efficient and convenient way. The system 
allows the administrators to promptly discover any error or anomaly value or even 
leakage by data analysis to ensure safety. Figure 5.2 shows an application of NB-IoT 
to smart meters operation.

Fig. 5.1  Application of NB-IoT to smart manhole management
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5.1.2  �Battery

Traditional lead-acid battery is widely used due to the low cost, large power-to-
weight ratio, high current density, and easy maintenance. There are various applica-
tions, such as providing surge current for motor starter for vehicles, acting as energy 
storage for backup power supply for an emergency, and power buffer for unstable 
energy sources, for example, solar power plants.

A basic structure of a lead-acid battery is shown in Fig. 5.3:

Fig. 5.2  Application of NB-IoT to smart meters operation

Fig. 5.3  Basic structure of a lead-acid battery

5  A Narrowband Internet of Thing-Based Temperature Prediction…



353

There are various heat sources in the battery and they lead to heating problems. 
In reversible electrochemistry reaction, there is heat absorption when discharging 
and heat is released during charging. Due to the Joule heating effect, heat is releas-
ing in both the charging and discharging process. This affects the temperature as 
compared to the electrochemistry reaction.

As a result, the operation temperature is limited. Performance drops in low tem-
perature and internal resistance increases. There is permanent damage when the 
electrolyte is frozen, which is a destruction of internal structure as the solution 
expands. Thermal runaway exists in high temperature and battery could explode. 
High temperatures could cause unexpected electrical short circuits, release hydro-
gen gas to build up internal pressure, and cause fire and explosion.

Figures 5.4 and 5.5 show an exploded battery and car fire due to raising of tem-
perature and pressure inside the battery.

Valve-regulated lead acid (VRLA) battery owns a huge market which reached 
USD 51.2 billion in 2017 [12]. By comparing to other kinds of batteries, VRLA has 
a distinct advantage that it does not require water to replenish the electrolyte [13]. 
VRLA reduces the amount of labor and time required for energy storage. Also, 
VRLA can work at the extreme temperature, and this makes VRLA acquire a big 
portion in the battery industry. Currently, VRLA is widely used in various industry 
scenarios such as data center and airplane. Also, the deep-cycle absorbent glass mat 
(AGM) is commonly used in off-grid solar power and wind power installations as 
an energy storage bank, and so on [13–15]. The battery is used in the uninterruptible 
power supply (UPS) as a backup when the electrical power goes off too.

Unfortunately, with the higher float current inside the VRLA, it is more prone to 
produce heat due to the chemical reactions [16, 17], which generate serious conse-
quences. On the one hand, the performance of VALR is seriously affected by the 
temperature. Potential hazards will be caused in applications due to an ineffective 
battery. On the other hand, the battery life of VRLA will easily be decreased because 
of the excessive internal temperature [18]. Thus, extra cost will be needed for 

Fig. 5.4  Battery explosion
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maintenance or replacement [19]. Besides, thermal runaway, an unstoppable self-
heating reaction, will happen if the battery keeps working at an inappropriate inter-
nal temperature. This self-heating reaction always causes serious consequences 
such as fires, electrolyte leakage, and venting due to lack of risk assessment [20]. To 
prevent potential hazards from internal temperature, two main types of algorithms 
are developed to measure internal temperature. One of the methods is to measure 
the internal temperature directly by electrical devices. The other is to predict the 
internal temperature based on several external parameters using an established battery 
thermal model. The thermal model needs to have the following characteristics:

•	 Thermal parameters should be self-adaptive
•	 Temperature range must cover battery’s operation temperature
•	 The model can be used for various size battery
•	 Suitable for longer time prediction

One of the traditional battery internal temperature estimation methods is direct 
measurement. To measure the internal temperature directly, researchers installed 
thermocouples inside the battery [21]. An obvious disadvantage of this method is 
that the cost of manufacturing a battery will be increased a lot. Also, a potential 
safety problem may exist if a redundant component is added and, thus, destroy the 
original structure of the battery. In conclusion, it is not an appropriate and practical 
method to directly measure internal temperature unless the mentioned issues could 
be solved. Another familiar method is to estimate internal temperature by a ther-
mal model.

Figure 5.6 shows a thermal model of the battery.
As shown in the figure, the three sources represent the reversible electrochemis-

try reaction, oxygen cycle, and Joule heating effect.
A comparison between thermal and electrical model is given in Table 5.1:
Based on the thermal model as shown in Fig. 5.6, the following equations could 

be derived.

Fig. 5.5  Battery fire
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The Joule heating effect model is shown in Fig. 5.7:

	
R T

Tint SOC,( ) ∝ 1

	
(5.4)

R1 R3Tter

R2 R4

Tamb

Tcase

C2Is2

C3Is3

C1

Tcore

Is

Fig. 5.6  Battery thermal model

Table 5.1  Parameters 
comparison between thermal 
and electrical model

Thermal model Electrical model

Temperature Voltage
Heat transfer rate Current
Thermal resistance Electrical resistance
Heat capacitance Electrical capacitance
Heat source Electrical source
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	 P I RJH current= ×2
int 	 (5.5)

SOC is state of charge. Previously, many researches have worked on this topic. 
However, most of them concentrate on the temperature prediction models of 
Lithium-ion but hardly on the VRLA battery [22]. The methodology of Lithium-ion 
battery using an external parameter for prediction provides inspirations for the inter-
nal temperature prediction of VRLA battery. However, instead of just a thermal 
model, a neural network-based model is also involved in the algorithm.

In this research, a NB-IoT-based VRLA battery internal temperature prediction 
(VBITP) algorithm is developed. As mentioned earlier, NB-IoT is one of the most 
suitable mobile network technologies for IoT applications, which need exception-
ally deep coverage and extremely low power consumption. These applications, such 
as smart metering, usually require low data rates and moderate reaction times of a 
few seconds. The first network deployment began in late 2017 and global commer-
cial deployment started in 2018. NB-IoT can be deployed inside Long-term 
Evolution (LTE) carrier, in the LTE guard band and as a standalone solution. In 
March 2019, the Global Mobile Suppliers Association announced that more than 
100 operators have deployed/launched either NB-IoT or LTE-M networks [23]. The 
VBITP, utilizing neural network and NB-IoT, does not fall into either of the men-
tioned categories. It consists of three parts, that is, measurement of input parame-
ters, data transmission by NB-IoT network, and establishment of a prediction 
model. Two external parameters, namely ambient temperature (AT) and input cur-
rent (IC), are measured and saved as the input. The output of the prediction model, 
internal temperature (IT) is measured at the same time. A dataset including the two 
inputs and the output is thus established.

Based on computational intelligence techniques, a recurrent neural network, 
called nonlinear autoregressive exogenous (NARX) neural network, is applied to 
find the potential relationship between the input and output. As one kind of the 
recurrent neural network, NARX considers the continuous change in time series of 
the input. In this work, the value changes of ET and IC are both associated with the 
time. Thus, by taking advantage of this, NARX is applied to train the prediction 
model. In the application, the measured data will be transmitted to the backend 
server for decision making. The details of the NB-IoT infrastructure will be 
explained later.

Fig. 5.7  Joule heating 
effect modelling
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The contributions can be summarized as follows:

	1.	 A VRLA battery internal temperature prediction (VBITP) algorithm is devel-
oped to effectively monitor the internal temperature of the VRLA battery.

	2.	 NARX neural network is involved in the proposed model as a novel method to 
find the relationship between the input parameters and internal temperature.

	3.	 NB-IoT system has been implemented.

The rest of this sub-chapter is organized as follows. In Sect. 5.2, related work on 
VRLA temperature prediction is reviewed and the proposed VBITP algorithm is 
introduced. In Sect. 5.3, the NB-IoT system is described. Section 5.4 describes the 
implemented experiments and the results are analyzed and discussed. In Sect. 5.5, a 
conclusion is made.

5.2  �Overview on Intelligent-Based Approach

The diagram of the proposed methodology in this study is shown in Fig. 5.8.
This section consists of three parts, namely, NARX neural network, model estab-

lishment, and model validation. In the first part, the basic structure of the NARX 
neural network will be described. In the second part, the extraction of the input 
feature and the establishment of the prediction model will be introduced. Finally, in 
the third part, the validation method will be defined to verify the effectiveness of the 
developed model.

Fig. 5.8  The diagram of VBITP methodology
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5.2.1  �Nonlinear Autoregressive Exogenous (NARX) Neural 
Network

NARX is an extension of Autoregressive Exogenous (ARX), which is widely used 
in a linear system for analyzing [24] and generally modeling a variety of non-linear 
systems. It is a kind of nonlinear dynamic neural network used for prediction pur-
poses. Neural networks are mathematical tools stimulated by the biological neural 
system, which have a powerful capacity in learning, storing, and recalling informa-
tion. They are black-box modeling tools that map the low dimensional input space 
to the high dimensional output space for nonlinear mapping when the relationship 
between the input space and the output space is unknown. The nonlinear problems 
in low dimensions become linear in high dimension, which decreases the complex-
ity and difficulty. To be specific, NARX belongs to a recurrent neural network 
(RNN). RNN considers the relationship between the current input and previous one 
and thus good at dealing with a prediction problem of time series; composed of an 
input layer, output layer, feedback layer, and multiple hidden layers. In the NARX 
neural network model, the function of the feedback layer node is to store the output 
value of the output layer node at the previous moment.

The structure of NARX neural network is shown in Fig. 5.9:
The mathematical model is formulated as Eqs. (5.6)–(5.9) [25].
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Fig. 5.9  Structure of nonlinear autoregressive exogenous (NARX) neural network
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In Eq. (5.6), wi is the weight matrix of connections between hidden layers. wc is 
the weight matrix connecting the feedback layer and the hidden layer u(k) is the 
input of the neural network at time k. In Eqs. (5.6) and (5.7), xi(k) and xc(k) are the 
outputs of the feedback layer and the hidden layer. In Eq. (5.8), y(k) is the output of 
the output layer. In Eqs. (5.7) and (5.9), s is the hidden layer.

5.2.2  �Model Establishment and Validation

To validate the performance of the developed prediction model, the mean absolute 
percentage error (MAPE) is selected as an indicator of the model. It can be formu-
lated as in Eq. (5.10):
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In Eq. (5.10), yt, i represents the true value of output (internal temperature) and yp, 

i represents the predictive value given by the model. The MAPE reflects the relative 
error in the prediction process to measure the performance of the model.

In the model training phase, tenfold cross-validation is applied. The dataset is 
divided into ten equal groups randomly. In each turn, nine groups are used as the 
training data and the other one is used for validation. The choice of training and 
validation data in each turn should not be repeated. The average MAPE in these ten 
turns will be identified as the final result and reflect the performance of the model.

5.3  �NB-IoT System

As mentioned before, NB-IoT is developed under the specification of LTE [26]. 
Information flow in the NB-IoT-based intelligent system is shown in Fig. 5.10.

Fig. 5.10  Data transmission based on NB-IoT
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In this investigation, the battery temperature data will be carried back to the 
backend server through NB-IoT. NB-IoT data delivery is shown in Fig. 5.11.

5.4  �Experiments and Results

In the experiments, the scope of input data, AT, and IC are limited to simulate the 
real situation in the VRLA application. The steps to carry out the task to evaluate the 
battery internal temperature remotely based on NB-IoT are summarized as below:

•	 Step 1: Obtaining VRLA Internal Temperature (IT)
•	 Step 2: Measuring Ambient Temperature (AT) and Input Current (IC)
•	 Step 3: Data transmission by NB-IoT
•	 Step 4: Data analysis by NARX algorithm
•	 Step 5: Establishing the VRLA evaluation model

Devices used in the experiment are shown in Fig. 5.12:
The apparatus consists of resistance temperature detectors (RTD), data logger, 

and battery test system.
Considering the normal range of VRLA temperature, four typical ambient tem-

perature value, 15, 25, 35, and 45 °C are considered in the experiments. The experi-
ment will be conducted at these four ATs. In each AT phase, a repeatable current 
pulse set is introduced to act as pseudo-random frequency pulses. Three typical 
values of IC are also settled as 12.5 A, 15 A, 20 A. The output of IT is measured 
synchronously. The range of IT is corresponding to the ET of the battery. In each 
phase, IC increases as the IC is floating and charging the battery. These three sets of 
data are used for training the prediction model. Tenfold cross-validation is applied 
to validate the performance. As shown in Fig. 5.13, the curve of target value and 
output is very close, which can barely be distinguished. The curve below shows the 
error rate of the established model. The average error rate is about 0.04. Regarding 
the final example, some real experiments are carried out to verify the proposed nar-
rowband internet of thing based VRLA battery internal temperature prediction 
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Fig. 5.11  NB-IoT data 
characteristics
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algorithm to conclude all thermal reactions such as Joule heating effect, entropy 
changes due to H2SO4 reaction, and the water cycle in VRLA battery. The uncon-
trollable self-heating problem, thermal runaway, can be easily avoided by using the 
prediction as to the precaution. The NB-IoT VBIPT can predict the battery’s tem-
perature without any thermal knowledge but simulate the thermal runaway. 
Regarding the temperature range, it is agreed that 45 °C ambient temperature is the 
highest temperature that should go on to prevent any danger from happening. Also, 
the battery’s temperature that rises to more than 55 °C after the experiment should 
be considered as the threshold of becoming a thermal runaway. So that the NB-IoT 
VBIPT is capable to prevent self-heating problem.

5.5  �Conclusions and Future Work

In this chapter, a narrowband internet of thing (NB-IoT)-based valve-regulated lead 
acid (VRLA) battery internal temperature prediction (VBITP) algorithm is devel-
oped to monitor the internal temperature of VRLA battery. VBITP could provide 

Fig. 5.12  Measurement apparatus used
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early warning of VRLA battery temperature and thus prevent potential hazards in 
applications. Different from traditional methods, IoT networks, and neural networks 
are involved in VBITP to predict the internal battery temperature of VRLA battery 
based on two external parameters, namely, input current and ambient temperature. 
By taking the advantages of the NARX neural network, the prediction model in 
VBITP could predict internal battery temperature with excellent performance. The 
NB-IoT system sent the measured data back to the server and battery temperature is 
monitored and an alert could be activated when overheating occurs. The experimen-
tal results show that the error rate of the temperature prediction model is no more 
than 0.04. In the future, this algorithm will be applied to the study of lithium battery 
internal temperature. At the same time, a new training structure could be developed 
to improve the performance further.
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Chapter 6
Health Detection Scheme for Drunk 
Drivers

6.1  �Introduction

Concluded by the World Health Organization (WHO), 70% of the population over 
the world can be protected by giving drunk drivers harsh punishments [1]. Annually, 
more than 1 million people and nearly 50 million are dead and injured, respectively, 
because of traffic accidents [2]. This leads to a heavy burden to the medical services 
and it also leads to an expenditure of around $500 billion [3]. As reported by the 
WHO, traffic accidents potentially turn into the fifth primary cause of death [2]. One 
of the main reasons leading to traffic accidents is drunk driving. Drunk drivers can 
be found in 40% of the total traffic accidents and drunk-related traffic accidents cost 
22% of the total expenditures [4]. Therefore, it is worth developing drunk driver 
detection (DDD) to reduce the losses from drunk-related traffic accidents. DDD 
could contribute to protecting the public and decreasing the related costs. Around 
0.02 of Blood Alcohol Concentration (BAC) level will probably lead to the loss of 
judgment. DDD should be able to provide early warning once the drivers are classi-
fied as in drunk status. These early warnings can protect the public including drivers 
and pedestrians. Basically, there are three types of DDD approaches, namely, direct 
approach, vehicle-based approach [5, 6], and bio signal-based approach [7]. Direct 
approaches are widely adopted. These approaches require to collect drivers’ breaths, 
blood, or urines and then detect the drivers’ BACs from the collected samples. The 
vehicle-based approaches mainly detect the differences in the drivers’ behavior 
between normal cases and drunk cases. If a large variation is detected, the driver 
will be classified as drunk. However, these two approaches can hardly provide real-
time, automatic detection, and early warning at the same time. However, the bio-
signal based approaches can achieve this. The plethysmogram signal was used to 
detect the variations in organ volume and the corresponding status of the drivers [7]. 
But the drawback is that the method requires a long processing time. Among the 
bio-signals, electrocardiogram (ECG) and electroencephalography (EEG) have 
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been proven to provide the status of the human timely. As compared to EEG, ECG 
is easier for wearable applications implementation.

Five main waves can be provided from the ECG signals, namely, P, Q, R, S, and 
T waves and these waves relate to the dedicated electrical activities of the human 
heart. In the future, more and more wearable ECG sensors will be available in the 
market and this will facilitate the development of ECG-based DDD.

6.2  �Cardiovascular Diseases Classifier

Electrocardiogram (ECG) signals are important information for cardiovascular dis-
ease diagnosis conducted by cardiologists. Such a diagnosis requires the develop-
ment of cardiovascular disease classifier (CDC). Generally, a CDC mainly comprises 
feature vectors extraction and machine learning algorithms like an Artificial Neural 
Network or Support Vector Machine. Features can be divided into three categories, 
that is non-fiducial features, fiducial features, and hybrid features. Non-fiducial fea-
tures normally refer to features that do not characterize the ECG signals using P 
waves, Q waves, S waves, QRS complexes, and T waves [8–12], and vice versa for 
fiducial features [13, 14]. Hybrid features refer to feature vectors constructed by 
both non-fiducial and fiducial features [15–17]. In this investigation, a Support 
Vector Machine (SVM) is used to construct the CDC for the four most common 
types of cardiovascular diseases, namely bundle branch block, myocardial infarc-
tion, heart failure, and dysrhythmia. Seven criteria, including overall accuracy (OA), 
sensitivity (Se), specificity (Sp), area under the curve (AUC), training time (Tr), test-
ing time (Te), and number of features (Nf), which are features to indicate the speed 
and accuracy of detection, are used as the essential parameters to compute the ana-
lytic hierarchy process (AHP) score to aid the multiple criteria decision analysis 
(MCDA) for the evaluation of the optimal CDC. Traditional work usually aims at 
the highest overall accuracy and/or lowest testing time. In reality, every end-user has 
to specify the weights between criteria. It is not uncommon to find a ratio setting by 
quick understanding or simply adopting a direct 1:1 assignment. It is noted that the 
needs of volunteers are neglected or not required. In the new method, assignments 
of criteria are devised for AHP analysis. The incorporation of AHP analysis in the 
classifier enables the consideration of the needs of the volunteers.

6.2.1  �Design of the Optimal CDC

Figure 6.1 summarizes the block diagram of the new method. After the retrieval of 
ECG data, feature vectors are extracted. The SVM classifiers are then designed 
based on the feature combinations. Therefore, N configurations can be obtained. 
The best model is selected among configuration f1 to configuration fN based on seven 
criteria, namely overall accuracy, sensitivity, specificity, area under the curve, 
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training time, testing time, and number of features, with the aid of MCDA via 
AHP. The details of the new method are illustrated in the following figure.

6.2.2  �Data Pre-processing and Features Construction

The data is obtained from an online and open-access database [18, 19]. A group of 
healthy candidates, as well as candidates with the four most common types of car-
diovascular diseases, are selected. They are 52 candidates from health control, 15 
bundle branch block candidates, 148 myocardial infarction candidates, 18 heart fail-
ure candidates, and 14 dysrhythmia candidates. The unequal sample size in each 
class will lead to a bias of the SVM classifier [20]. The ECG signal is further parti-
tioned into 30 s sub-signals to obtain 500 samples of healthy candidates and 125 
samples of unhealthy candidates for each type of cardiovascular disease. This pro-
cess aims at equalizing the number of samples in each healthy/unhealthy class. 
Before the introduction of these four diseases, the notations are briefed. Denote 
RR-interval to be the consecutive R points between consecutive ECG signals, the 

ECG data
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Best model
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Overall
accuracy Sensitivity
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Area under
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Pairwise comparison
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Fig. 6.1  Block diagram of the new method
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QRS complex is the time between Q wave and S wave where point R is between Q 
wave and S wave. Similarly, the QT interval refers to the time between point Q wave 
and T wave. The background of these four diseases is presented as follows:

	1.	 Myocardial infarction: Irregular heartbeat and thus irregular RR-interval may 
occur in the ECG signal of the patients [21];

	2.	 Bundle branch block: Patients have QRS complex with a value exceeding 
0.12 ms [22];

	3.	 Dysrhythmia: The heartbeat can be more than 100 beats per minute or less than 
60 beats per minute. Thus, RR-interval is different from the normal ECG signal. 
Also, the QT interval may increase if the type of cardiovascular disease is ven-
tricular arrhythmias [23];

	4.	 Heart failure: A finding of prolonged QT interval in the ECG signals of the 
patients [24].

As a result, Q wave, R wave and S wave, QRS complex, and RR-interval are 
representative features to identify between healthy persons versus cardiovascular 
patients. The feature vector consists of ten features using the average and standard 
deviation of these five parameters. Before detecting and computing the features, the 
ECG signals will undergo data pre-processing [25]. The maximum frequency of an 
ECG signal is typically less than 60 Hz, thus a bandpass filter with cut-off frequen-
cies at 1 and 60 Hz is implemented. A derivative filter is then applied to sharpen the 
Q, R, and S wave. Finally, signal squaring and sliding window integration are uti-
lized for the location of Q, R, and S wave.

6.2.3  �Cardiovascular Diseases Classifier Construction

The CDC is constructed by employing SVM with a ten-dimensional feature vector. 
This algorithm uses a Lagrange Multiplier with a set of support vectors, a set of 
weighting, and an offset bias [26, 27]. This section focuses on the design of the 
CDC. The performance of the CDC is dictated by OA, Se, Sp, AUC, Tr, Te, and Nf. It 
directly classifies the ECG signal into healthy (negative response) candidates and 
unhealthy (positive response) candidates. OA, Se, Sp, and AUC are related to the 
accuracy of the CDC. Tr is the time required to train the CDC and Te is the time 
needed to detect the ECG signal. In this investigation, CDC will be trained up and 
validated with the ECG datasets. For the analysis of positive response—Class 0, 500 
healthy patients are used. For the analysis of positive response—Class 1, 125 bundle 
branch block patients, 125 myocardial infarction patients, 125 heart failure patients, 
and 125 dysrhythmia patients are retrieved from the database. Table 6.1 lists the 
datasets for the CDC with a binary classifier.

The CDC will use tenfold cross-validation for performance evaluation [28] and 
the polynomial kernel function (third-order) is used for SVM analysis. There is a 

total of 1023 combinations 
n

nC
=
∑











1

10

10

, thus 1023 configurations can be formulated 

6  Health Detection Scheme for Drunk Drivers



369

from a selection (from 1 to 10) of the ten features. For the jth configuration where 
j = 1,…,1023, namely fj, its corresponding criteria, OA, Se, Sp, AUC, Tr, Te, and Nf 
are recorded. The main settings of SVM are summarized as follows, in general, the 
default setting is adopted in the MATLAB toolbox:

	1.	 Number of classes: Two;
	2.	 Class 0: 500 healthy candidates;

Class 1: 125 bundle branch block candidates, 125 myocardial infarction can-
didates, 125 heart failure candidates, and 125 dysrhythmia candidates;

	3.	 Feature vector: The maximum dimensionality is 10, which consists of Q wave 
average, Q wave standard deviation, R wave average, R wave standard deviation, 
S wave average, S wave standard deviation, QRS complex average, QRS com-
plex standard deviation, RR-interval mean, and RR-interval standard deviation;

	4.	 Kernel function: third-order polynomial;
	5.	 Fold of cross-validation: Tenfold 1023 classifiers are constructed in 1023 con-

figurations; the results are tabulated in Table 6.2.

6.3  �Multiple Criteria Decision Analysis of the Optimal CDC

In Table 6.2, seven criteria, namely OA, Se, Sp, AUC, Tr, Te, and Nf, are employed for 
performance evaluation of the 1023 scenarios. Multiple criteria decision making 
(MCDM) has been utilized in many areas since the 1990s [29]. It entails using the 
particular characteristics of cardiovascular diseases. By allocating appropriate 

Table 6.1  Database specification of ECG data for CDC

Class 0
(healthy/negative 
response)

Number of 
samples

Class 1
(unhealthy/positive 
response)

Number of 
samples

PTB diagnostic (healthy) 500 Bundle branch block 125
Myocardial infarction 125
Heart failure 125
Dysrhthmia 125

Table 6.2  CDC of each configuration

fj OA Se Sp AUC Tr (S) Te (S) Nf

f1 0.324 0.350 0.298 0.321 3.5 2.3 1
f2 0.310 0.324 0.296 0.303 3.4 2.5 1
f3 0.298 0.288 0.308 0.287 3.6 2.4 1
… … … … … … … …
f1021 0.986 0.988 0.984 0.972 4.9 3.4 10
f1022 0.964 0.970 0.958 0.946 5.1 3.4 10
f1022 0.970 0.974 0.966 0.949 4.3 3.5 10

6.3  Multiple Criteria Decision Analysis of the Optimal CDC



370

weightings, the analytic hierarchy process (AHP) is adopted to evaluate and analyze 
the best scenarios among the 1023 scenarios investigated. The allocation of weight-
ings confronts the feedback from an AHP analysis of 200 volunteers from which a 
pairwise comparison 7 × 7 matrix Am (m = 1, …, 200) is formulated. It is intuitively 
understood that Te should be as low as possible and that the accuracy should be kept 
to an acceptable level. Since the speed of detection is essential, the analysis on 
MCDA reveals that high weightings should be assigned to OA, Se, Sp, AUC, Te. 
These five parameters are referred to as the primary parameters. While Nf is typi-
cally preferred to be small for speedy detection, it is noted that Tr will not affect the 
detection time. Hence Nf and Tr are classified as the secondary parameters.

The volunteers are required to fill in the am,ij, where i and j are between 1 and 7, 
in Table 6.3. The AHP based MCDA CDC is referred to as the new classifier (NC). 
Traditional classifiers (TC) in [10, 14, 15] are also evaluated. Both the NC and the 
TC are applied to the three feature groups, namely, non-fiducially features, fidu-
cially features, and hybrid features in [10, 14, 15]. The performance comparison 
between the NC and the TC is tabulated in Table 6.4. Based on the discussion for 
AHP formulation, the assignment of values of am,ij are based on the following 
guidelines:

	1.	 Write 1 if there is equal importance of i and j
	2.	 Write 3 if i is slightly more important than j
	3.	 Write 5 if i is more important than j
	4.	 Write 7 if i is strongly more important than j
	5.	 Write 9 if i is absolutely more important than j

The pairwise comparison 7 × 7 matrix Am is then normalized, and an Anormm can 
be obtained by modifying the matrix entries am,ij in Am into matrix entries anormm,ij 
in Anormm:
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(6.1)

By averaging each row of Eq. (6.1), the corresponding 7 × 1 priority matrix wm 
with entries wm,k for k = 1,…,7 is given by:

Table 6.3  Pairwise comparison 7 × 7 matrix Am

OA Se Sp AUC Tr Te Nf

OA 1 am,12 am,13 am,14 am,15 am,16 am,17
Se am,21 1 am,2 am,24 am,25 am,26 am,27
Sp am,31 am,32 1 am,34 am,35 am,36 am,37
AUC am,41 am,42 am,43 1 am,45 am,46 am,47
Tr am,51 am,52 am,53 am,54 1 am,56 am,57
Te am,61 am,62 am,63 am,64 am,65 1 am,67
Nr am,71 am,72 am,73 am,74 am,75 am,76 1
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Let Cp,q, (p = 1,…,7 and q = 1,…,1023) be the pth criteria, and qth scenario of 
CDC. Cp,q is normalized to become Cp,q,norm. The final score for each scenario, AHPq, 
is evaluated by:
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To avoid inconsistency in the construction of pairwise comparison matrices, the 
optimal CDC is concluded from the highest value of AHPq [30]. It is evaluated that 
the optimal CDC is obtained from scenario f652, with feature vector composes of 
average of Q, standard deviation of Q, standard deviation of S, average of QRS 
mean, standard deviation of QRS, average of RR-interval, and standard deviation of 
RR-interval, with AHP652 as follows: OA  =  0.988, Se  =  0.992, Sp  =  0.985, 
AUC = 0.982, Tr = 4.5 s, Te = 2.8 s, Nf = 7.

Table 6.4  Performance of NC versus TC

Method
Datasets
(number of samples) Features

Results
(related work 
TC)

Results
(new work 
NC)

Two-layered 
Hidden 
Markov Model 
[3]

MIT-BIH database 
(34,799 samples from 16 
Arrhythmia candidates)

P-R interval, QRS 
complex interval and 
T sub-wave interval

OA = 0.992 OA = 0.987
Se = 0.993 Se = 0.99
Sp = 0.992 Sp = 0.984
AUC = 0.971 AUC = 0.966
Tr = 3.7 s Tr = 3.4 s
Te = 2.7 s Te = 1.9 s
Nf = 3 Nf = 2

Cross wavelet 
transform with 
a threshold 
based 
classifier [7]

The PTB Diagnostic 
ECG database (18,489 
samples from 52 healthy 
control candidates and 
148 myocardial 
infarction candidates)

Total sum of wavelet 
cross spectrum value 
and total sum of 
wavelet coherence

OA = 0.976 OA = 0.966
Se = 0.973 Se = 0.978
Sp = 0.988 Sp = 0.958
AUC = 0.949 AUC = 0.933
Tr = 6.2 s Tr = 5.6 s
Te = 4.1 s Te = 2.8 s
Nf = 6 Nf = 4

SVM [8] CU database, VF 
database, and AHA 
database (40,956 
samples from 67 
Ventricular fibrillation 
and rapid ventricular 
tachycardia candidates)

Leakage, count 1, 
count 2, count 3, Al, 
A2, A3, time delay, 
FSMN, cover bin, 
frequency bin, 
kurtosis, and 
complexity

OA = 0.952 OA = 0.947
Se = 0.951 Se = 0.952
Sp = 0.951 Sp = 0.942
AUC = 0.943 AUC = 0.937
Tr = 4.8 s Tr = 4.5 s
Te = 2.7 s Te = 1.6 s
Nf = 13 Nf = 10
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6.4  �AHP Scores and Analysis

The performance scores between the NC and the TC [10, 14, 15] are evaluated and 
tabulated in Table 6.4. In this investigation, the algorithms in related work have been 
evaluated, with the addition of MCDA using AHP to obtain the best scenario by 
assigning weights to the seven criteria. As the new work and related works are in the 
same application area, the classification of cardiovascular diseases, the weight 
assignment can be reused to facilitate performance comparisons. From Table 6.4, 
the percentage changes are evaluated as follows:

	1.	 Percentage change compared with AHP scores from [10]: OA  =  −0.504%, 
Se = −0.302%, Sp = −0.807%, AUC = −0.515%, Tr = −8.109%, Te = −29.630%, 
and Nf = −33.333%. It is concluded that there is an improvement of 30% in speed 
of detection of cardiovascular diseases @ ~99.5% accuracy.

	2.	 Percentage change compared with AHP scores from [14]: OA  =  −1.025%, 
Se = 0.514%, Sp = −3.036%, AUC = −1.686%, Tr = −9.677%, Te = −31.707%, 
and Nf = −33.333%. It is concluded that there is an improvement of 30% in speed 
of detection of cardiovascular diseases @ ~99% accuracy.

	3.	 Percentage change compared with AHP scores from [15]: OA  =  −0.525%, 
Se = 0.105%, Sp = −0.946%, AUC = −0.636%, Tr = −6.250%, Te = −40.741%, 
and Nf = −23.077%. It is concluded that there is an improvement of 40% in speed 
of detection of cardiovascular diseases @ ~99.5% accuracy.

The analysis reveals that in NC, the speed of detection has been increased by 
30–40% while the accuracy is retained at ~99–99.5% of the TC. It is seen that 
there the reduction of OA, Se, and Sp are less than 1%. Thus, the AHP based 
MCDA CDC is a reliable and speedy detection scheme for cardiovascular 
diseases.

To collect ECG data, the ECG sensors will be implemented to convert the raw 
data into meaningful representation. There are four stages in the development of 
ECG wearable sensors, which are pre-amplification stage, filtering stage, tertiary 
amplification and DC high-pass filtering, and voltage level shifter. Then, the support 
vector machine (SVM) will be used to classify two classes, normal situation and 
drunk situation. The ECG samples of the normal situation and drunk situation will 
be first collected and then pre-processed. After that, feature extraction will be per-
formed and the extracted features will then be utilized to construct the kernel func-
tion for the classifier. The kernel function responses to transform the data into 
high-dimensional space.

The result demonstrates that the accuracy of proposed DDD achieves a satisfying 
accuracy compared to those conventional methods. Besides, using ECG-based 
detection can realize early detection and fully automated detection.

6  Health Detection Scheme for Drunk Drivers
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6.5  �Development of EDG-Based Drunk Driver Detection

To collect ECG data, the ECG sensors will be implemented to convert the raw data 
into meaningful representation. There are four stages in the development of ECG 
wearable sensors, which are pre-amplification stage, filtering stage, tertiary amplifi-
cation and DC high-pass filtering, and voltage level shifter. Then, the support vector 
machine (SVM) will be used to classify two classes, normal situation and drunk 
situation. The ECG samples of the normal situation and drunk situation will be first 
collected and then pre-processed. After that, feature extraction will be performed 
and the extracted features will then be utilized to construct the kernel function for 
the classifier. The kernel function responses to transform the data into high-
dimensional space.

The result demonstrates that the accuracy of proposed DDD achieves a satisfying 
accuracy compared to those conventional methods. Besides, using ECG-based 
detection can realize early detection and fully automated detection.

The ECG sensor front-end consists of four stages, preamplification, filtering, 
tertiary amplification and DC-offset high-pass filtering, and voltage level shifter. 
The front-end is responsible to convert the raw ECG data into meaningful represen-
tation and attenuate noises and interferences. After ECG pre-processing, the classi-
fier will be developed using the collected data. Feature extraction will then be 
performed and utilized in the kernel functions for building classifiers. To test the 
DDD classifiers’ performance, a widely adopted method, K fold cross-validation, is 
performed [31]. The overall accuracy is recorded.

6.5.1  �ECG Sensors Implementations

Instrumentation amplifier is necessary for the ECG sensor design. The instrumenta-
tion amplifier is the combination of the differential amplifier with two non-inverting 
amplifiers as buffering input. Therefore, the input impedance matching can be 
neglected. The instrumentation amplifier has a high common-mode rejection ratio 
which means that the whole amplifier will just amplify the difference of the input 
without amplifying the input noise. This is an important feature especially for the 
bio-signal with tinny amplitude such as ECG signal. Also, the low DC input and 
voltage noise can be achieved by comparing it with the typical operational amplifier. 
There are four stages [32] that can be found in the front-end of ECG sensors. The 
operation is explained below:

6.5  Development of EDG-Based Drunk Driver Detection



374

6.5.1.1  �Stage 1: Pre-amplification Stage

The gain of the pre-amplify stage is chosen to be 50, which is based on the consid-
eration of making a suitable range of the input ECG signal. The input should be 
within the power supply range of ±9 V without any collapsing and allows for the 
next stage filtering.

6.5.1.2  �Stage 2: Filtering Stage

The relative energy spectra of the ECG signal after the Fourier transform is sum-
marized in Table 6.5 [31].

There are a variety of components with various frequency ranges that coexist in 
the ECG signals. Therefore, it is required to determine the cut-off frequencies of the 
band-pass filter in order to filter out the unnecessary frequency components. The 
frequency range was chosen from 0.6 to 15.9 Hz which contains P, Q, R, S, T waves 
of the ECG signals. This frequency range can exclude most of the unwanted noises 
in the ECG signals. Then, the first order passive type low-pass filter will be cascaded 
with the first order active type low pass filter to form the second-order filter. The 
higher order of filter can be more likely to be formed by cascading another passive 
filter since the active filter is constructed from the non-inverting operational ampli-
fier with the defined input impedance.

6.5.1.3  �Stage 3: Tertiary Amplification and DC-Offset High Pass Filtering

The gain is designed to be controllable to adapt to various situations and provide a 
convenient measurement. Based on the dedicated frequency range selection from 
the ECG signal power spectrum evaluation, the first-order high-pass filter will be 
constructed in a passive way with the controllable gain and behind the cut-off fre-
quency 0.7 Hz.

6.5.1.4  �Stage 4: Voltage Level Shifter

The level shifter is to make positive feedback to the voltage level of the positive 
input and shift the voltage level up when the DC-offset is found at the negative 
input. The design of the voltage level shifter should be adapted to the variable input 

Table 6.5  Energy spectral of 
ECG signal

Useful components Noises and interferences

P-wave: 0.6–5 Hz Muscle noise: 5–50 Hz
T-wave: 1–7 Hz Respiratory noise: 0.12–0.5 Hz
QRS complex: 10–15 Hz Line frequency: 50 or 60 Hz

Human DC offset: 0.01–0.4 Hz
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of the DC-offset input so that suitable DC-offset can be implied to shift the entire 
ECG signal level up.

6.5.2  �Drunk Driving Detection Algorithm

To classify whether the driver is drunk or not, two sets of data, normal ECG signals, 
and drunk ECG signals, are collected using the ECG sensor. The collected data will 
be used to develop the drunk driving classifier using a support vector machine 
(SVM). SVM is a famous learning machine for data analysis and classification. A 
high dimensional space can be obtained after training a set of data. In this case, there 
are two sets of data. Hence, after training, these two sets of data will be separated in 
the resultant space as far as possible. They are normally separated by hyperplane 
which is used to classify the input data to the class it belongs to. For the input infor-
mation with low dimensionality, kernel function has been adopted to transform the 
input information to higher dimensionality for classification. Sampling will be per-
formed on the ECG signals. The sampling data points will be the feature and they 
will be utilized to customize the kernel function and classifier. A large margin 
between the two classes (normal and drunk) would be required. SVM is a kind of 
machine learning algorithm to recognize patterns and classify the unknown input 
data to the appropriate category. Therefore, Lagrangian dual optimization is consid-
ered for maximizing the margin distance using SVM to solve the maximum margin 
problem [32]:
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where α is defined as the Lagrange multiplier, s belongs to {1,−1} which is the class 
label of input ECG signals, K(xi,xj) denotes the kernel function which is used to 
transform the input data to the desired high-dimensional feature dimension.
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6.6  �Result Comparisons

The performance of the ECG-based DDD classifier was evaluated by using the 
K-fold validation. First, all ECG samples will be divided into K groups. During a 
fold, one group will be selected to evaluate the classifier and the rest of the groups 
will be used to train the classifier. The process will repeat for K − 1 times and all 
samples will be evaluated. Also, the accuracy of the classifier will be calculated at 
each fold and the overall accuracy will be obtained by averaging them. Normally, 
the accuracy can be calculated by taking an average of sensitivity and specificity 
where sensitivity depends on true positive ratio, and specificity is determined by the 
true negative ratio [33].

The comparisons between the proposed work and other methods are summarized 
in Fig. 6.2.

In real-life applications, early detection and fully automated detection are impor-
tant considerations. For the direct methods, they cannot meet the requirement of 
real-time protection and fully automated detection as they involve manpower to 
monitor the data collection process. For the vehicle-based method, it cannot provide 
early detection since it is determined by the changes of the vehicle motions. As 
such, only a bio-signal-based method can fulfill the requirement of DDD since it 
can achieve simultaneous monitoring on the drivers and so early detection and fully 
automated detection can be provided.

6.7  �Human Status Detection Scheme

In 2015, the United Nations (UN) announced 17 Global Goals to achieve a better 
world [35]. The Global Goals were adopted by world leaders. As such, a sub-goal 
3.6 aims at halving the number of road traffic injuries and death by 2020 [35]. It is 
found that the total number of road traffic injuries and death is more than 50 million 
annually [36]. The annual expenditure of the injuries is more than $500 billion [36]. 

Fig. 6.2  Comparing DDD with other methods [34]
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Besides, traffic accidents are the top leading cause of death in the age group of 
15–29 years. It is predicted that traffic accidents will become the seventh leading 
cause of death by 2030 if there is no prevention scheme taking place urgently [37]. 
Figures  6.3 and 6.4 give the statistics of drowsy driving and statistics of drunk 
driving.

Real-time monitoring of the status of the human and giving early alert could be 
considered as the most effective method of preventing traffic accidents. For exam-
ple, if a candidate is identified as abnormal (such as the candidate is drunk) before 
driving, prohibiting an engine start protects all other drivers and pedestrians. The 
reviews on traffic accidents indicated that drowsy driving and drunk driving are two 
major causes of traffic accidents. More than half of professional drivers felt sleepy 
and more than 30% of drivers fell asleep while driving [38]. The situation of drunk 
driving is more serious such that 30% of total traffic accidents involve drunk drivers 
[39]. Nearly one person is killed by drunk driving every hour. Therefore, a real-time 
detection scheme on both drowsy driving and drunk driving renders a significant 
reduction in traffic injuries and deaths. Roughly estimated $50 billion can be saved 
from the expenditure of traffic accidents.

Figure 6.5 gives a traditional drunk driving test. The conventional detection 
schemes are divided into three types, that is, (1) image-based detection [40], (2) 
behavior-based detection [5, 41], and (3) bio-signal-based detection [42, 43].

It is worth noting that image-based detection and behavior-based detection can-
not achieve the purposes of providing pre-warning before driving and high measure-
ment stability at the same time while bio-signal-based detection does. Image-based 
detections identify the features of drivers’ head motion and eye blinking, etc. with 
the use of image processing. But image-based approaches are usually unstable and 
low stability in practical situations [44]. Behavior-based approaches compare driv-
ing behavior under normal conditions and abnormal conditions. The driving behav-
ior reflects on the vehicle moving path such as lateral position, change in velocity, 
turning angle, etc. In other words, these approaches cannot provide pre-warning to 
abnormal drivers before they drive. Recently, wireless and wearable healthcare sen-
sors have been raised in the market. The wearable healthcare sensors measuring 
bio-signals are inspired by bio-signal-based detection schemes [42, 43]. Among all 
bio-signals, a survey on nonintrusive driver assistance systems reported that electro-
cardiogram (ECG) has the highest stability on real-time measurement [44]. 
Therefore, in this chapter, a proposed smart scheme for studying and analyzing 

Fig. 6.3  Statistics of drowsy driving
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ECG signals for the detection is shown in Fig. 6.6. Figure 6.7 shows the impacts of 
the smart detection scheme.

The proposed ECG-based status of the human detection (ECG-HSD) consists of 
four stages including (1) signal pre-processing for ECG data, (2) feature extraction 
and building classifier, (3) multiple criteria decision making (MCDM), and (4) 
K-fold validation. The similarities of ECG samples of different statuses of the 
human are extracted as the feature vector. Then, the feature vector is weighted with 
respect to the importance of data points. After that, since the dimensionality of the 
feature vector affects detection performance, MCDM is applied to select the best 
classifier by creating a number of scenarios with various feature dimensions. The 
results demonstrated that the accuracy of the ECG-HSD scheme acquires satisfying 
accuracy of ~90% and a short testing time of ~5 s. Figure 6.8 shows some devices 
for electrocardiograms.

Fig. 6.4  Statistics of drunk driving

Fig. 6.5  Traditional drunk driving test
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6.8  �ECG-Based Drunk Driver Detection Design

Figure 6.9 shows the development flow of the proposed ECG-based human status 
detection (ECG-HSD).

Three human conditions are considered in this section, namely Class 0: Normal, 
Class 1: Drowsy, and Class 2: Drunk. Four stages are categorized in the develop-
ment of the ECG-HSD scheme. The first stage is signal pre-processing for ECG 
samples. At this stage, raw ECG signals used in training consist of noise, interfer-
ence, and offset and so they cannot be directly used in the training. Signal pre-
processing is carried out for noise suppression and ECG sample segmentation. The 

Fig. 6.6  Smart detection scheme on road safety

Fig. 6.7  Impacts of the smart detection scheme
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second stage includes feature extraction and building classifiers for the ECG-HSD 
scheme. The features are extracted from the segmented ECG samples at stage 1 and 
then transformed to a high-dimensional feature vector for classification. To improve 
detection accuracy, independent weighting factors are assigned to all features dur-
ing building classifiers. The assignment of features is based on multiple criteria 
decision making (MCDM) and it is considered as stage 3. At the last stage, K-fold 
cross-validations are made and evaluate the performance of the classifiers. The clas-
sifier with the best overall performance is selected for the ECG-HSD scheme.

6.8.1  �Stage 1: Signal Pre-processing for ECG Data

The training ECG signals collected from body sensors are usually interrupted with 
noises and interferences. Therefore, signal pre-processing is necessary to suppress 
the noises and interferences and divides the whole ECG signals into multiple ECG 
samples in one heartbeat duration. As a result, feature extraction can be extracted 
from ECG samples in stage 2. It is worth pointing out that ECG contains five main 

Fig. 6.8  Devices for electrocardiogram (ECG) measurement
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Fig. 6.9  Flowchart of proposed ECG-based drowsy driver detection scheme
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peaks generated by P, Q, R, S, and T waves. Each wave represents an electrical 
signal transmitted to various heart muscles. In most cases, heart-related conditions 
and diseases can be revealed by examining those ECG peaks. So, they are  
regarded as peak-of-interest. There are three steps of ECG pre-processing as 
explained below:

6.8.1.1  �Step 1: Bandpass Filter

Normally, the largest peak of the ECG signal is located within the QRS complex. 
Locating the QRS complex facilitates ECG segmentation. Theoretically, QRS com-
plex is usually found from 5 to 15 Hz of the ECG frequency spectrum. Based on this 
ECG characteristic, a low pass filter with a high cut-off frequency of 11 Hz and a 
high pass filter with a low cut-off frequency of 5 Hz are cascaded to form the band-
pass filter. The frequency components outside the range-of-interest such as muscle 
noise, cable noise, and wave interferences could be filtered.

6.8.1.2  �Step 2: Derivative Filter

An effective way to determine the peaks of interest is to search the turning points 
and this can be achieved by using differentiation. As such, a five-point derivative 
filter is used to determine the change of slope on ECG signal with a short time inter-
val. The change of slope represents turning points in the QRS complex and so the 
locations of Q, R, and S peaks could be determined.

6.8.1.3  �Step 3: Squaring and Moving Window Integration

Change of slope is not sufficient to determine the QRS complex as the slope can be 
varied due to several factors such as heart condition and signal noises. To improve 
the determination of QRS complex, squaring and moving window integration is 
used. First, all data points are turned into positive values by squaring. Then, moving 
window integration is carried out to sort out more parameters, such as the interval 
between two waves, for determining the QRS complex. Finally, multiple QRS com-
plexes can be determined using sorted parameters and the change of slopes.

ECG samples with one heartbeat duration are sorted out using a bandpass filter, 
derivative filter, and moving window integration. By applying different thresholds 
with respect to the typical values of ECG waves, the amplitudes, durations, and 
intervals of P, Q, R, S, and T waves can be found. Figures 6.10 and 6.11 show the 
pre-processing of ECG signal in the time domain and frequency domain, 
respectively.
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Fig. 6.10  Pre-processing of ECG signal in the time domain

Fig. 6.11  Pre-processing of ECG signal in the frequency domain
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6.8.2  �Stage 2: Feature Extraction and Building Classifiers

The purpose of feature extraction is to sort out the characteristics from a signal 
which can be found in most situations and demonstrate differently in various situa-
tions. For example, the heartbeat rate varies for a person if s/he is under rest or 
exercise. As such, heartbeat rate could be one of the features in determining if a 
person is under rest or exercise. Similarly, the detection scheme could consider the 
status of the human as normal, drowsy, or drunk. As mentioned earlier, ECG con-
sists of P, Q, R, S, and T waves. However, in most practical situations, no ideal ECG 
waveform can be measured using ECG sensors. It will affect the captured ampli-
tudes of ECG waves and so the detection accuracy is directly affected by the waves 
as they are extracted as features.

In this section, the similarity of ECG signals is extracted to form a feature vector. 
As such, the similarity of ECG signals is measured by cross-correlation, which is a 
method of measuring symmetric levels between two signals. The resultant cross-
correlation coefficients strongly reveal the similarity between the ECG signals 
between normal, drowsy, and drunk. The cross-correlation coefficient CCij between 
the ith ECG sample Si and the jth ECG sample Sj is formulated as follows [10]:
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(6.5)

where T is the total length (number of sampling points) of an ECG sample.
In most of the problems, the data with different classes are not linearly separable. 

Non-linear threshold plane separating various classes increases complexity and 
decreases classification accuracy. Kernel trick is a widely-adopted method in trans-
forming low-dimensional input data into high dimensional feature space. Linear 
hyperplanes separating different classes exist at a certain number of dimensions.

Besides, it is found that some data points on ECG signals experience larger 
changes at different conditions. Weighting vector Wij  =  [wij,1 wij,2 …wij,2T−1] is 
assigned into the cross-correlation coefficient during kernel development in order to 
improve detection accuracy by highlighting those important data points. The 
weighted kernel coefficient KCi,j is obtained from the equation as shown below:
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After that, kernel matrix is built with weighting kernel coefficient and is 
expressed as:
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The hyperplanes are the planes linearly separating the data with different classes. 
The data points which are closest to the hyperplanes are defined as supporting vec-
tor. The separation between the supporting vectors and the hyperplanes is defined as 
margin. To achieve the highest classification accuracy, the margin is expected to be 
maximized and this deduces an optimizing maximum margin problem. The custom-
ized equation is expressed as follows:
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where α is the Lagrange multiplier and b is a class label. KHSD is the kernel function 
obtained in Eqs. (6.6) and (6.7). As shown from the equation, the weighting vector 
W will be optimized while solving the maximum margin problem. Figures 6.12, 
6.13, and 6.14 show data sampling, design for cross-correlation coefficient, and 
design for kernel coefficient respectively.

Fig. 6.12  Data sampling
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6.8.3  �Stage 3: Multiple Criteria Decision Making (MCDM)

The dimensionality of the feature vector affects computational cost. In this case, tak-
ing more data points during cross-correlation will result in longer training time and 
testing time. Testing time could be one of the critical considerations for some appli-
cations. Therefore, the feature dimensionality is analyzed by adjusting the sampling 
rate on ECG samples. The trade-off between accuracy and testing time is solved by 
using multiple criteria decision making MCDM. Figures 6.15, 6.16, and 6.17 show 

Fig. 6.13  Design for cross-correlation coefficient

Fig. 6.14  Design for kernel coefficient
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the classifier design, trade-off of the classifier, and logic for multiple criteria deci-
sion-making, respectively.

First, by adjusting the sampling rate, it results in a number of feature vectors with 
different dimensionalities ranged from 200 to 5000. Then, a number of weighting 
kernels and classifiers are built by using the feature vectors with different dimen-
sionalities. Each classifier is considered as a scenario with respect to the feature 
dimensionality.

The classifier performance is evaluated using K-fold cross-validation. Two crite-
ria, namely accuracy and testing time are considered. The overall performance scor-
ing (OPS) of the pth classifier is computed as:

Fig. 6.15  Classifier design

Fig. 6.16  Trade-off of classifier

Fig. 6.17  Logic for multiple criteria decision making
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where Sp,q is the numerical value for the pth classifier in the qth criterion. Vq is the 
weighting value for the qth criterion.

6.8.4  �Stage 4: K-Fold Cross-Validation

K-fold cross-validation is a widely adopted method for training and evaluating the 
performance of a classifier [45]. At the initialization phase, all available data are 
divided into K sets randomly. At the first fold of validation, K − 1 data sets, consid-
ered as training sets, are picked up for training classifiers, and the remaining data 
set, considered as a validation set, is used to validate a classifier. At the next fold, the 
prior validation set will become a training set and it will not be selected for validat-
ing classifiers for the rest of the folds. One of the previous training sets is selected 
to be the validation set. The procedure repeats until all K folds are completed. The 
resultant performance of a classifier is an average result of all folds.

6.9  �Performance Evaluation of ECG-HSD Scheme

There are two key factors for the detection schemes embedded in wearable, mobile, 
and light-weight devices. The first one is the detection accuracy and the second one 
is testing time. Early warning can be provided to users once an abnormal condition 
is identified in a short period. Therefore, MCDM was applied to determine the rela-
tive best classifier with respect to accuracy and testing time. Note that similar 
approaches can be applied for considering more criteria such as computational cost, 
complexity, sensitivity, and reliability.

The proposed ECG-HSD scheme is compared to other existing works and the 
evaluation is summarized in Figs. 6.18 and 6.19. As shown in the figures, the pro-
posed ECG-HSD scheme achieved satisfying accuracy in both drowsy and drunk 
detections as compared to those individual detection schemes. Since most detection 
schemes have not mentioned about the testing time, so no comparison is given for 
this. For the proposed ECG-HSD scheme, the testing time is less than 7 s including 
the measurement time of ECG signals and algorithm processing time. It is sufficient 
to provide real-time protection to drivers.

6.9  Performance Evaluation of ECG-HSD Scheme
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6.10  �Conclusions

An optimal cardiovascular disease classifier (CDC) has been implemented by using 
an analytic hierarchy process (AHP) to facilitate multiple criteria decision analysis 
(MCDA). The four most common types of cardiovascular diseases, namely bundle 
branch block, myocardial infarction, heart failure, and dysrhythmia are considered. 
Analysis and comparison with previous works show that the speed of detecting 
cardiovascular diseases has been increased by 30–40% while the accuracy is 
retained at ~99–99.5% of traditional classifiers. In conclusion, the AHP based 
MCDA CDC is a reliable and speedy detection scheme for cardiovascular diseases.

A drunk driving detection scheme has been designed with ECG wearable sensor 
front-end developed for converting the raw ECG data into meaningful representa-
tion and attenuates the noises and interferences. The collected data will be utilized 
in the classifier development. The testing results demonstrate good accuracy com-
pared to the existing method and it can meet the requirements of early and fully 
automated detection.
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Human condition detection using electrocardiogram (ECG) signal in ECG-HSD 
scheme is proposed to classify normal, drowsy, and drunk status. During the devel-
opment of the ECG-HSD classifier, similarities of ECG signals at normal, drowsy, 
and drunk conditions were extracted to construct feature vector. Then, the important 
data points on ECG signals were weighted to improve accuracy. The classifier per-
formance related to the feature dimensionality and various scenarios were created 
by adjusting the number of feature dimension. After that, multiple criteria decision 
making (MCDM) was carried out to select the best classifiers with respect to accu-
racy and testing time. The results revealed that the proposed ECG-HSD scheme 
achieved satisfying accuracy compared to other related works and is suitable for 
real-time condition monitoring.
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