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Preface

This book is based upon the extensive practical experience of the authors 

in designing and developing software tools for visualisation of spatially 

referenced data and applying them in various problem domains. These 

tools include methods for cartographic visualisation; non-spatial graphs; 

devices for querying, search, and classification; and computer-enhanced 

visual techniques. A common feature of all the tools is their high user in-

teractivity, which is essential for exploratory data analysis. The tools can 

be used conveniently in various combinations; their cooperative function-

ing is enabled by manifold coordination mechanisms. 

Typically, our ideas for new tools or extensions of existing ones have 

arisen from contemplating particular datasets from various domains. Un-

derstanding the properties of the data and the relationships between the 

components of the data triggered a vision of the appropriate ways of visu-

alising and exploring the data. This resulted in many original techniques, 

which were, however, designed and implemented so as to be applicable not 

only to the particular dataset that had incited their development but also to 

other datasets with similar characteristics. For this purpose, we strove to 

think about the given data in terms of the generic characteristics of some 

broad class that the data belonged to rather than stick to their specifics.  

From many practical cases of moving from data to visualisation, we 

gained a certain understanding of what characteristics of data are relevant 

for choosing proper visualisation techniques. We learned also that an es-

sential stage on the way from data to the selection or design of proper ex-

ploratory tools is to envision the questions an analyst might seek to answer 

in exploring this kind of data, or, in other words, the data analysis tasks. 

Knowing the questions (or, rather, types of questions), one may look at 

familiar techniques from the perspective of whether they could help one to 

find answers to those questions. It may happen in some cases that there is a 

subset of existing tools that covers all potential question types. It may also 

happen that for some tasks there are no appropriate tools. In that case, the 

nature of the tasks gives a clue as to what kind of tool would be helpful. 

This is an important initial step in designing a new tool. 

Having passed along the way from data through tasks to tools many 

times, we found it appropriate to share the knowledge that we gained from 
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this process with other people. We would like to describe what compo-

nents may exist in spatially referenced data, how these components may 

relate to each other, and what effect various properties of these compo-

nents and relationships between them may have on tool selection. We 

would also like to show how to translate the characteristics of data and 

structures into potential analysis tasks, and enumerate the widely accepted 

principles and our own heuristics that usually help us in proceeding from 

the tasks to the appropriate approaches to accomplishing them, and to the 

tools that could support this. In other words, we propose a methodological 

framework for the design, selection, and application of visualisation tech-

niques and tools for exploratory analysis of spatially referenced data. Par-

ticular attention is paid to spatio-temporal data, i.e. data having both spa-

tial and temporal components. 

We expect this book to be useful to several groups of readers. People 

practising analysis of spatially referenced data should be interested in be-

coming familiar with the proposed illustrated catalogue of the state-of-the-

art exploratory tools. The framework for selecting appropriate analysis 

tools might also be useful to them. Students (undergraduate and postgradu-

ate) in various geography-related disciplines could gain valuable informa-

tion about the possible types of spatial data, their components, and the re-

lationships between them, as well as the impact of the characteristics of the 

data on the selection of appropriate visualisation methods. Students could 

also learn about various methods of data exploration using visual, highly 

interactive tools, and acknowledge the value of a conscious, systematic 

approach to exploratory data analysis. The book may be interesting to re-

searchers in computer cartography, especially those imbued with the ideas 

of cartographic visualisation, in particular, the ideas widely disseminated 

by the special Commission on Visualisation of the International Carto-

graphic Association. Our tools are in full accord with these ideas, and our 

data- and task-analytic approach to tool design offers a way of putting 

these ideas into practice. It can also be expected that the book will be in-

teresting to researchers and practitioners dealing with any kind of visuali-

sation, not necessarily the visualisation of spatial data. Many of the ideas 

and approaches presented are not restricted to only spatially referenced 

data, but have a more general applicability. 

The topic of the book is much more general than the consideration of 

any particular software: we investigate the relations between the character-

istics of data, exploratory tasks (questions), and data exploration tech-

niques. We do this first on a theoretical level and then using practical ex-

amples. In the examples, we may use particular implementations of the 

techniques, either our own implementations or freely available demonstra-

tors. However, the main purpose is not to instruct readers in how to use 
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this or that particular tool but to allow them to better understand the ideas 

of exploratory data analysis. 

The book is intended for a broad reader community and does not require 

a solid background in mathematics, statistics, geography, or informatics, 

but only a general familiarity with these subjects. However, we hope that 

the book will be interesting and useful also to those who do have a solid 

background in any or all of these disciplines. 
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1 Introduction 

1.1 What Is Data Analysis? 

It seems curious that we have not found a general definition of this term in 

the literature. In statistics, for example, data analysis is understood as “the 

process of computing various summaries and derived values from the 

given collection of data” (Hand 1999, p. 3). It is specially stressed that the 

process is iterative: “One studies the data, examines it using some analytic 

technique, decides to look at it another way, perhaps modifying it in the 

process by transformation or partitioning, and then goes back to the begin-

ning and applies another data analytic tool. This can go round and round 

many times. Each technique is being used to probe a slightly different as-

pect of the data – to ask a slightly different question of the data” (Hand 

1999, p. 3). 

In the area of geographic information systems (GIS), data analysis is of-

ten defined as “a process for looking at geographic patterns in your data 

and at relationships between features” (Mitchell 1999, p. 11). It starts with 

formulating the question that needs to be answered, followed by choosing 

a method on the basis of the question, the type of data available, and the 

level of information required (this may raise a need for additional data). 

Then the data are processed with the use of the chosen method and the re-

sults are displayed. This allows the analyst to decide whether the informa-

tion obtained is valid or useful, or whether the analysis should be redone 

using different parameters or even a different method. 

Let us look what is common to these two definitions. Both of them de-

fine data analysis as an iterative process consisting of the following activi-

ties:

formulate questions;  

choose analysis methods; 

prepare the data for application of the methods;  

apply the methods to the data;  

interpret and evaluate the results obtained.  
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The difference between statistical analysis and GIS analysis seems to lie 

only in the types of data that they deal with and in the methods used. In 

both cases, data analysis appears to be driven by questions: the questions 

motivate one to do analysis, determine the choice of data and methods, and 

affect the interpretation of the results. Since the questions are so important, 

what are they? 

Neither statistical nor GIS handbooks provide any classification of pos-

sible questions but they give instead a few examples. Here are some exam-

ples from a GIS handbook (Mitchell 1999): 

Where were most of the burglaries last month? 

How much forest is in each watershed? 

Which parcels are within 500 feet of this liquor store? 

For a comparison, here are some examples from a statistical handbook for 

geographers (Burt and Barber 1996): 

What major explanatory variables account for the variation in individual 

house prices in cities? 

Are locational variables more or less important than the characteristics 

of the house itself or of the neighbourhood in which it is located? 

How do these results compare across cities? 

It can be noticed that the example questions in the two groups have dis-

cernible flavours of the particular methods available in GIS and statistical 

analysis, respectively, i.e. the questions have been formulated with certain 

analysis methods in mind. This is natural for handbooks, which are in-

tended to teach their readers to use methods, but how does this match the 

actual practice of data analysis? 

We believe that questions oriented towards particular analysis methods 

may indeed exist in many situations, for example, when somebody per-

forms routine analyses of data of the same type and structure. But what 

happens when an analyst encounters new data that do not resemble any-

thing dealt with so far? It seems clear that the analyst needs to get ac-

quainted with the data before he/she can formulate questions like those 

cited in the handbooks, i.e. questions that already imply what method to 

use.

“Getting acquainted with data” is the topic pursued in exploratory data 

analysis, or EDA. As has been said in an Internet course in statistics, “Of-

ten when working with statistics we wish to answer a specific question 

such as does smoking cigars lead to an increased risk of lung cancer? Or 

does the number of keys carried by men exceed those carried by women? 

... However sometimes we just wish to explore a data set to see what it 
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might tell us. When we do this we are doing Exploratory Data Analysis” 

(STAT 2005). 

Although EDA emerged from statistics, this is not a set of specific tech-

niques, unlike statistics itself, but rather a philosophy of how data analysis 

should be carried out. This philosophy was defined by John Tukey (Tukey 

1977) as a counterbalance to a long-term bias in statistical research to-

wards developing mathematical methods for hypothesis testing. As Tukey 

saw it, EDA was a return to the original goals of statistics, i.e. detecting 

and describing patterns, trends, and relationships in data. Or, in other 

words, EDA is about hypothesis generation rather than hypothesis testing. 

The concept of EDA is strongly associated with the use of graphical rep-

resentations of data. As has been said in an electronic handbook on engi-

neering statistics, “Most EDA techniques are graphical in nature with a 

few quantitative techniques. The reason for the heavy reliance on graphics 

is that by its very nature the main role of EDA is to open-mindedly ex-

plore, and graphics gives the analysts unparalleled power to do so, enticing 

the data to reveal its structural secrets, and being always ready to gain 

some new, often unsuspected, insight into the data. In combination with 

the natural pattern-recognition capabilities that we all possess, graphics 

provides, of course, unparalleled power to carry this out” 

(NIST/SEMATECH 2005). 

Is the process of exploratory data analysis also question-driven, like tra-

ditional statistical analysis and GIS analysis? On the one hand, it is hardly 

imaginable that someone would start exploring data without having any 

question in mind; why then start at all? On the other hand, if any questions 

are asked, they must be essentially different from the examples cited 

above. They cannot be so specific and cannot imply what analysis method 

will be used. Appropriate examples can be found in George Klir’s explana-

tion of what empirical investigation is (Klir 1985).  

According to Klir, a meaningful empirical investigation implies an ob-

ject of investigation, a purpose of the investigation of the object, and con-

straints imposed upon the investigation. “The purpose of investigation can

be viewed as a set of questions regarding the object which the investigator 

(or his client) wants to answer. For example, if the object of investigation 

is New York City, the purpose of the investigation might be represented by 

questions such as ‘How can crime be reduced in the city?’ or ‘How can 

transportation be improved in the city?’; if the object of investigation is a 

computer installation, the purpose of investigation might be to answer 

questions ‘What are the bottlenecks in the installation?’, ‘What can be 

done to improve performance?’, and the like; if a hospital is investigated, 

the question might be ‘How can the ability to give immediate care to all 

emergency cases be increased?’, ‘How can the average time spent by a 
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patient in the hospital be reduced?’, or ‘What can be done to reduce the 

cost while preserving the quality of services?’; if the object of interest of a 

musicologist is a musical composer, say Igor Stravinsky, his question is 

likely to be ‘What are the basic characteristics of Stravinsky’s composi-

tions which distinguish him from other composers?’ ” (Klir 1985, p. 83). 

Although Klir does not use the term “exploratory data analysis”, it is clear 

that exploratory analysis starts after collecting data about the object of in-

vestigation, and the questions representing the purpose of investigation 

remain relevant. 

According to the well-known “Information Seeking Mantra” introduced 

by Ben Shneiderman (Shneiderman 1996), EDA can be generalised as a 

three-step process: “Overview first, zoom and filter, and then details-on-

demand”. In the first step, an analyst needs to get an overview of the entire 

data collection. In this overview, the analyst identifies “items of interest”. 

In the second step, the analyst zooms in on the items of interest and filters 

out uninteresting items. In the third step, the analyst selects an item or 

group of items for “drilling down” and accessing more details. Again, the 

process is iterative, with many returns to the previous steps. Although 

Shneiderman does not explicitly state this, it seems natural that it is the 

general goal of investigation that determines what items will be found “in-

teresting” and deserving of further examination. 

On this basis, we adopt the following view of EDA. The analyst has a 

certain purpose of investigation, which motivates the analysis. The purpose 

is specified as a general question or a set of general questions. The analyst 

starts the analysis with looking what is interesting in the data, where “in-

terestingness” is understood as relevance to the purpose of investigation. 

When something interesting is detected, new, more specific questions ap-

pear, which motivate the analyst to look for details. These questions affect 

what details will be viewed and in what ways. Hence, questions play an 

important role in EDA and can determine the choice of analysis methods. 

There are a few distinctions in comparison with the example questions 

given in textbooks on statistics and GIS: 

EDA essentially involves many different questions; 

the questions vary in their level of generality; 

most of the questions arise in the course of analysis rather than being 

formulated in advance. 

These peculiarities make it rather difficult to formulate any guidelines for 

successful data exploration, any instructions concerning what methods to 

use in what situation. Still, we want to try. 

There is an implication of the multitude and diversity of questions in-

volved in exploratory data analysis: this kind of analysis requires multiple 
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tools and techniques to be used in combination, since no single tool can 

provide answers to all the questions. Ideally, a software system intended to 

support EDA must contain a set of tools that could help an analyst to an-

swer any possible question (of course, only if the necessary information is 

available in the data). This ideal will, probably, never be achieved, but a 

designer conceiving a system or tool kit for data analysis needs to antici-

pate the potential questions and at least make a rational choice concerning 

which of them to support. 

1.2 Objectives of the Book 

This is a book about exploratory data analysis and, in particular, explora-

tory analysis of spatial and temporal data. The originator of EDA, John 

Tukey, begins his seminal book with comparing exploratory data analysis 

to detective work, and dwells further upon this analogy: “A detective in-

vestigating a crime needs both tools and understanding. If he has no fin-

gerprint powder, he will fail to find fingerprints on most surfaces. If he 

does not understand where the criminal is likely to have put his fingers, he 

will not look in the right places. Equally, the analyst of data needs both 

tools and understanding” (Tukey 1977, p. 1). 

Like Tukey, we also want to talk about tools and understanding. We 

want to consider current computer-based tools suitable for exploratory 

analysis of spatial and spatio-temporal data. By “tools”, we do not mean 

primarily ready-to-use software executables; we also mean approaches, 

techniques, and methods that have, for example, been demonstrated on 

pilot prototypes but have not yet come to real implementation. 

Unlike Tukey, we have not set ourselves the goal of describing each tool 

in detail and explaining how to use it. Instead, we aim to systemise the 

tools (which are quite numerous) into a sort of catalogue and thereby lead 

readers to an understanding of the principles of choosing appropriate tools. 

The ultimate goal is that an analyst can easily determine what tools would 

be useful in any particular case of data exploration. 

The most important factors for tool selection are the data to be analysed 

and the question(s) to be answered by means of analysis. Hence, these two 

factors must form part of the basis of our systemisation, in spite of the fact 

that every dataset is different and the number of possible questions is infi-

nite. To cope with this multitude, it is necessary to think about data and 

questions in a general, domain-independent manner. First, we need to de-

termine what general characteristics of data are essential to the problem of 

choosing the right exploratory tools. We want not only to be domain-
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independent but also to put aside any specifics of data collection, organisa-

tion, storage, and representation formats. Second, we need to abstract a 

reasonable number of general question types, or data analysis tasks, from 

the myriad particular questions. While any particular question is formu-

lated in terms of a specific domain that the data under analysis are relevant 

to, a general task is defined in terms of structural components of the data 

and relations between them. 

Accordingly, we start by developing a general view of data structure and 

characteristics and then, on this basis, build a general task typology. After 

that, we try to extend the generality attained to the consideration of exist-

ing methods and techniques for exploratory data analysis. We abstract 

from the particular tools and functions available in current software pack-

ages to types of tools and general approaches. The general tool typology 

uses the major concepts of the data framework and of the task typology. 

Throughout all this general discussion, we give many concrete examples, 

which should help in understanding the abstract concepts. 

Although each subsequent element in the chain “data tasks tools” re-

fers to the major concepts of the previous element(s), this sort of linkage 

does not provide explicit guidelines for choosing tools and approaches in 

the course of data exploration. Therefore, we complete the chain by reveal-

ing the general principles of exploratory data analysis, which include rec-

ommendations for choosing tools and methods but extend beyond this by 

suggesting a kit of generic procedures for data exploration and by encour-

aging a certain amount of discipline in dealing with data. 

In this way, we hope to accomplish our goal: to enumerate the tools and 

to give understanding of how to choose and use them. In parallel, we hope 

to give some useful guidelines for tool designers. We expect that the gen-

eral typology of data and tasks will help them to anticipate the typical 

questions that may arise in data exploration. In the catalogue of techniques, 

designers may find good solutions that could be reused. If this is not the 

case (we expect that our cataloguing work will expose some gaps in the 

data task space which are not covered by the existing tools), the general 

principles and approaches should be helpful in designing new tools. 

1.3 Outline of the Book 

1.3.1 Data 

As we said earlier, we begin with introducing a general view of the struc-

ture and properties of the data; this is done in the next chapter, entitled 



1.3 Outline of the Book      7 

“Data”. The most essential point is to distinguish between characteristic 

and referential components of data: the former reflect observations or 

measurements while the latter specify the context in which the observa-

tions or measurements were made, for example place and/or time. It is 

proposed that we view a dataset as a function (in a mathematical sense) 

establishing linkages between references (i.e. particular indications of 

place, time, etc.) and characteristics (i.e. particular measured or observed 

values). The function may be represented symbolically as follows (Fig. 

1.1):

R C

r1

r2

r3

r4

c1

c2

c3

f

c4

Fig. 1.1. The functional view of a dataset 

The major theoretical concepts are illustrated by examples of seven spe-

cific datasets. Pictures such as the following one (Fig. 1.2) represent visu-

ally the structural components of the data: 

Referrers 

Forest types: 

Broadleaved

Coniferous 

Mixed 

Other 

Attribute 

% of covered land 

Data 19_07    Broadleaved  5.0 

19_07    Coniferous  13.8 

19_07    Mixed   3.3 

19_07    Other   34.9 

19_08    Broadleaved  7.3 

19_08    Coniferous  4.4 

…    …   … 

References Characteristics

Fig. 1.2. A visual representation of the structure of a dataset 
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Those readers who tend to be bored by abstract discussions or cannot 

invest much time in reading may skip the theoretical part and proceed from 

the abstract material immediately to the examples, which, we hope, will 

reflect the essence of the data framework. These examples are frequently 

referred to throughout the book, especially those relating to the Portuguese 

census and the US crime statistics. If unfamiliar terms occur in the descrip-

tions of the examples, they may be looked up in the list of major defini-

tions in Appendix I.  

1.3.2 Tasks 

Chapter 3 is intended to propound a comprehensive typology of the possi-

ble data analysis tasks, that is, questions that need to be answered by 

means of data analysis. Tasks are defined in terms of data components. 

Thus, Fig. 1.3 represents schematically the tasks “What are the characteris-

tics corresponding to the given reference?” and “What is the reference cor-

responding to the given characteristics?” 

f

r ?

R C
f

? c

R C

Fig. 1.3. Two types of tasks are represented schematically on the basis of the func-

tional view of data 

An essential point is the distinction between elementary and synoptic 

tasks. “Elementary” does not mean “simple”, although elementary tasks 

are usually simpler than synoptic ones. Elementary tasks deal with ele-

ments of data, i.e. individual references and characteristics. Synoptic tasks 

deal with sets of references and the corresponding configurations of char-

acteristics, both being considered as unified wholes. We introduce the 

terms “behaviour”  and “pattern”. “Behaviour” denotes a particular, objec-

tively existing configuration of characteristics, and “pattern” denotes the 

way in which we see and interpret a behaviour and present it to other peo-

ple. For example, we can qualify the behaviour of the midday air tempera-

ture during the first week of April as an increasing trend. Here, “increasing 

trend” is the pattern resulting from our perception of the behaviour.  

The major goal of exploratory data analysis may be viewed generally as 

building an appropriate pattern from the overall behaviour defined by the 

entire dataset, for example, “What is the behaviour of forest structures in 

the territory of Europe?” or “What is the behaviour of the climate of Ger-

many during the period from 1991 to 2003?” 
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We consider the complexities that arise in exploring multidimensional 

data, i.e. data with two or more referential components, for example space 

and time. Thus, in the following two images (Fig. 1.4), the same space- 

and time-referenced data are viewed as a spatial arrangement of local be-

haviours over time and as a temporal sequence of momentary behaviours 

over the territory: 

Fig. 1.4. Two possible views of the same space- and time-referenced data 

This demonstrates that the behaviour of multidimensional data may be 

viewed from different perspectives, and each perspective reveals some as-

pect of it, which may be called an “aspectual” behaviour. In principle, each 

aspectual behaviour needs to be analysed, but the number of such behav-

iours multiplies rapidly with increasing number of referential components: 

6 behaviours in three-dimensional data, 24 in four-dimensional data, 120 

in five-dimensional data, and so on. 

We introduce and describe various types of elementary and synoptic 

tasks and give many examples. The description is rather extended, and we 

shall again make a recommendation for readers who wish to save time but 

still get the essence. At the end of the section dealing with elementary 

tasks, we summarise what has been said in a subsection named “Recap: 

Elementary Tasks”. Analogously, there is a summary of the discussion of 
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synoptic tasks, named “Recap: Synoptic Tasks”. Readers may proceed 

from the abstract of the chapter directly to the first recap and then to the 

second. The formal notation in the recaps may be ignored, since it encodes 

symbolically what has been said verbally. If unfamiliar terms are encoun-

tered, they may be looked up in Appendix I.  

After the recaps, we recommend that one should read the introduction to 

connection discovery tasks (Sect. 3.5), which refer to relations between 

behaviours such as correlations, dependencies, and structural links be-

tween components of a complex behaviour. The section “Other ap-

proaches” is intended for those who are interested in knowing how our 

approach compares with others. 

1.3.3 Tools 

Chapter 4 systemises and describes the tools that may be used for explora-

tory data analysis. We divide the tools into five broad categories: visualisa-

tion, display manipulation, data manipulation, querying, and computation. 

We discuss the tools on a conceptual level, as “pure” ideas distilled from 

any specifics of the implementation, rather than describe any particular 

software systems or prototypes. 

One of our major messages is that the main instrument of EDA is the 

brain of a human explorer, and that all other tools are subsidiary. Among 

these subsidiary tools, the most important role belongs to visualisation as 

providing the necessary material for the explorer’s observation and think-

ing. The outcomes of all other tools need to be visualised in order to be 

utilised by the explorer. 

In considering visualisation tools, we formulate the general concepts 

and principles of data visualisation. Our treatment is based mostly upon 

the previous research and systemising work done in this area by other re-

searchers, first of all Jacques Bertin. We begin with a very brief overview 

of that work. For those who still find this overview too long, we suggest 

that they skip it and go immediately to our synopsis of the basic principles 

of visualisation. If any unknown terms are encountered, readers may, as 

before, consult Appendix I. 

After the overview of the general principles of visualisation, we con-

sider several examples, such as the visualisation of the movement of white 

storks flying from Europe to Africa for a winter vacation (Fig. 1.5). 

In the next section, we discuss display manipulation – various interac-

tive operations that modify the encoding of data items in visual elements 

of a display and thereby change the appearance of the display. We are in-

terested in such operations that can facilitate the analysis and help in 
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grasping general patterns or essential distinctions, rather than just “beauti-

fying” the picture (Fig. 1.6). 

Data manipulation basically means derivation of new data from existing 

data for more convenient or more comprehensive analysis. One of the 

classes of data manipulation, attribute transformation, involves deriving 

new attributes on the basis of existing attributes. For example, from values 

of a time-referenced numeric attribute, it is possible to compute absolute 

and relative amounts of change with respect to previous moments in time 

or selected moments (Fig. 1.7). 

Besides new attributes, it is also possible to derive new references. We 

pay much attention to data aggregation, where multiple original references 

are substituted by groups considered as wholes. This approach allows an 

explorer to handle very large amounts of data. The techniques for data ag-

gregation and for analysis on the basis of aggregation are quite numerous 

and diverse; here we give just a few example pictures (Fig. 1.8). 

Fig. 1.5. A visualisation of the movement of white storks. 

Fig. 1.6. An example of a display manipulation technique: focusing 
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Querying tools are intended to answer various questions stated in a 

computer-understandable form. Among the existing querying tools, there 

are comprehensive ones capable of answering a wide variety of questions, 

which need to be formulated in special query languages. There are also 

dynamic querying tools that support quite a restricted range of questions 

Fig. 1.7. Examples of various transformations of time-series data. 

Fig. 1.8. A few examples of data aggregation 
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but provide a very simple and easy-to-use means for formulating questions 

(sometimes it is enough just to move or click the mouse) and provide a 

quick response to the user’s actions. While both kinds of querying tools are 

useful, the latter kind is more exploratory by nature. 

Fig. 1.9. Examples of dynamic querying tools 
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After considering querying, we briefly overview the computational 

techniques of data analysis, specifically, the most popular techniques from 

statistics and data mining. We emphasise that computational methods 

should always be combined with visualisation. In particular, the outcome 

of data mining may be hard to interpret without visualisation. Thus, in or-

der to understand the meaning of the clusters resulting from cluster analy-

sis, the characteristics of the members of the clusters need to be appropri-

ately visualised. 

The combining of various tools is the topic of the next section. We con-

sider sequential tool combination, where outputs of one tool are used as 

inputs for other tools, and concurrent tool combination, where several tools 

simultaneously react in a consistent way to certain events such as querying 

or classification. 

Fig. 1.10. Several tools working in combination 

We hope that, owing to the numerous examples, this chapter about tools 

will not be too difficult or boring to read. The dependency between the 

sections is quite small, which allows readers who wish to save time to read 

only those sections which they are most interested in. In almost all sec-

tions, there are recaps summarising what was written concerning the re-

spective tool category. Those who have no time or interest to read the de-

tailed illustrated discussions may form an acquaintance with the material 

by reading only the recaps. 

1.3.4 Principles 

In Chap. 5, we subject our experience of designing and applying various 

tools for exploratory data analysis to introspection, and externalise it as a 
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number of general principles for data exploration and for selection of tools 

to be used for this purpose. The principles do not look original; most of 

them have been stated before by other researchers, perhaps in slightly dif-

ferent words. Thus, Shneiderman’s mantra “Overview first, zoom and fil-

ter, and then details-on-demand” is close to our principles “see the whole”, 

“zoom and focus”, and “attend to particulars”. The absence of originality 

does not disappoint us; on the contrary, we tend to interpret it as an indica-

tion of the general value of these principles. 

The principles that we propound on the one hand explain how data ex-

ploration should be done (in our opinion), and on the other hand describe 

what tools could be suitable for supporting this manner of data exploration. 

Our intention has been to show data explorers and tool designers what they 

should care about in the course of data analysis and tool creation, respec-

tively. Again, we give many examples of how our principles may be put 

into the practice of EDA. We refer to many illustrations from Chap. 4 and 

give many new ones. 

Fig. 1.11. Illustration of some of the principles 

Throughout the chapter, it can be clearly seen that the principles empha-

sise the primary role of visualisation in exploratory data analysis. It is quite 

obvious that only visualisation can allow an explorer to “see the whole”, 

“see in relation”, “look for what is recognisable”, and “attend to particu-

lars”, but the other principles rely upon visualisation as well. 

In the final sections we summarise the material of the book and establish 

explicit linkages between the principles, tools, and tasks in the form of a 

collection of generic procedures to be followed in the course of explora-

tory data analysis. We consider four cases, depending on the properties of 
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data under analysis: the basic case (a single referrer, a single attribute, and 

a manageable data volume), the case of multidimensional data (i.e. multi-

ple referrers), the case of multiple attributes, and the case of a large data 

volume (i.e. great size of the reference set). We also give an example of 

the application of the procedures for choosing approaches and tools for the 

exploration of a specific dataset. 

The above should give readers an idea of the content of this book; we 

hope that readers who find this content relevant to their interests will re-

ceive some value in return for the time that they will spend in reading the 

book.  
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2 Data 

Abstract

Data represent results of the observation or measurement of phenomena. 

By means of data analysis, people can study these phenomena. Data analy-

sis can be regarded as seeking answers to various questions regarding the 

phenomena. These questions, or, in other words, data analysis tasks, are 

the focus of our attention. In this chapter, we attempt to develop a general 

view of data, which will help us to understand what data analysis tasks are 

potentially possible. 

We distinguish two types of components of data, referrers and attributes, 

which can also be called independent and dependent variables. A dataset 

can be viewed on an abstract level as a correspondence between refer-

ences, i.e. values of the referrers, and characteristics, i.e. values of the at-

tributes. Here are a few examples: 

In a dataset containing daily prices of a stock on a stock market, the re-

ferrer is time and the attribute is the stock price. The moments of time 

(i.e. days) are references, and the price on each day is the characteristic 

corresponding to this reference. 

In a dataset containing census data of a country, the set of enumeration 

districts is the referrer, and various counts (e.g. the total population or 

the numbers of females and males in the population) are the attributes. 

Each district is a reference, and the corresponding counts are its charac-

teristics.

In a dataset containing marks received by schoolchildren in tests in 

various subjects (mathematics, physics, history, etc.), the set of pupils 

and the set of school subjects are the referrers, and the test result is the 

attribute. References in this case are pairs consisting of a pupil and a 

subject, and the respective mark is the characteristic of this reference. 

As may be seen from the last example, a dataset may contain several re-

ferrers. The second example shows that a dataset may contain any number 

of attributes. 

The examples demonstrate the three most important types of referrers: 



18     2 Data 

time (e.g. days); 

space (e.g. enumeration districts); 

population (e.g. pupils or school subjects). 

The term “population” is used in an abstract sense to mean a group of any 

items, irrespective of their nature. 

We introduce a general view of a dataset structure as a function (in the 

mathematical sense) defining the correspondence between the references 

and the characteristics. 

2.1 Structure of Data 

A set of data can be viewed as consisting of units with a common struc-

ture, i.e. it is composed of components having the same meaning in each of 

the units. We shall call such units data records. For example, data about 

total population numbers in municipalities of a country in each census year 

have three components in each record: the municipality, the year, and the 

population number. This abstract view of data is independent of any repre-

sentation model. 

Any item (record) of data includes two conceptually different parts: one 

part defines the context in which the data was obtained, while the other 

part represents results of measurements, observations, calculations etc. ob-

tained in that context. The context may include the moment in time when 

the measurements were made, the location in space, the method of data 

acquisition, and the entity (or entities) the properties of which were meas-

ured (or observed, calculated, ...). Thus, in our example, the municipality 

and the year define the context in which the population number was meas-

ured.

We shall use the term referential components or referrers to denote data 

components that indicate the context, and the term characteristic compo-

nents or attributes for components representing results of measurements or 

observations. It is convenient to assume that data components have names, 

such as “municipality”, “year”, or “population number”, although the 

names are not considered as a part of the data. The items that data records 

consist of, i.e. particular instances of referential and characteristic compo-

nents, will be called the values of these components. Values of referrers 

will also be called references, and values of attributes will also be called 

characteristics.

The meaning of each component determines what items can potentially 

be its values and appear in the data. Thus, the values of the component 

“municipality” may be various existing municipalities, but not real num-
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bers or tree species. The values of the component “year” may be various 

years designated by positive integer numbers, but not fractions. We shall 

call the set of all items that can potentially be values of some data compo-

nent (but need not necessarily appear in the data) the value domain of this 

component. 

Dataset components are often called variables in the literature; we shall 

use this term interchangeably with the term “components”. This does not 

mean, however, that we assume values of components always to be nu-

meric. We use the term “variable” in a more general sense than “a quantity 

that may assume any one of a set of values” (Merriam-Webster 1999). In 

this definition, we replace “a quantity” by “something” and do not specify 

what a “value” is. The latter may be an element of a set of arbitrary nature. 

We have found useful the general ideas concerning data structures and 

properties presented in Architecture of Systems Problem Solving by 

George Klir (Klir 1985). Klir considers the situation of studying an object 

through observation of its properties. The properties can be represented as 

attributes taking on various appearances, or manifestations. “For instance, 

if the attribute is the relative humidity at a certain place on the Earth, the 

set of appearances consists of all possible values of relative humidity (de-

fined in some specific way) in the range from 0% to 100%”. Klir’s “ap-

pearances” correspond to our “values”. 

“In a single observation, the observed attribute takes on a particular appearance. 

To be able to determine possible changes in its appearance, multiple observations 

of the attribute must be made. This requires, however, that the individual observa-

tions of the same attribute, performed according to exactly the same observation 

procedure, must be distinguished from each other in some way. Let any underly-

ing property that is actually used to distinguish different observations of the same 

attribute be called a backdrop. The choice of this term, which may seem peculiar, 

is motivated by the recognition that the distinguished property, whatever it is, is in 

fact some sort of background against which the attribute is observed.” (Klir 1985)  

Klir’s notion of a “backdrop” corresponds to what we call a referential 

component or referrer. According to Klir, there are three basic kinds of 

backdrop: time, space, and population. By “population” Klir means a set 

of any items, not only people. Some examples of Klir’s population are a 

set of manufactured products of the same kind, the set of words in a par-

ticular poem or story, and a group of laboratory mice. 

In general, references themselves do not contain information about a 

phenomenon but relate items of this information (characteristics) to differ-

ent places, time moments, objects, etc. Thus, the census data mentioned 

earlier consisting of municipalities, years, and population numbers charac-

terise the population of a country. However, only the data component 

“population number” is directly related to the population and expresses 
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some of its properties. The other two components do not provide any in-

formation about the phenomenon. Instead, they allow us to relate specific 

values of the population number to corresponding time moments (years) 

and fragments of territory (municipalities). 

There is another difference between referential and characteristic com-

ponents: references can often be chosen arbitrarily, while the correspond-

ing values of the attributes are fully determined by the choice made. Thus, 

in our example, the selection of the years when the population was counted 

was made arbitrarily by the authorities and could, in principle, be changed. 

The same applies to the municipalities for which the data were collected: 

one could decide to aggregate the data about individual people and house-

holds by smaller or larger units of territory, or to change the boundaries. At 

the same time, each value of a population number present in the database 

is inseparably linked to a specific year and a specific area. The value is 

completely determined by the temporal and spatial references and cannot 

be set arbitrarily. Hence, referrers can be viewed as independent compo-

nents of data, and attributes as depending on them. 

As we have mentioned, Klir distinguishes three possible types of refer-

rers (backdrops): space, time, and population (groups of objects). How-

ever, it should not be concluded that space, time, and population are al-

ways used for referencing. Klir noted; “Time, space, and population, which 

have special significance as backdrops, may also be used as attributes. For 

instance, when sunrise and sunset times are observed each day at various 

places on the Earth, the attribute is time and its backdrops are time and 

space ...”. We can give more examples. In data about moving objects, such 

as migratory animals, the observed locations are dependent on the objects 

and the selected moments of observation. Hence, space is an attribute here. 

A set of political parties in data about the distribution of votes obtained by 

parties in an election is an example of a population-type referrer. However, 

in data showing which party won the election in each municipality, the 

party is an attribute. 

Besides space, time, and population, other types of referrers may be en-

countered. Thus, the level of the water in a river is an attribute in data 

about daily measurements of the water level. The same attribute will be a 

referrer in data about the flooded area depending on the level of the water 

in the river. Hence, space, time, and population can be viewed as the most 

common types of referrers but not as the complete set of all possible types. 
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2.1.1 Functional View of Data Structure 

The notion of a function in mathematics is a very convenient metaphor for 

reasoning about data. A function is a relation between two or more vari-

ables such that the values of one variable are dependent on, determined by, 

or correspond to values of the other variables, its arguments. In algebra 

and set theory, functions are often called “many-to-one” mappings. This 

means that, for each combination of values of the arguments, there is no 

more than one corresponding value of the dependent variable. In general, 

there is no presumption that the variables must be numeric; a function may 

be defined for sets of arbitrary nature. 

We consider a dataset as a correspondence between referential and char-

acteristic components (referrers and attributes) such that for each combina-

tion of values of the referential components there is no more than one 

combination of values of the attributes. Hence, a dataset is a function that 

has the referrers as arguments and has the dependent variable constructed 

from the attributes such that the value domain of this variable consists of 

all possible combinations of values of the attributes. This function will be 

called the data function in what follows.  

R C

r1

r2

r3

r4

c1

c2

c3

f

c4

Fig. 2.1. The functional view of the structure of a dataset illustrated graphically. 

Here, r1, r2, r3, and r4 represent different references, i.e. combinations of values of 

the dataset referrers. R is the set of all references, including, among others, the 

references r1, r2, r3, and r4. c1, c2, c3, and c4 represent different characteristics, i.e. 

combinations of values of attributes. C is the set of all possible characteristics, 

including, among others, the characteristics c1, c2, c3, and c4. f is the data function, 

which associates each reference with the corresponding characteristic 

The functional view of a dataset is illustrated graphically in Fig. 2.1. 

The dataset structure is represented as a combination of three key compo-

nents:
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R: The set of all references, i.e. combinations of values of the dataset 

referrers. This set will be called the reference set

C: The set of all possible characteristics, i.e. combinations of values of 

the dataset attributes. This set will be called the characteristic set

f: The data function, i.e. the correspondence between each element of 

the reference set and a specific element of the characteristic set. 

We have drawn this picture so as to demonstrate the following properties 

of the data function: 

each element of the reference set has a single corresponding element of 

the characteristic set; 

characteristics corresponding to different references may coincide; 

some combinations of attribute values may never occur in a dataset, i.e. 

there may be no references that they correspond to.  

We assume that a corresponding characteristic exists for each reference 

present in a dataset. However, it often happens that some data in a dataset 

are missing. We treat such cases as incomplete information about the data 

function: the characteristics of some references may be unknown but they 

still exist, and hence can potentially be found.  

In a dataset with multiple referential components, these components 

cannot be considered separately from each other, because only combina-

tions of values of all of them produce complete references that uniquely 

determine the corresponding attribute values. In contrast, it is quite possi-

ble to consider each attribute separately from the other attributes. Hence, a 

dataset with N attributes may be considered both as a single function that 

assigns combinations of N attribute values to combinations of values of the 

referential components, and as N functions where each function assigns 

values of a single attribute to combinations of values of the referrers. 

These two views are equivalent. Fig. 2.2 illustrates this idea graphically by 

the example of two attributes.  

Independent consideration of individual attributes very often takes place 

in the practice of data analysis since this is much easier and more conven-

ient than dealing with multiple attributes simultaneously. However, there 

are cases where it is necessary to consider combinations of several attrib-

utes. For example, when the age structure of a population is studied, one 

may need to look at proportions of different age groups simultaneously. 

The use of the notion of a function as a metaphor allows us to draw 

analogies between data analysis and the analysis of functions in mathemat-

ics. In particular, this will help us in defining the set of generic data analy-

sis tasks. Nevertheless, we would like to limit the use of mathematical 

terms and ensure that our ideas will be understandable to people without a 
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solid mathematical background. Although we shall use a formal notation in 

the next chapter, we shall try to make it as simple as possible. For those 

who are more familiar with mathematical terminology and notation, we 

shall sometimes offer supplementary explanations with the use of more 

formal definitions and additional mathematical concepts. However, these 

explanations are not strongly required for an overall understanding. The 

symbols  and  will be used to indicate the beginning and end of such 

material. Below, we present an algebraic reformulation of the functional 

view of data for those who want to be better prepared for the next chapter. 

A dataset is a mapping from a set of references onto a set of character-

istics, i.e. a function 

d: R  C

where R is a set of references and C is a set of characteristics. By refer-

ences we mean tuples (combinations) of values of referential variables, or 

R C

r1

r2

r3

r4

<a1, b1>

f R

r1

r2

r3

r4

A

a1

a2

a3

B

b1

b2

b3

fA

fB

<a2, b2>

<a3, b2>

<a3, b3>

=

Fig. 2.2. A dataset with N attributes may be treated in a two ways: as a single 

function associating the references with different combinations of values of these 

N attributes, or as N functions associating the references with individual values of 

these N attributes. This picture schematically represents a dataset with two attrib-

utes, denoted by A and B; a1, a2, a3, … and b1, b2, b3, … are different values of 

the attributes A and B, respectively. The characteristic set C consists of various 

pairs, each comprising one value of the attribute A and one value of the attribute 

B, for example <a1, b1>, <a1, b2>. The data function f associates each reference 

from the reference set R with one of these pairs. This function is equivalent to a 

combination of two functions, denoted by fA and fB. The function fA associates 

each reference with a certain value of the attribute A, and fB associates it with a 

certain value of the attribute B
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referrers, and by characteristics we mean tuples of values of characteristic 

variables, or attributes. Hence, in the general case, both sets R and C are 

Cartesian products of several sets, each consisting of values of one data 

component: 

R = R1 R2  …  RM

C = C1  C2  …  CN

where R1, R2, …, RM are sets of values of the referrers, and C1, C2, …, CN

are sets of values of the attributes.  

Let r be a specific element of the reference set R, i.e. a combination of 

particular elements r1, r2, …, rM from the sets R1, R2, …, RM, respectively. 

The corresponding element of the characteristic set C may be denoted as 

d(r); this is a combination of particular elements c1, c2, …, cN  from the 

sets C1, C2, …, CN, respectively. 

The mapping from the references onto the characteristics d: R  C can 

also be represented in a slightly different way as a function of multiple 

variables:

d(w1, w2, …, wM) = (v1, v2, …, vN)

where w1, w2, …, wM are the referential (i.e. independent) variables, taking 

values from the sets R1, R2, …, RM, respectively, and v1, v2, …, vN are the 

characteristic (dependent) variables taking values from C1, C2, …, CN, re-

spectively. 

In our example of census data, the reference set R is a Cartesian product 

of the set of municipalities and the set of census years. The characteristic 

set C is a Cartesian product of the value sets of such attributes as the total 

population number, the numbers of females and males, and the number of 

children, pensioners, unemployed, and so on. This dataset can be formally 

represented by the expression 

d(m, y) (n1, n2, n3, …) 

where the variable m corresponds to municipalities, y to years, and n1, n2,

n3, … to population numbers in the various population groups. 

As we have already mentioned, any attribute may be considered inde-

pendently of the other attributes, i.e. the function d(w1, w2, …, wM) (v1,

v2, …, vN) having tuples as results may be decomposed into n functions, 

each involving one of the attributes: 

d1(w1, w2, …, wM) v1

d2(w1, w2, …, wM) v2

…

dN(w1, w2, …, wM) vN
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2.1.2 Other Approaches  

Since we are particularly interested in spatial and spatio-temporal data (i.e. 

data having spatial and temporal components), it is appropriate to compare 

our view of data with that adopted in the area of spatial data handling. In 

cartography and geoinformatics, data about spatial phenomena are tradi-

tionally divided into spatial (geographic) and non-spatial information, the 

latter being also called “thematic” information or “attributes”. Here the 

term “attribute” is used in a different sense from what we have considered 

thus far: it denotes merely the non-spatial aspect of data. Recently, a need 

for a special consideration of time has been recognised. According to 

Nyerges (cited in MacEachren (1995)), any phenomenon is characterised 

by a “bundle of properties” that includes a theme, space, and time. The 

temporal aspect of a phenomenon includes the existence of various objects 

at different time moments, and changes in their properties (spatial and 

thematic) and relationships over time. 

There is no explicit division of data into referential and characteristic 

components in the literature on cartography and GIS. According to our 

observation, space and time are typically implicitly treated as referrers and 

the remaining data components as referring to space and time, i.e. as at-

tributes in our terms. The existence of the term “spatially referenced data” 

in the literature on GIS supports this observation. In principle, there is 

quite a good justification for this view. Although space and time can be 

characteristics as well as references, it is often possible, and useful for data 

analysis, to convert space and time from characteristics to references. For 

example, in data about occurrences of earthquakes, the locations of the 

earthquakes are attributes characterising the earthquakes. However, for a 

study of the variation of seismic characteristics over a territory, it may be 

appropriate to treat space as an independent container for events: each lo-

cation is characterised by the presence or absence of earthquake occur-

rences, or by the number of occurrences. In fact, this is a transformation of 

the initial data (and a switch to consideration of a different phenomenon, 

namely the seismicity of an area rather than earthquakes themselves), al-

though it might be done merely by indicating the locations of the earth-

quakes on a map. A map facilitates the perception of space as a container 

where some objects are placed, rather than as an attribute of these objects. 

Perhaps this is the reason why space is usually implicitly treated as a refer-

rer in cartography and geoinformatics. 

A similar transformation may be applied to temporal attributes, such as 

the times of earthquake occurrences in our example. Thus, in order to pro-

duce an animated presentation of the data, a designer usually breaks the 

time span between the first and the last recorded earthquake occurrence 
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into regular intervals, e.g. days or months. At each moment of the anima-

tion, the earthquakes that occurred during one of these intervals are shown. 

Thereby, the time is turned from an attribute into an independent referen-

tial variable: time moments or intervals are selected arbitrarily, and the 

earthquake occurrences that are visible on the screen depend on the selec-

tion made. Like space, time is now treated as an independent container of 

events.

The possibility of treating space and time both as referrers and as attrib-

utes is reflected in the reasoning concerning the absolute and relative 

views of space and time (Peuquet 1994, 2002, Chrisman 1997). According 

to the absolute view, space and time exist independently of objects and 

form a framework, or a container, where objects are placed. According to 

the relative view, both space and time are properties attached to objects 

such as roads, rivers, and census tracts. 

A real-life example of the dual treatment of spatial and temporal com-

ponents of data can be found in Yuan and Albrecht (1995). By interview-

ing analysts of data about wildfires, the researchers revealed four different 

conceptual models of spatio-temporal data used by these people. Models 

are classified into location-centred and entity-centred models, according to 

the analyst’s view of space. In the location-centred models, all information 

is conceptualised as attributes of spatial units delineated arbitrarily or em-

pirically (i.e. space is a referrer). The entity-centred models represent real-

ity by descriptions of individual entities that have, among other things, 

spatial properties (space is an attribute of the entities). Within these two 

classes, the models are further differentiated according to the view of time: 

either the data refer to arbitrarily defined temporal units in a universal time 

frame (time is a referrer) or time is described as an attribute of spatial units 

or entities. 

For generality, we shall assume that any dataset with locations and/or 

time moments attached to some entities can be considered in a dual way:  

The set of entities forms a referrer of the type “population”. The loca-

tions and time moments are values of the spatial and temporal attributes 

characterising these entities, along with any other attributes. 

The referrers are space and time (or one of these). For specific values or 

combinations of values of the referrer(s), there are corresponding enti-

ties, i.e., the presence of an entity is regarded as an attribute characteris-

ing locations in space and/or moments in time. The values of all attrib-

utes characterising the entities are assumed to refer to the locations 

and/or time moments at which these entities exist. Hence, attribute val-

ues may not necessarily be defined for all values of the referrer(s). 
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Although we have a particular interest in spatio-temporal data, we still 

do not intend to restrict ourselves to only this kind of data, but will attempt 

to develop a more general framework. Therefore, we prefer to adopt the 

abstract view of data structure based on an explicit division of components 

into referrers and attributes, where both referrers and attributes may have 

any type, including spatial and temporal. 

Our view of data structure is close to the concept of data cubes, which is 

commonly accepted as a method for abstracting and summarising rela-

tional databases and data warehouses (see, for example, Gray et al. 

(1998)). Data cubes categorise data components into two classes, namely 

dimensions and measures, corresponding to the independent and dependent 

variables, respectively (or, in our terms, to referrers and attributes). Data 

are abstractly structured as a multidimensional cube, where each axis cor-

responds to a dimension and consists of every possible value for that di-

mension. Every “cell” in the data cube corresponds to a unique combina-

tion of values for the dimensions and contains one value per measure.  

2.2 Properties of Data 

Both referential and characteristic components can be distinguished ac-

cording to the mathematical properties of the underlying sets from which 

they take their values. According to Klir, the most important properties are 

the ordering of the set elements, the existence of distances between the 

elements, and continuity. Sets may be unordered, partially ordered, or fully 

(linearly) ordered. For example, a group of objects (a population) is a dis-

crete set without ordering or distances. Time is a linearly ordered continu-

ous set with distances. Space is also a continuous set with distances, but 

there is no natural order between its elements, i.e. locations. In space, it is 

possible to introduce various arbitrary orderings. Thus, a coordinate sys-

tem established in space specifies a full ordering when the space has one 

dimension, and a partial ordering in the case of two or more dimensions. 

Any set of numbers is linearly ordered and has distances; the distance is 

the difference between the numbers concerned. A numeric set may be ei-

ther discrete, as in measurements of a number of objects, or continuous, as 

in measurements of temperature.  

We assume that the values of a component may be not only individual 

items but also sets (subsets of a certain basic set of individual items). For 

example, in a dataset describing countries, there may be attributes specify-

ing in what international organisations each country participates, what na-

tionalities live there, and what languages are spoken. In data about build-
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ings, the locations of the buildings are not just points in space but areas, 

i.e. subsets of space. In data about events, such as conferences and fairs, 

the time frame of each event is an interval in time, i.e. again a set rather 

than a single time moment. A set consisting of sets is partly ordered: some 

of the sets may be parts of other, bigger sets. 

Besides the properties of each data component taken separately, it is im-

portant to know the properties of the correspondence between the refer-

ences and the characteristics, in particular, whether for each reference (i.e. 

combination of values of the referential components) there is (potentially) 

a corresponding value of each attribute. “Potentially” means that for some 

references the corresponding attribute values may be undetermined (not 

measured) even though it is known that such values exist. If all attributes 

characterising a phenomenon possess this property with respect to a refer-

rer with a continuous value set, we call this phenomenon continuous with 

respect to this referrer. For example, a phenomenon may be continuous 

with respect to space (spatially continuous) and/or with respect to time 

(temporally continuous). It may be said that a continuous phenomenon ex-

ists everywhere over the set of values of the referrer. A phenomenon is 

partly continuous if it is continuous for one or more continuous subsets of 

the referrer’s value set but not for the whole set. A phenomenon is discrete

if its characteristics exist only for a finite or countable subset of values of a 

continuous referrer. For example, air temperature is a spatially and tempo-

rally continuous phenomenon, clouds are partly continuous with respect to 

space and time, and lightning can be viewed as a spatially and temporally 

discrete phenomenon. 

We shall also use terms such as “continuous attribute” or “discrete at-

tribute” for denoting attributes characterising continuous or discrete phe-

nomena. 

Let us consider the case where a referrer and an attribute have value sets 

with distances. The attribute is called smooth with respect to this referrer if 

its values corresponding to close values of the referrer are also close, and if 

the smaller the distance between the referrer’s values, the closer the corre-

sponding values of the attribute are. Air temperature is an example of a 

smooth phenomenon (attribute) with respect to both space and time. Room 

price in a hotel is smooth neither spatially nor temporally. First, one cannot 

expect that prices for adjacent rooms will always be closer than when the 

rooms are spatially distant; second, the prices may become significantly 

higher than usual on public holidays or during events that attract many 

visitors. Such attributes may be called abrupt.

It is possible to use our functional representation of data structure, 

which treats an attribute as a function, to give stricter definitions of con-

tinuous and smooth attributes, by analogy with continuous and smooth 
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functions in mathematics. However, we feel the informal definition to be 

sufficient for an understanding of the concepts. 

Since a continuous set consists of an infinite and uncountable number of 

elements, it is impossible to determine the corresponding attribute values 

for each value of a referrer that has a continuous value set. Such referrers 

are usually handled by means of discretising, i.e. division of the value set 

into a finite or at least countable number of equivalence classes, i.e. value 

subsets in which the members are treated as being the same. These classes 

are then used as values of this referrer, and the values of the attributes are 

defined for these classes rather than for the “atomic” elements. 

It is clear that any continuous reference set may be discretised in many 

different ways. For example, a two-dimensional geographical space (terri-

tory) may be divided into administrative units of various levels (countries, 

provinces or states, communes or counties, etc.) or into regular cells, with 

an arbitrary choice of the cell size and the origin of the grid. For time, 

there is a customary division down to seconds; however, it may be more 

meaningful to use coarser divisions such as hours, days, weeks, months, or 

even centuries. 

It may also be of practical value to introduce equivalence classes for a 

referrer with a countable or finite set of values. There are various possible 

reasons for this. Individual elements of a set may be too numerous to allow 

one to consider each of them, access to data about individuals may be re-

stricted, or an analyst may be interested in aggregate rather than individual 

characteristics. For example, a set of people (i.e. a population in a demo-

graphic sense) may be divided into groups by age, gender, occupation, etc. 

A set of biological organisms may be divided into biological populations, 

i.e. groups of organisms living in the same area. 

When only attribute values corresponding to subsets of the reference set 

(rather than individual references) are available for analysis, it is important 

to know how these attribute values were obtained, since the applicability 

of some analysis methods may depend on this. The definition of values of 

attributes corresponding to subsets of references may be done by either 

aggregation or sampling. Aggregation means summarising or averaging 

values over the subsets, for example counting households in each district 

of a territorial division and finding their average income. Sampling means 

choosing a representative element in each subset and assuming the attrib-

ute values corresponding to this element to be valid for the whole subset. 

For example, one can measure air temperature each day at noon and treat 

this as a characteristic of the day as a whole. For a continuous referrer and 

a continuous, smooth attribute, it is also possible to make measurements 

for sample values of the referrer and then to derive the attribute value for 

any other reference by means of interpolation. This technique is often used 
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to characterise spatially continuous and smooth phenomena such as the 

variation of altitude or air temperature over a territory. 

Since the granularity level for dividing a set of references into subsets 

may be chosen arbitrarily, it is possible to characterise one and the same 

phenomenon with different levels of detail. Moreover, if a method for de-

riving attribute values for larger subsets from values for smaller subsets or 

individual elements is defined, it is possible to vary the level of detail on 

which the phenomenon is considered. This corresponds to the notion of 

“drilling”  in data analysis, which is defined as a technique for navigating 

through levels of data granularity or detail. The term “drill up” or “roll up” 

means increasing the level of abstraction, and “drill down” means descend-

ing to finer granularity and more detail. 

Again, our view is close to the ideas related to the concept of the data 

cube mentioned earlier. In the literature explaining this concept (Gray et al. 

1998, Stolte et al. 2002), it is stated that the dimensions of a data cube may 

have a hierarchical (or, more generally, a lattice) structure. For example, a 

dimension specifying locations may consist of several levels such as coun-

try, state, and county. A temporal dimension may involve days, weeks, 

months, quarters, and years. The main value of data cubes is the possibility 

to look at data on different levels of detail by means of ascending and de-

scending along these hierarchies and thus varying the degree of data ag-

gregation.

Some other important properties of data need to be mentioned. One of 

them is data completeness. An attribute is completely specified if some 

value of it can be put in correspondence with any combination built out of 

the values of the referrers that occur in the dataset. Incompletely specified 

data are said to have missing values. Cases of missing values must be 

properly handled in the course of data analysis; an analyst should be very 

cautious in generalising any observations to such cases. 

In most real-world situations, it is practically impossible to make precise 

measurements. Therefore there is always some degree of uncertainty con-

cerning the attribute values obtained. While minor uncertainties can often 

be ignored, there are many cases where data uncertainty must be taken into 

account.

Uncertain measurements or observations can be represented in data in 

different ways. Thus, for a numeric attribute, a value range rather than a 

single value may be specified for a combination of values of the referrers. 

Another approach is to specify the likelihood (probability) that a particular 

value is attained. While it is clear that uncertain data require special analy-

sis methods, the current state of the art in exploratory data analysis has not 

yet responded adequately to the challenges related to data uncertainty. 
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2.2.1 Other Approaches 

In cartography and geoinformatics, it is usual to consider spatial, temporal, 

and thematic aspects of data (phenomena) separately. Phenomena are clas-

sified into points, lines, areas, and volumes according to their spatial prop-

erties (Slocum 1999). Another typology of spatial phenomena is based on 

two orthogonal dimensions: spatial continuity and spatial (in)dependence

(MacEachren 1995, Slocum 1999). Phenomena are characterised as dis-

crete or continuous according to the first of these dimensions. Discrete 

phenomena occur at isolated locations, while continuous phenomena occur 

everywhere. Phenomena may be classified as smooth (adjacent locations 

are not independent) or abrupt (adjacent locations are independent) ac-

cording to the second dimension. Smooth phenomena change in a gradual 

fashion, while abrupt phenomena change suddenly. “For instance, rainfall 

and sales tax rates for states are both continuous in nature, but the former 

is smooth, while the latter is abrupt (varying at state boundaries)” (Slocum 

1999, p. 18).  

From our viewpoint, the notions of spatial continuity and spatial 

(in)dependence are based on an implicit treatment of space as a referrer. 

They can easily be extended to other types of referrers with continuous 

value sets. For example, it is possible to think about temporal continuity 

and temporal (in)dependence of a phenomenon.  

In the GIS literature, data properties are considered mostly from the per-

spective of how the data are represented in a GIS. There are two basic ap-

proaches to the representation of data about spatial phenomena: object-

based and location-based (Peuquet 1994, Chrisman 1997). The object-

based approach arranges all information, both spatial (coordinates) and 

non-spatial, as attributes of geographic objects, or features. This corre-

sponds to the vector model of data representation. In the GIS area, it is 

conventional to distinguish between point, line, and area (or polygon) fea-

tures. Features are organised into themes, or layers. In addition to the 

point, line, and area types, some authors consider networks consisting of 

connected lines as a special type of spatial data (see, for example, Verbyla 

(2002)). In the location-based approach, all information is stored relative 

to specific locations. Each location is associated with a list of objects oc-

curring in it, and values of thematic attributes. This approach corresponds 

to the raster model, which divides a territory into multiple building blocks 

of the same size and shape called “grid cells” or “pixels”, which are filled 

with measured attribute values.  

It seems apparent that the vector data model can represent discrete phe-

nomena better, while the raster model is more suitable for continuous phe-

nomena. In reality, however, there is no strict correspondence between the 
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spatial continuity of a phenomenon and the representational model used. 

Thus, data about a continuous phenomenon may refer to sample locations 

represented as point features (e.g. air temperature measurements at differ-

ent weather stations) or to districts of a territorial division represented as 

polygons (e.g. population density by municipalities). Peuquet argues that 

the location-based and object-based approaches are complementary rather 

than contradictory: some tasks can be done better on the basis of the for-

mer approach, whereas for other tasks the latter approach is more suitable. 

Hence, it is beneficial to combine these two approaches (Peuquet 1994). 

Actually, transformation from vector to raster and from raster to vector 

representations is often used in data analysis. 

According to the cartographic literature, the temporal aspect of a phe-

nomenon is related to the existence of the phenomenon at different time 

moments and to the variation of its spatial and thematic properties over 

time. Spatio-temporal phenomena undergo several different types of 

changes (Blok 2000): existential changes (appearing and disappearing), 

changes in spatial properties (location, shape, size, orientation, altitude, 

height, gradient, and volume), and changes in thematic properties, which 

include qualitative changes and changes in ordinal or numeric characteris-

tics (increases and decreases). Sometimes only one type of change takes 

place or is of interest to an analyst, but in many cases one needs to con-

sider two or three types simultaneously. 

Time itself can be treated in two different ways: as a linear continuum 

and as a repeating cycle linked to the earth’s daily rotation or annual revo-

lution (MacEachren 1995). Data can be recorded, retrieved, and processed 

at different temporal precisions, such as seconds, hours, days, or centuries. 

Analogously to the spatial aspect of data, the view of the temporal as-

pect in the GIS literature is also representation-oriented. The two basic 

approaches to data representation, object-based and location-based, are 

extended to include time. Peuquet writes (Peuquet 2002, p. 270): 

In the “discrete” (or entity-based) view, distinct entities, such as a lake, a road, 

or a parcel of land, are the basis of the representation. Their spatial and tempo-

ral extents are denoted as attributes attached to these entities. 

In the “continuous” (or field-based) view, the basis of the representation is 

space and/or time. Individual objects are denoted as attributes attached to a 

given location in space time. 

We shall not go into further detail concerning the representation of time in 

GIS. A comprehensive study of this topic may be found, for example, in 

Langran (1992). We prefer to adhere to a more abstract view of data, inde-

pendent as much as possible of any representational paradigm. 
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Attributes (i.e. thematic components of spatially referenced data) are 

typically distinguished according to the levels of measurement introduced 

by Stevens (1946): nominal, ordinal, interval, and ratio. Often the catego-

ries “interval” and “ratio” are united into a single category “quantitative”, 

or “numeric”  (Bertin 1967/1983, MacEachren 1995). The traditional no-

tion of levels of measurement can be expressed in terms of the mathemati-

cal properties of sets. The nominal level corresponds to a set without or-

dering or distances, the ordinal level – to a set with linear ordering but 

without distances, and the interval and ratio levels – to linearly ordered 

sets with distances. The difference between the latter two levels is that a 

“true zero” element exists in a set characterised by the ratio level of meas-

urement, i.e. an element that is always the first in the order. For example, 

in the set of possible population numbers, 0 is the “true zero” because 

there cannot be a population number less than 0. 

Some researchers introduce more distinctions for characterising the-

matic data. Thus, Roth and Mattis (1990) classify numeric attributes into 

coordinates and amounts in order to capture the difference between, for 

example, two o’clock and two hours. In our opinion, this corresponds to 

the distinction between the interval and ratio levels of measurement. For 

amounts, such as the number of hours, there is a “true zero”. As an impli-

cation, it is possible to measure how much one amount is greater or 

smaller than another amount, i.e. to compute ratios between amounts. This 

is impossible for “coordinates”, i.e. sets corresponding to the interval level 

of measurement, where a “zero” element can be chosen arbitrarily, such as 

the starting moment of time for counting the time of day. 

Jung (1995) suggests a yet more detailed classification of numeric vari-

ables:

Amounts: Absolute quantities  

Measurements: Absolute numbers representing results of measurements 

(e.g. distance). Along with these measurements, the corresponding units 

must be specified 

Aggregated values: Amounts or measurements summarised by areas. 

Such variables are always implicitly dependent on the area  

Proportional values, normalised by division by a fixed value 

Densities: Amounts or aggregated amounts divided by corresponding 

areas. As a result, densities do not depend on the area 

Coordinates that specify position in some coordinate system, e.g. on the 

time axis.

In relation to our view of data, some of these categories (specifically, 

amounts and coordinates) may be reformulated in terms of mathematical 
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properties of sets, as was demonstrated above. Some other categories, such 

as aggregated values and densities, are related to various methods of data 

transformation. While Jung’s categories are based on a special treatment of 

space as a referrer, we assume that aggregated values can be derived on the 

basis of any referrer, and densities on the basis of any continuous referrer. 

Jung considers also a number of characteristics related to data quality,

such as reliability and exactness. While we regard data quality as an im-

portant issue, it is not the focus of our study. 

In general, we aim to adhere in our study, whenever possible, to the ab-

stract view of the structure and properties of data, without separating them 

into spatial, temporal, and thematic aspects. However, we recognise that 

space and time have their specific properties and that it is necessary to take 

these specifics into account in data analysis. Therefore, whenever appro-

priate, we shall pay special attention to data having spatial and/or temporal 

components, either referrers or attributes.  

2.3 Examples of Data 

Now that we have introduced a general framework for the consideration of 

the structure and properties of data, we shall demonstrate the use of this 

framework by describing a few example datasets. These datasets will be 

referred to throughout the book and heavily used for the purposes of illus-

tration. Therefore, we recommend readers to familiarise themselves with 

these datasets by reading the following brief descriptions. 

2.3.1 Portuguese Census 

There are demographic data for the territory of Portugal, divided into 275 

administrative districts, obtained from censuses in the years 1981 and 

1991. The data include such attributes as population, numbers of males and 

females in the population, numbers of people employed in various occupa-

tions (agriculture, industry, and services), and numbers of unemployed. 

In this dataset, space and time are referrers. Space has been discretised 

by dividing the territory of Portugal into administrative districts. The val-

ues of the attributes have been defined for these districts by summarising 

(aggregation) of data concerning individuals over the districts. The attrib-

utes are spatially continuous, i.e. defined everywhere on the territory of 

Portugal. The attributes are spatially abrupt rather than smooth because the 

numbers and characteristics of the population may change abruptly from 
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place to place (as a result of the aggregation that took place in the data 

preparation).

In relation to the temporal referrer, the corresponding attribute values 

are defined only for two sample time moments, specifically the years 1981 

and 1991. The attributes are temporally continuous, since values exist at 

any time moment (but may not always be known). The attributes are also 

temporally smooth, because the population numbers and characteristics of 

the population usually change gradually over time. 

All attributes available in the dataset have the ratio level of measure-

ment, i.e. the value set of each of them has a “true zero”. The structure of 

the dataset is illustrated in Fig. 2.3. 

   Referrers         Attributes 

1981 1991

Total population 

Male population 

Female population 

Total employed 

Male employed 

Female employed 

Total unemployed 

Male unemployed 

Female unemployed 

Employed in industry 

Employed in agriculture 

Employed in services 

…

Abrantes  1981  48653 23589 25064 18147 … 

Abrantes  1991  45697 22291 23406 16834 … 

Agueda   1981  43216 21164 22052 20280 … 

Agueda   1991  44045 21469 22576 21340 … 

…   …  … … … … … 

Data

References Characteristics

Fig. 2.3. The structure of the Portuguese census dataset 

To make the illustrations for the book, we have often used not the origi-

nal attributes expressing the absolute numbers of people in the various 

population groups, but derived attributes expressing the proportions of 

these groups in the populations of the districts. To produce these attributes, 

we have divided the absolute numbers by the total populations in the re-

spective districts. 
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2.3.2 Forests in Europe 

Here data about the distribution of different types of forest (coniferous, 

broadleaved, mixed, and other forests) over the territory of Europe are 

specified by numeric values referring to cells of a regular rectangular grid. 

The numbers represent the percentage of the area of each cell covered by 

the corresponding type of forest. 

This dataset contains two referrers. One of the referrers is space, i.e. all 

locations in the territory of Europe. The spatial referrer has been discre-

tised by dividing the territory into uniform compartments. The other refer-

rer is the set of possible forest types consisting of four elements. This is a 

referrer of type “population”. There is a single attribute, the percentage of 

the land covered, defined for combinations of values of these two referrers. 

The attribute values for the compartments are defined by means of aggre-

gation. The attribute has the ratio level of measurement. 

Referrers 

Forest types: 

Broadleaved

Coniferous 

Mixed 

Other 

Attribute 

% of covered land 

Data 19_07    Broadleaved  5.0 

19_07    Coniferous  13.8 

19_07    Mixed   3.3 

19_07    Other   34.9 

19_08    Broadleaved  7.3 

19_08    Coniferous  4.4 

…    …   … 

References Characteristics

Fig. 2.4. The structure of the European forest dataset 

The phenomenon characterised by these data is partly continuous with 

respect to space: it does not exist, for example, in the areas covered by wa-

ter. The phenomenon is spatially abrupt: the characteristics may change 
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greatly at the boundary of an urban area, for example. The structure of the 

dataset is illustrated in Fig. 2.4. 

2.3.3 Earthquakes in Turkey 

This is a dataset containing data about 10 560 earthquakes that occurred in 

the area around the Sea of Marmara in western Turkey and adjacent territo-

ries from 1 January 1976 to 30 December 1999. For each earthquake, there 

are the date and time of day when it occurred, and its location (longitude 

and latitude), magnitude, and depth. The structure of the dataset is illus-

trated in Fig. 2.5. 

This dataset may be treated in a dual way. On the one hand, the set of 

earthquakes is a referrer of the type “population” with a finite number of 

possible values. Time (i.e. the time of occurrence of the earthquake) and 

space (i.e. the earthquake location), as well as the magnitude and depth, are 

attributes with values referring to individual earthquakes. The set of earth-

quakes is a discrete referrer without ordering and without distances be-

tween the elements. 

Earthquakes:

1

2

…

10560 

Referrer Attributes

Magnitude 

Depth 

1   23 88   38 27     01.01.1976, 16:17 2.9 5 

2   23 26   39 21     07.01.1976, 06:23 3.2 0 

3   29 80   38 80     07.01.1976, 23:59 3.3 7 

…   …  …    …   … … 

10560   25 99   38 91     30.12.1999, 04:55 4.7 5 

Data

Location Time

References Characteristics

Fig. 2.5. The structure of the dataset of earthquakes in the Marmara region (west-

ern Turkey) 

On the other hand, it is possible to treat space and time as referrers and 

the earthquakes as a phenomenon existing in space and time. In this case, 

both space and time have continuous value sets with distances between 

elements. The earthquakes are discrete phenomena, both spatially and 

temporally: they exist only at specific locations and specific time mo-
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ments. Hence, the attributes characterising the earthquakes (i.e. magnitude 

and depth) are also discrete, although each of them has a continuous value 

set. The structure of the dataset is illustrated in Fig. 2.6. 

Referrers Attributes

Earthquake: 

{1, 2, …, 

10560, none} 

Magnitude 

Depth 

23 88   38 27     01.01.1976, 16:17      1    2.9    5 

23 26   39 21     07.01.1976, 06:23      2     3.2    0 

29 80   38 80     07.01.1976, 23:59      3     3.3    7 

…  …    …        …     …    … 

25 99   38 91     30.12.1999, 04:55      10560 4.7    5 

Data 

References Characteristics

Fig. 2.6. Another view of the earthquake dataset. Here, space and time are treated 

as referrers rather than as attributes of the earthquakes 

While the depth is an attribute with the ratio level of measurement, our 

knowledge of seismology is insufficient to make a definite judgement con-

cerning the magnitude. 

2.3.4 Migration of White Storks 

An observation of migratory movements of four white storks was made 

during the period from 20 August 1998 to 1 May 1999. The data collected 

contain locations of the birds at various dates. In this dataset, there are two 

referrers, time and the storks observed; the latter is a population-type refer-

rer with four possible values. The dataset has one attribute, location in 

space. The values of the attribute are defined for moments of time. With 

respect to time, the attribute is continuous and smooth: at any moment, 

each stork has a certain position in space, and this position changes gradu-

ally over time. The structure of the dataset is illustrated in Fig. 2.7. 

As in the previous example, this dataset may also be viewed in another 

way: space and time may be treated as referrers, and the attribute reflects 

which stork is present in a given location at a given time moment (Fig. 

2.8). In this view, the attribute is discrete. 
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Referrers Attribute

LocationStorks: 

Prinzessin 

Sohn von Prinzessin 

Peterchen 

Penelope 

20.08.1998   Prinzessin         52 11   12 09

20.08.1998   Sohn von Prinzessin      52 00   12 45

20.08.1998   Peterchen         54 22   21 30

20.08.1998   Penelope         54 00   21 45

23.08.1998   Prinzessin         51 02   15 31

23.08.1998   Sohn von Prinzessin      50 96   16 09

24.08.1998   Peterchen         52 49   24 66

…      …           …   …    

Data 

References Characteristics

Fig. 2.7. The structure of the dataset of white stork migration 

Referrers Attribute

Stork: 

Prinzessin 

Sohn von Prinzessin 

Peterchen 

Penelope 

none

52 11   12 09      20.08.1998    Prinzessin  

52 00   12 45      20.08.1998    Sohn von Prinzessin 

54 22   21 30      20.08.1998    Peterchen 

54 00   21 45      20.08.1998    Penelope  

51 02   15 31      23.08.1998    Prinzessin 

50 96   16 09       23.08.1998    Sohn von Prinzessin 

52 49   24 66      24.08.1998    Peterchen    

…   …      …       …    

Data 

References Characteristics

Fig. 2.8. Another view of the white stork migration dataset. Here, space and time 

are treated as referrers 
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2.3.5 Weather in Germany 

This dataset contains monthly climate data measured at 43 locations in 

Germany (weather stations) during the period from January 1991 to May 

2003. The data include air temperature, rainfall, wind speed, etc. 

In this dataset, there are two referrers: space and time. The phenomenon 

(i.e. climate) is spatially and temporally continuous, i.e. defined every-

where in space and time. However, the correspondence between the char-

acteristics of the climate and space (more specifically, the territory of 

Germany) is defined by means of sampling, i.e. specifying attribute values 

for sample locations. The temporal referrer is discretised at the level of 

months. The corresponding attribute values are defined by means of ag-

gregation; more specifically, averaging over monthly time intervals. The 

structure of the dataset is illustrated in Fig. 2.9. 

Referrers Attributes

Minimum air temperature 

Mean air temperature 

Maximum air temperature 

Total sunshine duration 

Total precipitation 

Mean wind speed 

…

10015      01.1991  -1 4.3 8.7 74.4 65.2 …

10015      02.1991  -6.4 0.4 7.3 108 14.2 …

…      …   … … … … … …

10015      04.2003  1 7.6 15.4 236.4 20.8 …

10020      01.1991  -3.2 3.1 8.5 82.9 63.5 …

10020      02.1992  -7.3 -0.4 6.6 105 23.3 …

…      …   … … … … … …

10020      04.2003  -2.3 8 19.2 252.6 15.6 …

…      …   … … … … … …

Data 

References Characteristics

Fig. 2.9. The structure of the dataset related to the climate of Germany 

The phenomenon of climate may be considered as partly smooth with 

respect to space. In many cases, it is possible to derive climate characteris-

tics for locations between weather stations by interpolating the values 
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measured at the locations of the weather stations. However, it should be 

taken into account that close locations separated, for example, by a chain 

of mountains may have quite different climatic conditions. The climate 

may also be greatly influenced by other factors, for example by the close-

ness of a warm or cold oceanic current. Therefore, the extension of climate 

measurements taken at sample locations to other locations may be done 

correctly only on the basis of expert knowledge and additional data. 

Climate is a smooth phenomenon with respect to time: although people 

often complain about sudden changes in the weather, the changes actually 

do not occur instantaneously. Thus, it usually takes some time for the tem-

perature to increase or decrease. If the temperature was 15  at the moment 

t1 and 20  at the moment t2, we may expect that there was a moment t be-

tween t1 and t2 when the temperature was 18 , even though the interval 

from t1 to t2 may sometimes be quite short. In our particular case, however, 

we should take into account the fact that the dataset we have at our dis-

posal contains only aggregated (with respect to time) attribute values. 

These values cannot be used for interpolation, i.e. deriving values for in-

termediate time moments. 

In exploring data about climate, time should not be viewed only as a lin-

ear sequence of moments; it is important also to consider the daily and 

yearly cycles. Since the dataset that we have does not contain diurnal data, 

the daily cycle is irrelevant in this case. 

2.3.6 Crime in the USA 

For each state of the USA, annual statistics concerning various types of 

crime are available for the 41 years from 1960 to 2000. The referrers are 

again space (discretised by means of division of the territory of the USA 

into states) and time (discretised by division into yearly intervals). The 

attributes are population number; the total numbers of crimes of various 

types, such as murder and non-negligent manslaughter, robbery, and bur-

glary, and the crime rate for each type of crime. The attribute values are 

defined for each state by means of summarising (aggregation) of individ-

ual instances. The attribute values corresponding to the yearly time inter-

vals are also defined by aggregation over the intervals. The structure of the 

dataset is illustrated in Fig. 2.10. 

All attributes in this dataset are spatially and temporally continuous, i.e. 

a value exists for each place and each time moment. Since the values of the 

attributes result from aggregation over areas and over time intervals, these 

attributes should be considered as spatially and temporally abrupt. This 

means that changes of values from one state to another and from one year 
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to another are not necessarily gradual. All attributes are numeric, with the 

ratio level of measurement. 

   Referrers              Attributes 

Total population 

Index offences total 

Violent crime total 

Murder and non-negligent 

manslaughter total 

…

Index offences rate 

Violent crime rate 

Murder and non-negligent 
manslaughter rate 

…

Alabama      1960    3266740 39920  6097 … 

Alaska      1960    226167 3730  236  … 

Arizona      1960    1302161 39243 2704 … 

…       …    …  …  … … 

Alabama      1961    3302000 38105 5564 … 

Alaska      1961    234000 3813  208  … 

Arizona      1961    1391000 43592 2288 … 

…       …    …  …  … … 

Wyoming      2000    493782 16285 1316 … 

Data 

References Characteristics 

Fig. 2.10. The structure of the USA crime dataset 

2.3.7 Forest Management Scenarios 

This is an example of a dataset with multiple (more than two) referrers. 

Unlike the datasets discussed above, it contains results of simulation rather 

than measurements of any real-world phenomena. A simulation model was 

used in order to predict how a particular forest would develop if different 

forest management strategies were applied. 

One of the referrers of this dataset is space, specifically the territory 

covered by the forest. The territory is divided into compartments with rela-

tively homogeneous conditions inside them. The simulation was done for 

each of these compartments. Another referrer is time: the simulation cov-

ers a 200-year period, and the data are available for every fifth year. One 

more referrer is the forest management strategy. Four different strategies 

were considered: natural development without wood harvesting, selective 

cutting in accordance with the regulations adopted in most western Euro-

pean countries, cutting according to the Russian legal system, and illegal 

cutting to maximise immediate profit. Two more referrers are tree species, 
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with six different values, and the age group of the trees, with 13 different 

values. Hence, the dataset contains five referrers in total. The dataset con-

tains a single attribute, the covered area, which is measured in square me-

tres per hectare. This means that for each forest compartment, year, strat-

egy, species, and age group the data specify the proportion of the area of 

that compartment that would be covered by trees of that species and that 

age group in the given year if the given strategy were applied. The struc-

ture of the dataset is illustrated in Fig. 2.11. 

Referrers Attribute 

Area covered 

781     0 natural   pine  5  23.62 

781     5 natural   pine  5  20.87 

…  … …   …  …  … 

781     200 natural   pine  6  1.44 

781     200 natural   spruce  3  1.07 

781     200 natural   spruce  5  1.15 

781     0 selective  pine  5  23.62 

781     5 selective  pine  5  20.87 

…  … …   …  …  … 

781     200 selective  pine  2  2.16 

781     200 selective  spruce  3  2.9 

781     200 selective  spruce  5  1.86 

…  … …   …  …  … 

782     0 natural   pine  3  19.23 

…  … …   …  …  … 

Data 

Strategy 

natural 

selective 

Russian 

illegal 

Species 

aspen 

birch 

oak 

pine 

spruce 

tilia 

Age 

1

2

…

13 

References Characteristics 

Fig. 2.11. The structure of the dataset of the results of forest development model-

ling 

The three referrers other than space and time have discrete value sets. 

The attribute is continuous with respect to space and time, since values 

exist for every compartment and for every time moment. The attribute 

should be considered as abrupt with respect to space, since the conditions 

in neighbouring forest compartments may differ significantly, depending, 

for example, on the tree species planted in them. The attribute may be 

viewed as partly smooth with respect to time: during periods when no 

wood is harvested, all changes occur gradually; however, tree cutting re-

sults in abrupt changes. 



44     2 Data 

Summary 

In this chapter, we have presented our view of data, which will be used as 

a basis for our further discussion. The main features of this view can be 

summarised as follows: 

We aim to consider data in general rather than limit our reasoning only 

to spatial or spatio-temporal data. At the same time, we always think 

about how our general ideas could be specialised to the cases of spatial 

and spatio-temporal data, which are the centre of our attention. 

We aim to abstract from any models of data representation and any spe-

cifics of data collection and storage. On the abstract level, data are a set 

of structured elements (we call them “records”). We are interested in the 

nature and properties of the components that the elements consist of, as 

well as in the relationships between these components, but not in how 

the components are represented and organised. Thus, it is important for 

us to know that one of the components of a dataset is a set of locations. 

However, it is not important for our study whether the locations are 

specified as pairs of geographical coordinates or as addresses. It is also 

not important whether the data are stored in a relational or object-

oriented database or in a file, or whether the spatial information is kept 

together or separately from the other data. 

In any dataset, we distinguish the components according to their role: 

we have referential components (referrers), which indicate the context in 

which each data record was obtained, and characteristic components (at-

tributes), i.e. values observed, measured, or derived in this context. This 

distinction is the keystone of our framework. We treat data as a function 

(in the mathematical sense) that assigns particular values of attributes to 

various combinations of values of referrers. 

The roles played by data components do not depend, in general, on the 

nature of the components. Thus, space and time may be both referrers 

and attributes. However, the deep-rooted view of space and time as ab-

solute containers of things and events results in the possibility to trans-

form spatial and temporal attributes into referrers. 

The next chapter is intended to explain what we mean by data analysis. At 

this stage, we shall not speak about methods, i.e. how to analyse data. Be-

fore considering any methods, we want to discuss what questions need to 

be answered in the course of data analysis, or, in other words, what are the 

typical tasks that arise in exploratory data analysis. So, the next chapter is 

devoted to data analysis tasks. 
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3 Tasks 

Abstract

In this chapter, we use the metaphor of a mathematical function to identify 

the types of tasks (questions) involved in exploratory data analysis. A task 

is viewed as consisting of two parts: the target, i.e. what information needs 

to be obtained, and the constraints, i.e. what conditions this information 

needs to fulfil. The target and constraints can be understood as unknown 

and known (specified) information, respectively; the goal is to find the ini-

tially unknown information corresponding to the specified information. 

Our task typology has its origin in the ideas expressed by Jacques Bertin 

in his Semiology of Graphics (Bertin 1967/1983). Like Bertin, we distin-

guish tasks according to the level of data analysis (“reading level”, in Ber-

tin’s terms) but additionally take into account the division of data compo-

nents into referrers and attributes: 

Elementary tasks refer to individual elements of the reference set; for 

example, “what is the proportion of children in the enumeration district 

X?” 

Synoptic tasks involve the whole reference set or its subsets; for exam-

ple, “describe the variation of the proportions of children over the whole 

country” (or “over the southern part of the country”). 

The tasks are further divided according to the target (“question type”, in 

Bertin’s terms), i.e. what is the unknown information that needs to be 

found. At the elementary level, the target may be one or more characteris-

tics (attribute values) or one or more references (referrer values). For ex-

ample: 

What is the proportion of children in the enumeration district X? (That 

is, find the characteristic corresponding to the reference “district X”.) 

In what enumeration districts are the proportions of children 20% or 

more? (That is, find the references corresponding to the characteristics 

“20% and more”.) 
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It is important that, when a task involves several references, each of them 

is dealt with individually. 

We have extended Bertin’s ideas by explicitly considering the possible 

relations between references and between characteristics. Relations may 

also appear in a task target or may be used in task constraints. For exam-

ple:

Compare the proportions of children in district X and district Y (i.e. find 

the relation between the characteristics corresponding to the references 

“district X” and “district Y”). 

Find districts where the proportion of children is higher than in district 

X (i.e. find references such that the corresponding characteristics are 

linked by the relation “higher than” to the characteristic of “district X”). 

At the synoptic level of analysis, we introduce the notion of a “behav-

iour” – the set of all characteristics corresponding to a given reference 

(sub)set, considered in its entirety and its particular organisation with re-

spect to the reference sub(set). The behaviour is a generalisation of such 

notions as distributions, variations, and trends; for example, the variation 

of the proportions of children over the whole country or the trend in a 

stock price over a week. 

Synoptic tasks involve reference (sub)sets, behaviours, and relations be-

tween (sub)sets or between behaviours. Here are a few examples: 

Describe the variation of the proportion of children over the whole 

country (target: the behaviour of the proportion of children; constraint: 

the whole country as the reference set). 

Find spatial clusters of districts with a high proportion of children (tar-

get: the reference subset(s); constraint: the behaviour specified as “spa-

tial cluster of high values”). 

Compare the distributions of the proportion of children in the north and 

in the south of the country (target: two behaviours and the relation be-

tween them; constraint: two reference subsets, the north and the south of 

the country). 

Elementary tasks play a marginal role in exploratory data analysis, as 

compared with synoptic tasks. Among synoptic tasks, the most challenging 

are tasks of finding significant connections between phenomena, such as 

cause effect relations or structural links, and of finding the principles of 

the internal organisation, functioning, and development of a single phe-

nomenon. We call such tasks “connectional”.  

The main purpose of our task typology is to evaluate the existing tools 

and techniques for EDA in terms of their suitability for different tasks and 
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to try to derive operational general principles for tool selection and tool 

design.

3.1 Jacques Bertin’s View of Tasks 

As George Klir greatly influenced our view of data, so did Jacques Bertin 

concerning our understanding of how to systemise possible tasks. There-

fore, we would like to begin with a discussion of Bertin’s ideas. 

Let us recall that we use the word “tasks” to denote typical questions 

that need to be answered by means of data analysis. In his fundamental 

book on the theory of graphical representation of data (Bertin 1967/1983), 

Bertin distinguishes possible questions about data first of all according to 

the data components that they address: “There are as many types of ques-

tions as components in the information” (Bertin 1967/1983, p. 10). He ex-

plains this concept by means of an example of a dataset containing prices 

of a stock day by day. This dataset has two components, date and price. 

Correspondingly, two types of questions are possible: 

On a given date, what is the price of stock X? 

For a given price, on what date(s) was it attained? 

Within each type of question, there are three levels of reading, elemen-

tary, intermediate, and overall. The level of reading indicates whether a 

question concerns a single data element (such as a single date), a group of 

elements taken as a whole (e.g. a selected time interval), or all elements 

constituting the component (e.g. the whole time period that the available 

data correspond to). Bertin claims: “Any question can be defined by its 

type and level” (Bertin 1967/1983, p. 10). 

What impresses us in this framework? First, this is a systematic ap-

proach, unlike that in many other task typologies, which simply enumerate 

some tasks without providing sufficient background for selecting those 

particular tasks and without any judgement concerning the completeness of 

the suggested list. We shall briefly overview such typologies later on. Sec-

ond, Bertin’s typology derives tasks directly from the structure of the data 

to be analysed. Hence, having a particular dataset, one can easily anticipate 

the questions that may potentially arise in the course of analysing it. Third, 

Bertin’s framework is free from any bias towards any data analysis meth-

ods and tools, whereas some typologies appear to be greatly influenced, for 

example, by typical GIS functions. Fourth, the tasks are defined in a very 

operational way: while being tool-independent, they nevertheless provide 

some hints concerning what tools could support them. 
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For example, in order to conveniently find an answer to the question 

“On a given date, what is the price of stock X?” (elementary reading 

level), one needs a tool that would allow one to specify various dates and 

would respond by displaying the corresponding values of the price. The 

question “During the entire period, what was the trend of the price?” 

(overall reading level) requires some representation of the entire time pe-

riod and of the price values at each moment. Moreover, the representation 

of the prices needs to prompt their integrated perception as a single image 

which will give an analyst a feeling of a “trend” as opposed to just a col-

lection of individual prices. 

These features of Bertin’s framework make it especially appropriate for 

our purposes of providing guidance in choosing EDA tools. So, can we 

simply take it and use it as it is? Not really. While this approach looks so 

easy and convincing at first glance, a careful examination reveals some 

problems that need to be coped with. 

The first problem arises already when we analyse thoroughly Bertin’s 

example of stock prices. Bertin introduces two types of question that are 

possible for this example dataset and states that, within each type, there are 

three levels of reading, elementary, intermediate, and overall. For the first 

type, Bertin formulates possible questions belonging to these levels of 

reading:

Elementary. On a given date, what is the price of stock X? 

Intermediate. In the first three days, what was the trend of the price? 

Overall. During the entire period, what was the trend of the price? 

However, Bertin does not give analogous examples of the second type of 

question. Only an elementary-level question is cited: “For a given price, on 

what date(s) was it attained?” 

When we try to extend this question to the other two levels, as was done 

for the first question, this suddenly turns out to be quite difficult to do; at 

least, we could not find any sensible formulations. The reason for such an 

asymmetry might be that the components “time” and “price” are not 

equivalent in terms of their roles in the data. According to our view, time 

is a referrer, while the price is an attribute. It seems that the notion of read-

ing levels applies only to referrers and not to attributes. 

This hypothesis could be justified in the following way. An intermedi-

ate- or overall-level question can be generalised as “What is happening to 

component A when component B assumes several different values from 

set S?” Or, for more than two components, “What is happening to compo-

nent A when components B, C, … assume several different values from 

sets S1, S2, …?” To obtain an answer to this question, an analyst would 

take various values from sets S1, S2, …, assign them to components B, C, 
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…, and determine the corresponding values of component A. Thus, in Ber-

tin’s examples, one would take consecutive time moments from some in-

terval and observe how the price changes. 

As we have explained before, a dataset consists of independent compo-

nents (referrers), which can potentially assume arbitrary values, and de-

pendent components (attributes), whose values are determined by the val-

ues assumed by the referrers. If one were to try to assign values from an 

arbitrary set S to a dependent component, it might occur that for many val-

ues there are no corresponding references (i.e. these values have never 

been attained), while for other values there are multiple references (i.e. 

these values have been attained more than once). In general, if Y depends 

on X, it seems quite strange to ask “What happens to X if Y varies within 

the set S?”, while the opposite question sounds quite natural.  This gives us 

some grounds for regarding intermediate- and overall-level questions as 

questions concerning changes of attribute values when referrers vary 

within (i.e. take various values from) some arbitrarily chosen value sets. 

Further problems arise when we try to apply Bertin’s schema to datasets 

with a more complex structure than just two components. Koussoulakou 

and Kraak (1992) made an observation concerning spatio-temporal data 

that the distinction according to reading level can be applied independently 

to the spatial and temporal dimensions of the data. For example, the ques-

tion “When do the maximum values occur at location l?” belongs to the 

elementary (local) level with respect to the spatial component of the data 

and to the overall level with respect to the temporal component. In total, 

nine combinations of reading levels for space and time are possible. Ex-

ample questions corresponding to these combinations are given in Table 

3.1.

Let us consider a quite different example, with no space and time ex-

plicitly involved. Suppose that the salaries of the employees in some com-

pany vary depending on the job and the employee’s age. Then, it is possi-

ble to ask questions such as: 

For a given job, how does the salary depend on age? 

For a given age, what is the range of salaries for all possible jobs? 

The first question belongs to the elementary level with respect to the job 

and to the overall level with respect to age, while the opposite is true for 

the second question. 

In general, when the number of referential components is two or more, it 

seems that the reading level for each of them may be chosen independently 

of the others. This results in 3N possible combinations of reading levels for 

a dataset with N referrers. 
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Table 3.1. Reading levels and example questions for spatio-temporal data, accord-

ing to Koussoulakou and Kraak (1992) 

Space

Time

Elementary level Intermediate level Overall level 

Elementary 

level 

What is the popu-

lation density at 

location P at time 

ti?

In which neighbour-

hoods is the popula-

tion density d2 at time 

ti?

Where does the 

highest population 

density occur at 

time ti?

Intermediate 

level 

How does the 

population den-

sity develop at 

location P from 

time ti to time tj?

In which neighbour-

hoods is the popula-

tion density d2 during 

the time period from ti

to tj?

Where does the 

highest population 

density occur dur-

ing the time pe-

riod from ti to tj?

Overall level What is the trend 

in population den-

sity at location P 

over the whole 

time? 

Which are the 

neighbourhoods where 

the population density 

remains at d2 during 

the whole time? 

What is the trend 

in high population 

densities over the 

whole time? 

Furthermore, even if we choose the same intermediate or overall reading 

level for two or more referrers, we shall still be able to formulate questions 

with different meanings. Thus, Koussoulakou and Kraak suggest the fol-

lowing question as an example of an overall-level question with respect to 

both space and time: “What is the trend over the area during the whole 

time?” By our observation, there are at least two more questions that could 

also be classified as overall-level questions with respect to both space and 

time:

How has the spatial distribution evolved over time? A possible answer 

to this question would be “the cluster of high values moved from the 

centre of the area to the north”. 

How do the temporal trends vary over the area? A possible answer 

would be “the values increased in the north and decreased in the south”. 

The difference between these variants of question is essential, because 

different analyses would be required to answer them. This means that the 

question typology needs to be elaborated further in order to capture this 

divergence.

There is one more problem with Bertin’s schema. While Bertin ac-

knowledged the importance of comparisons in data exploration (thus, he 

advocated the use of graphics that enable easy comparisons), he did not 

explicitly include the notion of comparison in his suggested framework. 
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We would like to amend this framework by explicitly introducing this and 

related notions. 

In the following sections, we present our elaboration of Bertin’s schema 

for task (question) classification. 

3.2 General View of a Task 

Any task (question) implies two parts: a target, i.e. what information needs 

to be obtained, and the constraints, i.e. what conditions this information 

needs to fulfil. The target and constraints can also be viewed as unknown 

and known (specified) information, respectively; the goal is to find the ini-

tially unknown information corresponding to the specified information. 

The simplest example is to find the value of an attribute corresponding to a 

certain specified reference. This is actually a generic task that stands for a 

great number of specific questions, such as: 

On a given date what is the price of stock X? 

What was the population of Lisbon in the year 1991? 

In a given location in Europe, what is the proportion of land covered by 

broadleaved forest? 

Where was the stork Penelope on 1 September 1998? 

In this group of tasks, the attribute value is the target, while the speci-

fied reference defines the constraint. This means that an arbitrary attribute 

value cannot be accepted as an answer; this can only be the attribute value 

corresponding to this particular reference. The reference is specified in 

terms of the values of all the referential components present in the dataset. 

Thus, in the question “What was the population of Lisbon in the year 

1991?”, the reference consists of a certain location (Lisbon) and a certain 

year (1991). In the question concerning the stork, the reference consists of 

a certain object (stork), identified by the name Penelope, and a certain time 

moment, specifically 1 September 1998. 

A graphical illustration of this group of questions is shown in Fig. 3.1, 

left. Here, R is the reference set of a dataset; C is the characteristic set; f is 

the data function, which defines the correspondence between the elements 

of the reference and characteristic sets; and r is some specified reference, 

i.e. an element of the set R. The corresponding characteristic, which is de-

termined by the data function, is unknown and needs to be found. This task 

target is indicated in the picture by a question mark. 

The opposite case is when some attribute value is specified and the goal 

is to find the corresponding reference or references. Hence, the references 



54     3 Tasks 

are the target and the attribute value defines the constraint. This kind of 

task is illustrated graphically in the right part of Fig. 3.1. Here, the ques-

tion mark indicates the unknown reference. 

f

r ?

R C
f

? c 

R C

Fig. 3.1. Schematic representations of the task of determining the characteristic 

that corresponds to a given reference r according to the data function f (left), and 

the task of determining the reference that corresponds to a given characteristic c

In tasks of the second type, inexact constraints are very often used. This 

means that a subset or range of attribute values is specified rather than an 

individual value. Therefore, the graphical representation of such a task 

could be modified, as shown in Fig. 3.2. 

f

C

R C

?

Fig. 3.2. In tasks of finding references corresponding to given characteristics, the 

characteristics may be specified imprecisely, that is, a subset (designated as C )

rather than an individual element of the characteristic set C may play the role of a 

task constraint. The target comprises all references corresponding to any of the 

elements of the subset C

Here are some instantiations of the generic task of finding references 

corresponding to attribute values: 

For a given price, on what date(s) was it attained? 

Which municipalities in Portugal had 300 000 or more inhabitants, and 

when? 

Where in Europe is at least 80% of the area covered by broadleaved for-

est? 

Which stork(s) were near Lake Victoria, and when? 

It may be noticed that the second and fourth examples actually contain 

two questions each. In the second example, the questions are “where” and 
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“when”, and in the fourth example, there are the questions “which” and 

“when”. This is an effect of the presence of two referential components in 

the respective datasets. The questions require one to find combinations of 

values of referrers corresponding to values of the attribute, i.e. the value of 

each referrer needs to be determined. This is illustrated in the left part of 

Fig. 3.3. However, nothing prevents us from formulating simpler ques-

tions, in which a value of one referrer is specified, and only the value of 

the other referrer needs to be found. For example: 

Which municipalities in Portugal had 300 000 or more inhabitants in the 

year 1991? 

In what year(s) did the municipality of Loures have 300 000 or more 

inhabitants?

Which stork(s) were near Lake Victoria in February 1999? 

When was the stork Prinzessin near Lake Victoria? 

In each of these examples, the specified value of one of the referrers 

adds one more constraint to the task, and the value of the other referrer is 

the target. This situation is shown schematically in the right part of Fig. 

3.3.

f

?
c

R1 C
f

c

C

?

R2

r

R1

?

R2

Fig. 3.3. For a dataset with multiple referential components, values of either all or 

just some of the referrers may be task targets. This picture illustrates a case with 

two referrers. On the left, the values of both referrers are unknown and need to be 

found. On the right, the value of one referrer is specified, i.e. is a part of the task 

constraint, and only the value of the other referrer is the task target 

Another option is to say that the value of one of the referrers is not im-

portant, i.e. this may be any possible value. For example: 

Which municipalities in Portugal had 300 000 or more inhabitants in 

any census year? 

In what year(s) were there any municipalities with 300 000 or more in-

habitants?
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Which stork(s) were ever near Lake Victoria? 

At what times were any of the storks near Lake Victoria? 

In order to bring some kind of order into all this variety, let us introduce 

a very simple formal notation, which can be understood without significant 

mathematical background. The worth of this notation is that it allows us to 

represent compactly the possible types of questions, or general tasks. For 

the notation, we use the metaphor of a mathematical function: a set of data 

may be represented by a function that assigns particular values of attributes 

to various references. References are specified as combinations of values 

of all referrers. If there is a single referrer, its values constitute the possible 

references. The set of all references present in a dataset will be called the 

reference set of this dataset. The set of all possible combinations of values 

of the attributes will be called the characteristic set.  

So, a dataset may be represented by a formula such as  

f(x) = y (3.1)

where f is a function symbol, x is the independent variable, and y is the 

dependent variable. The variable x may have various elements of the refer-

ence set as its values, and the function f assigns the corresponding ele-

ments of the characteristic set to the dependent variable y.

In the general case, the values of both x and y are combinations: x as-

sumes combinations of values of the referrers, and y is assigned combina-

tions of values of the attributes. Therefore, the formula f(x) = y can be re-

written in a more “detailed” manner to represent the structure of the data-

set, i.e. the number of referential and characteristic components: 

f(x1, x2, …, xM) = (y1, y2, …, yN) (3.2) 

where M is the number of referrers, N is the number of attributes in the 

dataset, the independent variables x1, x2, …, xM stand for the referrers, and 

the dependent variables y1, y2, …, yN stand for the attributes. 

Since the values acquired by the attributes are determined only by the 

references and not by values of other attributes, it is possible to consider 

any attribute independently of the other attributes. Therefore, the formula 

(3.2) can be rewritten in a more usual way, as a set of formulas with only 

one dependent variable in each of them: 

 f1(x1, x2, …, xM) =  y1

 f2(x1, x2, …, xM) =  y2

…

 fN(x1, x2, …, xM) =  yN (3.3) 
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Here, we have split the initial function f into N functions f1, f2, …, fN. Each 

of these functions defines values of one of the attributes on the basis of the 

values of the referrers. 

Let us now consider the task of finding the characteristic (i.e. the value 

of a single attribute or a combination of values of several attributes) corre-

sponding to a specified reference. This can be viewed as substituting the 

variable x in the formula f(x) = y by a specific value r and determining the 

corresponding value of y using the function f. We shall represent this task 

compactly as follows: 

?y: f(r) = y (3.4) 

where r is a particular element of the reference set, i.e. a constant rather 

than a variable. The expression “?y” denotes the question target, which is, 

in this case, the characteristic corresponding to the reference r, i.e. some 

value of the dependent variable y. If the reference r is actually a combina-

tion of values of M referrers, the task may be represented in a more de-

tailed fashion as 

?y: f(r1, r2, …, rM) = y (3.5) 

where r1, r2, …, rM are specific values of the individual referrers. 

The expressions (3.4) and (3.5) demonstrate our general approach to 

representing tasks by formulas. At the beginning, the task target is indi-

cated, and then, after a colon, the constraint(s) are specified. The target is 

represented as a variable and labelled by a question mark to emphasise that 

this is unknown information, which needs to be found. The constraints are 

expressed through constants that are substituted for the appropriate vari-

ables.

If we apply the same scheme to the task of finding the reference(s) cor-

responding to a specified characteristic, we obtain the following: 

?x: f(x) = c (3.6) 

where c is a particular element of the set of possible characteristics and x is 

the independent variable, i.e. the variable corresponding to the referential 

component of the data. In the case of multiple referrers, this can be rewrit-

ten as 

?x1, x2, …, xM: f(x1, x2, …, xM) = c (3.7) 

Equation (3.7) contains as many variables in the question target as there 

are referrers in the dataset. This is the situation that we had in the follow-

ing example questions: 

Which districts in Portugal had 300 000 or more inhabitants, and when? 
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Which stork(s) were near Lake Victoria, and when? 

Each of these examples contains, in fact, two questions, corresponding 

to the number of referrers in the data. However, as we have demonstrated, 

we can introduce additional constraints by choosing specific values of one 

of the referrers while the other referrer remains the question target. If we 

have more than two referrers, we can choose particular values of some of 

them and let the other referrers be the targets. For example, the formula 

(3.8) encodes a task in which the value of the first referrer of M referrers of 

a dataset needs to be determined, while the values of the remaining M 1

referrers, as well as the corresponding characteristic, are specified as task 

constraints:

?x1: f(x1, r2, …, rM) = c (3.8) 

Here, r2, …, rM are some specific values selected for the 2nd, …, Mth re-

ferrers, respectively. Here, the variable x1 denotes the target of the task, 

which is the value of the first referrer. Quite analogously, we could encode 

tasks with the second, third, …, or Mth referrer as the target. Similarly, any 

two referrers may be chosen as targets, and so on. In general, for a dataset 

with M referrers there are 2M 1 different variants of the choice of target 

referrer(s). 2M is the number of possible subsets of a set containing M ele-

ments. We decrease this number by one since we exclude the variant 

where the values of all referrers are specified, i.e. where there is no real 

target.

As we have mentioned earlier, in tasks of finding references correspond-

ing to specified characteristics, the characteristics are often defined impre-

cisely. For example, in the task “Find municipalities with 300 000 or more 

inhabitants in 1991”, a value interval of a numeric attribute rather than an 

exact value is used as a constraint. The task “When was the stork Prinzes-

sin near Lake Victoria?” includes an approximate indication of a location, 

which is a value of a spatial attribute. In general, a subset of characteristics 

is often included in the constraints of a task rather than a single character-

istic. The expected answer to such a task consists of all references where 

the corresponding characteristics are contained in the subset specified. 

Thus, the answer to the question concerning the municipalities would in-

clude Porto, with a population of 302 000, Loures, with 322 000, and Lis-

bon, with 663 000. All these values are contained in the subset of attribute 

values specified as “300 000 or more”. The answer to the question con-

cerning the stork Prinzessin does not depend on whether the stork was to 

the south or to the north of Lake Victoria: all locations around the lake sat-

isfy the task constraints. 

Hence, (3.6) can be generalised as follows: 
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?x: f(x) C (3.9)

where C  is a certain subset of the set of all possible characteristics and 

is the symbol denoting membership in a set. In the case of multiple refer-

rers, (3.9) can be “unfolded” as was demonstrated in (3.7) and (3.8). In our 

further discussion, we shall mostly use the “folded” notations, as in (3.1), 

(3.4), and (3.9), but it should be kept in mind that these may be abbrevi-

ated forms of equations containing multiple independent variables. 

However, let us briefly return to (3.8). In this equation, we have put 

some constants (specific values) in place of the independent variables x2,

…, xM representing the referrers from the second to the Mth of the dataset. 

This means that we have imposed precise constraints on the values of these 

referrers. However, as for attributes, imprecise constraints could also be 

used for referrers. In other words, one could constrain a referrer by speci-

fying a set of possible values rather than an individual value. Such a con-

straint means that any value from the specified set is acceptable in the an-

swer. For example, the question “Which storks were near Lake Victoria in 

February 1999?” contains an imprecise specification of the time: February 

1999. The granularity of the temporal referrer in this dataset is one day; 

consequently, the phrase “February 1999” describes a set consisting of 28 

time moments. Any of these 28 time moments is suitable for an analyst 

seeking an answer to this question. 

Therefore, we extend (3.8) and the like by allowing sets to be put in 

places corresponding to any referrers, as well as to attributes. For general-

ity, we shall always assume that sets, which can consist of one or more 

elements, are used. For example; 

?x1: f(x1, R 2, …, R M) C (3.10)

Here, R 2, …, R M are some specified subsets of the value domains of the 

referential components from the second to the Mth. Moreover, nothing 

prevents us from using the full sets rather than subsets for some of the 

components. This is what is actually done in cases when the values of 

these components are of no importance, as in the questions 

Which municipalities in Portugal had 300 000 or more inhabitants in 

any census year? 

In what year(s) were there any municipalities with 300 000 or more in-

habitants?

Which stork(s) were ever near Lake Victoria? 

At what times were any of the storks near Lake Victoria? 
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In each of these questions, it is assumed that one of the referrers (time, 

space, or stork) can take any value from its value domain.  

It seems that all of the example questions cited at the beginning of this 

section now fit into our schema of task representation. Let us now summa-

rise our approach. The key idea is to describe generic tasks, or task types, 

by using the notion of a mathematical function as a metaphor for the data. 

We represent tasks by quasi-algebraic formulae, in which we use question 

marks to indicate the unknown information, i.e. the target of the task. We 

have thus far considered only rather simple tasks, but the same idea can be 

used for more complex tasks. In the following sections, we shall present 

our task typology in its full extent. 

A note can be made concerning the relation of our notation to Bertin’s 

notion of question type. To recall, the type of a question, according to Ber-

tin, reflects which component is the focus of the question, i.e. contains the 

potential answer to the question. In our terms, this is the question’s target. 

Hence, Bertin’s type corresponds to the place in which the variable denot-

ing the task target stands in our formal notation for the task. However, the 

formula (3.7), and also any other formula with more than one target vari-

able, cannot be subsumed under Bertin’s typology. While Bertin states 

“There are as many types of questions as components in the information”, 

we have shown that, for a dataset with M referrers and N attributes, there 

are 2M 1 variants of the selection of referrers as question targets, in addi-

tion to N possible questions concerning attributes (since attributes can be 

considered independently of each other, a question with two or more at-

tributes in the target is equivalent to a group of questions each targeting a 

single attribute). So, we have extended the system of question types intro-

duced by Bertin. This is not the only extension we make; some other ex-

tensions will be described below. 

3.3 Elementary Tasks 

Like Bertin, we distinguish elementary tasks from tasks of higher level. All 

tasks considered in the previous section are elementary. We call them ele-

mentary because they address individual elements of data, i.e. individual 

references or individual characteristics. 

This seems to contradict the statement that sets as well as individual 

elements can be used in task constraints, i.e. put in place of some variables 

in a task formula. Actually, there is no contradiction: such use of a set does 

not mean that the set needs to be considered as a whole. It means only that 

any individual element can be taken from this set. Let us examine, for ex-
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ample, the question “Which storks were near Lake Victoria in February 

1999?” As we have already discussed, the phrase “February 1999” speci-

fies a time interval (i.e. a set) rather than an individual moment. However, 

the question does not ask about storks that lived near Lake Victoria or 

moved around during the whole of February. Rather, it asks about storks 

that happened to be near Lake Victoria on any date in February but could 

be elsewhere on other dates. 

So, we define elementary tasks as tasks that do not imply dealing with 

sets of references or characteristics as wholes but, rather, address their 

elements. Tasks that do not comply with this definition will be called syn-

optic tasks, as involving a general view of a set as a whole. 

3.3.1 Lookup and Comparison 

For a general representation of an elementary task, we use the formula  

f(x)=y, or its extended variant f(x1, x2, …, xM) = y in a case of multiple re-

ferrers. Some variables in these formulas can be task target(s), while the 

other variables can be replaced by particular values or value sets specify-

ing task constraints. Tasks that can be represented in this way will be 

called lookup tasks. We have discussed such tasks in the previous section 

and will not go into further detail, beyond introducing the distinction be-

tween direct lookup tasks and inverse lookup tasks. Direct lookup tasks are 

those where references are specified and the goal is to find the correspond-

ing characteristics. In contrast, inverse lookup tasks are tasks where refer-

ences corresponding to specified characteristics need to be found. This in-

cludes also tasks where references are partly specified, as in (3.10), and the 

goal is to complete the specification. 

Hence, the tasks represented by (3.4) and (3.5) are called direct lookup 

tasks, and (3.6) (3.10) and the like represent inverse lookup tasks. 

Let us investigate what other types of elementary tasks may exist. While 

the data function f relates references to characteristics, and lookup tasks 

deal with these relations, there are also relations within the reference and 

characteristic sets, i.e. between references and between characteristics, and 

hence there may be tasks involving these relations.   

Let us give some examples of what relations we mean. For any two 

elements of any set, it is possible to say whether they are the same or dif-

ferent, or, in other words, equal or not equal. The relations “equal” and 

“not equal” are often denoted using the symbols = and . In an ordered set, 

the elements are linked by ordering relations:  (less than),  (less than or 

equal),  (greater than), and  (greater than or equal). When we speak 

about time, we usually use other names for the equality and ordering rela-
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tions: simultaneous, not simultaneous, earlier than, and later than. Space is, 

in general, not ordered. However, if a particular coordinate system is in-

troduced into space, it is possible to consider various relations specific to 

this coordinate system. Thus, in geographical space, various directional 

relations exist, such as “south of”, “west of”, and “south-west of”.

It has been mentioned in the previous chapter that the values of a data 

component may be not only individual items but also subsets of some base 

set. The subsets can be built on the basis of a discrete set, such as nation-

alities living in different countries, or a continuous set, such as ranges of 

real numbers, areas in space, and intervals of time. Two possible relation-

ships for sets are inclusion (all elements of one set are contained in another 

set) and overlapping (two sets have some common elements). For subsets 

of a continuous set, an important relation is adjacency, in particular, adja-

cency in space or time. An element may be related to a (sub)set by the rela-

tion  (a member of) or  (not a member of). 

For a set with distances, it is possible not only to indicate relations be-

tween elements but also to express them numerically, in terms of the dis-

tances between the elements. For numeric attributes, distances may be de-

fined as differences between numbers. Distances in time can also be de-

fined as differences between time moments. Distances in space can be de-

fined in many ways. Thus, the distance may be just the Euclidean distance 

on a plane. For geographical space, the curvature of the surface of the 

Earth can be taken into account, and so can relief. Distances are often de-

termined by measuring the length of the actual path one needs to take to 

get from one place to another. For example, cars can only move along 

roads, and ships must go around islands and keep away from shoals and 

reefs.

In general, for a set of arbitrary nature, any method of defining distances 

may be chosen in accordance with the purposes of the data analysis, pro-

viding that certain requirements are fulfilled: 

1. The distance from any element to itself is zero. 

2. For any two elements A and B, the distance from A to B is the same as 

the distance from B to A. 

3. For any three elements A, B, and C, the distance from A to C is not 

more than the sum of the distances from A to B and from B to C. 

Relations between values of attributes with the ratio level of measurement 

can also be expressed numerically as ratios or percentages. 

One may ask various questions concerning the relations that exist be-

tween elements or subsets of a specific set. Such questions, which will be 

called relational questions or relational tasks, may be constructed accord-

ing to one of the following general schemes: 
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1. How are the elements p and q (or the subsets P and Q) of the set S re-

lated?

2. What element (or subset) of the set S is related to the element p (or sub-

set P) in the way ?

3. What elements (or subsets) of the set S are related in the way ?

However, relational questions formulated in any of these “pure” forms 

are not typical of data analysis: they address general properties of the sets 

from which the references and characteristics are taken and have no rele-

vance to any particular dataset. Thus, it is not necessary to have any data in 

order to answer questions such as 

How are the numbers 1 and 2 related? How are the months September 

and November of the same year related? 

What number is twice as great as 1? What months precede September? 

What are the pairs of numbers where one number is twice as great as the 

other? What are the months with a two-month interval between them? 

Here is a pair of example questions that sound more usual in the context of 

data analysis (many further examples will be presented later): 

Did the population of Porto in 1981 exceed 300 000? 

Where was the stork Prinzessin on 1 February 1999 in relation to Lake 

Victoria? 

Let us try to figure out the major distinction between the latter pair of 

questions and the former group. 

In order to answer the first question of the latter pair, it is necessary to 

find out the population of Porto in 1981 (i.e. to perform a lookup task) and 

then compare the number found with 300 000. To answer the second ques-

tion, it is necessary to determine the geographical position of the stork 

Prinzessin on 1 February 1999 (this is again a lookup task) and then com-

pare this position with the location of Lake Victoria. The latter is supposed 

to be known or, if not, must be obtained from another lookup task. Hence, 

these two relational tasks are compound tasks that include one or more 

lookup tasks. These lookup tasks may be called subtasks of the relational 

tasks.

Such a compound organisation is not a unique feature of these two ex-

ample tasks but a general property of all data analysis tasks dealing with 

relations between characteristics, as in these examples, or between refer-

ences. Generally, the data function, i.e. the correspondence between the 

references and characteristics, is involved in all data analysis tasks. There-

fore, questions about relations between elements or subsets of the same set, 

be it the set of references or the set of characteristics, arise only when 
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those elements (or at least one of them) result from answering some other 

questions that involve the data function. 

Let us return to the three general schemes of relational tasks listed 

above. They show us that a relation may be the target of a relational task or 

may be specified as a task constraint. Thus, in scheme 1, the relation be-

tween the elements p and q or the subsets P and Q needs to be found; 

hence, this relation is the task target. In schemes 2 and 3, a certain relation 

(designated as ) is specified; hence, this is one of the task constraints. 

We shall call tasks built according to the first scheme, i.e. having rela-

tions in their targets, comparison tasks. We use the word “comparison” in 

the general sense of determining what relation exists between two or more 

items. Usually, the expected type of relation is specified: equality, order, 

distance, ratio, direction in space, inclusion or overlapping of subsets, ad-

jacency of continuous subsets, etc. 

Tasks built according to the second or third scheme can be viewed as 

being inverse with respect to comparison tasks: certain relations are speci-

fied, and items that are related in the specified way need to be detected. 

Such tasks will be called relation-seeking tasks.

We are now going to focus for a while on comparison tasks and then 

consider relation-seeking tasks. 

Comparison data analysis tasks are built according to the general 

scheme “How are the elements p and q (or the subsets P and Q) of the set 

S related?”, where at least one of the elements p and q (or subsets P and 

Q) is not specified explicitly but must result from some lookup task, or, in 

other words, be the target of some lookup task. This may be a direct or in-

verse lookup task. A graphical illustration of comparison tasks involving 

direct lookup tasks is given in Fig. 3.4. 

r ?

?

c

f
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?
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r2

R RC C

Fig. 3.4. Graphical illustrations of two forms of a comparison task involving a 

direct lookup task. Left: for a given reference r, the corresponding characteristic 

needs to be found and then to be compared with a specified characteristic c (i.e. a 

constant). Right: for two given references r1 and r2, the corresponding characteris-

tics need to be found and then compared 
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The picture on the left illustrates a task that requires one to find the 

characteristic corresponding to a given reference r and compare the char-

acteristic found with a given characteristic c. The unknown characteristic 

and unknown relation, which must be obtained from the comparison, are 

designated by question marks. This demonstrates that the task has two tar-

gets: the characteristic and the relation. The corresponding task formula 

may look as follows: 

?y, : f(r) = y; y c (3.11)

Here, r stands for the specified reference, c for the specified characteris-

tics, and y for the unknown characteristic corresponding to r; the symbol 

stands for the unknown relation between y and c, which needs to be deter-

mined.

The diagram on the right of Fig. 3.4 illustrates a task that requires one to 

find the characteristics corresponding to two given references r1 and r2 and 

compare the two characteristics found, i.e. determine how they are related. 

The two unknown characteristics and the unknown relation are designated 

by question marks. There are three question marks, which indicates that 

the task has three targets: two characteristics and one relation. This case 

may be represented by the formula 

?y1, y2, : f(r1) = y1; f(r2) = y2; y1 y2 (3.12)

Here, r1 and r2 are two specified references. The goal is to find their char-

acteristics, which are denoted by y1 and y2, and then to compare these char-

acteristics, i.e. to determine the relation between y1 and y2, which is de-

noted by . Some examples of such tasks are: 

Compare the stock price on the first day with that on the last day. 

Which municipality, Porto or Loures, had more inhabitants in 1981? 

Did the population of Porto increase or decrease from 1981 to 1991? 

What were the relative positions of the storks Penelope and Peterchen 

on 1 February 1999? 

There are also comparison tasks where the goal is to compare values of 

two or more different attributes corresponding to one and the same refer-

ence. For example: 

How does the number of people without primary school education in 

Porto in 1991 compare with the number of high school students? 

Which rate was higher in the District of Columbia in 2000, the burglary 

rate or motor vehicle theft rate? 
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In some cases, it may also make sense to compare values of different at-

tributes corresponding to different references, for example, “compare the 

immigration to the USA with the emigration from Mexico”. 

Tasks of comparison of values of two different attributes corresponding 

to the same reference or to different references may be represented by the 

formulae  

?y1, y2, : f1(r) = y1; f2(r) = y2; y1 y2 (3.13)

?y1, y2, : f1(r1) = y1; f2(r2) = y2; y1 y2 (3.14)

In these formulae, f1 and f2 stand for two different attributes. Such tasks 

make sense only if the attributes are comparable, i.e. their value domains 

are the same or at least overlap. 

As we have already said, the potential answers to comparison tasks are 

various relations from a certain set of possible relations, which depends on 

the properties of the set of items involved, such as the presence of order-

ing, distances, etc. Moreover, it is rather typical in data analysis that rela-

tions between items are not only designated verbally but also, whenever 

possible, measured numerically. For example, when an analyst wants to 

answer the question “Which municipality, Porto or Loures, had more in-

habitants in 1981?”, he/she may be interested not only in detecting that 

Porto had more inhabitants than Loures but also in finding out that Porto 

had 50 900 more inhabitants than Loures. The question concerning the 

population change in Porto from 1981 to 1991 typically implies an answer 

such as “the population decreased by 24 900 inhabitants” rather than sim-

ply “the population decreased”. A satisfactory answer to the question con-

cerning the relative positions of the storks could be “Peterchen was 1800 

km to the west of Penelope”.  

We have also mentioned that relations between values of attributes with 

the ratio level of measurement can be expressed numerically as ratios or 

percentages. For example, “the population of Porto in 1981 was 1.2 times 

bigger than that of Loures” or “the population of Porto decreased by 7.6% 

from 1981 to 1991”. 

Taking all this into account, we adopt the following extended treatment 

of the notion of comparison: comparison means identification of the kind 

of relation existing between two or more elements of some set and, when-

ever permitted by the properties of the set, numerical specification of this 

relation on the basis of the distances or ratios between the elements. 

In the above, we have considered comparison tasks involving direct 

lookup subtasks. In these tasks, relations between characteristics need to 

be determined. Let us now consider tasks that imply finding relations be-

tween references, i.e. values of referrers. As in the previous case, the refer-
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ences are not specified explicitly but are supposed to result from some 

lookup tasks that have these references in their targets (i.e. inverse lookup 

tasks). Here are some examples: 

Which of the storks, Prinzessin or Sohn von Prinzessin, reached Lake 

Victoria earlier? 

This task can be decomposed into three subtasks: 

1. When did the stork Prinzessin reach Lake Victoria? (Answer: on 15 De-

cember 1998.) 

2. When did the stork Sohn von Prinzessin reach Lake Victoria? (Answer: 

on 3 February 1999.) 

3. Which of these two dates is earlier? (Answer: the first date is earlier, 

and hence Prinzessin reached Lake Victoria earlier than Sohn von 

Prinzessin.)

The first two questions are inverse lookup tasks and the third one is the 

task of determining the relation between the values of the temporal refer-

rer.

Was the set of municipalities in Portugal with a population over 300 000 

the same in 1991 as in 1981? 

As in the previous example, there are two inverse lookup subtasks here 

1. Which municipalities in Portugal had a population over 300 000 in the 

year 1981? (Answer: Lisbon and Porto.) 

2. Which municipalities in Portugal had a population over 300 000 in the 

year 1991? (Answer: Lisbon, Porto, and Loures.) 

In addition, there is a subtask of comparison of two subsets of the set of 

municipalities, which is one of the referrers in the dataset containing the 

Portuguese census data: 

3. Do the first and the second set consist of the same elements? (Answer: 

no; the second set contains one additional element, namely Loures.) 

By analogy with lookup tasks, comparison tasks targeting relations be-

tween characteristics may be called direct comparison tasks, and compari-

son tasks where relations between references need to be determined may 

be called inverse comparison tasks. Inverse comparison tasks may be illus-

trated graphically, as is shown in Figure 3.5.  

The diagram on the left represents the task variant where two particular 

characteristics, i.e. elements of the characteristic set, are specified as the 

constraints of the inverse lookup subtasks. These two characteristics are 

denoted by c1 and c2. The goal is to find the corresponding references and 
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the relation between these references. The diagram reflects the case where 

there is exactly one reference corresponding to each of the characteristics 

c1 and c2. However, in the general case, several references may have the 

same characteristics, and hence a subset of references may correspond to 

c1, c2, or both. In this case, a relation between subsets or between a subset 

and an element is of interest. 

? c1

?

c2
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Fig. 3.5. A graphical representation of inverse comparison tasks. On the left, c1

and c2 are two specified elements of the characteristic set. The goal is to find the 

corresponding references and the relation between them. On the right, C  and C

are two specified subsets of the characteristic set. The goal is to find the corre-

sponding references or subsets of references and the relation between them. In 

general, subsets of references may also correspond to individual characteristics 

In the right part of Fig. 3.5, subsets of characteristics are specified as the 

constraints. These subsets are denoted by C  and C . The goal is to find the 

corresponding references or subsets of references and the relation between 

them. To simplify the picture, we have represented the correspondence 

between the references and characteristics by drawing double arrows from 

subsets of references to the subsets of corresponding characteristics, in-

stead of multiple ordinary arrows from the individual references to the cor-

responding individual characteristics.   

The formula representing inverse comparison tasks looks as follows: 

?x1, x2, : f(x1) C ; f(x2) C ; x1 x2 (3.15)

This notation means the following: find the reference(s) corresponding 

to the set of characteristics C  and the reference(s) corresponding to the set 

of characteristics C , and then the relation between the former and the lat-

ter. Hence, we have explicitly represented the inverse lookup tasks  

f(x1) C  and f(x2) C  that need to be performed before the comparison 

operation may take place.  

We shall not consider in detail all possible variants of inverse compari-

son tasks. Actually, the variants differ only in the form of the inverse 

lookup tasks involved. However, not any combination of lookup tasks is 

meaningful; the results of these tasks must be comparable. Thus, if the first 
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lookup subtask results in a spatial reference and the second in a temporal 

reference, these references cannot be compared. An example of such a 

meaningless task could be: “Compare the year when the population of 

Loures exceeded 300 000 with the set of municipalities that had more than 

300 000 inhabitants in 1981”. If we represent the population data as  

p(m, y), where p stands for the attribute “population number”, m for the 

municipality, and y for the year, then the lookup subtasks involved in this 

task could be encoded as  

?y: p(Loures, y)  (300 000, )

?m: p(m, 1981)  (300 000, )

The targets of these two lookup tasks are referrers with different value 

domains; moreover, these domains consist of elements of different nature. 

No relations can be defined for elements taken from such sets. That is why 

comparison tasks are only meaningful if the targets of the lookup tasks 

involved are components with coincident or at least overlapping value do-

mains.

3.3.2 Relation-Seeking

We have defined relation-seeking tasks as tasks that imply a search for 

occurrences of specified relations between characteristics or between ref-

erences. Here are some example tasks of this type: 

On what days did the stock price increase by more than 20% in com-

parison with the previous day? 

Did any earthquakes happen within 48 hours before a given earthquake? 

In which municipalities in Portugal did the population decrease from 

1981 to 1991? 

In which states of the USA and in what years did the motor vehicle theft 

rate exceed the burglary rate? 

Find pairs of earthquakes such that the time interval between them is no 

more than 48 hours and the distance between their epicentres is no more 

than 50 km. 

In an attempt to illustrate such a task graphically, we arrived at the idea 

of a metaphorical representation of a specified relation by something like a 

stencil, or mask. This stencil is to be moved over a set to find elements that 

fit in its holes and, hence, are related in the way specified. This metaphor 

is presented in Fig. 3.6. The shape on the left depicts a stencil, which 

represents symbolically a specified relation, denoted by . This is assumed 

to be a binary relation, i.e. a relation between two elements. The goal is to 

find pairs of elements of the characteristic set C linked by the relation .



70     3 Tasks 

Then, the references corresponding to these elements need to be deter-

mined.

?

?

f
CR

?

?

Fig. 3.6. A graphical illustration of a relation-seeking task. A specified relation 

between characteristics, denoted by , is represented as a stencil, or mask. The 

stencil is moved over the set of characteristics C until some elements of this set 

and the relation between them fit in the holes of the mask. The ultimate goal is to 

find what references correspond to the characteristics linked by the relation 

The diagram in Fig. 3.6 represents the fundamental idea of a relation-

seeking task: find references such that the corresponding characteristics are 

related in a specific way. In this picture, only the required relation between 

characteristics is specified, and no other constraints are given. This situa-

tion can be represented by the formula  

?y1, y2, x1, x2: f(x1) = y1; f(x2) = y2; y1 y2 (3.16)

Such a situation, however, rarely occurs in real relation-seeking tasks; at 

least, we have failed to find a more or less realistic example. The problem 

is that a task constructed faithfully according to this formula is perceived 

as underconstrained: there are four unknown items and only three con-

straints. Therefore, actual relation-seeking tasks typically include some 

additional constraints. In many cases, these are constraints concerning the 

references that correspond to the characteristics linked by the specified 

relation . Four different ways in which the constraints on the references 

can be specified are represented graphically in Fig. 3.7. 

Case 1 represents the situation where the references are constrained by 

specifying a relation that must exist between them. Hence, the task con-

straints include two different relations: one relation that is expected to link 

characteristics and another relation that must link the corresponding refer-

ences. The former relation is denoted by  and the latter relation is de-

noted by . The following formula corresponds to this case: 

?y1, y2, x1, x2: f(x1) = y1; f(x2) = y2; x1 x2; y1 y2 (3.17)
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Fig. 3.7. Different variants of relation-seeking tasks. (1) Not only a relation  that 

must exist between characteristics is specified, but also a relation  that links the 

references corresponding to these characteristics. (2) Not only a relation  but also 

a reference, denoted by r, is specified in the task constraints. The goal is to find 

another reference such that the relation  exists between the characteristics corre-

sponding to these two references. (3) In a dataset with two referrers, denoted by R

and R , two values of one of the referrers (R ) are specified; they are denoted by 

r 1 and r 2. The goal is to find a value of the other referrer (R ) such that the speci-

fied relation  exists between the characteristics corresponding to the combina-

tions of this value with r 1 and r 2. (4) A specified relation  is assumed to exist 

between the values of two different attributes corresponding to one and the same 

reference. The goal is to find such references. The sets of values of the two attrib-

utes are denoted by A1 and A2

An appropriate example of this subtype of relation-seeking task is “On 

what days did the stock price increase by more than 20% in comparison 

with the previous day?” Here, the reference set is a linearly ordered set of 

days, and the characteristic set is the set of prices attained by the stock. 

Two binary relations are specified: 

a relation between characteristics, i.e. stock prices: One price must be 

higher than another by more than 20%; 

a relation between the corresponding references, i.e. days: The day cor-

responding to the higher price must immediately follow the day corre-

sponding to the lower price. 

Case 2 is a task in which not only is a relation  between characteristics 

specified but also one of the references, which is denoted by r. The goal is 

to find another reference such that the relation  exists between the char-
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acteristics corresponding to these two references. The formula for this task 

subtype is 

?y1, y2, x2: f(r) = y1; f(x2) = y2; y1 y2 (3.18)

An example of such a task is “Did any earthquakes happen within 48 

hours before the given earthquake?” Here, the reference set is the set of 

earthquakes, and one element of this set, i.e. a particular earthquake, is 

specified. The characteristic set consists of the times of earthquake occur-

rences. The goal is to find earthquakes such that their occurrence times are 

related to the time of the specified earthquake (let this be t) in the follow-

ing way: these times are less than t, and the distances (in time) to t are no 

more than 48 hours. 

Case 3 illustrates the situation where a dataset has multiple (two in Fig. 

3.7) referrers, and the reference set consists of combinations of values of 

these referrers. In a relation-seeking task, the values of some referrers may 

be specified while the values of the remaining referrers need to be found. 

This is the case for the example task “In which municipalities in Portugal 

did the population decrease from 1981 to 1991?” Here, one of the two re-

ferrers is time (more precisely, the set of census years), and the other one 

is the set of municipalities in Portugal. The characteristic set consists of the 

values of the attribute “population number”. For the temporal referrer, two 

values are specified: the years 1981 and 1991. The goal is to find all values 

of the other referrer such that the values of the population number corre-

sponding to the combinations of those values of the referrer with the years 

1981 and 1991 are linked by the following relation: the value correspond-

ing to the first combination is higher than the value corresponding to the 

second combination. This task subtype can be encoded in the formula 

?y1, y2, x: f(r1, x) = y1; f(r2, x) = y2; y1 y2 (3.19)

Case 4 is the case where a specified relation is supposed to exist be-

tween values of different attributes corresponding to one and the same ref-

erence, which needs to be found. As we discussed earlier, a dataset with 

multiple attributes may be viewed as having multiple data functions, one 

per attribute. In Fig. 3.7, there are two such data functions, denoted by f1

and f2; the corresponding attribute value sets are denoted by A1 and A2.

The specified binary relation  must link some element of the set A1 with 

the element of the set A2 corresponding to the same reference as the ele-

ment of the set A1. The formula for this task subtype is 

?y1, y2, x: f1(x) = y1; f2(x) = y2; y1 y2 (3.20)
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A representative example of such a task is “In which states of the USA 

and in what years did the motor vehicle theft rate exceed the burglary 

rate?” Here, we have two comparable1 attributes: motor vehicle theft rate 

and burglary rate. The reference set consists of combinations of values of 

two referrers: states of the USA and years. The goal is to find combina-

tions of a state and a year such that the following relation between the cor-

responding values of the two attributes exists: the motor vehicle theft rate 

exceeds the burglary rate. 

We have now considered all the example tasks given at the beginning of 

this subsection except for the last one, “Find pairs of earthquakes such that 

the time interval between them is no more than 48 hours and the distance 

between their epicentres is no more than 50 km”. In this example, the ref-

erence set is the set of earthquakes. As in case 4 above, two attributes are 

involved in the task: the time of earthquake occurrence and the spatial lo-

cation of the earthquake epicentre. Unlike case 4, two relations are speci-

fied as task constraints, and each relation is meant to exist between two 

values of one and the same attribute rather than between values of two dif-

ferent attributes. For the time of earthquake occurrence, the relation that 

we seek is “the temporal distance is no more than 48 hours”. For the epi-

centre locations, the relation must be “the spatial distance is no more than 

50 km”. The goal is to find pairs of references such that both relations exist 

between the corresponding occurrence times and epicentre locations. A 

graphical illustration of this case is given in Fig. 3.8, and the correspond-

ing formula (quite long) is given below: 

?y1, y2, z1, z2, x1, x2:

f1(x1) = y1; f1(x2) = y2; y1 1y2; f2(x1) = z1; f2(x2) = z2; z1 2z2 (3.21) 

In the five variants of relation-seeking tasks that we have discussed, the 

basic scheme represented in Fig. 3.6 and encoded in (3.16) is modified by 

the introduction of additional constraints and/or by decreasing the number 

of unknown items. 

We introduced relation-seeking tasks as inverse with respect to com-

parison tasks. From another viewpoint, relation-seeking tasks can be 

viewed as a kind of “hybrid” between lookup and comparison tasks. The 

targets of these tasks are references, as in inverse lookup tasks. However, 

the constraints are not defined by indicating particular characteristics or 

subsets of characteristics but rather by specifying relations that must hold 

between characteristics corresponding to the references. Hence, the tasks 

                                                     
1   It is important that the attributes are comparable, i.e. their value sets are the 

same or at least overlap. 
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involve comparison of characteristics in order to check whether the speci-

fied relation is valid. 

Generally, both comparison and relation-seeking tasks are compound 

rather than atomic: any such task is built up from smaller operations, or 

subtasks. A compound task may be recognised from the presence of sev-

eral items in its target. Thus, there are from two to six variables in the tar-

get parts of the formulas (3.11) (3.21), which encode various types of 

comparison and relation-seeking tasks. The plurality of targets is also visi-

ble from the graphical illustrations of these tasks: each of them contains 

several question marks, which signify the unknowns.  

The subtasks of compound elementary tasks may be of the following 

kinds:

1. For a reference, find the corresponding characteristic: ?y: f(r) = y. We 

have called such tasks “direct lookup tasks”. 

2. For a characteristic or a subset of characteristics, find the corresponding 

reference(s): ?x: f(x) = c. Such tasks have been called “inverse lookup 

tasks”.

3. Compare two or more elements (either characteristics or references); 

that is, identify the relation existing between these elements: ? : p q.

?

?

f1 A1

R
1

?

?

1

2

A2f2

?

?

2

Fig. 3.8. A relation-seeking task may set constraints on relations that must exist 

between values of several attributes. Here, there are two different attributes f1 and 

f2, with value sets denoted by A1 and A2. Two relations are specified: 1, which is 

expected to exist between elements of A1, and 2 expected to exist between ele-

ments of A2. The goal is to find two references such that the corresponding values 

of the attribute f1 are linked by the relation 1 and, simultaneously, the corre-

sponding values of the attribute f2 are linked by the relation 2
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4. For a given element (either a characteristic or a reference), find other 

element(s) such that a specific relation exists between these elements: 

?p: p q.

In the expressions that encode these basic subtasks, bold letters are used 

to denote the items that are specified, i.e. constants, and italic letters (ex-

cept for f) denote the items to be found, i.e. unknowns, or variables.  

Comparison tasks are built up from the basic subtasks 1 and 3 (direct 

comparison) or 2 and 3 (inverse comparison). A relation-seeking task im-

plies the following operations:

for a reference, find the corresponding characteristic (subtask 1 – direct 

lookup);  

for the characteristic thus found, find other characteristics linked to it by 

a specified relation (subtask 4);  

for the related characteristics thus found, find the corresponding refer-

ences (subtask 2 – inverse lookup). 

For subtask 1, the reference may be specified explicitly, or it may be re-

quired that all operations are performed repeatedly for multiple elements 

of the reference set. In the latter case, some additional constraints are usu-

ally specified, which limit the number of repetitions required and direct the 

search process through the reference set. 

In general, it is possible to use these four basic subtasks to build a wide 

variety of compound elementary tasks, and not only the tasks we have al-

ready described and represented by formulae. The general principle of 

construction is to replace constants in some basic task by variables. Every 

such variable must be included in the task target, and some constraint(s) 

involving this variable must be added. Thus, in all but one of the task for-

mulae that we have introduced so far, there are as many expressions in the 

constraint parts as items in the target parts. The only formula that does not 

comply with this rule is (3.16), which has four targets and only three con-

straints. Because of this disagreement, the formula (3.16) appears under-

constrained, and it is hard to find a realistic example of a task that would 

fully correspond to this formula. 

A strict general requirement for any compound task is that the data func-

tion f  must appear in at least one of its constraints.  

3.3.3 Recap: Elementary Tasks 

We have introduced the notion of the data function and, correspondingly, 

the formula f(x) = y as a model of a dataset. We do not do this because of 
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our love of formality and obsession with encoding everything in formulae. 

The rationale for using the formal notation is to build a well-grounded, 

distinct, consistent, complete task typology, which means:  

1. It must be clear where each task type comes from and why it is intro-

duced.

2. It must be clear how one task type differs from another. 

3. A common approach is used to define all task types. 

4. There is a way to confirm that all potential data analysis tasks have been 

taken into account. 

Let us explain why we rely upon the functional representation of a dataset 

in trying to reach our objectives. 

To study an object or phenomenon comprehensively, a researcher needs 

to observe it from different perspectives, manipulate it, and do various ex-

periments. When this is impossible (for example, the object is too big or 

too small, cannot be reached, or could be damaged), the researcher creates 

a model of the object and manipulates the model in order to learn the prop-

erties of the object. In our case, we could not achieve completeness by re-

viewing all datasets that have ever existed and collecting together all imag-

inable questions: both the data and the questions are incalculable. There-

fore, we have created a model that could represent all possible datasets for 

us and now we are trying to manipulate this model in order to reveal all 

possible tasks. We believe that our formal model has now allowed us to 

enumerate all essential varieties of elementary tasks. 

It must be borne in mind that a model is not identical to the object that it 

represents. It cannot have exactly the same properties; otherwise, the re-

searcher could not use it, for the same reasons as the original object. A 

model should incorporate the most essential features of the object, and the 

choice of these features is made rather subjectively. Therefore, the re-

searcher must be cautious when extending conclusions obtained from 

studying the model to the real object. It is good if some ways of checking 

these conclusions can be found. However, this is not always possible. In 

many cases, researchers have to be satisfied with the fact that a model 

seems to conform to reality and that the conclusions obtained do not con-

tradict the observations. New observations may invalidate the conclusions, 

and the researchers will then have to amend the model or to create a new 

one.

Unfortunately, we cannot check whether our model really covers all 

possible elementary tasks. Thus far, it conforms to our observations ob-

tained from our work with various data. Nevertheless, it may happen that 

new observations will necessitate revision of the model.  
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So, according to our model, a dataset consists of a set of references, a 

set of characteristics, and a data function, which defines the correspon-

dence between the references and the characteristics. According to this 

model, three groups of relations between elements exist: 

1. Relations between references. 

2. Relations between characteristics. 

3. Relations between references and characteristics. 

While the relations between references and characteristics are defined by 

the data function, the relations within the set of references and within the 

set of characteristics depend on the nature and properties of these sets and 

may be diverse. 

Elementary tasks are questions concerning relations between elements. 

The following basic questions are possible: 

1. Given two (or more) elements, identify what relation exists between 

them. 

2. Given an element and a relation, find other elements related in the speci-

fied way to the given element. 

In principle, it is possible to formulate a task of the following form: given 

a relation, find elements linked by this relation. However, this formulation 

can be transformed into task 2 above, which in this case is repeated for 

every element. 

Any task can be viewed as a combination of a target and one or more 

constraints. The target may include several items, which makes it also pos-

sible to speak of several targets of a task. The targets indicate the unknown 

information, which needs to be found. The constraints describe what is 

known. In our formal notation, constraints are expressions containing two 

parts linked by some relation, such as = (equals),  (set membership), and 

< (less than). 

We assume that all relations between references and characteristics are 

defined by the data function, or, at least, all such relations that are of inter-

est to a data analyst. Hence, task 1 does not arise when we focus on rela-

tions between references and characteristics: there is no sense in asking 

what kind of relation exists between a given reference and a given charac-

teristic. The only meaningful form of question is to find an element related 

to a given element according to the data function. There are two possibili-

ties:

for a given reference, find the corresponding characteristic; 

for a given characteristic, find the corresponding reference. 
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We have called the first possibility “direct lookup”, and the second possi-

bility “inverse lookup” . 

For relations between references and between characteristics, both task 

1 and task 2 make sense. We call task 1 “comparison” and task 2 “relation-

seeking”. However, comparison and relation-seeking tasks do not occur in 

data analysis in their basic form, because this form does not involve the 

data function. In other words, no data are needed for answering such ques-

tions, because, as we have mentioned, relations between references and 

between characteristics are determined by the general, invariant properties 

of the respective sets. 

In data analysis, comparison and relation-seeking tasks appear as the ba-

sic forms modified by introducing additional targets and additional con-

straints, so that the data function is involved in at least one constraint. 

Since such tasks have several targets, they are no longer basic: the pres-

ence of several targets indicates that a task is compound, i.e. built from 

simpler operations. 

We would like to point out that, when we speak about elementary tasks, 

we are not using the term “elementary” as a synonym for “simple” or 

“easy”. While lookup tasks might be characterised as simple, inverse com-

parison and relation-seeking tasks, which are also elementary, are typically 

compound. One of our examples of a relation-seeking task contained as 

many as six targets. Hence, we use the word “elementary” purely in the 

sense of addressing elements, i.e. individual items, rather than sets. 

We have talked much about various relations between elements, but it 

may be noted that we have thus far considered only binary relations, i.e. 

relations involving two items. Relations in which more than two items par-

ticipate exist as well and could be included in the suggested framework: 

for example, the relation “between” for an ordered set of items. However, 

in most cases, relations with more than two participants can be represented 

by collections of binary relations. 

Let us now summarise the classes of elementary tasks that we have con-

sidered:

Lookup tasks. In these tasks, it is necessary to find the values of some 

data components that correspond to given values of other data compo-

nents according to the data function. Lookup tasks may be subdivided 

into direct and inverse lookup tasks. 

Direct lookup tasks. The values of referential components are speci-

fied; the goal is to find the corresponding characteristics (values of at-

tributes). For example, “On a given date, what is the price of stock 

X?” 
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Inverse lookup tasks. The values of attributes are specified; the goal is 

to find the corresponding values of referrers. For example, “For a 

given price, on what date(s) was it attained?” If the dataset contains 

two or more referential components, there may be inverse lookup 

tasks with partly specified references (i.e. the values of some referrers 

are specified), where the goal is to reconstruct the complete refer-

ences (i.e. to determine the unknown values of the remaining refer-

rers). Here is an example of a case with two referrers: “Find munici-

palities that had 300 000 or more inhabitants in 1991”. 

Comparison tasks. In these tasks, the goal is to determine what relations 

exist between characteristics or references. At least one of the items to 

be compared is not specified explicitly, but must result from some 

lookup task. Comparison implies not only identification of the sort of re-

lation but also, whenever possible, its numerical expression (a measure 

of the degree of relatedness). For numeric characterisation of a relation, 

distances between elements of the set of characteristics or of the set of 

references may be used, if such distances exist. For sets with the ratio 

level of measurement, ratios between elements may also be used.  

Depending on the type of the lookup tasks involved, comparison tasks 

may also be subdivided into direct and inverse comparison tasks. 

Direct comparison tasks imply determining relations between ele-

ments or subsets of the set of characteristics (i.e. values of attributes). 

At least one of the characteristics to be compared results from a direct 

lookup task. Here are some examples of different variants of direct 

comparison tasks: 

On a given date, did the stock price exceed €1000? 

Compare the stock prices on the first and the last day of the week.  

Compare the total values of the imports and exports of the given 

country. 

Compare the immigration to the USA with the emigration from 

Mexico.

Inverse comparison tasks. In these tasks, relations between references 

must be determined. At least one of the references must result from 

an inverse lookup task. Here are some examples: 

Did the stock price reach €1000 before or after the given date? 

Compare the dates on which the prices €1000 and €1100 were at-

tained.

Compare the location with the highest air temperature with the lo-

cation with the highest humidity. 
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If a dataset contains two or more referential components, partial ref-

erences may be involved in all three variants of comparison tasks. 

This means that the values of some referrers may be specified in the 

task constraints while the values of the other referrers may need to be 

determined and then compared. 

Relation-seeking tasks. In these tasks, the goal is to find references or 

pairs (or, in a more general case, groups) of references such that speci-

fied relations exist between the corresponding characteristics. Such a 

task consists of the following basic operations: (1) for a reference, find 

the corresponding characteristic (direct lookup); (2) for the characteris-

tic thus found, find other characteristics linked to it by a specified rela-

tion; (3) for the related characteristics thus found, find the correspond-

ing references, i.e. perform inverse lookup tasks. For the operation (1), 

the reference may be specified explicitly, or it may be required that this 

operation and the following operations are performed for multiple ele-

ments of the reference set. In the latter case, some additional constraints 

are usually specified, which limit the set of references to be involved 

and direct the search through the reference set. Here are some examples: 

“On what days was the stock price higher than on the given day?” 

Here we have a case where one reference (a specific day) is explicitly 

specified.

“Find countries where the imports exceed the exports”. Here, there is 

an additional constraint that the values of the two different attributes 

must correspond to one and the same reference. 

“Where did the population decrease from 1981 to 1991?” In this ex-

ample, references consist of two components, space and time. The 

values of the temporal components are specified, and the goal is to 

find value(s) of the spatial component such that the characteristics 

corresponding to the full references are related in the specified way. 

“On what dates did the price of the stock decrease in comparison with 

the previous date?” This task requires a search for pairs of references 

with a specified relation between the corresponding characteristics 

and, additionally, another specified relation between the references 

themselves. 

It should be noted that elementary tasks do not play a primary role in 

exploratory data analysis. The goal of EDA is to discover inherent proper-

ties of a dataset as a whole. This cannot be achieved by performing only 

elementary tasks, which focus on individual data items and do not imply 

an overall view of the dataset. Nevertheless, elementary tasks cannot be 

ignored, since they necessarily emerge in EDA and hence require adequate 
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tools to support them. For example, an analyst may explore the spatial 

variation of a numeric attribute and notice that the value in some location 

looks very different from those in the neighbourhood. Naturally, the ana-

lyst would like to know what this value is, how much it differs from the 

values around it, and what the values of other attributes in this location are. 

All these are elementary tasks, which may contribute significantly to the 

overall understanding of the spatial phenomenon under analysis. However, 

in order to see the wood for the trees, one needs a higher level of abstrac-

tion than is supposed in elementary tasks. 

3.4 Synoptic Tasks 

3.4.1 General Notes 

The term “synoptic task” is the result of rather long search for a suitable 

name for the class of tasks that require one to deal with sets as a whole, in 

contrast to elementary tasks dealing with individual elements. At the be-

ginning of the story was our uncomfortable feeling concerning Bertin’s 

intermediate and overall levels of reading. While it was completely clear 

that these two categories are different in principle from the category re-

ferred to as the “elementary level”, we could not see significant differences 

between those two categories themselves. According to Bertin’s definition, 

the only difference is that the overall level involves the whole set of possi-

ble values of some component, whereas the intermediate level refers to 

subsets of this set. Hence, in both cases sets are involved rather than indi-

vidual elements, and the difference is only in the size of the set. In our 

opinion, this difference is not as important as the difference between con-

sideration of elements and consideration of sets, and, consequently, it is 

not sufficient to justify the existence of two distinct categories. Besides, 

we have learned from our practical experience that different methods and 

tools are needed to support analysis on the level of elements and on the 

level of sets, but the same methods and tools can be used for the interme-

diate- and overall-level tasks. Compare, for example, the following ques-

tions:

In the first three days, what was the trend of the price? 

During the entire period, what was the trend of the price? 

These are Bertin’s examples of tasks pertaining to the intermediate and the 

overall level, respectively.  
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To find answers to these questions, one could represent the dynamics of 

the price as a line on a time graph, as is shown in Fig. 3.9. The first ques-

tion requires one to examine the shape of the line segment corresponding 

to the first three days. To answer the second question, the shape of the en-

tire line needs to be examined. Both the tool used (i.e. the time graph) and 

the analysis procedure (i.e. observing the shape of the line) are the same in 

both cases. The only difference is that for the first question one needs to 

delimit the relevant subset, i.e. time interval. For this delimitation, some 

additional tool could be used. For example, most of the current software 

tools for data visualisation provide opportunities for zooming and focusing 

on subsets of the data. However, these functions play only an auxiliary role 

in data analysis. Thus, for understanding the trend of the price, seeing the 

shape of the line is more important than the possibility of zooming into the 

first three-day interval. 
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Fig. 3.9. A time graph represents the dynamics of a numeric attribute over a time 

period. This is a suitable tool for finding answers to questions concerning the trend 

both during the whole period and during its subintervals 

This example demonstrates that intermediate- and overall-levels have 

many more commonalities than differences. Therefore, our idea was to 

unite these two categories into a single category. The problem was to find 

a suitable name, which would reflect the major feature of this class of 

tasks: they pertain to sets, and the sets need to be treated as wholes. The 

options we considered were “set-related tasks”, “high-level tasks”, and 

“general-level tasks”, all three rather awkward. Of these three, only the 

first provides any clue about the idea. The term “high-level” does not ex-

press anything. Although we used the term “general-level” in our earlier 

publications (for example, in Andrienko et al. (2003)), we find it too am-

biguous. In fact, we discuss all tasks (including elementary tasks) on a 

general level, and the formula ?y: f(r) = y is general even though it repre-

sents a certain group of elementary tasks. 
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Therefore, we were quite happy to find the term “synoptic”, which 

seems to be much closer than those considered before to the idea we want 

to express. The word “synoptic” is defined in a dictionary as “pertaining to 

or constituting a synopsis; affording or taking a general view of the princi-

pal parts of a subject” (Random House 1996). The word “synopsis” is de-

fined in the same source as “a brief or condensed statement giving a gen-

eral view of some subject” or “a compendium of heads or short paragraphs 

giving a view of the whole”. This corresponds well, for example, to the 

task “In the first three days, what was the trend of the price?” A suitable 

answer would be “the price increased”. This is “a brief or condensed 

statement giving a general view of some subject”, i.e. a synopsis. The 

question “During the entire period, what was the trend of the price?” also 

requires a sort of synopsis rather than an enumeration of the prices for all 

days. Thus, one could describe the trend as “an increase, then a sudden 

drop followed by an increase to a higher level than before, and then a 

gradual decrease”. In so doing, one takes “a general view of the principal 

parts of a subject”: the overall trend is divided into a few principal parts 

characterised as an increase, a sudden drop, and a gradual decrease. 

Hence, a task dealing with a set as a whole implies making a sort of 

synopsis concerning this set, and therefore can be called a “synoptic task”. 

A synopsis is not necessarily verbal; in some cases data may be summa-

rised numerically, graphically or in the form of equations, for example. 

3.4.2 Behaviour and Pattern 

In a synoptic task, a data analyst deals with a set of references as a whole, 

i.e. considers simultaneously all its elements, as well as the system of rela-

tions existing between these elements. For each of these elements, there is 

a corresponding characteristic, i.e. an element of the characteristic set. This 

correspondence is defined by the data function. The characteristics corre-

sponding to the references form a configuration with respect to the set of 

references and the system of relations between the references.  

The simplest example of such a configuration is a sequence of attribute 

values corresponding to the system of ordering relations in a linearly or-

dered set of references: a sequence of stock prices over a period of time, a 

sequence of flow speed measurements along a river, a sequence of phases 

in the development of an insect, etc. Another example of a configuration of 

characteristics corresponding to a system of relations within a reference set 

is a distribution of characteristics over a two-dimensional or three-

dimensional space: the distribution of the population density over the terri-

tory of Portugal, the distribution of various forest structures over Europe, 
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the distribution of the stream direction, stream speed, and temperature over 

an ocean at different depths, etc.

Such configurations of characteristics, which are determined by rela-

tions between references and by the data function, are called behaviours.

The notion of a behaviour can be illustrated graphically as shown in Fig. 

3.10.
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Fig. 3.10. A graphical illustration of the notion of a behaviour. The data function f

associates each element of the reference set R with the corresponding characteris-

tic, i.e. element of the characteristic set C. The references are linked by a system 

of relations, which are symbolised by the dashed arrows. A certain configuration, 

or arrangement, of the characteristics corresponds to this system of relations be-

tween the references. This configuration, which is symbolised by the dotted ar-

rows, is the behaviour of the data function over the reference set R

In fact, “behaviour of a data function” is a metaphoric term. A dataset 

represents a phenomenon, and it is the phenomenon that “behaves”, i.e. 

exhibits particular characteristics under various conditions. The behaviour 

of a data function is a reflection of the behaviour of the underlying phe-

nomenon. An analyst explores the behaviour of the data function in order 

to understand the behaviour of the phenomenon. Synoptic tasks are tasks 

dealing with behaviours of data functions and hence of the underlying 

phenomena.    

To describe synoptic tasks, we shall use the following formal notation to 

denote the behaviour of a data function f  over a reference set R:

(f(x) | x R) (3.22)

Analogously, the behaviour of the function f over any non-empty set of 

references R (a subset of R) is denoted as (f(x) | x R ). The reference set 

R may be called the base of this behaviour. We may also say that the be-

haviour is based on the set R .

For the sake of generality, we can allow the set R  to contain any num-

ber of elements, in particular, one element. Such a case may be called the 
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“local behaviour”. The notion of the local behaviour of a function is 

known, for example, in mathematical analysis, where a derivative charac-

terises “the instantaneous rate of change of one quantity in a function with 

respect to another” (Random House 1996). Here are some examples of 

local behaviours: 

On day 3, there is a peak in the stock price. 

Lisbon has the highest population density among the municipalities of 

Portugal.

The outcome of studying the behaviour of a function is some conception 

of this behaviour, some mental construct or an externalised representation 

of it (a description of the behaviour) that incorporates as much significant 

information from the data as possible, in the simplest and shortest possible 

way. According to Bertin, the understanding of data means “discovering 

combinational elements which are less numerous than the initial elements 

yet capable of describing all the information in a simpler form” (Bertin 

1967/1983, p. 166). We shall use the term pattern to denote such “combi-

national elements”, i.e. distinctive features of a behaviour, reflected in the 

explorer’s mind and/or expressed in a descriptive representation. 

So, we define a pattern as a construct reflecting essential features of a 

behaviour in a parsimonious manner, i.e. in a substantially shorter and 

simpler way than specifying every reference and the corresponding charac-

teristics. The construct may be a description in some language (natural, 

formal, or graphical) or a mental image of the behaviour. 

Our usage of the term “pattern” is consistent with its definition as “a 

combination of qualities, acts, tendencies, etc., forming a consistent or 

characteristic arrangement” (Random House 1996). The implied meaning 

is also similar to what is understood by a pattern in data mining: “a pattern 

is an expression E in some language L describing facts in a subset FE of a 

set of facts F [i.e. a dataset, in our terms] so that E is simpler than the 

enumeration of all facts in FE” (Fayyad et al. 1996). In other words, a pat-

tern is a parsimonious description of a subset of data. Our use of the term 

“pattern” is slightly broader: it is not necessarily a description but may also 

be a mental construct which has not yet been externalised in any language. 

In data mining and statistics, the notion of a pattern is distinguished 

from that of a model: while a pattern describes a subset of data, a model is 

a description of the entire dataset. For our purposes, this distinction is ir-

relevant. We shall use the same term “pattern” irrespective of whether an 

entire set or a subset is considered. 

Let us define a behaviour characterisation task as a task of revealing 

distinctive features of the behaviour of some phenomenon and representing 

them by an appropriate pattern. To denote the relation between the pattern 
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resulting from such a task and the behaviour under analysis, we shall use 

the expression “the pattern approximates the behaviour”, where the word 

“approximates” stands for “describes”, “characterises”, “summarises”, 

“represents”, “reflects”, etc. 

Like elementary tasks, synoptic tasks also comprise targets and con-

straints. The target of a behaviour characterisation task is a pattern ap-

proximating the behaviour, and the constraints consist of the function (i.e. 

dataset) the behaviour of which is being studied, and the set of references 

on which the behaviour is based. We shall use the following notation for 

behaviour characterisation tasks: 

?p: (f(x) | x R) p (3.23)

This should be read in the following way: “find a pattern p approximat-

ing the behaviour of the function f(x) over the reference set R”. We do not 

imply any mathematical meaning behind the symbol “ ”. In our notation, 

it means that the pattern approximates the behaviour. 

We shall use the capital letter P to denote a particular pattern, while p is 

a variable standing for an unknown pattern. Sometimes, we shall use the 

notation P(R) in order to emphasise that the pattern P is defined for the 

reference set R.

The meaning of the notion of a pattern may be specialised depending on 

the nature and properties of the reference set considered. Thus, when the 

data refer to time, a typical notion is a “trend”, which can be viewed as a 

specialisation of the more general notion of a pattern. When spatially ref-

erenced data are explored, one looks for patterns in the spatial distribution. 

When the data refer to s population (i.e. a group of objects), a pattern may 

take the form of a statistical summary of the distribution of attribute values 

across the population. Table 3.2 contains examples of behaviour charac-

terisation tasks formulated for various types of referrers and attributes. 

We would like to point out the difference between the meanings of the 

terms “behaviour” and “pattern” as we use them. We understand a behav-

iour as something inherent in a phenomenon and existing objectively, in-

dependently of an observer or an analyst. A pattern, on the contrary, is 

something resulting from observation or analysis, an image or portrait of a 

behaviour that shows how the observer or analyst sees and understands it. 

Hence, a pattern is indispensably subjective. Different observers may un-

derstand the same behaviour differently and represent it by different pat-

terns. Moreover, even one observer may use different patterns to describe 

the same behaviour depending on his/her goals. In other words, a behav-

iour characterisation task typically does not have a single answer. Various 

alternative patterns can substitute for the variable p in the expression 

(3.23).
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Table 3.2. Examples of behaviour characterisation tasks for various types of refer-

rers and attributes 

Attribute

Referrer 

Nominal Interval, ratio Spatial 

Population Investigate the 

frequency 

distribution of 

the attribute 

values 

Investigate the fre-

quency distribution 

(this involves grouping 

the attribute values into 

intervals) 

Find the minimum, 

maximum, median, 

mean, and mode 

Investigate the spatial 

distribution (e.g. find 

concentrations, align-

ments, etc.) 

Time Investigate the 

frequency of 

changes, de-

tect periodic-

ity

Detect trends, investi-

gate speed of change, 

detect periodicity 

Investigate the direc-

tion and speed of 

movement or changes 

in size, shape, or orien-

tation 

Space Investigate the 

patterns of the 

spatial distri-

bution of the 

values 

Detect spatial (direc-

tional) trends, and clus-

ters of close values  

Investigate the depend-

ence of spatial charac-

teristics of objects 

(size, shape, or orienta-

tion) upon location 

Differences in patterns representing one and the same behaviour are, 

first of all, related to the desired degree of simplification. Let us imagine, 

for example, that the price of a stock increases steadily during a certain 

time period. In some cases, it is sufficient to describe this behaviour sim-

ply as “continuous growth”. In other cases, an analyst may need to take 

into account the speed of growth and describe the behaviour as “fast in-

crease at the beginning, and then the speed of the growth gradually de-

creases”. Another possibility is to represent the behaviour by an appropri-

ate mathematical formula. Here, “continuous growth”, “fast increase” etc., 

and the formula are three possible patterns representing the same behav-

iour. The first one is the simplest and least precise of them, while the for-

mula is the most complex (at least for ordinary people) but definitely the 

most precise. Other possible variants of the simplification are to indicate 

the range of price variation (e.g. from €1000 to €1200) or to give just the 

average price, or both. It may be argued whether the word “pattern” is still 

applicable to such extremely simplified characterisations. However, for the 

sake of generality, we shall use this term for any general statement con-
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cerning some behaviour, irrespective of whether it consists of a single 

number, an extensive description, or a formula. 

There are no reasons to presume that a mathematical characterisation 

through a formula is superior to a verbal description or that a more precise 

pattern is always better. The trade-off between simplicity and precision 

depends on the goals of the observer. For example, annual data about air 

temperatures in July in Switzerland may be analysed by a person who is 

going to spend her/his vacation there and by a glaciologist studying the 

evolution of glaciers in the Alps. While for the person going on vacation it 

is sufficient to know the minimum, maximum, and average temperatures, 

the scientist would try to reveal a long-term trend in the July temperatures. 

Let us return to the time series shown in Fig. 3.9. We have described its 

behaviour as “an increase, then a sudden drop followed by an increase to a 

higher level than before, and then a gradual decrease”. According to our 

definition, this description is a pattern approximating the behaviour of the 

stock price. The pattern is expressed through a verbal statement. If we look 

at this statement more closely, we find that it consists of four parts: (1) an 

increase; (2) a sudden drop; (3) an increase to a higher level than before; 

(4) a gradual decrease. Each of these smaller statements describes a part of 

the behaviour that is based on a certain subinterval. This example demon-

strates a common approach to the exploration and characterisation of be-

haviours: if there is no simple pattern that can represent the entire behav-

iour (i.e. the behaviour over the whole reference set), the reference set is 

divided into subsets so that the behaviour over each subset can be repre-

sented by a sufficiently simple pattern. The entire behaviour is then repre-

sented by a combination of these patterns, with an indication of which pat-

tern corresponds to which subset. We consider such a combination of pat-

terns as a pattern also. In general, we assume that a pattern may consist of 

other patterns (subpatterns), and, correspondingly, an analyst may decom-

pose a behaviour in order to represent it by sufficiently simple patterns. 

A compound pattern consisting of several subpatterns may be formally 

represented as follows: 

P(R) = P1(R1) P2(R2)  … Pk(Rk) (3.24)

Here, P1, P2, …, Pk are subpatterns of the compound pattern P, and the 

symbol  means pattern combination; like “ ”, if has no mathematical 

connotation. The subpatterns are defined on the reference sets R1, R2, …, 

Rk, respectively. Each of the sets R1, R2, …, Rk is a subset of the reference 

set R, i.e. R1 R, R2 R, …, Rk R. The union of these subsets makes 

R: R1 R2 … Rk=R.
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A few remarks should be made concerning the process of decomposing 

a reference set into subsets in order to define subpatterns.  

1. Dividing a set into subsets should never go down to the level of individ-

ual elements. Otherwise, no simplification will be achieved: the result-

ing characterisation will not contain a smaller number of items than that 

in the original data.

2. While a population-type reference set (i.e. a set without ordering and 

distances) can be divided into quite arbitrary subsets, partitioning of a 

reference set with ordering and/or distances is typically done with 

proper regard for the ordering and/or distance relations. Specifically, an 

ordered (fully or partially) set is usually divided into uninterrupted sub-

sequences of elements, if it is a discrete set, or continuous subintervals, 

if it is a continuous set. Subsets of a set with distances are usually 

formed from neighbouring elements. Moreover, a continuous reference 

set is usually divided into continuous subsets. 

3. Exceptions to the previous rule are often made when the reference set is 

heterogeneous, i.e. consists of qualitatively different parts. Such hetero-

geneity characterises, for example, geographical space in contrast to an 

abstract two-dimensional space: the former consists of land and water, 

mountains and plains, forests and arable land, etc. Another example 

could be a temporal referrer in some business-related dataset: vacation 

and holiday periods differ very much from other periods of a year, and 

weekends differ from workdays. An analyst may prefer to divide a het-

erogeneous reference set into subsets according to the character of the 

references rather than purely on the basis of ordering and/or distance re-

lations. In this case, it is possible that a subset of references will consist 

of several disjoint parts. 

4. It is not, in principle, required that the subpatterns cover the entire refer-

ence set. It should be remembered that an analyst tries to develop a syn-

opsis, i.e. “a general view of the principal parts of a subject” (Random 

House 1996), and hence may deem some parts of the subject (i.e. the 

behaviour) not to be “principal parts”.  

5. There is no particular reason to prohibit overlapping of the subsets that 

the subpatterns refer to. Let us consider, for example, the left part of 

Fig. 3.11, which represents the behaviour of some imaginary phenome-

non in space, more specifically the spatial distribution of some point ob-

jects or events (the distribution has been artificially created for illustra-

tion purposes). Probably the simplest description of this behaviour 

would consist of two patterns: an alignment along the north-west south-

east diagonal and a round arrangement in the centre. These two patterns 

overlap, i.e. there is an area belonging to both of them. This area is 
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marked in the right part of Fig. 3.11 by hatching. All objects located in 

this area belong both to the diagonal alignment and to the round ar-

rangement. Although the overlap may be viewed as an undesirable 

property, any attempt to get rid of it would result in much more complex 

patterns. Again, it depends on the goals of the analyst whether overlap-

ping patterns are allowable or not. 

Fig. 3.11. An artificial spatial distribution (left) and a possible pattern representing 

it (right) 

To sum up our reasoning concerning behaviours and patterns, we under-

stand a pattern as a synopsis of a behaviour, and, consequently, define 

synoptic tasks as tasks involving building, detecting, and comparing pat-

terns representing the behaviours of phenomena over various reference 

sets. We have mentioned several properties of patterns: 

degree of simplification; 

precision (the property opposite to the degree of uncertainty that we en-

counter when we try to use a pattern to reproduce the data that it was de-

rived from); 

coverage of the reference set (complete or partial); 

presence or absence of an overlap between subpatterns. 

All other things being equal, the simplest possible patterns are typically 

preferred. This corresponds to the logical principle formulated by the me-

dieval philosopher William of Occam (or Ockham) and known as “Oc-

cam’s razor” (see, for example, Heylighen (1997)). This principle states 

that one should not make more assumptions than the minimum needed. 

The principle is often called the principle of parsimony. It underlies all 

scientific modelling and building of theories. Moreover, it also underlies 

human visual perception: according to the central law of perception formu-

lated by gestalt psychologists, people intuitively prefer the simplest, most 

stable of possible organisations (see, for example, Encarta (2004)). 
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3.4.3 Types of Patterns 

We have considered thus far a few examples of behaviours and of patterns 

approximating them, such as the description of the time series shown in 

Fig. 3.9 and the geometrical shapes representing the artificial distribution 

in Fig. 3.11. We have also mentioned that a pattern may also be a mathe-

matical formula, a range of attribute values, or just a single number such as 

the average temperature. Can we find something common in this variety 

and develop a more or less general notion of a pattern? 

From these and other examples, we can extract the following basic vari-

ants of patterns: 

1. Association: Perception or description of a (sub)set of references as a 

unified whole on the basis of similarity of their characteristics, i.e. close 

values of one or more attributes corresponding to these references. 

2. Differentiation: Perception or description of some references or subsets 

of references as differing from others by to their characteristics. 

3. Arrangement: An idea or description of how characteristics are ar-

ranged, with respect to an ordering of references, for example a trend in 

characteristic that changes over time. 

4. Distribution summary: A general idea or description of how characteris-

tics are distributed over a reference set: how varied they are, what val-

ues occur most frequently, whether there are outliers (a few values 

greatly differing from the rest), etc. 

Before considering these types of patterns in more detail, we would like to 

stress that we do not aspire to creating a full classification of possible pat-

terns. Instead, we introduce and describe a few types, which are familiar to 

us from our own experience, mainly in order to make our concept of a pat-

tern better understandable to readers. 

3.4.3.1 Association Patterns 

An association pattern means that some references are unified into a whole 

and can be handled together. Such unification is typically done on the basis 

of identical or close characteristics, i.e. values of certain attributes, corre-

sponding to these references. For example, a number of districts may be 

considered together as “a cluster of districts in the north of Portugal with 

high proportions of children”. In this example, the districts are united into 

a whole (a cluster) on the basis of their close characteristics in terms of the 

proportion of children in the population. Such an association could also be 

performed on the basis of multiple attributes, for example, “a cluster of 
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districts with high proportions of children and low proportions of elderly 

people”.

Another example of an association pattern is our representation of the 

artificial spatial distribution of points shown in Fig. 3.11. We have associ-

ated individual points into two geometric figures, first of all on the basis of 

the spatial proximity of these points, i.e. the closeness of the corresponding 

values of the attribute “spatial location”. An additional reason was that the 

figures were simple and readily identifiable in the visual representation of 

the points. As a result, we have built two new constructs, a “round cloud in 

the centre” and a “narrow diagonal belt”. Now we can use these new con-

structs in our further investigation of the phenomenon and our reasoning 

about it instead of the original multitude of points. Thus, we can say that 

the “belt” crosses the “round cloud” and that it is shifted towards the north-

east with respect to the centre of the “cloud”. If we had other attributes 

related to the points, we could compare the characteristics of the “round 

cloud” and the “belt”, summarised from the characteristics of the individ-

ual points comprising these shapes. 

In general, the formation of association patterns is typically accompa-

nied by deriving summary characteristics of a union of references from the 

individual characteristics of its members. The easiest situation is when all 

the members have one and the same value of some attribute; this value be-

comes the characteristic of the union. In other cases, all different attribute 

values occurring among the characteristics of the members of the union 

may be listed (often with an indication of the frequencies or probabilities 

of their occurrence) or, for ordinal or numeric attributes, the range of varia-

tion of the values may be specified. Numeric characteristics are often sum-

marised by means of computations that somehow aggregate individual 

characteristics into a single numeric value or a few values. The most com-

mon aggregate characteristic is the mean, or average, of the values of a 

numeric attribute. For example, “the average proportion of children in this 

cluster of districts is 25.2%”. It is very useful to compute, along with the 

mean, a measure of the variance of the values, which indicates how consis-

tent the characteristics of the members of the union are.  

Associations of references can also be characterised in a relative way, 

which involves comparison and differentiation between members of a un-

ion and the remaining elements or the whole reference set. For example, 

“the proportions of children in this cluster of districts are much higher than 

in the remaining part of the country” or “girls, on average, perform better 

in mathematics than boys”. Actually, comparison and differentiation are 

involved in the very process of building association patterns. Thus, a sub-

set of references R  is considered as some unified whole if the elements of 

R  have characteristics closer to those of each other than to those of non-
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members of the subset R . This can also be stated in other words: the varia-

tion of characteristics among elements of the subset R  is considerably 

smaller than that in the entire reference set.  

3.4.3.2 Differentiation Patterns 

As we have just said, differentiation is inherently involved in association: 

we unite some references not only because their characteristics are similar 

but also because they are different from the characteristics of other refer-

ences. These “other references” may be all remaining elements of the ref-

erence set or the neighbourhood of the references that are united, if the 

reference set has ordering and/or distance relations. For example, an ana-

lyst may associate a number of districts in the north-west of Portugal with 

high proportions of children into a union (cluster). In other parts of the 

country, there may be a few other districts where the proportions of chil-

dren are high, and hence close to those in the cluster. However, the analyst 

does not include these scattered districts into the north-western union, be-

cause of their spatial remoteness from the union. In this example, the ana-

lyst differentiates the districts with high proportions of children in the 

north-west from their neighbourhood, which has a lower proportion of 

children, rather than from all remaining districts, some of which have the 

same proportion of children as in the north-west. 

As we have stated, association of references is typically done on the ba-

sis of close characteristics, although it involves the operation of differen-

tiation. However, similarity of characteristics is not required for differen-

tiation as such, and differentiation can be done even when no commonal-

ities between references are observed: some elements or subsets of the ref-

erence set may simply be noted as having substantially different character-

istics from the rest of the reference set or from the neighbourhood. In par-

ticular, an analyst may detect outliers  references with atypical character-

istics, for example extraordinarily high or low values of a numeric attrib-

ute. Outliers may be “global” or “local”. Global outliers are references 

having atypical characteristics with respect to the whole reference set. For 

example, there are three districts in Portugal with population densities of 

7913, 7455, and 7261 inhabitants per square km, while the densities in the 

remaining districts range between the values 7 and 3302. Local outliers are 

references that differ significantly in their characteristics from their 

neighbourhood but not necessarily from all other elements of the reference 

set. For example, the proportion of children in the population of Lisbon 

(14.22%) is much lower than in the surrounding districts (from 17.06% to 

21.95%). The same is true for the city of Porto: 16.95% versus a range 
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from 20.12% to 27.50%. This does not mean, however, that the propor-

tions of children in Lisbon and Porto are the lowest in the country. 

It is not only cases where a single reference differs from all others or 

from its neighbourhood that may be characterised by differentiation pat-

terns. It is also possible to differentiate a subset of references from the rest 

of the reference set owing to a much higher variability of characteristics in 

this subset than in other parts of the reference set. Such a subset may be 

considered as a unified whole on the basis of this extreme variability, in 

contrast to more coherent characteristics in other subsets. For example, an 

analyst may find continuous areas in Portugal with consistently high or 

low employment in agriculture, along with an area in the south where the 

districts differ very much in the values of this attribute. Another example 

would be a time interval where there is chaotic fluctuation of a stock price, 

while a more regular behaviour is observed in other intervals. This chaotic 

fluctuation could be characterised by a differentiation pattern, while the 

more regular behaviour in a time interval would typically be approximated 

by an arrangement pattern. 

3.4.3.3 Arrangement Patterns 

An arrangement pattern is a perception of characteristics as being specifi-

cally ordered or organised when references are considered in a certain or-

der. This applies first of all to “naturally” ordered reference sets, such as 

time. When an explorer considers characteristics corresponding to an or-

dered sequence of time moments, he/she can make observations such as 

the following: 

The values of this numeric attribute increase (or decrease) gradually. 

A gradual increase is followed by a sharp decrease. 

Gradual increases alternate with sharp drops. 

The higher the level to which the attribute increases, the deeper and 

more abrupt is the following drop. 

The values of this quantitative attribute appear repeatedly in the se-

quence v1, v2, …, vk.

The value vn tends to be preserved for longer times than other values of 

the attribute. 

Some of these types of observations are commonly called “trends”  (in par-

ticular, an increasing or decreasing trend), while some others would be 

designated as “periodic patterns”. We suggest the term “arrangement pat-

tern” as a more general appellation subsuming the notions of trend, perio-

dicity, oscillation, stability, etc. – any idea concerning the sequence in 
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which characteristics appear when references are considered in a certain 

order.

Moreover, we do not limit the notion of an arrangement pattern only to 

linearly ordered reference sets. First, an arrangement pattern may be found 

with respect to an ordering arbitrarily introduced into a set of references. 

For example, one can put the municipalities of Portugal in order of increas-

ing population density and observe an increase of the proportion of people 

employed in services and a decrease of the proportion of elderly people. 

Second, characteristics may be organised in a particular way with regard to 

a two-dimensional or three-dimensional arrangement of references. Think, 

for example, about the distribution of black and white squares on a chess-

board. This is a highly regular arrangement of characteristics related to the 

arrangement of the reference set, which consists of 64 squares, in eight 

vertical and eight horizontal rows. 

While it is common to talk about trends mostly in relation to some linear 

ordering of references, the phrase “spatial trend” is also widely used, al-

though, as we have discussed earlier, there is no natural ordering between 

spatial locations. However, it is possible to consider various directions in 

space, which define certain orderings of locations. For example, one can 

characterise the situation with regard to crime in a city as “the crime rate 

increases from the centre of the city towards the periphery”. Here, a partial 

ordering has been introduced that arranges spatial locations according to 

their distance from the centre. For another spatial behaviour, a different 

ordering may be appropriate. For example, there may be an increasing 

trend from north to south or from north-west to south-east. An example of 

a non-numeric spatial trend could be a description such as “from the north 

to the south, deserts are gradually replaced by savannas, which then turn 

into tropical forests”.

Arrangements, and trends in particular, not only may be indicated ver-

bally but also may be characterised by means of various numeric meas-

ures, such as the rate of change for numeric attributes or the frequency of 

change for qualitative attributes, the period length for periodic data, or the 

probability that attribute values appear in a specific order. 

3.4.3.4 Distribution Summary 

A distribution summary reflects the general manner in which the character-

istics are distributed over a reference set. We have already mentioned such 

aspects as how varied the characteristics are, what values occur most fre-

quently, and whether there are outliers. 

An elaborate apparatus for summarising and otherwise characterising 

distributions is offered by statistics, which operates with such notions as 
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normal distributions, bimodal distributions, and skewed distribution. We 

have already mentioned the mean and variance as means of aggregation of 

numeric characteristics over a set of references. These measures can also 

be viewed as a summary of the value distribution. It is also possible to use 

other statistical measures, for example the median or various quantiles 

(percentiles). Thus, John Tukey suggested a method of summarising sets 

of numbers by computing their median and quartiles and representing them 

visually on “box-and-whiskers” plots (Tukey 1977). Handbooks on statis-

tics describe many other possibilities for summarising numeric and non-

numeric characteristics. An interesting method for summarising spatially 

referenced data is to compute the position of the “centre of gravity” of a 

spatial distribution. Thus, for the artificial distribution in Fig. 3.11, the 

centre of gravity would be located somewhere near the centre of the circu-

lar cloud. The idea of a centre of gravity could also be applied to a spa-

tially referenced numeric attribute such as the population numbers for Por-

tugal.

It is not only statistical methods that can be used to summarise distribu-

tions. Methods from the information theory can also be suitable. Thus, the 

main measure considered in information theory, entropy, can be used as an 

indicator of the heterogeneity of characteristics, for example for spatial 

differentiation.

We would not like to limit the notion of a distribution summary only to 

numerical measures or to the outcomes of computations. It is quite possi-

ble to summarise a distribution perceptually or verbally. For example, one 

can note that high employment in services occurs mostly along the coasts 

of Portugal and around big cities, and that the proportions of children in 

population are higher in the north of the country than in the south. As can 

be noted from our examples, such summarisations may involve division of 

a reference set into parts and association of elements on the basis of close 

characteristics, which results in a compound pattern consisting of several 

subpatterns.

3.4.3.5 General Notes 

There are no rules for selecting what type of pattern to look for in what 

situation. There are also no recipes for how to discover meaningful and 

useful patterns, i.e. patterns embodying some essential features of the be-

haviour being explored. Typically, it is not a big problem to find some 

common properties for a subset of references, but the problem is to find 

distinguishing properties, i.e. something that differentiates these references 

from the rest. However, even this is not enough. Thus, it is possible to 

make the statement “Districts in the west of Portugal are closer to the At-
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lantic coast than are those in the east”. However, this pattern is useless if 

the goal is to investigate the population structure or unemployment in the 

country. The same applies to the other types of patterns: they need to be 

distinctive and relevant to the goals of the investigation. 

When making summaries of characteristics, it is important to keep the 

right level of aggregation in order to avoid worthless results such as the 

mean body temperature over the set of patients in a hospital. One should 

bear in mind the degree of variation of the characteristics pertaining to the 

reference set and check for the presence of outliers, i.e. a few references 

that differ very much from the rest in their characteristics. 

Seeking to define trends is advisable first of all when the reference set is 

naturally ordered, for example in the case of time. In other cases, detecting 

a trend or other kind of arrangement may require consideration of various 

orderings. What ordering may be suitable in a particular case depends on 

the behaviour observed, but it happens very often that no ordering can be 

found that would allow one to detect any meaningful trend. Thus, the dis-

tribution shown in Fig. 3.11 can hardly be described as a spatial trend, but 

it can be described as a combination of two geometrical shapes, i.e. as a 

compound pattern consisting of two association patterns. Usually, it makes 

sense to look for possible trends when the reference set has distances and 

the characteristics change gradually, i.e. neighbouring elements differ less 

than more distant ones. 

We have already discussed how reference subsets for defining subpat-

terns should be chosen. We would like to add a few words concerning the 

precision with which these reference subsets are specified. It is very com-

mon to describe them in an inexact, fuzzy manner rather than give a pre-

cise, unambiguous specification. For example, in the description “the pro-

portion of children is higher in the north of Portugal than in the south” the 

notions “north of Portugal” and “south of Portugal” are not precisely de-

fined. Like many other things in pattern definition, it depends on the ana-

lyst’s goal whether a precise specification of a subset is required or 

whether just a fuzzy allusion would suffice. 

For quick reference, we now bring examples of different types of pat-

terns for different types of references together in table 3.3. 

We have described these different types of patterns here mainly to pro-

vide a better understanding of the notion of a pattern. We shall sometimes 

refer to these types later, when discussing tools for exploratory data analy-

sis. However, when we discuss the typology of data analysis tasks, which 

are the focus of this chapter, we shall talk about patterns in general, with-

out regard to the distinctions between the various types. 



98     3 Tasks 

Table 3.3. Examples of various types of patterns 

Referrer 

type

Pattern type 

Population Time Space 

Association A group of pupils 

with good marks in 

music and art and 

bad to average 

marks in physics 

A period of west-

erly winds and 

high rainfall 

A cluster of dis-

tricts with high 

proportions of chil-

dren and low pro-

portions of elderly 

Differentiation Pupils with ex-

tremely high or low 

performance in all 

subjects

A group of pupils 

with extreme varia-

tion of marks 

A day with ex-

tremely heavy 

rainfall 

A period of 

highly change-

able weather 

A district or a few 

districts with low 

proportions of chil-

dren, inside an area 

with mostly high 

proportions 

A region with very 

high variability of 

the population 

structure

Arrangement 

(in particular, 

trend)

With respect to the 

ordering of the pu-

pils according to 

their performance 

in mathematics, the 

performance in 

physics tends to 

increase

A period of in-

creasing (or de-

creasing) daily 

temperatures 

A period of alter-

nating hot 

weather and 

thunderstorms 

The proportions of 

elderly increase in 

the direction from 

the coast to inland 

In this part of the 

city, built areas are 

separated by belts 

of parks and gar-

dens 

Distribution 

summary 

Frequency distribu-

tions of pupils’ 

marks in different 

subjects

Summers in this 

area are hot and 

dry, while winters 

are mild and hu-

mid 

The proportions of 

children are high in 

the north-west, low 

in the middle 

inland, and close to 

the average in the 

other parts 

3.4.4 Behaviours over Multidimensional Reference Sets 

As we know, a dataset may have several referrers. We represent such data 

as a function of multiple variables, as is shown in (3.2) and (3.3). How can 

one investigate the behaviour of such a function? 
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For simplicity, let us first consider a function of two variables, f(x1, x2),

where the variable x1 takes values from some domain R and the variable x2

takes values from some other domain Q. Think of the US crime data as an 

example: f may be some of the attributes, for example, burglary rate; R

may stand for space; and Q may stand for time. 

The whole reference set of the function f consists of all possible pairs (r,

q), where r R and q Q. In mathematics, this set is called the Cartesian 

product of the sets R and Q and denoted by R Q (in the crime dataset,  

R Q is the space time continuum). The behaviour of the function on this 

reference set can be denoted by 

(f(x) | x  R Q) (3.25)

or

(f(x1, x2) | x1  R, x2 Q) (3.26)

Let us now choose some specific value r of the variable x1 (using our 

example of crime in the USA, we choose a specific state, say, California) 

and allow the variable x2 to vary throughout the whole set Q. We can try to 

explore the behaviour of the function f over Q under the condition that x1

equals r. This can be written formally as follows: 

Q(f(x1, x2) | x1 = r, x2 Q) (3.27)

Here, the subscript Q in Q is used to emphasise that the behaviour is 

based on the set Q.

In terms of our example, we can explore the temporal behaviour of the 

burglary rate in California over the period from 1960 to 2000. This behav-

iour is represented graphically in a time graph in Fig. 3.12. 

Fig. 3.12. A graphical representation of the dynamics of the burglary rate in Cali-

fornia during the period from 1960 to 2000 

Similarly to the element r (e.g. California), we can choose any other 

element of the set R (e.g. any other state of the USA) and consider the cor-

responding behaviour of f over Q (e.g. consider the dynamics of the bur-

glary rates in Texas, Florida, and so on). Furthermore, we may be inter-
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ested in exploring the whole set of these “partial behaviours”. Thus, in our 

example, we may wish to study how the dynamics of burglary rates are 

distributed over the territory of the USA. Actually, Q(f(x1, x2)) may be 

viewed as a function of x1, where x1 acquires various values from R, and 

the set of values of the function consists of the possible behaviours (rele-

vant to Q and f). Hence, we may think of the behaviour of the function Q

over the set R. This may be denoted by the expression 

R{ Q[ f(x1, x2) | x2 Q] | x1 R} (3.28)

Square brackets [ and ] and braces { and } are used here instead of paren-

theses to provide a better understanding of how the symbols are grouped 

and how the parts of the expression are related.  

The expression (3.28) encodes the idea of a “behaviour’s behaviour”. In 

our example of crime in the USA, this general idea is instantiated as “the 

spatial behaviour of the temporal behaviour”, or, in more conventional 

terms, “the spatial distribution of the temporal behaviours” (or temporal 

variations). A suitable graphical illustration would be the map shown in 

Fig. 3.13. In this map, time graphs like that shown in Fig. 3.12 are drawn 

in the locations of each state. We can see how various behaviours are dis-

tributed over the territory of the USA. Thus, we can observe that the states 

in the north-central part of the country had smaller burglary rates than the 

other states over the whole time period from 1960 to 2000. Another obser-

vation is that the states in the west and south-west have higher peaks in the 

middle of the time interval than the states in the east (with a few excep-

tions). It is possible to see some spatial clusters of states with similar tem-

poral behaviours of the burglary rate; he clusters are outlined in Fig. 3.14. 

We could now say that we have described the behaviour of the burglary 

rate over space and time. However, we recall that we have actually de-

scribed R{ Q[f(x1, x2) | x2 Q] | x1 R} rather than (f(x) | x R Q).

Could it be that these two things are equivalent? Let us investigate this. 

When we look at the expression R{ Q[f(x1, x2) | x2 Q] | x1 R}, we 

notice that it imposes a specific order upon the variables x1 and x2 and the 

respective sets R and Q, while no particular order is specified in the ex-

pression (f(x) | x R Q). Does the order matter? Let us change the or-

der in the first expression and try to interpret the result: 

Q{ R[f(x1, x2) | x1 R] | x2 Q} (3.29)

To interpret this formula, let us use our example of the burglary rates in 

the USA assuming, as before, that R stands for space and Q for time. Just 

as we could consider, for any particular state, the corresponding temporal 

behaviour of the burglary rate during the period from 1960 to 2000 (such 
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as that for California in Fig. 3.12), so we can consider, for any particular 

time moment, the spatial behaviour (distribution) of the burglary rate over 

the whole territory of the USA. 

Fig. 3.13. A cartographic representation of the spatial distribution of the dynamics 

of burglary rates over the USA 

1

2
3

4

1: 2: 3: 4:

Fig. 3.14. Spatial clusters of states with similar temporal behaviours of the bur-

glary rate. Below the map, the typical behavioural patterns for each cluster are 

schematically shown 

Thus, the map in Fig. 3.15 represents the spatial behaviour of the bur-

glary rate in 1960 by graduated circles positioned in the locations of each 
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state. The sizes of the circles are proportional to the rate in the correspond-

ing state.

Fig. 3.15. A cartographic representation of the spatial distribution of the burglary 

rate over the USA in 1960 

The spatial behaviour shown in Fig. 3.15 can be encoded by the formula 

R( f(x1, x2) | x1 R, x2 = 1960) (3.30)

Analogously, we can consider the spatial behaviour of the burglary rate 

in any other year. Furthermore, we can explore how the spatial behaviour 

changes over time during the whole period from the year 1960 to 2000. In 

other words, we can explore the behaviour of the function R over the set 

Q (i.e. time). This behaviour, which corresponds to the formula  

Q{ R[f(x1, x2) | x1 R] | x2 Q}, could be represented visually in a series 

of 41 maps – one map per year. Since it would be hard to put all 41 maps 

on a page, we have limited our illustration to the nine maps shown in Fig. 

3.16, one map for every fifth year). To obtain a smaller but still legible 

image, we have omitted the states of Alaska and Hawaii. The values of the 

burglary rates are represented by shades of grey in the areas corresponding 

to each state; the higher the value, the darker the shade. 

With this series of maps, we can observe, for example, that the cluster of 

higher values in the south-west extended from 1960 to 1965 and merged 

with the cluster on the south. From 1965 to 1980, the burglary rates in this 

part of the territory mostly increased, as well as their variance, and the 

cluster of high values spread farther to the east. Starting from 1985, the 

values and their variance decreased, and the cluster shrank. In 1975 and 
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1980, a subcluster of very high values could be observed in the south-west, 

while in 1990 relatively higher values were found in the south of the area. 

Fig. 3.16. A cartographic representation of the evolution of the spatial distribution 

of burglary rates over time 

This description is quite different from that derived from Fig. 3.13. Of 

course, it is possible to describe one and the same behaviour in different 

ways. In our case, however, we do not have sufficient grounds to think that 

the images in Fig. 3.13 and 3.16 represent the same behaviour. Thus, one 

could hardly attach the second description to the first image and the first 

description to the second image. It is easier to accept that we have two dif-

ferent behaviours here, or, to state it better, two different aspects of the 

overall behaviour  (represented by the formula (f(x) | x  R Q)). Since 

the two aspectual behaviours are not equivalent to each other, we cannot 

regard either of them as equivalent to the overall behaviour. 

Can we be sure that a union of two aspectual behaviours is equivalent to 

the overall behaviour? Let us investigate this using a very simple artificial 

example. The dataset here has two referrers and one attribute. The first 

referrer, x1, has the value set P, containing three possible values: a, b, and 

c. The value set S of the second referrer, x2, also includes three values, de-

noted by 1, 2, and 3. The attribute a(x1, x2) has two possible values: yes 

and no. The data are shown in Table 3.4. 

Table 3.4. An artificial dataset 

x1 a a a b b b c c c 

x2 1 2 3 1 2 3 1 2 3 

a(x1, x2) no no yes yes yes yes no no yes 
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The behaviour S{ P[a(x1, x2) | x1 P] | x2 S} can be represented 

graphically as is shown in Fig. 3.17. Here, filled squares stand for the at-

tribute value “yes” and hollow squares for “no”. In Fig. 3.18, the behav-

iour P{ S[a(x1, x2) | x2 S] | x1 P} is represented graphically. It can be 

seen clearly that these two behaviours are not the same. 

x2 = 1 x2 = 2 x2 = 3 

a a a b b b cc c x1:

Fig. 3.17. A graphical representation of the behaviour S{ P[a(x1, x2) | x1 P] | x2

S}, where P = {a, b, c}, S = {1, 2, 3}, and a(x1, x2)  {yes, no}. The filled 

squares represent the value “yes”, and the empty squares the value “no” 

x1 = a x1 = b x1 = c 

1 1 1 2 2 2 33 3 x2:

Fig. 3.18. A graphical representation of the behaviour P{ S[a(x1, x2) | x2 S] |  

x1 P}, where P = {a, b, c}, S = {1, 2, 3}, and a(x1, x2)  {yes, no}. The filled 

and empty squares are used analogously to Fig. 3.17 

Using the same symbolisation, we can also represent graphically the 

overall behaviour denoted by the formula P S(a(x1, x2) | x1 P, x2 S).

For this purpose, we map the values of the referrers onto two orthogonal 

axes. The result is shown in Fig. 3.19. 

a

1

b

2

3

cx1:

x2:

Fig. 3.19. A graphical representation of the behaviour P S(a(x1, x2) | x1 P,

x2 S). The symbolisation is the same as in Fig. 3.17 and 3.18 

The image of the overall behaviour shown in Fig. 3.19 contains a feature 

that is not seen in Fig. 3.17 and 3.18, specifically, a T-shape. For this arti-

ficial example, it is hard to say whether this feature is important or not. It 

is clear, however, that the T-shape is pertinent only to the whole reference 

space, i.e. P S, whereas in Fig. 3.17 and 3.18 we see only slices of this 

space.



3.4 Synoptic Tasks      105 

What conclusions can we draw from this example? When we have a 

dataset with multiple referrers (or, in the traditional terminology, a multi-

dimensional dataset2), we can consider various slices of the reference space 

and investigate the behaviour of the underlying phenomenon on these 

slices. Furthermore, we can consider multiple slices simultaneously and 

make some observations about the variation of the behaviour over this se-

ries of slices. This gives us a partial understanding of the overall behav-

iour of the phenomenon on the whole reference set, because a series of 

slices can reflect only a certain aspect of the overall behaviour.  

Such an aspectual behaviour may be viewed as a projection of the over-

all behaviour, like a two-dimensional projection of a three-dimensional 

object in a technical drawing. Then, just as a single projection is often in-

sufficient for understanding the shape of an object, so consideration of a 

single aspectual behaviour is insufficient for understanding the overall be-

haviour. Of course, it would be preferable to investigate the object or a 

three-dimensional model of it rather than two-dimensional pictures. How-

ever, it is often impossible to use the object or a model. In this case, a suf-

ficient number of projections and slices (the latter are especially needed 

when the object has internal structure) are required for understanding the 

shape. Moreover, even when a sufficient number of images have been pro-

vided, a significant mental effort is involved in the process of comprehen-

sion of the shape. 

Analogously, for exploring a behaviour, it is preferable to consider the 

reference set as a whole rather than slices of it. However, this may not al-

ways be possible. In many cases, an analyst has to derive an understanding 

of the overall behaviour from a sufficient number of aspectual behaviours. 

Thus, in a case with two referrers, there are two such behaviours, and both 

should be investigated in order to understand the overall behaviour prop-

erly. Unfortunately, as the dimensionality increases, the number of aspec-

tual behaviours grows dramatically. Thus, for a reference set R Q S,

we have six possible aspectual behaviours: R( Q( S(…))), R( S( Q(…))),

Q( R( S(…))), Q( R( S(…))), S( R( Q(…))), and S( Q( R(…))). When 

the number of referrers equals 4, there are 24 such behaviours. In general, 

the number of aspectual behaviours for a dataset with N referrers equals N

(N factorial), i.e. the product N (N 1) (N 2) … 2 1. And it should always 

be remembered that additional effort is required to reconstruct the overall 

behaviour from aspectual behaviours, similarly to the effect of understand-

                                                     
2   We prefer not to use the traditional term “multidimensional data”, because it 

does not imply distinguishing between referrers and attributes. Thus, this term 

is often applied to a dataset with many attributes but a single referrer.  
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ing the shape of a three-dimensional object from two-dimensional projec-

tions. Just considering all possible aspects may, in general, not be enough. 

The passage above illustrates the general truth that analysis of multidi-

mensional data is not easy. However, data analysis does not always pursue 

such ambitious goals as obtaining a full understanding of the overall be-

haviour of a phenomenon. In many particular cases, only certain aspects of 

the overall behaviour are relevant to the problem to be solved or only cer-

tain aspects excite the interest of the analyst. This can make life much 

simpler, if the relevant aspects are correctly chosen. 

Let us now recall the classification of spatio-temporal analysis tasks by 

Koussoulakou and Kraak (1992). In the introductory section of this chap-

ter, we have noted that the task category “overall level with respect to both 

space and time” includes tasks with several different meanings: 

What is the trend over the area during the whole time? 

How did the spatial distribution evolve over time? 

How do the temporal trends vary over the area? 

In this section, we have demonstrated why this is so. In our framework, 

the first question (to our taste, rather vaguely formulated) can be viewed as 

referring to the overall behaviour of a spatio-temporal phenomenon, while 

the other two questions ask about its aspectual behaviours.  

In their paper, Koussoulakou and Kraak reported experiments on evalu-

ating animated maps from the perspective of supporting different types of 

spatio-temporal analysis tasks. While animated maps are currently rather 

popular, it becomes clear after a close look at this technique that what it 

visualises is one of the aspectual behaviours rather than the overall behav-

iour. More precisely, an animated map shows how a spatial behaviour 

evolves over time, as series of maps does (for example, the maps in Fig. 

3.16). This corresponds to the second question in the list above. Hence, 

using only an animated map is insufficient for understanding the overall 

behaviour.

In the experiments described by Koussoulakou and Kraak, the subjects 

were asked the question “What is the trend in high population densities 

over the whole time?” This question was chosen as representative of the 

task category “overall space and overall time”, and an animated map was 

sufficient for answering it. However, the question does not actually ask 

about the overall behaviour S T(…) but rather about the aspectual behav-

iour T( S(…)), where S stands for space and T for time. 

We must apologise for having digressed from the main topic of this 

chapter and starting to discuss tools for data analysis, which will be the 

subject of the next chapter. Let us return to task typology. We have dis-
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cussed synoptic tasks; more precisely, behaviour characterisation tasks. 

We hope that this section has contributed to the understanding of the no-

tion of behaviour, in particular, by the use of illustrated examples of be-

haviour characterisation. 

3.4.5 Pattern Search and Comparison 

There is a certain similarity between behaviour characterisation tasks and 

the elementary tasks of direct lookup. In a direct lookup task, a particular 

reference is specified, and the goal is to find the corresponding characteris-

tics. In a behaviour characterisation task, a particular (sub)set of references 

is specified, and the goal is to find a pattern that represents (approximates) 

the behaviour of the characteristics appropriately over this reference set. 

A similar parallel exists for inverse lookup tasks. Let us recall that in 

these tasks, it is necessary to find references corresponding to specified 

characteristics. Similarly, for a specified pattern, one may wish to find 

subsets of references such that the behaviour over those subsets corre-

sponds to this pattern. Here are some examples of such tasks: 

Find the time intervals in which the stock price increased. 

Find the areas in Europe with a predominance of broadleaved forests 

over coniferous. 

Find the regions in Portugal with high proportions of young people. 

Find spatio-temporal clusters of earthquake occurrences. 

All these examples include descriptions of certain patterns. The example 

concerning the stock price includes a specification of a trend. In the exam-

ple concerning forests in Europe, a certain common property is specified, 

and the task is to find coherent areas (spatial clusters) characterised by this 

common property. This is an example of an absolute specification of a 

common property, that is, it does not involve any comparison of the areas 

to be found with the remaining territory. In contrast, the example concern-

ing young people in Portugal contains a relative specification of a common 

property: the proportions of young people in the target regions must be 

higher than in the remaining territory of Portugal. In the example concern-

ing earthquakes, the target subsets of earthquakes must have close spatial 

locations and close times of occurrence. 

We shall call such tasks “pattern search tasks” and represent them by the 

general formula 

?R: (f(x) | x R) P (3.31)
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This should be read as “for the specified pattern P, find a set of references 

R such that the behaviour of the function f(x) over R can be approximated 

by the pattern P”.

Let us use the analogy with elementary tasks further and introduce syn-

optic tasks of behaviour comparison. We defined elementary comparison 

tasks as tasks that imply determining relations between characteristics cor-

responding to different individual references. Instead of dealing with indi-

vidual references and corresponding “atomic” characteristics represented 

by values of attributes, synoptic tasks deal with reference sets and corre-

sponding behaviours represented by patterns. Therefore, synoptic compari-

son tasks should deal with relations between behaviours and, accordingly, 

between patterns approximating these behaviours. 

What are possible the relations between behaviours? Let us imagine that 

we are considering the behaviours of some function on two distinct refer-

ence subsets. We would probably note first of all whether those behaviours 

were similar or dissimilar. For example; 

Is the behaviour of the stock price during the first week similar to that 

during the second week? 

Is the age structure of the population in the north of Portugal similar to 

that in the south of Portugal? 

In answer to such questions, we would say either “yes, the behaviours 

are similar” or “no, the behaviours are dissimilar”. Then we would proba-

bly justify our answer by recounting what the similarities or differences 

were. In many cases, it is impossible to say decisively whether two behav-

iours are similar or different. Instead, one would say that the behaviours 

have both similarities and differences. In such a case, an extended answer 

is expected, with the similarities and differences particularised. For exam-

ple, “similarly to the first week, the stock price mostly increased during the 

second week, but the increase was slower than during the first week”. The 

level of detail and precision in the description of similarities and differ-

ences may vary depending on the analyst’s goals. In particular, an analyst 

may be interested in obtaining some numerical measures of the degree of 

difference. For example, he or she may wish to determine how much the 

rate of growth of the price decreased from the first to the second weak. 

Another example is to measure how an actual behaviour deviates from a 

desired or typical behaviour, such as the deviation of the actual profit dy-

namics in a company from the planned dynamics or the deviation of the 

trajectory of a vehicle from its usual route. 

Sometimes, two behaviours may be characterised as opposite. For ex-

ample, the stock price may grow during the first week but then decrease 

during the second week. It may happen that the proportions of children are 
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high and the percentages of elderly people are low in the north of a coun-

try, whereas in the south the former are low and the latter are high. 

Hence, two behaviours may be characterised as similar, opposite, or dis-

similar, and this characterisation may be extended by recounting similar 

and distinct features or by computing quantitative measures of the degree 

of similarity or dissimilarity. 

When discussing elementary tasks, we defined comparison tasks as 

tasks having a relation in their target, i.e. the goal is to find how some 

items are related. By analogy, we define behaviour comparison tasks as 

tasks of determining how two behaviours are related, in terms of their simi-

larities and differences. This addition is important: behaviours can also be 

related in quite a different sense, and we would like to consider the other 

type of relations separately.

The general formula for a behaviour comparison task is 

?p1, p2, : 1 p1; 2 p2; p1 p2 (3.32)

where 1 and 2 are two behaviours, p1 and p2 are patterns that approxi-

mate these behaviours, and  is the relation between the patterns (and 

hence the behaviours) that needs to be determined. From this formula, it 

may be noted that behaviour comparison tasks are compound, analogously 

to elementary comparison tasks. A behaviour comparison task includes 

one or more behaviour characterisation tasks, i.e. tasks of finding patterns 

to approximate certain behaviours. 

Depending on what 1 and 2 in the general formula (3.32) are, behav-

iour comparison tasks may be divided into subcategories, quite analo-

gously to elementary comparison tasks: 

The behaviour of a function (attribute) over a specified subset of refer-

ences is compared with a specified behaviour pattern. For example, 

“Did the stock price increase during the first week?” Here, the behav-

iour of the stock price is compared with the pattern described as an “in-

crease”. This and similar questions can be represented by the formula 

?p, : (f(x) | x R) p; p P (3.33)

where (f(x) | x R) is the behaviour of the function f(x) over the refer-

ence set R, p stands for an unknown pattern approximating this behav-

iour, and P is a specified pattern. 

This subcategory includes, among others, tasks of determining how 

characteristics over some reference set deviate from certain specified 

characteristics, for example inspecting the emission of pollutants from a 

chemical plant over a period of time with respect to the permissible 

threshold values. 
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The behaviours of a function (attribute) over two specified reference 

subsets are compared. For example, “Compare the behaviours of the 

stock price over the first and the second week”. The appropriate formula 

is

?p1, p2, : (f(x) | x R1) p1; (f(x) | x R2) p2; p1 p2 (3.34)

Here, (f(x) | x R1) is the behaviour of the function f(x) over the refer-

ence set R1, and (f(x) | x R2) is the behaviour of the same function 

over the reference set R2.

The behaviours of two different functions (attributes) over a specified 

reference set are compared. For example, “Compare the behaviour of 

the stock price during this time period with the variation of the Dow 

Jones Industrial Average index over the same period”. The formula rep-

resenting this type of task is  

?p1, p2, : (f1(x) | x R) p1; (f2(x) | x R) p2; p1 p2 (3.35)

Here, (f1(x) | x R) is the behaviour of the function f1(x) over the ref-

erence set R, and (f2(x) | x R) is the behaviour of the function f2(x)

over the same reference set. 

The behaviours of two different functions (attributes) over two different 

reference sets are compared. For example, “Compare the spatial distri-

bution of the proportions of children in 1991 with the spatial distribution 

of the birth rate in 1981”. The formula representing this type of task is  

?p1, p2, : (f1(x) | x R1) p1; (f2(x) | x R2) p2; p1 p2 (3.36)

Here, (f1(x) | x R) is the behaviour of the function f1(x) over the ref-

erence set R1, and (f2(x) | x R) is the behaviour of the function f2(x)

over the reference set R2.

If the descriptions of the last two subtypes of behaviour comparison 

tasks are compared with the descriptions of the corresponding subtypes of 

elementary comparison tasks, it may be noticed that a particular phrase 

appears in the descriptions of the elementary tasks but does not appear 

when the synoptic tasks are described. This phrase is “The value domains 

of the attributes must coincide or overlap”. This is not an accidental omis-

sion: one can compare behaviours of attributes even when the values of the 

attributes are incomparable. For example, it is meaningless to compare the 

weight of a person with the waist size of that person. However, it would be 

quite meaningful to compare the variation of the body weight over a period 

of time with the variation of the waist size over the same period. One could 

even compare the behaviour of the body weight with the variation of the 

person’s diet over a year, for example, to see whether changes in the diet 
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correspond to changes in the body weight. In this case, the behaviour of a 

numeric attribute is compared with that of a non-numeric attribute. 

A good example of comparing quite different behaviours is known from 

biology, where a similarity between ontogeny and phylogeny was discov-

ered. Ontogeny is the embryonic development process of an organism of a 

particular species, while phylogeny is the evolutionary history of a species. 

These processes can be compared despite the completely different time-

scales: days or months for ontogeny and millions of years for phylogeny. 

The latter example shows that the possibility of comparing behaviours 

does not actually require these behaviours to be based on comparable ref-

erence sets. Moreover, the base sets may be quite different in their nature, 

but the behaviours may still be comparable. Thus, behaviours can easily be 

compared if their bases have consistent properties concerning the existence 

of ordering and distances. For example, one can compare a process that 

develops with time with how a vibratory impulse is transmitted along a 

string. The reference set of the first behaviour is time – a linearly ordered 

set with distances. The reference set of the second behaviour is the extent 

of the string, which has a nature quite different from time while being also 

a linearly ordered set with distances. This commonality of properties en-

ables a rather straightforward comparison of the respective behaviours. 

In some cases, there may even be a need to compare or an interest in 

comparing behaviours with bases that have no common properties. Let us 

recall that a behaviour may be approximated by a summary pattern involv-

ing some aggregation of characteristics over the base set. Many aggrega-

tion techniques do not take into account any properties of the reference set, 

and hence can be applied to quite different reference sets and still produce 

comparable results. Thus, one can compute the average mark of a pupil 

over a school year and compare it with the average mark of a group of 

schoolchildren at the end of the year. Here, the first summary refers to a 

linearly ordered reference set with distances, while the second summary 

characterises an unordered set without distances.  

Moreover, aggregation allows one even to compare behaviours based on 

reference sets with different dimensionalities. Thus, the variation of a pu-

pil’s performance over a school year can be compared with the variation of 

the performance of all pupils in a class over the year, for example by com-

puting the average performance of the class at each time moment. Here, 

the former behaviour refers to time, while the latter behaviour originally 

refers to time and a population (i.e. a group of pupils). In order to make the 

comparison possible, one needs to represent the original behaviour, which 

is based on a two-dimensional reference set, by an appropriate one-

dimensional pattern. For this purpose, an aspectual behaviour is considered 

instead of the overall behaviour. Then, for each value of one referrer (in 
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our example, time), the behaviour with respect to the other referrer (i.e. the 

class) is approximated by a summarising pattern. It is the behaviour of this 

summarising pattern that is actually compared with the one-dimensional 

behaviour of the individual pupil’s performance. 

Similarly to the above example concerning pupils, Fig. 3.20 allows us to 

compare the behaviour of the burglary rate in California during the period 

from 1960 to 2000 with the behaviour of the mean burglary rate over the 

whole of the USA during this period. 

Fig. 3.20. Comparison of the dynamics of the burglary rate in California during 

the period from 1960 to 2000 (thin line) with the dynamics of the mean burglary 

rate over the USA during the same period (thick line) 

3.4.6 Inverse Comparison 

Let us use again the parallel between the types of elementary tasks and the 

types of synoptic tasks to define synoptic tasks of inverse comparison. For 

elementary tasks, inverse comparison means determining relations be-

tween references corresponding to specific characteristics. If we project 

this statement to synoptic tasks, inverse comparison means determining 

relations between sets of references corresponding to specific behaviours 

or patterns. Here are a few examples: 

Compare the durations of the periods of growth of the stock price. 

What is the time lag between the periods of growth of the stock price? 

Compare the spatial position and extent of the cluster of high unem-

ployment rates with the position and extent of the cluster of high propor-

tions of young people in the population. 

Besides comparing two reference sets, inverse comparison tasks may also 

involve determining relations between reference sets and individual refer-

ences. For example: 

Compare the position of a cluster of high concentrations of cholera oc-

currences with the locations of water pumps. 
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What is the time lag between the date of introducing new anti-crime 

measures and the beginning of a decreasing trend in the crime rate? 

When discussing elementary tasks of inverse comparison, we showed 

that any such task is composite and involves at least one inverse lookup 

task. The same applies to synoptic tasks of inverse comparison: they are 

composite and involve pattern search tasks. Thus, in order to compare the 

durations of periods of stock price growth or find the time lag between 

them, it is necessary first to find those periods. Here, a particular pattern, 

“stock price growth”, is specified. An analyst first performs the task of 

searching for this pattern. This results in the finding of reference subsets 

(i.e. time intervals) on which this pattern is observed. Then, the analyst 

determines the relations between these subsets. Since the subsets are time 

intervals, the analyst is interested in temporal relations between them. 

The task concerning the proportions of young people and unemploy-

ment rates requires an analyst to find areas in space where two specified 

patterns referring to different attributes are observed. Then, the analyst has 

to determine the spatial relations between the areas, i.e. whether they coin-

cide, overlap, or lie far from each other. 

In the example concerning cholera occurrences, one needs to look for a 

behaviour that can be characterised as a “high concentration of cholera 

occurrences”. The result is some area where the behaviour is approximated 

by the specified pattern. Then, one needs to determine the spatial relations 

between this area and the positions of available water pumps. These posi-

tions result from elementary lookup tasks3. Similarly, the task concerning 

combating crime involves a pattern search task to find the interval of a de-

creasing trend in the crime rate and a lookup task to find the moment at 

which the new measures were introduced. Then, the temporal relation be-

tween the interval and the moment must be determined. 

Hence, synoptic tasks on inverse comparison involve pattern search 

tasks but may also involve lookup tasks. Therefore, the variety of inverse 

comparison tasks is larger for synoptic tasks than for elementary tasks. 

Here are the relevant distinctions that need to be taken into account in de-

fining subcategories of synoptic tasks of inverse comparison: 

1. Must the base set of a pattern be compared with some specified set or 

reference (i.e. a constant) or with the result of a pattern search or lookup 

                                                     
3   These tasks may be regarded as either direct or inverse lookup tasks, owing to 

the possibility of a dual treatment of space, either as one of characteristics of 

the water pumps (i.e. an attribute) or as a container of the water pumps (i.e. a 

referrer). The possibility of such a dual treatment of space and time has been 

discussed in Chap. 2. 
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task? Such distinction can be made, for example, between the tasks 

“How is the cluster of high concentrations of thefts situated with respect 

to the centre of the town?” and “How is the cluster of high concentra-

tions of thefts situated with respect to the location of the railway sta-

tion?” In the former example, “the centre of the town” may be regarded 

as a constant, while in the latter example “the location of the railway 

station” is supposed to result from a lookup task of finding the location 

of the railway station. 

2. Must the base set of a pattern be compared with another reference set or 

with individual references? This kind of difference exists, for example, 

between the tasks “How is the period of a decrease in the crime rate re-

lated to the period of the summer vacation?” and “How is the period of a 

decrease in the crime rate related to moment at which the new crime-

fighting measures were introduced?” In the first case, the period of a de-

crease in the crime rate is compared with a time period, i.e. a set, and in 

the second case, it is compared with a time moment, i.e. an element. 

3. Are different attributes or different behavioural patterns of the same at-

tribute involved? Thus, the task “What are the relative positions of the 

cluster of high unemployment rates and the cluster of high proportions 

of young people?” involves two different attributes, while the task 

“What are the relative positions of the cluster of high unemployment 

rates and the cluster of low unemployment rates?” includes two different 

patterns specified for the same attribute. 

These three dichotomies can potentially yield 2 x 2 x 2 = 8 different 

subcategories. We do not find it necessary to consider each of them in de-

tail and thus introduce eight additional formulae. Nevertheless, to show 

that these formulae may look like, let us write out one of them: 

?R1, R2, : (f1(x) | x R1) P1; (f2(x) | x R2) P2; R1 R2 (3.37)

This formula represents a generic task where the patterns P1 and P2,

specified for two different attributes (f1(x) and f2(x)), need to be detected 

and then the corresponding reference sets (R1 and R2) need to be compared, 

i.e. the relation  between them needs to be determined. It is easy to notice 

two pattern search tasks included in this inverse comparison task:  

?R1: (f1(x) | x R1) P1 and ?R2: (f2(x) | x R2) P2 (compare these 

expressions with the formula (3.31) representing the class of pattern search 

tasks). It is also easy to observe an analogy with the formal representation 

of elementary tasks of inverse comparison. 

It should be noted that synoptic tasks of inverse comparison do not al-

low such freedom as direct comparison tasks, i.e. tasks of comparing be-

haviours. In inverse comparison, references and reference sets are com-
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pared, and they need to be comparable. Thus, one cannot compare areas in 

space with intervals in time, whereas it may be possible to compare corre-

sponding behaviours: for this purpose, one needs to approximate those be-

haviours by comparable patterns. 

3.4.7 Relation-Seeking 

Besides lookup and comparison, we defined earlier one more category of 

elementary tasks, specifically tasks of finding occurrences of specified re-

lations between characteristics and determining the corresponding refer-

ences. Since all of the categories of synoptic task considered thus far have 

been introduced as counterparts of certain classes of elementary tasks, it 

should not be a surprise that the category of relation-seeking tasks will 

now be projected on to synoptic tasks. 

Elementary tasks deal with individual references, and corresponding 

characteristics represented by values of attributes. On the synoptic level, 

we have, instead, sets of references, and corresponding behaviours repre-

sented by patterns. Hence, the definition of relation-seeking tasks on the 

elementary level would be translated to the synoptic level as “find occur-

rences of specific relations between behaviours and determine the corre-

sponding reference sets”. The relations may be “same”, “different”, or 

“opposite”, or include a more precise specification of what the similarities 

and differences are supposed to be. Let us give a few examples: 

Are there any adjacent areas with large differences in yearly climate? 

Can any recurrent pattern be found in the behaviour of the stock price? 

During what time intervals was the trend of the stock price opposite to 

that during a given interval? 

In what parts of Portugal did the employment structure (i.e. the propor-

tions of people working in industry, agriculture, and services) change 

dramatically from 1981 to 1991? 

Were there any storks that followed the same migration route in the 

specified season? 

Is there a time interval when the behaviour of the stock price was oppo-

site to that of the Dow Jones Industrial Average index? 

Just as elementary tasks of relation-seeking may differ according to the 

way in which the set of references to be searched through is constrained, 

the same can be said concerning the corresponding group of synoptic 

tasks. Here is the result of translating the variants of relation seeking tasks 

considered earlier from the elementary to the synoptic level. 
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Case 1. Search for two or more reference sets such that a specified rela-

tion exists between the behaviours of some attribute(s) over these refer-

ence sets and, additionally, another specified relation exists between the 

reference sets themselves. For example, “Find two contiguous time inter-

vals with opposite trends of the stock price” or “Are there any adjacent 

areas with large differences in yearly climate?”  

In the first example, there are two constraints. One of them concerns the 

relation between the behaviours over two different time intervals: these 

behaviours must be opposite. The other constraint specifies the relation 

between the time intervals themselves: they must be contiguous. Similarly, 

in the second example, one of the constraints says that the behaviours over 

two areas (subsets of geographical space) must be different, while another 

constraint requires that these areas are adjacent. An appropriate general 

formula could be 

?R1, R2, p1, p2: R1 R2;

(f(x) | x R1) p1; (f(x) | x R2) p2; p1 p2 (3.38)

Here, the variables R1 and R2 stand for the unknown reference subsets,  is 

the specified relation that must exist between these subsets (e.g. overlap-

ping, not overlapping, or adjacent), and  is the specified relation (e.g. 

similar, different, or opposite) that must exist between the behaviours of 

the attribute f(x) based on these two subsets. Rather than deal with the be-

haviours as such, an analyst would consider some patterns p1 and p2 ap-

proximating these behaviours. 

The example task “Can any recurrent pattern be found in the behaviour 

of the stock price?” can also be subsumed under this case. The task can be 

reformulated as “Find time intervals in which the behaviours of the stock 

price are similar to each other”. Although it is not specified explicitly, cer-

tain relations are expected to exist between the time intervals to be found: 

they need to be non-overlapping and to have approximately the same 

length.

Case 2 is a task in which not only a relation  between behaviours but 

also one of the corresponding reference subsets is specified. The goal is to 

find another reference subset such that the relation  exists between the 

behaviours based on these two reference subsets, as in the example task 

“During what time interval was the trend of the stock price opposite to that 

during a given interval?” The formula for this task subtype is 

?R2, p1, p2:

(f(x) | x R ) p1; (f(x) | x R2) p2; p1 p2 (3.39)
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Here, the constant R  stands for the specified reference subset and the vari-

able R2 stands for the unknown reference subset, which needs to be found. 

The meaning of the remaining symbols is the same as in Case 1. 

Case 3 may arise when a dataset has two or more referrers, such as 

space and time. On the elementary level, it is possible to specify the values 

of some of the referrers, whereas the values of the remaining referrers need 

to be found. Similarly, on the synoptic level, values/subsets of some refer-

rers may be specified, whereas subsets/values of the remaining referrers 

need to be found. This applies, for example, to the task “In what parts of 

Portugal did the employment structure change dramatically from 1981 to 

1991?” Here, the reference set consists of two components, space and 

time, and the attribute is the employment structure. The values of the tem-

poral referrer (i.e. the years 1981 and 1991) are specified as task con-

straints. The target is to find an area in space, i.e. a subset of the spatial 

referrer. Although this must be a single subset of values (of one of the re-

ferrers), two different reference subsets are actually involved, since two 

different values of the second referrer must be considered. Over these two 

reference sets, the behaviours of the attribute “employment structure” are 

required to be substantially dissimilar. 

This situation can be generalised into the formula 

?R, p1, p2:

(f (x1, x2) | x1 R, x2 = q1) p1;

(f (x1, x2) | x1 R, x2 = q2) p2;

p1 p2 (3.40)

and into similar formulae varying in the number of variables and in the 

values of which of them are specified. In (3.40), f(x1, x2) is an attribute de-

fined on a two-dimensional reference set and represented, according to our 

symbolism, as a function of two variables, x1 and x2. The symbols q1 and 

q2 stand for two specific values of the second variable, i.e. these are con-

stants. In the example concerning the employment structure, q1 corre-

sponds to the year 1981 and q2 to the year 1991. (f (x1, x2) | x1 R,

x2 = q1) and (f (x1, x2) | x1 R, x2 = q2) denote two “partial behaviours”: 

the value of one variable (x2) is fixed, while the other variable (x1) varies. 

The symbol  stands for the specified relation between the behaviours. In 

our example, this corresponds to the relation “dissimilar”. 

A slightly different case is the task “Were there any storks that followed 

the same migration route in the specified season?” Here, we again have 

two referrers, a group of storks and time, and a spatial attribute, the values 

of which are the positions of the storks at different time moments. For the 

temporal referrer, a particular set (time interval) is specified: the migration 
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season. The goal is to find two or more individual values of the other refer-

rer. This is different from the previous example, where specific individual 

values of one of the referrers were fixed, and the goal was to find some set 

of values of the other referrer. Similarly to the previous example, two or 

more two-dimensional reference sets are involved; these coincide with re-

spect to the temporal component but differ in the stork component. The 

task constraints specify that the behaviours of the attribute “position” 

based on these different reference sets (i.e. the trajectories in space fol-

lowed by different storks during the specified time interval) must be simi-

lar. This and analogous tasks could be represented formally as 

?q1, q2, p1, p2:

(f (x1, x2) | x1 R, x2 = q1) p1;

(f (x1, x2) | x1 R, x2 = q2) p2;

p1 p2 (3.41)

Here, as in the previous case, f(x1, x2) is an attribute defined on a two-

dimensional reference set, R stands for a specified set of values of the first 

referrer (in our example, the migration season), and q1 and q2 denote the 

individual values of the second referrer that need to be found (in our ex-

ample, the storks). (f (x1, x2) | x1 R, x2 = q1) and (f (x1, x2) | x1 R,

x2 = q2) are two partial behaviours, and the relation  (in our example, 

similarity) must exist between them. 

Case 4. Search for a single reference set where a specified relation be-

tween the behaviours of different attributes exists. For example, “Is there a 

time interval when the behaviour of the stock price was opposite to that of 

the Dow Jones index?” The general formula for this subcategory is 

?R, p1, p2: (f1(x) | x R) p1; (f2(x) | x R) p2; p1 p2 (3.42)

Here, the variable R stands for the unknown reference set, and  is the 

specified relation (e.g. similar, different, or opposite) that must exist be-

tween the behaviours of the attribute f1(x) and the attribute f2(x).

Case 5. Search for two or more reference sets such that specified rela-

tions between the behaviours of two or more different attributes exist si-

multaneously, for example “Find pairs of time intervals with similar trends 

of industrial growth and opposite trends of unemployment”. We shall not 

write a formula for this case, since it would be rather cumbersome, like the 

formula for the corresponding group of elementary tasks. From the previ-

ous examples, it is easy to grasp the general principle of transforming for-

mulae for elementary tasks into the formulae for the corresponding synop-

tic tasks, and hence the structure of the formula for this case should be 

quite understandable. 
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As with elementary tasks, we would like to point out the compound 

structure of relation-seeking synoptic tasks, which are built from the fol-

lowing subtasks: 

1. For a reference subset, characterise the behaviour of the corresponding 

characteristics (i.e. approximate it with an appropriate pattern). 

2. For the pattern resulting from subtask 1, define a pattern or a collection 

of patterns related to this pattern in a specified way (i.e. similar, dissimi-

lar, or opposite). 

3. For the pattern(s) resulting from subtask 2, find reference subsets such 

that the behaviours based on them can be approximated by these pat-

terns.

The first subtask may be applied to a specified reference subset, or it 

may be necessary to repeat the whole sequence of operations for multiple 

subsets. In the latter case, some constraints are typically specified, which 

restrict the number of different reference subsets to be considered and 

somehow direct the selection of subsets for further consideration.  

3.4.8 Recap: Synoptic Tasks 

We have defined synoptic tasks as tasks requiring consideration of sets of 

references in their entirety, in contrast to elementary tasks, which deal with 

individual references (i.e. elements). The principal notion that we have to 

consider for synoptic tasks is that of a behaviour. A behaviour can be un-

derstood as a particular configuration of characteristics (i.e. values of at-

tributes) corresponding to some reference set and, like the reference set, is 

considered in its entirety and in relation to the reference set. 

We distinguish the notion of a configuration from the notion of a subset

of characteristics. There are two principal differences: 

A data function may associate several references with one and the same 

characteristic. While such a characteristic is just a single element of a 

set of characteristics, it occurs as many times in a configuration as there 

are references that it corresponds to. Every such occurrence can be dif-

ferentiated from other occurrences of the same characteristic. 

A configuration of characteristics reflects the structure of the corre-

sponding set of references, that is, a certain system of relations between 

the elements of the reference set.4 Thus, a configuration corresponding 

                                                     
4   Such a structure may be “natural” or specially introduced. For example, a set of 

time moments has a natural linear ordering, while a set of people may be ar-

ranged according to the alphabetical order of their names. 
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to a linearly ordered set of references is a sequence of characteristics, 

where the order in which the characteristics appear is determined by the 

order of the references. In contrast, the relations between elements of a 

set are typically determined only by the nature of those elements. Thus, 

a set of characteristics corresponding to a linearly ordered set of refer-

ences may be unordered or may have its own ordering independent of 

the ordering of the references. 

Hence, not just subsets of characteristics are considered in synoptic 

tasks but configurations of characteristics corresponding to (sub)sets of 

references; such configurations are called “behaviours”. This reflects the 

dependent role of characteristics with respect to references. 

A behaviour can be represented, or approximated, by a pattern. A pat-

tern is a mental construct or a statement in some language representing the 

character and essential features of a behaviour. A pattern does not neces-

sarily have a verbal form; it may be, for example, computational, alge-

braic, or even graphical. 

In order to define subcategories of elementary tasks, we manipulated the 

formula f(x) = y representing the link between the two principal compo-

nents of data, references and characteristics. We differentiate elementary 

tasks on the basis of which items of this expression occur in the task target 

(i.e. what information needs to be found) and which items participate in 

the task constraints (i.e. are assumed to be known). 

For synoptic tasks, the fundamental formula is (f(x) | x R) P,

where (f(x) | x R) stands for the behaviour of the characteristic compo-

nent (attribute or set of attributes) f(x) over the reference set R, and P de-

notes a pattern that approximates (i.e. describes or summarises) this behav-

iour. By manipulating this formula, we can derive classes of synoptic 

tasks. There is a correspondence between the classification of elementary 

tasks and that of synoptic tasks: classes of elementary tasks have their 

counterparts on the synoptic level. Table 3.5 is a comparative table that 

summarises both elementary and synoptic tasks. 

This task typology elaborates Bertin’s approach to classifying tasks on 

the basis of the structure of data. One dimension of Bertin’s classification 

is the reading level, i.e. whether a task addresses individual data items 

(elements) or sets. This corresponds to our division of tasks into elemen-

tary and synoptic tasks. Our category of synoptic tasks embraces Bertin’s 

intermediate and overall levels: unlike Bertin, we do not make a distinction 

between tasks referring to a whole set of data items and tasks referring to 

its subsets. The other dimension used by Bertin is the task type corre-

sponding to the data component referred to in the target of a task. This 

matches our subdivision of elementary and synoptic task categories. 
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Table 3.5. Correspondence between classes of elementary and synoptic tasks 

Elementary Synoptic 

Lookup

Direct lookup 

On a given date, what is the price of 

stock X? 

What was the population of Loures 

in 1981? 

Pattern identification 

Behaviour characterisation (pat-

tern definition)

During a given time interval, what 

was the trend of the stock price? 

How was the population distributed 

over Portugal in 1981? 

Inverse lookup 

For a given price, on what date(s) 

was it attained? 

When and where did the population 

exceed 300 000? 

Pattern search 

Find time intervals in which the 

stock price increased. 

Find regions in Portugal with high 

proportions of young people. 

Comparison

Direct comparison 

With specified attribute values 

On a given date, did the stock price 

exceed €1000? 

Was the proportion of children in the 

population of Loures in 1991 less than 

15%? 

Behaviour (pattern) comparison 

Direct comparison 

With a specified pattern 

Did the stock price increase during a 

given time interval? 

Are high proportions of children in 

the population concentrated in the north 

of Portugal? 

Between values of the same at-

tribute(s) for different references 

Compare the stock prices on the first 

and last days of the week. 

How did the population of Loures 

change from 1981 to 1991? 

Between behaviours of the same 

attribute(s) over different refer-

ence sets 

Compare the behaviours of the stock 

price during the first and the second 

week.

Compare the distributions of the pro-

portion of children over Portugal in 

1981 and 1991. 

Between values of different at-

tributes for the same reference 

Compare the total values of the im-

ports and exports of the given country. 

Between behaviours of different 

attributes over the same reference 

set

Compare the behaviour of the stock 

price with the variation of the Dow 
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Elementary Synoptic 

How does the number of people 

without primary education in Loures in 

1991 compare with the number of high 

school students in the same year? 

Jones index over the same time period. 

Compare the distributions of the 

proportion of children and the propor-

tion of old people over the territory of 

Portugal. 

Between values of different at-

tributes for (partly) different ref-

erences 

Compare the immigration to the 

USA with the emigration from Mexico. 

How does the number of people 

without primary education in Loures in 

1981 compare with the number of high 

school students in 1991? 

Between behaviours of different 

attributes over (partly) different 

reference sets 

Compare the trends in the immigra-

tion to the USA and in the emigration 

from Mexico. 

Compare the spatial distribution of 

the proportion of children in 1991 with 

the spatial distribution of the birth rate 

in 1981. 

Inverse comparison Inverse comparison 

With specified reference(s) 

Did the stock price reach €1000 be-

fore or after a given date? 

Where is the district with the highest 

crime rate situated with respect to the 

town centre? 

With specified reference sets 

How is a decreasing trend in the 

stock price related to the period of the 

summer vacation? 

Where is the cluster of high crime 

rates situated with respect to the town 

centre?  

Between references correspond-

ing to different values of the 

same attribute(s) 

Compare the dates on which the 

prices €1000 and €1100 were attained. 

How far is the district with the high-

est crime rate from that with the lowest 

crime rate? 

Between the reference sets corre-

sponding to specified behaviours 

of the same attribute(s) 

How is the period of stock price 

growth related to that of stock price 

decrease? 

What are the relative positions of the 

clusters of high and low crime rates? 

Between references correspond-

ing to specific values of different 

attributes

Compare the date when the highest 

stock price was attained with the date 

when the highest level of the NASDAQ 

Between the reference sets corre-

sponding to specified behaviours 

of different attributes 

How is the period of stock price 

growth related to that of growth of the 

NASDAQ index? 
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Elementary Synoptic 

index was reached. 

Where is the district with the highest 

crime rate situated compared with the 

district with the highest unemploy-

ment? 

What are the relative positions of the 

cluster of high crime rates and that of 

high unemployment? 

Relation-seeking Relation-seeking 

Between values of attribute(s) 

and, at the same time, between 

references

On what dates did the price of the 

stock decrease in comparison with the 

previous date? 

Are there any two storks that ever 

visited the same place simultaneously? 

Between behaviours of attrib-

ute(s) and, at the same time, be-

tween reference sets 

Find two contiguous time intervals 

with opposite trends in the stock price. 

Are there any two storks that fol-

lowed the same migration route but 

during different time intervals? 

Between characteristic(s) of a 

specified reference and charac-

teristics of other references 

On what date(s) did the stock price 

exceed the price attained on a given 

date? 

Which of the storks were in the same 

place as Prinzessin on 1 February? 

Between an attribute behaviour 

over a specified reference subset 

and attribute behaviours over 

other reference subsets 

In what time interval was the trend 

in the stock price opposite to that in the 

given interval? 

Is there any stork with a migration 

route similar to that of Prinzessin? 

Between values of the same at-

tribute(s) for partly different ref-

erences (in a dataset with multi-

ple referrers) 

In which districts of Portugal did the 

population decrease from 1981 to 

1991? 

On what date(s) did the storks 

Prinzessin and Moritz visit the same 

places? 

Between behaviours of the same 

attribute(s) over partly different 

reference sets (in a dataset with 

multiple referrers) 

In which parts of Portugal did the 

employment structure change dramati-

cally from 1981 to 1991? 

During what time periods did the 

storks Prinzessin and Moritz move in 

opposite directions? 

Between values of different at-

tributes for the same reference 

Find countries where the imports ex-

ceed exports. 

Between behaviours of different 

attributes over the same reference 

set

Find periods when the trends in the 

imports and exports were the same. 
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Elementary Synoptic 

Where and when did the motor vehi-

cle theft rate exceed the burglary rate? 

At what times did the spatial distri-

bution of motor vehicle theft rates dif-

fer from that of burglary rates? 

There are several extensions in our typology as compared with Bertin’s 

schema. First, we make a distinction between referential and characteristic 

data components and treat these components differently. We assume that 

characteristic components play a dependent role, since their values are de-

termined by values of referential components. Therefore, we divide tasks 

into elementary and synoptic tasks on the basis of how referential compo-

nents are addressed, i.e. whether individual references or reference sets are 

involved. Second, we subdivide the categories of elementary and synoptic 

tasks depending on whether referential or characteristic components appear 

in the task target. Tasks with characteristic components in the target are 

called direct tasks, while tasks with referrers in the target are called inverse 

tasks. Third, unlike Bertin, we explicitly consider comparison tasks. We 

define comparison tasks as tasks of determining relations between charac-

teristics (direct comparison) or between references (inverse comparison). 

Additionally, we introduce relation-seeking tasks, in which occurrences of 

specified relations need to be detected. Fourth, we pay special attention to 

multidimensional datasets, i.e. datasets with multiple referential compo-

nents. These multiple referrers can be addressed on different levels (ele-

mentary or synoptic) independently of each other, which results in numer-

ous varieties of tasks. 

Although the task typology summarised in Table 3.5 is rather detailed, it 

is still incomplete. Let us recall that, when considering behaviour compari-

son tasks, we made the special point that these tasks have to do with simi-

larity/difference relations between behaviours but do not touch upon other 

possible relations. Hence, the typology needs to be completed with other 

types of relations. Let us now try to do this. 

3.5 Connection Discovery 

3.5.1 General Notes 

When studying a phenomenon, an analyst is interested not only in describ-

ing or summarising its behaviour but also in explaining it. The analyst 

wishes to find out the driving forces that make the phenomenon behave in 

the way observed. These forces may be internal or external. Internal forces 
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originate from the inherent structure of the phenomenon and interactions 

between its structural components. External forces originate from interac-

tions between the phenomenon and other phenomena. Hence, the goal is to 

determine what components and/or phenomena interact and how they in-

teract.

In most cases, it turns out to be impossible to explain a behaviour only 

on the basis of the data available, and an analyst needs to make use of 

relevant domain knowledge in trying to reason out pertinent causal links 

and influence mechanisms. In our study, we do not touch on these reason-

ing processes as such, but consider possible foundations for such processes 

that can be obtained by exploring data. The main value of data exploration 

is that it allows the analyst to spot significant interactions, which provide 

food for thought and give direction to further reasoning. 

Let us illustrate our thoughts by an example. An analyst explores a data-

set containing demographic data related to the census districts of a certain 

country. He/she notices that there is some connection between the attrib-

utes “Number of cars per capita” and “Proportion of population suffering 

from long-term illnesses”: the higher the number of cars per capita is, the 

lower the proportion of ill people. It would be wrong to try to explain this 

finding by an influence of either of these two attributes upon the other at-

tribute. In this way, one could come to an absurd conclusion that using cars 

strengthens health or that ill people usually avoid buying cars. It is much 

more appropriate to refer to relevant domain knowledge and guess that 

both attributes may have something to do with material deprivation, and 

that the actual root of the observed link may lie here.  

Although deriving conclusions from observations and establishing links 

with domain knowledge are very important and interesting topics, they 

deserve close attention and separate investigation, and we prefer not to 

consider them within our current study devoted to exploratory data analy-

sis. Instead, we focus on what provides a basis for reasoning and gives 

stimulus to it, i.e. on observations that may result directly from data explo-

ration. In this context, we investigate what indications of probable interac-

tions between phenomena or between different aspects of a phenomenon 

may be present in data, and how to detect them. At the next stage, the indi-

cations detected need to be interpreted, but this stage is outside the scope 

of our current work. 

Hence, one of the goals of EDA is to find indications of possible causal 

links or influences within or between phenomena. It is clear that this re-

quires the data to be considered on the synoptic rather than elementary 

level : a causal link is expected to manifest itself throughout a reference set 

as a whole or at least a substantial part of it.  
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One of the indications of a possible connection may be a correspon-

dence between behaviours, i.e. when two behaviours are either similar or 

opposite. However, to compare behaviours, one approximates them by pat-

terns and then compares the patterns. There are a potentially infinite num-

ber of patterns representing the same behaviour. They differ in their type, 

degree of simplification, precision, coverage, etc. Not all patterns are suit-

able for the purposes of detecting possible interactions between phenom-

ena or aspects of a phenomenon. Thus, one may characterise the behaviour 

of the proportion of children on the set of municipalities of Portugal as a 

statistically normal distribution with an average value of 19.1% and a me-

dian of 18.91%. Analogously, the behaviour of the proportion of people 

without primary school education may be described as a statistically nor-

mal distribution with an average value of 19.89% and a median of 18.92%. 

These descriptions are very similar; however, this should not be treated as 

an indication of a possible connection between the proportion of children 

and the proportion of people without primary school education. 

Hence, not all patterns are appropriate for behaviour comparison when 

the goal is to discover connections rather than just to note similarities and 

differences. On the other hand, comparison of individual behaviour pat-

terns is not the only possible way to spot interactions. Thus, it is usual to 

detect a connection (it is more customary to say “correlation”) between 

two numeric attributes by representing their values on a scatterplot. Exam-

ples of scatterplots are shown in Fig. 3.21. 

A) B) C)

Fig. 3.21. Using scatterplots for detecting correlations between attributes: (A) 

proportion of people without primary school education versus proportion of chil-

dren; (B) proportion of people without primary school education versus proportion 

of people employed in agriculture; (C) proportion of people with preparatory 

school education versus proportion of children 

A scatterplot does not represent the individual behaviour of either of the 

two attributes and does not allow one to compare these individual behav-

iours. Instead, it represents something like a “mutual behaviour” of these 
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attributes, i.e. it shows how these attributes behave with respect to each 

other. The possible presence of a connection is indicated by the pattern 

perceived in the scatterplot. Thus, the scatterplots (B) and (C) in Fig. 3.21 

suggest a probable connection more clearly than does scatterplot (A), 

which represents the mutual behaviour of the attributes “proportion of 

children” and “proportion of people without primary school education”. 

From these three scatterplots, it may be concluded that there is a probable 

link between the proportion of people without primary school education 

and percentages of people employed in agriculture and between the pro-

portion of children and the proportion of people with preparatory school 

education. However, it is harder to believe that there is a connection be-

tween the proportion of children and the proportion of people without pri-

mary school education, although the summary patterns of these two attrib-

utes are very similar. 

This example shows us that detecting probable connections should not 

be viewed as just a special case of a behaviour comparison task. On the 

one hand, comparison of individual behaviours is not necessarily involved 

in connection discovery. On the other hand, if such a comparison is in-

volved, it appears that the patterns used to approximate individual behav-

iours must satisfy some specific requirements. In our opinion, these are 

quite sufficient reasons for introducing a special task category that deals 

with detecting signs of possible inherent connections and interactions. We 

shall call this task category “connection discovery”. This category is in-

cluded in that of synoptic tasks, since it requires dealing with sets rather 

than individual elements. 

3.5.2 Properties and Formalisation 

So far we have successfully applied formal representations to reveal rele-

vant distinctions between tasks and, on this basis, to define task classes. 

For consistency and in the hope of gaining some insights, we shall adopt 

the same approach in handling connection discovery tasks. 

In order to arrive at a proper formalisation, let us contemplate the prop-

erties of connection discovery tasks that we already know. First, connec-

tion discovery tasks require dealing with sets rather than elements and, 

hence, belong to the class of synoptic tasks. Second, these tasks are about 

connections and, hence, involve at least two items that are supposed to be 

connected. Third, as we have demonstrated, connection discovery tasks do 

not necessarily involve consideration of individual behaviours. On the 

other hand, these tasks still have something to do with the notion of behav-

iour, which encompasses substantial features of a phenomenon.  
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Let us focus for a while on the notion of a phenomenon. Of course, it is 

not strictly defined, but we may still have some ideas concerning what can 

be regarded as a phenomenon. Thus, we have no special reason to assume 

that a phenomenon is something atomic, having no internal structure. 

Then, since such an internal structure exists, there is no obstacle to regard-

ing the constituents also as phenomena. Interrelationships between these 

subphenomena constitute an important part of the behaviour (more pre-

cisely, the internal behaviour) of the phenomenon embracing them. 

On the other hand, a phenomenon never exists in isolation, out of con-

text. Why not regard this phenomenon plus its context, in which it coexists 

and interacts with other phenomena, as a more complex phenomenon? 

Then, the interrelations between the phenomena included in this superphe-

nomenon belong to the (internal) behaviour of this superphenomenon. 

The purpose of the above contemplation is to demonstrate that we can 

not only consider relations between behaviours but also treat relations as 

behaviours. We have already used the expression “mutual behaviour” 

when we discussed scatterplots. Our idea concerning connection discovery 

tasks is that they deal with such mutual, or relational, behaviours. As in 

other synoptic tasks, the primary goal is to investigate and understand this 

sort of behaviour. 

We would like to distinguish relational behaviours from “stand-alone” 

behaviours of individual phenomena, which have been denoted using the 

symbol . Let us use the symbol  for relational behaviours. 

An expression containing  contains a single item in parentheses, and 

this is the function f(x), which represents a dataset. An expression contain-

ing  must contain at least two items. What are these items? 

We have already considered one case of a relational behaviour: a corre-

lation between two numeric attributes, which can be detected using a scat-

terplot. This case can be generalised to the notion of a mutual, or rela-

tional, behaviour of two arbitrary attributes (functions) defined on the 

same reference set. The attributes may be far from numeric, as, for exam-

ple, in a study of interrelations between a person’s nutrition and the per-

son’s health and lifestyle. The following formal expression may be used to 

represent the notion of a relational behaviour: 

(f1(x), f2(x) | x R) (3.43)

There is no necessity to limit this expression to only two functions; it 

can easily be extended to contain three or more functions inside the paren-

theses. Another extension is to discard the assumption that the functions 

are necessarily defined on the same reference set. Thus, one can look for 

connections between the relief and the yearly variation of climate in some 
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territory. Here, the relief is a phenomenon defined in space (or, in other 

words, has space as its reference set), while the climate is defined in space 

and time, i.e. its reference set is a combination of two referrers. The refer-

ence sets of these two phenomena are, strictly speaking, different; how-

ever, they share a common referrer – space. 

Is it necessary that the reference sets of two attributes have something in 

common for one to be able to explore their relational behaviour, i.e. seek 

possible connections? In order to investigate this, we have tried to recall or 

invent examples of attributes with distinct reference sets that could still be 

somehow related. One of the examples that came to mind is the following.  

A typical task of archaeologists is to relate the spatial distribution of ar-

tefacts found in an excavation area to the historical development of that 

area. The first phenomenon refers to three-dimensional space (two planar 

dimensions plus depth), while the second phenomenon refers to time. 

These reference sets may seem quite different, but they cannot be treated 

as completely unrelated. Thus, there is a rather direct correspondence be-

tween the depth dimension and the historical time: as a rule, the deeper an 

artefact lies, the older it is. There is also a link between time and the planar 

dimensions. Thus, suppose that excavations are performed in the location 

of an ancient settlement. This settlement was founded at some moment in 

the past in a certain location, and then gradually extended over time. 

Therefore, the spatial position of a construction discovered by excavation, 

with respect to the original location of the settlement, has a certain relation 

to the time when it was constructed. These strong links between two refer-

ence sets make it quite natural to look for links between the respective 

phenomena. 

A similar interplay between a spatial and a temporal reference set exists 

when one wishes to investigate how the variation of the width and other 

properties of the annual rings in the cross-section of a tree trunk is related 

to the variation of the climate over the years during which the tree was 

growing. Here, the spatial position of a ring, i.e. its distance from the cen-

tre, corresponds directly to an interval on the time axis. Therefore, it is 

quite easy to check whether the corresponding year was wet or dry, for 

instance.

There are many situations where the reference sets of two or more phe-

nomena are simply different subsets of one larger reference set, for exam-

ple, in a study of links between the concentration of people in cities and 

the economic situation in rural areas, or between warm and cold oceanic 

currents and the climate on different parts of a coast. In such cases, there 

are particular relations between the subsets, for example neighbourhood in 

space.
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We could not find any examples where two reference sets were com-

pletely unrelated but where it would nevertheless be meaningful to look for 

connections between the respective phenomena. One example that came to 

mind, however, was the attempts of astrologers to relate the positions of 

stars and planets in the sky at the moment of a person’s birth (a spatially 

referenced phenomenon) and the subsequent life history of that person (a 

temporally referenced phenomenon). However, it may be that the absence 

of any relation between the two reference sets discourages many people 

from trusting the results of such investigations. 

Nevertheless, in a formal sense, the reference sets involved in connec-

tion discovery tasks may be different, as is indicated in the expression 

(f1(x), f2(z) | x R, z Z) (3.44)

where z is a reference variable distinct from x and taking its values from a 

distinct reference set Z.

So far, we have been talking about connections between different phe-

nomena or attributes. It should not be concluded, however, that it is not 

possible to consider internal connections within a single phenomenon. As a 

phenomenon may have an internal structure, connections between the 

structural components may be investigated. This is, in principle, equivalent 

to the case of multiple phenomena, since the components may also be 

treated as phenomena. However, there is another possibility: to look for 

connections between parts of a phenomenon referring to different refer-

ence subsets. For example, people often make observations such as “if the 

summer is hot and dry, one may expect a cold winter”. This is a connec-

tion between parts of the same phenomenon, climate, referring to different 

subsets of time. We have intentionally used the word “subsets” rather than 

“intervals” because the observation here is not about a particular summer 

and a particular winter. It addresses all summers, i.e. a non-contiguous 

subset of time, and all winters following them, i.e. another non-contiguous 

subset, which is specified in a relative way with respect to the first subset. 

Another example of exploring internal connections in a time-related phe-

nomenon is the investigation of links between the pre-natal and post-natal 

development of a baby. An example with a different reference set could be 

found in an investigation of land cover, where an analyst may look for fre-

quent associations between different vegetation types in adjacent locations. 

Seeking connections between parts of a single phenomenon is not in 

principle different from the case of two or more phenomena:  

It is a synoptic task, since it aims at establishing general relations, perti-

nent to the phenomenon as a whole or a substantial part of it rather than 

to particular individual manifestations (i.e. elements of data). 
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It involves at least two items to find connections between. 

It addresses the behaviour of the phenomenon but is not restricted to a 

comparison of its behaviours on different reference subsets. 

The term “mutual behaviour” may, at first glance, seem inappropriate for 

denoting internal relations within a single phenomenon. Nevertheless, it 

sounds quite natural if these internal relations are understood as relations 

between certain parts of the phenomenon. It is clear that these parts may 

behave in this or that way with respect to each other. 

Let us write down a formal expression for a mutual behaviour of two 

parts of a phenomenon: 

(f(x), f(x ) | x R1, x R2) (3.45)

Here, we use the same function symbol f to indicate that parts of one 

and the same phenomenon are dealt with. We use different reference vari-

ables x and x  to indicate that the parts refer to distinct reference subsets, 

denoted by R1 and R2. It is assumed that R1 and R2 are subsets of a certain 

reference set R, on which the function f is defined. R1 and R2 must be dif-

ferent, but it is not required that they do not overlap. 

When we discussed “simple” behaviours (denoted by the symbol ), we 

said that a data analyst represents them by patterns, i.e. compact charac-

terisations. We tried to investigate what may serve as a pattern and intro-

duced four types of patterns, called “association”, “differentiation”, “dis-

tribution summary”, and “arrangement”. The goal of a behaviour charac-

terisation task is to approximate some behaviour by an appropriate pattern 

that satisfies the analyst’s criteria concerning generality, simplicity, preci-

sion, coverage, and other requirements (e.g. an analyst may have a special 

need to describe some behaviour as a trend). 

Quite analogously, a mutual, or relational, behaviour (denoted by the 

symbol ) also needs to be represented in some compact way that is ap-

propriate to the analyst’s goals and requirements. This compact representa-

tion, which describes discovered connections, may also be considered as a 

kind of pattern. However, it seems that the types of patterns introduced 

earlier are not relevant to connection discovery tasks. 

Let us investigate what a pattern describing a mutual behaviour may 

look like. If we take, for example, two numeric attributes, we may find that 

these attributes are positively or negatively correlated. Positive correlation 

means that low values of one attribute mostly co-occur with low values of 

the other attribute, while high values of the first attribute tend to occur to-

gether with high values of the other attribute. Negative correlation means 

co-occurrence of low values of one attribute with high values of the other 

attribute, and vice versa. Correlation between two attributes may be indi-
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cated verbally, represented in a highly aggregated way as the correlation 

coefficient, specified through an equation, or portrayed graphically as a 

regression line. 

The notion of correlation may be generalised to non-numeric attributes 

and understood as the co-occurrence of specific values of such attributes. 

For example, sunny weather in a region may usually co-occur with a 

strong wind, while rain co-occurs with windless weather. Sometimes cor-

relations are specified in a negative way, i.e. by stating that some values 

never co-occur: for example, naturally red hair of a person and the suscep-

tibility of this person to tanning. Statements concerning correlations be-

tween values of non-numeric attributes are often supported by statistics, 

for example the probability of a certain combination of value occurring, 

which may be related to the probability of those values occurring in com-

bination with other values. 

Hence, there is at least one possible way to describe a mutual behaviour, 

that is, to characterise it as a correlation. A correlation is an undirected, or 

symmetrical, connection: nothing is said concerning which attribute influ-

ences the other. In some cases, the direction of the connection may be un-

clear to an analyst, and the analyst may prefer to describe it as a correlation 

in such a case. In other cases, it is quite clear that neither of the attributes 

depends on the other. A correlation signifies that both attributes are influ-

enced by some third attribute (or a group of attributes), probably, unknown 

as yet. This is the case in the example concerning the number of cars per 

capita, which is negatively correlated with the proportion of ill people. 

However, there are cases where it is known or expected that some at-

tribute or group of attributes influences another attribute or several attrib-

utes. In such a case, an analyst may prefer to represent the connection in 

some “directed” way rather than to characterise it as a correlation. For ex-

ample, the analyst might describe the dependency in the form of rules 

If f1(x) C then f2(z) D,

where f1 and f2 are two attributes, C is a specific subset of the values of the 

attribute f1, and D is a specific subset of the values of the attribute f2. A 

dependency could also be represented by logical implications or by equa-

tions. A very useful approximation to a dependency or a set of dependen-

cies is a simulation model, which allows one to predict the future devel-

opment of a phenomenon. 

Hence, as an alternative to being described as a correlation, a mutual 

behaviour may be characterised as a dependency, or influence. We treat 

the latter two words as opposites and assume that the statement “A de-

pends on B” is equivalent to the statement “B influences A”.  

One more type of essential connection is a structural connection. As an 

example, consider the variation of the prices of holiday apartments over 
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time. This behaviour can be represented as an interplay of two compo-

nents: a trend component, which accounts for the general growth of the 

prices over a long-term period (measured in years), and a seasonal compo-

nent, which corresponds to the price variation during a year. Let us give 

another example, a quite famous one. Until 1530, when Copernicus pub-

lished his great work asserting the rotation of the Earth around the Sun, the 

movement of the planets in the night sky seemed enigmatic and illogical, 

and could not be rationally explained. Copernicus’s discovery brought the 

understanding that the visible movement of the planets is a composition of 

their own movement with the movement of the Earth. 

Hence, we have found three types of pattern relevant to relational be-

haviours: an undirected connection (correlation), a directed connection (a 

dependency or influence, depending on the order chosen for the items in-

volved in the connection), and a structural connection (when the behaviour 

is a composition of several essential parts).5 Of course, an analyst may also 

find that no connection exists at all.  

Usually, the discovery of a correlation pattern cannot be seen as the fi-

nal result of data exploration, although it may be quite an important find-

ing. A correlation pattern does not explain anything; on the contrary, it 

needs an explanation itself. What makes two or more phenomena (attrib-

utes) behave in a correlated way? Further investigation is required in order 

to discover any forces that influence these phenomena (an influence pat-

tern) or detect that the phenomena are structural parts of some embracing 

phenomenon and act according to the principles and logic of this embrac-

ing phenomenon (a structural pattern). It is quite possible that an analyst 

may fail to find an explanation on the basis of existing data and domain 

knowledge. In this case, it becomes necessary to collect additional poten-

tially relevant data or to look for additional potentially relevant knowledge. 

Another note that we can make is that an analyst is typically not satis-

fied with just spotting a pattern and identifying its type; the analyst needs 

to specify the pattern in an appropriate level of detail, to derive a model of 

a phenomenon in order to be able to predict its further behaviour, for ex-

ample. 

Since the patterns used for approximating mutual behaviours are differ-

ent from those representing individual behaviours, we shall call them 

“connection patterns” or “linkage patterns” rather than “behaviour pat-

terns”. Now we can give a general definition of a connection discovery 

                                                     
5   We cannot guarantee that this list is complete, and it was not our intention to 

provide a complete enumeration of the possible connection patterns. The major 

goal was to demonstrate that these patterns are quite different from those dis-

cussed in relation to behaviour characterisation tasks. 
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task as a task with the goal of finding a linkage pattern that approximates 

some mutual behaviour, either between different phenomena or between 

parts of the same phenomenon. Analogously to behaviour characterisation 

tasks, we can represent connection discovery tasks by a general formula 

such as 

?l: (...) l (3.46)

where the parentheses may contain any of the variants encoded in the ex-

pressions (3.43) (3.45) and l is the linkage pattern that needs to be de-

rived.

3.5.3 Relation to the Former Categories 

How do connection discovery tasks relate to the categories of elementary 

and synoptic tasks described earlier? We have stressed several times that 

connection discovery tasks are synoptic tasks since they deal with regular 

linkages (such as causal, logical, or structural relations) relevant to a data-

set as a whole or to substantial parts of it, rather than occasional associa-

tions between individual elements.  

Let us take a particular example dataset, namely the data about stork 

migration. A possible connection discovery task for these data could be: 

Are there any commonalities (regular patterns) in the movements of dif-

ferent storks? Can any general model of stork behaviour be derived 

from the data? (We shall refer to this example as 1 from now on.) 

An analyst might also be interested in relating the behaviour of the 

storks to other phenomena. For example: 

How does the behaviour of the storks depend on the relief and land 

cover of the underlying territory, on its flora and fauna, and on weather 

conditions, etc.? (We shall refer to this example as 2.)

The example 1 can be reformulated as detecting significant correlations 

in the behaviours of different storks and finding general principle(s) ex-

plaining these correlations. Hence, this is a task of discovering connections 

between parts of the same phenomenon, specifically, the migration move-

ment of storks. At the same time, it can also be classified as a “simple” 

behaviour characterisation task: the goal is to derive a pattern (model) that 

approximates the behaviour of a stork in the course of its seasonal migra-

tion.

This observation appears surprising. Why then should we discuss con-

nection discovery tasks at all if they are just a particular flavour of behav-
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iour characterisation tasks? Well, there may be different levels at which the 

behaviours are described. One possibility is just to recount our direct ob-

servations, for example, “The majority of storks migrate to equatorial areas 

of Africa, while some of them reach as far as South Africa.” Another pos-

sibility is to try to relate different aspects of the phenomenon and arrive at 

conclusions such as “The further north the departure point of a stork is, the 

further south it tends to fly” or “Storks whose destination points are further 

away usually move faster than those which migrate to nearer locations.” 

(These statements are fictitious; they have been devised for illustration 

purposes rather than resulting from real data analysis.) 

Hence, from the formal point of view, connection discovery tasks can be 

subsumed under the category of behaviour characterisation tasks. We need 

only to extend the set of possible types of patterns (i.e. association, differ-

entiation, arrangement, and distribution summary) with appropriate types 

of linkage patterns. However, from the point of view of the cognitive op-

erations and effort involved, connection discovery differs from just de-

scribing. Thus, if we think how we would perform the task 1, we would 

find it appropriate to perform various types of synoptic tasks, such as: 

Divide the behaviours into identifiable primitive patterns, for example 

“stillness”, “fast movement south”, and “wandering” (behaviour charac-

terisation).

Look to see if the sequences of the primitive patterns are the same or 

different for different storks (direct behaviour comparison). 

Find the time intervals of each primitive pattern in the movement of 

each stork (pattern search), and compare these intervals within individ-

ual behaviours and across behaviours (inverse behaviour comparison). 

Determine the frequencies of the various transitions between the primi-

tive patterns, find frequently repeated sequences (relation-seeking), 

compare the time intervals on which these sequences are based (inverse 

comparison). 

We do not insist that 1 must be done exactly in this way; we only want to 

demonstrate that 1 is expected to be a rather complex task involving many 

subtasks of various types. What can be said definitely is that one essential 

operation must be there in any case: abstraction from the results obtained 

by performing the subtasks towards something coherent, which could 

serve as an appropriate model of the behaviour of storks.  

On the other hand, even a “basic” behaviour characterisation task may 

be rather complex and requires abstraction. The analyst needs to grasp the 

essential features of a behaviour, abstract from the particulars, and arrive at 

something sufficiently general. This cannot always be done in one stage. 
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Let us recall our discussion concerning the analysis of behaviours over 

multidimensional reference sets. In many cases, an overall behaviour has 

to be reconstructed from multiple aspectual behaviours. Here, there are 

two points quite similar to those made about connection discovery tasks: 

first, subtasks (of analysing aspectual behaviours) are involved; and sec-

ond, significant cognitive effort is required to synthesise patterns of aspec-

tual behaviours into a consistent pattern of the overall behaviour. 

So, what should we do with connection discovery tasks? Should we treat 

them as a separate high-level partition, i.e. a category of the same level as 

elementary and synoptic tasks? Or should we subdivide synoptic tasks into 

“basic” and “advanced”, where the “basic” tasks are the tasks summarised 

in Table 3.5 and “advanced” tasks are connection discovery tasks? Or 

should we at all make any distinction between “ordinary” synoptic tasks 

and connection discovery tasks?  

In our opinion, a classification cannot be right or wrong. It can be con-

venient or inconvenient, productive or useless. So, the question is: what is 

productive and convenient for our purposes? 

Subsuming connection discovery tasks under the category of synoptic 

tasks is definitely convenient: in this case, all the subcategories defined for 

synoptic tasks will automatically apply to connection discovery tasks. This 

appears quite logical; for example, there may be a task of searching for a 

particular dependency pattern or of comparison of two correlation patterns. 

But is this solution productive? 

The main purpose of our investigation of task typology is to understand 

what essential criteria are used or should be used in choosing or designing 

tools for EDA. We want to define which tools support which tasks, how to 

determine which tasks a particular tool is capable of supporting, and how 

to translate the properties of the tasks that a designer wishes to support 

with a new tool into the qualities and functions that this tool needs to have, 

and, probably, the building blocks that could be used for the construction 

of the tool. From this point of view, it is productive to distinguish between 

tasks if they require different tools to accomplish them. 

As we have demonstrated, connection discovery tasks may require quite 

different tools from behaviour characterisation tasks. Therefore, it is more 

productive to consider connection discovery tasks separately from “basic” 

synoptic tasks, which will be called descriptive synoptic tasks from now 

on. On the other hand, since connection discovery tasks are, by their na-

ture, synoptic tasks, we prefer to subdivide the top-level category of syn-

optic tasks into descriptive synoptic tasks and connectional synoptic tasks 

rather than to introduce a third top-level category along with elementary 

and synoptic tasks. So, the general classification scheme appears as shown 

in Fig. 3.22. 
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Tasks

Elementary 

Descriptive

Synoptic

Connectional

Fig. 3.22. General outline of our task classification framework 

Having introduced this scheme, we would like to apply our earlier sub-

categorisation of synoptic tasks (i.e. into pattern identification, pattern 

comparison, and so on) to both varieties of synoptic tasks. Next, we would 

like to restrict the use of the expression “connection discovery” to the 

group of connectional tasks corresponding to the behaviour characterisa-

tion group of descriptive tasks. The other subcategories of connectional 

tasks involve search (recognition) or comparison rather than discovery. 

We do not see a need for describing in detail how each subcategory de-

fined for descriptive tasks would translate into the corresponding subcate-

gory of connectional tasks. First, we hope that the general principle is 

clear, and interested readers could do this exercise by themselves. Second, 

we think that, although all subcategories are theoretically conceivable for 

connectional tasks, connection discovery per se is the subcategory most 

relevant to the practice of data analysis. This is also the most challenging 

subcategory: it is much more difficult to discover connection patterns than, 

for example, to compare such patterns once they have been discovered. 

Let us now turn to the example 2, which is a task that deals not only 

with stork movement but also with other phenomena such as relief, cli-

mate, and vegetation. How does this task fit into the overall framework? 

It was noted earlier that a phenomenon never exists in isolation, out of 

context, and that the context together with this phenomenon could be re-

garded as a more complex phenomenon. In accordance with this assump-

tion, we could treat stork movement as a part of a broader phenomenon of 

seasonal migration, which includes, besides the movement itself, the relief, 

land cover, climate, and so on. Hence, the discovery and, possibly, further 

investigation of external linkages are, in principle, analogous to the explo-

ration of internal connections between parts of a phenomenon. However, 

there is a difference. When just the movement of storks is analysed, the 

analyst tries to relate homogeneous pieces, while in the exploration of the 

links between the movement and the climate or the relief, heterogeneous 

components need to be related. 
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Hence, it may be useful to subdivide the category of connectional tasks 

according to whether they deal with homogeneous parts of the same phe-

nomenon, or with heterogeneous phenomena or heterogeneous parts of a 

complex phenomenon. So, the scheme presented in Fig. 3.22 could be 

modified, as is shown in Fig. 3.23. 

Tasks

Elementary 

Descriptive 

Synoptic

Connectional

Homogeneous 

behaviours

Heterogeneous 

behaviours

Fig. 3.23. The modified scheme of task typology 

We have already introduced formal notations for both varieties of rela-

tional behaviours, i.e. homogeneous and heterogeneous. To avoid forcing 

readers to search through the preceding paper for these notations, we shall 

repeat them here: 

(f1(x), f2(x) | x R)

(f1(x), f2(z) | x R, z Z)

(f(x), f(x ) | x R1, x R2)

(3.43)

(3.44)

(3.45)

 The expression (3.45) represents the mutual behaviour of homogeneous 

parts of the same phenomenon, while (3.43) and (3.44) stand for the mu-

tual behaviour of heterogeneous phenomena or components. The differ-

ence between (3.43) and (3.44) is in the reference sets of the phenomena, 

which may be the same (3.43) or different (3.44). 

The division in accordance to the task target (i.e. into the tasks of con-

nection pattern discovery, connection pattern search, connection pattern 

comparison, etc.) must then be applied to each of the descendants of the 

node “Connectional”, i.e. to “Homogeneous behaviours” and “Heteroge-

neous behaviours”. We shall not elaborate the diagram in Fig. 3.23 to rep-

resent the full scheme – it would be too cumbersome. We hope, however, 

that it is clear to readers how we can organise the vast variety of possible 

tasks into a manageable system of categories and task properties. 
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3.6 Completeness of the Framework 

The goal of our investigation in the realm of data analysis tasks was to 

build an operational task typology, which could be productively and con-

veniently used for our further purposes. It is important, first, to relate the 

types of tasks to the structure of the data under analysis, and second, to 

ensure that the typology is complete. But how can the second requirement 

be fulfilled? There is no practical possibility to consider all tasks in order 

to organise them into groups by similarity. The solution that we found and 

applied was a sort of modelling: we represented data and tasks by formal 

expressions and then contemplated and manipulated those expressions. 

Our model of a task is a structure consisting of two parts: the target and 

the constraints. The target specifies what information needs to be obtained, 

and the constraints specify what conditions this information needs to fulfil. 

The target and constraints can also be viewed as unknown and known in-

formation, respectively; the goal is to find the initially unknown informa-

tion corresponding to the known information.  

Our model of data and the underlying phenomena is a function that 

specifies the correspondence between the referential and characteristic 

components of the data. The referential components are represented as in-

dependent variables, and the characteristic components as dependent vari-

ables. We refer to this function as the data function.

Both models are sufficiently abstract to encompass all possible datasets 

and all possible tasks. The question is: did we link these models together 

properly? Did we lose the initial completeness? Let us review how we per-

formed the linkage and elaborated it. 

Our typology of tasks is based upon the types of the unknown and 

known information, which are defined in terms of the structural compo-

nents of data and the relations between and within these components. In 

other words, the linkage between the task model and the data model was 

performed by filling the slots “target” and “constraints” in the task model 

with various information items, defined on the basis of the data model. 

Assuming that the model of data is complete, we need to answer the fol-

lowing questions: 

Did we account for all the possible types of information items that may 

participate in task targets and constraints? 

Did we account for all possible variants of the way of filling the slots? 

Let us first try to answer the question concerning the possible types of 

information items, which need to be defined in terms of the structural 

components of data and the relations between and within these compo-
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nents. The structural components of any data are references and character-

istics. We state that references and characteristics can be dealt with on two 

levels: the level of individual elements and the level of sets. This is a rather 

straightforward dichotomy; no other options appear to be possible. On the 

level of individual elements, the data function defines a set of relations that 

link references (i.e. elements of the reference set) to corresponding charac-

teristics (i.e. elements of the characteristic set). On the level of sets, sub-

sets of the reference set are dealt with, rather than individual elements. For 

any subset, there is a corresponding configuration of characteristics deter-

mined by the data function. This configuration is referred to as the “behav-

iour”. On the level of elements, individual references and characteristics 

can appear in task targets or constraints. On the level of sets, (sub)sets of 

references, and behaviours (i.e. configurations) of characteristics appear 

instead of individual references and characteristics. 

Either on the level of elements or on the level of sets, an analyst can fo-

cus his/her attention on a specific item (i.e. an element, a set, or a behav-

iour) and on what corresponds to it according to the data function. This 

may be called the “absolute approach”. Another possibility is the “relative 

approach”, where an item and what corresponds to it are considered in re-

lation to (i.e. compared with) another item or a group of items and what 

corresponds to them. The division into “absolute” and “relative” seems to 

be an exhaustive dichotomy.  

When the relative approach is taken, the analyst needs to deal with rela-

tions between homogeneous objects: between references, between charac-

teristics, between subsets of references, or between behaviours. These rela-

tions may appear in the targets or the constraints of data analysis tasks, 

which may be called “relational”. 

The relations that can potentially exist between objects are diverse, for 

the various types of objects. For elements of the reference or characteristic 

set, the possible relations are determined by the properties of this set. Thus, 

the relations “same” and “different” exist in any set, ordering relations 

(such as “less than” and “greater than”) exist in an ordered or at least partly 

ordered set, and distance relations exist in sets in which distances are de-

fined. Between sets, there may be the relations “same” and “different”, 

“overlapping” and “not overlapping”, and “included” and “not included”. 

In an ordered set, there may be ordering relations between subsets, for ex-

ample relations between time intervals: “before”, “after”, and so on. In a 

set with distances, there may be distance relations between subsets. 

In fact, we are not concerned about the completeness of this list of rela-

tions, since we do not use the types of relations as a basis for task differen-

tiation. Instead, we divide tasks into absolute (lookup and pattern identifi-

cation) and relational (comparison, relation-seeking, and connection dis-
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covery) tasks. The difference is that relational tasks involve relations be-

tween homogeneous objects (i.e. references, characteristics, sets of refer-

ences, or behaviours), while absolute tasks deal only with relations be-

tween heterogeneous objects defined by the data function, i.e. relations 

between references and characteristics and between sets of references and 

behaviours. Then, relational tasks are further subdivided according to the 

types of object linked by the relations, i.e. whether these are references, 

characteristics, sets of references, or behaviours. As we have just demon-

strated, this list can be considered as an exhaustive enumeration of the 

categories of objects dealt with in data analysis. Hence, the subdivision of 

relative tasks on this basis does not introduce incompleteness into the 

framework. 

Tasks dealing with relations between behaviours are distinguished fur-

ther according to the type of these relations. Specifically, we consider 

similarity/difference relations separately from correlations, influences, or 

structural relations. While similarity/difference relations are covered by 

behaviour comparison tasks within the category of descriptive synoptic 

tasks, we have introduced the category of connectional synoptic tasks to 

deal with the latter group of relations. We need to ensure that the coverage 

of the space of possible relations between behaviours is complete.  

Actually, we have just separated similarity/difference relations from 

other possible relations between behaviours, which are often referred to as 

“inherent relations”, in contrast to the mostly “exterior” nature of similari-

ties and differences.6 Although we have listed some types of inherent rela-

tions, specifically correlation, influence, and structure, we shall restrain 

ourselves from presuming that this list is complete. In fact, it is not neces-

sary to ensure that this list is complete, since we do not classify tasks ac-

cording to the types of inherent relations. It is only important, for our pur-

poses, to distinguish between inherent and exterior relations. The category 

of exterior relations consists of similarity and difference relations, and the 

category of inherent relations includes all other relations. Hence, the divi-

sion into exterior and inherent relations can be regarded as exhaustive. 

The next division is the division of connectional tasks into tasks dealing 

with homogeneous components and those dealing with heterogeneous 

components. There seem to be no problems with this division: this is an 

apparently exhaustive dichotomy. 

Let us recapitulate our reasoning concerning the types of the informa-

tion items that can participate in the targets and constraints of possible 

tasks. We have shown that these types of information are references, char-

acteristics, reference subsets, behaviours, and relations (between homoge-

                                                     
6   In the next section, we provide some rationale for this division. 
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neous objects), and have demonstrated that this list of possible candidates 

for filling the slots in a task model is exhaustive. Then, we undertook an 

investigation into the possible categories of relations that need to be ac-

counted for. We have demonstrated that our differentiation of relations 

according to the types of objects that they are supposed to relate, and our 

further division of relations between behaviours into exterior and inherent 

can be judged as complete and adequately reflected in the task typology. 

Now, let us switch to the issue of slot-filling. First of all, tasks are dis-

tinguished according to what is in the target. This may be one of the fol-

lowing: a characteristic, a reference, a reference set, a behaviour, or a rela-

tion. When two or more items are referred to in the target, this means that 

the task actually consists of several subtasks and, hence, it is not necessary, 

in principle, to consider it as a separate type. However, certain types of 

compound tasks may be introduced for the sake of convenience, and we 

have done so for comparison and relation-seeking tasks.  

Tasks are also distinguished according to what is used in the constraint 

part. This may be any of the five types of information items listed above. 

In principle, a task may have several constraints. However, in this case it 

can be represented as a combination of several subtasks, so that the union 

or intersection of results of these subtasks produces the final result of the 

original task. Hence, it is sufficient to consider tasks where a single item is 

used as the constraint. 

In order to check if we have accounted for all possible combinations of 

types of targets and constraints, we have filled the matrix presented in Ta-

ble 3.6. It appears that all meaningful combinations have been accounted 

for. Hence, we can conclude that our task typology is complete with re-

spect to the possible variants of slot-filling in the task model. 

The task categories listed in Table 3.6 are further subdivided according 

to whether they deal with a single attribute or with several different attrib-

utes, and with the same reference/reference set or with different refer-

ences/reference sets. These divisions are exhaustive dichotomies and, 

hence, do not destroy the completeness of the framework. 

Overall, we can conclude that our task typology is complete, with re-

spect to the models of data and tasks that it is based upon.
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Table 3.6.  Verification of the completeness of our task classification according to 

the types of information used in the target and in the constraints a

Constraint 

Target 

Individual 

reference(s) 

Individual 

character-

istic(s)

Reference 

set

Behaviour Relation 

Individual 

refer-

ence(s) 

Inverse 

lookup 

Individual 

character-

istic(s)

Direct

lookup 

Reference 

set

Inverse 

lookup 

Pattern 

search

Relation-

seeking

Behaviour Behaviour 

character-

isation 

*

Relation 

Inverse 

comparison 

Direct

compari-

son

Inverse 

compari-

son

Direct

behaviour 

compari-

son

a   The data function is not involved;  

  Incompatibility between the elementary and synoptic (set) levels.  

   *  It is possible to formulate a task in the form “Find a behaviour related to 

the given behaviour in the specified way” (e.g. similar, different, or opposite). 

However, this actually requires finding a reference set on which such a behaviour 

is based. Hence, this formulation of the task implicitly includes a reference set in 

its target and is therefore equivalent to a relation-seeking task. 

3.7 Relating Behaviours: a Cognitive-Psychology 
Perspective

In this section, we shall try to explain why we treat similarity/difference 

relations between behaviours differently from other types of relations, such 

as correlations, influences, or structural relations. 

Like all things in the world, behaviours can be compared to detect their 

similarities and differences. These types of relations between behaviours 

do not differ in principle from the “same” and “different” relations be-
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tween elements and between sets. Therefore, we handle these relations in 

the same manner as relations between elements and between sets. 

At the same time, behaviours are more complex items than elements and 

sets. Behaviours are configurations of characteristics, and an analyst may 

be interested not only in observing and describing how the characteristics 

are configured but also in trying to find an explanation of why they are so 

configured. For this purpose, the analyst may try to find the internal 

mechanisms that determine this configuration or to attribute the configura-

tion to influences exerted by other behaviours. These internal mechanisms 

are, actually, nothing other than interactions between structural parts of the 

behaviour.7 These internal or external interactions are quite different from 

the relations of similarity and difference. Therefore, we prefer to consider 

the purely “exterior” relations of similarity and difference separately from 

the more inherent relations, which account for the behaviours observed.  

This division can also be viewed from another perspective, specifically, 

from the perspective of the major goal of a task, which may be either to 

just describe data or to understand data. We divide tasks into descriptive 

and connectional tasks, respectively. The second category is called “con-

nectional” because it deals with essential connections between phenomena, 

but it might also be called “comprehensive” in the sense that the purpose 

of such tasks is to “comprehend”, i.e. “to understand the nature or meaning 

of; grasp with the mind” (Random House 1996). However, the word “com-

prehensive” also has other meanings, and therefore we prefer to use the 

term “connectional”, which explicitly indicates that these tasks are about 

connections.

In a brilliant book by Rudolf Arnheim called Visual Thinking (Arnheim 

1997), we have found many ideas that seem to us extremely akin to our 

own thoughts. Some of these ideas are quite relevant to the topic of differ-

entiating exterior and inherent relations. We would like to convey these 

ideas to readers, since they provide an additional perspective on the topic, 

specifically, the cognitive-psychology perspective. 

Arnheim writes, “To understand an event or state of affairs scientifically 

means to find in it a pattern of forces that accounts for the relevant features 

of the system under investigation” (Arnheim 1997, p. 193) (we call such 

forces “inherent relations”, or “connections”). The key role in this belongs 

to abstraction, i.e. “the act of considering something in terms of general 

qualities or characteristics” (Random House 1996). Arnheim argues 

against the understanding of an abstraction as the sum of the properties 

                                                     
7   Since a behaviour is a configuration, it necessarily has its internal structure. 

Non-elementary structural parts of a behaviour can, in turn, be considered as 

behaviours. 
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that a number of particular instances have in common. He has no doubt 

that abstraction is not based on grouping things according to their common 

features. He writes:  

Presumably there are no two things in this world that have nothing in common, 

and most things have a great deal in common. Suppose now that every community 

of traits would induce us to group the corresponding things under a concept. Ob-

viously, the result would be an incalculable number of groupings. Each individual 

thing would be explicitly assigned to as many groups as there are possible combi-

nations of its attributes. A cat would be made to hold membership in the associa-

tions of material things, organic things, animals, mammals, felines, and so forth, 

all the way up to that exclusive club for which only this one cat would qualify. 

Not only this, but our cat would also belong among the black things, the furry 

things, the pets, the subjects of art and poetry, the Egyptian divinities, the custom-

ers of the meat and canning industries, the dream symbols, the consumers of oxy-

gen, and so on forever. (Arnheim 1997, pp. 157 158) 

In the context of our work, this means that an explorer cannot gain un-

derstanding of a phenomenon by merely comparing instances or parts, not-

ing similarities and differences, and grouping similar things together. 

People do not group things arbitrarily, on the basis of any commonal-

ities noted, but do this according to their particular interests, which deter-

mine the crucial attributes to be used for groupings. Arnheim says, 

“…quite frequently we make groupings on the basis of one distinguishing 

trait alone. Flammable or non-flammable – nothing else may matter” 

(Arnheim 1997, p. 158). However, the identification of such crucial attrib-

utes, which need to be distilled from the multitude of features, necessarily 

requires abstraction:  

The grouping of instances, allegedly the necessary preparation for abstraction, 

must be preceded by abstraction, because from where else would the criteria for 

selection come? Before one can generalize, one must single out characteristics that 

will serve to determine which things are to belong under one heading. (Arnheim 

1997, p. 161) 

Hence, abstraction has to take place before grouping rather than result 

from it: “an abstract concept, supposed to be the fruit of generalization, 

turns out to be its necessary prerequisite” (Arnheim 1997, p. 159). This 

corresponds to our idea that connectional tasks, aimed at understanding 

phenomena and hence indispensably involving abstraction, cannot be de-

fined in terms of comparing behaviours and detecting similarities and dif-

ferences between them. Connectional tasks are not, in general, based on 

comparison; rather, they are based on an “abstractive grasp of structural 

features”, in Arnheim’s terms. Thus, a scatterplot does not expose to us the 

similarities and differences between behaviours of two attributes. Instead, 
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our perception combines the individual dots displayed in such a plot into a 

unitary shape, and this shape tells us whether the attributes are related or 

not. Seeing a shape instead of a multitude of dots is an instance of abstrac-

tion, which is by no means based on comparing and revealing common 

features.

Where, then does, abstraction come from? Arnheim argues that abstrac-

tion is inherently involved in perception: “There is no way of getting 

around the fact that an abstractive grasp of structural features is the very 

basis of perception and the beginning of all cognition” (Arnheim 1997, p. 

161). In explaining this apparent paradox, Arnheim refers to the work of 

Henri Bergson, who proposes that perception can be seen as an instrument 

of an organism, developed during phylogenetic evolution as a means of 

discovering the presence of what is needed for survival and being alerted 

to danger. 

These needs, argues Bergson, refer to kinds of things, to qualities rather than to 

particular individuals. What attracts the herbivorous animal is herbage in general, 

“the colour and the odour of herbage, sensed and submitted to as forces…” The 

precise distinction of individual objects, he says, is “un luxe de la perception” – a 

luxury of perception. (Arnheim 1997, p. 160) 

Hence, “high generality is a quality of perception from the very start” 

(Arnheim 1997, p. 166); “percepts are generalities from the outset, and it is 

by the gradual differentiation of those early perceptual concepts that think-

ing proceeds towards refinement.” (Arnheim 1997, p. 186). There is a clear 

parallel between this statement and Shneiderman’s Information Seeking 

Mantra: “Overview first, zoom and filter, and then details-on-demand” 

(Shneiderman 1996).  

“However”, proceeds Arnheim, “the mind is just as much in need of the 

reverse operation. In active thinking, notably in that of the artist or the sci-

entist, wisdom progresses constantly by moving from the more particular 

to the more general” (Arnheim 1997, p. 186). As an example of such gen-

eralisation, Arnheim refers to the development of the theory of the conic 

sections, which united such different shapes as circles, ellipses, parabolas, 

and hyperbolas into a single geometrical family. This generalisation could 

not result from revealing common traits in these figures, and the new con-

cept does not consist of such common traits. 

Something fundamentally different took place. Those basic geometrical figures 

had been satisfactory, self-contained entities since antiquity. Now a new percep-

tual entity, the sectioned cone, offered itself as a new whole, into which the for-

merly isolated figures could be fitted as parts. A new understanding of their struc-

tural nature was brought about by their relations to what turned out to be their 

neighbours in a continuous sequence of shapes and by their locations in the total 
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perceptual system of the cone. Generalization, then, was an act of restructuring 

through the discovery of a more comprehensive whole. (Arnheim 1997, pp. 

186 187). 

This is an example of a relation quite different from similar-

ity/difference relations. This relation was discovered not by means of 

comparison but rather by means of manipulating distinct patterns and ar-

ranging them in order to make them fit together. 

True generalization is the way by which the scientist perfects his concepts and the 

artist his images. It is an eminently unmechanical procedure, requiring not so 

much the zeal of the census-taker, the bookkeeper, or the sorting machine as the 

alertness and intelligence of a functioning mind. (Arnheim 1997, p. 187) 

Hence, there are cognitive-psychological grounds for our separate 

treatment of similarity/difference relations, on the one hand, and inherent 

(causal, structural, etc.) relations, on the other hand. Not only may these 

two groups of relations require different tools for detecting them, but also 

different psychological mechanisms are involved in discovering and han-

dling these relations. 

This discussion, with massive citation of Arnheim, should not be under-

stood as nullifying the role of comparison tasks in exploratory data analy-

sis. We think that comparison tasks are very important, even though they 

may be insufficient for understanding a phenomenon. Again, we find rele-

vant reasoning in the same book by Arnheim: 

Experience indicates that it is easier to describe items in comparison with others 

than by themselves. This is so because the confrontation underscores the dimen-

sions by which the items can be compared and thereby sharpens the perception of 

these particular qualities. However, the procedure has its dangers. It is easier to 

describe the United States by comparing it with China than by itself without such 

reference; but the comparison highlights characteristics quite different from the 

ones to be gotten from a comparison with, say, France, and is therefore arbitrary 

(Arnheim 1997, p. 63) 

This means that, before comparing, an explorer needs to have a general 

idea of what should be compared and how this should be done. This gen-

eral idea comes from Shneiderman’s “overview”, the beginning of any 

analysis, which is aimed at gaining “an abstractive grasp of structural fea-

tures” (Arnheim). It is this preliminary abstraction that guides all further 

activities and at the same time is elaborated, rectified, and completed in the 

course of those activities. 
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3.8 Why Tasks? 

This chapter was meant to define what the possible tasks, or questions, in 

exploratory data analysis are. After having done this, we would like to re-

turn to the discussion presented in the introduction of this book, specifi-

cally, whether tasks, or questions, are relevant to EDA, or whether this 

activity can instead be imagined as just observing without any clear pur-

pose, rambling through the data in the hope of encountering something 

“interesting”, which might provide food for thought and lead to a sudden 

“insight”.

We must admit that the founder of exploratory data analysis, John 

Tukey, did not make any clear point concerning this issue. Since EDA is 

tightly linked to visualisation, we tried to find out what researchers in 

visualisation and developers of visualisation tools think about the role of 

tasks. Our conclusion from numerous discussions is that opinions differ.8

Some of our colleagues believe that having a defined task is not (or not 

always) necessary in information visualisation. Others are convinced that 

tasks always exist, explicitly or implicitly, even when an explorer seems 

“just to look” at data. However, these tasks will be different from the ex-

amples given by Casner, who demonstrates that the same data need to be 

represented in different ways in order for different tasks to be performed 

effectively (Casner 1991). 

 Casner considers examples of tasks such as planning a journey from 

city A to city B with a stopover in city C (where one has an appointment at 

a particular time) and finding the cheapest flight or the most direct travel 

route. For each task, he proposes a graphical display that allows the task to 

be performed effectively. There is no “ideal” graphic realisation of the data 

suitable for all purposes. While the argument given by Casner is rather 

convincing, the tasks he considers seem to have little to do with explora-

tion: namely, there is no attempt to grasp inherent characteristics of unfa-

miliar data and gain knowledge about the underlying phenomena. 

In this chapter, we have considered a very wide range of tasks, from 

very specific ones such as “where was the stork A on 1 September?” to 

tasks as general as “what are the generic principles of stork behaviour dur-

ing the seasonal migration?” While it could be argued whether the first 

example is pertinent to exploratory data analysis, the second question has a 

clear “exploratory flavour”. Our framework embraces both very specific 

                                                     
8   Some outcomes from a discussion between developers of visualisation tools 

concerning the factors that motivate and influence tool design are presented in 

Andrienko et al. (2004). 
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questions and very general ones, with a number of intermediates between 

these extremes.  

We count ourselves among the advocates of the task-driven nature of 

exploratory data analysis. Together with our allies, we argue that, usually, 

an explorer does not only look at data but also looks for something “inter-

esting”. This may be, for instance, a salient pattern in a spatial distribution, 

a local anomaly, some indication of unusual behaviour, or an indication of 

a possible dependency between phenomena or processes. In this view we 

are, actually, unanimous with our opponents. However, and this is the dif-

ference, we understand “interestingness” as relevance to the major research 

question that the explorer puts to himself/herself, or, in other words, the 

primary task of data analysis, the motive for doing the analysis. According 

to Rudolf Arnheim, “The mind is always steered by purpose” (Arnheim 

1997, p. 162). 

This primary task may be rather general, such as the question about the 

principles of the migratory movement of storks. The explorer needs the 

available data to be represented so that he/she can overview it and detect 

“interesting”, i.e. potentially relevant, features. When such relevant fea-

tures are detected, the analyst will typically try to compare them and inves-

tigate each of them in more detail. Here, exploratory tasks of lower gener-

ality levels come into play. This corresponds to the principle “Overview 

first, zoom and filter, and then details-on-demand”, known as the Informa-

tion Seeking Mantra (Shneiderman 1996).  

Reformulating this in the terms of our framework, exploratory data 

analysis is an investigation into the essential, generic properties of the data 

function, which defines the correspondence between references and char-

acteristics and represents a certain phenomenon. From the beginning, the 

analyst has a general (synoptic) task related to the whole reference set. In 

most cases, this task is aimed at identifying, describing, and explaining the 

behaviour of the data function, and hence the underlying phenomenon. For 

this purpose, the explorer tries to grasp the essential features of the behav-

iour. In many cases, it turns out to be impossible to represent the data in 

such a way that the whole behaviour can be grasped at once. In such cases, 

the analyst needs to “cut” the behaviour into perceivable parts and investi-

gate each of the parts. The results of these partial studies will then need to 

be synthesised into a coherent mental model of the behaviour as a whole. 

Another case where such partitioning of a behaviour is meaningful (and 

sometimes indispensable) is when the behaviour is uneven throughout the 

reference set. Then, the analyst “cuts” the behaviour into more or less uni-

form “pieces” and investigates each piece individually.  

In any case, the exploration proceeds as an interaction between the top-

down and bottom-up processes of analysis and synthesis. Here, the word 
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“analysis” is used in the general sense of “separating some material or en-

tity into its constituent parts or elements” (Random House 1996). In our 

context, this corresponds to partitioning of the overall behaviour into por-

tions. “Synthesis” corresponds to the construction of a model of the overall 

behaviour, i.e. a system of knowledge about the phenomenon, from the 

partial knowledge derived from the investigation of the portions that the 

overall behaviour was divided into. Thus, uniting the circle, ellipse, parab-

ola, etc. into the family of conic sections is an example of the kind of syn-

thesis we mean. 

Dividing the overall behaviour into perceivable portions may be done in 

various ways, depending on the structure and volume of the data. Thus, the 

data may be multidimensional, i.e. the reference set may contain several 

referrers. In this case, the explorer may need to consider various aspectual 

behaviours, which can be viewed as “projections” of the overall behaviour. 

This corresponds to reducing the generality of the primary task to a set of 

subtasks addressing subsets of the entire reference set, where the subsets 

are defined by fixing values of some of the referrers, thus reducing the 

number of variable dimensions.  Another case, which has already been 

mentioned, is the division of the reference set of a “patchy” behaviour. 

Such a division is done without reducing the dimensionality of the refer-

ence set. Yet another case is a behaviour involving several attributes. In 

such a case, an explorer often starts with separate investigations of the be-

haviour of each attribute, and then tries to derive conclusions concerning 

the overall behaviour. 

Whatever division is applied, the analyst needs to perform tasks of char-

acterising the partial behaviours that the overall behaviour is divided into 

(behaviour characterisation). In so doing, the analyst may subdivide the 

partial behaviours into yet smaller pieces. After a partial behaviour has 

been characterised, i.e. approximated by an appropriate pattern, the analyst 

may look to see whether the same or a similar pattern occurs in any other 

subsets of references (pattern search) and, if so, determine how these refer-

ence subsets are related to the subset initially considered (inverse behav-

iour comparison). It is also quite appropriate to directly compare partial 

behaviours in different reference subsets (direct behaviour comparison) 

and to look for particularly related patterns in particularly related subsets, 

for example opposite trends in contiguous time intervals (relation-seeking). 

All these tasks involving relations of similarity and difference between the 

partial behaviours are eventually aimed at approximating the overall be-

haviour, probably by some composite pattern. At the same time, the ex-

plorer tries to discover essential linkages between the partial behaviours, 

such as causal or structural connections, which could explain the overall 

behaviour (connection discovery). 
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From the very beginning, the explorer starts to build some concept of 

the data, which may initially be very vague. By investigating each relevant 

feature, the analyst verifies, amends, and refines this concept. The analyst 

may need to “dive” quite deep into the data, in order to ensure that the 

concept is sufficiently precise and valid. In this process, elementary tasks 

may also be actively involved. Thus, the analyst usually pays attention to 

outliers, i.e. individual data elements that disrupt or confuse patterns, for 

example a municipality with a low percentage of children inside a cluster 

of municipalities with high percentages of children. To investigate such 

cases and find an explanation for them, the explorer will need to perform 

various elementary tasks, such as direct and inverse lookup and compari-

son. Hence, although elementary tasks play a subordinate role in explora-

tory data analysis, an analyst needs tools that support both synoptic and 

elementary tasks. 

We are far from thinking that any analyst consciously divides data ex-

ploration activities into different types of tasks and plans the whole process 

as a combination of top-down and bottom-up approaches. An explorer may 

be unaware of these tasks and be guided by pure intuition, by general prin-

ciples such as “overview first, zoom and filter, and then details-on-

demand”, or by examples. However, anyone who attempts to create a tool 

for exploratory data analysis must explicitly consider the tasks and delib-

erately design any instrument so that it can support the observation of dis-

tributions and behaviours, expose patterns, and facilitate detection of rela-

tionships. Taking into account the concurrency of exploratory tasks, it may 

be inappropriate to follow the approach of Casner, who advocates building 

a separate graphical realisation for each task. Instead, one should try to 

design a tool that supports a range of tasks. When a single tool appears to 

be insufficient, several interlinked, complementary instruments may be 

appropriate. In any case, we are deeply convinced that a tool designer 

needs to know what exploratory tasks exist and to be able to find methods 

of supporting them. 

3.9 Other Approaches 

There are various approaches to defining possible tasks, and numerous task 

taxonomies have been suggested. We are not going to criticise any of these 

taxonomies. As we have already said, a classification cannot be right or 

wrong. Any classification is right to the extent of its serving the purposes 

for which it was devised. We cannot restrain ourselves from citing our be-

loved book by Arnheim: 
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For example, cases can be cited in which human beings are classified by size, 

weight, income, skin color, number of gold teeth, or their ideas about the super-

natural – no criterion of selection seems ineligible, each may be justified by the 

proper occasion, and what serves one purpose or direction of interest may be ab-

surd for another (Arnheim 1997, p. 159) 

Therefore, we are not going to undertake a detailed analysis of every ex-

isting taxonomy in order to reveal its weaknesses in comparison with our 

superb task typology. Instead, we first refer to the roots of our ideas and, 

second, propose a brief overview of the other approaches to task classifica-

tion, motivated by purposes different from ours; as would be natural to 

expect, those approaches serve those purposes better than our typology 

would do.  

As we have made clear from the very beginning, our task typology is 

based on the ideas expressed by Bertin. We have already discussed those 

ideas in much detail, and there is no need to describe them again. Our con-

ception was also greatly influenced by the work of Klir (1985), although 

this work is not concerned with task classification but rather with develop-

ing a general framework for exploring and describing various phenomena 

on the basis of the treatment of any phenomenon as a system. Thus, our 

division of data components into references and characteristics and our 

formal view of a dataset as a function that matches references with charac-

teristics come from Klir’s work. Moreover, Klir also uses the notion of a 

behaviour (of a system), and it is rather close, although not identical, to our 

notion of a behaviour. Klir defines a behaviour as “a simple characterisa-

tion of the overall support-invariant constraint among variables”. Let us 

recall that Klir’s “support” corresponds to the reference set in our termi-

nology. “Constraint among variables” can be understood as a statement 

concerning relations between components of the data, which may be dif-

ferent attributes or values of attributes corresponding to different refer-

ences. This statement needs to be support-invariant, i.e., in our terms, be 

true throughout the whole reference set. 

Strictly speaking, this notion of a behaviour corresponds to our notion of 

a pattern approximating the overall behaviour of the data function on the 

entire reference set. We prefer to use the term “pattern” rather than “be-

haviour” because we understand the behaviour as something objective, 

existing independently of the views of the analyst. The goal of the analyst 

is to understand the behaviour and approximate it by an appropriate pat-

tern, which can be seen as a “support-invariant constraint among vari-

ables”.

Besides these apparent links, Klir’s work has also influenced us in an-

other way. It served for us as an example of a productive abstraction, of 

reasoning about data analysis on a high level of generality. Basically, we 
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followed Klir’s approach in our study, but our study had a different direc-

tion and therefore led to different results. A small deviation from the 

“model” is that we did not want to make our scheme as formal and 

mathematical as Klir’s framework. To our taste, his framework is too for-

mal and therefore hard to perceive and understand. We hope that, despite 

the use of some formal notation, our scheme is still understandable and 

does not require a solid mathematical background. 

A key feature that differentiates our typology from many others is that it 

defines task types in terms of structural components of the data under 

analysis. However, some other typologies take the same approach. Thus, 

Peuquet (1994) considers spatio-temporal data as consisting of three com-

ponents, namely, space (where), time (when), and objects (what). This 

view is well known as the “triad model” of spatio-temporal data. In accor-

dance to the three components, Peuquet defines three basic types of possi-

ble questions about such data: 

when + where  what. Describe the objects or set of objects that are 

present at a given location or set of locations at a given time or set of 

times.

when + what  where. Describe the location or set of locations occu-

pied by a given object or set of objects at a given time or set of times. 

where + what  when. Describe the times or set of times when a given 

object or set of objects occupied a given location or set of locations. 

This classification evidently parallels the notion of “question types” in-

troduced by Bertin, and hence is quite close to our ideas. However, unlike 

Peuquet, we do not restrict our framework to only spatio-temporal data. 

Although such data are our primary interest, we did not feel a need to nar-

row the scope of data types to be considered in order to obtain useful re-

sults. We are sure that the generality of our scheme does not diminish its 

practicality (nevertheless, we shall have to check this in the following 

chapters).

MacEachren (1995) and Kraak et al. (1997) classify the possible ques-

tions concerning spatio-temporal data into seven query types, addressing 

the existence of an entity (if?), its location in time (when?), its duration 

(how long?), its temporal texture (how often?), its rate of change (how 

fast?), the sequence of entities (what order?), and synchronization (do enti-

ties occur together?). These types can be viewed as an elaboration of a 

more general task “describe the times or set of times when a given object 

or set of objects occupied a given location or set of locations” (where + 

what  when) in the classification suggested by Peuquet.  
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As we mentioned earlier, Bertin does not explicitly consider tasks in-

volving comparison and, more generally, relations. Blok (2000) uses a dis-

tinction between exploratory tasks of identification and comparison as one 

of two orthogonal dimensions for differentiating questions that may arise 

in monitoring spatio-temporal changes. “Comparison” is treated in a 

broader sense than just discovering similarities and differences. It also in-

cludes detecting relationships between processes, in particular, 

cause effect relationships. The second dimension considered by Blok is 

the length of the time series to be analysed. Thus, questions about trends 

(identification) or cause effect relationships (comparison) can only be an-

swered when sufficiently long time series are available. In our opinion, this 

dimension roughly parallels the notion of reading levels.  

Besides typologies based on the structure of the data, many other task 

typologies have been suggested in the areas of visualisation and hu-

man computer interaction. In order to understand their differences better, 

we have made an attempt to classify these typologies. We have considered 

them from the perspective of a generalised view of the process of data 

analysis adapted from Qian et al. (1997). Initially, an analyst has some in-

formation need. This need can be described by stating what is known and 

what needs to be found. This corresponds to our model of a task as consist-

ing of constraints and a target. In order to find the information needed, the 

analyst plans a sequence of operations to be applied to the data. Finally, 

he/she tries to perform these operations using the available tools.

The different approaches to defining possible tasks refer to the different 

stages of this data analysis process. Thus, the approaches of Bertin and 

Peuquet can be classified as defining tasks in terms of information needs, 

i.e. they refer to the first stage. Among the typologies related more to the 

intermediate stage, some may be characterised as “user-centred”, i.e. they 

define possible tasks in terms of cognitive operations performed by a user, 

for example “locate”, “identify”, and “distinguish”. (Wehrend and Lewis 

1990, Roth and Mattis 1990, Casner 1991, Robertson 1991, Jung 1995, 

Knapp 1995, Gahegan and O’Brien 1997, Zhou and Feiner 1998). Other 

researchers (Qian et al 1997) define tasks in terms of operations on sets: 

“union”, “intersection”, “selection”, etc. There are typologies that define 

tasks mostly as abstractions of tools and functions of existing GIS and can 

therefore be regarded as referring to the final stage of data analysis, i.e. 

choosing and applying tools. As an example, we can mention the typology 

described in Yuan and Albrecht (1995) and Albrecht et al. (1997), which 

introduces such tasks as “interpolation”, “buffer”, and “overlay”.  

Since the user-centred task typologies are so numerous, and many of 

them have been suggested for purposes close to ours, let us discuss them in 
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more detail. First of all, let us consider the purposes that these task typolo-

gies were created for. Some authors created their typologies in order to 

provide guidelines for users to choose appropriate visualisation techniques. 

For example, Wehrend and Lewis (1990) define a set of tasks (the authors 

use the term “operations”) to be used for classifying visualisation tech-

niques. The idea of Wehrend and Lewis is that a user who has a certain 

problem to be solved by means of visualisation breaks up this problem into 

subproblems, describes these subproblems in terms of the objects to be 

represented and the operations to be supported by the representation, se-

lects applicable visualisation techniques according to an operation-based 

technique classification, and combines these representations into a com-

posite representation for the original problem. Some other researchers use 

their typologies in knowledge-based software systems capable of auto-

mated design of visual representations according to task specifications 

provided by users. 

These purposes are, to a certain extent, rather close to ours: we also aim 

at evaluating various tools (not only visualisation techniques) from the 

perspective of their capability to support various tasks pertinent to the 

process of exploratory data analysis. However, our ideas concerning the 

use of our task typology and the results of our tool evaluation are quite 

different from the idea of a user specifying his/her information needs in 

terms of a set of basic operations, followed by either manual or automatic 

design of the most appropriate data representation.  

As we have discussed in the previous section, tasks in EDA cannot be 

specified precisely in advance. Some researchers even think that there are 

no tasks at all, and we actually agree with them in that an explorer does not 

consciously plans and fulfils any sequences of operations of the kind  

Locate <?x, ?locator>  

(Zhou and Feiner 1998). Exploration starts with a very general task such as 

“What is the behaviour of this phenomenon?”, and all subsequent tasks on 

different abstraction levels emerge dynamically, depending on what the 

analyst finds (or does not find) in the previous steps and what attracts 

his/her attention. Hence, it cannot be expected that the analyst, before 

starting exploratory data analysis, will decompose his/her problem into 

subproblems and translate those subproblems into operations on data: the 

problem is too ill-defined to allow such decomposition. Consequently, one 

cannot build an “action plan” that could be used for the manual or auto-

mated design of an “ideal” data representation for the particular problem. 

Moreover, no “ideal” representation can exist even in principle: the initial 

problem is refined and modified in the course of analysis, and hence even 

an initially good representation may soon become unsuitable. Again, it is 
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hard to expect that the analyst will create a new “action plan” and redesign 

the representation each time. 

A more realistic scenario is that the explorer is given a sufficiently pow-

erful and flexible tool or set of tools (not just a certain data representation) 

that supports a wide range of tasks. Hence, it is the responsibility of tool 

designers to build such tools and provide them to data explorers. To do 

this, the designers need to know the range of tasks that need to be sup-

ported, and it was our goal to make such tasks explicit. 

Hence, the purposes of our typology differ from the purposes of the op-

erations-oriented typologies in the following respect: our typology is 

meant for initially vague and very general problems, which are dynami-

cally refined and redefined in the process of analysis, whereas the opera-

tions-oriented typologies are intended for more specific problems, which 

can be clearly formulated and translated into collections of required opera-

tions before starting the analysis. 

It may be argued that some operations-oriented typologies contain more 

general tasks than “locate” and “distinguish”. Thus, Gahegan and O’Brien 

(1997) describe a knowledge-based system for designing data visualisation 

for tasks called “exploration”, “search”, and “comparison”. 

Although these names sound very abstract, in practice the word “explo-

ration” is used merely in the sense that multiple data channels are dis-

played (data channels correspond to attributes or referrers in our terminol-

ogy). Search implies that a single channel is visualised, and comparison 

means displaying two or more channels. Hence, the tasks actually define 

only the number of data components to be visualised simultaneously. Of 

course, such underspecified tasks cannot serve as a sufficient basis for 

choosing appropriate visualisation techniques. To cope with this difficulty, 

Gahegan and O’Brien assume that the user provides additional information 

concerning the relative importance of the data channels. Then, more im-

portant channels are represented by means of visual primitives with higher 

impact (i.e. they are more readily perceived by people).  

The task typology suggested by Shneiderman (1996) can also be classi-

fied as operations-oriented, although it is quite different from the group of 

typologies just discussed. Actually, Shneiderman’s tasks look more like 

requirements to be fulfilled by designers of exploratory tools or like a 

specification of functions that should be present in such tools:  

overview: Gain an overview of the entire collection;  

zoom: Zoom in on items of interest; 

filter: Filter out uninteresting items;  

details-on-demand: Select an item or group and get details when 

needed;
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relate: View relationships among items;  

history: Keep a history of actions; in particular, this should support an 

undo function;  

extract: Allow extraction of subcollections. 

Besides describing tasks, Shneiderman refers to examples of how these 

functions are implemented in existing software systems. 

While Shneiderman’s instructions are certainly valid and very useful, 

they do not provide an understanding of the possible information needs of 

a data explorer. In our opinion, only such an understanding (what might 

the purpose of the overview be, what are the potential items of interests, 

what relationships between what items might be relevant, etc.) can allow a 

tool designer to fulfil the requirements in an appropriate way, so that the 

explorer can really obtain what he/she needs. 

The possible information needs of an explorer are the primary concern 

of our task typology, which hence refers mostly to the initial stage of data 

analysis with respect to the scheme of the data analysis process suggested 

by Qian et al. (1997).  

It is also relevant to mention the classification of tasks adopted in data 

mining (see Fayyad et al. (1996), and Miller and Han (2001)): 

Segmentation: Partitioning data into meaningful groupings or classes. 

This includes two major subtasks: 

Clustering: Determining a finite set of implicit classes that describe 

the data. 

Classification: Finding rules to assign data items to pre-existing 

classes. 

Dependency analysis: Finding rules to predict the value of an attribute 

on the basis of the values of other attributes. 

Deviation and outlier analysis: Searching for data items that exhibit un-

expected deviations or differences from some norm. 

Trend detection: Fitting lines and curves to data in order to summarise 

the database. 

Generalisation and characterisation: Obtaining a compact description 

of the database, for example as a relatively small set of logical state-

ments that condense the information in the database. 

For each of these tasks, there is a corresponding group of data-mining 

methods.

With respect to our typology, the tasks of data mining fit into such cate-

gories of synoptic tasks as behaviour characterisation, pattern search, and 

connection discovery. We count data mining-methods among the tools that 
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can be useful for accomplishing such tasks and will discuss these methods 

in their proper place. 

Summary 

In this chapter, we have presented our task typology. It is based on two 

formal models: 

A data model, which represents a dataset as a function (in the mathe-

matical sense) that defines the correspondence between the references 

and characteristics. 

A task model, which represents a task as a combination of a target and 

constraints, or unknown and known information. The goal is to find the 

initially unknown information corresponding to the known information. 

The target and constraints are viewed as slots to be filled with various 

types of information related to the structure of the data. 

The major partitions that we used for classifying tasks are following: 

Tasks are divided into elementary and synoptic tasks according to the 

level of generality. Elementary tasks deal with individual elements of 

data, i.e. individual references and characteristics. Even if several ele-

ments are dealt with simultaneously, each of them is handled individu-

ally. Synoptic tasks deal with the dataset as a whole and its subsets, con-

sidered in their entirety. The principal notion on this level is the notion 

of a behaviour, i.e. a certain configuration of characteristics correspond-

ing to a set of references. In contrast to the notion of a set, a behaviour 

implies the presence of a certain structure, for example its elements may 

be linked into sequences or by neighbourhood relationships. Synoptic 

tasks deal with identifying and understanding behaviours. Synoptic 

tasks play the primary role in exploratory data analysis, and elementary 

tasks are subordinate and are mostly used as subtasks of more general 

tasks.

Synoptic tasks are subdivided according to their purpose into descriptive 

and explanatory, or connectional, tasks. The purpose of descriptive tasks 

is to identify and describe behaviours, as well as compare behaviours to 

identify their similarities and differences. The purpose of connectional 

tasks is to investigate behaviours and discover essential interrelations 

(or connections; hence the name of the task category) between behav-

iours or between structural components of the same behaviour. An ana-

lyst is interested in the types of connections pertinent to the nature of the 

behaviours, such as cause effect relations or principles of internal or-
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ganisation. We treat such connections as mutual behaviours of phenom-

ena or of components of the same phenomenon. 

Tasks are distinguished according to the types of information referred to 

in the target and specified in the constraints. In elementary tasks, the 

target may refer to characteristics, references, or relations between char-

acteristics or between references. In synoptic tasks, the target may refer 

to a behaviour (in particular, a mutual behaviour), a reference set, or a 

relation between behaviours or between reference sets. 

The main purpose of our investigation into task typology was to under-

stand what essential criteria are used or should be used in choosing or de-

signing tools for exploratory data analysis. On the basis of our task typol-

ogy, we intend to analyse the existing techniques for EDA to find out what 

tools can support what tasks. We wish then to generalise the results of our 

analysis into some fundamental principles, which would allow one to do 

the following: 

1. Having a particular tool, determine what tasks it is capable of support-

ing.

2. Having a plan to support some tasks with a new tool yet to be designed, 

translate the properties of the tasks into a tool specification, i.e. the set 

of functions and characteristics that this tool needs to possess (plus, pos-

sibly, the building blocks from which to construct the tool). 

3. Having some data to analyse and tasks to accomplish, find out which of 

the tools available are reasonable to apply, and in what combination. 

In the next chapter, we are going to explain what we mean by “data 

analysis tools”, what categories of tools exist, and how each of these cate-

gories is used in exploratory data analysis. 
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4 Tools 

Abstract

In this chapter, we make an inventory of the tools suitable for supporting 

exploratory data analysis. Our major point is that the primary tool for 

analysis is the human imaginative mind, and that all other tools are sup-

plementary. Only the human mind actually does the analysis; the other 

tools supply it with the necessary material, appropriately prepared and pre-

sented. The most appropriate form for the presentation of such material is 

visual, since the mind, as most scientists tend to agree, operates predomi-

nantly with images. 

The techniques and software tools usable in exploratory data analysis 

are currently very numerous, and new tools continue to appear. It would be 

completely unfeasible to survey all of them. Therefore, we have tried in-

stead to set out the major tool categories and describe the key functions 

and properties of each category. The resulting classification looks as fol-

lows:

Visualisation. The primary function of this tool category is representa-

tion of data in a visual form, i.e. creating various pictures from data: 

graphs, plots, diagrams, maps, etc. For this purpose, elements of data are 

translated into graphical features, such as positions within a display, 

colours, sizes, or shapes. It is important, however, that these graphical 

features coalesce into a single image rather than being perceived sepa-

rately. 

We divide the visual expressive means into display dimensions and 

visual, or retinal, variables. Display dimensions provide a set of posi-

tions within a display at which graphical elements, or marks, can be 

placed. Retinal variables represent various properties of the marks: 

shape, size, colour, texture, orientation, etc. In addition to the visual di-

mensions of a display, such as width, height, or depth, we consider also 

the display time, which can be used, for example, in animated presenta-

tions.

Display manipulation. This class consists of interactive tools that sup-

port dynamic modification of the appearance of visual displays. The 
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general purpose of such modification is to enhance the image produced: 

to make it clearer and easier to perceive, to accentuate the distinctive 

features of the data represented, to focus on a particular item or subset 

of interest, etc. The manipulation is done through modifying the formula 

or algorithm used for the translation of data elements into visual features 

(we call this formula or algorithm the “visual encoding function”).  

Data manipulation, i.e. derivation of new references and characteristics 

from existing ones. There are two major purposes in doing this: to sim-

plify the data and make it easier to analyse, and, conversely, to enrich 

the data and consider various aspects of it. Thus, data aggregation re-

duces the amount of data and hence simplifies the analysis. Data inter-

polation, in contrast, produces additional data. 

Querying, i.e. the automated search for answers to user-specified ques-

tions. Most typically, this is to search for references with specified char-

acteristics or to search for the characteristics of specified references. 

Dynamic query tools, which allow the user to easily modify query con-

ditions and quickly provide the required answer, are especially impor-

tant for EDA. 

Computation. In this category, we briefly consider the computational 

methods of statistics and data mining. Unlike the computations involved 

in data manipulation, which prepare data for further analysis, for exam-

ple by transforming the data into a more suitable form, the function of 

computational tools is a kind of data distillation, or extraction of the es-

sential features of data. Some examples of the outputs produced by com-

putational tools are statistical characteristics of a dataset as a whole, 

indicators of relatedness between attributes, and models that predict 

some characteristics on the basis of other characteristics, in particular, 

future developments on the basis of the current state and of the history. 

In exploratory data analysis, it is usually not enough to use a single tool. 

Various tools need to be combined. We consider two basic modes of tool 

combination, sequential and concurrent, and discuss the various mecha-

nisms used for tool combination. Visualisation is an essential component 

of any tool ensemble. Initial data visualisation is used in order to under-

stand what tools should be used for further work. Results produced by any 

non-visual tool need to be visualised so that the analyst can see and inter-

pret them 

Throughout this chapter, we provide many examples of various tools. 

Even when discussing non-visual tools such as data manipulation or com-

putational methods, we use visualisation intensively to illustrate the exam-

ples. Readers can easily note that we have taken every opportunity to stress 

the great role of visualisation in exploratory data analysis. At the begin-
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ning of the chapter, we make an attempt to substantiate the importance of 

visualisation.

4.1 A Few Introductory Notes 

In this chapter, we shall try to talk about tools for exploratory data analysis 

on the same level of generality as we adopted in the discussion of tasks. 

This means that we shall not describe and analyse particular software 

products and prototypes, particular techniques for data visualisation, par-

ticular methods of statistical analysis, or particular algorithms for data 

mining. We are going to deal with broad categories, such as data visualisa-

tion in general or computational data analysis methods in general. Of 

course, we shall refer to particular techniques and methods as examples, as 

we did before for tasks. 

Let us define what we consider as a tool for EDA. From the definitions 

of the word “tool” given by our near and dear friend, the Random House 

Webster’s Dictionary (Random House 1996), the most appropriate is “any-

thing used as a means of accomplishing a task or purpose”. In principle, 

we have no reason to restrict our discussion to only computer-based tools. 

Although it is now hard to imagine any data analysis being done without 

using a computer, there may be situations in which paper and pencil serve 

better. Computers often restrict the imagination by offering predefined 

techniques and inducing standard approaches, while a white sheet of paper 

puts no limits on creative thinking. Besides, computers are not yet suffi-

ciently convenient and suitable for making arbitrary drawings and notes 

anytime, anywhere, in an attempt to capture half-formed ideas or to exter-

nalise non-verbal conceptions. 

From this note, it should be clear that we consider the foremost tool for 

exploratory data analysis to be the mind of the analyst. All other tools are 

supplementary. Their role is to facilitate and advance the work of the mind 

but not to substitute for it. We do not believe in machines that, after being 

supplied with data, could automatically produce the required knowledge or 

the solution of a problem. Any output of any tool is just material for the 

explorer’s mind, a subject for thinking. 

Unfortunately, we do not feel ourselves capable of discussing the work 

of the principal tool for data analysis, i.e. the human mind. Therefore, we 

focus on supplementary tools. Of these supplementary tools, we deem data 

visualisation to be the most important. 
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4.2 The Value of Visualisation 

First of all, we must explain why we believe visualisation to be so impor-

tant. But before that, we need to define what we mean by visualisation. If 

we refer to a dictionary, we can find the following meanings of the word 

“visualise”:

(intransitive) to recall or form mental images or pictures; 

(transitive) to form a mental image of; 

(transitive) to make perceptible to the mind or imagination 

(Random House 1996). Of these meanings, the most appropriate is the 

third one. We see this short phrase as a mission statement, as the definition 

of the primary purpose of visualisation tools: they are required to make

data and the corresponding phenomena perceptible to the mind or imagi-

nation of the explorer. That is all. No more and no less.  

Despite its simplicity, this mission statement provides a full justification 

for the primary importance of visualisation as a supplementary (to the hu-

man mind) tool for exploratory data analysis: in order to be able to think 

about data, the mind needs to perceive the data. No thinking is possible 

without prior perception. And it is clear that the perception must be, on the 

one hand, correct with respect to the data, and on the other hand, oppor-

tune for reasoning. This imposes very high requirements upon data visuali-

sation tools. 

In the research areas related to exploratory data analysis, that is, infor-

mation visualisation, geographic visualisation, and human computer inter-

action, the word “visualisation” is mostly associated with graphical repre-

sentation of data, i.e. encoding elements of data by graphical primitives 

such as positions on a plane, sizes, colours, textures, or shapes of graphical 

symbols. Does this contradict the general concept of visualisation or sig-

nificantly reduce its scope? We believe that neither the former nor the lat-

ter is true. The human mind has rather limited capabilities for perceiving 

data represented in a non-graphical form, for example as a table of num-

bers. Imagine a table of the daily values of the prices of two stocks col-

lected over a month, on the one hand, and the same data represented as two 

lines on a time graph. Which representation is more “perceptible to the 

mind or imagination”? We do not expect that anyone will need much time 

or significant mental effort to find an answer to this question. It is quite 

clear which representation can tell us better about the trend in the price of 

each stock and allow us to compare those trends. It is a common truth that 

“a picture is worth a thousand words” or, in our case, that one picture is 

worth much more than a collection of numbers. 



4.2 The Value of Visualisation      167 

Hence, it is quite natural that researchers focus on graphics as a primary 

means of making data perceptible to the mind or imagination. Some re-

searchers are actively exploring other means such as acoustic or touchable 

representations, but the mainstream relies on human vision as the major 

channel of perception. 

We would like to relate this primacy of graphics and images to ideas 

from cognitive psychology. As might be expected, we shall refer again to 

the book by Rudolf Arnheim Visual Thinking (Arnheim 1997). 

Arnheim argues that not only perception provides material for thinking 

but perception and thinking are inseparable: perception involves thinking 

and thinking involves perception. On the one hand, perception is not mere 

recording of stimulus material, but organisation of this material into con-

cepts:

Perception consists in fitting the stimulus material with templates of relatively 

simple shape, which I call visual concepts or visual categories. The simplicity of 

these visual concepts is relative, in that a complex stimulus pattern viewed by re-

fined vision may produce a rather intricate shape, which is the simplest attainable 

under the circumstances. What matters is that an object at which someone is look-

ing can be said to be truly perceived only to the extent to which it is fitted to some 

organized shape. (Arnheim 1997, p. 27) 

It is most natural to attribute this process of forming visual concepts to the 

activity of the brain, i.e. to see perception as thinking: 

In order to account for the complexity and flexibility of shape perception, it seems 

preferable to assume that the decisive operations are accomplished by field proc-

esses in the brain, which organises the stimulus material on its arrival according to 

the simplest pattern compatible with it. (Arnheim 1997, p. 28) 

On the other hand, it is these visual concepts that serve as material and 

tools for thinking. When these concepts are not obtained directly from the 

environment, they are retrieved from memory: 

Thinking … can deal with objects and events only if they are available to the mind 

in some fashion. In direct perception, they can be seen, sometimes even handled. 

Otherwise they are represented indirectly by what is remembered and known 

about them. (Arnheim 1997, p. 98) 

These internal representations are generally called mental images. Arn-

heim thinks that this usage of the word “image” is not accidental, because 

mental representations of things have a visual rather than any other (for 

example, verbal) nature. In substantiation, Arnheim states that any repre-

sentation on any level of abstraction has to meet one condition: it must be 

structurally similar (isomorphic) to the pertinent features of the situation 

for which the thinking is valid. If everything what we see is indeed trans-
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formed in the mind into a completely different representation, this repre-

sentation should be equivalent to a visual representation; otherwise, the 

requirement of isomorphism may be violated. Thus, verbal language is not 

a suitable means for representing sensory experiences, although it can co-

operate successfully with imagery. Two principal features of verbal lan-

guage make it unsuitable as a primary vehicle for thought. First, this me-

dium is purely linear and therefore very weak in representing any spatial 

information. Second, the elements of this medium, i.e. words and phrases, 

are arbitrary. They represent things and concepts only by virtue of a con-

vention, i.e. an agreement among people how the signs that the language 

consists of must be interpreted. Therefore, in many situations, there may 

be no appropriate signs to express what one sees or thinks, just because 

such signs have not been yet created and adopted by society. For a visual 

image, there is no such limitation. 

Hence, there is no reason to regard mental images as different in princi-

ple from the results of direct perception. It may be objected that mental 

images, of whatever nature, are necessarily more general than perceptual 

images. However, Arnheim convincingly demonstrates that generality and 

abstraction are essential qualities of perception. We shall not reproduce 

here all of the argument provided by Arnheim in support of the thesis of 

the unity of perceptual and mental images, or of percepts and concepts. 

Here is just one quotation: 

Strictly speaking, no percept ever refers to a unique, individual shape but rather to 

the kind of pattern of which the percept consists. … Even the image of one par-

ticular person is a view of a particular pattern of qualities, of that kind of person. 

There is, therefore, no difference in principle between percept and concept, quite 

in keeping with the biological function of perception. In order to be useful, per-

ception must instruct about kinds of things; otherwise organisms could not profit 

from experience. (Arnheim 1997, p. 28). 

In a summary of his argument, Arnheim says: 

I have tried to show that perception consists in the grasping of relevant generic 

features of the object. Inversely, thinking, in order to have something to think 

about, must be based on images of the world in which we live. The thought ele-

ments in perception and the perceptual elements in thought are complementary. 

They make human cognition a unitary process, which leads without break from 

the elementary acquisition of sensory information to the most generic theoretical 

ideas. The essential trait of this unitary cognitive process is that at every level it 

involves abstraction. (Arnheim 1997, p. 153) 

On this basis, it should be quite clear how important data visualisation is, 

since it provides material for perception and thereby enables “the grasping 

of relevant generic features of the object”. Thinking operates with mental 
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images, which are of the same nature as or at least equivalent to images 

formed by means of vision. Therefore, it is quite natural and appropriate 

that data visualisation is meant first of all for human eyes, by providing 

graphical, cartographical, or pictorial representations of data.

We also feel it apposite to refer to another author, Konstantin 

Salichtchev, the leader of the former Soviet school of cartography. His 

textbook on cartography (Salichtchev 1982) greatly influenced us at the 

beginning of our research career and, in fact, determined our orientation 

towards data visualisation and exploratory data analysis. Salichtchev re-

garded maps first of all as instruments for exploration of the real world. 

According to Salichtchev, a map is an abstracted, generalised, and simpli-

fied image of the world, that is, a model of the world that reflects the as-

pects, properties, and processes of reality that are relevant to the purposes 

of a particular investigation. Salichtchev defined the concept of the carto-

graphic research method, which consists in applying maps for the scien-

tific description, analysis, and comprehension of phenomena. The essence 

of the method is that one explores maps as models of reality instead of ex-

ploring reality itself (this opportunity is especially valuable when direct 

exploration of reality is difficult or impossible, as, for example, in studying 

long-term global processes). Hence, maps play a dual role: as the instru-

ment and as the subject of the investigation. 

Salichtchev suggested a schematic representation of the cartographic re-

search method. We reproduce Salichtchev’s diagram (translated from Rus-

sian) in Fig. 4.1. 

World 

Data prepared 

for mapping 

Data collection 

and preparation 

Map construction 
Map

Information 

obtained from 

the map 

Map reading, analysis, 

information processing

Interpretation of the 
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the real world 

Known part 

of the world Mapped part 

of the world 
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result of the study 

1

2
3

4

Fig. 4.1. A schematic representation of the cartographic research method (after 

Salichtchev (1982)) 
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Salichtchev stresses that steps 2, 3, and 4 of the method involve not only 

excluding unnecessary information, but also acquiring new knowledge by 

information processing and by inductive and deductive reasoning. Map 

construction results in a qualitatively new spatial image of the real world; 

an analysis of this image using the cartographic research method creates 

essentially new information about the phenomena represented on the map. 

An interpretation of this information on the basis of the available knowl-

edge and experience leads to further extension of what is known concern-

ing these phenomena. This means that map construction and map use gen-

erate new information in addition to the original information involved in 

map creation. 

The cartographic research method comprises several groups of tech-

niques, such as map-based measurements and computations, statistical 

analysis techniques, mathematical modelling, and information theory ap-

proaches. However, the most important is visual analysis, which is based 

on the capacity of maps to represent spatial shapes, relations, and struc-

tures in a directly perceivable form. 

We strongly believe that everything said by Salichtchev concerning 

maps applies equally to all other forms of visual representation of things 

and phenomena, when such representations are created for the purposes of 

exploration and analysis rather than illustration or decoration. Instead of 

spatial information, graphs or diagrams can reflect other kinds of essential 

features and relationships. Their role is to make these features and rela-

tions easily perceivable, as maps do with respect to spatial information. 

Hence, the cartographic research method is a special case of a more gen-

eral concept, which could be called the “visualisation-based research 

method”. However, there is no need for a new term: this content is in-

cluded in the conventional notion of exploratory data analysis. The scheme 

in Fig. 4.1 could be made to present the essence of this notion perfectly 

just by replacing the words “map” and “mapping” by “visualisation”. 

It should not be concluded from this ode to visualisation that any dili-

gent translation of data into graphical elements automatically enables “the 

grasping of relevant generic features of the object”. Unfortunately, repre-

sentations that are really fertile and conducive to thinking occur much less 

often than useless, unproductive ones. This is not surprising, since there is 

no recipe for making productive visualisations. Designers and users of 

visualisation tools mostly rely on “best practice”, a few general principles, 

and some grains of experience gained through trial and error. 

One of the goals that we pursue in this book is to share our knowledge 

of the general principles and the grains of our experience, as well as refer 

to the “best practice” known to us. This refers not only to visualisation but 

also to other kinds of tools, and we plan to pursue our goal in connection 
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with our task typology. But before doing this, let us make an inventory of 

the tools and overview their functions and properties. 

4.3 Visualisation in a Nutshell 

4.3.1 Bertin’s Theory and Its Extensions 

Bertin, whose notions of reading levels and question types provided us 

with the starting point for building our task typology, is generally known 

as the founder of the theory of graphical representation of data. This semi-

nal theory, which is expounded in the extensive treatise Semiology of 

Graphics. Diagrams, Networks, Maps (Bertin 1967/1983), can be briefly 

summarised as follows. 

Graphical representation is the encoding of components of data by 

means of visual variables. There are two functionally different classes of 

visual variables, planar and retinal. The planar variables are the two spa-

tial dimensions of the plane. The retinal variables include size, value

(brightness), colour (hue), texture, orientation, and shape. The plane is the 

mainstay of all graphical representations. Data items are represented by 

means of marks positioned on a plane. There are three types of marks, 

called, in accordance with their form, point, line, and area marks. Bertin 

calls these types “implantations”. The retinal variables may be applied to 

marks, and define their visual properties. 

The visual variables have different levels of organization in accordance 

with their perceptual properties: associative, selective, ordered, and quanti-

tative. A variable is associative when it permits the immediate grouping of 

all marks differentiated by this variable. For example, shape is associative 

because squares, triangles, and circles of the same size and colour are seen 

as similar signs. A variable is selective when it enables us to immediately 

isolate all marks belonging to the same category of this variable. Thus, a 

“family” of red marks is well differentiated visually from a “family” of 

blue or green marks; hence, colour is a selective variable. A variable is 

ordered when the visual classing (ranking) of its categories is immediate 

and universal. For example, grey is perceived as intermediate between 

white and black, and a medium size as intermediate between a small and a 

large size. A variable is quantitative when the visual distance between two 

categories can be immediately expressed by a numerical ratio. For exam-

ple, one length can be perceived as three times another length, and one 

area can be perceived as one-quarter of another area. 



172     4 Tools 

The perceptual properties of the visual variables are summarised in Ta-

ble 4.1.

Table 4.1.  Perceptual properties of visual variables (according to Bertin) 

 Associative Selective Ordered Quantitative 

Planar dimen-

sions 

yes yes yes yes 

Size  yes yes yes 

Brightness 

(value) 

 yes yes  

Texture yes yes yes  

Colour yes yes   

Orientation yes yes   

Shape yes    

The general principle of data presentation is that “the visual variables 

must have a level of organisation at least equal to that of the components 

which they represent”. Bertin refers here to the type of data scale that a 

visual variable can portray, i.e. nominal, ordinal, or numeric (ratio). Asso-

ciative and selective variables correspond to the nominal scale, ordered 

variables to the ordinal scale, and quantitative variables to the numeric 

scale. If, for example, the goal is to represent values of a numeric attribute 

graphically so that a viewer can extract ratios from the visualisation, for 

example to see immediately that one value is twice another, one must 

choose a visual variable with quantitative organisation, that is, either one 

of the planar variables or a size. The general principle formulated by Ber-

tin parallels the already mentioned statement by Arnheim that any repre-

sentation “must be structurally similar (isomorphic) to the pertinent fea-

tures of the situation for which the thinking shall be valid” (Arnheim 1997, 

p. 227). 

Another requirement concerns the “length” of the visual variables, i.e. 

the number of categories or steps that can be distinguished visually: for 

example, distinguishably different colours or brightness levels. A visual 

variable must have a length equal to or greater than the component that it 

represents. If the length of the variable is insufficient, the observer will 

perceive some of the different data categories as being identical. 

While compliance with these requirements concerning the level of or-

ganisation and the length of the variables is a necessary prerequisite for 

building good graphics, it is still not sufficient. According to Bertin’s im-
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age theory, a visualisation is good if it permits immediate extraction of the 

necessary information, i.e. finding the answer to the observer’s question at 

a single glance, with no need to move one’s eyes or to shift one’s attention 

and involve memory. Bertin uses the term “image” to refer to “the mean-

ingful visual form, perceptible in the minimum instant of vision”. An op-

timal visualisation contains a single image providing the answer to the ob-

server’s question. Visualisations with more images are inefficient because 

they require integration across images. For example, chart maps require 

inspection of each chart and comparison between charts, which takes much 

time.

The most efficient constructions are those in which any question, what-

ever its type and level, can be answered in a single instant of perception, 

that is, in a single image. Such constructions are restricted to using a 

maximum of two planar variables and one retinal variable. When the in-

formation necessitates more than three variables, one cannot construct a 

figure that could provide an immediate response to all types of questions. 

The image will not accommodate the representation of a meaningful fourth 

variable. Consequently, it is necessary to construct multiple images in or-

der to provide answers to all questions. Any designer who uses only a sin-

gle construction is limited to answering only one preferred type of ques-

tion.

Bertin says that graphical representation can perform three functions: 

recording information (inventory drawings); 

communicating information; 

processing information. 

Of these three functions, the last is the closest to exploratory data analysis. 

In order to be fit for this function, a visualisation, on the one hand, must be 

comprehensive, and on the other hand, must be reduced to the smallest 

number of memorizable images. Comprehensiveness means avoiding any 

prior reduction of the information (e.g. by classification), using the “com-

plete information, which alone provides all the givens for pertinent correla-

tions and choices… But also it matters that all types of comparisons and 

classings are possible and easy. The most useful questions will obviously 

involve the overall level of reading, where their answer will be found in a 

limited number of comparable images” (Bertin 1967/1983, p. 164). This 

reference to the overall reading level fully corresponds to our ideas con-

cerning the primacy of synoptic tasks in exploratory data analysis. 

In the next paragraph, Bertin points to the role of manipulation in data 

exploration:
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With this function, the graphic is an experimental instrument leading to the con-

struction of collections of comparable images with which the researcher “plays”. 

We class and order these images in different ways, grouping similar ones, con-

structing ordered images to discover the synthetic schema which is at once the 

simplest and most meaningful.  

The latter phrase, actually, points to the ultimate goal of EDA: “to dis-

cover the synthetic schema [i.e. the underlying organisational pattern or 

structure; this corresponds to connection discovery tasks in our terminol-

ogy] which is at once the simplest and most meaningful”. This also corre-

sponds to the views in gestalt psychology concerning the innate pursuit of 

simplification involved in all cognitive activities, as well as the scientific 

principle of parsimony, or Occam’s razor. 

Although the work of Bertin greatly influenced further theoretical and 

practical endeavours in the area of data visualisation, many researchers 

criticised Bertin’s theory for being based solely on his introspection, with 

no attempt being made to provide any empirical support or any links to 

perceptual or psychological research. 

An attempt to ground Bertin’s theory in the first principles of perception 

has been undertaken recently by Mark Green (1998). Green believes that 

Bertin’s concept of an “image” is related to psychological experiments on 

detecting a “target” element in a picture by an observer, where the target 

element appears among other elements but differs from them by one or 

more attribute, such as colour or orientation. In some situations, the ob-

server seems able to detect the target effortlessly, as if he/she were proc-

essing the entire visual field in a single automatic, parallel operation. This 

is often termed “pre-attentive search” because there is no need to focus 

attention on specific objects in the image: the target simply seems to “pop 

out”. In other cases, the observer seems to search for the target by purpose-

fully moving his/her attention through the visual field and serially scan-

ning each object in it. The dichotomy of pre-attentive and attentive percep-

tion is analogous to Bertin’s distinction between immediate and sign-by-

sign perception. 

In trying to understand the conditions that produce pre-attentive, effort-

less image processing, researchers in psychology have detected that search 

is pre-attentive and parallel if (1) the target and distracters differ in a single 

feature such as colour or orientation, and (2) the difference in the value 

corresponding to this feature is great enough. If the target is defined by 

some combination of features (e.g. red and horizontal), then the search be-

comes slow and requires effort. There are several theories that aim to ex-

plain this phenomenon. The most popular theory is that different parts of 

the brain (“feature modules”) are responsible for representing different 

features. Thus, the brain has a colour module, an orientation module, etc. 
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When it is necessary to look for a combination of two or more features, the 

brain has to involve two or more feature modules, somehow organise their 

work, and integrate the results. This requires much more time and effort 

than in a case where a single module can perform all the work. 

Regardless of the exact theory, the general belief is that pre-attentive 

feature search can only occur when one is examining the contents of a sin-

gle-feature representation. Serial-conjunction search, on the other hand, 

requires the observer to integrate features of a single object by reference to 

their common spatial coordinates. The integration is actually performed by 

focussing attention on the particular spatial location. 

The empirical findings and the theories suggested to explain them run 

parallel to many aspects of Bertin’s image theory, in particular, Bertin’s 

statement that a graphic can be perceived as a single image, i.e. immedi-

ately, if it contains a maximum of two planar variables and one retinal 

variable. Although the search paradigm is not exactly a visualisation task, 

there are close similarities. 

Hence, Green concludes, vision research provides first-principles expla-

nations of many aspects of image theory. The three-component limit is due 

to the way image features are represented in the nervous system and the 

difficulty of conjunction search. Planar and retinal variables are different 

because spatial location ties all other attributes together. 

Another part of Green’s discussion concerns the levels of perceptual or-

ganisation of the visual variables. He believes that the distinctions between 

the variables can be explained on the basis of psychophysical scaling stud-

ies, which investigate the relationships between the real intensity of vari-

ous physical stimuli (such as light intensity) and its perceived magnitude 

(such as apparent brightness). Three basic types of dependencies are possi-

ble (see Fig. 4.2): 

linear, where the sensation grows in direct proportion to the physical 

intensity; 

compressive, where the sensation grows slower than the physical inten-

sity; 

accelerating, where the sensation grows faster than the physical inten-

sity. 

When the dependency is linear, a doubling of physical intensity pro-

duces a doubling of sensation, so ratios are maintained. This property is 

required for Bertin’s quantitative perception. Unfortunately, linear depend-

encies occur very rarely. The most common dependency is compressive. 

Thus, a doubling of light intensity is perceived as a far smaller increase in 

apparent brightness. Moreover, a doubling of the intensity from 10 to 20 

and a doubling from 40 to 80 are perceived as different relative changes. 
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Physical variables producing such non-linear scales would not permit a 

quantitative organisation level. 

Sensation 

Physical intensity 

Compressive

Linear Accelerating 

Fig. 4.2. Three types of dependency between the physical intensity of a visual 

stimulus and the apparent sensation (after Green (1998)) 

Psychophysical experiments have yielded significant evidence that the 

only variable that reliably demonstrates a linear dependency between the 

physical intensity and its sensation is spatial extent, for example judge-

ments of line length. This finding is in good agreement with Bertin’s asser-

tion that the only variables with quantitative organisation are planar di-

mensions and size. All these variables involve judgements of spatial ex-

tent. Bertin’s statement that brightness is ordered but not quantitative can 

be explained by the fact that brightness is a compressive function and 

therefore does not permit direct perception of physical ratios. However, the 

brightness function is monotonic, so ordered organisation is supported. 

Furthermore, Green believes that Bertin’s theory can not only be sub-

stantiated by psychological research but also be extended on the basis of 

this research. One of the extensions is that the variable “shape” can be se-

lective (while Bertin claims that shape is only associative). Actually, this 

depends on the choice of shapes. Thus, Bertin considers solid shapes such 

as filled triangles, squares, and circles, which are highly similar, while, for 

example, it has been experimentally proved that “X” and “O” shapes are 

very well differentiated visually. 

Another extension concerns colour (hue). It is true that hue is in general 

a nominal variable: red, green, blue, etc. do not form an ordered scale. 

However, over small ranges, hue can be ordered. For example, it is possi-

ble to construct an ordered scale of yellow starting from the unique yellow 

hue (without any trace of other colours) and extending to either (but not 
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both) the unique red or the unique green hue. Observers can then readily 

order hues along the yellow red or yellow green continuum. 

Bertin considered two properties of colour, hue and brightness, but did 

not take into account saturation, i.e. the amount of white (or grey) mixed 

with a spectral hue, i.e. the purest hue. Saturation is an ordered variable: 

viewers can readily order lights by increasing amount of saturation. Con-

cerning brightness (as well as other ordered variables with compressive 

functions), Green deems it possible to turn it into a quantitative visual 

variable by means of appropriate scaling. Thus, to represent a twofold in-

crease of some quantity, the brightness must be multiplied by a factor of 

more than two. Most computer monitors have built-in rescaling of the 

brightness level, which compensates for the non-linearity of the visual 

brightness. Although the perception of various levels of brightness from a 

computer monitor varies with viewing conditions, brightness nevertheless 

can be used on a computer screen (but not on a printed page) to approxi-

mate quantitative data. 

Besides the discussion of the “traditional” visual variables, Green sug-

gests some additional variables that can be used on computer screens: 

motion, which can be split into two subvariables, velocity and direction;

flicker, with two subvariables, frequency and phase;

binocular disparity, i.e. giving the left and right eyes slightly different 

views of the same visualisation, which supports easy perception of rela-

tive depth. 

In our opinion, it is unclear whether these variables have any advantages 

over the traditional variables, and the application of the new variables in 

data visualisation will certainly require people to get accustomed to them 

before they can be used effectively in data analysis. 

Table 4.2 presents the list of visual variables and their properties up-

dated by Green. 

Green also points to some deficiencies of Bertin’s image theory. Thus, 

Bertin does not acknowledge the possibility of interactions between retinal 

variables, for example the influence of colour variation upon the percep-

tion of texture. Some combinations of variables are perceptually insepara-

ble, for example hue and saturation: observers cannot ignore hue when 

trying to attend to saturation, and vice versa. There are also some percep-

tual effects that contradict Bertin’s assertions concerning the properties of 

the visual variables. For example, it is easier for an observer to select tilted 

lines from among vertical ones than the other way around. Therefore, 

whether a variable is associative or selective depends in part on the exact 

values chosen for a given visual variable. For a more detailed discussion of 
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these and other relevant issues, we refer readers to the work of Alan 

MacEachren (MacEachren 1995, pp. 82 92).

While, in general, experiments support Bertin’s assertion that an image 

(i.e. a visualisation perceived immediately in its entirety) can contain no 

more than three components, i.e. two planar variables and one retinal vari-

able, Green mentions some empirical findings that suggest that, under cer-

tain circumstances, images with four or more components are possible. In 

particular, depth can be an additional image component. The use of depth 

cues, such as perspective, shading, transparency, motion parallax, or bin-

ocular disparity, might admit the third dimension as a third spatial variable, 

allowing four-component visualisations. Again, MacEachren’s book can 

serve as a source of additional information concerning depth cues and dif-

ferent approaches to representing the third spatial dimension on a plane 

(MacEachren 1995, pp. 136 147).

While Green analyses and extends Bertin’s theory from a psychologist’s 

point of view, MacEachren discusses Bertin’s ideas from a cartographer’s 

perspective. MacEachren cites various elaborations, amendments, and ad-

ditions to Bertin’s theory of visual variables suggested by a number of re-

searchers, including MacEachren himself (MacEachren 1995, pp. 

272 276). Here is a brief summary: 

Table 4.2. Perceptual properties of visual variables, updated (after Green (1998)) 

Associative Selective Ordered Quantitative 

Planar dimensions yes yes yes yes 

Size  yes yes yes 

Brightness (value)  yes yes yes, if scaled 

Texture yes yes yes  

Colour (hue) yes yes yes (limited)  

Orientation yes yes   

Shape yes yes   

Motion: velocity  yes yes yes, if scaled 

Motion: direction  yes   

Flicker: frequency  yes yes yes, if scaled 

Flicker: phase  yes   

Disparity  yes yes  
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Texture needs to be divided into several variables: 

arrangement of texture elements; 

density of the elements (the only aspect considered by Bertin);  

size of the elements; 

shape of the elements; 

orientation of the elements. 

Colour saturation is explicitly included among the visual variables. 

MacEachren introduces a new visual variable, clarity, consisting, like 

colour, of three subvariables: 

crispness (or fuzziness) of object edges; 

resolution (spatial precision); 

transparency.

MacEachren deems these subvariables very useful for, in particular, rep-

resenting uncertainty in data or information, but warns that no more than 

two or three values of these variables should be used at once. 

MacEachren presents a highly elaborated table of perceptual properties 

of visual variables, which is reproduced in Table 4.3 here. The last column 

in MacEachren’s table refers to the notion of visual levels: a viewer of a 

graphic depiction can group sets of objects into common wholes that are 

seen as occupying different visual (or conceptual) planes. This notion is 

related to Bertin’s selective and associative properties of visual variables. 

Hence, the two columns on the right correspond to Bertin’s concepts of 

“selectivity” and “associativity”, respectively. 

Besides the visual variables, which can be used in static images either 

on a computer screen or on paper, MacEachren considers tactile, acoustic, 

and dynamic variables. We shall not reproduce here the discussion of all 

three groups of variables, but shall focus on the dynamic variables, which 

include, according to MacEachren: 

Display date: The time at which some display change is initiated. Dis-

play date can be used to represent chronological date, but also for other 

purposes; for example, for highlighting particular places. 

Duration: The length of time between two identifiable states. Duration 

can be applied to individual frames in an animation or to sequences of 

frames. In a repeating cycle, duration can be applied to the period of the 

cycle, i.e. the interval between repetitions. The simplest application is 

the binary cycling of on/off states used in “blinking”. 

Order: The sequence of frames or scenes. MacEachren refers to some 

successful examples of using presentation order as a variable matched to 

the numerical order of some quantity other than chronological time. 
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Table 4.3. The extended typology of visual variables and their perceptual proper-

ties (after MacEachren (1995), p. 279) a

 Numerical Ordinal Nominal Visual 

isolation 

Visual

levels 

Location ++ ++ ++ ++  

Size ++ ++ ++ ++ ++ 

Crispness  ++   b  ++ ++   b

Resolution  ++   b  ++ ++   b

Transparency  ++   b + ++ ++   b

Colour value + ++  ++ ++ 

Colour saturation + ++  + ++   c

Colour hue +     f +     d ++ ++ +     d

Texture + + ++     e ++ ++ 

Orientation +     f +     f ++ ++  

Arrangement   +       g +       g

Shape   ++   
a ++, good; +, marginally effective; no mark, poor.  
b The clarity variables of crispness, transparency, and resolution can be used for 

no more than two or three categories. These variables are untested, but are as-

sumed to be most useful for representation of uncertainty. They may prove to be 

most practical in an interactive setting in which an analyst is able to toggle them 

on and off when needed. 
c Purer, more saturated colours appear to be in the foreground, while dull, unsatu-

rated colours fade into the background. 
d Hues must be carefully selected for an order of hierarchy to be apparent (e.g. the 

part-spectral sequence from yellow through orange to red). Hues interact with one 

another in sometime unpredictable ways, so it is often difficult to determine which 

hues will dominate others. 
e Pattern texture is good for only two, or perhaps three, identifiable categories. 
f Orientation provides limited ability to communicate numerical or ordered infor-

mation – glyphs based on a clock face, and geologic strike and dip symbols are 

successful examples. 
g Pattern arrangement is best as a redundant variable to make a visual difference 

between categories more obvious. 

Rate of change: The difference in the magnitude of the change per unit 

time for each of a sequence of frames or scenes. 

Frequency: The number of identifiable states per unit time. 
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Synchronisation (phase correspondence): The temporal correspondence 

of two or more time series. 

As to the properties of the dynamic variables, MacEachren notes that 

“display date” is clearly a nominal variable. It can be used to show that a 

feature is or is not in a location at a particular point in time. Dates in rela-

tion to one another are, of course, ordinal. “Duration” is measured on a 

ratio scale; patterns produced by changing the duration can suggest nomi-

nal distinctions, such as “fuzzy”, “jittery”, or “pulsating” temporal pat-

terns. “Order” is clearly ordered but offers no way to signify numerical 

differences. “Rate of change” shows a numerically measurable difference 

from scene to scene and is therefore suited to ordered and numerical depic-

tion. Theoretically, “synchronisation” is capable of depicting ratio-level 

differences: it is possible to measure the degree to which the phases of two 

time series match. In practice, it seems that synchronisation (or the lack of 

it) produces two nominal categories of “in phase” and “out of phase”. 

Visualisation-related research includes not only comprehensive studies 

aimed at building general theories or frameworks for visualisation, but also 

investigations into particular aspects or issues in visualisation. It is not our 

goal to do a systematic survey of all literature related to the theory and 

methodology of visualisation. However, we would like to mention several 

works that we learned from in the initial stages of our career in visualisa-

tion or were influenced by in the later stages: 

Salichtchev (1982): Cartographic visualisation for modelling of real-

world phenomena; techniques of cartographic visualisation, their prop-

erties, applicability, and the opportunities for analysis that they provide. 

Tufte (1983, 1990), and Kosslyn (1994): Practical guidelines for design-

ing good graphics; and numerous examples of good and bad graphics 

and analysis of their positive or negative features. 

Cleveland and McGill (1984, 1986): Experiments on graphical percep-

tion, which address mainly the accuracy with which values are read 

from graphics; and suggestions for redesigning several popular types of 

graphics to make the perception of information from them more accu-

rate.

Mackinlay (1986), Roth and Mattis (1990), Casner (1991), and Senay 

and Ignatius (1994): The use of Bertin’s theory for automated or com-

puter-aided design of data visualisation; formalisation of the principles 

of visualisation; rules for combining visual primitives; and elaboration 

of the characteristics of data to be taken into account in graphics design. 

Lyutyy (1986): An investigation of a cartographic sign system – “map 

language”; definition of two sublanguages representing spatial and the-
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matic contents, respectively (i.e. positions, shapes, neighbourhood, etc., 

and identities, qualities, and various non-spatial properties, respec-

tively); and the structure of a graphical sign system, in particular, divi-

sion into a set of positions and a set of graphical morphs, signs, and sign 

combinations that can be placed in these positions. 

Brewer (1994): A deep investigation into the properties of colour; analy-

sis of various colour scales; practical guidelines for using colour in 

visualising data; and the principles of building colour scales. 

Wilkinson (1999): Principles of graphical representation expressed ac-

cording to the paradigm of object-oriented design; formalisation of the 

process of moving from raw data to a graphic, which includes data se-

lection, transformation, choosing a coordinate system, the type of graph 

(e.g. point, line, bar, schema, or contour), so-called “aesthetic attributes” 

(which correspond to Bertin’s “retinal variables”), and the introduction 

of “guides” (e.g. axes and legends); and inventories of graph types, aes-

thetic attributes, scales and their possible transformations, coordinate 

systems, and other components of the “grammar of graphics”.  

It should be stressed that these and other researchers in visualisation and 

related areas have not refuted Bertin’s theory. They have elaborated, re-

fined, extended, and deepened it, but the main principles of the theory re-

main valid. 

We have always used Bertin’s theory and its later extensions in our 

practice. Nevertheless, we found it convenient for our purposes to rear-

range the elements of the theory and re-express some of its principles in a 

particular way. In particular, we have applied Lyutyy’s idea of dividing 

graphical primitives into positions and signs and have incorporated parts of 

Wilkinson’s “grammar of graphics” concerning coordinate systems, plane 

transformations, and “facets”, i.e. arrangements consisting of multiple uni-

form graphics. We stress that what is described in the following sections 

should not be understood as an alternative theory of data visualisation or as 

an invalidation of any of the principles formulated by Bertin.  

4.3.2 Dimensions and Variables of Visualisation 

We would like to divide the visualisation primitives capable of represent-

ing components of a dataset into two groups, which will be referred to as 

dimensions and retinal variables, or simply variables. Dimensions provide 

sets of positions, which can be used for placing marks (point, line, or area 

symbols) or fragments of graphics. Retinal variables define the appearance 

of marks, i.e. their shape, size, colour, etc. In other words, dimensions dif-
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fer from retinal variables in that they are “external” with respect to marks 

and serve as “containers” for marks, while retinal variables define the “in-

ternal”, individual properties of marks. 

Dimensions include: 

The two spatial dimensions of a plane, which may be a sheet of paper, a 

computer screen, or any other two-dimensional medium. These dimen-

sions may be used separately, i.e. each dimension is used for a different 

purpose, or in combination, as a unified two-dimensional space. 

The third spatial dimension, which may be available in some media such 

as immersive environments. The third spatial dimension can also be 

simulated on a plane by providing perspective views of a three-

dimensional object or scene. Like the other two spatial dimensions, the 

third dimension can be used on its own or in combination with the other 

two dimensions to form a unified three-dimensional space. 

The temporal dimension, which is available in computer-based repre-

sentations capable of changing over time (unlike paper-based represen-

tations). This dimension is often referred to as display time. 

Various arrangements of the display space (explained in detail below). 

In fact, our list of dimensions extends Bertin’s concept of planar vari-

ables, which have quite different properties from the remaining (retinal) 

visual variables. Bertin did not consider the third spatial dimension and the 

display time as visual variables, since he focused on static planar graphics. 

Green (1998) mentioned that the third spatial dimension (referred to as 

depth) has properties close to those of the two planar dimensions. In par-

ticular, using depth cues in addition to the planar dimensions combined 

with a single retinal variable does not prevent one seeing a visualisation as 

an “image” (i.e. the pre-attentive perception of the whole picture), despite 

the three-component limitation for an image formulated by Bertin and 

mostly confirmed in experiments. 

We include the display time among the dimensions because, analo-

gously to the spatial dimensions, it provides a set of positions that can be 

used for placing marks or fragments of graphics. This approach to dealing 

with time is different from the approaches of other researchers. Thus, 

Green (1998) and MacEachren (1995) do not consider the display time 

directly but incorporate it into special variables, such as motion and flicker 

(Green) or display date and duration (MacEachren). 

Like the other dimensions, arrangements provide places for marks or 

fragments of graphics. Unlike other dimensions, they are not completely 

independent but are built on top of other dimensions; specifically, they 

reorganise the display space (one-, two-, or three-dimensional) and change 
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its properties. This may be the reason why Bertin and other researchers did 

not explicitly include arrangements among the visualisation primitives. 

However, this does not mean that these researchers did not consider ar-

rangements at all. Thus, Bertin introduced the notion of an “imposition” to 

denote a particular way of utilising the two planar dimensions. He consid-

ered the following impositions: 

arrangement (which means that marks may be dispersed over the entire 

plane);

rectilinear construction; 

circular construction; 

orthogonal coordinates; 

polar coordinates. 

Furthermore, Bertin divides graphical representations into four groups 

according to the correspondences that they can represent: 

diagrams, which reflect correspondences between values of one compo-

nent and values of another component (but not between different values 

of the same component); 

networks, which represent correspondences between different values of 

the same component; 

maps, which reflect correspondences between values of the same com-

ponent arranged according to a geographic order; 

Table 4.4. The correspondence between the groups of graphical representations 

and the types of impositions (after Bertin (1967/1983)) 

 Arrangement Rectilinear Circular Orthogonal Polar 

Diagrams

Networks 

Maps 
    

Symbols 
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symbols, which do not contain any internal correspondences but refer to 

something exterior and are recognisable owing to acquired habits or 

conventions.

Each type of graphical representation can be used with certain types of 

impositions, as is specified in Table 4.4. 

A different approach to dealing with utilisation of the plane is taken by 

Wilkinson (1999). He groups together, on the one hand, various coordinate 

systems (Cartesian, polar, triangular, parallel, etc.), plane transformations 

(e.g. rotation, stretching, or warping), and projections from multidimen-

sional spaces onto the plane, and on the other hand, methods of arranging 

multiple similar graphs (called “facets”), which include tables, trees, polar 

arrays, and mosaics. 

Our approach is based on the idea of differentiating positions from signs 

(according to Lyutyy (1986)). We distinguish dimensions, which provide 

positions, from variables, which define the appearance of signs. Coordi-

nate systems, plane transformations, and the methods of arranging multiple 

graphs are all about positions, and hence should be included among the 

dimensions. We use the general term “arrangements” to denote different 

ways of organising or transforming the plane or, possibly, the other display 

dimensions, i.e. three-dimensional space and time.  

We are not going to give a comprehensive overview of all known ar-

rangements. However, we find it useful for a general understanding to con-

sider some examples of arrangements. Below, we discuss a few widely 

used arrangements, which we also often use in our practice. 

One of the simplest known arrangements is the juxtaposition of several 

uniform displays. This technique is often referred to as “small multiples”, a 

term introduced by Tufte (1983). An example of “small multiples” is the 

series of maps shown in Fig. 3.16, where each map shows the distribution 

of burglary rates over the territory of the USA in a particular year. In 

“small multiples”, each of the multiple displays (“facets”, in Wilkinson’s 

terms) has its own spatial dimensions, which are used as containers for 

placing marks. Simultaneously, the spatial dimensions of the overall com-

posite display are used to place the facets. The arrangement of the facets 

can represent some component(s) of the dataset. Thus, the arrangement of 

the maps in Fig. 3.16 represents the temporal component of the USA crime 

dataset. Actually, it would be sufficient (and even more appropriate) to use 

for this purpose only one spatial dimension of the overall display, since 

time has a one-dimensional organisation (as a linearly ordered set). The 

second dimension is involved merely for better utilisation of the space 

provided by the medium, i.e. a computer screen or a sheet of paper. 
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Another arrangement is used in Fig. 3.13, where the dynamics of bur-

glary rates in each state are represented by a time graph positioned within 

or near the boundaries of the state. We call this arrangement “space em-

bedding”. Here, each time graph has its own two-dimensional space. The 

horizontal dimension represents time and the vertical dimension is used for 

representing the values of the burglary rate at different time moments. The 

space of the time graph is embedded in the space of the overall display (i.e. 

the map), which represents the geographical component of the data. 

Multiple uniform displays may be not only juxtaposed within the space 

of the overall display or embedded in it but also overlaid within this space. 

Thus, Fig. 4.3 demonstrates a display resulting from overlaying 51 time 

graphs (like the one shown in Fig. 3.12) within the same coordinate space. 

Each time graph represents the dynamics of the burglary rate in a particular 

state of the USA. Hence, the overlay arrangement represents one of the 

referrers of the dataset, specifically, the set of states. Here, the spatial na-

ture of this referrer is ignored, and it is treated as a reference set without 

ordering or distances. In a similar way, one might represent, for example, 

the variation of the performance of different schoolchildren over a school 

year. The overlay arrangement would represent, in this case, the set of 

schoolchildren, which is a population-type referrer. 

Fig. 4.3. Overlaid time graphs representing the dynamics of burglary rates in all 

states of the USA over the time period from 1960 to 2000 

The overlay arrangement is used intensely on maps. Almost any map 

represents multiple geographically related phenomena: sea coasts and 

boundaries of countries, rivers and lakes, mountains and forests, cities and 

roads, etc. In a GIS, a map is treated as a stack of “layers”, where each 

layer represents a particular phenomenon. The content and appearance of a 

map are defined by choosing the layers to be overlaid within the two-

dimensional display space and specifying their visual properties, such as 

colour, size of symbols, and degree of transparency. The order of the lay-
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ers plays an important role: layers put on top may suppress the visibility of 

layers placed underneath. 

The representation of a data component by a collection of nodes con-

nected by links, that is, as a graph, tree, network, or flowchart, is, in our 

terms, also a kind of arrangement. Such representations are useful, for ex-

ample, in exploring genealogies or analysing the performance of algo-

rithms and programs. In both examples, there are specific relations be-

tween some elements or subsets of the respective data component, i.e. the 

set of family members or the set of operations. These relations are poten-

tially relevant for understanding the data. The standard spatial dimensions 

of a plane cannot adequately represent these relations. This deficiency is 

compensated by transforming the “normal” two-dimensional space (a con-

tinuous set with distances) into an artificial space that has quite different 

properties: it is discrete, it has no distances, and the relative positions of its 

elements have, in general, no meaning. Only particular relations, which are 

explicitly represented by lines or arrows linking corresponding elements, 

are meaningful. 

Hence, this variant of arrangement consists in transforming the display 

space into another space with different properties, which conform better to 

the properties of the set to be represented. In this connection, we should 

recall again the principle of isomorphism: any representation must be 

structurally similar (isomorphic) to the pertinent features of the situation 

for which the thinking is valid (Arnheim 1997). 

The use of nodes and connectors instead of a continuous space is not the 

only variant of transformation of the display space. Thus, sectioning of the 

spatial dimensions of a display may reflect a discontinuity of the data 

components mapped onto those dimensions. An example is a table-like 

display (where the cells do not necessarily contain texts; they may contain 

geometric shapes or be filled with various colours). The division of the 

display space into rows and columns indicates the absence of continuity in 

the data components represented by the horizontal and vertical dimensions 

of the table. For example, the rows of such a table may correspond to a set 

of schoolchildren, the columns may correspond to a set of school subjects, 

and the content of the cells may represent (graphically or as text) the marks 

obtained at the end of a school semester. It may be noted that the display 

space transformed in such a way is still not isomorphic to the components 

that it represents: it has “artefacts” such as ordering and distances, which 

are absent in the data components. However, the conventional use of table 

displays does not take these artefacts into account. Moreover, ordering of 

table rows or columns is often used to represent arbitrary additional infor-

mation. For example, the rows of the table containing the marks of the pu-
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pils may be sorted according to the age of the pupils or according to how 

far from the school they live. 

In some types of graphics, the display space is transformed by introduc-

ing a different (i.e. non-rectangular) coordinate system, for example polar 

coordinates. Instead of the horizontal and vertical spatial dimensions 

(which, theoretically, have no beginning and no end), a space with polar 

coordinates has a particular point and a particular direction such that all 

positions are defined in terms of the distance from this point and the diver-

gence from this direction. The distance component has a beginning, a “true 

zero”, which is the origin of the coordinates. The divergence component, 

or angle, has an interesting property: its beginning coincides with its end. 

Therefore, polar coordinates may be useful for representing cyclic data 

such as cardiograms: the angle corresponds to the temporal position within 

a cycle, and the distance represents the value of the attribute. Data from 

several cycles can be overlaid or put at different distances from the coordi-

nate origin. Such a representation may expose discrepancies between the 

cycles. The use of polar coordinates is also convenient for data related to 

spatial directions, such as the intensity or frequency of winds in a wind 

rose.

In a polar arrangement, the distance between two arbitrary positions on 

the plane plays no role; only the difference between the distances of these 

positions from the origin of the coordinates is important. 

Another arrangement, similar to polar coordinates is a diverging ar-

rangement of several one-dimensional spaces, i.e. axes extending in differ-

ent directions from a common point, as in a star diagram. In this arrange-

ment, the angle is not used, the directions of the axes are arbitrary, and 

their relative positions do not imply any meaning. In a diverging arrange-

ment, it is supposed that each axis defines its individual one-dimensional 

space, and positions on different axes cannot be directly compared. 

Of the other possibilities of transforming the display space, we would 

like to mention cartograms, in which the geographical space is transformed 

so that the sizes of countries or other units of division of the territory do 

not correspond any more to the actual sizes of those geographical objects 

but represent some other characteristics, such as the population of the re-

spective unit. In cartograms, the purpose of the transformation is to replace 

irrelevant properties and relations of the data component which needs to be 

represented (e.g. a set of countries or districts) by relevant properties. 

Thus, for demographic studies, the geographical extents of countries or 

districts are not as important as how much population lives in those areas 

(Dorling 1992). 

In general, it may be said that any arrangement somehow structures the 

originally continuous, homogeneous and undifferentiated display space. 
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On this basis, we can give rather consistent names to the types of arrange-

ment that we have discussed: 

Space partitioning (juxtaposition or “small multiples”), for example a 

series of maps for different time moments, or multiple parallel or di-

verging axes (one-dimensional spaces). 

Space embedding, for example time/attribute spaces embedded in geo-

graphical space. 

Space sharing (overlay), for example multiple time graphs in a common 

coordinate space. 

Space transformation, for example transformation of a continuous plane 

into node link structures, or continuous plane into the discontinuous 

space of a table display, or of geographical space into a specific prob-

lem-oriented space in a cartogram. 

Of these arrangements, the first three types supply additional dimensions, 

while the last type changes the properties of the standard display space 

without adding any new dimensions.  

In general, dimensions (i.e. display space, display time, and arrange-

ments) provide a set of positions (or, in other words, a framework) for 

placing graphical elements, or marks. Bertin distinguished three types of 

marks: points (zero-dimensional marks), lines (one-dimensional marks), 

and areas (two-dimensional marks). Since we include three-dimensional 

representation in our considerations, we extend this list with volumes, i.e. 

three-dimensional marks. The visual properties of marks are defined in 

terms of values of retinal variables. We do not define our own list of reti-

nal variables, but refer instead to the standard set of variables introduced 

by Bertin and extended by other researchers; see Tables 4.1 to 4.3.  

We shall use the term “graphical features” to denote instantiations (val-

ues) of graphical variables, such as particular sizes (as instantiations of the 

variable “size”) and particular colours (as values of the variable “colour”). 

4.3.3 Basic Principles of Visualisation 

Now, we would like to propose our elaboration of the basic principles of 

visualisation formulated by Bertin. This is done in accordance with our 

division of data components into referrers and attributes and the division of 

the visual primitives into dimensions and variables, introduced in Sect. 

4.3.2. We should note that it is not always possible to fulfil all of the prin-

ciples; sometimes compromises are unavoidable. Therefore, the principles 

should not be treated as strict requirements but rather as guidelines. 
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1. Referrers of the dataset should be represented by display dimensions, 

unless a different method of representation allows one to reduce the vio-

lation of the other principles. Some examples will be provided later.  

2. The properties of the dimensions used to represent referrers should be 

consistent with the properties of the value domains of the referrers. This 

concerns the general properties of ordering, continuity, and presence of 

distances as well as particular properties and relations pertinent to the 

nature of the referrers, for example kinship relations between members 

of a family. 

3. The reference set of the data should, whenever possible, be represented 

so as to be seen as a whole. For each referrer, there should be a dimen-

sion representing it, and for each value of the referrer, there should be a 

corresponding position in this dimension. Preferably, it should be possi-

ble to see all positions simultaneously. This means that the temporal di-

mension is not highly recommended for use, since its positions can only 

be viewed in a sequence, one position at each time moment. 

4. Attributes of the dataset may be represented by retinal variables or by 

dimensions that are not used for representing referrers. For example, the 

horizontal spatial dimension in a time graph is used to represent a tem-

poral referrer, while the vertical dimension represents the values of an 

attribute.

5. The properties of the variables or dimensions used for representing at-

tributes must be consistent with the properties of the value domains of 

those attributes, i.e. ordering, distances, the presence of a “true zero”, 

and the cardinality of the domain, i.e. the number of elements. 

6. The representation should permit the unambiguous ascertaining of 

which reference corresponds to each mark present in a display. Marks 

corresponding to different elements of the reference set must be suffi-

ciently differentiated, for example by position or colour. When some re-

ferrer is represented by a space-sharing arrangement (overlay), marks 

corresponding to the same value of the referrer must be visually linked 

for better differentiation from marks corresponding to other values of 

the referrer. For example, in the overlaid time graphs shown in Fig. 4.3, 

points corresponding to the same state are linked by lines. On a map, 

objects within a map layer are linked by common visual properties such 

as colours or the shapes of symbols used for representing those objects. 

7. Values of different attributes corresponding to the same value of a refer-

rer must be represented by several graphical features combined within a 

single mark or by a visually linked set of marks. For example, the values 

of one numeric and one qualitative attribute may be encoded by the size 

and colour of a geometrical figure. When several marks are involved, 

some dimensions need to be used for placing them in a common frame-
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work and for positioning the resulting composite marks in the frame-

work of the entire visualisation. For example, the values of several nu-

meric attributes referring to the same spatial location may be repre-

sented on a map by a bar chart, i.e. a visually linked sequence of bars. 

The horizontal spatial dimension is used for placing the bars in a bar 

chart. The space-embedding arrangement is used for placing bars on a 

map.

8. A redundant use of variables and dimensions is recommended when this 

allows better conformity with the principles or better display legibility. 

The latter means, in particular, visual differentiation, visual linking, and 

accuracy of perception, i.e. the capability of a viewer to determine cor-

rectly the corresponding references and attribute values for any of the 

marks and graphical features present in a display. Thus, retinal variables 

may be used to improve differentiation between positions of a dimen-

sion. For example, in a bar chart representing volumes of sales of differ-

ent products, the horizontal dimension is used to represent the set of 

products. Additionally, the bars may be coloured distinctly for better 

differentiation.

Among these principles, there are two principles concerning the corre-

spondence between the properties of visual primitives and the properties of 

data components represented by those primitives. In fact, we have formu-

lated the same requirement separately for referrers (principle 2) and for 

attributes (principle 5). Let us elaborate on this requirement by specifying, 

in Tables 4.5 and 4.6, the properties of the dimensions and variables and 

indicating what types of data these visual primitives are most appropriate 

for. In these tables, we actually reformulate the definition of the perceptual 

properties of the visual variables provided by Bertin and other researchers. 

We have not included in Table 4.6 the clarity variables of crispness, 

transparency, and resolution introduced by MacEachren. MacEachren ad-

mits that these variables are untested and can be used for no more than two 

or three categories. While these variables may be quite useful for the rep-

resentation of uncertainty, their appropriateness for arbitrary attributes is 

unclear.

Among the visualisation principles, there are also requirements concern-

ing visual differentiation and visual linking: marks corresponding to dif-

ferent references must be sufficiently differentiated, while marks or 

graphical features corresponding to the same reference must be visually 

linked. The techniques that can be used for differentiation and linking of 

marks are enumerated in Table 4.7. 
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Table 4.5. Properties of display dimensions and the types of data components that 

may be represented by them 

Dimension Properties Most appropriate data 

types 

A single horizontal or 

vertical dimension 

Linear ordering; dis-

tances; continuity 

Time (referrer or attribute) 

Numeric attribute 

Two-dimensional plane No ordering; distances; 

continuity 

Two-dimensional space  

(in particular, geographic) 

Two numeric attributes 

Three-dimensional dis-

play space 

No ordering; distances; 

continuity 

Three-dimensional space 

Two-dimensional space 

plus time (space time  

continuum) 

Display time Linear ordering;  

distances; continuity 

Time as referrer 

Space partitioning: 1 

dimension (sequence) 

Linear ordering;  

distances; discreteness 

Time as referrer 

Space partitioning: 2 

dimensions (grid) 

Partial ordering;  

distances; discreteness 

Two referrers, e.g. time and 

population 

Space partitioning: di-

verging or parallel axes 

No ordering;  

no distances; discrete-

ness

Population referrer with a 

few elements 

Multiple numeric attributes 

Space embedding Properties of the con-

tainer dimension 

Depends on the properties 

of the container dimension 

Space sharing No ordering; no dis-

tances; discreteness 

Population referrer 

Space transformation: 

sectioning 

Removes continuity Population referrer 

Other non-continuous  

referrers 

Space transformation: 

nodes and connectors 

Removes continuity; 

removes distances; ex-

hibits arbitrary relations 

A referrer consisting of 

pairs of items linked by 

specific relations 

Space transforming: 

polar coordinates 

Removes or inhibits  

distances; introduces 

cyclicity 

Cyclic time as referrer 

Spatial directions 

Proportions in a whole 

Space transforming: 

attribute-based distor-

tion 

Removes distances; ex-

hibits arbitrary quanti-

ties

Quantitative attribute  

referring to a division of  

two-dimensional space 
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Table 4.6. Properties of the retinal variables and the types of data components that 

may be represented by them 

Retinal variable Properties Appropriate data types
a

Size Linear ordering; dis-

tances; continuity; true 

zero (zero size) 

Ratio-scale attributes 

Interval-scale attributes 

Ordinal-scale attributes

Colour/hue No ordering; no dis-

tances; discreteness 

Nominal-scale attributes 

Colour/saturation Linear ordering; distances 

not readily perceived; 

continuity; true zero (no 

colour)

Ordinal-scale attributes 

Temporal attributes  

Numeric attributes (ratio or 
interval scale)b

Colour/brightness Linear ordering; distances 

not readily perceived; 

continuity; true zero 

(black) 

Ordinal-scale attributes 

Temporal attributes 
Numeric attributes (ratio or 

interval scale) b 

Texture/arrangement No ordering; no dis-

tances; discreteness 

Nominal-scale attributes with 

a few values 

Texture/density Linear ordering; distances 

not readily perceived; 

discreteness; true zero 

(hollow texture) 

Ordinal-scale attributes 

Numeric attributes (ratio or 
interval scale) b

Texture/size Linear ordering; dis-

tances; continuity; true 

zero (hollow texture) 

Ratio-scale attributes b 

Interval-scale attributes 

Ordinal-scale attributes

Shape and texture/ 

shape 

No ordering; no dis-

tances; discreteness 

Nominal-scale attributes 

Orientation and tex-

ture/orientation 

No ordering; distances; 

continuity 

Spatial directions 

Various directions  

(e.g. links in a node-

connector arrangement) 
a  Data types that can be represented by the corresponding visual variables al-

though their properties are not fully consistent with the properties of these vari-

ables are given in italics. 
b Saturation, brightness, texture/density, and texture/size can represent absolute 

quantities only if applied to marks of equal sizes. For example, it is not recom-

mended to use any of these variables on a map for filling the shapes of countries 

or districts according to their absolute population number. However, it is quite 

valid to use these variables for portraying relative numbers, such as population 

density or number of cars per capita. 
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Table 4.7. Techniques for visual linking and visual differentiation of marks and 

graphical features 

Linking Differentiation 

Adjoining Separation by space 

Connecting (e.g. by line segments) Separation by boundaries (sectioning) 

Same colouring Different colouring 

Same shape Different shape 

Combining features in the same mark 

(e.g. size and colour) 

Using distinct marks 

In our practical work, we have dealt mostly with geographically related 

data and their visualisation on maps. The general principles of visualisa-

tion certainly apply to cartographic visualisation as well. Are there any 

specific principles of cartographic visualisation? 

According to Bertin, the main difference between maps and other graph-

ics is that the planar variables are used in maps for representing geographi-

cal space, and hence attributes can be portrayed only by retinal variables. 

For us, this is an embodiment of one of the general principles rather than 

something specific to maps: the display space (two- or three-dimensional) 

should be used for representing geographical space because the properties 

of the former are, out of all dimensions and variables, the most consistent 

with the properties of the latter. Since two planar dimensions and probably 

the third spatial dimension are already in use, all other data components 

have to be represented by other dimensions or by retinal variables. 

So, what is specific to maps? Is it the methods of handling the curvature 

of the Earth when one is representing geographical space by a flat display 

space, i.e. projection techniques? Although geographical projections are, 

indeed, pertinent to maps, these are just particular methods of encoding 

elements of data by elements of graphics. Such encoding takes place for 

any component of data, not only for geographical space. The formulae or 

rules for the encoding differ from case to case, but these are different im-

plementations of the same general principle. Thus, in representing a nu-

meric attribute by size, one may choose a linear or a logarithmic scale and 

arbitrarily define the maximum size to be used for the maximum attribute 

value. Similarly, one may choose the Mercator or the Gauss Krueger pro-

jection for representing geographical space on a plane. 

In our reasoning concerning the specifics of cartographic visualisation, 

we came to the following conclusion. Geographical space, unlike the dis-

play space used to represent it, is extremely heterogeneous: oceans and 
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seas are very different from continents and islands, mountains are very 

different from valleys, forests differ from deserts, coasts differ from inland 

regions, cities differ from rural areas, countries differ from each other, etc. 

Any geographically related phenomenon is necessarily affected by this 

heterogeneity. Hence, it is very important for the analysis of geographi-

cally related data that not only the metric properties of geographical space 

are reflected in a visualisation but also the heterogeneity of this space. For 

this purpose, the representation of the phenomenon or phenomena under 

study must go together with portraying the geographical features that ex-

hibit the heterogeneity of the geographical space, such as coasts, rivers, 

relief, state boundaries, cities, and roads. However, the relevance of each 

particular kind of feature may differ from situation to situation. Thus, state 

boundaries or roads may be relevant to demographic or economic analyses 

but not to global climate studies. 

There are various types of maps, differing according to the intended use. 

Some maps are designed for showing the locations of various geographical 

objects and are used for orientation and navigation. Other maps portray the 

spatial distributions of some phenomena and/or the variation of their char-

acteristics (attributes) over the space. These latter maps, which are called 

thematic maps, are often intended for the exploration of those phenomena 

(thematic maps can also be used for demonstrating already available 

knowledge concerning phenomena, i.e. the results of an exploration done 

earlier). Since this book is about exploratory data analysis, only thematic 

maps are considered in it. In thematic maps, any geographical features rep-

resented in addition to the phenomena under analysis are intended not for 

orientation or navigation but for reflecting the heterogeneity of geographi-

cal space, which may account for the distribution or variation observed. 

The representation of the heterogeneity of geographical space follows 

the general principle of isomorphism, i.e. that any representation must be 

structurally similar (isomorphic) to the pertinent features of the situation 

for which the thinking is valid. This is quite analogous, for example, to the 

necessity of representing kinship relationships between family members in 

a study of the mechanisms of the transmission of genetic characteristic, in 

particular, proneness to certain diseases. In such research, it is not appro-

priate to treat the individuals just as elements of a homogeneous popula-

tion, as is usually done in statistical studies. 

Let us give some more examples to demonstrate that heterogeneity is 

pertinent not only to geographical space. In exploring the dependence of 

the physical and chemical properties of a substance on temperature, it is 

important to distinguish the temperature ranges in which the substance is 

solid, liquid, and gaseous. In an analysis of trends in stock prices, the tem-

poral referrer is also not homogeneous: vacation times and holidays are 
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quite different from other periods, and the beginning of a financial year 

plays a different role from the end of the year. In climate or vegetation 

studies, winter differs radically from summer, and spring from autumn. It 

is appropriate to reflect the diversity of time periods in visualisation, al-

though, unlike in cartography, there are no established methods for doing 

this.

Hence, we may conclude that cartographic visualisation is done fully in 

accordance with the general principles of visualisation. Therefore, we can 

apply our reasoning to visualisation in general and assume that it will be 

valid for cartographic visualisation as well. 

Let us now analyse a few example displays from the perspective of their 

compliance with the principles of graphical representation. 

4.3.4 Example Visualisations 

When we formulated the principle that referrers should be represented by 

display dimensions, we made the reservation that this principle can be vio-

lated in order to fulfil the other principles, and promised to provide appro-

priate examples. Let us now analyse an example of the representation of a 

temporal referrer by a retinal variable and, at the same time, an attribute by 

a dimension. 

The map in Fig. 4.4 represents the routes of four storks from Europe to 

Africa. As we discussed in Chap. 2, this dataset has two referrers, time and 

the population of storks, and one attribute, geographical location. Accord-

ing to principle 1, the referrers should be represented by display dimen-

sions, while the attribute, according to principle 4, may be represented by 

either a free dimension or a retinal variable. However, according to princi-

ple 5, the dimension or variable used to represent the attribute must have 

properties consistent with the properties of the attribute’s value domain. 

The value domain of the attribute “location” is geographical space. Of all 

available dimensions and variables, the two-dimensional display space (the 

plane) has properties most consistent with those of geographical space. 

Moreover, the plane is suitable for representing the heterogeneity of the 

geographical space, since relevant geographical features can be depicted 

on it. Hence, the plane is the most suitable match for the value set of the 

attribute “location”. 

Of the remaining dimensions, those appropriate for representing time 

are the third spatial dimension, the display time, and one-dimensional dis-

play space partitioning.

Visualisation of movement using the third spatial dimension to represent 

time is known as the “space time cube”  technique. This technique is de-
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scribed, for example, by MacEachren (1995, pp. 252, 254). However, the 

third spatial dimension is available to its full extent only in special visuali-

sation environments. On a computer screen or on paper, the third dimen-

sion can be merely simulated using depth cues, which have limited repre-

sentational capabilities compared with the planar dimensions. In a 

space time cube display on a plane, depth cues are used to represent one 

of the dimensions of geographical space. This representation is not iso-

morphic; in particular, distances cannot be correctly perceived, and direc-

tions are substantially distorted. 

The use of the display time does not allow one to see the reference set as 

a whole, i.e. it contradicts principle 3. Partitioning of the display space (i.e. 

the use of the “small multiples”  technique) also has its drawbacks. First, 

individual maps in a “small multiples” display have to be rather small, 

which reduces their legibility. Second, the space-partitioning arrangement 

provides very limited opportunities for visual linking of marks correspond-

ing to the same value of a referrer. In the particular case of the storks, the 

positions of the same stork must be visually linked, according to principle 

6. In a “small multiples” display, this visual linking can be provided only 

by using the same mark colour or the same mark shape throughout all the 

maps. This is more like a hint about relatedness than direct linking; it re-

quires a significant cognitive effort by the viewer of the display to actually 

link the marks indicating the positions of the same stork. Third, a “small 

multiples” display cannot in general be perceived as a single image. 

Hence, a single-map display is preferable, at least for some tasks (we shall 

discuss in the next chapter what tasks can be better served by “small mul-

tiples” than by a single-map display). 

Hence, none of the unused display dimensions is perfectly suited for 

representing the temporal referrer of our stork dataset, and some of the 

principles have to be compromised. One of the possible compromise solu-

tions is to disregard principle 1 and to use marks and one or more retinal 

variables to portray time, for example as is done in the map in Fig. 4.4. We 

are far from regarding this map as an ideal visualisation, but it has its ad-

vantages (as well as its drawbacks). 

In Fig. 4.4, time is represented by sequences of connected linear marks, 

one sequence for each stork. Each linear mark has a particular orientation, 

indicated by an arrow. The orientation portrays, on the one hand, the spa-

tial direction of the movement, and on the other hand, the order of the time 

moments: the end of a mark corresponds to the moment following the 

moment correspondent to the beginning of the mark. The other referrer of 

the dataset, i.e. the group of storks, is represented by a space-sharing 

(overlay) arrangement. Visual differentiation of the movements of distinct 

storks is achieved by using individual shades for the marks corresponding 
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to each stork. Visual linking of marks corresponding to the same stork is 

achieved, additionally to the identical shading, by connecting the positions 

of that stork by line segments. 

Fig. 4.4. A map depicting the routes of four storks. The sequence of time moments 

is portrayed by linear marks, with arrows indicating the direction of movement. 

Hence, a retinal variable, specifically orientation, is used to represent the temporal 

referrer of the dataset 

An obvious drawback of this visualisation is that it does not allow abso-

lute identification of time moments: without using additional tools, one 

cannot find out the date when each of the locations was visited. Only rela-

tive judgement is enabled: it is possible to ascertain which of two positions 

of the same stork was reached earlier. Moreover, this visualisation alone 

does not allow one to figure out the relative positions of different storks on 

the same date. It is hard to determine whether all four storks moved to the 

south synchronously, started their movement at different times, or moved 

with different speeds. 

An obvious advantage is that the sequence of positions of each stork is 

seen as a single figure (trajectory), owing to an effective visual linking. 

Such a trajectory can be perceived in an instance of sight, in Bertin’s 

words. Moreover, in the same instance of sight, it is possible to see all four 
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trajectories simultaneously and note their similarities and differences. 

Hence, a viewer can gain much information concerning the movement of 

the storks just from a first glance at the map. 

Furthermore, if it is known that the measurements of the positions of the 

storks were made at regular time intervals, for example every day (this is, 

unfortunately, not completely true in our case), the representation of the 

trajectories provides important information about the speed of movement. 

Specifically, long line segments indicate fast movement (a long distance 

covered in a unit of time), while short segments correspond to slow mo-

vement. 

According to principle 8, we may try to use redundant variables or di-

mensions to improve the display. The main problem is that the display 

does not allow one to see what happened on a particular date and, as a con-

sequence, determine which movements occurred simultaneously. Hence, 

the temporal component of the data needs to be represented in a more di-

rect way than just by partial ordering of positions by means of lines with 

arrows (the ordering is partial because the order between positions of dif-

ferent storks is not specified). 

As we have discussed, the display time, and space-partitioning arrange-

ments are suitable candidates for representing a temporal referrer. Let us 

try to use one of them as a redundant dimension. In fact, both dimensions 

may be used in the same way. The illustrations that we have included in 

the book look like “small multiples”, although they are actually sequences 

of screenshots taken from an animated representation. 

The visualisation shown in Fig. 4.4 can be combined with the use of an 

additional dimension (i.e. either the display time or a “small multiples” 

arrangement) in the following way. Each position in the chosen dimension 

corresponds to some time moment and contains a map representing the 

trajectories followed by the storks from the beginning of their movement 

until this time moment. When the display time is used, it is possible to 

have a position for each date during the whole period of the movement of 

the storks. For “small multiples”, one needs to consider the available dis-

play space. The dataset used for this example covers the period from 13 

August to 19 September, i.e. there are 38 dates. A “small multiples” visu-

alisation consisting of 38 maps would not be effective: the maps would be 

too small and hardly perceptible. 

In Fig. 4.5, we have included a map for every fifth date in the stork 

movement period, which results in eight maps. To save space on the page, 

we have not reproduced the entire maps but have reduced them to small 

fragments, which are still sufficient for seeing the trajectories. 

What are our gains from the redundant use of the additional dimension? 
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13.08-17.08.2001 13.08-22.08.2001 13.08-27.08.2001 13.08-01.09.2001

13.08-06.09.2001 13.08-11.09.2001 13.08-16.09.2001 13.08-19.09.2001

Fig. 4.5. A “small multiples” display representing stork trajectories over periods 

of 5, 10, 15, 20, 25, 30, 35, and 38 days, respectively, from the beginning of the 

movement 

It is now easier to relate the positions of the storks to absolute time mo-

ments. The “small multiples” display in Fig. 4.5 allows one to do this 

with 5-day accuracy. Complete accuracy may be achieved by means of 

including a map for every date in the visualisation. This is quite possible 

when the display time is used rather than the “small multiples” ar-

rangement. 

The relative positions of different storks on the same date can be easily 

figured out. 

Not only can the order between the positions of any particular stork be 

ascertained, but also the order between the positions of different storks. 

Therefore, it is now possible to determine whether or not all four storks 

moved to the south synchronously. Thus, in our particular case, it may 

be seen that the storks started their movement at different times. How-

ever, since the birds initially moved with different speeds, their move-

ments eventually became synchronised: the fourth and fifth frames 

demonstrate a coherent movement of all birds to the south. This corre-

sponds to the period from 28 August to 6 September. 
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All these benefits result from a better opportunity to determine the tem-

poral references corresponding to the attribute values (i.e. stork positions) 

represented in the display. In other words, these are consequences of prin-

ciple 6 being more properly fulfilled. 

Are there any losses? Well, the whole visualisation cannot now be per-

ceived as a single image. However, each individual map retains this prop-

erty, as well as all other advantages of the map shown in Fig. 4.4 (actually, 

this map is present in the new visualisation: it is the last map in the se-

quence). Hence, we have managed to improve the visualisation by means 

of a redundant use of an additional dimension. 

The additional dimension could also be introduced in other ways. Fig. 

4.6 demonstrates an alternative “small multiples” visualisation of the same 

data. The difference from the previous visualisation is that each individual 

map represents the movements during a 5-day time interval rather than the 

trajectories from the beginning of the whole period. 

13.08-17.08.2001 18.08-22.08.2001 23.08-27.08.2001 28.08-01.09.2001

02.09-06.09.2001 07.09-11.09.2001 12.09-16.09.2001 17.09-19.09.2001

Fig. 4.6. A “small multiples” display representing stork movements during 5-day 

intervals 

This visualisation is, perhaps, even better suitable for the investigation 

of movement synchronisation than that in Fig. 4.5. The periods of fast 
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movement and the periods of staying in the same place are also better iden-

tifiable. On the other hand, the visualisation in Fig. 4.6 supports, in Ber-

tin’s terms, only the intermediate and not the overall reading level: a 

viewer can see movements during subintervals of the whole period but not 

the entire trajectories. In our terms, the visualisation is not supportive of 

the task of describing the overall behaviour of each individual stork and 

that of all storks together (but it is more appropriate for some other tasks). 

Let us now discuss a quite different visualisation of another dataset. Fig. 

4.7 demonstrates a “parallel coordinates” display of the demographic data 

related to the districts of Portugal. As we described in Chap. 2, this dataset 

contains two referrers, one spatial (a set of districts in Portugal) and one 

temporal (a set of two years, 1981 and 1991), and a number of attributes 

characterising the population of the districts. For the display in Fig. 4.7, 

only data from the year 1991 have been selected; hence, the temporal re-

ferrer does not need to be represented. In fact, for building the display, we 

have disregarded the spatial nature of the other referrer and treated it as a 

population referrer. Therefore, this display alone is, of course, not an ade-

quate representation of the dataset; it can be used only in combination with 

other tools. However, for the purposes of this discussion, let us assume that 

the set of districts is a referrer of population type (since we have always 

been dealing with spatially referenced data up to this point, we have no 

suitable non-spatial dataset at our disposal). 

The visualisation in Fig. 4.7 has been designed to represent some char-

acteristics of the districts of Portugal in terms of values of six attributes. 

The names of the attributes can be seen on the right of the display; their 

meanings are explained below. 

“% pop. change from 1981 to 1991”: The relative change of the popula-

tion that occurred in each district, i.e. the difference between the popula-

tion numbers in 1981 and 1991 expressed as a percentage of the popula-

tion in 1981. 

“% 0 14 years”: The proportion of people aged from 0 to 14 years in 

the population of each district in 1991. 

“% pop. no primary school education”: The proportion of people who 

did not receive even a primary school education in the population of 

each district in 1991. 

“% pop. with high school education”: The proportion of people who 

have received a high school education. 

“% employed in agriculture”: The proportion of the population of the 

district employed in agriculture. 

“% female among unemployed”: The proportion of women among un-

employed people. 
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Fig. 4.7. A “parallel coordinates” display of demographic data related to districts 

of Portugal. The values of several attributes are represented by positions on paral-

lel axes. Positions corresponding to the same district are connected by lines 

According to principle 7, the values of several attributes corresponding 

to the same reference should be represented so as to be visually linked. 

There are two ways of doing this: the attribute values may be portrayed by 

the visual properties of the same mark (e.g. size and brightness) or by sev-

eral marks linked by adjoining, connection, or another appropriate tech-

nique (see Table 4.7). In the latter case, it is necessary to use some dimen-

sions for arranging the marks. 

In a parallel-coordinates display, the values of each attribute are repre-

sented as positions on an axis, i.e. using one of the planar dimensions. This 

is consistent with the properties of the value sets of the attributes: all of 

them are numeric. In our variant of parallel coordinates, the horizontal di-

mension is used for this purpose, but it is equally possible to use the verti-

cal dimension.  

In order to include several attributes in the visualisation, a space-

partitioning arrangement is used: the remaining planar dimension (in our 
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case, the vertical dimension) is partitioned into six segments, and in each 

segment, the axis of one of the attributes is placed. As a result, the display 

contains six parallel horizontal axes (in another realisation, they might be 

vertical).

In order to fulfil the requirement that attribute values corresponding to 

the same reference must be visually linked, positions on adjacent axes cor-

responding to the same district are connected by line segments. As a result, 

the characteristics of each district are represented by a polygonal line. The 

set of all lines represents the reference set, i.e. the set of districts. The lines 

are overlaid within the same display space; hence, a space-sharing ar-

rangement is involved. Since we have decided to treat the set of districts as 

a population-type referrer, a space-sharing arrangement is an appropriate 

match for it. 

Although most of the visualisation principles have been fulfilled, the 

parallel-coordinates display still does not comply with principle 6: it does 

not permit unambiguous ascertaining of which reference corresponds to 

each mark. Thus, a viewer cannot determine which district is represented 

by each polygonal line. This means that the lines are not sufficiently dif-

ferentiated. Can we, according to principle 8, involve an additional vari-

able or dimension in order to cope with this problem? 

In choosing such a variable or dimension, we must take into account the 

number of references that need to be differentiated: the variable or dimen-

sion must have a sufficient number of different values (i.e. these values 

need to be perceived as different). The number of districts in Portugal is 

about 300. None of the retinal variables has so many different values. 

Among the dimensions, the two-dimensional display space and display 

time have sufficient capacity. However, the display space is already fully 

in use, and the display time does not support seeing the entire reference set 

as required by principle 3. Besides, the display time is a linearly ordered 

dimension and therefore is not quite suited for representing a population-

type referrer. 

Hence, the problem cannot be solved effectively by purely visual meth-

ods but requires the visualisation to be combined with other tools, for ex-

ample, querying tools, which will be discussed later. 

Let us now try to visualise the same data as in Fig. 4.7 in a different 

way, so that the spatial (more specifically, geographical) nature of the re-

ferrer is appropriately accounted for. As we have already discussed, the 

most suitable medium for representing geographical space is a map. So, let 

us apply cartographic visualisation. 

Figure 4.8 demonstrates a part of a map that we have built (in order to 

reduce the overlap of marks, we have zoomed in on the central and south-

ern parts of the territory). 
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Fig. 4.8. The same attributes as in Fig. 4.7, represented on a map of Portugal by 

bar charts 

Here, the two-dimensional display space is used to portray the geo-

graphical referrer, i.e. the set of districts. The values of the six attributes 

are represented by bar-shaped marks. In accordance with principle 7, the 

values of different attributes corresponding to the same reference are visu-

ally linked by arranging the respective set of marks in an appropriate way. 

Specifically, the horizontal spatial dimension is used for putting the marks 

(i.e. bars) in a common framework. For better suitability for this purpose, 

this dimension has been transformed by means of sectioning, which neu-

tralises the continuity of the dimension (see Table 4.4). Hence, each attrib-

ute is given its particular section in a one-dimensional space. The bars cor-

responding to the attributes are visually linked by means of adjoining. This 

produces composite marks – bar charts. The bars for different attributes are 

shaded differently for better differentiation. 
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Each bar chart uses the vertical spatial dimension to represent the attrib-

ute values. The space of each chart, which is outlined by a frame, is em-

bedded in the space of the map. Within a chart, the attribute values are por-

trayed by positions in the vertical dimension: the lower end of the vertical 

axis corresponds to the minimum attribute value, and the upper end to the 

maximum value. The formula for the conversion from attribute values to 

vertical positions is specified individually for each attribute; hence, differ-

ent bars of the same height do not represent the same numeric value. 

Unfortunately, the charts also allow another interpretation: a viewer may 

believe that attribute values are represented by the sizes of the bars rather 

than by the vertical positions. This interpretation is wrong, since the sizes 

of the bars are not proportional to the attribute values. Thus, a bar of zero 

size does not represent a value of zero but rather the minimum value of the 

respective attribute out of the values available in the dataset. Another pos-

sible mistake is to regard the bars as comparable, i.e. having the same cor-

respondence between attribute values and positions or bar heights. In order 

to preclude false interpretations, the meaning of the symbols and the rules 

for the encoding of values must be appropriately explained, for example in 

the map legend. 

Unlike the parallel-coordinates display, the cartographic representation 

supports quite well the identification of the reference corresponding to 

each mark: the marks are positioned on the map within or near the bounda-

ries of the corresponding districts. 

Still, as with almost any visualisation, there are some problems that 

cannot be solved by merely visual means. In this case, the most critical 

problem is symbol overlap. It can be partly solved by increasing the size of 

the map and decreasing the sizes of the symbols, but these opportunities 

are quite limited regarding the available display space and the viewer’s 

capabilities for discerning symbols. Hence, as in the previous case, addi-

tional tools are needed.

Neither the parallel-coordinates display nor the map with bar charts 

permits efficient, pre-attentive perception of the entire visualisation. This 

is not surprising, since the number of data components (one spatial referrer 

plus six attributes) exceeds the maximum number of visual components 

that can form a single image, i.e. three, according to Bertin (two planar and 

one retinal), or four, according to Green (three spatial and one retinal). 

By discussing these examples of visualisations, we wanted to demon-

strate how visualisation design is guided by the basic principles of visuali-

sation. It is not always possible to satisfy all of the requirements, and some 

of the principles have to be compromised. Besides compliance with the 

visualisation principles, data displays must satisfy requirements of other 

kinds, such as legibility and the preclusion of false interpretations. 
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Despite the high importance of visualisation for EDA, it is usually not 

sufficient to use only visualisation. We have just shown a few cases where 

the deficiencies of data displays could not be compensated by purely visual 

means. In such cases, visualisation needs to be combined with other tools. 

Let us now go on to consider other groups of tools for EDA. 

4.4 Display Manipulation 

As we have already mentioned, Bertin considers graphics intended for in-

formation processing (i.e. exploratory analysis) as something to “play” 

with rather than passively view: “We class and order these images in dif-

ferent ways, grouping similar ones, constructing ordered images to dis-

cover the synthetic schema which is at once the simplest and the most 

meaningful” (Bertin 1967/1983, p. 164). 

In general, Bertin sees information processing as a process of logical 

simplification, which can be performed verbally, mathematically, or 

graphically. Graphical information processing operates by simplification 

of an image. Bertin refers to Georges Th. Guilbaud, who characterises a 

simple visual form by two qualities: connectivity, which means not having 

gaps, that is, being homogeneous, or avoiding meaningless intersections in 

a network; and convexity, which means being delimited by convex angles 

and thus forming a uniform area, inside of which any straight line will 

cross the figure only once. Any visual simplification must tend towards 

these characteristics. This can be achieved in two ways: (a) by ordering a 

qualitative component; and (b) by eliminating certain correspondences in 

ordered components. 

4.4.1 Ordering 

In our terms, ordering may be defined as changing the positions of marks 

or parts of a graphic within a dimension, for example, changing the posi-

tions of bars in a bar chart or the positions of axes in a parallel-coordinates 

display. According to Bertin, arbitrary ordering of parts of a graphic is 

possible when there is no natural ordering between the values of the data 

component that they represent, i.e. the component is qualitative. We can 

add that it is also possible to reorder parts of graphics corresponding to 

different attributes (this is also a case of the absence of a natural ordering). 

Bertin stressed that simplification of an image by ordering preserves all 

the information originally contained in it. Bertin described two reordering 

techniques: diagonalisation of diagrams and transformation of networks. 
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Diagonalisation of a diagram means bringing it as close as possible to 

one of the forms shown in Fig. 4.9.  This may be done, for example, by 

permuting rows and columns of a table. Bertin described some instruments 

that could be used for performing such operations in the pre-computing 

era.

Fig. 4.9. A “perfect” correspondence between two components reveals itself in a 

diagonal form 

Nowadays, permutations in a table are performed by means of interac-

tion with a computer. Besides manual reordering, the user can apply auto-

matic sorting procedures. For example, Fig. 4.10 demonstrates a table dis-

play of six demographic attributes related to the districts of Portugal (these 

are the same attributes that we used for our example visualisations in the 

previous section). As we have mentioned earlier, a table may contain not 

only figures or texts but also graphical elements. In Fig. 4.10, attribute val-

ues are represented in table cells by horizontal bars stretching from right to 

left. In this way, the horizontal display dimension is used. The rightmost 

position in a column corresponds to the minimum value of the respective 

attribute, and the leftmost position to the maximum value. 

Figure 4.10 shows the result of applying an automatic procedure of or-

dering table rows according to the values of the attribute “% employed in 

agriculture 1991”. It may be seen that the arrangement of the bars in the 

corresponding column (second from right) forms a nearly triangular shape, 

i.e. it is close to the diagonal form recommended by Bertin. Of course, it is 

impossible to achieve the same effect in all columns simultaneously. Nev-

ertheless, ordering according to one of the attributes may be very useful for 

detecting correlations between attributes. Thus, one can learn from Fig. 

4.10 that as the proportion of people working in agriculture increases, the 

proportion of people without primary school education also tends to in-

crease, while the proportion of people having high school education mostly 

decreases. 

In relation to the illustration in Fig. 4.10, we would like to note that a 

proper ordering or, more generally, arrangement of display items is very 

important in such “condensed” views, in which large amounts of data are 

fitted into a limited display space at the cost of decreasing the sizes of the 

marks representing the elements of the data.  
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Fig. 4.10. A table display of six demographic attributes related to the districts of 

Portugal. The values of the attributes are represented by horizontal bars in the ta-

ble cells: zero length corresponds to the minimum attribute value available in the 

column, and the maximum value is represented by a bar using the whole cell 

width. The rows of the table have been automatically ordered according to the 

values of the attribute “% employed in agriculture 1991” 

In our example table in Fig. 4.10, the height of the rows is so much re-

duced that it is impossible to determine what attribute values each row 

contains and what district it corresponds to. However, the ordering allows 

us to make useful observations concerning the entire dataset, specifically, 

to detect correlations between attributes.

In an extreme case of information condensation, one data item may be 

represented by just a single pixel on a display, which certainly makes it 

indistinguishable. However, an appropriate arrangement of the visual 

items, such as the grouping of pixels with identical or similar colours, al-

lows the viewer to obtain useful synoptic information about the properties 

of the entire dataset (Keim and Kriegel 1994).  

Transformation of networks is the second application of ordering con-

sidered by Bertin. The goal is to arrive at a construction that has the fewest 

meaningless intersections, while preserving any groupings, oppositions, or 

potential orders contained in the data component represented in network 

form. When the information is not too complex, Bertin recommends a cir-

cular construction as the most facilitative for discovering the optimal or-

dering of the nodes. When the information is highly complex, a permutable 
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matrix affords a means of proceeding to an initial simplification prior to 

construction of the network. The rows and columns of such a matrix corre-

spond to the nodes of the graph, and marks in the cells indicate the pres-

ence of links between the respective nodes. 

Currently, there are numerous software tools for building and displaying 

graphs. These tools often include computational procedures for optimising 

graph layout. Also, they allow the user to reorder graph nodes interac-

tively, for example by dragging them to desired positions. 

As one more example of reordering, let us consider the reordering of 

axes in a parallel-coordinates display (see Fig. 4.7). The purpose of such 

reordering is to reveal correlations between attributes. The presence of a 

correlation between two attributes may be detected if their axes are adja-

cent. When the lines between these two axes are mostly parallel, this indi-

cates a positive correlation: low values of one of the attributes correspond 

to low values of the other attribute, and, similarly, high values correspond 

to high values. A negative correlation makes most of the lines stretch from 

one end of one of the axes to the opposite end of the other axis, which re-

sults in an X-like figure between the axes. Thus, in Fig. 4.7, one can ob-

serve X-shapes between the axes of the attribute pairs “% 0 14 years” and 

“% pop. no primary school education”, between “% pop. no primary 

school education” and “% pop. with high school education”, and between 

“% pop. with high school education” and “% employed in agriculture”. 

These shapes indicate that these pairs of attributes are negatively corre-

lated.

Since a parallel-coordinates display exposes correlations only between 

attributes whose axes are adjacent, it is reasonable to make the axes reor-

derable so that more correlations can be discovered. Therefore, most soft-

ware implementations of the parallel-coordinates display allow the user to 

change the order of the axes interactively, and some of them provide 

automatic procedures that optimise the order of the axes to reveal the 

maximum number of correlations. 

Let us now take a look at Fig. 4.11, which shows the same display as in 

Fig. 4.7 but with an alternative ordering of the axes. The axes have been 

interactively reordered so as to demonstrate the maximum number of cor-

relations: a clear X-shape can be seen between each pair of neighbouring 

axes (hence, the correlations are negative). At the same time, the display 

exposes several cases that do not obey the general rule. They manifest 

themselves as lines having an atypical inclination, such as the line on the 

right between the upper two axes: this line is almost vertical, while all 

neighbouring lines are diagonal. Such cases (called outliers) require spe-

cial attention: an explorer needs to find an explanation for their unusual-

ness.
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It is hard to state definitely whether the transformation of the parallel-

coordinates display demonstrated in Fig. 4.11 resulted in a simplification 

of the image. Nevertheless, it was quite useful, since it allowed us to dis-

cover some correlations that had not been seen before, such as the negative 

correlation between the attributes “% pop. change from 1981 to 1991” and 

“% employed in agriculture 1991”. Hence, striving for image simplifica-

tion is not the only meaningful reason for trying to transform a display. 

Although simplification often increases understanding, this does not mean 

that better understanding can never be achieved without simplification. 

Fig. 4.11. The axes in the parallel-coordinates display of Fig. 4.7 have been reor-

dered here so as to reveal the strongest correlations between the attributes 

The technique that we would like to demonstrate with the next example 

may also be seen as a kind of ordering in the sense that marks are placed in 

a convenient order. However, instead of the relative positions of individual 

marks within a single display dimension being changed, the marks are or-

ganised into equal-sized groups, which are placed next to one another in an 
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additional display dimension. In other words, a one-dimensional arrange-

ment of marks is turned into a two-dimensional arrangement. Such an ar-

rangement is shown in Fig. 4.12, where the signs on the map represent the 

monthly average temperatures measured at different weather observation 

stations in Germany during the time period from January 1991 to May 

2003. 

Fig. 4.12. The signs represent the monthly average temperatures for the time pe-

riod from January 1991 to May 2003. For each month, there is a small square 

mark, which is shaded according to the temperature value in the month, within 

each sign: the higher the temperature, the darker the shade. The squares are organ-

ised in rows, with 12 marks per row. Hence, each row represents a year. The rows 

are put one below the other; hence, each column represents a certain month of the 

year

For each weather observation station, there is a sign (let us call it a “mo-

saic”) consisting of a number of small square marks, or “tiles”. Each tile 

corresponds to a certain month within the observation period. The tile is 

shaded according to the temperature value in that month: the higher the 
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temperature, the darker the shade (i.e. the retinal variable “brightness” is 

used). The tiles within a mosaic are organised in rows, with 12 tiles per 

row. Hence, each row in a mosaic represents a year, and each column 

represents a certain month of the year. In the lower right corner of the fig-

ure, a few mosaics are enlarged for better visibility. 

In this example, we have used two dimensions of the display space (here 

we mean the space of each mosaic sign, which is embedded in the space of 

the map) to represent a temporal referrer, although time is a linearly or-

dered set, which could be represented by a single dimension. Thus, instead 

of the two-dimensional mosaics, the data could be portrayed by one-

dimensional sequences of tiles or by time graphs, as on the map fragment 

in Fig. 4.13. However, time has a dual nature: it is both linear and cyclic. 

The cyclic aspect of time is not always relevant, but in this case it plays a 

very important role and must be taken into account in the exploration of 

the data. Therefore, a two-dimensional arrangement of marks correspond-

ing to time moments is much more appropriate in this and similar cases 

than is representing a temporal component by a single dimension. In such a 

two-dimensional arrangement, one dimension is used to represent the ap-

propriate circle, e.g. 12 months of a year, 7 days of a week, or 24 hours of 

a day, and the other dimension is utilised to juxtapose representations of 

consecutive cycles. 

Fig. 4.13. The monthly temperatures (i.e. the same data as in Fig. 4.12) are repre-

sented by time graphs embedded in a map 

If we compare the visualisations of the same data in Figs 4.12 and 4.13, 

we shall find the one in Fig. 4.12 both simpler and more informative than 

the other. We can detect locations with generally lower or higher tempera-

tures than in other places: the corresponding mosaics look lighter or darker 

as a whole. Mosaics where the central part is much darker than the margins 

indicate locations with a high contrast between summer and winter tem-

peratures. Locations where the highest or lowest temperatures were ob-

served are also easily detectable. Comparison of rows in a particular mo-
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saic sign allows an analyst to detect warmer and colder years (or springs, 

summers, Januaries, etc.). 

A two-dimensional arrangement is useful not only for visualising peri-

odic data with a previously known period length; it can also be used as an 

instrument for detecting periodicity in data and determining the length of 

the period. For this purpose, an analyst interactively changes the number of 

marks to be put in a row and observes the resulting display until some 

regular pattern emerges (if the data are indeed periodic, something like 

vertical stripes can be expected when the row length corresponds to the 

length of the period). Investigations of this kind have been done, for ex-

ample, by the Russian mathematician Zenkin, who discovered a periodicity 

in the distribution of various properties of the set of natural numbers. One 

of his findings is described in Zenkin (1990). 

4.4.2 Eliminating Excessive Detail 

The second of the two approaches to image simplification considered by 

Bertin consists in eliminating part of the information from the display. Ac-

cording to Bertin, an ordered data component does not permit reordering 

of the graphical elements representing it; hence, simplification can only be 

achieved by eliminating a number of details. As examples, Bertin mentions 

the smoothing of curves in diagrams, and regionalisation and generalisa-

tion in maps. 

The technique of smoothing is demonstrated in Fig. 4.14. The upper 

curve is a time graph representing the variation of the burglary rate in the 

state of New Mexico in the USA over the time period from 1960 to 2000. 

After smoothing has been applied, the curve takes the form shown in the 

lower part of Fig. 4.14. We shall not explain here how the smoothing algo-

rithm works (this information can be found in numerous handbooks on 

statistics). The general idea is to eliminate fluctuations and thereby expose 

the general trend of the changes.  

If we compare the upper curve in Fig. 4.14 with the lower one, we can 

notice that the upper curve has small peaks at time moments t1 and t3 and 

troughs at moments t2 and t4, which are absent in the lower curve. Instead, 

the lower curve exhibits a steady growth of the burglary rate during the 

time interval from t0 to t5, which includes the interval from t1 to t4. Hence, 

the lower curve allows us to disregard the minor oscillations in the bur-

glary rate that occurred at the moments t1, t2, t3, and t4, and see more 

clearly the general increasing trend. 

However, not all sudden rises or drops can be regarded as minor and un-

important. Thus, the peak at the moment t6 followed by a rather steep drop 
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looks like something more serious than just a random fluctuation. Perhaps 

something happened at t6 that caused the crime rate to go down. An ex-

plorer might be interested in investigating this case; in particular, in look-

ing for additional information. However, the distinctive feature consisting 

of a peak at t6 followed by a drop during the interval (t6, t7) does not appear 

in the smoothed curve B. It seems that that curve is oversmoothed: it hides 

not only small fluctuations but also more prominent features, which may 

potentially be important for understanding the phenomenon under analysis. 

Such distinctive features require special attention from the explorer, but 

may easily be skipped as a result of excessive smoothing and simplifica-

tion.

A)

B)

t1 t2 t3 t4 t5 t7t0 t6

Fig. 4.14. Curve A represents the variation of the burglary rate in the state of New 

Mexico. Curve B results from smoothing the curve A using the “moving average” 

technique (averaging over five consecutive time moments) 

Figure 4.15 represents the result of smoothing the same curve (i.e. the 

variation of the burglary rate in New Mexico) with different parameters. 

Specifically, curve B in Fig. 4.14 was obtained by averaging over five con-

secutive years, while curve C in Fig. 4.15 was obtained by averaging over 

three consecutive years. It may be seen that curve C preserves the charac-

teristic features of curve A at the moments t5 and t6 better, while removing 
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the minor fluctuations at t1, t2, t3, and t4 and after t7. The removal of the 

fluctuations makes the overall shape of curve C much simpler than that of 

the original curve A although not so simple as the shape of curve B. How-

ever, curve B eliminates too much information, including potentially sig-

nificant features. Therefore, curve C is more appropriate for exploring the 

burglary rate data than curve B is. 

Hence, smoothing must be done in such a way that, on the one hand, an 

appropriate degree of simplification is achieved, but on the other hand, 

distinctive features are preserved (and maybe even sharpened, to attract the 

attention of the explorer). In fact, this requirement concerns not only curve 

smoothing but also all other simplification techniques involving informa-

tion loss, for example generalisation on maps. 

A)

C)

t1 t2 t3 t5 t7t0 t6t4

Fig. 4.15. The curve of the variation of the burglary rate in New Mexico has been 

transformed here using different smoothing parameters (specifically, averaging 

over three consecutive time moments). The prominent peak at t6 and the trough at 

t7 have been preserved in curve C, while the minor fluctuations at t1, t2, t3, and t4

have been removed 

Map generalisation is a complex process, which involves many aspects: 

simplification of lines and contours, elimination of small objects, merging 

similar small objects into larger shapes (e.g. separate houses into blocks of 

houses), replacement of contours by symbols, and so on. These procedures 

may be characterised as graphical methods of generalisation and simplifi-
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cation. Although there are software tools for automated map generalisa-

tion, they are intended mostly for cartographers rather than data analysts, 

and are included in systems for professional map production rather than for 

exploratory analysis. 

However, graphical generalisation is not the only possible means of 

simplification of a map. The easiest way to make a map (on a computer 

screen) simpler is to remove irrelevant groups of objects or phenomena. 

Objects or phenomena of the same kind are usually organised into “map 

layers” (according to a GIS terminology). The opportunity to switch the 

drawing of any layer on and off is a standard function available in any 

mapping software. 

Simplification may also be achieved by means of generalising quantita-

tive and qualitative characteristics. This approach is often referred to as 

classification. It is often used in thematic maps, but actually has a more 

universal applicability; therefore, let us consider it in more detail. 

4.4.3 Classification 

Let us start with an example. Figure 4.16 shows two maps, on which the 

proportions of elderly people (aged 65 years or more) in the districts of 

Portugal are represented using the retinal variable “brightness”: lighter 

shades correspond to smaller values, and darker shades to higher values. 

The difference between the maps is in the way in which the values of 

the attribute “% 65 or more years” have been encoded by values of the 

retinal variable “brightness”. On the left, the values from the minimum 

(6.7) to the maximum (35.2) are matched with a gradual scale of increas-

ing darkness, as illustrated in Fig. 4.17. On the right, the value range of the 

attribute (i.e. from 6.7 to 35.2) has been divided into three subintervals, or 

classes, with class breaks at 15 and 20. All values within each of the inter-

vals are represented identically; hence, only three different shades are 

used: the lightest shade (white) for the interval (6.7, 15), a medium shade 

for the interval (15, 20), and the darkest shade for the interval (20, 35.2). 

According to cartographic terminology, the map on the left is called an 

unclassified choropleth map, and the map on the right a classified chorop-

leth map. 

The classified choropleth map looks much simpler than the unclassified 

one, which contains very many different shades. The simplification has 

been achieved at the cost of losing a considerable amount of information: 

values in identically shaded districts may differ rather much, but the dif-

ferences cannot be perceived. At the same time, some minor differences 

are exaggerated because quite close values may happen to fall into differ-
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ent classes. Thus, the values in two districts in the north-east (indicated by 

dashed arrows) are quite close to the values in the neighbouring districts. 

This can be seen well from the unclassified map: these two districts are 

shown in nearly the same shade as their neighbours. On the classified map, 

however, they are shaded differently from their neighbours. This is be-

cause the proportions of elderly people in these two districts (19.87 and 

19.90) happen to be slightly below the class break at 20%, while their 

nearest neighbours, with 20.14% and 21.13%, fit into the next class. 

Fig. 4.16. Both maps here represent the attribute “% 65 or more years” by means 

of brightness, with lighter shades corresponding to smaller values and darker 

shades to higher values. On the left, the values from the minimum (6.7%) to the 

maximum (35.2%) have been matched with a gradual scale of increasing darkness. 

On the right, the value range from 6.7 to 35.2 has been divided into three subinter-

vals, or classes, with class breaks at 15 and 20. All values within each of the inter-

vals are represented identically, i.e. only three different shades are used 

21 35.213.8 28.16.7 

Fig. 4.17. The principle of encoding attribute values from the minimum to the 

maximum by gradually increasing degrees of darkness 
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These fallacies refer mostly to the elementary level of analysis; in con-

trast, a classified map may be quite advantageous for the overall analysis 

level, i.e. for synoptic tasks. Thus, the classified map in Fig. 4.16 shows 

some distinctive features of the spatial distribution of the attribute values 

more clearly than does the unclassified map. Specifically, we can easily 

identify low proportions of elderly people near the western coast, with two 

big clusters in the north and in the middle (around the two biggest cities in 

the country, Porto and Lisbon, respectively), and high values in the inland 

areas. The classified map helps an explorer to disregard superfluous detail 

and to grasp the general character of the distribution pattern. As we know, 

such grasping plays a very important role in exploratory data analysis. 

This does not mean, however, that classified choropleth maps are al-

ways superior to unclassified ones as tools for accomplishing synoptic 

tasks, in particular for finding a pattern (i.e. a parsimonious description) 

approximating the overall behaviour of a phenomenon. In the previous 

chapter, we discussed various types of patterns. One of them is a trend pat-

tern; for example, in spatially related data, an increase in the values from 

the north to the south or from the centre of the territory to its periphery. 

Another type is an association pattern. To derive such a pattern, one di-

vides the territory into a possibly smaller number of coherent regions with 

low variations of attribute values within those regions. This procedure is 

often referred to as “regionalisation”. Unclassified maps are better suited 

for detecting trends, because they do not hide differences. Classification 

discards differences between values within a class interval and gives the 

corresponding objects a similar appearance on the map. When these ob-

jects are geographical neighbours, they tend to be visually associated into 

clusters. This property makes classified maps very suitable for regionalisa-

tion. It depends on the data and not on the preferences of the analyst which 

of the two methods of simplification is possible or more effective in any 

particular case. Therefore, the explorer needs both to look at an unclassi-

fied choropleth map and to apply a flexible classification tool, in order to 

find the most appropriate pattern for data with a previously unknown char-

acter of their spatial distribution. 

It was not accidental when we said that an explorer needs a flexible 

classification tool rather than simply a classified choropleth map. The rea-

son is that a single static classified map cannot support regionalisation ap-

propriately. It is well known in cartography that different selections of the 

number of classes and class breaks may radically change the spatial pattern 

perceived from a map (see, for example, MacEachren (1994) and Slocum 

(1999)). Thus, let us consider Fig. 4.18, which shows three more variants, 

in addition to that shown in Fig. 4.16, of the classification of the districts 

of Portugal according to the proportion of elderly people. In all three maps, 
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the number of classes is the same, specifically three. On the left, the 

method known as statistically optimal classification has been applied, 

which produces class breaks at 15.24 and 22.69. The general idea of this 

method is to minimise, for the specified number of classes, the variation 

within the classes and to maximise the differences between them. A more 

detailed description can be found in Jenks (1977) or Andrienko et al. 

(2001). In the centre, the districts have been divided into groups with ap-

proximately equal total populations: the first class, with proportions of eld-

erly people below 10.47%, contains 34.6% of the whole population of the 

country; the second class, with proportions from 10.47 to 15.88%, contains 

32.9% of the population; and the third class, with proportions 15.88% and 

over, contains the remaining 32.5% of the population. On the right, the 

districts have been classified so that the total areas occupied by the classes 

are approximately equal (more precisely, 33.0, 33.2, and 33.8% of the area 

of the whole country). The corresponding breaks are at 16.5 and 20.4%. 

Fig. 4.18. Different variants of the classification of the districts of Portugal ac-

cording to the values of the attribute “% 65 or more years”. Left: statistically op-

timal classification with class breaks at 15.24 and 22.69%. Centre: division into 

classes with approximately equal populations (34.6, 32.9, and 32.5% of the total 

population of Portugal); the values of the class breaks are 10.47 and 15.88%. 

Right: division into classes with approximately equal total areas (33.0, 33.2, and 

33.8% of the whole area of the country); the class breaks are at 16.5 and 20.4% 

Each map suggests a rather salient but different pattern. Thus, the map 

on the left exposes clusters of low and high values as spots on a back-
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ground of medium values. It may be noticed, by the way, that the two dis-

tricts in the north-east which were marked in Fig. 4.16 are no longer visu-

ally separated from their neighbours by different colouring. Hence, the 

optimal-classification algorithm has been quite good in handling close val-

ues. The map in the centre stresses that the smallest proportions of elderly 

people occur in small but densely populated areas around the biggest cities 

but not in those cities themselves (after applying appropriate zooming, it 

may be seen that the municipalities of Porto and Lisbon are shaded differ-

ently from the surrounding districts). It also shows that two-thirds of the 

population of the country live in districts with less than 15.88% of elderly 

people (these are the districts of the first two classes), and that these dis-

tricts are mostly situated along the western coast from the north of the 

country to the centre. In the map on the right, the areas with low, medium, 

and high proportions of elderly people appear almost as strips stretching in 

a north south direction. 

Among these patterns, there are no “right” or “wrong” ones. Each pat-

tern is quite meaningful, and each map contributes to the understanding of 

the distribution of elderly people over the territory of Portugal. In general, 

there is no universal recipe for how to obtain an “ideal” classification with 

understandable class breaks, on the one hand, and interpretable coherent 

regions, on the other hand. Therefore, when we say that classification may 

be used as an instrument of data analysis, we mean not a classified map by 

itself but an interactive tool that allows the analyst to change the classes 

and to observe immediately the effect on the map. Implementations of 

such interactive tools are described, for example, in Egbert and Slocum 

(1992) and Andrienko and Andrienko (1999). 

As we have mentioned, the applicability of classification is not limited 

to maps. Thus, it is quite possible, for example, to classify lines on a paral-

lel-coordinates display such as the one shown in Fig. 4.11. Figure 4.19 

demonstrates the result of classifying the lines in this display according to 

the values of the attribute “% pop. change from 1981 to 1991” (i.e. the 

relative change of the population, expressed as a percentage of the popula-

tion in 1981). The value range of the attribute is from 31.3% to 31.11%. 

We have introduced two class breaks, at 5% and 5%, to divide the dis-

tricts into those with a population decrease (the change ranging from 

31.3% to 5%), a relatively stable population (from 5% to 5%), and a 

population increase (where the change is 5% or more). As on a classified 

choropleth map, different shades have been assigned to the classes: the 

lightest shade (white) to the class with a population decrease, a medium 

shade to the class with stable population, and the darkest shade to the class 
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with a population increase. These shades have been used for the lines in 

the parallel-coordinates display. 

Fig. 4.19. Classification of lines in a parallel-coordinates display, which shows 

characteristics of the districts of Portugal. The lines, which represent the districts, 

are coloured according to the values of the attribute “% pop. change from 1981 to 

1991” in the respective districts. The value range of the attribute (from 31.3 to 

31.11) has been divided into three classes by class breaks at 5 and 5 

The purpose of applying classification to the map was to facilitate the 

revealing of distinctive features of the spatial distribution of the attribute 

values and the finding of an appropriate pattern encompassing those fea-

tures. The purpose of applying classification to the parallel-coordinates 

display was to facilitate the revealing of significant correlations between 

attributes and the finding of an appropriate pattern (for the behaviour of 

the attributes) encompassing those correlations. Thus, if we compare the 

shaded parallel-coordinates display in Fig. 4.19 with the original display in 

Fig. 4.11, we shall notice that the shading indeed helps us to see better how 

the attributes are related. In particular, we see that the population increased 
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in districts with low employment in agriculture, a low proportion of people 

without education, and medium to high proportions of children. The popu-

lation decreased in districts with a low proportion of people who had high 

school education and a relatively high proportion of non-educated people; 

many of these districts have high percentages of people working in agricul-

ture. Moreover, in almost all districts with high employment in agriculture 

the population decreased, except for a single district with a rather large 

increase of the population (such atypical cases usually require special con-

sideration and, very often, the involvement of additional information in 

order to be properly explained). 

The explorer can observe the behaviour of each class more conveniently 

if he/she has an opportunity to view only the lines of one or two selected 

classes while the remaining classes are hidden. Thus, Fig. 4.20 demon-

strates three screenshots of the parallel-coordinates display. In each screen-

shot, one of the classes is visible and two others are hidden. It might be 

even more convenient for analysis if the explorer could easily transform 

the original display into several displays showing each class separately. 

Juxtaposition of these displays, as is shown in Fig. 4.20, facilitates com-

parison of the classes. 

Fig. 4.20. The explorer may have the possibility to look at the lines for each class 

separately, and to compare the classes represented in multiple juxtaposed displays 

With this example of a parallel-coordinates display, we have demon-

strated that classification may be possible and useful not only in maps. In 

fact, we believe that classification has nearly universal applicability. Of 

course, different colours or shades may be used for distinguishing classes 

only in visualisations that have not yet used colours for representing other 

information. However, colouring is not the only possible means for differ-

entiating classes; other visual variables may be used as well. 
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Up to now, we have only considered classification (of elements of a ref-

erence set) according to the values of a single numeric attribute. However, 

the notion of classification is much more general. It is possible to classify 

references on the basis of attributes of any type, taken separately or in 

combination. Let us consider a few examples of different classifications. 

In Fig. 4.21, we can see two maps using a classification of the districts 

of Portugal according to the dominant sector of employment in 1991: agri-

culture, industry, or services. On the left, the districts are coloured depend-

ing on which of the three attributes “% employed in agriculture 1991”, “% 

employed in industry 1991”, or “% employed in services 1991” has the 

highest value. The map allows us to detect a big industrial area in the 

north-west and another, which is located close to it, slightly to the south-

east. We also see a large area in the central east and south-east of the coun-

try with a prevailing employment in services. Agricultural employment 

dominates mostly in the central north. 

However, our observations cannot be deemed completely valid, because 

of the approach taken to defining the dominant occupation. Suppose, for 

example, that the distribution of the working population between the three 

sectors in some district was 33.3, 33.3, and 33.4%. In this case, the sector 

where 33.4% population worked would be chosen as the dominant one. 

The district would be coloured on the map in the colour corresponding to 

this sector and look identical to a district in which 80% of people work in 

that sector. This feature is hardly desirable and useful for analysis. 

To get rid of this undesirable feature, the analyst may wish to change the 

definition of dominance. One possible way is to introduce a threshold so 

that an attribute may be regarded as dominant only when its value is above 

this threshold. The analyst may specify as the threshold some number 

within the value range of the attribute or a percentage of the sum of the 

values of all attributes. In our case, the two methods are equivalent: the 

values of all three attributes are percentages and make 100% in total. For 

example, the map on the right of Fig. 4.21 is the result of applying a domi-

nance threshold of 50% to the original map shown on the left. Districts in 

which none of the attributes reaches above the threshold are classified as 

“mix”. These districts are shown in white. 

The map on the right suggests quite a different pattern of the spatial dis-

tribution than does the map on the left. Instead of large areas with a pre-

vailing employment in services, we now see only relatively small clusters 

in the central west (around Lisbon), along the southern coast (in the Al-

garve province), and in the central inland area. The “industrial” and “agri-

cultural” areas have also shrunk considerably, and the bulk of the territory 

of Portugal has been classified as “mix”. This means that less than 50% of 

the population of these districts works in any of the three sectors. 
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Fig. 4.21. The districts of Portugal are classified here according to the dominant 

sector of employment: agriculture, industry, or services. On the left, the districts 

are coloured depending on which of the three attributes “% employed in agricul-

ture 1991”, “% employed in industry 1991”, or “% employed in services 1991”  

has the highest value. On the right, a constraint has been imposed: an attribute is 

regarded as dominant if its value constitutes 50% or more of the sum of the values 

of all attributes. Districts in which none of the attributes satisfies the constraint are 

classified as “mix”. These districts are coloured in white 

It is clear that the introduction of a dominance threshold has allowed us 

to obtain more accurate information from the map than was possible be-

fore. However, there is a problem with the specification of the dominance 

threshold as a proportion of the sum of the values of all attributes. If, for 

example, the distribution of the working population between the three sec-

tors was 0, 49.9, and 50.1% (which is quite possible, for example, in cities, 

where nobody works in agriculture), the third sector would be chosen as 

dominant even though it had only 0.2% more working people than the sec-

ond sector. In order to be sure that the sector nominated as dominant in-

deed involves substantially more people than the others, the explorer may 

wish to define the dominance threshold as a minimum absolute or relative 

difference between the attribute with the maximum value and the attribute 

with the next highest value. 

Figure 4.22 allows us to compare the results of two approaches to defin-

ing the dominance threshold. The map on the left has been constructed, 



226     4 Tools 

like that in Fig. 4.21, with a threshold of 50% of the sum of the values. The 

map in the centre results from applying a 20% threshold to the difference 

between the maximum value and the next highest value. Although there is 

a clear similarity between the maps, many of the shaded districts in the 

first map (i.e. those classified as having a prevalent sector) are white in the 

second map (i.e. they are evaluated as having no substantial prevalence of 

any of the sectors). At the same time, a few white districts in the first map 

have become coloured in the second map. For instance, the cluster of dis-

tricts in Algarve with dominant employment in services has expanded 

slightly on the second map in comparison with the first map. 

The two approaches to determining the dominant attribute can easily be 

combined. The analyst may specify two thresholds simultaneously: a 

minimum percentage of a sum and the minimum distance to the next value. 

To understand the value of classification according to the dominant at-

tribute, let us compare any of the classification maps with the map on the 

right of Fig. 4.22, on which the same data are represented by bar charts 

positioned inside the contours of the districts. For each sector, there is a 

bar with a height proportional to the percentage of the population working 

in this sector. The shades of the bars are the same as the shades used in the 

classification maps. The bars are arranged in order of decreasing height; 

hence, the first bar from the left corresponds to the sector of dominant em-

ployment in the respective district. 

Unlike the classification maps, the map with the bar charts does not in-

volve any information loss: it shows all available values of all three attrib-

utes. The map is very informative concerning the employment structure in 

each particular district. One can not only see which sector is dominant but 

also estimate the proportion of people working in it and compare this with 

the proportions for the other two sectors. However, the map with the bar 

charts does not promote the revealing of the general characteristic features 

of the spatial variation of the employment structure over the territory of 

Portugal. In Bertin’s terms, this map does not support the overall reading 

level. In our terms, it does not suggest suitable patterns for the spatial be-

haviour of a combination of three attributes. The classification maps, in 

contrast, involve substantial information loss but are quite good for per-

ceiving the whole spatial distribution “in the minimum instant of vision” 

and thereby defining the general patterns of the behaviour. This is their 

primary value for exploratory data analysis. 

What method of defining dominance and what threshold value are ap-

propriate in a particular case of data analysis depend on the data and the 

goals of the analyst. In most cases, it is advisable to try different variants. 

It is important to stress that the analyst needs a flexible, interactive tool for 

“playing” with various classification methods and their parameters, rather 
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than just a single static classification. We made the same note earlier, 

when discussing classification according to the values of a single numeric 

attribute. In fact, this statement applies to any classification. 

Fig. 4.22. Left and centre: classification of districts according to the dominant 

sector of employment using two different ways of specifying the dominance 

threshold: 50% of the total sum, and 20% relative difference from the next highest 

value, respectively. Right: the same data, represented by bar charts 

As the next example of classification, let us consider the method of 

cross-classification according to the values of two numeric attributes. This 

method is rather popular in thematic cartography. The idea of the method 

is to divide the value ranges of each of two attributes into subintervals, 

analogously to classification on the basis of a single numeric attribute. If 

the value range of the first attribute has been divided into M subintervals 

and the value range of the second attribute into N subintervals, this poten-

tially defines M × N different classes. Each class is a combination of two 

intervals, one for the first attribute and one for the second attribute. As in 

other cases of classification, the classes are represented visually, for exam-

ple by colouring. It is reasonable to define such a class-colouring scheme 

so that the analyst can easily identify the meaning of each colour. 

Figure 4.23C (“C” indicates a colour figure; all colour figures are placed 

at the end of the book) demonstrates an example map showing a classifica-

tion of the districts of Portugal according to the values of the attributes “% 

25 64 years” (percentage of population aged from 25 to 64 years) and “% 
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15 24 years” (percentage of population aged from 15 to 24 years). The 

value range of each attribute (from 40.25 to 55.99 and from 8.82 to 21.32, 

respectively) has been divided into three subintervals using the optimal-

classification algorithm mentioned earlier (see Fig. 4.18 and the accompa-

nying text). The resulting class breaks are at 46.78 and 50.56 for the attrib-

ute “% 25 64 years” and at 13.76 and 16.99 for the attribute “% 15 24 

years”. This division defines nine different classes. A colouring scheme 

based on combining colour hue and colour brightness has been created to 

represent these classes. Different hues are used for the attribute “% 15 24 

years”: blue for the interval of low values, green for the interval of me-

dium values, and red for the interval of high values. Different degrees of 

darkness correspond to the division according to the attribute “% 25 64

years”: the lightest shades represent low values, medium shades corre-

spond to medium values, and the darkest shades correspond to high values. 

The division into classes and the assignment of colours of the classes is 

illustrated graphically in the top left corner of Fig. 4.23C. 

Like other maps using classification, cross-classification maps are used 

as tools to support an overall view of the spatial distribution of attribute 

values. It can be noted that the cross-classification map in Fig. 4.23C is 

more difficult to interpret than the previous examples of classification 

maps. This complexity results from the composite meaning of each colour. 

However, the analyst does not need to think about the meanings of the col-

ours right from the beginning.  It is reasonable first to look at the map and 

try to perceive the general pattern of the distribution of the colours. 

The abstract drawing to the right of the map in Fig. 4.23C represents our 

perception of the principal structural features of the image conveyed by the 

map. In the north, we see something like a group of concentric rings with 

their centre somewhere near Porto. On the left (central west), around Lis-

bon, there is a dark green figure, which is connected to the group of rings 

by a green band stretching along the coast. In the southern half of the terri-

tory, we see two belts stretching in the direction of the meridians. The dark 

blue belt on the left is more conspicuous, while the one beside it in lighter 

blue is spotted with intrusions of green and is therefore not so readily seen. 

After grasping the main structural features of the distribution, we can 

start on translating the figures that we have detected into meaningful de-

scriptions in terms of proportions of young and adult people. The concen-

tric rings radiating from Porto are characterised by high proportions of 

young people, which decrease at a larger distance from Porto. However, in 

Porto itself, as well as one of its neighbours, the proportion of young peo-

ple is smaller than around it. The proportion of adults, which is very high 

in the innermost circle, decreases rapidly with increasing distance from 
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Porto and then increases slightly at the eastern edge of the country’s terri-

tory. The coastal belt between the north and the centre is mostly character-

ised by medium to high proportions of adults and medium proportions of 

young people, except for an intrusion of two adjoining districts with high 

proportions of young people in the north of the belt. In the area around 

Lisbon, the proportions of adults are high and the proportions of young 

people are medium. The belt beginning east of this area and stretching to 

the southern coast has high proportions of adults and low proportions of 

young people. In the eastern direction from this belt, the proportion of 

adults decreases. The proportion of young people varies in this area be-

tween low and medium.  

As in the case of the employment structure, we could represent the same 

data by bar charts and thereby avoid information loss. However, the bar 

chart representation would not give us such a general view of the principal 

features of the distribution as is possible with classification. 

As an example of a classification according to a temporal attribute, let 

us consider Fig. 4.24, which represents forest fires that occurred in an area 

during a 7-year period. By inspection of the distribution of the dates of the 

fires over the whole period, we have found that there were 14 time inter-

vals of frequent occurrences of fires, with gaps between them when no 

fires occurred. Each year contains two such periods of fires. The first pe-

riod begins approximately in February and lasts mostly until the end of 

April; in some years it lasts until the end of May or even the beginning of 

June. The second period covers July, August, and September, and in some 

years the beginning of October. There are also a few fires that occurred in 

winter, in December or January. 

On the basis of this finding, we have divided the whole set of fires into 

three classes: spring fires (153 fire occurrences), summer fires (523 occur-

rences), and winter fires (7 occurrences). The result of the classification is 

presented in the maps in Fig. 4.24. The map at the top left shows all the 

fire occurrences, which are represented by small circles coloured according 

to the classes that the fires belong into. Despite the overlap of the symbols, 

we can see even on this map that the spatial distribution of spring fires dif-

fers from that of summer fires. In particular, spring fires rarely occur 

within the east and south-east of the territory, while summer fires are 

nearly evenly spread over the whole territory. To see the differences better, 

we can look at the distribution of each class separately from the others. 

The map at the top right shows us the winter fires (which are very few), 

the map at the bottom left shows the spring fires, and the map at the bot-

tom right shows the summer fires. The difference between the lower two 

maps is rather salient. 
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Fig. 4.24. Forest fires that occurred over a 7-year period, classified according to 

the season of occurrence: winter (December to January), spring (end of February 

to May), and summer (July to September). The fires are represented on the maps 

by small circles coloured according to the class. Top left, all fires; top right, winter 

fires; bottom left, spring fires; bottom right, summer fires 

It is quite possible that the distinction between the spatial distributions 

of spring and summer fires may be well known to any inhabitant of the 

region that the data refer to (or at least to any specialist in forest fires), but 

we have arrived at this finding without any prior knowledge, with the help 
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of classification. However, in order to find the principle to be used for the 

classification, we first analysed the properties of the temporal behaviour of 

the phenomenon. This example shows that classification is not necessarily 

as straightforward as breaking the value range of a numeric attribute into 

intervals or determining the maximum of the values of several attributes. 

Classification may be quite sophisticated and involve supplementary in-

formation from a previous analysis and/or from domain knowledge. An-

other example of this kind could be a classification of tree species, such as 

pine, spruce, oak, and birch, into coniferous and deciduous, or into hard-

wood and softwood, depending on whether the classification is made by a 

botanist or a forest manager. 

We believe that we have provided enough examples of classification to 

demonstrate its important role in exploratory data analysis. Let us now 

look at the remaining groups of methods for display manipulation and then 

consider other categories of tools for EDA. 

4.4.4 Zooming and Focusing 

A common problem of all data displays is the relatively small space avail-

able, whereas the volumes of data that need to be analysed are usually 

rather large or even huge. As a result, it is often impossible to represent all 

data at the same time with sufficient legibility, precision, and level of de-

tail. To fit much data into a small space, one needs to apply a high degree 

of generalisation, use very small marks, and/or permit symbol overlap. All 

of this greatly reduces the amount of information that can be perceived 

from the display or even makes it unintelligible. 

Displays on a computer screen are typically supplied with tools for 

zooming: the user chooses a fragment of a display, and it is enlarged to the 

maximum size permitted by the available space. The corresponding por-

tion of data can now be represented in a better way: with higher precision, 

larger symbols, and less overlap. An evident shortcoming is that this im-

provement applies only to part of the data. The result of zooming can be 

seen metaphorically as the user watching a large picture through a small 

window, which does not permit a full view. Further zooming is similar to 

replacing the current window glass with a lens with higher magnifying 

power: as a result, the user can see a smaller fragment of the picture better. 

Besides zooming, most visualisation tools support the operation of pan-

ning, which can be viewed as shifting the position of the window so that 

another fragment of the picture becomes visible. 

Zooming tools can be divided into two broad groups. One group con-

sists of tools that, after selection of a display fragment, show only this 
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fragment in a larger size and discard the other parts of the display. The 

other group includes tools which show the selected fragment “in context”, 

i.e. with its surroundings. The supposed benefit of such an approach is that 

it supports the user’s orientation and navigation better. In order to make 

the space for increasing size of the selected fragment, the surroundings 

need to be substantially reduced in size. Hence, context-preserving tech-

niques for zooming necessarily involve a distortion of the original display. 

One of the best known distortion-based zooming techniques is the “Fish-

eye view” (Furnas 1986). A survey and taxonomy of distortion-based tech-

niques can be found in Leung and Apperley (1994). 

Zooming, in particular, map zooming, can be done in two general ways. 

One is simply to increase the sizes of the marks and symbols and/or the 

distances between them, without changing the amount and precision of the 

information represented in the fragment being zoomed in. The other ap-

proach is to change the information content by decreasing the degree of 

generalisation and including more detail; for example, by adding small 

objects that could not be made visible at the previous scale. Sometimes, 

this operation is accompanied by changing the symbolisation: a circle that 

has originally represented a city may be replaced by a group of area marks 

portraying major parts of the city or even blocks of houses. 

1 2 3

Fig. 4.25. Simple map zooming: enlargement of the sizes of geographical objects 

and the distances between them is not accompanied by increasing the level of de-

tail
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1 2

3 4

Fig. 4.26. Zooming of a map with addition of more detail and replacement of the 

representation method. Source: http://www.floraweb.de/datenservice/cg_floramap/ 

cg_floramap.html 

Figures 4.25 and 4.26 illustrate the difference between the two methods 

of zooming. In Fig. 4.25, zooming in on a part of the territory of Portugal 

results almost entirely in enlarging the figures representing the districts of 

Portugal and increasing the distances between the bar chart symbols. Only 

labels with district names are added, when the contours of the districts be-

come large enough to allow them to be placed. 

In contrast, Fig, 4.26 demonstrates zooming accompanied by increasing 

the level of detail and changing the representation method. This illustration 

was produced using a Web applet that visualises the distribution of rare 

and endangered plant species in Germany. This applet, together with a 

Web interface for accessing a database containing data about the plants, is 

available at the URL http://www.floraweb.de/datenservice/cg_floramap/ 

cg_floramap.html. 

The applet works as follows. The user sends a query to the database to 

retrieve data about the distribution of some plant species. In response, the 

database sends the requested data, and the applet shows these data on a 
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map of Germany in a generalised form (see map 1 at the top left of Fig. 

4.26). Specifically, the locations where plants of the designated species 

have ever been observed are classified into three classes, according to the 

time when the plants were last seen in those locations: before 1950, be-

tween 1950 and 1980, and after 1980. The locations are marked by squares 

coloured according to the class. 

In the series of zoom operations shown in Fig. 4.26, the first operation 

simply increases the size of the selected part of the territory and the 

squares corresponding to the locations at which the plants were found. 

However, the next operation results in replacing the classification by sym-

bolic signs that convey much detailed information about the findings. Let 

us explain some of the symbols: 

 indigenous occurrence, last observed before 1950; 

 indigenous occurrence, last observed between 1950 and 1980; 

 indigenous occurrence, last observed after 1980; 

 doubtful indigenousness, last observed after 1980; 

 fickle; 

 naturalised, last observed after 1980; 

 domesticated, last observed after 1980; 

+ extinct;

 correction: absent. 

The next zooming operation results in replacing the highly generalised 

background image of the relief of Germany by a topographic map of the 

selected area; the representation of the data concerning the plant species 

remains the same as at the previous zoom level. 

An operation similar to zooming is focusing, which involves selection 

of a data subset rather than a display fragment and results in this subset 

being portrayed with the maximum possible expressiveness. Owing to the 

conceptual similarity to display zooming, focusing may also be called 

“data zooming”. Let us give some examples. 

Figure 4.27 presents a series of screenshots of one and the same map 

display portraying the population densities in the districts of Portugal by 

means of a gradual scale of decreasing brightness or, in other words, in-

creasing darkness, i.e. darker shades correspond to higher values. In the 

map at the top left, the darkness scale is matched to the full range of attrib-

ute values, specifically, from 7 to 7913.  

The population in Portugal is distributed very unevenly. There are a few 

small districts with very high population densities, among them the largest 

cities Lisbon and Porto, with population densities of 7913 and 7261 in-

habitants per square kilometre, respectively, and a satellite of Lisbon 

called Amadora, with a density of 7455 inhabitants per square kilometre. 
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The distance from these values to the next highest value, 3302, is very 

large. As a result, the few very high values (outliers) and the bulk of the 

dataset fit into the opposite ends of the darkness scale. All but a few dis-

tricts in the map are shown in very light shades and look almost identical, 

while a large part (about half) of the darkness scale remains unused.

Fig. 4.27. Focusing applied to a map of population densities in the districts of Por-

tugal. The densities are represented using a gradual scale of increasing darkness, 

i.e. darker shades correspond to higher values. The map at the top left portrays the 

full range of attribute values, from 7 to 7913. A few very high values (outliers) are 

represented by dark shades. Owing to the great distance from these values to the 

rest of the data, the bulk of the dataset fits into the light end of the darkness scale. 

As a result, all districts look similar; no differences can be seen. Focusing allows 

the full extent of the darkness scale to be matched with shorter value intervals, so 

that the values in these intervals may be represented with the maximum possible 

expressiveness. The screenshots, from left to right, correspond to the following 

maximum values matched to the dark end of the darkness scale: 7913, 3302, and 

1250 in the upper row, and 496, 335, and 99 in the lower row 
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The distribution of the population density values present in the dataset 

within the range from 7 to 7913 is shown in the dot plot display to the right 

of the map. The values are represented by circles positioned along the ver-

tical dimension, with the lower end of the display corresponding to the 

minimum value, i.e. 7, and the upper end to the maximum, 7913. It may be 

seen that the density of the circles is very high at the lower end and de-

creases in the upward direction. At the top, there are three circles corre-

sponding to the three highest values. These circles are separated from the 

rest by a wide gap, which “eats” more than half of the length of the dark-

ness scale. The remaining part of the scale provides a rather small number 

of perceptually different shades. It therefore a natural idea to try to remove 

the outliers from consideration and “stretch” the reduced value range so as 

to match the full extent of the darkness scale. As a result, it will be possi-

ble to use more different shades for portraying the values in the selected 

subinterval. Hence, these values may be represented with greater expres-

siveness, so that differences between them can be better perceived. 

The sequence of screenshots in Fig. 4.27 demonstrates the effect of a re-

current application of the operation of selecting a value subinterval to be 

matched to the full extent of the darkness scale. In the second screenshot 

(i.e. in top centre), the three highest values have been removed from the 

representation, and the dark end of the darkness scale corresponds to the a 

value of 3302. The districts corresponding to the removed values are not 

“coloured” (shaded) on the map any more. The software tool used for pro-

ducing the screenshots replaces colouring by triangular symbols, which 

indicate that the corresponding values lie beyond the focusing range. The 

map looks less uniform than the original display: we can see areas around 

Porto and Lisbon shaded slightly darker than the rest of the territory. Nev-

ertheless, the map is not sufficiently expressive.  

The next screenshot (top right) corresponds to an even shorter subinter-

val, specifically, from 7 to 1250. The clusters around Lisbon and Porto 

have become more apparent. Between these clusters, one can detect a band 

of relatively high population density (identified owing to a slightly darker 

shading than in the remaining territory) stretching along the coast. In the 

next screenshots (in the lower row), one can observe a spatial trend of de-

creasing population density from the coast towards the inland areas, as 

well as a large area of low population density in the southern part of the 

country, except for the southern coast. In the last screenshot (bottom right), 

with the interval from 7 to 99 represented by shades, the differences be-

tween individual values within this interval are very salient. 

In this example, we dealt with a single numeric attribute. Focusing was 

done by selecting subintervals of the whole value range of the attribute. 

How do we do focusing if we have two or more numeric attributes? 
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Figures 4.28 and 4.29 demonstrate two possible approaches. In Fig. 

4.28, the percentages of people employed in agriculture, industry, and ser-

vices in the districts of Portugal are represented by bar charts with bar 

heights proportional to the values of the respective attributes. For better 

visibility of the bar charts, we have zoomed in on the central part of the 

country and switched off the drawing of the district boundaries. 

The three attributes, i.e. “% employed in agriculture 1991”, “% em-

ployed in industry 1991”, and “% employed in services 1991”, have differ-

ent value ranges. The maximum value of the first attribute is 61.41, the 

maximum value of the second is 74.20, and the maximum value of the 

third is 85.57. The bar charts have been constructed so that a unit of bar 

length has the same meaning (i.e. the same corresponding value) in all 

three bars representing different attributes. This has been done by match-

ing the maximum bar size chosen for the charts to the maximum of the 

values of all three attributes, i.e. the value 85.57. Any other value x of any 

attribute is represented by a bar height computed according to the formula 

x divided by 85.57, multiplied by the maximum bar height. Since 85.57 is 

the highest value in the dataset, the resulting bar height will definitely not 

be more than the maximum bar height.   

The bar chart visualisation allows one to do focusing by choosing a 

smaller value to match the maximum bar height. Then, the height of the 

bar that represents the value x is determined by the formula x divided by N,

multiplied by the maximum bar height, where N is the chosen value. Since 

N is smaller than the maximum value in the dataset, it may happen that the 

computed bar height h for the value x is greater than the chosen maximum 

bar height H. In this case, instead of a bar with a height h, a rectangular 

frame with a height H appears at the corresponding position in the chart. 

Such frames can be seen in the lower map fragment in Fig. 4.28. 

However, the appearance of the frames is not the main effect of the fo-

cusing operation. The main result (and the reason for applying focusing) is 

that the values in the interval from 0 to N can now be represented more 

expressively than before: the value corresponding to a unit of bar height 

has become smaller and, hence, finer differences may be perceived. 

Analogously to the previous example, the dot plots to the right of the 

maps represent the distribution of the values of the three attributes within 

their value ranges. The vertical line shows the combined value range of all 

three attributes. The triangular marks indicate which portion of this range 

is currently matched to the maximum bar height. In the upper picture, this 

is the entire combined value range, i.e. from 0 to 85.57; in the lower pic-

ture, this is about three-quarters of the entire range; more precisely, the 

interval from 0 to 62. 
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Fig. 4.28. Focusing by reducing the attribute value to be matched to the chosen 

maximum bar height. Top: the maximum bar height corresponds to the maximum 

value 85.57 of the values of the three attributes “% employed in agriculture 1991”, 

“% employed in industry 1991”, and “% employed in services 1991”. Bottom: the 

maximum bar height corresponds to the value 62.0. Values greater than this are 

represented by frames with a height equal to the maximum bar height. Values be-

low or equal to 62.0 are represented by bars of proportional height 

In this example, focusing is done by specifying a constraint common to 

all attributes concerning the value interval to be represented by the chosen 

visual means (values that do not fit into this interval are shown in a special 

way). Another approach is to constrain the range of some integrated char-

acteristic derived from the values of individual attributes, such as the sum 

of the values. This approach is demonstrated in Fig. 4.29. 
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Fig. 4.29. Focusing by constraining the maximum sum of attribute values. Pie 

charts represent the total number and the proportions of people working in three 

sectors of the economy. The size (area) of a pie is proportional to the sum of the 

number of people working in all three sectors. At the top, the maximum pie size 

corresponds to a value of 281 078. The pies in the districts with little working 

population cannot be seen, because of their very small sizes. At the bottom, the 

maximum sum of values to be represented by the pie size has been limited to  

26 000. As a result, many of the formerly invisible pies have become sufficiently 

large to be seen. In the districts where the working population exceeds 26 000, 

hollow circles are drawn instead of pies  



240     4 Tools 

The map fragments in Fig. 4.29 are also related to the employment 

structure in the districts of Portugal. However, instead of the percentages 

of people employed in agriculture, industry, and services, the maps repre-

sent the absolute numbers of such people, which constitute the values of 

the attributes “total employed in agriculture 1991”, “total employed in in-

dustry 1991”, and “total employed in services 1991”. To represent these 

values, the pie chart method is used: for each district, there is a circle 

(“pie”) divided into three sectors (“pie slices”) proportional to the numbers 

of people working in agriculture, industry, and services. The size (area) of 

the circle is proportional to the total working population in the district, i.e. 

the sum of the values of all three attributes. Analogously to the bar chart 

representation method discussed above, a certain maximum pie size is cho-

sen. This size is initially matched to the maximum of the sums of the val-

ues of the three attributes computed for all districts. For any district, the 

size of the corresponding pie is defined by the following formula: the sum 

of the three attribute values divided by the maximum sum multiplied by 

the maximum pie size. 

The resulting representation is shown in the map fragment at the top of 

Fig. 4.29. We have already mentioned that the population of Portugal is 

distributed very unevenly, i.e. the number of inhabitants in a district varies 

greatly. This also applies to the working population (i.e. the sum of the 

number of people employed in the three sectors of the economy), which 

ranges from 566 to 281 078. The maximum number, which is attained in 

Lisbon, is much higher than the next highest number 153 319.  Only 5 of 

275 districts (1.8%) have a working population over 85 000, and only 23 

districts (8.4%) have more than 35 000 working people. 

As a consequence of such an uneven distribution, only a few pies are ac-

tually seen in the upper map fragment in Fig. 4.29. This is because the 

working population in most districts is so small in comparison with the 

maximum value, 281 078, that the sizes of the corresponding pies are close 

to zero, and the pies cannot be seen. 

The lower map fragment demonstrates the result of focusing on the in-

terval of value sums from 566 to 26 000. This means that the maximum pie 

size corresponds to the value 26 000, instead of the 281 078 in the original 

map. Hence, the value of a unit of pie size has become much less than be-

fore, and it is now possible to represent smaller numbers of working peo-

ple by pies with quite discernible sizes. In the districts where the working 

population exceeds the limit of 26 000, hollow circles are drawn instead of 

pies. The proportions of people employed in the various fields can still be 

determined from the division of the circles into coloured arcs (which is not 

clearly visible on the greyscale reproduction but can be seen better on a 

computer screen). 
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The line below each map represents the entire range of the sums of val-

ues, i.e. from 566 to 281 078. The triangular symbols indicate the current 

focus interval. At the top, this corresponds to the full range; at the bottom, 

it corresponds to the interval from 566 to 26 000. 

On a map, the difference between the operations of zooming and focus-

ing is evident. Thus, both map fragments in Fig. 4.29 have been produced 

by means of zooming, but the lower fragment is also the result of focusing 

applied to the upper fragment. In some visualisations, however, zooming 

and focusing have exactly the same meaning and effect. This applies to 

visualisations in which attributes or referrers are represented by spatial 

dimensions of the display. In such a visualisation, selection of a display 

fragment to be enlarged is equivalent to choosing a value subset to be 

shown with the maximum possible expressiveness. 

Fig. 4.30. Focusing in a time graph display. The horizontal dimension represents 

the time interval from the year 1960 to the year 2000. The vertical dimension is 

used to represent the values of the attribute “Burglary rate” in the states of the 

USA. The upper display shows the whole time interval and the full range of at-

tribute values, specifically, from 0 to 2709. The lower display results from focus-

ing on the last 20 years and on the attribute values from 993 to 2907 

Let us take a look at the time graph at the top of Fig. 4.30. The horizon-

tal dimension of this display represents the time interval from the year 
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1960 to the year 2000. The vertical dimension is used to represent the val-

ues of the attribute “Burglary rate” in the states of the USA, which range 

from 0 to 2709. If, for example, an analyst wishes to consider in more de-

tail the last 20 years of the entire time period and attribute values of around 

1000 or higher, he/she may focus on the time interval from 1981 to 2000 

and an interval of attribute values from about 1000 to the maximum value, 

i.e. 2907. The result of such focusing is presented in the lower part of Fig. 

4.30. The same result could be achieved by means of zooming in on the 

part of the display corresponding to the selected intervals.  

In general, zooming and focusing are used in order to see more detail or 

to better differentiate elements of a visualisation. Such needs are typically 

more pertinent to elementary tasks than to synoptic ones. However, the 

example concerning the population density in Portugal (see Fig. 4.27) 

shows that focusing can also be very helpful for grasping the distinctive 

features of a behaviour as a whole (in our example, the distribution of the 

population density over the entire territory). This usually happens when the 

data contain outliers, i.e. extremely high or extremely low values, which 

differ very much from the rest of the data. In such cases, removing the out-

liers from the consideration allows an analyst to get a clearer overall view 

of the bulk of the dataset. 

4.4.5 Substitution of the Encoding Function 

Any data visualisation is based on encoding elements of data, i.e. values of 

referrers and attributes, by graphical features, i.e. values of display dimen-

sions and graphical variables. This encoding may be specified by means of 

a mathematical formula, for example, the following formula for encoding 

values of numeric attributes by the heights of bars in a bar chart: 

height = H x M (Example 1)

where x is the value to be encoded, M is the maximum of the values of the 

attributes involved in the visualisation, and H is the chosen maximum bar 

height. Another possibility is to define the encoding of data by graphical 

features through a set of rules; for example, in the case of encoding attrib-

ute values by colours, 

if x = “spruce” then colour = “dark green”; 

if x = “pine” then colour = “light green”; 

if x = “oak” then colour = “brown” (Example 2) 

or
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if x b1 then colour = “green”; 

if b1 < x b2 then colour = “yellow”; 

if x > b2 then colour = “red” (Example 3) 

Whatever method is used to specify the visual encoding of data values, 

we shall generally say that the encoding is defined by a certain function (in 

the mathematical sense), which converts data values into graphical fea-

tures. We shall call this function the visual encoding function. In fact, any

display manipulation is manipulation of its visual encoding function. Let 

us consider how such a function can be manipulated. 

Any visual encoding function involves variables, independent and de-

pendent, and constants. The independent variables in such a function are 

variables representing attributes or referrers of the dataset, such as the 

variable x in all three examples given above. The dependent are visual 

variables or dimensions, such as height in example 1 and colour in exam-

ples 2 and 3. The constants are specific values of either data components, 

such as M in Example 1, “spruce” etc. in Example 2, and b1 and b2 in Ex-

ample 3, or visual variables, such as H in Example 1 and the particular 

colours in Examples 2 and 3. We shall call specific values of visual vari-

ables involved in a visual encoding function “visual constants”, and values 

of data components used in this function “data constants”. 

Visual constants are usually chosen more or less arbitrarily. Thus, one 

can choose the maximum bar height to be 20, 25, or 30 millimetres in Ex-

ample 1 or select another set of colours to represent forest types in Exam-

ple 2. Of course, one should bear in mind some practical limitations and 

legibility requirements: the maximum bar height should be neither too big 

nor too small, and the colours used to represent different categories must 

be visually well distinguishable. Within these limitations, the choice of 

visual constants is mostly a matter of taste; it does not substantially affect 

the process and outcomes of data analysis. 

The situation with data constants is different. On the one hand, they 

cannot be chosen as freely as visual constants, but are typically determined 

by the values present in the dataset. Thus, the value of the constant M in 

Example 1 is determined by the maximum of the attribute values present in 

the dataset. There is no sense in choosing a higher value for M than the 

maximum attribute value – this would decrease the expressiveness of the 

visualisation. It is, in principle, possible to choose a smaller value for M

than the maximum attribute value; however, in this case it is necessary to 

specify how to handle attribute values greater than M, for example by de-

fining an additional encoding function to be used for such values. In Ex-

ample 2, the values “pine”, “spruce”, “oak”, etc. are elements of the value 

set of a particular data component. These constants could be replaced by 
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“coniferous” and “broadleaved” (taking into account the semantics of the 

data) but not by “cigarettes” and “beer”. In Example 3, the constants b1

and b2 must be chosen from the value range of the attribute represented 

through this visual encoding function. 

On the other hand, changing data constants typically affects the visuali-

sation much more seriously than does changing visual constants. In this 

section, we have demonstrated and are going to demonstrate further that 

display manipulation is of great use in exploratory data analysis, and al-

most all examples of display manipulation that we have discussed so far 

have been based on the alteration of data constants in visual encoding 

functions. Thus, the bar chart display shown in Fig. 4.28 uses the function 

presented in Example 1 for encoding values of the attributes by bar sizes. 

Focusing of the bar chart display is actually changing the constant M in 

this function. A similar function is used for encoding numeric values by 

degrees of darkness: darkness = D x : M, where D is the maximum dark-

ness to be used in the display. Focusing in this case is, again, changing the 

value of M, and Fig. 4.27 demonstrates its great value in data exploration. 

Example 3 corresponds to classification of references, such as districts in 

Portugal, on the basis of some numeric attribute, such as the percentage of 

elderly people. The constants b1 and b2 are the class breaks. Figure 4.18 

shows how changing the class breaks may affect the pattern perceived 

from the map. One can also modify this visual encoding function by add-

ing new breaks or removing some of the existing breaks. The encoding of 

qualitative attribute values by colours, as in Example 2, may be modified 

by means of grouping the values (e.g. “spruce” and “pine” into “conifer-

ous”) and assigning the same colour to all members of a group. 

However, not only constants in the definition of a visual encoding func-

tion may be changed, but also the function itself may be replaced by an-

other function with the same independent and dependent variables. Thus, 

the linear function in Example 1 may be replaced by a logarithmic function 

height = H  log(x) : log(M)

and the same can be done for the darkness: 

darkness = D  log(x) : log(M)

Non-linear encoding functions are often used when the statistical distri-

bution of the attribute values is greatly skewed. In particular, logarithmic 

functions are helpful when a dataset contains a few very high values but 

the majority of values are quite small. When such data are graphically en-

coded through a linear function, only a rather small number of perceptually 

different values of a visual variable are available for representing the bulk 
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of the attribute values. As a result, the graphical representation of these 

attribute values is not sufficiently expressive, i.e. different values are visu-

ally indistinguishable. We had such a situation in the example concerning 

the population densities in the districts of Portugal (see Fig. 4.27). When a 

linear function was used to encode the attribute values by darkness, only 

focusing on a very small subrange of density values allowed us to differen-

tiate between the shades of the districts in the greater part of the map. 

When a logarithmic encoding function is applied instead of a linear one, 

the map of population densities changes greatly. The difference is demon-

strated in Fig. 4.31. The map on the left was built with a linear encoding 

function, and the map on the right with a logarithmic encoding function. 

As compared with the original map, the map on the right not only allows 

us to differentiate between population densities in districts in the east and 

in the south of the country but also demonstrates a salient pattern in the 

spatial distribution of the attribute values, specifically a decreasing trend in 

the direction from coastal to inland areas. 

Fig. 4.31. A linear function for encoding population densities by degrees of dark-

ness (left) has been substituted by a logarithmic function (right). The resulting 

map shows much more clearly the distinctive features of the spatial distribution of 

the population densities 

Let us investigate what makes the map on the right more expressive than 

the one on the left. Beside each map, we have placed a dot plot aligned 
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with a darkness bar to demonstrate how attribute values are matched in this 

map to degrees of darkness. The lower ends of the dot plots correspond to 

the lowest population density value, and the upper ends to the highest 

value. In both cases, the lowest attribute value corresponds to the lightest 

shade, and the highest value to the darkest shade. However, the remaining 

values are distributed between the ends of the dot plots quite differently. 

On the right, the lower part of the dot plot looks stretched and the upper 

part compressed in comparison with the plot on the left. Owing to this, a 

longer interval of the darkness scale is available for representing the small 

values.

a1 b1

a2

b2

x

log(x)

Fig. 4.32. The difference between linear and logarithmic encoding is demonstrated 

graphically here. The circles represent the districts of Portugal; their horizontal 

positions correspond to the population densities in the districts, and their vertical 

positions to the decimal logarithms of the population densities 

The effect of stretching the interval of low values and shrinking that of 

higher values is brought about by the properties of the logarithm function, 

as is visually explained in Fig. 4.32. Here, the horizontal positions of the 

circles correspond to the population densities in the districts of Portugal, 

and the vertical positions to the decimal logarithms of these values. It may 

be clearly seen that the small values of population density fit into a very 

short interval a1 of the darkness scale, while their logarithms are distrib-

uted over a much extended interval a2. The gap between the highest three 

values and the rest is very wide on the linear (horizontal) axis and rather 
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short on the logarithmic (vertical) axis; these distances are denoted by b1

and b2, respectively. 

Not only linear or logarithmic encoding functions may be used in data 

visualisation; any other non-linear function may also be suitable for these 

purposes if it is monotonic, i.e. either increasing or decreasing but not in-

creasing in one part of its domain and decreasing in another part. For ex-

ample, Unwin and Hofmann (1998) suggest a parameterised visual encod-

ing function with two parameters a and b. The function is defined as fol-

lows:
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where 0 < a < 1 and b > 0 

Fig. 4.33. The graphical form of the parameterised visual encoding function sug-

gested by Unwin and Hofmann (1998) for various choices of the parameter values. 

Reprinted from Exploring Geovisualization, ed. by Dykes, J., MacEachren, A.M., 

Kraak, M.-J., p.134, Copyright (2005), with permission from Elsevier 

Figure 4.33 shows the graphical form of this function for different 

choices of the parameters a and b. It may be seen that the function be-

comes linear when b = 1. When b < 1, the function extends the margins of 

the attribute’s value range and shrinks the middle part. When b > 1, the 

middle part is stretched and the margins are compressed. The value of the 

parameter a defines which of the margins will be stretched more. Increas-
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ing a when b < 1 enhances the extension at the beginning of the value 

range and decreases the extension at the end of it. The opposite takes place 

when b > 1. 

As in the case of linear encoding functions, data displays based on non-

linear functions can be manipulated further by changing the parameters 

used in the definitions of those functions. For example, an analyst can in-

teractively change the values of the parameters a and b in Unwin and 

Hofmann’s function until a satisfactory display expressiveness is achieved. 

Nothing prevents any other monotonic non-linear function being used 

for the visual encoding of attribute values. However, the more complex the 

function is, the more difficult it becomes to interpret the resulting visuali-

sation. In fact, whatever non-linear encoding function is used, the analyst 

must refrain from estimating values and differences between values from 

the appearance of the corresponding graphical features. He/she should treat 

the perceived differences in shades, sizes, positions, etc. just as indications 

of the existence of real differences. The explorer can find out which of two 

values is bigger but should be very cautious in judging how much bigger it 

is. Thus, the map on the right of Fig. 4.31 allows us to see that the popula-

tion densities are higher at the coast than inland, but it is impossible, with-

out using additional tools, to determine the real amount of difference. 

In order to avoid misinterpreting data, it is recommended that one 

should not use non-linear encodings alone, but combine them with visuali-

sations based on linear encoding functions. By comparing such comple-

mentary views, one can attain a truthful grasp of the data. 

4.4.6 Visual Comparison 

The role of the display manipulation techniques discussed in this subsec-

tion is not in fact limited to facilitating comparison operations. We use the 

term “visual comparison” simply because we have not found a better way 

to express in a short but understandable phrase the main idea of these tech-

niques, that is, to emphasise deviations of attribute values from a particular 

value, which can be specified interactively. 

Let us explain this idea with an example. In Fig. 4.34C, we can see an 

unclassified choropleth map. Unlike the other unclassified choropleth 

maps that we considered before (see Fig. 4.16, left, and Fig. 4.27), this 

map uses shades of two colour hues to represent values of a single numeric 

attribute, specifically, the attribute “% female 1991” (the percentage of 

females in the population in 1991). Hence, two visual variables are in-

volved in this visualisation, hue and brightness (i.e. darkness), while the 

previous choropleth maps employed only darkness.  
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When hue is used in an unclassified choropleth map, two different in-

stances of this variable are used to indicate whether an attribute value is 

smaller or greater than some selected reference value. In Fig. 4.34C, this 

reference value is 50. Values greater than 50 are represented by a brown 

hue, and values below 50 by a blue hue. Brightness shows how much an 

attribute value differs from the reference value, i.e. the degree of darkness 

is proportional to the difference between the attribute value and the refer-

ence value (in our example, 50). 

A colour scale constructed according to the principle described above is 

called a diverging, or double-ended, colour scale (Brewer 1994). The ref-

erence value is often called the “midpoint” of this colour scale. Usually, 

attribute values equal to the midpoint are represented by a specially chosen 

colour, for example white. The purpose of using a diverging colour scale is 

to show deviations of attribute values from a chosen midpoint. 

The function for the visual encoding of numeric attribute values using a 

diverging colour scale is defined generally as follows: 
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Here, x is the independent variable that stands for the attribute value to be 

encoded; hue and darkness are the dependent variables, which determine 

the hue and darkness of the shade to be used to represent this attribute 

value, R is the reference value, or midpoint, H1 and H2 are two different 

hues chosen for values below and above the midpoint, respectively, D is 

the maximum darkness, m is the minimum attribute value to be encoded, 

and M is the maximum attribute value to be encoded. The expression N

means the absolute value of the number N, which equals N when N  0 and 

–N (minus N) when N < 0. The expression max(N1, N2) means the maxi-

mum of the numbers N1 and N2. In the example shown in Fig. 4.34C,  

R = 50, H1 = blue, H2 = brown, m = 46.44, and M = 56.94 (after removing 

the outlier 86.17 by means of focusing). 

The same idea can also be applied to other visualisation techniques. 

Thus, Fig. 4.35C demonstrates the cartographic visualisation technique 

known as “graduated circles”. In traditional cartography, the sizes (more 

precisely, areas) of the circles are proportional to the numeric attribute val-

ues that they represent. In a computer implementation, the technique of 

graduated circles may be modified so as to show, instead of the attribute 

values as such, their deviations from some chosen reference value. Thus, 
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in Fig. 4.35C, the values of the attribute “% pop. no primary school educa-

tion 1981” (the proportion of the population without a primary school edu-

cation in 1981) in the districts of Portugal are compared with 50%. The 

sizes (areas) of the circles are proportional to the differences between the 

corresponding attribute values and 50. The circles representing values be-

low 50 are coloured in cyan, and a red hue is used to represent values 

greater than 50. The encoding function in this case is almost the same as 

that specified in (4.2), except that the visual variable size is used instead of 

darkness, and the constant D denoting the maximum darkness is replaced 

by a certain maximum circle size S.

An apparent advantage of the maps in Figs 4.34C and 4.35C is the ease 

with which values below and above the reference value may be located. 

Thus, the groups of cyan circles in the north-west and central west of the 

map in Fig. 4.35C immediately attract the viewer’s attention. This excel-

lent property can be enhanced by the possibility to easily change the refer-

ence value, which is not a problem in a computer display. Thus, the user 

can enter an exact value in a special field, choose a value by dragging a 

slider along an axis representing the value range of the attribute, or simply 

click on a district on the map to turn the corresponding value into the ref-

erence value. Any such operation results in the map being immediately 

updated taking the new reference value into account.  

This responsiveness not only allows the user to perform quick and easy 

comparisons of values in all districts at once with particular values of in-

terest (such as 50% for the proportion of women) or to compare a value in 

any district with the values around and over the whole country. It may also 

greatly help in a search for simple and understandable patterns in the spa-

tial distribution. An analyst may gradually move the slider that controls the 

reference value and observe what happens on the map. The kinds of 

changes that may be expected are the emergence and evolution of various 

shapes resulting from the visual association of neighbouring objects or ar-

eas coloured in the same hue. The associative power of the visual variable 

“hue” is so great that human perception tends to unify objects with 

neighbours that have the same hue, regardless of any differences in their 

brightness. This makes the whole spatial distribution appear as a collection 

of integrated shapes, which are less numerous than the original set of dis-

tricts or locations; hence, simplification without information loss is 

achieved. In the course of movement of the slider, the analyst notes the 

most prominent and clear-cut shapes that emerge on the map, and thereby 

advances his/her understanding of the data distribution. 

Figure 4.36C presents several screenshots from such a process of inves-

tigating a spatial distribution by changing the midpoint of a diverging col-

our scale. As in Fig. 4.34C, the map represents the percentages of females 
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in the population in the districts of Portugal in 1991; the outlier 86.17 has 

been removed by means of focusing. In the leftmost map, the reference 

value is equal to the minimum attribute value 46.44; therefore, only shades 

of brown are present in the map, and the one district in which the mini-

mum value is attained is white. The next screenshot (second from left) cor-

responds to the reference value 50, as in the map in Fig. 4.34C. A blue 

cluster of districts with values below 50% is easily detected in the south-

west of the country. At a reference value of 51.06 (the third screenshot), a 

blue cluster in the north-east emerges, and the previously detected blue 

cluster in the south-west expands to the east and north. A small blue shape 

also appears in the west of the central part of the country. The fourth map 

corresponds to a reference value of 51.74. The former blue cluster in the 

north-east has extended to the west and now covers almost the whole 

northern part, except for the “horn” in the north-west, where the values of 

the attribute are, apparently, very high. The southern half of the territory is 

now mostly blue, except for a few brown “islands”. Brown shades still 

prevail between this half and the north, but they mostly disappear in the 

next screenshot corresponding to a reference value of 52.83. At this value, 

only the “horn” in the north-west, the district of Lisbon, and a few other 

scattered districts remain brown. 

decreasing spatial trend 

decreasing spatial trend 

extremely high 

values 

rather low 

values 

rather high 

values 

Fig. 4.37. A simplified representation of the spatial distribution of the percentages 

of females in the population over the districts of Portugal 
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From these observations, one can derive a pattern or mental image of 

the spatial distribution, which may look, for example, as is shown in Fig. 

4.37. Hence, the “visual comparison” technique not only may help one to 

quickly find values below and above a certain threshold but also may be 

useful in studying the overall behaviour of an attribute over a reference set 

and approximating this behaviour by appropriate patterns. 

A diverging colour scale can be used not only in an unclassified chorop-

leth map but also in a choropleth map with classification. Compare, for 

example, the three maps in Fig. 4.38C. All maps represent the same classi-

fication of the districts of Portugal according to the relative change in the 

population from 1981 to 1991. We have defined the following classes: 

strong population decrease (the change is below –10%), moderate decrease 

(from –10 to –2%), nearly stable population (the change is between –2 and 

2%), moderate increase (from 2 to 10 %), and strong increase (over 10%). 

On the left of Fig. 4.38C, these classes are represented using a diverging 

colour scale, with shades of blue in one part, shades of red in the other 

part, and white colour in between. The colours are assigned to the classes 

so that the blue end of the colour scale corresponds to a population de-

crease (dark blue to a strong decrease and light blue to a moderate de-

crease), white corresponds to population stability, and red corresponds to a 

population increase (light red to a moderate increase and dark red to a 

strong increase). As in the case of the unclassified choropleth map, the use 

of the diverging colour scale exposes deviations from something, which in 

this case is a reference interval (from –2 to 2) rather than a single reference 

value. The hue, blue or red, indicates the direction of deviation, i.e. lower 

or higher, and the darkness shows the amount of deviation. The selection 

of the reference class in such a choropleth map can be done interactively, 

like the selection of the reference value in an unclassified choropleth map. 

By comparing the map based on the diverging colour scale with the two 

other maps in Fig. 4.38C, which represent the same classes by means of 

differently constructed single-hue colour scales, one can come to the con-

clusion that the former map supports much better the differentiation be-

tween areas with a population increase and those with a population de-

crease. It can be said that this map visually divides the territory into areas 

of increasing and decreasing population. In this respect, it differs from the 

maps in the centre and on the right, which do not impose any division of 

the territory but instead emphasise the coast-to-inland trend of decreasing 

population growth (centre) and increasing population loss (right). Hence, 

manipulation of the colour scale allows one to obtain complementary 

views of the spatial distribution and thereby arrive at a better understand-

ing of the character of this distribution. 
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Let us also briefly discuss how the visual comparison technique can be 

applied to visualisations of several numeric attributes. Two different cases 

should be distinguished:  

1. There is a common visual encoding function, applied equally to the val-

ues of all of the attributes. 

2. Each attribute has its individual function for the visual encoding of its 

values.

In the first case, the visual comparison technique is based on choosing a 

common reference value for all attributes. In the second case, an individual 

reference value may be specified for each of the attributes. Let us illustrate 

both cases by examples. 

The map fragments in Fig. 4.39 demonstrate an application of the visual 

comparison technique to a bar chart representation of two numeric attrib-

utes, specifically, the percentages of the working population employed in 

services in the years 1981 and 1991 in the districts of Portugal. The values 

of the attributes range from 11.09 to 80.89 and from 20.12 to 85.57, re-

spectively. For better visibility of the charts, we have switched off the 

drawing of the district boundaries and names. The map fragment denoted 

as A demonstrates the original appearance of the map, when no transfor-

mation has been applied yet. The heights of the bars are proportional to the 

values of the attributes (the visual encoding function presented in Example 

1 in the Sect. 4.4.5 has been used to compute the bar heights). 

The fragments B, C, and D result from applying the visual comparison 

operation with reference values of 30, 40, and 50, respectively. The opera-

tion changes the portrayal of attribute values so that downward-pointing 

bars represent values below the reference value and upward-pointing bars 

represent values higher than the reference value. The heights of the bars 

are proportional to the difference between the attribute value and the refer-

ence value. The visual encoding function thus takes the form 

M

Rx
Hheight

Rx

Rx
norientatio

 ifdown

 ifup

(4.3)

where x is an attribute value, R is the reference value, H is the chosen 

maximum bar height, and M is the maximum of the values of all attributes. 

In fact, this is a more general form of the function for encoding numeric 

values by sizes of marks than that presented in Example 1 in Sect. 4.4.5. 

The latter is a special case of the function (4.3), which is valid when R = 0 

and all attribute values in the dataset are non-negative. 



254     4 Tools 

A) B)

C) D)

Fig. 4.39. The bar charts represent the percentages of working people employed in 

services in 1981 and 1991 in the districts of Portugal. The value ranges of the at-

tributes are from 11.09 to 80.89 and from 20.12 to 85.57, respectively. A, original 

view; B, visual comparison with 30%; C, visual comparison with 40%; D, visual 

comparison with 50%  

In the example just considered, the values of two numeric attributes with 

similar value ranges have been represented graphically using the same vis-

ual encoding function. Therefore, the reference value in the visual com-

parison operation has been common to both attributes. In the next example, 

we have four attributes with rather different value ranges: 

1. “% pop. no primary school education 1991” (the percentage of people 

without primary school education in 1991), ranging from 7.33 to 37.86  

2. “% pop. with primary school education” (the percentage of people with 

primary school education in 1991), ranging from 18.69 to 35.14 
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3. “% pop. with preparatory school education 1991” (the percentage of 

people with preparatory school education in 1991), ranging from 3.43 to 

16.97 

4. “% pop. with high school education” (the percentage of people with 

high school education in 1991), ranging from 1.29 to 13.83. 

The smallest value of the second attribute is higher than the maximum val-

ues of the third and fourth attributes. If a common visual encoding function 

were applied to those data, all bar charts would look nearly the same. The 

second bar would always be very tall and the third and fourth bars very 

short. Therefore, it makes more sense to use an individual encoding func-

tion for each attribute.  

The bar chart visualisation in Fig. 4.40 has been constructed differently 

from that in the previous example. First, in the “original” view (part A), an 

attribute value has been encoded by a bar with a height proportional not to 

that value itself but to the difference between the value and the minimum 

value of the attribute. In other words, the bar height portrays the distance 

from the current attribute value to the minimum value of that attribute. 

Hence, a bar of zero height represents the smallest value of the respective 

attribute available in the dataset, not the value 0. Second, while the maxi-

mum bar height is common to all four attributes, it corresponds to a dis-

tinct value for each of the attributes, specifically, the maximum value of 

this attribute. Hence, the “worth” of a unit of bar height differs from attrib-

ute to attribute. 

The visualisation can be manipulated by choosing an individual refer-

ence value for each attribute, which results in the bar charts being trans-

formed in the same way as in the previous example. The visual encoding 

function differs slightly from the previous one: 

mM

Rx
Hheight

Rx

Rx
norientatio

 ifdown

 ifup

(4.4)

where m is the minimum value of the attribute, and m R M. The origi-

nal view (fragment A in Fig. 4.40) corresponds to R = m.

The easiest way to specify the reference values for all attributes at once 

is to select a particular district, for example by clicking on it in the map. 

The attribute values characterising this district will be taken as the refer-

ence values, that is, all other districts will be compared with this district. 

Naturally, for the selected district, all bars will have zero height. 
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The fragments B, C, and D in Fig. 4.40 demonstrate how the original 

visualisation is transformed after the selection of three different districts: 

Serpa (in the north-east of the territory shown), Beja (west of Serpa), and 

Faro (in the southern coast). Within a fragment, upward-oriented bars rep-

resent higher values than in the selected district, and downward-oriented 

bars correspond to lower values than in the selected district. The heights of 

the bars show the “distance” to the selected district in the attribute space. 

Districts with short bars are close in their characteristics to the selected 

district.

A) B)

C) D)

Fig. 4.40. Manipulation of a bar chart map with individual encoding of each at-

tribute. The bars represent values of the attributes “% pop. no primary school edu-

cation 1991” (ranging from 7.33 to 37.86), “% pop. with primary school educa-

tion” (from 18.69 to 35.14), “% pop. with preparatory school education 1991” 

(from 3.43 to 16.97), and “% pop. with high school education” (from 1.29 to 

13.83). A, original view; B, comparison with Serpa, with attribute values 29.1, 

24.73, 7.61, and 3.51; C, comparison with Beja, with values 20.08, 23.05, 4.94, 

and 7.59); D, comparison with Faro, with values 12.93, 24.20, 4.93, and 11.78 

It can be noted that in both examples using multiple attributes, we used 

the visual comparison technique merely for performing elementary com-

parisons, i.e. for analysis on the level of individual elements of a reference 
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set. We have not demonstrated the application of this technique to an in-

vestigation of the overall spatial distribution of characteristics, as we did 

with visual comparison on a choropleth map (see Fig. 4.36C). In the case 

of the choropleth map, the visual comparison operation leads to display 

simplification owing to visual association of objects into larger shapes. 

This facilitates the perception of the distribution as a whole, which is re-

quired for synoptic tasks. In the case of a chart map, no visual association 

occurs. Each chart can easily be considered individually, but multiple 

charts can hardly be united into a coherent image. The visual comparison 

operation does not change the nature of the charts; in particular, it cannot 

suppress their resistance to unification. Therefore, both chart-based visu-

alisations and the techniques for manipulating them are suitable primarily 

for elementary tasks rather than synoptic ones. 

4.4.7 Recap: Display Manipulation 

Data visualisation is based on encoding values of data components by val-

ues of visual dimensions and variables. We call the mechanism of defining 

the correspondence between elements of data and the graphical features 

that represent them the “visual encoding function”. Such a function is of-

ten (but not necessarily) specified by means of a mathematical formula. It 

can also have the form of a set of rules or a decision table.  

Irrespective of the form, a visual encoding function always involves 

some constants or parameters. Software implementation of a visualisation 

technique may be done in such a way that the user can interactively change 

the values of these constants or parameters or even substitute one visual 

encoding function for another. Such changes are called display manipula-

tion. When the user has convenient and easy-to-use controls for modifying 

the visual encoding of data, and the display reacts promptly to the user’s 

action, display manipulation may become a powerful tool for exploratory 

data analysis. 

In this section, we have considered several types of display manipula-

tion techniques. By means of numerous examples, we have demonstrated 

what services these techniques can provide to a data explorer. Here is a 

brief summary of the techniques. 

Ordering, reordering, and arrangement: Changing the positions of indi-

vidual marks or display fragments (groups of marks) within one or more 

display dimension. These techniques preserve all of the information 

originally available in a display. Ordering techniques may result in sim-

plification of the display, and a clearer overall view of the distribution 

of characteristics over a dataset and of relations between different at-
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tributes. Two-dimensional arrangement is helpful in the exploration of 

periodic data, such as time-related data with yearly, weekly, or daily cy-

cles. It can also be used for detecting periodicity in data.  

Smoothing and generalisation: Elimination of irrelevant detail and ran-

dom fluctuations in order to reveal the principal features of a behaviour, 

for example a spatial distribution or temporal variation. Simplification is 

achieved at the cost of a substantial reduction of the information. 

Classification: A kind of generalisation based on uniting references with 

close characteristics into groups and regarding members of a group as 

identical. Like other generalisation methods, classification simplifies the 

visualisation at the cost of information loss. Classification favours the 

perception of a display as a single image and supports pattern-building. 

As with any technique involving information loss, an explorer should 

“play” with the classes (i.e. redefine them in various ways) rather than 

base the analysis on a single variant of classification. 

Zooming and focusing:  Reduction of the amount of data in a display so 

that a selected subset of the data can be represented with the maximum 

possible expressiveness. Display expressiveness includes such aspects 

as legibility (which depends on the sizes of the marks and the presence 

or absence of cluttering and overlap), the level of detail, and differenti-

ability, i.e. whether different data values are converted into perceptually 

different graphical features. The term “zooming” is usually applied to 

the representation of data by spatial display dimensions. Zooming ap-

pears as the enlargement of a selected part of a display area in order to 

improve its legibility. This may be accompanied by an increase in the 

level of detail. The term “focusing” is mostly applied to the representa-

tion of data by retinal variables. The main idea is to use the whole set of 

perceptually distinct values of a visual variable for encoding a reduced 

subset of data values in order to improve the differentiation between 

those data values. 

Substitution of a linear encoding function by a non-linear one may be 

recommended when the statistical distribution of attribute values is 

greatly skewed. If, for example, a dataset contains a few very high val-

ues while the majority of values are quite small, a linear function may 

provide only a small number of perceptually different values of a visual 

variable for encoding the bulk of the attribute values. As a result, these 

attribute values are visually indistinguishable in the display. An analo-

gous situation occurs when almost all attribute values are quite high, 

while there are a few very low values. In the former case, a logarithmic 

encoding function may improve display differentiability, and in the lat-

ter case, an exponential function may be used. Other monotonic non-
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linear functions can be applied as well, depending on the peculiarities of 

the value distribution. However, an analyst should be cautious in inter-

preting the results of non-linear visual data encoding. It is better to use 

non-linear and linear displays in parallel and to verify any observation 

obtained from a non-linear display using a linear display or another tool 

that is free from data distortion. 

Visual comparison: Displaying and/or emphasising the deviations of 

numeric attribute values from a particular reference value. The reference 

value is specified and changed interactively, which results in the display 

being dynamically updated. We have considered several examples of 

visual comparison techniques, which represent the degree of deviation 

by either brightness (or darkness) or the size of a mark, and the direction 

of deviation (i.e. whether the value is smaller or greater than the refer-

ence value) by hue or orientation. The use of hue favours the visual as-

sociation of neighbouring marks with a common direction of deviation 

from the reference value. This, in turn, supports the grasping of distinc-

tive features of a behaviour, and pattern-building. With any variant of 

visual encoding, visual comparison techniques support comparisons on 

the elementary analysis level. 

We have not considered changes of display properties that are made 

mostly for aesthetic reasons or for rhetorical purposes, such as producing a 

convincing argument or an emotional effect. We have reviewed and dis-

cussed only display manipulation techniques that are capable of supporting 

exploratory data analysis or improving the capabilities of data displays to 

support this kind of analysis. We cannot guarantee that our enumeration of 

the types of techniques is exhaustive. It is based mostly on our practical 

work experience, but we have not encountered, either in the literature or at 

software demonstrations, any other display manipulation tools that would 

not fit into any of these groups. Nevertheless, we leave this list open to the 

inclusion of new categories of display manipulation tools. 

Let us now move to other types of exploratory tools. While display ma-

nipulation tools modify the way data are visually encoded but do not 

change the data themselves, the next group of tools that we are going to 

consider consists of tools that manipulate data, i.e. transform the data or 

derive new data from them. 

4.5 Data Manipulation 

As we have demonstrated, manipulation of graphical displays often allows 

one to see what was previously not evident, and to look at data from dif-
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ferent perspectives to investigate various aspects. In other cases, however, 

display manipulation can make the view simpler and easier to comprehend. 

Data manipulation serves, in principle, the same purposes, and we can 

group data manipulation tools into two broad categories: sophistication

and simplification. Sophistication means creating conditions for the thor-

ough investigation of various aspects of the data by increasing the initial 

amount of data, i.e. enriching the original dataset with additional attributes 

or additional references (and corresponding characteristics). Simplification 

means decreasing the amount of data under consideration, i.e. the number 

of attributes or the number of references with their corresponding charac-

teristics. Of course, this does not mean that part of data is simply thrown 

away. Simplification is achieved by means of generalisation and abstrac-

tion. Ideally, simplification should be done so that no valuable information 

is lost. 

As we have mentioned, both sophistication and simplification may in-

volve either attributes or references. Hence, one can distinguish four 

groups of data manipulation tools, which are summarised in Table 4.8. 

Table 4.8. Four groups of data manipulation tools 

Sophistication Simplification 

Attributes Attribute transformation: deriv-

ing additional attributes from 

existing ones, e.g. transforming 

absolute quantities into relative 

quantities 

Attribute integration: combining 

several attributes into a single 

attribute, which substitutes for 

the original attributes in further 

analysis

References Interpolation: inserting addi-

tional references between the 

original ones and deriving the 

characteristics of the new refer-

ences from those of the 

neighbouring references 

Aggregation: grouping refer-

ences and considering the 

groups and their collective char-

acteristics instead of the original 

references 

Before discussing each of these groups of tools, we would like to point 

out that the most reasonable thing to do is to use data manipulation tools in 

combination with visualisation, rather than alone. First, it is always advis-

able to take a preliminary look at the data before starting to manipulate 

them: this may help one to choose appropriate manipulation techniques. 

Second, one needs visualisation in order to see the results obtained from 

the data manipulation. All our examples of the use of data manipulation 

tools cited throughout this section are illustrated by visual displays show-

ing the results of the manipulation. 
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4.5.1 Attribute Transformation 

4.5.1.1 “Relativisation” 

As we have mentioned, attribute transformation is intended for looking at 

the same characteristics from various perspectives in order to investigate 

them more comprehensively. One of the most commonly used transforma-

tions is that from absolute to relative numbers. For example, the Portu-

guese census dataset initially contained only absolute numbers, such as the 

number of people in various age categories (0 14 years, 15 24 years, 

25 64 years, and 65 years and more) and the numbers of people employed 

in agriculture, industry, and services. Nevertheless, many of our example 

visualisations given in the previous sections represent proportions rather 

than absolute numbers: the proportions of children, of elderly people, of 

people working in different sectors of the economy, etc. These proportions 

were obtained by transforming the original absolute attributes: the number 

of people in each age group was divided by the total population of the re-

spective district, and the number of people working in each sector was di-

vided by the total number of working population. The transformation al-

lowed us to consider the age and employment groups as parts of certain 

wholes, i.e. either the entire population of the district or the working popu-

lation. This aspect of the data could not be investigated only with the use 

of the original attributes. 

Figures 4.41C and 4.42C demonstrate that attribute transformation in-

deed results in producing new attributes with properties and behaviours 

quite different from those of the original attributes. Figure 4.41C shows a 

visualisation of the attribute “number of people without primary school 

education” referring to the districts of Portugal. Figure 4.42C shows the 

result of transforming the values of this attribute from absolute numbers to 

relative numbers, specifically, to the proportions of people without primary 

school education in the populations of the districts.   

In Fig. 4.41C, the values of the original (i.e. absolute) attribute are rep-

resented on a map of Portugal using the technique of graduated circles. In 

the initial display (left), the size of a circle is proportional to the attribute 

value in the corresponding district. Beside the map, the value range of the 

attribute is shown, from 525 to 56 442. We can also see from the dot plot 

to the right of the map that the maximum value lies far from the rest of the 

values. The image on the right in Fig. 4.41C results from applying two dis-

play manipulation operations: focusing, which has removed the outlier  

56 442 from the representation, and visual comparison with the country 

mean, 5140, taken as the reference value (the techniques of focusing and 

visual comparison have been described in the previous section). 
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Figure 4.42C shows the proportions of uneducated people in the popula-

tions of the districts, i.e. the result of dividing the values of the attribute 

“number of people without primary school education” by the total numbers 

of inhabitants in the respective districts. The same visualisation technique 

as in Fig. 4.41C has been used. The new attribute has a value range from 

16.69% to 57.44%, and the mean value for the whole country is 33.36%. 

The maximum value, 57.44, is not as distant from the rest of the values as 

the maximum of the original attribute is, and is attained in another district. 

On the right in Fig. 4.42C, a visual comparison operation has been applied, 

taking the country mean as the reference value. 

It does not take much effort to notice that the original attribute (Fig. 

4.41C) and the derived attribute (Fig. 4.42C) have quite different spatial 

behaviours. The original attribute has high values on the western coast, 

especially in the north-west (around Porto) and in the centre (around Lis-

bon), while the derived attribute exhibits the opposite pattern. This is espe-

cially well seen from the maps where visual comparison has been applied, 

i.e. the right parts of Figs 4.41C and 4.42C. 

A question may be asked: which attribute is the “right” one, or which 

one should be analysed? The answer is, in general, both. If we want to un-

derstand better the situation concerning the education in Portugal, we need 

to consider both absolute and relative values. However, our study may 

have particular goals. In that case, it depends on the goals which of the 

attributes is more relevant. Thus, if we want to know where additional fa-

cilities for primary education are required, we should pay attention to the 

absolute values.  If we want to evaluate the education level in each district, 

or to see how the situation changed from the census year 1981 to the cen-

sus year 1991, or to relate education to employment structure, we should 

deal primarily with relative numbers. 

Besides computing proportions of the parts of a whole, transformation 

from absolute to relative numbers may be done in a number of other ways. 

Thus, for spatially referenced data, it is common to compute densities, i.e. 

amounts per unit area, for example the population density. A density is 

computed by dividing a certain amount (e.g. the number of inhabitants) 

specified for a compartment (e.g. a district) of a territory by the area of this 

compartment. An implicit assumption is made that the amount is evenly 

distributed within the compartment, which may not always be the case. For 

example, all of the population of a district may be concentrated in a small 

part of it, owing to particular natural conditions (mountains, swamps, de-

serts, etc.) in the other parts. Hence, an analyst should be cautious in using 

the results of such transformations. 

In demographic studies, certain absolute values are often transformed 

into “per capita” or “per household” values. For example, countries can be 
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characterised in terms of the gross domestic product per capita. On a more 

local level, an analyst may be interested in studying the behaviour of the 

number of cars per capita or the number of children per household. 

One and the same absolute attribute can often be “relativised” in several 

different ways. For example, the numbers of unemployed women in the 

districts of Portugal can be divided by the total population of the district, 

by the female population, by the number of employed women, by the total 

number of unemployed people, or by the number of unemployed men. 

Each division gives us a different perspective in a study of female unem-

ployment. 

Actually, the term “relative” is very general, and a broad group of trans-

formations can be viewed as converting absolute values into relative ones. 

Thus, the original values of an attribute may be transformed into their rela-

tive positions with respect to the minimum and maximum values of this 

attribute. This transformation may be applied when it is necessary to ana-

lyse jointly several otherwise incomparable attributes, such as fertility rate, 

infant mortality rate, and female life expectancy. Another possibility could 

be to convert the values of each attribute into relative deviations from the 

mean value of this attribute. Such deviations may be computed simply as 

ratios to the mean value, or in proportion to the standard deviation. The 

latter transformation is called the “standard normal transformation” (Burt 

and Barber 1996, p. 196) and is specified by the formula  

x
z

(4.5)

where  is the mean value,  is the standard deviation, x is the original 

attribute value, and z is the transformed value, which is called the standard 

score, or z-score.

Transformations on the basis of the mean and standard deviation can 

only be recommended when the statistical distribution of attribute values is 

close to normal, and are certainly not recommended when there are out-

liers. For an attribute with outliers, it is more suitable to transform values 

in relation to other statistical measures, such as the median and quartiles 

(or other percentiles). 

4.5.1.2 Computing Changes 

When time-referenced numeric attributes are being explored, it is appro-

priate to consider not only the original attribute values, referring to differ-

ent time moments, but also changes, i.e. differences from or ratios to val-

ues for preceding time moments or values pertaining to the beginning of 

the time series. In cartography, there is even a term “change map” to de-



264     4 Tools 

note a map portraying differences or ratios between attribute values for 

two time moments (Slocum 1999). Figure 4.43C contains an example of a 

change map, which represents the changes in the proportions of people 

employed in industry over the districts of Portugal from 1981 to 1991. A 

diverging colour scale is used to differentiate districts where the values 

increased (these are coloured in shades of brown) from those where the 

values decreased (coloured in shades of blue). The degree of darkness 

shows how much increase or decrease occurred in a district. 

A change map is certainly much more convenient for detecting where an 

increase or decrease occurred and for estimating the amounts of change 

than is a representation of the original attribute values referring to the two 

years, for example on two choropleth maps, as is shown in Fig. 4.44. This 

does not mean, however, that comparison of maps representing states at 

different time moments is useless: it is necessary for seeing changes in the 

spatial distribution of attribute values. In particular, Fig. 4.44 shows us that 

the spatial distribution of the proportion of people employed in industry 

over Portugal did not change significantly from 1981 to 1991. 

Fig. 4.44. The proportions of people employed in industry in 1981 and 1991 are 

represented here on two choropleth maps. From this representation, the changes 

that occurred between the two census years are quite hard to estimate 
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In order to demonstrate that change maps are not the only tools suitable 

for visualising and analysing changes, we have constructed two scatter-

plots representing the changes in the proportion of people employed in in-

dustry together with two other derived attributes: the changes in the pro-

portion of people with preparatory school education and the changes in the 

proportion of people with high school education (Fig. 4.45). One can ob-

serve a slight negative correlation in the right scatterplot (the change in 

employment in industry against the change in the proportion of people 

with high school education). The pattern perceived from the left scatterplot 

(the change in employment in industry against the change in the proportion 

of people with preparatory school education) can be interpreted, though 

with less certainty, as a slight positive correlation. 

Fig. 4.45. The changes in the proportions of people employed in industry are ana-

lysed together with the changes in the proportions of people with preparatory 

school education and with high school education 

In the Portuguese census dataset, we have data for only two time mo-

ments, specifically, the census years 1981 and 1991. Hence, for any attrib-

ute, we can compute only the absolute or relative change (i.e. difference or 

ratio) from 1981 to 1991. When longer time series are explored, many 

more changes need to be computed and analysed. For example, the US 

crime dataset contains data for 41 time moments, specifically, the years 

from 1960 to 2000. An analyst needs a convenient tool to compute and 

visualise changes in each year in comparison with the previous year, as 

well as in comparison with the initial state (i.e. that in the year 1960) or 

with any selected time moment. A possible solution is the use of either 

map animation or “small multiples” for the visualisation of changes. When 

map animation is applied, the map at each display moment represents 

transformed attribute values, i.e. computed changes, rather than the origi-

nal values. The same applies to a “small multiples” visualisation: each map 

in this display is a change map. 
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For example, Fig. 4.46C presents a “small multiples” display of the 

changes in the burglary rates in the states of the USA during the years 

from 1991 to 2000 (to save space, we have removed Alaska and Hawaii 

from the display and restricted the display to the last 10 years of the 41-

year period that the data refer to). For each year, the changes with respect 

to the previous year have been computed, specifically, the differences be-

tween the values in the given year and the values in the same districts in 

the previous year. The changes are represented on the maps using a diverg-

ing colour scale. Brown shades encode positive differences, i.e. an increase 

in the burglary rate in comparison with the previous year, and blue shades 

correspond to a decrease in comparison with the previous year.  

In the same way, differences or ratios with respect to any selected time 

moment can be visualised. In this case, each map in a “small multiples” 

display or each frame in a map animation represents changes with respect 

to the same year, for example, 1960, the beginning of the period under 

study. This is different from the visualisation in Fig. 4.46C, where each of 

the small maps represents changes with respect to its own “reference 

year”: the map for 1991 shows the changes as compared with 1990, the 

map for 1992 shows the changes as compared with 1991, and so on. 

Changes over time can be explored using not only change maps but also 

other visualisation tools, for example time graphs. Thus, Fig. 4.47 shows 

five different appearances of a time graph display representing the dynam-

ics of the burglary rates in the states of the USA over the period from 1960 

to 2000. Initially (top of Fig. 4.47), the display represents the original val-

ues of the attribute “Burglary rate”. The horizontal axis of the display 

represents the time period that the data refer to. The values of the attribute 

are encoded by positions in the vertical dimension. Each sequence of posi-

tions corresponding to one state is linked into a line. 

The other four images in Fig. 4.47 demonstrate the results of various 

transformations applied to the values of the attribute “Burglary rate”. The 

transformation method is indicated to the right of each image. First, we 

have computed and visualised the changes with respect to the preceding 

year. This means that the vertical position corresponding to a state S and a 

year Y represents the arithmetic difference between the value of the bur-

glary rate in the state S in the year Y and the value of the burglary rate in 

this state in the year Y 1. Similarly, the next display (third from top) repre-

sents the ratios with respect to the previous year. It can be noted that the 

lines in both the second and the third display look shorter than in the other 

graphs. This is because there are no positions corresponding to the year 

1960: the data for the year 1959 are not available in the dataset, and there-

fore the changes in 1960 with respect to the previous year cannot be com-

puted.
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Fig. 4.47. A time graph can represent not only the original values of a time-related 

numeric attribute but also computed changes. Here, the time graphs represent, 

from top to bottom, the original burglary rates in the states of the USA, the differ-

ences from the preceding years, the ratios to the preceding years, the differences 

from the rates for the year 1970, and the ratios to the rates for the year 1970 
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The remaining two images at the bottom of Fig. 4.47 represent the 

changes with respect to the year 1970. The display at the very bottom 

represents the ratios, and the one above it shows the differences. It can be 

noted that all lines cross in one point corresponding to the year 1970, since 

the results of the computation for all states for this year coincide: the dif-

ferences equal 0 and the ratios equal 1. 

4.5.1.3 Accumulation 

Besides computing changes, it may be useful for certain type of time-

related attributes also to sum (accumulate) values over time intervals. This 

transformation is applicable only to quantitative attributes, i.e. attributes 

whose values express counts or amounts. Moreover, a value referring to a 

time moment must represent some quantity that appeared only at that mo-

ment and did not exist before or after that moment (and, hence, is not in-

cluded in the values referring to the previous and subsequent moments). 

Examples of this sort of attribute are counts of events such as the total 

number of burglary incidents that happened during a year in each state of 

the USA, the yearly gross domestic product or total imports and exports of 

various countries, the daily amount of rainfall, and so on. As a negative 

example, we could mention the population number: although this attribute 

is quantitative, it does not reflect an “added” quantity, in contrast, for ex-

ample, to the number of newborn. 

Fig. 4.48. The graduated circles represent the total numbers of burglary incidents 

that occurred in the states of the USA during the time period from 1960 to 2000 
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Since an attribute represents something added (or, sometimes, deducted, 

as in the number of deaths) at each time moment, it makes sense to count 

how much of this  has been added (or deducted) in total over a sequence of 

time moments. Thus, the USA crime dataset contains a number of attrib-

utes representing the total numbers of crimes of different types in each 

year from 1960 to 2000 and each state of the USA. Hence, we can com-

pute and analyse the total number of crime incidents that occurred in each 

of the states during the whole period from 1960 to 2000 or any of its subin-

tervals. For example, the map in Fig. 4.48 represents the total number of 

burglary incidents that occurred in each state during the 41-year period. 

One can visualise not only the final count but also the dynamics of the ac-

cumulation of crimes, for example, on a time graph.  

4.5.1.4 Neighbourhood-Based Attribute Transformations 

In the examples of attribute transformations that we have considered thus 

far, two different types of transformation may be traced: 

1. The value of a derived attribute is produced for each reference from the 

values of one or more source attributes corresponding to this reference. 

No attribute values associated with other references are involved. 

2. The value of a derived attribute is produced for a reference using not 

only attribute values corresponding to this reference but also values as-

sociated with other reference(s). 

Thus, in transforming absolute attribute values into relative values, the 

values of one attribute are divided by values of another attribute associated 

with the same reference. To compute the percentage of people without 

education in each district of Portugal, the number of such people in each 

district is divided by the total population of that district. No other districts 

have any influence on the computation; hence, this is a transformation of 

the first type. The second type of transformation takes place, for example, 

when changes of attribute values with respect to time are computed: each 

derived value is a difference or a ratio of values referring to two time mo-

ments; hence, one additional reference is involved in the computation. In 

value accumulation, the number of additional references varies depending 

on the length of the interval over which the values are summed. 

For convenience in further discussion, let us introduce the term target 

reference to denote a reference for which the corresponding value of a de-

rived attribute needs to be obtained. If this value is produced using attrib-

ute values corresponding to references other than the target reference, we 

shall call these other references contributing references and the corre-

sponding attribute values contributory values. The values of the source 
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attributes associated with the target reference will be called primary val-

ues.

Using this terminology, we can characterise the first type of attribute 

transformation as involving only primary values of source attributes and 

the second type as based on primary and contributory values (in principle, 

there may be transformations using only contributory values). The second 

type may be subdivided further according to whether the same or different 

contributing references provide attribute values in the production of de-

rived attribute values for different target references. For example, in com-

puting the changes of the burglary rates in all years with respect to a fixed 

year (such as the year 1970 in Fig. 4.47), this fixed year is the contributing 

reference, used equally for all years. However, in computing the changes 

in each year with respect to the previous year, an individual contributing 

reference is used for each year: 1960 for 1961, 1961 for 1962, and so on. 

Such individual contributing references are chosen according to a certain 

rule, which specifies the relation that exists between the target reference 

and the contributing reference(s). Thus, in comparing with the previous 

year, the rule is “the contributing year equals the target year minus one”. 

We are now reconsidering these examples of transformations of tempo-

rally referenced data (i.e. computation of changes, and accumulation) in 

order to present them as instantiations of a more general category of trans-

formations and, on this basis, to draw a parallel with a certain class of 

transformations of spatially referenced data. However, before moving to 

spatial data, let us consider one more transformation of temporal data, 

which also involves contributory values. 

We have already talked about smoothing as a technique for the simplifi-

cation of data displays. In particular, we have discussed smoothing of a 

time graph representing temporally referenced data (see Figs 4.14 and 

4.15). At that point, we considered time graph smoothing as just graphical 

simplification. However, this graphical simplification is based on a trans-

formation of the underlying data. Let us now take a closer look at this 

transformation, which is also called “smoothing”, or “data smoothing” (in 

contrast to graphical smoothing). We shall introduce the general idea with 

an example of a specific smoothing technique, which is called the “simple 

moving average”. This technique is rather popular; in particular, it is inten-

sively used in stock market analyses. 

A simple moving average is formed by computing the average (mean)  

value of an attribute over a specified number of consecutive time mo-

ments, one of which is the target time moment.9 Usually, the target time 

                                                     
9   Different smoothing techniques may use other operations instead of the mean. 

However, any technique would involve a sequence of consecutive moments, 
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moment either is the last in the sequence of moments or is positioned in 

the middle of the sequence (the latter case is called the “centred moving 

average”). For example, the non-centred 5-year moving average of the 

burglary rate in a state of the USA for the target year 1970 is computed by 

adding the burglary rates in this state for the years 1966, 1967, 1968, 1969, 

and 1970 and dividing the sum by 5. The centred 5-year moving average 

for the target year 1970 is computed in the same way from the burglary 

rate values for the years 1968, 1969, 1970, 1971, and 1972. For the target 

year 1971, the non-centred moving average is derived from the values for 

the years 1967, 1968, 1969, 1970, and 1971, whereas the centred moving 

average is computed from the values for the years 1969, 1970, 1971, 1972, 

and 1973, and so on for other target years. It may be easily guessed how 

moving averages over 3-year or 7-year time periods are computed. Com-

puting the centred moving average over a period consisting of an even 

number of years, such as 4-year or 6-year period, is slightly more compli-

cated. Thus, the 4-year centred moving average for the year 1970 is com-

puted as the average of two averages, one for the period from 1968 to 1971 

and another for the period from 1969 to 1972. To state this more generally, 

the centred moving average of an attribute for a target moment t over a 

period of length 2 d is the average of the averages for the periods from  

t d to t + d 1 and from t d + 1 to t + d.

We shall not discuss here the effect of the length chosen for the averag-

ing period on the results of the data transformation. We have briefly 

touched upon these issues in comparing the smoothed time graph in Fig. 

4.14, which was produced using a 5-year centred moving average, with the 

original time graph. We showed that the 5-year smoothing hid some dis-

tinctive features of the behaviour under analysis, while the smoothing on 

the basis of 3-year intervals applied in Fig. 4.15 preserved those features. 

A more detailed consideration of this topic can be found in statistical 

handbooks, for example Burt and Barber (1996). Interested readers can 

also refer to the Web, where there are several tutorials on stock market 

analysis explaining how to use moving averages computed over intervals 

of different lengths (look, for example, at http://www.stockcharts.com/edu-

cation/IndicatorAnalysis/indic_movingAvg.html). 

Besides simple moving averages, exponential moving averages, or ex-

ponentially weighted moving averages, are often used in analysing time-

referenced data, in particular, stock market data. The basic idea is to 

                                                                                                                         
including the target moment. In the current context, the focus is on the selection 

of contributing references rather than on a specific operation to be applied to 

primary and contributory attribute values. Accordingly, most points of the fol-

lowing discussion can be related to arbitrary smoothing techniques. 
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weight the contribution of each time moment to the derived value accord-

ing to the distance from this time moment to the target time moment: the 

closer to the target time moment, the more influence the corresponding 

attribute value has on the resulting value. 

The method of deriving moving averages can be formulated in more 

general terms as computing the average (or a weighted average) value of 

an attribute over a set of references consisting of the target reference and a 

specified number of contributing references, chosen in a specified way 

from the neighbourhood of the target reference. The advantage of this gen-

eral formulation is that it may be applied not only to time-referenced at-

tributes but also to numeric attributes defined on any reference set with 

distances (the presence of distances is essential for the notion of 

neighbourhood to be meaningful). In particular, we may apply it to spa-

tially referenced attributes, which may also be smoothed using the moving-

average technique. In this case, each derived value is produced from a 

value in a target location and a number of values taken from the 

neighbourhood of this target location. Of course, neighbourhood in space 

is defined differently from neighbourhood in time. Usually, one specifies a 

certain distance (radius), and all locations within this distance from the 

target location are taken as contributing locations. This method of choos-

ing contributing locations applies not only to the spatial smoothing per-

formed with the use of the moving-average technique but also to many 

other transformations of spatially referenced data. Such transformations 

are described in detail in the GIS literature. Here, we shall consider just 

two examples. 

Figures 4.49 and 4.50 demonstrate the effect of applying a smoothing 

transformation to data concerning the proportion of land covered by conif-

erous forest. The data are specified using the raster model, i.e. as attribute 

values referring to cells of a regular rectangular grid.  

The images on the left and on the right in Fig. 4.49 correspond to the 

same territory fragment. On the left, the original attribute values are 

shown, i.e. the proportions of coniferous forest in the grid cells. On the 

right, values derived by means of smoothing are portrayed. The value for 

each cell has been computed from the original value in this cell and the 

original values in the surrounding cells within a certain specified distance 

from the cell (the averaging radius). In both images, values are represented 

by shades of grey, with darker shades corresponding to higher proportions. 

In Fig. 4.50, a larger territory fragment is shown. The map fragment on 

the left portrays the original data. In the centre and on the right, the results 

of smoothing these data with two different averaging radii are demon-

strated. A smaller averaging radius has been chosen for the map in the cen-

tre than for the map on the right.  
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Fig. 4.49. The effect of smoothing is demonstrated here in an enlarged map frag-

ment representing the proportion of coniferous forest in cells of a regular rectan-

gular grid. Left, the original data; right, the smoothed data. Darker shades corre-

spond to higher proportions 

Fig. 4.50. Smoothing of spatially referenced data. Left, the original data; centre 

and right, the results of averaging over neighbouring locations within a smaller 

(centre) and a larger (right) distance from a target location 

From comparing the representations of the original and transformed 

data, it may be noted that the effect of spatial smoothing is similar to that 

of temporal smoothing: small differences (often called “noise”) are sup-

pressed so that an analyst may focus on larger structural features. In gen-

eral, smoothing is defined as a technique that can be used to remove or 

reduce local noise within spatial or temporal data and therefore reveal the 

global pattern or trend. As in the examples of temporal data discussed ear-

lier, the degree of smoothing depends on the number of contributing refer-

ences involved in the transformation. In the spatial case, the number of 

contributing locations is determined by the smoothing radius chosen. The 

larger the radius, the less detail (small-scale features) remains in the result 

of the transformation. It is hard to say what level of detail is appropriate – 
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this depends on the data and analyst’s goals – but the general recommen-

dation is to consider the same data with different degrees of smoothing. 

It is also worth adding that smoothing may be done using not only the 

method of the moving average but also other computational formulae or 

algorithms. Thus, in exploratory data analysis, it is typically recommended 

that one should smooth temporal or spatial data using medians rather than 

averages. The median of a set of numeric values is defined as the value 

that divides the set into two equal parts so that the values in one part are 

less than or equal to this value and the values in the other part are greater 

than or equal to this value. In particular, the median of a set of three values 

is the value that lies between the two others. The reason for using medians 

is that they are less subject to substantial variations due to a single outlier, 

as compared with means. 

The simplest median-based smoothing method is known as “running 

medians”. The principle of this method is the same as for the moving-

average technique. The statistical literature (see, for example, Burt and 

Barber (1996)) also describes a number of more sophisticated smoothing 

methods. Thus, it is possible to apply smoothing to the results of another 

smoothing operation. Such repeated smoothing may be applied until there 

is no change in the resulting data. In order to reduce the risk of overs-

moothing, which may remove interesting patterns, it is suggested that one 

should use “compound smoothers”. The main idea can be explained as fol-

lows. After an elementary smoothing method has been applied to the 

original data, the differences between the original and the transformed val-

ues are computed. These differences are called the rough, or residuals, and 

the transformed values are called the smooth. Then, another elementary 

smoothing method is applied to the rough. The final result is the sum of the 

original smooth and the smoothed rough. Here, the term “elementary 

smoothing” is used as an antonym of “compound smoothing”, i.e. in the 

sense that smoothed values are derived directly from source values, with-

out the separation of residuals. The method used for the elementary 

smoothing is not necessarily simple. Thus, repeated smoothing is also ele-

mentary smoothing in this context. 

As with time series, the smoothing of spatially referenced data may be 

based on computing weighted averages of values in the target and contrib-

uting locations. The weights assigned to the contributing locations are usu-

ally inversely proportional to their distance from the target location. For 

various possible methods of assigning weights, as well as for further in-

formation related to smoothing, we refer readers to the literature on general 

and spatial statistics and on the mathematical foundations of GIS, for ex-

ample Burt and Barber (1996), Cressie (1991), and Fotheringham and 

Rogerson (1994). 
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Neighbourhood-based operations in space are not limited to smoothing. 

There are, in particular, spatial analogues of the process of computing 

changes with time. In such a computation, the values of a spatially refer-

enced numeric attribute are treated as altitude values on a continuous sur-

face. The rate of change in such a surface could be estimated as the differ-

ence between the altitudes of two neighbouring locations. However, since 

space, unlike time, is not a linearly ordered set, it is possible to choose a 

neighbouring location in any direction from a target location. For each di-

rection, the altitude difference will be different. Therefore, the rate of 

change in space is computed using the plane tangential to the surface at the 

target location. The orientation of this plane is referred to as the slope. It 

may be characterised by two components, vertical and horizontal, known 

as the gradient and the aspect. The gradient of the slope describes the rate 

of change as a function of the angle of the tangent plane with respect to the 

horizontal plane. The aspect is the direction of the slope, measured as an 

angle from some arbitrary bearing such as north or east. The notions of the 

gradient and aspect are illustrated graphically in Fig. 4.51. 
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Fig. 4.51. For computing changes in space, the values of a spatially referenced 

numeric attribute are treated as measures of the altitude of a continuous surface S.

The change at a target location L is estimated using the plane P tangential to the 

surface S at the point L (i.e. it touches the surface at this point). The orientation of 

the plane is characterised by the gradient G and the aspect A

The view of a spatially referenced numeric attribute as a surface may be 

exploited further in an attempt to reveal topological, or morphometric, fea-
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tures on this surface, such as peaks, pits, ridges, channels, and passes. In-

terested readers are referred to the general discussion of the notions related 

to surface topology in Chrisman (1997) and to examples of the use of the 

extraction of topological features in the exploratory analysis of spatio-

temporal data described in Sadahiro (2002) and Rana and Dykes (2003). 

Chrisman also proposes a taxonomy of neighbourhood-based transforma-

tions of spatial data (Chrisman 1997, pp. 218 231). 

Since the topic of neighbourhood-based transformations of spatially and 

temporally referenced data is covered quite well in the literature on (spa-

tial) statistics and GIS, we believe that our brief and superficial discussion 

should suffice in the context of this book. In addition to what has already 

been said, we would like to mention that neighbourhood-based transforma-

tions can be performed not only on numeric attributes but also on attributes 

with qualitative values. For example, the “majority filter” replaces the 

value of a qualitative attribute associated with a target reference by the 

most frequent value (mode) in the neighbourhood of this reference. It is 

also possible to compute various measures of the diversity of the values in 

the neighbourhood, the simplest measure being the number of different 

values.

At this point, we would like to close this subsection, in which we have 

considered several types of attribute transformation that are frequently 

used in exploratory data analysis. We do not claim that these are the only 

possible or the only useful transformations. Of course, there are countless 

possibilities for producing derived attributes, and there may be countless 

cases requiring transformations different from the ones we have described. 

Therefore, a data analyst needs tools that are sufficiently powerful and 

flexible for performing various transformations, depending on the meaning 

and properties of the data under analysis and the goals of the analysis. 

4.5.2 Attribute Integration 

It may seem very tempting to simplify data analysis work by integrating 

several attributes into one and considering this single attribute instead of 

the original multiple attributes. For example, for studying the variation of 

the age structure of the population over the territory of Portugal, it would 

be much more convenient to have a single attribute that somehow reflected 

the age structure than the actual four attributes of the proportions of people 

in different age groups. However, despite the attractiveness of this idea, it 

is very difficult to realise in practice. The problem is the impossibility of 

combining several attributes into one without significant information loss. 
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Nevertheless, there are situations where attribute integration is neces-

sary or strongly desirable. We are aware of two major contexts requiring 

attribute integration:

1. Evaluation, comparison, and ranking. These tasks play an important 

role in management. Thus, a company or a government needs to evalu-

ate its accomplishments and compare them with past states, with what 

has been planned, with standards and legal requirements, with the per-

formance of others, etc. in order to determine whether there has been 

progress or decline (and how much progress or decline) and to estimate 

the position of the company, organisation, or locality relative to others. 

For this purpose, it is often necessary to combine a number of perform-

ance indicators into a single score that can be used for comparing and 

ranking. When multiple objects are being managed, such as different 

departments, retail stores, or administrative districts, they need to be 

evaluated and compared in order to identify good and poor performers. 

2. Influence analysis, i.e. an investigation of whether and how a certain 

group of characteristics is related to some other characteristic or group 

of characteristics. For example, one may be interested in whether chil-

dren’s diet affects their physical and intellectual development. A diet 

may be characterised by a number of attributes reflecting the amounts of 

various products consumed. In order to make the problem manageable, 

the analyst may need to replace this set of attributes by a single attribute 

expressing the degree of healthiness of the diet. Another example could 

be an analysis of the growth of young trees in a forest, which is influ-

enced by the number of older trees around, their heights and crown di-

ameters, and the density of leaves. The role of all of these factors is that 

they determine the amount of sunlight that a young plant receives, and it 

is this amount that ultimately influences the growth of the plant. There-

fore, researchers use the original set of characteristics to measure the il-

lumination of young plants, and then study the dependency between the 

illumination and the growth of the plants. 

The methods for integrating multiple attributes are often problem-

specific and vary from case to case. Therefore, we do not intend to con-

sider the topic of attribute integration in much detail. Instead, we are going 

to cite an example of the computation of problem-specific integrated index 

and then present a possible generic method for attribute integration as well 

as an interactive tool that realises this method. In fact, the main purpose of 

describing this tool is to introduce the idea of a dynamic attribute, the val-

ues of which change when the tool user modifies the parameters involved 

in the integration procedure. 
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4.5.2.1 An Example of Integration 

Once, in our practical work on data analysis, we explored a dataset charac-

terising the administrative districts of a certain part of England. The data-

set contained a number of census attributes, as well as four different indi-

ces of material deprivation. These indices, which are described at 

http://www.swpho.org.uk/pat18discuss.htm, are used in the UK to reflect 

the degree of poverty of the population in various areas. Each index is cal-

culated in its own way by integration of specific attributes. 

Our task was to discover links between the deprivation indices and the 

census attributes by applying various visual and interactive tools for ex-

ploratory data analysis.10 Before doing the exploration, we had to learn 

how the deprivation indices were constructed and which of the census at-

tributes were involved in this in order to avoid the discovery of self-

evident links. Here, we shall give an example of attribute integration by 

describing briefly how one of the four deprivation indices, the Townsend 

Score, is computed. It is based on four census attributes:  

Unemployment: The percentage of economically active residents aged 

16 59 or 64 who are unemployed. 

No car: The percentage of private households who do not possess a car. 

Home ownership: The percentage of private households not owner-

occupied.

Overcrowding: The percentage of private households with more than 

one person per room. 

From these four attributes, the integrated score is computed in the fol-

lowing way. Two of the attributes, specifically unemployment and over-

crowding, are first transformed using the logarithmic transformation  

y = ln (x + 1) to produce more normal distributions. Then, the values of all 

attributes are converted to standard scores (z-scores).11 Scores greater than 

zero indicate greater levels of material deprivation. The overall deprivation 

index is computed as the arithmetic sum of the four scores. 

It is quite typical that attribute values are standardised prior to attribute 

integration. The purpose of this is to make the values of diverse attributes 

comparable. The methods used for the standardisation may vary. Thus, 

                                                     
10  One of the results obtained was the detection of a link between material depri-

vation and the concentration of certain national minorities. It is interesting that 

national minorities of different origin are differently positioned with respect to 

poverty. More information can be found in Andrienko and Andrienko (2004). 
11  As a reminder, z-scores are computed according the formula (4.5) and show 

deviations from the mean. 
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besides the z-scores, the chi-square ( 2) method is frequently applied. This 

method is based on raw values, i.e. the actual numbers rather than the pro-

portions. It compares the observed value (O) in an area with a certain ex-

pected value E. For example, in computing the deprivation scores for the 

districts of England, E may be the respective average rate for England as a 

whole. The computation is done according to the formula 
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(4.6)

where O1 is the observed value with the characteristic (e.g. unemployed), 

E1 is the expected value with that characteristic, O2 is the observed value 

without the characteristic (e.g. not unemployed), and E2 is the expected 

value without the characteristic. 

Comparability of values of diverse attributes may also be achieved by 

means of other transformation methods, which may not necessarily be 

based on comparison with standard values. For example, the original at-

tribute values may be converted into their relative positions between the 

minimum and maximum values of the attribute. This method is used when 

there is a specific need to compare actual values with either the smallest or 

the greatest possible value. Thus, in evaluating several options to choose 

the optimal one, high or low attribute values may be desirable or undesir-

able for a decision maker, and hence the distance to those values may be of 

interest.

In computing the Townsend index, all transformed attributes have equal 

influence on the resulting scores. There are also cases where the attributes 

to be combined have different importance. In order to take account of this 

different importance, the attributes are assigned different weights. To ob-

tain the overall score, the values of the attributes are multiplied by the 

weights and summed. To compute such weighted sums, one may use an 

interactive tool such as that presented below. The tool allows the user to 

set and change the weights of the source attributes, and dynamically re-

computes the values of the resulting integrated attribute after any change 

of the weights. This resulting attribute is an example of a dynamic attrib-

ute, i.e. an attribute whose values may change. 

4.5.2.2 Dynamic Integration of Attributes 

To demonstrate the operation of the tool, we shall try to evaluate the situa-

tion with regard to health care in various counties of the state of Idaho in 

the USA and determine which of them are most in need of support to im-

prove the availability and accessibility of health care facilities for the 



280     4 Tools 

population. In our evaluation, we must combine multiple attributes charac-

terising the situation, specifically the following: 

N of estimated unmet visits: The estimated number of unmet visits to the 

doctor (when people coming to see a doctor cannot be attended to be-

cause the doctor is overloaded). 

Low-weight birth rate: The percentage of infants born with insufficient 

body weight, averaged over a multiyear interval. 

Burden on on-call providers: The number of hours on call for each pro-

vider.

Population in >35 miles from hospital: The number of individuals resid-

ing outside the influence zone (i.e. a radius of 35 miles, according to the 

national standard for rural areas) of the nearest hospital. 

Before applying the tool, we converted the original values of all attrib-

utes into z-scores, which express the relative deviations from the respective 

means. Positive deviations signify that the original values are worse than 

the average value for the state of Idaho. 

The attribute combination tool provides a direct manipulation interface 

for choosing the weights of the attributes used in the computation. The in-

terface is shown in Fig. 4.52.  

             

Fig. 4.52. A user interface for setting attribute weights for computing weighted 

linear combinations (weighted sums) of values of multiple attributes. Initially, all 

weights are equal (left). To change the weights, the user moves the sliders (right) 

For each attribute, there is a ruler with a slider. The position of the slider 

corresponds to the current weight of the attribute, which must be a real 

number between 0 and 1. The sum of the weights of all attributes partici-

pating in the computation must equal 1. Immediately after activation of the 

tool, all attributes are assigned equal weights. In our example, we have 

selected four attributes; accordingly, each of them was assigned a weight 
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of 0.25. In order to change the default weights, the user moves the sliders 

along the rulers. When one of the sliders is moved, and hence the weight 

of the corresponding attribute changes, the tool automatically adjusts the 

weights of the remaining attributes so that the sum of the weights remains 

equal to 1. The changes are proportional to the values that the weights had 

before the slider was moved. Thus, on the right in Fig. 4.52, the slider cor-

responding to the attribute “Low-weight birth rate” has been moved to the 

right so that the weight of this attribute has become 0.4. The weights of the 

remaining three attributes have been automatically set to 0.2. 

We have described the user interface of this tool in order to demonstrate 

the ease with which attribute weights can be changed. However, the impor-

tant point is not this ease itself but its combination with the high reactivity 

of the tool: the weighted sums are dynamically recomputed as the user 

moves the slider. We have already mentioned that the tool produces a dy-

namic attribute. The values of this attribute, i.e. the weighted sums, change 

when the user modifies the computational parameters, i.e. the weights. A 

dynamic attribute may be visualised like the usual kinds of attributes; it is 

necessary only that the visualisation tools update the display when the val-

ues of the attribute change. 

As a result, the user receives an excellent opportunity to investigate how 

altering the weights affects the computed scores. Such an investigation 

may be highly desirable when the scores are used as a basis for decision-

making, for example to decide which of the counties should get financial 

support to improve their health care. A well-substantiated decision must be 

based on sufficiently robust evaluation results, i.e. results that are not af-

fected by minor changes of the weights.  

Let us illustrate the ideas of dynamic attributes and sensitivity analysis 

with an example evaluation of health care in the counties of Idaho. To re-

flect our initial understanding of the relative importance of the four attrib-

utes listed above, we assigned a weight of 0.3 to the first two attributes and 

a weight of 0.2 to the remaining two attributes. The table display shown in 

Fig. 4.53 represents the results of the computation (in the column headed 

“Evaluation score”) along with the source attributes. The rows of the table 

are arranged in order of decreasing evaluation score. To save space, only a 

fragment of the table representing the top 10 of the 44 counties of Idaho is 

shown. The rows with the three topmost scores are highlighted. They cor-

respond to the counties of Washington, Payette, and Jerome. Hence, these 

counties have the most critical situation concerning health care, with re-

spect to the weights assigned to the four evaluation attributes. 
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Fig. 4.53. This table display represents the results of evaluating the counties of 

Idaho on the basis of four attributes with weights of 0.3, 0.3, 0.2, and 0.2. The 

columns of the table show the values of the four source attributes (transformed 

into z-scores) and the resulting evaluation scores. The rows of the table are ar-

ranged in order of decreasing evaluation score. The rows with the three topmost 

scores are highlighted 

Fig. 4.54. The result of changing the attribute weights from 0.3, 0.3, 0.2, and 0.2 

to 0.28, 0.28, 0.19, and 0.25. The table rows are ordered as before, according to 

the computed evaluation scores. The same rows as in Fig. 4.53 are highlighted. It 

can be clearly seen that, after the weights have been changed, the county of 

Jerome has moved from the third to the fourth position 

After some additional deliberation, we decided that the attribute “Popu-

lation in >35 miles from hospital” should have a higher influence on the 

evaluation results, i.e. its weight should be increased. So, we increased its 

weight from 0.2 to 0.25. The weights of the other attributes were automati-

cally adjusted: the first two attributes received weights of 0.28 each, and 

the weight of the third attribute was reduced to 0.19. The evaluation scores 

were immediately recomputed, and the table display reflected the changes, 
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as is shown in Fig. 4.54. Not only have the numbers in the column 

“Evaluation score” changed, but also the order of the rows, since the table 

display tool sorts the rows according to the evaluation scores, as before. It 

is easy to see, in particular, that the county of Jerome, which originally 

occupied the third position in the table, has moved to the fourth position. 

The third topmost score now belongs to the county of Clearwater, where 

the number of people living too far from any hospital is much higher than 

the average over the state (the z-score is 4.926). 

To investigate the sensitivity of this evaluation result to minor changes 

of the weights, we increased the weight of the attribute “Population in >35 

miles from hospital” by 0.01. To keep the sum of the weights equal to 1, 

the weight of the attribute “N of estimated unmet visits” was automatically 

decreased by the same amount. This rather slight change produced quite a 

noticeable effect, as may be seen from Fig. 4.55. The county of Jerome has 

moved from the fourth to the fifth position, and the county of Madison has 

ascended to the fourth position. This shows that our evaluation is quite 

sensitive to changes in the weights. This is an undesirable feature: if, sup-

posedly, our limited resources were to allow us to provide support to no 

more than four counties, it would be unclear which of the counties, Jerome 

to Madison, should be preferred. 

Fig. 4.55. To probe the sensitivity of the evaluation, the weights were changed 

from 0.28, 0.28, 0.19, and 0.25 to 0.27, 0.28, 0.19, and 0.26. As a result, Jerome 

has moved from the fourth to the fifth position 

A possible way of solving this problem is to involve additional attrib-

utes in the evaluation. Let us use the following two attributes (also trans-

formed into z-scores):

Avail. of emergency med. services: The availability of emergency medi-

cal services, calculated by dividing the total number of ambulances and 

quick-response units by the population in each county. 
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Avail. of obstetrical care: The availability of obstetric care, expressed 

by the number of providers offering obstetric delivery services. 

These attributes (referred to as the availability attributes from now on) dif-

fer from the previous four attributes in that higher values of them indicate 

better health care conditions than do lower values. Since our goal is to see 

where the situation is the worst, the values of the availability attributes 

must be reversed. Our tool for computing weighted sums will do this if we 

indicate that these attributes have the opposite orientation. For this pur-

pose, the user interface of the tool contains arrow-shaped “switchers” posi-

tioned to the left of the slider bars used for setting the attribute weights 

(see Fig. 4.56). Clicking on a switcher reverses the orientation of the corre-

sponding attribute. The arrow also changes its orientation from north-east 

to south-east. Hence, the appearance of the controls shows whether the 

original or reversed values of each attribute are used in the computation. 

Thus, it is clear from the screenshot in Fig. 4.56 that the availability attrib-

utes have an orientation opposite to that of the other four attributes. This 

means that negative values increase the integrated score and positive val-

ues decrease it. 

Fig. 4.56. Two additional attributes have now been included in the evaluation: the 

availability of emergency medical services and the availability of obstetric care. 

Their opposite orientation in comparison with the other four attributes is indicated 

by the downward-oriented arrows to the left of the slider bars used for setting the 

weights 

The table in Fig. 4.57 shows the result of evaluating the counties of 

Idaho on the basis of the six attributes, i.e. the initial set of four attributes 

plus the availability attributes. The scores contained in the rightmost col-

umn of the table correspond to the attribute weights shown in Fig. 4.56, i.e. 
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0.2, 0.2, 0.13, 0.19, 0.14, and 0.14. As before, the rows of the table are ar-

ranged in order of decreasing evaluation score. The topmost four rows are 

highlighted. These rows correspond to the counties of Washington, Pay-

ette, Jerome, and Madison. 

Fig. 4.57. The counties have been evaluated here on the basis of six attributes us-

ing weights of 0.2, 0.2, 0.13, 0.19, 0.14, and 0.14. The rows with the four topmost 

evaluation scores are highlighted 

Again, we probed the sensitivity of this selection by slightly varying the 

weights of the attributes. This time, the four highlighted counties remained 

stably at the top of the list; only their relative positions changed from time 

to time. This looks good, but we realised soon that manual variation of the 

weights requires much time, and it is hard to ensure that all admissible 

weight combinations have been tested. Fortunately, the tool can help us in 

performing the sensitivity analysis: we can specify the limits for the weight 

of each attribute, and the tool will compute the integrated scores, taking 

various weights from the specified intervals. The results of this automated 

sensitivity analysis are summarised by providing the minimum, maximum, 

and mean position of each county and the variance of the position. 

To test the robustness of our choice of four counties, we specified the 

parameters for the automated sensitivity analysis as is shown in Fig. 4.58. 

Besides the minimum and the maximum admissible weight for each attrib-

ute, it is possible to choose how many different values from this interval 

will be tested. In our case, we specified that the tool must test 20 values for 

each attribute weight. 

The results of the automated sensitivity analysis are presented in the ta-

ble in Fig. 4.59. This table shows the minimum position that each county 

received during the tests, the maximum position, the mean position, and 

the variance of the positions received in all test runs. The rows of the table 

are arranged in order of increasing mean position. It may be seen that the 
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four counties chosen as the top candidates for receiving funding appear at 

the top of the table, i.e. their mean positions are the highest. Even the rela-

tive order of these counties remains the same as in Fig. 4.57. From the 

ranges of the positions and the variances, it may be seen that Washington 

and Payette are indubitably in need of support: Washington always ranked 

first or (rarely) second, and Payette occupies positions from first to third, 

being second on average. The rank variances of these two counties are the 

smallest of all. 

Fig. 4.58. To run an the automated sensitivity analysis, the user specifies the 

minimum and maximum admissible weight for each attribute and the number of 

different values from this interval to be tested 

Fig. 4.59. The results of an automated sensitivity test with the parameters speci-

fied in Fig. 4.58 
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The county of Jerome is, on the average, in third place. Its behaviour in 

the test was rather stable: it never ascended to a position higher than third 

but also never dropped below fifth. Its rank variance is also rather low, 

which indicates that the county was mostly among the top four throughout 

all test runs. Hence, it would be quite safe to conclude that this county 

must also receive financial support. 

The county of Madison fluctuated between the first and the sixth posi-

tion. It has the highest variance among the four counties. However, if the 

hypothetical funding has to be distributed among four counties, Madison is 

obviously a better candidate for receiving support than the counties posi-

tioned below it in the table. None of these counties ascended to a position 

higher than fourth, and the mean position of Madison differs quite substan-

tially from the mean position of the next county in the list. 

This example evaluation should not be considered as an introduction to 

the methods for supporting multicriteria decision-making but rather as an 

illustration of the ideas of dynamic attributes and sensitivity analysis. It 

happens quite often that methods applied for data transformation involve 

parameters that can be assigned more or less subjectively chosen values. It 

is highly desirable that the tools realising such methods allow users to un-

derstand how their choice affects the results obtained. One possible way is 

that the tool produces dynamic attributes with values that change as the 

user modifies the parameters of the method. In order to observe the 

changes, the user needs to visualise these dynamic attributes, which, in 

turn, requires the visualisation tool to be sensitive to the changes in the 

attribute values. The table display that we used in the course of our evalua-

tion of the counties of Idaho is an example of such a visualisation tool. The 

display is updated in response to any change in the values of a dynamic 

attribute. Not only do the new values replace the old ones in the corre-

sponding table column, but also the order of the table rows may change if 

the dynamic attribute is used for sorting the rows. 

Hence, an interactive sensitivity analysis involves the following prereq-

uisites:

The user interface of the tool permits easy changing of the data trans-

formation parameters. 

In response to changes in the parameters, the tool repeats the computa-

tions using the new parameter values and replaces the previously com-

puted results with the new results. 

A tool must be used to visualise the results of the computation. The 

visualisation tool must be sensitive to changes in the results of the com-

putation and must respond to the changes by updating the display. 
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Despite the importance of providing facilities for an interactive sensitiv-

ity analysis, this may still be insufficient. When the method used for data 

transformation involves multiple parameters, the procedure of interactive 

sensitivity testing may be too time-consuming and tiresome for the user. 

Therefore, it is good to supplement interactive facilities with tools for 

automated sensitivity testing. 

4.5.3 Value Interpolation 

The word “interpolate” is defined as “1) to introduce (something additional 

or extraneous) between other things or parts; 2) to insert, estimate, or find 

an intermediate term in (a mathematical sequence); …” (Random House 

1996). Data interpolation may be described, in a broad sense and using the 

terminology of our data model, as inserting additional elements into the set 

of references of a dataset. For the new references, one needs to specify the 

corresponding values of the attributes of the dataset. These attribute values 

are initially unknown; they need to be estimated on the basis of known at-

tribute values corresponding to the other references.  

Practically, interpolation is done for attributes with continuous value 

sets and reference sets with distances between elements. The continuity of 

an attribute ensures the existence of intermediate values between any two 

different values. The existence of distances in the reference set is necessary 

for the notion of neighbourhood to be defined. An unknown attribute value 

corresponding to a reference is derived from known attribute values corre-

sponding to its neighbouring references. This operation involves, explicitly 

or implicitly, certain assumptions concerning the nature of the phenome-

non represented by the attribute. The minimum assumption is that the phe-

nomenon is continuous and smooth, i.e. attribute values corresponding to 

close references are also close. Hence, the estimated attribute value for a 

new reference must be close to the actual attribute values corresponding to 

the neighbours of the new reference. 

It is clear from this explanation that data interpolation has two aspects: 

first, how to define the appropriate neighbours for any new reference; and 

second, how to make appropriate estimates of the corresponding attribute 

values on the basis of the available attribute values. There are methods that 

work “locally”, i.e. they derive the estimated values for new references 

directly from the values associated with their neighbours, without involv-

ing any other references and their corresponding attribute values. Other 

methods use all of the original references available in the dataset and the 

corresponding attribute values to build an overall model (such as a mathe-

matical equation or a system of equations), which may then be used to de-



4.5 Data Manipulation      289 

termine the attribute value for any reference. Naturally, it is required that 

the values produced with the use of this model for the original references 

coincide with the corresponding original attribute values. 

The first approach is, obviously, simpler and less computationally inten-

sive. However, analysts are often not quite satisfied with the results ob-

tained: these results are typically not sufficiently smooth, which is incon-

sistent with the assumption of the smoothness of the underlying phenome-

non. The “global” methods usually work better but are more complex and 

resource-demanding.

We are not going to immerse ourselves deeply into the topic of data in-

terpolation, which is quite well covered in the mathematical literature 

(more specifically, that on numerical analysis). Interpolation of spatial data 

is discussed in the literature on cartography and GIS; see, for example, 

Slocum (1999) and Chrisman (1997). In the context of our study, we shall 

briefly consider the two most common cases of interpolation: interpolation 

in a linearly ordered reference set, such as time, and interpolation in a two-

dimensional space. We shall also enumerate some of the most popular in-

terpolation methods. We believe this to be quite an appropriate level of 

detail for our general review of tools for exploratory data analysis. 

As we have mentioned, data interpolation involves the problem of defin-

ing appropriate neighbours for a given reference. This problem is common 

to interpolation and to the neighbourhood-based attribute transformations 

considered earlier. Which of the pre-existing references can be taken as 

neighbours of a given new reference depends first of all on the properties 

of the reference set. If this is a linearly ordered set, such as time, for exam-

ple, each new reference has two nearest neighbours, specifically, the pre-

existing references preceding and following this reference in the order. In 

two-dimensional space, there is no ordering between elements. The 

neighbourhood relation may be defined by specifying a certain distance 

(radius). The references (i.e. spatial locations) lying within this distance 

from the target reference are considered to be the neighbours of this refer-

ence.

In the literature concerning the interpolation of spatial data, two differ-

ent cases are considered individually: interpolation from scattered loca-

tions and interpolation in regular grids. In the latter case, the task of find-

ing neighbours is easy: for each location, these are the nearest grid nodes. 

However, when the reference set consists of scattered locations, finding 

the neighbouring locations may require quite wasteful searching. There are 

several approaches to optimising this search process; they are described in 

the relevant literature. 

Sometimes, when scattered locations are being dealt with, a limit is im-

posed on the number of neighbours to be taken into account. If the actual 
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number of neighbours exceeds this limit, the most distant neighbours are 

discarded. In some approaches, the number of neighbours involved in the 

interpolation is limited from the other side, i.e. by specifying the minimum 

number. In the case where there are not enough neighbours within the 

specified radius from the target reference, the radius is increased stepwise 

until the required number of neighbours is obtained. 

In order to take into account the neighbours lying in different directions 

from a target location, a circle around this location may be divided into a 

specified number of sectors (typically four or eight; the respective search 

methods are called quadrant and octant strategies). Then, a specified num-

ber of neighbours are taken from each sector. One may also specify the 

minimum number of neighbours required and the maximum number of 

empty sectors permitted. When these criteria are not met, the initial radius 

of the circle needs to be increased. 

Another approach to finding appropriate neighbours in a set of scattered 

locations is based on triangulation – connecting the original locations by 

lines so that the plane is divided into non-overlapping triangles. Then, any 

new location will fall into one specific triangle. One of the vertices of this 

triangle will be the closest neighbour of the new location, and the other 

appropriate neighbours can be found by inspecting the neighbouring trian-

gles.

Once the neighbours have been found, the next step is to use the corre-

sponding attribute values for the estimation of a value for the new refer-

ence. The simplest method is known as linear interpolation: the new value 

is found as a weighted average of the original values, i.e. according to the 

formula  
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Here, N is the number of neighbours, vi is the attribute value corresponding 

to the ith neighbour, and wi is the weight, which is inversely proportional 

to the distance between the ith neighbour and the target location. Note that 

the expression (4.7) represents a linear function, which gives this interpo-

lation method its name. 

Linear interpolation can be used in a linearly ordered reference set (in 

this case, there are exactly two neighbours for each new reference), in two-

dimensional space, and, in general, in any reference set with distances. In 

many situations this simple approach is quite appropriate, but there are 
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also many situations where the results of such interpolation are not suffi-

ciently smooth, and then analysts opt for other interpolation methods. 

For reference sets with linear ordering, two popular interpolation meth-

ods are polynomial and spline interpolation. Polynomial interpolation is a 

generalisation of linear interpolation by means of replacing the linear func-

tion by a polynomial of higher degree. Whereas linear interpolation uses, 

in the case of a linearly ordered reference set, only the two nearest 

neighbours of each new reference, a polynomial function of degree n re-

quires n + 1 values corresponding to consecutive references. Usually, a 

single polynomial is constructed using all original references and then used 

for deriving attribute values for intermediate references. Polynomial inter-

polation produces smoother results than does linear interpolation but is 

more computationally intensive. Besides, the results may be inexact, espe-

cially at the end point. 

Spline interpolation can be characterised as piecewise polynomial inter-

polation: it uses low-degree (e.g. cubic) polynomials in each of the inter-

vals between two successive references. The polynomial pieces are chosen 

so as to fit smoothly together. The resulting function is called a spline.

This method produces quite smooth interpolation and is more precise than 

using higher-degree polynomials. Other interpolation methods are also ap-

plied to linearly ordered reference sets, for instance trigonometric interpo-

lation, which uses trigonometric polynomials. A detailed review of all in-

terpolation methods is, however, beyond the scope of our study. 

It should not be thought that the interpolation methods mentioned above 

are applicable only to numeric attributes. A counter-example might be the 

interpolation of spatial positions of a moving object to construct a smooth 

trajectory line on a map, in a 3D view, or for the purposes of movement 

animation. In this example, there is a linearly ordered reference set, spe-

cifically, time. The positions of the object are initially known for sample 

time moments, and the task is to estimate its positions at intermediate mo-

ments. 

Since the polynomial, spline, and similar interpolation methods produce 

smooth curves, these methods are also used in the interpolation of spatially 

referenced data to represent spatially continuous phenomena in the form of 

isopleths (equal-value lines, sometimes also called isolines). The idea of 

polynomial interpolation, both global and piecewise, is also extendable to 

spatially referenced data in another way. Similarly to the construction of 

polynomial curves or curve segments in the one-dimensional case, poly-

nomial surfaces can be constructed from values specified at sample loca-

tions in a (two-dimensional) space. However, the most respected interpola-

tion method for spatially referenced data is the method of kriging, which 

uses information about the spatial autocorrelation in the vicinity of each 
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location. The spatial autocorrelation is an assessment of the correlation 

between attribute values and the spatial locations that they refer to, or, 

simply speaking, how similar the values in neighbouring locations are. On 

this basis, kriging is believed to provide “optimal” interpolation in the 

sense of greater use of the information provided by the spatial arrange-

ment. The kriging method is mathematically quite complex and will not be 

considered here in detail. 

A concept related to interpolation is that of extrapolation, which means 

estimation of attribute values for references that are not between original 

references but are outside the given reference set. The results of extrapola-

tion are often subject to substantial uncertainty. 

At the end of our brief discussion concerning interpolation, let us dem-

onstrate the effect of applying interpolation in the visualisation of spatially 

referenced data specified in a raster format. Let us recall that the raster 

model for spatially referenced data divides a territory into fine grid cells, 

called pixels, which are filled with attribute values. Data specified in a 

raster format are visualised by encoding the values of the raster cells by 

colours of the corresponding screen pixels. For example, Fig. 4.60C dem-

onstrates a possible visualisation of the relief of Europe specified in a 

raster format, with the raster pixels containing altitudes.12

When a raster pixel is mapped onto more than one screen pixel, it is as-

sumed that the value in the raster pixel corresponds to the centre of the 

area on the screen. The values corresponding to all other screen pixels are 

determined by interpolating values from the surrounding cells. Owing to 

the interpolation, the resulting image looks smooth. The effect of interpo-

lation is demonstrated on the right in Fig. 4.60C. The image fragment at 

the top right has been produced without interpolation. Its appearance re-

sembles a mosaic made of rectangular tiles. At the bottom right, the same 

data are shown with linear interpolation used. The resulting image contains 

no abrupt changes of colours, and no boundaries of raster cells are visible. 

We would also like to mention another common case where interpola-

tion is used, in the visualisation of time-referenced data by means of dis-

play animation. Animation may be thought of as the presentation of a se-

                                                     
12  In this example, a specific colour encoding is used: shades of blue represent 

values below zero, values from 0 to 200 are encoded by shades of green, and 

shades from light yellow to dark orange are used for values over 200, with 

darker shades corresponding to higher altitudes. This encoding is close to the 

traditional representation of relief in physical maps, which makes the image 

easily understandable. However, such a colourful representation is not highly 

recommended for arbitrary data, where a simple scale of increasing or decreas-

ing brightness or a diverging colour scale may be more appropriate. 
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quence of images, or frames, one after another. This sequence consists of 

key frames and intermediate frames. Key frames are constructed from data 

originally available in the dataset; these data refer to a certain finite set of 

time moments. If only key frames are used, the resulting visualisation may 

be difficult to perceive owing to the lack of temporal continuity: abrupt 

local changes from one frame to another may obstruct one from seeing the 

general trend. Therefore, intermediate frames are constructed by interpolat-

ing the data to time moments in between the original moments. The more 

intermediate frames are used, the smoother the resulting animation ap-

pears. If the original set of time moments is not regularly spaced, it is rea-

sonable to vary the number of intermediate frames depending on the length 

of the time interval between two consecutive key frames. 

4.5.4 Data Aggregation 

Data aggregation tools reduce the amount of data under analysis by group-

ing individual references into subsets, which will be called “aggregates”, 

and computing some collective characteristics of the aggregates. Aggre-

gates and their characteristics (jointly called “aggregated data”) are often 

explored instead of the original data, especially when one is dealing with 

very large datasets. Substitution of the original data by aggregated data 

facilitates the process of simplification and abstraction in the course of 

perceiving and characterising behaviours; hence, aggregation tools are ap-

propriate for synoptic tasks. However, the simplification is achieved at the 

cost of information loss, specifically, discarding characteristics of individ-

ual references. Hence, aggregated data are not appropriate for elementary 

tasks.

The tools and techniques for data aggregation are rather numerous, 

which reflects their important role in the exploration of large amounts of 

data. In an attempt to provide some kind of systematic view of the variety 

of aggregation tools, we have extracted the following three aspects that 

characterise and differentiate existing approaches to data aggregation:  

1. How individual references are grouped into aggregates (or, in other 

words, how the entire reference set is divided into subsets). 

2. How the aggregates are characterised, i.e. what kind of characteristics 

are used and how they are derived. 

3. How the aggregated data are visualised or, in a more general sense, pre-

sented to the analyst. 
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4.5.4.1 Grouping Methods 

Grouping of individual references into aggregates is done on the basis of 

relations between them (which includes the general relations of ordering 

and distances, as well as particular relations pertinent to specific reference 

sets) or on the basis of commonality or closeness of their characteristics, 

i.e. the attribute values corresponding to the references. In both cases, the 

grouping method depends on the number of referrers or attributes used as 

the basis for the grouping, and on the properties of the value sets of the 

referrers and attributes. Let us consider first how grouping on the basis of a 

single referrer or attribute is done. 

For an attribute or referrer with a nominal value set, i.e. without order-

ing or distances, two possibilities exist. If the number of different values is 

not very large, references may be grouped together if they have the same 

value of the component that is used as the basis for aggregation. For ex-

ample, athletes participating in a European championship may be aggre-

gated according to the countries they are from, so that each aggregate con-

sists of athletes from the same country. In this example, aggregation is 

done on the basis of a common value of the attribute “Country”. Data ag-

gregation on the basis of a common value of a referrer makes sense only if 

the dataset also has other referrers. Thus, if we had data containing the re-

sults of the latest test on mathematics taken by a group of students and 

would like to aggregate the data according to common values of the refer-

rer “Student”, we could not build any aggregates, since each value of the 

referrer occurs in the reference set only once. If, however, the dataset con-

tained results of multiple tests, for example tests in different subjects or a 

sequence of tests in mathematics taken during a certain time period, we 

could build aggregates by uniting the results of different tests of the same 

student. In this case, the dataset has two referrers, “Student” and “Subject” 

(or “Time”), and hence each reference is a pair consisting of the name of a 

student and the name of a subject (or an indication of a time moment). The 

name of each student may occur in the reference set as many times as there 

are different subjects (or time moments),13 and hence it is quite possible to 

group references containing the same student’s name. 

Another case of aggregation on the basis of a component with a nominal 

value set arises when this component has very many different values. In 

this case, the explorer needs to divide the whole value set into equivalence 

classes. Then, references for which the values of this component belong to 

the same equivalence class are grouped together. For example, in a dataset 

                                                     
13  We have written “may occur” rather than “occurs” because the data may be 

incomplete, i.e. the results of some tests may be missing. 
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containing the results of a world championship, the countries from which 

the athletes come may be very numerous. When the athletes are grouped 

according to common countries, the resulting number of aggregates is very 

large and difficult to analyse. Therefore, the analyst may decide to group 

the countries, for example into African, Asian, European, etc., and aggre-

gate athletes from countries in the same group. 

When aggregation is done on the basis of a component with an ordered 

(linearly or partly) value set without distances, the same approaches may 

be used as when dealing with an unordered value set. When the number of 

different values is moderate, it is possible to aggregate data items with co-

incident values of the component, and if the analyst finds the values too 

numerous, he/she may group them into equivalence classes. However, in 

defining the equivalence classes, it is desirable to preserve the order, i.e. 

the classes should be formed from consecutive values. For example, an 

explorer analysing data concerning a set of people serving in a military 

force may wish to aggregate these people according to their military rank. 

The ranks may have been previously grouped into equivalence classes 

such as “Private” (including all grades of privates), “Sergeant” (all ranks 

of sergeants), “Warrant officer”, etc. The reason for wishing to use group-

ing may be not only the large number of different military ranks occurring 

in the dataset but also a wish to build aggregates of more or less equal size. 

It is not very likely that the set of servicemen under analysis includes as 

many generals as there are privates. Uniting generals with colonels and 

majors could make the sizes of the aggregates more balanced. However, it 

would hardly be reasonable to unite generals with corporals and colonels 

with sergeants. 

In aggregation on the basis of a component that has a linearly ordered 

value set with distances, such as a numeric or temporal attribute or refer-

rer, the value range of the component is divided into intervals, which play 

the same role as equivalence classes in the case of a nominal attribute or 

referrer. The intervals are often defined so as to have equal lengths, but 

other principles of division may be used as well. For example, one may 

aggregate the districts of Portugal on the basis of the attribute “Proportion 

of people aged from 0 to 14 years” by dividing the value range of this at-

tribute into ten intervals of equal length (of course, the number of intervals 

may be changed arbitrarily). However, the analyst may also decide to de-

fine the intervals in such a way that the resulting groups of districts have 

approximately equal sizes. Hourly data concerning air pollution may be 

aggregated into 24-hour periods, but it may be more reasonable to separate 

night and day hours and to consider unequal intervals, for example, from 

11 p.m. to 5 a.m. and from 6 a.m. to 10 p.m. 
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Aggregation on the basis of a spatial component is done by defining 

spatial compartments, which play the role of equivalence classes: each 

compartment includes several original values of the spatial component, 

and these values are treated in the same way. Such compartments may be 

defined either by joining individual values (typically, these values should 

be adjacent) or by space tessellation, which is most often done in a regular 

manner, for example a two-dimensional space may be divided into squares 

of the same size. Joining is often applied when the original values of the 

spatial component are already spatial compartments, i.e. have a certain 

spatial extent. For example, districts in a territory can be merged into lar-

ger districts. One can do this according to some predefined hierarchy of 

territorial division, such as administrative divisions, but in general this is 

not necessary. For example, the districts of Portugal may be aggregated on 

the basis of the provinces that they belong to, but the analyst may prefer to 

define geographical regions such as the western coast, the north-east, the 

central inland region, etc. Space tessellation may be recommended when 

the original values of the spatial component are points, i.e. have no spatial 

extent. Thus, in order to aggregate earthquake occurrences, one may divide 

the territory under analysis by introducing a regular grid. Then, earth-

quakes located within the same grid cell are united in an aggregate. The 

same technique is appropriate for aggregation of data specified in a raster 

format, which is often used to represent spatially continuous phenomena. 

In such data, attribute values refer to cells of a fine grid. For aggregation, 

one may introduce a coarser grid so that cells of the original grid that fit 

into the same cell of the new grid are united. 

It may be noted that all cases considered thus far involve reduction of 

the original value set of the component used as the basis for the aggrega-

tion by means of treating some values of this component as equivalent. 

The same applies to aggregation on the basis of more than one component: 

the value set of each component is reduced, and the possible combinations 

of values from these reduced sets define the aggregates.  

It is clear that equivalence classes may be defined in many ways for 

each of the components used for aggregation. In particular, one can even 

treat all values of a component as equivalent. Thus, in the example of ag-

gregation of the data concerning the performance of students, references 

were grouped according to the value of the component “Student” with no 

regard to the value of the second referrer (i.e. either “Subject” or “Time”). 

This actually means that all of the values of the second referrer were united 

into a single equivalence class and therefore treated as the same.  

It should be noted that when attributes rather than referrers are used as 

the basis for data aggregation, it may happen that some of the resulting 

aggregates are empty. The reason may be that the dataset contains no ac-
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tual occurrences of values belonging to some equivalence class of one of 

the attributes, or that for some combination of equivalence classes of sev-

eral attributes there are no corresponding combinations of original values. 

We would also like to mention that the degree of aggregation, i.e. the 

sizes of the aggregates and their number, may vary greatly. An analyst 

chooses an appropriate degree of aggregation depending on the goals of 

the analysis; in particular, on how precise the pattern to approximate the 

behaviour of the phenomenon under analysis must be. The degree of ag-

gregation depends also on the amount of data being analysed and some 

properties of the data, first of all the variability of the data: it makes sense 

to build aggregates such that the corresponding characteristics do not vary 

too much. The admissible degree of variation depends, in turn, on the re-

quired precision of behaviour characterisation.  

It may be quite reasonable to explore data on different aggregation lev-

els. The highest possible level is when the whole reference set is consid-

ered as a single aggregate. The analyst may start by considering aggregate 

characteristics of the entire dataset and then decrease the level of aggrega-

tion until it becomes possible to approximate the behaviour by a suitable 

pattern, in terms of simplicity and precision. 

4.5.4.2 Characterising Aggregates 

One of the basic characteristics of an aggregate is the number of elements 

(i.e. individual references) included in it. Counts of elements are especially 

important when aggregates are defined on the basis of characteristics, i.e. 

attribute values. In this case, these counts show how many references with 

certain characteristics exist in the dataset. For example, after having aggre-

gated the districts of Portugal on the basis of the attribute “Proportion of 

people aged from 0 to 14 years”, we would of course be interested in how 

many districts exist with values of that attribute that fit into each of the 

intervals into which we divided the value range of the attribute. 

Besides counts, aggregates may receive other collective characteristics 

derived from the characteristics of the individual references included in 

them. The most frequently used operations for deriving characteristics of 

aggregates from the characteristics of their members are the following: 

The sum of the attribute values referring to individual members of an 

aggregate. For example, for the districts of Portugal aggregated on the 

basis of the proportion of children, we would like to know the total 

population of each group of districts. This can be ascertained by sum-

ming the values of the attribute “Population number” for all members of 

the group.  
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It should be noted that summing does not make sense for any numeric 

attribute and for any set of references. It is appropriate in some cases to 

add together values of an attribute that express absolute quantities, but 

not to add proportions, rates, or ranks. Even absolute quantities cannot 

always be summed. Thus, if we aggregate the time-series data in the 

dataset concerning crime in the USA by grouping the references on the 

basis of a common state irrespective of the time, it would be incorrect to 

compute the sum of values of the attribute “Population number” refer-

ring to different time moments. In this case, the same limitations apply 

as for the accumulation of values over time intervals discussed earlier. 

The arithmetic mean, or average, of the individual values of a numeric 

attribute. For example, when analysing a dataset concerning the per-

formance of students, one might be interested in computing the average 

of the marks received by each student in different tests. It may be ap-

propriate to consider means in combination with some measures of the 

variation of the values, such as the standard deviation or the variance. 

A weighted average, which differs from an ordinary average in the fol-

lowing way. In computing an ordinary average, the elements of an ag-

gregate are treated equally: their characteristics are summed, and the 

sum is divided by the number of elements. In a weighted average, the 

contribution of each element to the combined characteristic of the ag-

gregate depends on a certain measure, called the weight of the element. 

For example, in combining crime rates in all states of the USA into an 

aggregated figure for the whole country, it would hardly be appropriate 

to compute a simple average. It seems more reasonable to take into ac-

count the number of inhabitants in each state: the contribution of highly 

populated states to the overall characteristic should be greater than that 

of states with a smaller population. The number of population in each 

state is considered in this case as the weight of this state.  

A weighted average is computed in the following way: the attribute 

value associated with each member of an aggregate is multiplied by the 

weight of this member (which must be non-negative). The sum of all 

such products is divided by the sum of the weights of all aggregate 

members (see (4.7)). In the example of the crime rates, the crime rate of 

each state would be multiplied by the population of that state. Then, the 

products computed for all states would be added together and the result-

ing sum divided by the total population of the country. 

The value range, i.e. the minimum and maximum values of an attribute 

that has an ordered value set, and possibly the difference between the 

minimum and maximum if the value set has distances. For example, in 

analysing the performance of students, one may wish to know the mini-
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mum and maximum mark received by each student. However, we are 

not sure whether it would be appropriate in this case to compute the dif-

ference between the minimum and the maximum mark. This depends on 

whether the mark scale is supposed to be of interval type (i.e. with dis-

tances) or ordinal (i.e. with no distances). 

The mode, or the most frequent value. This operation is especially suit-

able for attributes with discrete value sets, in particular, values of nomi-

nal type. For example, in aggregating land use data specified in a raster 

format by means of a coarse-granularity grid, it may be useful to deter-

mine the type of land prevailing in each grid cell, for example urban, ag-

ricultural, or forest. For a more detailed analysis, the same aggregates 

may be characterised by the frequency of occurrence of each value or 

the proportion of references characterised by each value. 

The median and other positional measures. To recall, the median of a 

set of numeric values is the value that divides the set into two equal 

parts so that the values in one part are less than or equal to this value 

and the values in the other part are greater than or equal to this value. 

Analogously, each half of the set can in turn be divided into halves; the 

dividing values are called the first and the third quartile. By generalising 

this division procedure, deciles and percentiles are defined: deciles di-

vide the value set into tenths, and percentiles divide it into hundredths. 

All of these values are called “positional measures”, because they locate 

the positions of particular values relative to a set of other values. Posi-

tional measures may be preferable to the arithmetic mean and the value 

range for characterising an aggregate when the set of original attribute 

values corresponding to this aggregate contains outliers. For example, 

we can aggregate the data about crime in the USA by uniting all refer-

ences that have a common state but different years. Then, we can char-

acterise the overall crime situation in each state during the 41-year pe-

riod from 1960 to 2000 by computing the medians and quartiles of the 

values of attributes referring to the various years. In this way, we can 

disregard occasional very high or very low values that might have oc-

curred in some years. 

Unlike counts, all of the aggregate characteristics listed above are de-

rived from the values of some attributes and have the same nature as the 

attribute values that they have been derived from. Hence, one can visualise 

such aggregate characteristics using the same visualisation methods as for 

the original attribute values. In contrast, counts, or aggregate sizes, require 

specific visualisation techniques. Therefore, we would like to consider the 

visualisation of counts separately from the visualisation of other aggregate 

characteristics. 
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4.5.4.3 Visualisation of Aggregate Sizes 

Probably the most well-known and widely used visual display of aggre-

gated data is the frequency histogram, which represents sizes of aggregates 

by heights of juxtaposed bars. For example, the histogram in Fig. 4.61 cor-

responds to aggregation of the districts of Portugal on the basis of the val-

ues of the attribute “Percentage of people aged from 0 to 14 years”. The 

value range of the attribute (from 11.13 to 27.50%) has been divided into 

ten equal-length intervals, and the aggregates have been formed by uniting 

districts with attribute values fitting in the same interval. The histogram in 

Fig. 4.61 contains one bar for each interval, with a height proportional to 

the size of the corresponding group of districts. In other words, the height 

of a bar shows how many values in the respective interval are present in 

the dataset. The bars are ordered according to the order of the intervals. In 

fact, the widths of the bars are also meaningful: they show the lengths of 

the intervals. In this case, all intervals are of the same length, but the data 

could also be aggregated on the basis of unequal intervals, so that the rep-

resentation of the interval lengths might become important.  

Fig. 4.61. This histogram shows the result of aggregation of the districts of Portu-

gal according to the values of the attribute “Percentage of people aged from 0 to 

14 years”, whose value range has been divided into ten equal-length intervals. The 

heights of the bars are proportional to the sizes of the aggregates 

For comparison, let us look at the histogram in Fig. 4.62, which repre-

sents the results of aggregation on the basis of an attribute with a nominal-

value scale. Specifically, a set of countries in Europe has been divided into 

subsets according to the values of the attribute “Dominant religion”. Five 

different values of this attribute are present in the dataset. The values are 

not ordered, and no distances between them are defined. Therefore, the 

order of the bars in the histogram may be arbitrary. In particular, the bars 

may be arranged in order of decreasing size, as has been done in Fig. 4.62. 

The widths of the bars do not convey any information. 
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Fig. 4.62. The countries of Europe have been aggregated here according to the 

values of the attribute “Dominant religion”. For each religion, the histogram 

shows the number of countries in which this religion is dominant 

Let us now return to the aggregation of the Portuguese districts on the 

basis of the proportions of children (i.e. people aged from 0 to 14 years). In 

Fig. 4.61, the value range of the attribute has been divided into ten inter-

vals. The choice of the number of intervals is quite arbitrary. One could 

also divide the value range into 20 intervals, as in Fig. 4.63, left, or into 50 

intervals, as in Fig. 4.63, right. As we have mentioned, variation of the de-

gree of data aggregation may be reasonable in data analysis. Therefore, it 

is desirable that data aggregation tools provide sufficient flexibility to an 

explorer for defining and redefining data aggregates. 

Fig. 4.63. These histograms correspond to division of the value range of the at-

tribute “Percentage of people aged from 0 to 14 years” into 20 (left) and 50 (right) 

equal-length intervals. The heights of the bars show the number of districts in Por-

tugal with values of this attribute fitting in the respective intervals 

As we have seen, a histogram representing the results of aggregation on 

the basis of values of a numeric attribute shows not only the aggregate 

sizes but also how the aggregation has been done, i.e. how the value range 

of the attribute has been divided into intervals. This idea can be extended 

quite easily to the case of aggregation on the basis of two numeric attrib-

utes. Thus, the horizontal display dimension may show the division of the 

value range of one of the attributes, and the vertical dimension may show 



302     4 Tools 

the same for the other attribute. Accordingly, the plane is divided into rec-

tangular cells. In these cells, the sizes of the respective aggregates can be 

represented, for example, by the sizes of marks or by brightness (or dark-

ness), as is demonstrated in Fig. 4.64. Such a display is known as a 

“binned scatterplot” or “two-dimensional histogram”. Carr et al. (1992) 

argue that aggregation in binned scatterplots or other binned displays (in 

particular, maps) is better to do using a grid of hexagons rather than 

squares or rectangles. These authors point out that using a rectangular grid 

results in the marks in a display being arranged in horizontal and vertical 

lines, which attract the viewer’s attention and thereby distract him/her 

from seeing the patterns generated by the data. 

Fig. 4.64. Two possible visualisations of the results of aggregation of the districts 

of Portugal according to the values of the two numeric attributes “Percentage of 

people aged 65 or more years” and “Percentage of population without primary 

school education”. The value range of each attribute has been divided into 20 

equal-length intervals. In both displays, the horizontal and vertical dimensions 

represent the division of the value ranges of the attributes. In the grid cells, the 

sizes of the aggregates are represented by circle sizes (left) and by darkness (right) 

The idea of a two-dimensional histogram could be extended to the case 

of aggregation on the basis of three numeric attributes by involving the 

third spatial dimension of the display. However, there are obvious limita-

tions on further extensions in this direction. 

In addition to histograms, another popular way to visualise sizes of ag-

gregates is segmentation of a figure in proportion to the sizes. For exam-

ple, in Fig. 4.65 the sizes of the groups of European countries aggregated 

according to their dominant religion are represented in a segmented bar 

(left) and in a pie chart (right). As compared with the histogram in Fig. 

4.62, a segmentation-based display is more convenient for estimation of 
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the relative size of each aggregate with respect to the whole reference set. 

In other words, segmentation is a rather straightforward representation of 

the division of the reference set into aggregates. 

Fig. 4.65. The sizes of the groups of European countries aggregated according to 

their dominant religion are represented by segmented figures 

The segmentation-based displays in Fig. 4.65 represent results of data 

aggregation on the basis of a qualitative attribute. It is also possible to do 

the same for numeric or other types of attributes. However, segmented rep-

resentations have a disadvantage as compared with histograms: they do not 

show how the value range of an attribute is divided into intervals. Repre-

sentation of the interval breaks may be not so important if the aggregation 

is done on the basis of equal-length intervals. In that case, if the order of 

the segments in a segmented figure is the same as the order of the inter-

vals, it is relatively easy to identify the interval that each segment corre-

sponds to (nevertheless, there may be problems if the aggregates corre-

sponding to some of the intervals are empty). 

There is a display technique that combines the advantages of a histo-

gram and of a segmentation-based representation. It uses one of the spatial 

display dimensions to represent the value range of an attribute with an or-

dered value scale, and the division of this range into intervals. Another 

spatial dimension is used to show the corresponding division of the refer-

ence set into aggregates, i.e. the sizes of the aggregates and their propor-

tions in relation to the whole reference set. The technique involves a graph 

known in statistics as the cumulative frequency curve, or ogive.

Figure 4.66 demonstrates the principle of the construction of a cumula-

tive frequency curve. The horizontal dimension is used here to represent 

the value range of the attribute used for data aggregation. The vertical di-

mension is used to represent the number of references. The top edge of the 

display corresponds to the number of references in the entire reference set. 
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Fig. 4.66. The principle of the construction of a cumulative frequency curve 

For each attribute value x between the minimum and maximum, one can 

count how many references in the reference set have corresponding values 

less than or equal to x. This count (let us denote it by Nx) can be repre-

sented by a vertical position in the space of the graph, which corresponds 

to the horizontal position representing the value x. The cumulative curve is 

constructed by connecting all consecutive points with coordinates (x, Nx),

where x is assigned successive attribute values from the minimum to the 

maximum. 

The ogive has certain useful properties that make it suitable for analysis 

of the distribution of the values of an attribute across a population14 or any 

reference set considered as a population, i.e. considered irrespective of or-

dering, distances, or any other relations between the elements. Thus, steep 

segments of a cumulative curve correspond to groups of references with 

close values of the attribute. The height of such a segment shows the num-

ber of references with close values. Horizontal segments correspond to 

“gaps” in the sequence of values, i.e. where there are no references with 

values in an interval. Of course, the distribution of values can also be ana-

lysed using a histogram, which is easier to interpret than an ogive. How-

ever, a histogram display has a serious disadvantage: its shape depends 

                                                     
14  We use the term “population” in the sense “statistical population”, i.e. a dis-

crete reference set without ordering and distances between the elements.  
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significantly on how the value range of the attribute is divided into inter-

vals (compare, for example, the histograms in Figs 4.61 and 4.63, which 

are constructed on the basis of the same attribute). Unlike the case of a his-

togram, construction of an ogive does not involve dividing the value range 

of the attribute into intervals. Therefore, its shape may be regarded as a 

more objective summary of the value distribution. 

We realise that this description of the properties of the ogive and its use 

in analysing statistical distributions is not quite in place here, in the middle 

of a discussion concerning methods of combined visualisation of the divi-

sion of the value set of an attribute and the sizes of the resulting aggre-

gates. However, since this is our first mention of a cumulative curve, we 

considered it reasonable to describe its construction and general properties 

before we started explaining any modifications of the standard technique. 

Let us now return to the main topic of our discussion. 

As we have mentioned, the construction of an ogive is not based on a 

division of the value set of the attribute. However, the display can be 

modified so as to represent simultaneously a division of the attribute val-

ues into intervals and the corresponding division of the reference set into 

aggregates. This is done by segmentation of the horizontal and vertical 

axes. The horizontal axis is divided into segments in accordance with the 

division of the value range of the attribute into intervals: for each interval 

break, there is a corresponding position on the horizontal axis, which is 

used as a divider of the axis. For every such divider, a vertical line is 

drawn in the upward direction until it crosses the curve. From the crossing 

point, a horizontal line is drawn towards the vertical axis until it crosses 

that axis. Owing to the properties of the cumulative curve, this divides the 

vertical axis in proportion to the number of references with corresponding 

attribute values belonging to the intervals shown on the horizontal axis. 

Why this is so can be seen from the drawing in Fig. 4.66. On the horizontal 

axis, the positions of two attribute values are shown, 0.3 and 0.5. The ver-

tical position corresponding to the value 0.3 shows the number of refer-

ences with values less than or equal to 0.3; these references are about 14% 

of all references. Analogously, the vertical position corresponding to 0.5 

shows the number of references with values less than or equal to 0.5 (about 

72% of the reference set). The segment of the axis between these two ver-

tical positions corresponds to the references with values of the attribute 

greater than 0.3 but less than or equal to 0.5, and the size of this segment 

represents 58% (i.e. 72% minus 14%) of the reference set. 

Figure 4.67 shows two screenshots of a cumulative-curve display with a 

segmentation of the axis. The display represents the distribution of the val-

ues of the attribute “Percentage of people aged from 0 to 14 years” over 

the set of the districts of Portugal (these are the same data as were used for 
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constructing the histograms in Figs 4.61 and 4.63). The screenshot on the 

left represents the division of the value range of the attribute into five 

equal-length intervals. The corresponding segmentation of the vertical axis 

shows the sizes of the resulting aggregates in relation to the size of the en-

tire set. Below the graph, the proportions of the aggregates in the entire set 

are shown as numbers. We can see, for example, that only 6.5% of all dis-

tricts have values of the attribute belonging to the lowest one-fifth of the 

value range (i.e. from 11.13 to 14.40), and the same is true for the highest 

one-fifth, i.e. from 24.23 to 27.50. These subsets of districts are repre-

sented by quite small segments on the vertical axis, whereas the middle 

segment is the longest segment – it represents 40.7% of the whole set of 

districts, with the corresponding attribute values belonging to the middle 

interval from 17.68 to 20.95. 

Fig. 4.67. Two screenshots of a cumulative-curve display represent different divi-

sions of the value range of the attribute “% 0 14 years” on the horizontal axis, and 

the corresponding divisions of the set of the districts of Portugal on the vertical 

axis. On the right, the value range of the attribute has been divided so that the re-

sulting subsets of districts have approximately equal sizes. Below each graph, the 

values of the interval breaks are shown 

The screenshot on the right represents another division of the value 

range into five intervals: the interval breaks have been chosen here so that 

the reference set (i.e. the set of districts of Portugal) has been divided into 

subsets of approximately equal size15. Accordingly, the vertical axis is split 

into five segments of equal length. The horizontal axis is segmented ac-

cording to the positions of the interval breaks. It can be seen that the first 

and last segments, which correspond to value intervals from 11.13 to 16.85 

and from 21.55 to 27.50, respectively, are much longer than the rest; they 

are even longer than the total length of the remaining three intervals taken 

together.

                                                     
15  It is not always possible to divide a set in this way into subsets of exactly equal 

size, because attribute values for some references may coincide. 
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We would like to stress that the left and right parts of Fig. 4.67 differ 

only in the segmentation of the axes, while the curve remains the same. In 

principle, a cumulative-curve display can be implemented so that the seg-

mentation of any of the axes may be changed interactively. This would 

allow a dual use of the tool: 

The user could vary the division of the value range of the attribute and 

observe the variation of the sizes of the corresponding aggregates. 

The user could partition the reference set in any desired proportion (by 

splitting the vertical axis) and observe the corresponding division of the 

attribute value range. 

Hence, the display may become not only a means for visualising previ-

ously defined aggregations but also a tool for defining various aggrega-

tions and, in this way, allow one to explore the distribution of attribute 

values over a reference set. 

Up to this point, we have discussed the use of segmentation-based dis-

plays for representation of data aggregates formed on the basis of a single 

attribute. However, the idea of segmentation is, in principle, applicable to 

aggregation on the basis of any number of attributes: each segment of a 

figure representing the division of the reference set according to one at-

tribute may, in turn, be segmented to show a division according to another 

attribute, and so on.  

Among the visualisation techniques based on such recursive segmenta-

tion, the mosaic plot (Friendly 1994) and the treemap (Shneiderman 1992) 

are the best known. These two techniques look very similar. They both 

divide the two-dimensional display space into rectangles representing ag-

gregates, so that the sizes of the rectangles are proportional to the sizes of 

the aggregates. In a mosaic plot, the horizontal and vertical display dimen-

sions are handled independently, and segmentation according to each at-

tribute is applied either to the horizontal or to the vertical dimension. The 

operations of horizontal and vertical division typically alternate: for the 

first attribute, the whole display area is split in the horizontal dimension 

(i.e. by vertical dividers); for the second attribute, each of the rectangles 

resulting from the first division is divided in the vertical dimension; for the 

third attribute, each of the rectangles resulting from the second division is 

segmented again in the horizontal dimension; and so on. 

In a treemap display, several alternative methods can be used to divide 

the display area into segments with areas proportional to the sizes of the 

aggregates. One of the methods is the same as is used in mosaic plots; it is 

demonstrated in three of the four images shown in Fig. 4.68. The fourth 

image demonstrates a different segmentation technique. Let us consider 

this figure in more detail. 
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Fig. 4.68 Treemap displays representing aggregation on the basis of one (top left), 

two (top right), and three (bottom left and right) attributes. The two displays at the 

bottom differ in the segmentation method applied. The illustration was produced 

using the demo version of the “Treemap” tool available at http://www.cs.umd.edu/ 

hcil/treemap. These and further screenshots of the Treemap are used with permis-

sion of the Human-Computer Interaction Lab, University of Maryland, 2005 

All four images were constructed by applying a treemap tool to the Por-

tuguese census dataset. The image at the top left shows a division of the set 

of districts according to the values of the attribute “Percentage of people 

aged from 0 to 14 years in 1991”. The value range of the attribute has been 

divided into three equal-length intervals: from 11.13 to 16.59, from 16.59 

to 22.04, and from 22.04 to 27.50. As a result, the set of districts is parti-

tioned into three subsets, and the display space is accordingly split into 

three rectangles with areas proportional to the sizes of these subsets. For 

this purpose, two vertical dividers have been drawn. The rectangle on the 

left represents the subsets of districts with a low proportion of children 

(below 16.59%), the rectangle in the centre corresponds to districts with a 
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medium proportion of children (from 16.59 to 22.04%), and the rectangle 

on the right represents the subset of districts with a high proportion of chil-

dren (22.04% and more). 

In the next step, we have added another attribute to be used for aggre-

gating the districts, specifically, the attribute “Population change from 

1981 to 1991” (as a percentage of the population in 1981). The value range 

of this attribute (from –31.30 to 31.11) has also been divided into three 

equal-length intervals, by breaks at –10.50 and 10.31. As a result, each of 

the rectangles resulting from the previous segmentation (i.e. on the basis of 

the percentage of people aged from 0 to 14 years) is split by horizontal 

dividers into segments corresponding to the aggregates defined on the ba-

sis of the two attributes. This is shown at the top right of Fig. 4.68. It can 

be seen that the leftmost rectangle is divided into two segments rather than 

three. If we look at the labels, we see that there are segments correspond-

ing to the intervals from –31.20 to –10.50 and from –10.50 to 10.31, but no 

segment for the interval from 10.31 to 31.11. This means that the corre-

sponding aggregate is empty: there are no districts with a low proportion 

of children and high population growth. 

The image at the bottom left corresponds to one more attribute added to 

the definition of the aggregates, specifically, the attribute “Percentage of 

population without primary school education in 1991”. Again, the value 

range of the attribute (from 7.33 to 37.86) has been divided into three 

equal-length intervals, by breaks at 17.51 and 27.68. Accordingly, each of 

the rectangles resulting from the second division has been further seg-

mented into smaller rectangles by drawing vertical dividers. Through an 

attentive examination of the resulting display, we can detect that there are 

no segments corresponding to certain combinations of attribute values, i.e. 

those combinations never occur in the dataset. Thus, for example, there are 

no districts with a medium or high proportion of children, high population 

growth, and a high proportion of uneducated people. Some of the segments 

are very narrow; this means that the sizes of the respective aggregates are 

quite small. 

In the images described above, alternating horizontal and vertical seg-

mentations of the display space have been applied to represent successive 

divisions of the set of districts. The same approach is used in mosaic plots. 

However, as we have already mentioned, the treemap tool offers several 

alternative space-partitioning methods. For comparison, the image at the 

bottom right of Fig. 4.68 shows the same division of the set of districts as 

in the bottom left but represented by means of another method of display 

space segmentation. 

Since the space segmentation in a treemap display is done in a recursive 

manner, the appearance of the display depends greatly on the order in 
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which the attributes used for defining the aggregates are considered. This 

is demonstrated in Fig. 4.69. The image on the left is the same as in Fig. 

4.68. It corresponds to the following order of the attributes:  

1. Percentage of people aged from 0 to 14 years in 1991.  

2. Population change from 1981 to 1991.  

3. Percentage of population without primary school education in 1991. 

Fig. 4.69. The segmentation of the space in a treemap display depends on the or-

der in which the attributes are considered. These two images represent the same 

aggregates, defined on the basis of three numeric attributes. The difference be-

tween the images is due to the different order in which the attributes have been 

considered 

The image on the right represents the same aggregates of districts, but 

the segmentation of the display area corresponds to a different order of the 

attributes:

1. Population change from 1981 to 1991. 

2. Percentage of population without primary school education in 1991. 

3. Percentage of people aged from 0 to 14 years in 1991. 

In both images, the same method of space segmentation has been ap-

plied, specifically, alternating horizontal and vertical division (this method 

is called “Slice and dice” in the user interface of the tool). The images dif-

fer only because of the different order in which the attributes were used for 

the segmentation. The treemap tool allows the user to change the order of 

the attributes interactively. 

To finish the description of this treemap tool, we would like to mention 

that segments representing aggregates may be coloured to portray charac-

teristics of those aggregates. The user may choose the attribute to be used 

for characterising the aggregates and the method for deriving the character-
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istics of the aggregates from those of their members. The options available 

are the average, weighted average, minimum, and maximum. The same 

idea may be also applied to other types of displays of aggregated data, for 

example one- and two-dimensional histograms or mosaic plots.  

Many people may find a treemap display rather difficult to understand. 

However, this is just one possible approach to portraying a hierarchy of 

divisions of a reference set. This hierarchy can be viewed as a tree, and a 

tree can be visualised in many different ways. Thus, we can represent the 

same division of the districts of Portugal as in Fig. 4.68 (bottom) by some-

thing like what is shown in Fig. 4.70. This drawing contains three horizon-

tal layers, which correspond to the three levels of division of the reference 

set. At the top, the whole reference set is represented by a single bar, 

which is segmented in proportion to the division according to the attribute 

“Percentage of people aged from 0 to 14 years in 1991”. In the second 

layer, there are three bars, which have the same lengths as the segments of 

the top bar. Each of these three bars represents one of the subsets resulting 

from the first division, and hence all together they represent the entire set 

of districts. The segmentation of each of the bars corresponds to the divi-

sion of the respective subset according to the values of the attribute “Popu-

lation change from 1981 to 1991”. Analogously, the third layer demon-

strates how each of the segments shown in the second layer is further di-

vided according to the values of the attribute “Percentage of population 

without primary school education in 1991”. The grey parallelograms be-

tween the layers provide visual linking between corresponding fragments. 

    

Fig. 4.70. An alternative representation of the division of the set of the districts of 

Portugal according to the values of three numeric attributes 

It is possible to enhance this visualisation by representing additional in-

formation. In particular, it is appropriate to indicate what attribute has been 

used for the division at each level and into what intervals or subsets the 

value set of this attribute has been divided. The segments may be coloured 

according to some characteristic of the aggregates that they represent. An-

other possible enhancement is the inclusion of cumulative-curve displays 

to represent simultaneously the division of the value ranges of the attrib-

utes and the corresponding partitioning of the reference set. 

An obvious problem is that of handling very small reference subsets: the 

corresponding graphical features need to be scaled in proportion to the 
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sizes of the subsets and hence may become too narrow and therefore 

barely legible, as in the graph at the bottom right in Fig. 4.70. In fact, this 

problem appears in other representations as well. Thus, some of the bars in 

a histogram may be so small that it is hard to say whether they exist or not. 

Some segments in a treemap display may also be hardly visible. A possible 

solution to this problem is interactive zooming or focusing. 

4.5.4.4 Sizes Are Not Only Counts 

Up to this point, we have discussed various methods for visualising the 

sizes of aggregates assuming that the size of an aggregate is the number of 

its members. However, a count of aggregate members is not the only 

measure of size. Thus, in analysing aggregates consisting of districts of 

Portugal, an explorer might be interested not so much in the number of 

districts in an aggregate as in the total population in these districts, the to-

tal area of these districts, or the total number of uneducated people. In ag-

gregating data about earthquakes, it may be less relevant to know how 

many earthquakes are in each aggregate than how many people in total 

died or were injured, or how many buildings collapsed or were damaged. 

When data about traffic jams are aggregated by days of the week, an ana-

lyst might like to know not only the number of occurrences of traffic jams 

on each day but also their total duration and total length. Such “totals” may 

be viewed as a kind of measure of aggregate size. It may be noted that 

these measures are problem-specific, unlike the count of elements, which 

may characterize any aggregate irrespective of its nature. 

In general, a measure of aggregate size may be based on any attribute if 

certain requirements are fulfilled: 

The attribute has a value scale of ratio type, i.e. with ordering, distances, 

and a true zero.

All values of the attribute are non-negative. 

The value for a set of references is the sum of the values of the ele-

ments. 

The value for a union of two or more sets with no common elements is 

the sum of the values for these sets. 

Any problem-specific measure of aggregate size may be visualised in 

the same way as counts of aggregate members. Thus, the heights of the 

bars in a histogram may be proportional not to the numbers of elements in 

the respective reference subsets but to some other measure of the sizes of 

these subsets. For example, the bars of the histograms in Figs 4.61 and 

4.63 could represent the total number of children in the respective groups 

of districts. In an analogous way, the two-dimensional histograms in Fig. 
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4.64 could be modified. In segmentation-based displays, the segmentation 

could be done according to any meaningful measure of aggregate size. 

Thus, the segmented bar and the pie chart in Fig. 4.65 could be divided in 

proportion to the total populations in the groups of European countries 

formed according to their dominant religion. The treemap tool described 

earlier can divide the display space not only in proportion to the number of 

elements in each aggregate but also in proportion to the sum of the values 

of any user-selected attribute.  

As we are cumulative-curve enthusiasts, we would like to demonstrate 

how problem-specific aggregate sizes can be represented in a cumulative-

curve display and what opportunities this provides for data analysis.  

Let us recall how a traditional cumulative frequency curve is built (see 

Fig. 4.66). The positions in one of the planar dimensions (e.g. horizontal) 

represent values of an attribute with an ordered value set, from the mini-

mum to the maximum. The positions in the other dimension (in our case, 

vertical) represent possible sizes of reference subsets, which vary from 0 to 

100%, where 100% corresponds to the entire reference set. The curve 

matches each value x of the attribute with the size of the subset of refer-

ences that have attribute values less than or equal to x. Traditionally, the 

size means the number of elements in the subset. However, any other 

measure of the subset size may also be used. Moreover, we can construct 

cumulative curves for different size measures and overlay them in a com-

mon display area so that they can be easily compared. The horizontal (at-

tribute) axis is common to all these curves. The same applies, in principle, 

to the vertical (set size) axis, which represents proportions of the total size 

of the entire reference set. However, we can use the axes to represent addi-

tional information by means of segmentation. The attribute axis is seg-

mented according to the division of the attribute value range into intervals. 

This division does not depend on the measure of aggregate size used, and 

hence is common to all overlaid curves. The set size axis is segmented in 

proportion to the sizes of the reference subsets resulting from the division 

of the attribute value range. The sizes, and hence the proportions, certainly 

depend on the size measure used. Therefore, in order to show the divisions 

of the reference set corresponding to different size measures, we need to 

introduce additional axes. More specifically, there must be as many set 

size axes (in our layout, vertical) as there are curves overlaid in the dis-

play. These axes are drawn parallel to each other. Each of the axes is seg-

mented individually, using the corresponding cumulative curve. 

An example of such an enhanced cumulative-curve display is shown in 

Fig. 4.71. All four images are screenshots of the same display and differ 

only in the segmentation of the axes. The display represents an aggregation 

of the districts of Portugal according to the value of the attribute “% em-
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ployed in services 1991” (the percentage of the working population in each 

district employed in services). The values of this attribute range from 

20.12 to 85.57%. The display contains an “ordinary” cumulative frequency 

curve for this attribute, i.e. one where the count of districts has been used 

as the measure of aggregate size. This frequency curve is drawn in black. 

In addition to the frequency curve, the display contains three more cumula-

tive curves:

a cumulative population curve, with the attribute “Total pop. 1991” (the 

total population of a district in 1991) used as the measure of aggregate 

size;

a cumulative area curve, constructed on the basis of the attribute “Area” 

(i.e. the area of a district); 

a cumulative curve of the number of people with high school education, 

constructed by summing the values of the attribute “N pop. with high 

school education”. 

Accordingly, there are four vertical axes on the left of the display. 

It may be seen from Fig. 4.71 that the cumulative area curve almost co-

incides with the cumulative frequency curve, while the other two curves 

are quite different. It is therefore not surprising that we encounter differ-

ences in the segmentation of the vertical axes. 

At the top left, the value range of the attribute is divided into three 

equal-length intervals. According to the cumulative frequency curve, the 

group of districts with low values of the attribute contains 51.6% of the 

total number of districts; medium values occur in 40.7% of all districts, 

and high values in only 7.6% of the districts. The division of the total area 

of the country between these district groups is quite close to these propor-

tions: 47.4%, 46.5%, and 5.9%. At the same time, the total population is 

divided almost equally between the groups: 34.5%, 35.6%, and 30.0%. 

This allows us to conclude that the districts with high percentages of peo-

ple employed in services are highly populated (30% of the total population 

lives in 7.6% of the districts) and, moreover, densely populated (the total 

area of these districts which have 30% of the population of the country, is 

only 5.9% of the area of the whole country). It is even more peculiar how 

the people with high school education are distributed between the district 

groups. 47.3% of these people live in the 7.6% of districts with high em-

ployment in services, while in more than half of the districts, where the 

proportion of employment in services is low, there are only 18.7% of all 

people in the country who have high school education. This indicates a 

correlation between the proportion of employment in services and the edu-

cational level of the population.  
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Fig. 4.71. An enhanced cumulative-curve display may be used to divide a refer-

ence set into subsets with desired sizes according to various measures of set size. 

Here, the districts of Portugal are aggregated according to the value of the attribute 

“% employed in services 1991”. At the top left, the value range of the attribute is 

divided into three equal-length intervals. At the top right, the value range is di-

vided so that the corresponding groups of districts have approximately equal total 

populations. At the bottom left, three groups of districts have approximately equal 

total areas. At the bottom right, the value range is divided into two intervals so 

that each of the resulting two groups of districts contains approximately half of all 

people in the country who have high school education 

An enhanced cumulative-curve display can be used not only for compar-

ing previously defined aggregates in terms of different size measures, but 

also, as we have described earlier, an analyst may use any of the axes for 

defining aggregates. He/she may not only specify arbitrary intervals of at-

tribute values by segmenting the horizontal axis but also divide the refer-

ence set into subsets of desired sizes by splitting the vertical axis. If there 

are multiple vertical axes, the analyst may use any of them. Thus, in our 

example, it is possible to divide the set of districts into subsets so as to ob-

tain desired proportions between the numbers of districts in the subsets, or 

between the total populations, the total areas, or the total numbers of 

highly educated people.  

A few such divisions according to different criteria are shown in Fig. 

4.71. At the top right, the set of districts is divided into three subsets with 

approximately equal total population. This corresponds to interval breaks 



316     4 Tools 

at 40.75 and 58.29. At the bottom left, three groups of districts have ap-

proximately equal total areas. The interval breaks are at 37.38 and 47.19. 

At the bottom right, the set of districts is divided into two subsets such that 

each subset contains approximately half of all people in the country who 

have high school education. We can see that 50.5% of such people live in 

9.8% of the districts of Portugal, in which the percentage of employment 

in services is more than 61.21. These districts occupy 8.2% of the total 

area of the country; their total population constitutes about one-third of the 

population of the whole country. 

In this example, we have successfully used a cumulative-curve display 

for multiple purposes: 

comparison of relative sizes of aggregates defined by dividing attribute 

value ranges into intervals; 

analysis of various quantitative characteristics of these aggregates; 

detecting links between attributes; 

constructing aggregates with desired relative sizes and properties. 

4.5.4.5 Visualisation and Use of Positional Measures 

We have demonstrated that certain attributes may be used for defining 

problem-specific measures of aggregate size. The resulting characteristics 

of the aggregates may be visualised and analysed using tools designed to 

represent aggregate sizes, such as histograms, segmented figures, and cu-

mulative curves. However, not all attributes can be treated as measures of 

size. We have already discussed various methods of combining individual 

attribute values into characteristics of aggregates. Only characteristics de-

rived by means of summing attribute values can be regarded as sizes and 

treated in the same way as counts of aggregate members.  

We have mentioned that characteristics of aggregates, except for counts, 

have the same nature as the original attribute values that they were derived 

from, and, in principle, they can be visualised in the same way as these 

original values. In fact, by aggregating data, one obtains a new dataset, in 

which the reference set is the set of aggregates and the attributes are vari-

ous integrated characteristics of these aggregates. Hence, one needs to 

choose appropriate display dimensions and visual variables to represent the 

new references (i.e. the aggregates) and the corresponding characteristics. 

In so doing, one should adhere to the basic principles of visualisation. 

Of all the possible variants of combined characteristics of aggregates, 

we would like to consider especially how positional measures, such as the 

median and quartiles, can be visualised and used in data analysis. There 

are two reasons for this. First, John Tukey, the founder of exploratory data 
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analysis as a research field and a philosophy, paid great attention to posi-

tional measures. He suggested a particular visualisation technique for these 

measures and described how to use it in data exploration (Tukey 1977). 

Second, positional measures have rather interesting properties: they simul-

taneously characterise a set as a whole, divide it into subsets in previously 

known proportions, and characterise these subsets. Let us explain this 

point with an example. 

The median of the attribute “% 65 or more years” (the percentage of 

people aged 65 or more years) for the set of districts of Portugal is 16.96. 

This means that 50% of the districts have values of this attribute that are 

less than or equal to 16.96, and that the values in the remaining 50% of the 

districts are greater than or equal to 16.96. In other words, the median di-

vides the set of districts in the ratio 50 to 50. Hence, we know the relative 

sizes of the aggregates and the value range of the attribute in each of them: 

from the minimum (6.70) to 16.96 and from 16.96 to the maximum 

(35.20). The difference between the lengths of these ranges (10.16 versus 

18.24) shows that the variation of attribute values is much higher in the 

second half of the set of districts than in the first half. Since the median is 

closer to the minimum than to the maximum, it may be guessed that there 

is a tendency towards lower rather than higher proportions of elderly peo-

ple. Just one number gives us quite a lot of information about the whole set 

and two particular subsets of it. 

Adding two other numbers, the first quartile, 14.05, and the third quar-

tile, 20.76, increases further our knowledge about this dataset. Thus, we 

know that the set of districts is divided into quarters, and we know the 

range of attribute values in each quarter. We also know that the values in 

50% of the districts (the second and third quarters taken together) range 

over in a rather narrow interval, from 14.05 to 20.76, as compared with the 

whole range from 6.70 to 35.20, and there is a slight tendency in this sub-

set towards smaller values (the median, 16.96, is closer to 14.05 than to 

20.76). In 75% of the districts, the proportion of elderly people is not more 

than 20.76, i.e. even less than the number midway between the minimum 

and the maximum of the attribute (which is 20.95). The fourth quarter is 

characterised by high variation of the values, from 20.76 to 35.20. 

Tukey invented a type of graph called the “box-and-whiskers plot”, 

which shows the positions of the median and quartiles of a set of numbers 

in relation to its extreme values and thereby provides a visual summary of 

the set conveying the information of the kind discussed above. The ap-

pearance and construction of a box-and-whiskers plot is demonstrated in 

Fig. 4.72 using the example of the proportions of elderly people in the dis-

tricts of Portugal. 
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The minimum, maximum, median, and quartiles of a set of values are 

represented by positions in either the horizontal or the vertical display di-

mension. In Fig. 4.72, the vertical dimension is used for this purpose. The 

positions are linked visually by special graphical elements: lines between 

the minimum and the first quartile and between the maximum and the third 

quartile (called “whiskers”), and a rectangle (“box”) between the first and 

the third quartile, which is divided by a small line indicating the position 

of the median (see Fig. 4.72, left). As a result, a particular figure appears, 

and the shape of this figure reflects the distribution of values within the 

set. Tukey also suggests a modification of this visualisation: the extreme 

values and possibly some other values close to the extremes may be identi-

fied on the plot, for example as is shown on the right in Fig. 4.72. The cor-

responding “whiskers” are in this case cut off at the innermost values iden-

tified.

35.2

6.7

20.76

16.96

14.05

maximum 

minimum 

1st quartile 

3rd quartile 

median 

Idanha-a-Nova 35.20

Vila Velha de Rodao 32.24

Gaviao 32.20 

Nisa 32.17 

Alcoutim 32.07 

Fig. 4.72. Construction of a box-and-whiskers plot 

Box-and-whiskers plots can be used not only for analysing a single set 

of numbers but also for comparing different sets. In particular, an analyst 

may compare characteristics of different subsets of references in terms of 

the same attribute, as well as compare the distributions of values of differ-

ent attributes over the same (sub)set of references. 

In Fig. 4.73, combined characteristics of three sets of districts of Portu-

gal, in terms of six different attributes, are represented in a numeric and a 

graphical form. For the graphical representation of the medians and quar-

tiles, box-and-whiskers plots are used. This time, these measures are repre-

sented by positions in the horizontal dimension. 

The display is divided into six sections, in accordance with the number 

of attributes involved. In each section, characteristics of three sets of dis-

tricts are shown: the set of all districts of Portugal, the subset of districts 

with a percentage of people employed in services below 61.21, and the 
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subset of districts with more than 61.21% of working people employed in 

services. Recall that each of these subsets of districts contains in total ap-

proximately half of the people with high school education in the whole 

country. The subsets were defined using a cumulative-curve display; see 

Fig. 4.71 (bottom right). 

Fig. 4.73. Comparison of aggregate characteristics of the whole set of districts of 

Portugal, the group of districts with less than 61.21% of working people employed 

in services, and the group with more than 61.21% of such people 

The display allows us to compare the age structures of the population, 

the population changes from 1981 to 1991, and the percentages of unem-

ployed in the whole set of districts and in the two subsets. We can notice 

that the aggregate characteristics of the subset with less than 61.21% em-

ployment in services differ very little from those of the whole set. How-

ever, the subset of districts with high employment in services, which con-

sists of only 27 districts, has quite different characteristics, especially with 

respect to the attributes “% 25 64 years” (the percentage of people aged 

from 25 to 64 years) and “% 65 or more years” (the percentage of people 
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aged 65 or more years). The percentages of people aged from 25 to 64 

years are mostly higher in this subset than in the entire set and in the other 

subset. This is indicated quite clearly by the shift of the corresponding 

box-and-whiskers plot (the one at the bottom of the section representing 

the attribute “% 25 64 years”) very much to the right in relation to the 

boxes for the other two sets. In contrast, the plot for the attribute “% 65 or 

more years” is shifted to the left. This means that the proportion of elderly 

people in this set of districts tends to be relatively low. Similar shifts can 

be observed for the attributes “% pop. change from 1981 to 1991” (the 

change in the population from 1981 to 1991 as a percentage of to the popu-

lation in the year 1981) and “% unemployed in total pop.” (the percentage 

of unemployed people in the total population). In both cases, there are 

shifts to the right; hence, the values of both attributes tend to be relatively 

high. The precise values of the aggregate characteristics can be seen in the 

tables to the right of the plots. 

In this example, we have compared characteristics of aggregates in 

terms of several attributes using multiple box-and-whiskers plots, each plot 

corresponding to a single reference (sub)set and a single attribute.  

Fig. 4.74. A bagplot representing data about the weight and engine displacement 

of 60 car models (from Rousseeuw et al. (1999)). Reprinted with permission from 

The American Statistician. Copyright 1999 by the American Statistical Associa-

tion. All rights reserved 
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A generalisation of the idea of a box-and-whiskers plot to two or more 

attributes is a collection of convex hulls in a two-dimensional or multidi-

mensional space. The hulls are constructed in such a way that the outer-

most hull contains the whole set of references, and each successive hull 

contains fewer references by about 25%. An example of a bivariate box 

plot (i.e. a display constructed for two attributes) can be found in Wilkin-

son (1999). Since the construction of hulls is computationally intensive, a 

simplified version of the bivariate box plot, the bagplot, has been sug-

gested in Rousseeuw et al. (1999). One of the example displays from that 

paper is reproduced here as Fig. 4.74. The main components of the display 

are a bag that contains 50% of the references (in this example, the refer-

ences are different car models), a fence that separates the bulk of the set 

from outliers, and a loop indicating the references outside the bag but in-

side the fence. In Fig. 4.74, the bag is the polygon with a darker interior, 

and the loop is shown in a lighter shade. The four points in the upper right 

corner represent outliers. 

The box-and-whiskers plot (and its bivariate and multivariate exten-

sions) is certainly not the only possible way to visualise medians and quar-

tiles. Let us consider the display at the top in Fig. 4.75. This display was 

obtained from a time graph of the burglary rates in the states of the USA 

(see Figs 4.3, 4.30, and 4.47) by drawing an “envelope”, that is, a polygon 

enclosing all the lines, and then removing the lines. The envelope repre-

sents an aggregate characteristic of the set of states: for each year, it shows 

the range of burglary rates for the whole set. 

In the middle of Fig. 4.75, the representation of the value range for each 

year is complemented by showing the median and quartiles. The positions 

of the corresponding positional measures in consecutive years are con-

nected so that the original envelope is divided into four polygons. The 

polygons are shaded using alternating light and dark shades of grey, which 

makes them clearly visible and distinguishable. We would like to warn 

readers against considering these polygons as envelopes, i.e. containers of 

certain subsets of lines. They are just indicators of the positions of each 

year’s median and quartiles. As is shown in Fig. 4.76, an individual line 

may cross the boundaries of the polygons. Perhaps it would be less mis-

leading to mark these positions somehow without connecting them, but 

such a display would be much more complex: instead of just four polygons 

(each polygon is perceived as a single figure), we would have 3 × 41 = 123 

separate marks indicating the median and two quartiles for each of the 41 

years from 1960 to 2000. The four polygons are much easier to perceive. 

As soon as we have understood how the polygons are constructed and 

what they mean, we can use them for data analysis without allowing their 

appearance to mislead us. 
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Fig. 4.75. This display represents an aggregation of time-series data. At the top, 

the ranges of attribute values in each year are shown. In the middle, the boundaries 

of the polygons indicate the positions of the median and quartiles in each year. 

The display at the bottom represents the deciles for each year 

Fig. 4.76. Individual lines may cross the boundaries of the polygons indicating the 

positions of quantiles. Here, the line corresponds to the state of Mississippi 

Thus, we have a summarised characterisation of the countrywide situa-

tion with regard to the burglary rates in each particular year and can com-

pare situations in different years. We can also get an idea of the overall 

trend in the burglary rates over the country during the whole period from 
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1960 to 2000 or any of its subintervals. An increase in the median and 

quartile values indicates an overall increasing trend in the burglary rates, 

and similarly for a decrease. For example, a clear decreasing trend can be 

observed in the interval from 1991 to 2000. Moreover, using the properties 

of positional measures, we can particularise this observation by giving 

some numerical estimates: in 1991, more than half of the states had bur-

glary rates over 1000, whereas in 2000, the burglary rates in more than 

75% of the states were below 1000. We can easily see the period of the 

highest burglary rates, from 1977 to 1982, when the rates in at least 75% 

of states were over 1000. The synchronous peaks in the values of the me-

dian and the quartiles in 1975 and 1980 1981 may also be worth attention, 

as well as the rather steep decrease from 1981 to 1984. 

At the bottom of Fig. 4.75, the display represents the deciles of the bur-

glary rates in each year. This allows us to refine our observations based on 

the representation of the quartiles. For example, we can see that 90% of all 

states had burglary rates below 1000 in the year 2000, and that more than 

80% of the states had rates over 1000 in 1980 and 1981. The line connect-

ing the ninth deciles shows us the maximum value in each year for 90% of 

the states. From the width of the upper polygon, we can see in which years 

the greatest outliers occur. In general, any positional measures may be rep-

resented in such an aggregate time graph and used for data analysis on the 

overall level. It is good when a tool allows an analyst to choose the meas-

ures that he/she wishes to use. 

Analogously to how the time graph display has been modified to show 

aggregate characteristics, the parallel-coordinates display can also be re-

vised. Figure 4.77 demonstrates a transformed parallel-coordinates display 

for 11 attributes characterising the districts of Portugal. Instead of lines for 

individual districts, the display shows the relative positions of the deciles 

for each attribute. Of course, any other positional measures can be shown 

instead of the deciles. The representation of such measures is analogous to 

that in an aggregate time graph. The positions of the corresponding quan-

tiles on adjacent axes are connected by lines, which form polygon bounda-

ries. As in a time graph, the polygons are not envelopes; they are drawn 

just to make the display simpler. 

Nevertheless, it should be admitted that drawing such polygons in a par-

allel-coordinates display makes much less sense than in a time graph. In a 

case of time-series data, we are dealing with values of the same attribute 

that change over time. It is therefore quite reasonable to observe how the 

median or ninth decile of this attribute changes over time. Linking the po-

sitions of medians, etc. helps us to do this observation. In contrast, the par-

allel-coordinates display is meant for arbitrary attributes, and the same 

relative positions on different axes may correspond to totally different val-
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ues. Thus, one of the attributes may vary from 0 to 1 and another from 10 

to 100 million. Therefore, connecting positions of the medians or other 

quantiles of these attributes is hardly useful. 

Fig. 4.77. Representation of aggregate characteristics (deciles) in a parallel-

coordinates display. On the axis for each attribute, the positions of the deciles of 

its value set are indicated. The positions of the corresponding deciles on adjacent 

axes are connected so that the lines form polygon boundaries 

Therefore, we suggest another representation for positional aggregate 

measures in a parallel-coordinates display. The idea is demonstrated in 

Fig. 4.78. Each axis is transformed into a “necklace” – a sequence of ellip-

ses drawn between the positions of successive quantiles. We believe that 

such shapes are perceived better than just ticks and allow easier identifica-

tion of the quantiles. In fact, if we decided to limit the display to represent-

ing only medians and quartiles, we would draw Tukey’s box-and-whisker 

plots instead of ellipses. The advantage of the ellipses is that they can be 

used for any quantiles. 

It should be borne in mind that a display such as that in Fig. 4.78 pro-

vides us with a visual summary of the distribution of the values of several 

attributes over a set but says nothing concerning the distribution of value 

combinations. Each attribute is represented independently of the others. 

We can compare the distributions of the values of different attributes but 

cannot detect any relations between the attributes. 
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Fig. 4.78. An alternative representation of positional measures in a parallel-

coordinates display. Instead of connecting positions of corresponding quantiles on 

neighbouring axes, oval shapes are drawn between positions of neighbouring 

quantiles on the same axis 

Besides analysing and comparing value distributions of different attrib-

utes over a single reference set, a “necklace display” may be used for com-

paring aggregate characteristics of several sets. For a convenient compari-

son, the representations of different sets may be overlaid in the same dis-

play, as is shown in Fig. 4.79C. Here, we have “necklaces” with “beads” 

of different colours. Grey “beads” correspond, as in Fig. 4.78, to the whole 

set of districts of Portugal; blue ellipses correspond to the subset of dis-

tricts with a significant population decrease from 1981 to 1991 (i.e. with a 

population change between –31.3% and –3%); and red ellipses correspond 

to the subset with a population increase of at least 3%. For each subset, the 

ellipses indicate the positions of the deciles, i.e. each ellipse includes 10% 

of the districts of the respective set. The interiors of the first and the last 

ellipse of each subset are not coloured; hence, the colouring indicates the 

positions of the central 80% of the values and helps us to disregard out-

liers. The vertical diameters of the ellipses are proportional to the sizes of 

the respective sets. Thus, we can see that the set of districts with a popula-

tion decrease (blue) is about twice as large as the set with a population in-

crease (red) and about half as large as the whole set of districts (grey). 
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By looking at the relative positions of the “beads” of different colours in 

the same “necklace”, we can compare aggregate characteristics of the 

groups of districts. Thus, we can note that the red ellipses on the axes for 

the attributes “% 0 14 years”, “% 15 64 years”, and “% 25 64 years” are 

shifted to the right in comparison with the blue ellipses. This means that 

the values of these attributes tend to be relatively high in the districts with 

a population increase. A remarkable difference can be observed on the axis 

for the attribute “% 65 or more years”: the districts with a population in-

crease are characterised by much smaller values than are the districts with 

a decrease. More precisely, the values in 80% of the districts with a popu-

lation increase are smaller than the values in 90% of the districts with a 

population decrease. 

Concerning the employment structure, the most significant difference is 

in the percentage of people employed in agriculture: nine of the ten red 

ellipses, which represent 90% of the set of districts with a population in-

crease, are compressed into the left one-third of the corresponding axis. 

This means that the percentage of people employed in agriculture is mostly 

low in this group of districts. The tenth ellipse stretches across the remain-

ing two-thirds of the axis, thus indicating the presence of one or more out-

liers. In the group of districts with a population decrease, the values of the 

attribute “% employed in agriculture” are spread approximately evenly 

along the length of the axis. In comparison with the grey “beads”, the blue 

ones are slightly shifted to the right, indicating a tendency to higher values 

in the group of districts with a population decrease than in the entire set in 

general.

Concerning the educational level, we can detect that the districts with a 

population increase have significantly lower percentages of people without 

primary school education than do the districts with a population decrease. 

The percentages of people with primary school education are nearly the 

same. A tendency to higher values in the group with a population increase 

is observed for the percentages of people with preparatory and, especially, 

high school education. Hence, the educational level is, in general, higher in 

the districts with a population increase than in the districts with a popula-

tion decrease. 

We should stress that in this analysis, each attribute has been considered 

individually, independently of the others. This sort of visualisation does 

not say anything to us about the distribution of combinations of values of 

different attributes or about relations between the attributes. We believe 

that overlaid bagplots or bivariate box plots for two or more reference sets 

would be suitable for comparison of these sets in terms of combinations of 

values of two attributes; however, we have no tool at our disposal that 

would allow us to experiment with such a visualisation. 
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4.5.4.6 Spatial Aggregation and Reaggregation 

Up to now, we have considered methods for data aggregation and for visu-

alisation of aggregate characteristics in which space is irrelevant. Although 

we used spatially referenced datasets in our examples, we did not take into 

account the spatial nature of the references, but dealt with them as with a 

(statistical) population. Now we would like to give some examples of the 

construction and visualisation of spatial aggregates. 

In Fig. 4.80, we can see a map of the Marmara region of Turkey, in 

which circles indicate the locations of earthquakes that occurred during the 

period from 1 January 1976 to 30 December 1999. The total number of 

earthquakes represented on the map is 10 560; therefore, it is not surprising 

that the circles overlap greatly and clutter the map. Such a visualisation 

can hardly be used for any analysis.  

Fig. 4.80. Earthquake occurrences in the Marmara region of Turkey 

Since the main problem with this display is too large an amount of indi-

vidual data items represented on it, this is a typical case where one should 

try data aggregation. As we are primarily interested in the spatial distribu-

tion of the earthquakes (i.e. where earthquakes occur most frequently, 

where the strongest earthquakes take place, etc.), we need to aggregate the 

data according to spatial criteria. We can do this, for example, by introduc-

ing a regular rectangular grid to cover the territory under study. Then, for 

each grid cell, we can obtain and visualise various aggregate characteris-

tics of the earthquakes whose locations fit inside that cell. Thus, the map in 

Fig. 4.81 visualises the number of earthquakes in each cell. The earthquake 

counts are represented by shading the cells so that the degree of darkness is 

proportional to the number of the earthquakes in a cell. The darkest spots 
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correspond to the places of most frequent earthquake occurrence. We can 

detect some features of the spatial distribution of the earthquakes: a diago-

nal belt of high earthquake frequency stretching between the provinces of 

Izmir and Kocaeli; a smaller strip with the same orientation to the north of 

it; a triangle-shaped area of high earthquake concentration in the province 

of Kutahya, which adjoins the diagonal belt; and so on. The diagonal for-

mations stretch to the west beyond the territory of Turkey (i.e. the part of 

the map where the province boundaries are shown), into the Aegean Sea, 

where the bigger belt changes its orientation nearly orthogonally. Nothing 

like this could be observed in the original display representing individual 

earthquakes.

Fig. 4.81. Earthquakes aggregated: Visualisation of earthquake counts 

Fig. 4.82. Earthquakes aggregated: Visualisation of the mean magnitudes 
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Fig. 4.83. Earthquakes aggregated: Visualisation of the maximum magnitudes 

Fig. 4.84. These scatterplots allow us to investigate whether there are any links 

between the number of earthquakes and the mean and maximum earthquake mag-

nitude 

In Fig. 4.82, another aggregate characteristic of the grid cells is repre-

sented: the mean magnitudes of the earthquakes. The representation 

method is the same as was used for the earthquake counts. By comparing 

the maps in Figs 4.81 and 4.82, we can observe that the places with the 

most frequent earthquake occurrences have rather low mean earthquake 

magnitudes. Hence, most of the earthquakes that occur there are weak. 

To estimate the possible danger from earthquakes in various places, it 

may be not so appropriate to analyse the mean magnitude as the maximum 

magnitude. The map in Fig. 4.83 represents the maximum earthquake 

magnitude for each grid cell. We can see a certain similarity between this 

map and the map in Fig. 4.81, in which the earthquake counts are repre-
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sented. We can trace nearly the same diagonal shapes. The presence of a 

link between the number of earthquakes and the maximum magnitude can 

be also seen from the scatterplot on the right in Fig. 4.84. The scatterplot 

on the left shows us that the mean earthquake magnitude is not correlated 

with the number of earthquakes.  

Returning to the maps in Figs 4.81 and 4.83, we can see that the shades 

within the territory of Turkey are lighter in the map representing the 

maximum magnitudes than in the map representing the counts, while in the 

sea the shades are darker. Unfortunately, we cannot be sure that the earth-

quakes in the sea are stronger but less frequent than on land. It may be that 

not all earthquakes that occurred in the sea were properly registered and 

recorded in the data. 

Anyway, let us assume that we are concerned first of all about the pos-

sible dangers on land and need to identify places where strong earthquakes 

are likely to happen. To do this more conveniently, we can apply the visual 

comparison technique for display manipulation, with a diverging colour 

scale used to differentiate values below and above a selected reference 

value. In Fig. 4.85C, this reference value is 4.16 Values below 4 are repre-

sented by shades of blue, and values over 4 by shades of brown. We can 

now easily see which areas can be judged as relatively safe and which are 

rather hazardous. 

In this example, we have demonstrated how data referring to discrete 

spatial locations can be aggregated, and how aggregate characteristics can 

be represented using the usual cartographic visualisation methods. Now we 

shall consider another example, where the data characterise a continuous 

spatial phenomenon and are specified in the form of raster. An example 

visualisation of raster-based data has been considered earlier (Fig. 4.60C). 

A problem with raster data is that it is difficult to visualise and analyse 

several attributes simultaneously. Thus, in our example dataset concerning 

European forests, we have data on the proportions of different types of for-

est: coniferous, broadleaved, mixed, and other wooded land. In addition, 

we have the relief data shown in Fig. 4.60C. All these data are specified in 

a raster format. We would like to analyse these data jointly in order to un-

derstand the variation of the land cover and forest structure over Europe, 

and its relation to the relief. However, when we apply colour encoding to 

                                                     
16  We assume here that earthquakes with a magnitude over 4 may be strong 

enough to cause serious damage, since many buildings in Turkey are rather old 

and/or are not constructed adequately for the seismic conditions. In any case, 

this is only an example to show how such data can be explored. If the real dan-

ger threshold were different from 4, the reference value could easily be 

changed. 
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visualise each of these attributes, we can see only the visualisation that is 

on top of the others. Using colours to represent value combinations rather 

than individual values would require many different colours and make the 

image very difficult to interpret. At the same time, the areas on the screen 

corresponding to the raster pixels are usually too small to allow one to fit 

in any diagrams representing values of several attributes. Moreover, the 

number of pixels in a raster dataset is typically very large; therefore, an 

attempt to visualise the corresponding values on non-cartographical data 

displays, such as scatterplots and parallel-coordinates displays, would re-

sult in a severe overlap of graphical marks. Hence, this is again a case 

where one should try spatial data aggregation. 

As we did before with the earthquakes, we shall use a coarse grid to ag-

gregate the values of the attributes. For each cell of this grid, various ag-

gregate characteristics can be computed from the original attribute values 

specified for the raster pixels fitting into this cell: the mean and standard 

deviation; the minimum, maximum, and their difference; the median and 

quartiles; the mode; and the sum of the values. As a result, we obtain a col-

lection of attributes characterising the grid cells. These attributes can be 

visualised and analysed like usual attributes referring to compartments of a 

territory.

In Fig. 4.86C, we see the mean proportions of forests of different types, 

specifically coniferous, broadleaved, and mixed forests, and other wooded 

land, represented by pie charts placed inside the grid cells. The sizes of the 

pies are proportional to the sums of the values for the corresponding cell 

and hence indicate approximately the proportion of forest-covered land in 

each cell. We can see, for example, that there is much more forest in the 

north-east of Europe than in other places, and that this forest is predomi-

nantly coniferous. In the south of Europe, other wooded land prevails. We 

can also relate the amount and structure of the forest to the relief, which in 

this case is quite clearly visible beneath the pies. Thus, we can see that in 

central and southern Europe higher altitudes co-occur with more forest, 

while in the north an opposite relation can be observed. 

A sophisticated tool for aggregation of raster data may allow the analyst 

to change the resolution of the aggregating grid interactively, which results 

in automatic reaggregation of the data and modification of the visualisation 

so that the new aggregated data are represented using the same visualisa-

tion technique as before. For example, the map shown in Fig. 4.87C is a 

result of modifying the map in Fig. 4.86C after the resolution of the aggre-

gating grid has been increased. We can now verify and refine our observa-

tions made with the coarser grid. Actually, all our previous observations 

remain valid, and the increased resolution can only add some fine detail to 

our overall understanding of the variation of forest cover over Europe. 
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The aggregated data can also be represented in various non-cartographic 

displays. When the resolution of the grid changes, these displays can also 

be automatically updated to represent the new data. 

4.5.4.7 A Few Words About OLAP 

A brief consideration of OLAP (online analytical processing) tools seems 

appropriate here, since these tools involve data aggregation and are cur-

rently rather popular. OLAP tools typically function on top of relational 

databases and data warehouses. They are based on the idea of multiple hi-

erarchical dimensions in data. Dimensions, in OLAP terminology, corre-

spond to our notion of referrers, while what we call attributes are termed 

measures. Individual items within dimensions (i.e. values of referrers, in 

our terms) are called members. Dimension members may be organised in 

hierarchies. For example, in a temporal dimension, days may be grouped 

into months, months into years, and years into decades. In a spatial dimen-

sion, countries may consist of provinces, which, in turn, are divided into 

districts, and the districts into municipalities. A database of nature obser-

vations may include a dimension in which species of plants and animals 

are grouped into genera, genera into families, and so on. OLAP tools per-

form data aggregation according to these hierarchies: attribute values for 

members higher in the hierarchy are derived by aggregating the values as-

sociated with the subordinate members. The terms roll up and drill down

denote increasing and decreasing the level of data aggregation. 

OLAP tools are rather efficient in dealing with very large amounts of 

data. The results of data aggregation provided by OLAP tools may be 

visualised just like the usual kinds of data, i.e. attribute values associated 

with references. Therefore, OLAP is very suitable as an underlying tech-

nology for “multiscale data visualisations”. Such visualisations present the 

data at different levels of abstraction as the user zooms and pans; details 

and examples may be found in Stolte et al. (2002). A practical approach to 

the incorporation of the power of OLAP technology into a software system 

for exploratory data analysis is described in Hernandez et al. (2005). Her-

nandez et al. express the idea that the system can intelligently control the 

amount of information loss as the user navigates through different aggre-

gation levels, for example by substituting one visualisation technique for 

another.

The aggregation operations typically offered by OLAP tools are the 

count, the mean, the minimum, the maximum, and the sum of values. Not 

all of these tools support positional measures. This has provoked a scepti-

cal attitude to the entire OLAP technology on the part of some researchers 

in exploratory data analysis, especially statisticians (see, for example, Wil-
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kinson 1999). The rational part of their criticism emphasises the impor-

tance of positional measures and necessity to involve these measures in 

data analysis. It is insufficient to base an analysis only on the most com-

mon statistics, such as means. The arithmetic mean can be viewed as a 

valid characteristic of an aggregate only when the distribution of the origi-

nal attribute values is close to normal. When the distribution is skewed or 

there are outliers, the mean value may be completely misleading. The 

properties of the distribution (i.e. whether it is normal or skewed and 

whether any outliers exist) can be judged, from the relative positions of the 

quartiles with respect to the minimum and maximum values, for example, 

or from other positional measures. 

For a data explorer, this entails two implications. First, the explorer 

should choose an OLAP tool that can provide various positional measures 

of data aggregates. Second, the explorer should use positional measures in 

the data analysis, in particular, for checking the validity of using a specific 

aggregation. If the distribution of the values inside the aggregates deviates 

significantly from normal, it is appropriate to try other aggregations. 

Another criticism of OLAP tools is that they do not properly support 

work with qualitative attributes. Generally, there are many more tools and 

techniques intended for numeric data than tools and techniques capable of 

working with nominal and ordinal attributes. Hence, researchers in data-

analysis-related areas, as well as tool designers, still have something to 

think about.  

4.5.4.8 Data Aggregation: a Few Concluding Remarks 

We have paid so much attention to data aggregation because of its high 

importance in exploratory data analysis. Aggregation is indispensable 

when the amount of data to be explored is large, which is almost always 

the case in real situations. It is therefore not surprising that research in data 

visualisation and EDA is currently strongly imbued with data aggregation. 

This has materialised in the invention of new aggregation-based tools and 

in the modification of traditional visualisation techniques to represent ag-

gregated rather than atomic data. Contemporary tools for EDA are charac-

terised by high user interactivity, which allows an analyst to choose and 

dynamically change the level of aggregation (i.e. how large the aggregates 

are), the method of aggregation (i.e. how individual items are grouped into 

aggregates), and the functions for deriving characteristics of aggregates 

from those of their members (i.e. sums, ranges, or various statistics). 

When applying data aggregation, one should be vary cautious about av-

eraging, which can often produce meaningless or misleading figures. Thus, 

an average of an extremely low and an extremely high value is a quite or-
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dinary value. For example, the mean surface temperature on the Moon may 

seem quite comfortable, but the actual temperature ranges from 230°C to 

130°C, and this should be taken into account in designing clothes for as-

tronauts. The mean weight of a fruit in a basket filled with apricots and one 

watermelon is also not a very useful aggregate characteristic. In this case, 

even knowing the minimum and maximum weights may be insufficient. A 

general recommendation is to use any available means for investigating the 

distribution of attribute values over each aggregate. Suitable tools are his-

tograms, cumulative curves, and positional measures, i.e. the median, quar-

tiles, deciles, and so on. When any of these tools shows that the distribu-

tion is skewed or that there are outliers, averaging is inappropriate. If some 

aggregate characteristic is still needed for further analysis, one may try 

either to reaggregate the data so that the distribution of attribute values in 

each aggregate becomes close to normal (in this case, the use of the mean 

is valid) or to characterise the aggregates by positional measures, for ex-

ample, medians or third quartiles, additionally to the minimum and maxi-

mum values. 

Of course, it is not always possible to investigate the properties of the 

distribution of attribute values in each aggregate. For example, the aggre-

gates shown in Figs 4.86C and 4.87C are too numerous to be analysed in 

detail. In such cases, it is recommended that one should verify observa-

tions and conclusions made on the basis of aggregated data by trying dif-

ferent aggregation levels with the same data. It is also meaningful to check 

whether the observations remain valid after means are replaced by medi-

ans.

In general, data reaggregation is always appropriate. A single, rigid data 

aggregation is inadequate for comprehensive data analysis. Varying the 

level of aggregation and changing the method of aggregation (e.g. choos-

ing other data components as the basis for the aggregation, or altering the 

division of attribute values into subsets or intervals) are necessary for gain-

ing a proper understanding and avoiding hasty conclusions and wrong de-

cisions. Hence, it is important to have highly interactive tools for data ag-

gregation, that provide sufficient flexibility in defining aggregates and a 

prompt response in computing and visualising their combined characteris-

tics.

Besides trying different aggregation levels (i.e. aggregate sizes) and dif-

ferent ways of grouping references, it may be appropriate to apply a kind 

of adaptive aggregation, which varies the aggregation level depending on 

the internal variability inside each aggregate. Such an adaptive aggregation 

algorithm could easily be realised for temporally referenced attributes as 

well as for grid-based spatial data. 
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4.5.5 Recap: Data Manipulation 

We have considered data manipulation techniques mainly as subsidiaries 

of other tools for exploratory data analysis, in particular, visualisation. We 

mean that data manipulation is not used independently and does not, by 

itself, provide answers to any exploratory questions. Two major purposes 

of data manipulation have been mentioned: 

To simplify data, to make it easier to perceive from a visual display, and 

to analyse it. The following operations are possible:  

reduce noise and discontinuities (smoothing and interpolation); 

reduce the amount of data under analysis (aggregation and attribute 

integration);

extract characteristic features, e.g. surface topology. 

To enrich data and consider its various aspects in the following ways: 

involve additional references and estimate the corresponding attribute 

values (interpolation and extrapolation); 

consider quantities in relation to other quantities: parts in relation to 

the total, values per capita, densities per area unit, etc.; 

compute changes, e.g. in time, or deviations from standard values 

such as overall means;  

standardise values to achieve comparability of several attributes. 

In all our examples of data transformation, we have used visual displays 

to view the results and extract information from them. 

The results produced by many transformation techniques depend on cer-

tain settings, or parameters, which may be specified more or less arbitrar-

ily. Some examples of such arbitrary choices are the division of the refer-

ence set in data aggregation, the circle radius for neighbourhood-based 

transformations, the number of neighbours used in data interpolation, and 

the weights used in computing weighted averages and weighted linear 

combinations. In such cases, we always recommend that one performs the 

transformation several times using different settings and compares the re-

sults to evaluate their robustness. It may happen that such variation of set-

tings helps one to uncover characteristic features of a phenomenon under 

analysis and, in this way, increase the knowledge about the phenomenon. 

However, it is generally a bad sign when observations and conclusions 

obtained from the results of different transformations are too diverse to 

allow them to be merged into a coherent overall picture (or mental model). 

The possibility for the analyst to alter the settings of a method interac-

tively and to observe the effect immediately is extremely supportive to 
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analysing the sensitivity of a data transformation to variation of the set-

tings. We have demonstrated this possibility in an example where the at-

tribute weights for computing weighted linear combinations of values of 

multiple attributes were varied. Unfortunately, such a highly dynamic re-

alisation of a data transformation technique is not always achievable. Some 

data transformations are quite computationally intensive and require sub-

stantial time before the results of altering the settings may be observed. 

We have devoted much space to data aggregation since it is being used 

more and more intensively in exploratory data analysis, which is currently 

being applied to large and very large volumes of data. When using data 

aggregation, it is important not to be fooled by averaging and not to lose 

important information. It is highly recommended that one uses positional 

measures rather than means for characterising aggregates. 

Let us now move to the next group of tools on our list, that is, tools for 

querying and filtering. 

4.6 Querying 

Querying may be defined as a process in which software provides answers 

to users’ questions about data under analysis. Consequently, in discussing 

query tools, we need to consider the following aspects: 

what types of questions may be supported; 

how questions may be asked; 

how the answers are presented to users. 

As we have discussed before, any question (task) may be viewed as 

consisting of two major parts: a target and constraints. This also applies to 

questions intended for query tools. However, it should not be thought that 

query tools can, either actually or potentially, provide answers to all possi-

ble questions related to a given dataset (otherwise, no exploratory data 

analysis would be needed). 

In our reasoning concerning possible questions, or tasks, we distin-

guished elementary questions from higher-level questions, which we called 

synoptic tasks. Elementary questions relate to individual elements of data, 

i.e. references and characteristics (attribute values). Synoptic questions 

relate to reference sets taken in their entirety and to behaviours of charac-

teristics on such reference sets. Query tools are mostly intended to deal 

with elementary questions, which can be answered by means of searching 

through the source data. Some query tools can compute certain statistics, 

such as counts, sums, and averages. In principle, these statistics can be 
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viewed as giving a very rough approximation of a behaviour, i.e. as a kind 

of pattern. However, dealing with more precise patterns implies abstraction 

and generalisation, but query tools do not possess these abilities. There-

fore, we have to conclude that query tools, in general, are not suited to an-

swering synoptic questions. 

Let us now consider the ways in which users can put questions to a 

software program.  

4.6.1 Asking Questions 

A classical category of software tools specifically designed to search 

through data and give answers to various (elementary!) questions is that of 

database management systems (DBMS). A DBMS is queried by means of 

a special formal (and therefore machine-readable) language. Currently, 

there is a standard database query language, called SQL. Since this lan-

guage is not powerful enough with regard to spatial and temporal data, 

various extensions to SQL have been developed, and efforts to extend the 

SQL standard are under way. 

Although many people know SQL (or other query languages) and can 

formulate their questions directly in a machine-readable form, there are 

many more people who cannot do this. Even for people who know SQL it 

may be far from fun to use it every time for obtaining any piece of infor-

mation. Fortunately, there is a range of facilities intended to reduce users’ 

effort and release them from the necessity to learn the constructs of formal 

languages. Somewhere behind the screen, SQL or something similar may 

still be used, but users do not need even to guess about this: they commu-

nicate with the program through a convenient interface, and it is the busi-

ness of the program to the interpret users’ input and translate it into a form 

understandable by the search engine. 

One possible approach is to use a “visual query language”. The basic 

idea is that the operators and constructs of a formal language are replaced 

by graphical elements, such as mnemonic icons and receptacles for those 

icons, and arrows, which can link things or indicate directions. A user ex-

presses his/her information need by building a diagram from these ele-

ments. The diagram is then translated into an internal formal representa-

tion. Hence, rather than learn the lexis and grammar of SQL or something 

similar, the user needs to learn the lexis and grammar of the visual lan-

guage, that is, the meaning of the graphical elements available and the 

rules for the construction of diagrams from these elements. To reduce the 

amount of learning needed, developers of visual languages strive to in-

crease the “intuitiveness” of the graphical elements and the construction 
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rules. Ideally, the user should immediately recognise the meaning of any 

element and guess how to combine the elements to construct a visual 

query. To learn about the achievements in this direction, we refer readers 

to a survey of visual query languages by Catarci et al. (1997). 

In general, a visual query language that has the same power and flexibil-

ity as the underlying formal language will necessarily have the same com-

plexity. Hence, the advantage of a visual language is just that it is more 

appealing to a user and, supposedly, easier to learn. To achieve more sub-

stantial simplification, one needs to reduce the power and flexibility. One 

approach is to represent a few typical query types by predefined forms, 

which may look like texts with blank spaces. The user needs only to fill in 

these spaces with some particulars, such as attribute names, in order to turn 

a generic template into a specific information request. 

Another approach is taken in a well-known querying technique called 

Dynamic Query (suggested and elaborated by Ben Shneiderman and his 

research team; see Ahlberg et al. (1992)). This tool is very easy to use, but 

it imposes quite serious limitations upon the questions that may be asked. 

Specifically, using Dynamic Query, one can only ask questions of the kind 

“What references correspond to the specified attribute values?”17 Further-

more, not all kinds of attribute may appear in Dynamic Query. The tool 

allows only attributes with linearly ordered value sets. Some variants of 

the tool can deal with attributes whose values are strings, but in such a case 

an alphabetical order is imposed on the set of values.  

The user interface of a Dynamic Query-like tool is organised around a 

set of slider lines or slider bars – interactive devices representing the value 

ranges of the attributes participating in the building of the query. A possi-

ble appearance of a slider line/bar is demonstrated in Fig. 4.88. Of course, 

the appearance may differ from implementation to implementation. 

Fig. 4.88. A possible appearance of an element of Dynamic Query used for speci-

fying constraints on the values of a single attribute 

The left end of a line or bar corresponds to the minimum value (i.e. the 

first in the order) of the respective attribute present in the dataset, and the 

right end to the maximum value (i.e. the last in the order). Each line (or 

bar) is furnished with a pair of sliders, or delimiters – small devices that 

can be moved along the line. By setting delimiters in appropriate positions, 

                                                     
17  Recall that we called such questions “inverse lookup tasks” and represented 

them by the formula  ?x: f(x) C  ((3.9) in Chap. 3). 
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a user may specify the interval of attribute values that the tool must look 

for.18 Thus, in Fig. 4.88, the whole slider line corresponds to the number 

interval from 11.13 to 27.5 – these are the minimum and maximum values 

of the attribute “% 0 14 years” present in the Portuguese census dataset. 

With the use of the delimiters (black triangles), the subinterval from 14.90 

to 25.04 is specified as a query constraint. This corresponds to the question 

“Which districts of Portugal have a percentage of children (i.e. people aged 

from 0 to 14 years) between 14.90 and 25.04?”  

The specific features of the user interface of Dynamic Query account for 

the limitations that it imposes. First, while a line or a bar can serve as a 

quite intuitive representation of a linearly ordered set of attribute values, it 

is hardly suitable for representing a set with different properties. Second, 

since only a pair of delimiters is used, it is possible to specify only one 

subinterval of attribute values. Thus, it is impossible to express the ques-

tion: “Which districts of Portugal have a percentage of children below 

14.90 or above 25.04?” Furthermore, Dynamic Query does not provide any 

explicit means to specify how constraints for different attributes are sup-

posed to be combined. For example, the user may have chosen the value 

interval of the attribute “% 65 or more years” to be from 6.69 (the mini-

mum value available) to 15, in addition to the constraint on the value of the 

attribute “% 0 14 years”. This may have at least three possible meanings: 

Which districts of Portugal have a percentage of children between 14.90 

and 25.04 and a percentage of elderly people below 15? 

Which districts of Portugal have a percentage of children between 14.90 

and 25.04 or a percentage of elderly people below 15 or both (non-

exclusive “or”)? 

Which districts of Portugal have either a percentage of children be-

tween 14.90 and 25.04 or a percentage of elderly people below 15 but 

not both (exclusive “or”)? 

An ordinary query language allows the user to combine query constraints 

in various ways, whereas Dynamic Query, for the sake of simplicity, as-

sumes that the constraints are always linked by the conjunction “and”.  

Hence, the ease of use of Dynamic Query is achieved because of a num-

ber of restrictions: 

only one question type, specifically, “What references correspond to the 

specified attribute values?”; 

only attributes with linearly ordered value sets; 

                                                     
18  Both the appearance and the use of a slider bar/line are similar to those of the 

display-focusing tool discussed earlier. 
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only one value interval per attribute; 

only the conjunction “and” to combine several constraints. 

This analysis of the restrictions of Dynamic Query does not mean, how-

ever, that the tool is bad and should not be used. On the contrary, the tool 

is very good and is very well suited to exploratory data analysis, but users 

need to understand its limitations in order to use it properly. We shall con-

sider the virtues of Dynamic Query, which strongly outweigh the limita-

tions, a little later, but now let us continue with the possible ways of asking 

questions.

While the use of Dynamic Query is quite simple and does not require 

much learning, there are even simpler query interfaces, which, naturally, 

further reduce the flexibility in asking questions. Perhaps the simplest idea 

is to provide some information when the user just points on a display with 

the mouse. The mouse gesture is interpreted as the question “What’s this?” 

The exact meaning of the question depends on the type of display, the in-

formation represented in it, and the location of the pointer within the dis-

play. An answer to the question may be shown, for example, in a pop-up 

window or in a specifically dedicated part of the screen. 

Figure 4.89 demonstrates how such “querying by pointing” may be 

done. At the top, there is a fragment of a map of Portugal with a division 

into administrative districts. The pie charts on the map represent the values 

of the attributes “Total employed in agriculture 1991”, “Total employed in 

industry 1991”, and “Total employed in services 1991” for each of the dis-

tricts. When the user positions the mouse cursor on a district in the map, a 

pop-up window appears, in which the name of the district, its identifier, 

and the corresponding values of the three attributes are displayed. 

At the bottom left, there is a fragment of a time graph showing the dy-

namics of the burglary rates in the states of the USA; each polygonal line 

corresponds to one state. The mouse cursor is located at a point where two 

lines come close together. The pop-up window shows information related 

to the cursor position: the corresponding time moment, specifically the 

year 1966; the names and identifiers of the states represented by the lines; 

and the burglary rate values for these states in the year 1966. The screen-

shot at the bottom right of Fig. 4.89 shows the situation when there are no 

lines near the mouse position on the time graph. In this case, the attribute 

(i.e. burglary rate) value corresponding to this position is displayed. 

The flexibility of a “querying by pointing” tool may be increased by al-

lowing the user to choose what position-related information will be dis-

played. Thus, when the user points on a map, he/she might get the values 

of not only the attributes that are currently represented on the map but also 

other attributes characterising the locations shown on the map. 
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Fig. 4.89. Simple “What’s this?” questions may be asked just by pointing on a 

display with the mouse 

Obtaining information through pointing on a map display is an example 

of querying spatially referenced data. Of course, this is not the only possi-

ble way of asking questions about data that has a spatial component (re-

ferred to from now as “spatial data”, for the sake of brevity). Let us briefly 

explore the possibilities that exist. For this purpose, let us consider the pos-

sible types of questions concerning spatial data.  

4.6.1.1 Spatial Queries 

In Chap. 3, we proposed a general typology of questions (tasks), in which 

elementary questions are grouped into the categories of lookup, compari-

son, and relation-seeking. Lookup implies either finding characteristics 

corresponding to specified references (direct lookup) or finding references 

corresponding to specified characteristics (inverse lookup). Comparison 

tasks ask about relations between characteristics (direct comparison) or 

between references (inverse comparison). Relation-seeking means looking 

for occurrences of specified relations between characteristics.  

Spatial data are data in which at least one of the components, either a re-

ferrer or an attribute, has a spatial nature. The presence of a spatial referrer 

means that the values of some attributes are associated with spatial loca-

tions, spatial segments, or objects situated in space, for example rivers or 
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buildings. The presence of spatial attributes means that certain spatial 

characteristics, such as location, shape, or extent, pertain to the references. 

With this in mind, let us try to specialise the general categories of lookup, 

comparison, and relation-seeking to spatial data. 

Direct lookup queries may ask either about various types of characteris-

tics corresponding to spatial references or about spatial characteristics cor-

responding to arbitrary references. Inverse lookup queries may ask about 

spatial references corresponding to arbitrary types of characteristics or 

about arbitrary types of references corresponding to specific spatial charac-

teristics. This gives four different subtypes of spatial lookup tasks. Exam-

ples of questions of these subtypes are given in Table 4.9. 

Table 4.9. Examples of spatial queries of the lookup type 

 Direct lookup Inverse lookup 

Spatial 

referrer 

What is the percentage of chil-

dren in Porto? 

Where does the percentage of 

children exceed 25? 

Spatial 

attribute 

Where was the stork Prinzessin 

on 10 September? 

What is the distribution area of 

this plant species? 

What is the shape of a maple 

leaf? 

Which storks were in the area 

around Lake Victoria on 10 Sep-

tember? 

Which rare plant species occur in 

this area? 

Of what tree do the leaves have 

the given shape? 

It may be seen that some of the lookup questions specify constraints on 

values of non-spatial components (specifically, these are the cases of spa-

tial referrer and inverse lookup, and spatial attribute and direct lookup). 

Hence, the formulation of such questions does not differ from that of ques-

tions about non-spatial data. In the other two groups of questions, the con-

straints may specify particular locations or spatial fragments (e.g. areas) or 

geometrical properties such as shapes. Probably the easiest and most natu-

ral way to specify a location is to point on a display representing the rele-

vant space. For example, if we need information about a certain district of 

Portugal, we could specify this district by pointing to it on a map of Portu-

gal. Analogously, if we need information concerning some area, or, more 

generally, fragment of a two-dimensional space, we can outline this frag-

ment on an appropriate display using the mouse or another pointing de-

vice. Although this approach cannot easily be extended to three-

dimensional space, some solutions can still be found, for example by the 

use of two-dimensional projections. There are also indirect ways to refer to 

a specific place (i.e. location or spatial fragment) in a query: in particular, 
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by specifying the name (if it exists) of the place or its coordinates. Geo-

metrical constraints, such as a particular shape to look for, may also be 

specified in a direct, visual way, i.e. by drawing, or in an indirect way, i.e. 

by naming, description in a certain (formal) language, or selection from a 

restricted list of alternatives. The indirect ways of specifying spatial con-

straints do not differ in principle from the ways of specifying non-spatial 

constraints.

Sometimes the user needs to specify spatial constraints in a relative 

rather than an absolute way, i.e. by indicating a certain relation with re-

spect to a specific place. Look, for example, at the question “Which storks 

were in the area around Lake Victoria on 10 September?” Here, the spatial 

constraint, “the area around Lake Victoria”, consists of a reference to a 

particular place, Lake Victoria, and a specification of a spatial relation, 

“around”. Here are a few more example questions where spatial constraints 

are specified in this way: 

What are the percentages of children in the districts bordering on Porto? 

Which plant species occur north of the Arctic Circle? 

Find restaurants within 1 km distance from the city hall. 

In each of these questions, the user refers to locations or parts of the 

space. As we have discussed earlier, a tool may allow the user to do this in 

a direct way, by pointing or drawing on a representation of the space, or 

indirectly, by naming or specifying coordinates. Additionally, the user 

needs to specify a spatial relation, which may be topological (“border”, 

“inside”, “overlap”, “disjoint”, “between”, etc.), directional (such as 

“north”, “left”, or “front”), or metric, i.e. related to distances in the space. 

Spatial query languages (including spatial extensions of standard query 

languages) include special constructs for expressing such relations. For 

example, the SQL extension suggested by the OGC (Open Geospatial 

Consortium)19 includes the predicates Disjoint, Overlap, Touch, Cross, and 

so on. A predicate denotes an operation with a possible result 1 (true) or 0 

(false). This result shows whether the specified relation exists or not.  

Using the OGC extension of SQL, the question “Find the names of all 

countries which are neighbours of the USA in the Country table” would be 

formulated as follows: 

                                                     
19  The home page of the Open Geospatial Consortium has the URL http://www. 

opengeospatial.org/. A description of the suggested SQL extension is available 

(at the time of writing this book) at the URL http://www.opengeospatial.org/ 

docs/99-049.pdf or can be found using links from the page http://www. 

opengeospatial.org/specs/. 
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SELECT  C1.Name AS “Neighbours of USA” 

FROM Country C1, Country C2 

WHERE Touch(C1.Shape, C2.Shape) = 1 AND

  C2.Name = ‘USA’ 

This example is borrowed from the book Shekhar and Chawla (2003), 

which gives a good introduction into spatial query languages in a dedicated 

chapter. In the SQL statement above, the expression “Touch(C1.Shape,

C2.Shape) = 1” means that the relation Touch must exist between the 

shapes (contours) of the countries C1 and C2. 

In visual languages for spatial queries, spatial relations may be specified 

by drawings, gestures (e.g. using the mouse or another pointing device), or 

appropriate positioning of some predefined icons. For example, the rela-

tion “touch” could be expressed by placing two icons so that they touch 

each other, the relation “overlap” by two overlapping icons, and the rela-

tion “disjoint” by two icons with space between them. Another approach is 

to introduce iconic representations of the spatial relations, such as the ex-

amples in Fig. 4.90 representing some topological relations. Visual speci-

fication of directional relations could be done, for example, using a widget 

in the form of an azimuth disc. It seems that distance relations can be 

specified more naturally through numbers than through pictures, although 

a slider bar/line could also be quite appropriate. 

touch overlap inside outside cross disjoint 

Fig. 4.90. Some possible iconic representations of topological spatial relations 

Comparison and relation-seeking tasks deal with relations between 

characteristics or between references. As we have discussed before, the 

possible relations depend, in general, on the nature and properties of the 

set that the characteristics or references belong to. Spatial relations (topo-

logical, directional, and metric) are specific for spatial data.

In questions of comparison, which aim at determining what relation ex-

ists between some characteristics or references, one needs to specify these 

characteristics or references in the query constraints. Since spatial relations 

can exist only when these characteristics or references have a spatial na-

ture, asking questions about spatial relations requires referring to particular 

places or spatial entities. This may be done as in lookup questions, i.e. ei-

ther directly, by pointing or drawing on some representation of the space, 

or indirectly, by naming, description, or coordinate specification. Here are 

some examples of comparison tasks that target spatial relations: 
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What were the relative positions of the storks Prinzessin and Moritz on 

10 September? 

Do the migration routes of these storks cross? 

On what side of the river is the castle X situated? 

How far is the hotel Z from the city centre? 

Is the hotel Z within a pedestrian area? 

The construction of relation-seeking queries is opposite to that of com-

parison queries: the user specifies a certain relation, and the goal is to find 

occurrences of this relation between characteristics or between references. 

As before, we are interested in spatial relations, which are specific to spa-

tial data. Table 4.10 contains examples of spatial queries of the relation-

seeking type. Some possible methods for the specification of spatial rela-

tions have been discussed above. 

Table 4.10. Examples of spatial queries of the relation-seeking type 

Relation type Examples 

Topological Find all places where railways cross rivers. 

Which restaurants are located inside parks or gardens? 

Directional Find chemical plants situated north of populated areas. 

Which rivers are left tributaries of other rivers? 

Metric Find all towns situated more than 100 km from the nearest rail-

way. 

Find stops of the same bus with less than 500 m distance between 

them. 

We have recalled the classification of questions into lookup, compari-

son, and relation-seeking in order to see what questions about spatial data 

may be potentially asked. We have seen, however, that many such ques-

tions do not differ in principle from questions about non-spatial data. For 

example, to formulate the question “What is the distribution area of this 

plant species?”, one does not require any specifically “spatial” expressive 

means. In this sense, a question about the distribution area does not differ 

from a question about the typical habitat or the temperature interval for 

this plant species. The specifics of spatial data only come into play in 

questions where some places (i.e. locations or spatial fragments) and/or 

spatial relations are specified in the constraints. Hence, the methods for the 

specification of places and spatial relations are specific to spatial queries. 



346     4 Tools 

4.6.1.2 Temporal Queries 

Another area of special interest to us is queries about temporal data, i.e. 

data that have temporal referrers or attributes. Analogously to spatial que-

ries, “temporal specificity” appears only in queries with constraints that 

specify times (i.e. time moments or intervals) or some temporal relations. 

Accordingly, we shall consider here the possible methods for the specifica-

tion of times and temporal relations. 

As we have mentioned earlier, time can be treated in two different ways: 

as a linearly ordered set, i.e. a sequence of time moments, or as organised 

into cycles. When time is treated as linear, the specification of time mo-

ments and intervals can be done in the same way as the specification of 

individual values and value intervals of any attribute or referrer with a 

linearly ordered value set, for example a numeric attribute. In particular, 

interactive devices such as those in Dynamic Query (see Fig. 4.88) can be 

used for this purpose. For example, the whole length of a slider line may 

represent the time interval from the year 1960 to the year 2000 in the data-

set on crime in the USA. Using the delimiters, one can specify any subin-

terval of this interval: from 1960 to 1969, from 1991 to 1992, from 2000 to 

2000, etc. In this example, the resolution of the time scale is one year, 

since the data in the dataset refer to years. Figure 4.91 demonstrates an-

other interactive device that may be used for the specification of time mo-

ments and intervals. The basic idea is the same as in Dynamic Query, ex-

cept for the additional possibility to specify explicitly the required length 

of the time interval. Thus, in Fig. 4.91, the user has selected a 1000-day 

interval starting from 1 January 1990. The black rectangle represents the 

selected interval, and the white bar corresponds to the period from 1 Janu-

ary 1976 to 30 December 1999 (this is the period that our Turkish earth-

quake data refer to). In this interface, the user may specify an interval not 

only by entering the start date and the end date or the length of the interval 

in the corresponding text fields but also by manipulating the black rectan-

gle by use of the mouse. When the mouse cursor is positioned on the left 

side of the rectangle, dragging the mouse shifts the beginning of the query 

interval. Dragging with the mouse cursor on the right side changes the end 

of the interval, and dragging in the middle of the black rectangle shifts the 

whole query interval without changing its length. 

Fig. 4.91. A time interval of 1000-day length starting from 1 January 1990 is 

specified here using a slider device for time 
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In Fig. 4.91, the resolution of the time scale is one day. It is convenient 

when a query tool allows the user to choose the most appropriate resolu-

tion. Thus, in analysing the earthquake data, one might prefer to specify 

intervals with an accuracy of one month (e.g. from January 1990 to Sep-

tember 1992) or even one year (e.g. from 1990 to 1992). Or, oppositely, it 

may be necessary to increase the precision and consider hours, minutes, or 

even seconds. It should be noted that purely visual query devices do not 

support high precision in the specification of times. Thus, if the query tool 

shown in Fig. 4.91 did not contain the text fields but only the slider bar, it 

would be difficult to specify an interval of exactly 1000 or 100 days length 

starting exactly on 1 January of some year. The reason is that the slider bar 

which has a length of just a few centimetres, represents the whole period 

from 1 January 1976 to 30 December 1999, consisting of 8765 different 

dates. Hence, a millimetre may correspond to several months. If the resolu-

tion was increased from days to hours, the same slider length would corre-

spond to 24  8765 = 210 360 different values, and hence exact position-

ing by mouse dragging would become impossible. 

Another limitation of a slider bar/line as a tool for the specification of 

times is that it does not allow one to express such queries as, for example, 

“find the earthquakes that happened in the hours from 6 a.m. to 8 a.m.” (on 

weekends, in January, etc.). The formulation of such queries requires a 

user interface that incorporates a cyclic treatment of time, such as the 

“Time Wheel” query device de-

scribed by Edsall and Peuquet 

(1997). This tool contains three 

concentric circles divided into 

segments. The innermost circle is 

divided into 24 segments repre-

senting hours of a day, from 00 

to 23. The intermediate circle 

represents days of a month, from 

1 to 31. The outer circle, which is 

divided into 12 segments, corre-

sponds to months of a year, from 

January to December. Accord-

ingly, the Time Wheel allows the 

user to select arbitrary combina-

tions of months within a year, 

days within months, and times of 

day. The selection is done by 

clicking on the corresponding 

segments of the circles. Thus, the 

Fig. 4.92. “Time Wheel” query tool in the 

software system TEMPEST (Source:

http://www.geovista.psu.edu/products/dem

os/edsall/Tclets072799/cyclicaltime.htm)
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selection shown in Fig. 4.92 (the selected segments are marked by lighter 

shading) would allow one to investigate what happened on the first days of 

January and March during the hours from 7 a.m. to 10 a.m. in the years 

1996, 1997, and 1998. The years are specified using the linear device be-

low the circles. 

We would like to note that the organisational principle of the “Time 

Wheel” is very felicitous. First, the tool can easily be extended to other 

temporal cycles. For this purpose, one needs only to add corresponding 

circles, for example a circle for days of a week, a circle for minutes of an 

hour, etc. Second, the accuracy of time specification can easily be regu-

lated. Thus, if a precision of one month is sufficient, the user can work 

only with the outermost circle. When higher precision is required, the user 

may move to the inner circles. 

At the same time, the specific implementation described in Edsall and 

Peuquet (1997) imposes serious limitations on the choice of time intervals. 

For example, it is impossible to choose the interval from 15 January 1996 

to 25 March 1996 or the set of intervals from 15 January to 25 March in 

the years 1996, 1997, and 1998. The reason is the discretness of the time 

scale: the circle representing a year is divided into 12 segments, and it is 

possible to choose only an entire segment, not a part of it. Therefore, one 

can choose the whole of January but not the period starting from 15 Janu-

ary. This problem might be tackled by allowing continuous selections on 

the elements of the “Time Wheel”. 

It should not be concluded that a query tool based on a cyclical treat-

ment of time is always superior to a tool incorporating a linear time model. 

There are “purely linear” queries, which simply cannot be expressed using 

the “Time Wheel” or similar devices. For example, the “Time Wheel” does 

not allow one to specify the interval from January 1996 to March 1998. 

Therefore, an appropriate tool for temporal queries must combine linear 

and cyclic models of time. 

Temporal relations may be divided into topological relations (before, af-

ter, overlap, during, simultaneously, between, etc.) and metric relations, 

i.e. those involving a distance in time, or duration. Unlike the case of 

space, there are no directional relations (except for “before” and “after”, 

which can also be regarded as topological): time is a linearly ordered set in 

which only two directions exists, from the past to the future, and back. 

Even when a cyclic time model is used, this actually means that time is 

treated as a linear sequence of cycles, and each individual cycle is a line-

arly ordered sequence of time moments. 

Metric temporal relations are specified through numbers, and hence any 

query tools devised for specifying numbers may be suited to distances or 

durations in time, for example elements of Dynamic Query. Topological 
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relations may be specified using predicates or visually. Thus, Fig. 4.93 

provides a visual illustration of the possible relations between time inter-

vals considered by Allen in his theory of temporal reasoning (Allen 1983). 

Such drawings could be used for the specification of temporal relations in 

temporal queries. 

X before Y; Y after X

Y

X

X

X

X

X

X

X meets Y; Y met-by X

X overlaps Y; Y overlapped-by X

X starts Y; Y started-by X 

X

X during Y; Y contains X 

X finishes Y; Y finished-by X 

X equals Y

Fig. 4.93. Allen’s interval relations, after Allen (1983) 

4.6.1.3 Asking Questions: Summary 

Querying implies imposing some constraints on values of data components 

(attributes or referrers) and/or relations between values or value subsets. In 

fact, various relations are often involved in constraining values: equal or 

not equal, greater than or less than, in or not in (referring to elements in a 

set), etc. The difference is that values are constrained by specifying a rela-

tion to some constant(s), while relations are constrained using two or more 

variables. A variable in a query is a reference to a data component, i.e. an 

attribute or a referrer. Table 4.11 gives a few examples to illustrate the dif-

ference between queries that constrain values and queries that constrain 

relations.

Query constraints can be formulated using a special query language or a 

set of interactive-manipulation controls. In a traditional query language, 

constraints are expressions built from variables and constants using signs 

for arithmetic relations (=, , >, , <, and ) and various predicates indicat-

ing other types of relations, for example, In for set membership or Touch

for spatial neighbourhood. In such expressions, it is often possible to use 

arithmetic operations (add, subtract, divide, multiply, etc.), functions (e.g. 

logarithm or sine), and set operations such as union, intersection, or differ-

ence. When several constraints are specified simultaneously, they may be 

linked by the logical operations AND, OR, and XOR (exclusive OR).  
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Table 4.11. Queries that constrain values versus queries that constrain relations: 

Some examples 

Constraining values Constraining relations 

In which districts of Portugal is the 

percentage of children greater than 25? 

In which districts of Portugal is the 

percentage of children greater than the 

percentage of elderly people? 

Find all countries where one of the of-

ficial languages is Italian. 

Find all countries that have at least one 

official language in common with some 

other country. 

Find natural parks situated south of 

Alps.

Find natural parks situated south of 

large mountain ranges. 

A visual query language represents relations and operations by graphical 

symbols rather than keywords. Query constraints take the form of a dia-

gram constructed from such graphical symbols; this diagram is an equiva-

lent of an expression in a traditional query language. 

Interactive-manipulation controls are much simpler to use than query 

languages but permit only restricted subsets of possible queries. Typically, 

they are suitable for constraining values but not for constraining relations. 

An interactive-manipulation query tool suggests some visual representa-

tion of the value set(s) of one or more attributes, such as, the slider 

bars/lines in Dynamic Query representing value ranges of numeric or ordi-

nal attributes, or the concentric circles in the “Time Wheel”. Sometimes, a 

query tool does not suggest its own representation of a value set but works 

on top of a visual data display, such as a map or a graph (see Fig. 4.89). 

The representation of a value set may be continuous (using a slider bar or a 

graph area) or discretised (using a “Time Wheel” divided into segments or 

the territory of Portugal in a map, divided into districts).  

Constraining values is done by selecting specific points, segments, or 

regions in a visual representation of a value set. For this purpose, the user 

usually applies mouse operations: pointing, clicking, and dragging. A re-

gion may be selected by moving delimiters, as in Dynamic Query, or by 

drawing a geometrical figure, for example a frame or a circle on a map. 

The main virtues of query devices based on interactive manipulation are 

their simplicity and efficiency. The formulation of each query takes so lit-

tle time that the user can specify many queries during a session of data 

analysis. If the query tool is capable of providing an immediate answer to 

any such question, it becomes an extremely powerful instrument for ex-

ploratory data analysis. The user obtains quick and easy access to the char-

acteristics of any references and to references with specific characteristics. 
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He/she may observe the impact of a slight modification of a query and see 

how constraining the values of one component excludes certain values of 

other components. These opportunities are much more important for ex-

ploratory analysis than are the sophistication and flexibility of query lan-

guages, which allow a highly refined specification of almost any informa-

tion need but are too heavy to encourage “playing” with query constraints 

and observing the impacts. 

We would like to use the term “dynamic query tools” to refer to query 

tools that 

allow the user to specify and modify queries very easily and quickly, 

and

immediately react to any modification of a query by fast provision of the 

appropriate answer. 

Hence, we shall use the term “dynamic query” in a general sense, bearing 

in mind certain properties of the tool, specifically, ease of use and fast re-

sponse. The particular query tool widely known as Dynamic Query is one 

of the tools that possess these properties but not the only one. In our fur-

ther discussion, we shall refer to this particular tool by its proper name 

Dynamic Query (where both words start with capitals). When the same 

words start with lower-case letters, this combination of words will mean 

the general principle of building various query tools. 

Let us now consider what answers to a user’s questions may be expected 

from a query tool and in what form they may be presented to the user. 

4.6.2 Answering Questions 

As we have pointed out earlier, queries are mostly elementary questions 

about data and can be classified into lookup, comparison, and relation-

seeking.20 The expected answers to lookup and relation-seeking questions 

are references and/or characteristics, while the answers to comparison 

tasks are relations between references or between characteristics. 

Let us consider first the case where a query result is a subset of refer-

ences and/or characteristics. How can we systematically describe the pos-

sible ways of presenting such a result to a user? 

One of the distinctions that we deem important is how the presentation 

of query results is related to the information that was shown on the screen 

before the query was specified. The display of the results may be inde-

                                                     
20  A little later, we shall describe some query tools suitable for asking a particular 

sort question related to searching for a behaviour. 
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pendent of the previous content of the screen, for example it may appear in 

a new window or simply replace what was previously shown, or it may 

somehow modify this content. Although complete replacement of the in-

formation on the screen by the presentation of query results is theoretically 

possible, this is rarely done in practice, since radical changes of screen 

contents may lead to confusion of the user. 

For an independent display of query results, any form of data represen-

tation may be used, such as text, a table, or graphics. An example of such a 

display can be seen in Fig. 4.89, where answers to “What’s this?” ques-

tions are shown in pop-up windows while the original data representation 

remains mostly unchanged, except that the selected element of the display 

is indicated by highlighting. 

Modification of the information content of the screen by the results of a 

query is possible in three basic ways: 

Filtering: Screen elements representing data items that do not satisfy the 

query are removed from the screen. Only the data items satisfying the 

query are displayed. A variation of this technique is to “mute” the repre-

sentation of data items that do not satisfy the query. The corresponding 

graphical elements may appear “bleached” and/or reduced in size. User 

interaction with such display elements is typically reduced, for example 

they do not react to pointing or clicking with the mouse. 

Marking: Screen elements representing data items that satisfy the query 

are specially marked, for example by dedicated colouring, so as to be 

clearly distinguishable from the rest. A variation of the marking tech-

nique is sometimes used to represent the results of a query with several 

constraints or the results of a sequence of queries: visual elements repre-

senting data items are shown in different colours or shades depending 

on how many query constraints they satisfy. 

Addition: New graphical elements are added to an existing display to 

represent data items that satisfy the query and have not been displayed 

before. If some of the query results have already been shown, the corre-

sponding display elements may either remain unchanged or be marked 

somehow to attract the user’s attention. Usually, answering a query by 

adding new display elements requires the user to be able to “clean” the 

display of the results of all previous queries.  

Of these three variants of answering queries, the first two are mostly used 

in dynamic query tools, which, as we explained before, are extremely 

valuable in exploratory data analysis. Let us give some examples of these 

two variants. 



4.6 Querying      353 

4.6.2.1 Filtering 

The well-known Dynamic Query (Ahlberg et al. 1992) operates according 

to the filtering paradigm. As we have described earlier, Dynamic Query 

allows one to specify questions of the kind “What references correspond to 

the specified attribute values?” Dynamic Query is combined with a graphi-

cal data display (sometimes several displays), which originally represents 

the whole reference set. Some attributes corresponding to the references 

may be visualised in such a display, but these attributes and the methods 

used to represent their values are irrelevant to the functioning of the tool. 

When the user of the tool moves any of the sliders of Dynamic Query, 

the tool interprets this as a specification of a query constraint and immedi-

ately responds to this by filtering out the references that do not satisfy this 

constraint. The corresponding graphical elements are removed from the 

display or shown in a “muted” manner. All of the user’s subsequent opera-

tions on the sliders are interpreted as a modification of a previously speci-

fied query constraint (when a slider that has already been moved is moved 

again) or as adding new constraints (when the user moves a slider that has 

not previously been moved). After any operation, the display is immedi-

ately updated. In some realisations, the display may be dynamically up-

dated even during the process of slider movement. 

Let us consider a few illustrations. In Fig. 4.94, we see a screenshot of 

the user interface of one of the existing realisations of Dynamic Query 

(top) and several data displays:  

a map of Portugal, with the territory divided into administrative dis-

tricts;

two frequency histograms, representing the distribution of the values of 

the attributes “% employed in agriculture 1991” and “% employed in 

industry 1991” over the set of these administrative districts; 

a scatterplot, representing the combinations of values of the attributes 

“% employed in services 1991” and “% pop. no primary school educa-

tion” in the districts of Portugal. 

Dynamic Query contains slider bars for four attributes characterising the 

age structure of the population in the districts of Portugal: “% 0 14 years”, 

“% 15 24 years”, “% 25 64 years”, and “% 65 or more years”.  

Hence, all of the displays, including that of Dynamic Query, represent 

different attributes of one and the same dataset and have a common refer-

ence set, specifically, the set of administrative districts of Portugal. On the 

map, each district is represented by a figure with a shape and location cor-

responding to the geographical characteristics of this district. In the scat-

terplot and the dot plots included in the user interface of Dynamic Query, 



354     4 Tools 

the districts are represented by small circles, or dots. The histograms are 

aggregated data displays and represent the sizes of groups of districts 

rather than individual districts. The districts have been grouped according 

to the values of the attributes “% employed in agriculture 1991” and “% 

employed in industry 1991” by dividing the value ranges of these attributes 

into 20 intervals of equal length. 

Fig. 4.94. The Dynamic Query tool has been applied here to several graphical dis-

plays with a common reference set, specifically, the set of districts of Portugal. 

Specification of query constraints removes or “mutes” the representation of the 

references that do not satisfy these constraints 
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Figure 4.94 demonstrates the effect of moving one of the delimiters in 

Dynamic Query, specifically, the right delimiter on the slider line corre-

sponding to the attribute “% 0 14 years”. Moving this delimiter is inter-

preted as setting an upper limit upon the values of the corresponding at-

tribute. In the figure, the position of the delimiter corresponds to the attrib-

ute value 18.02. For the Dynamic Query tool, this means that the user 

would like to see which districts of Portugal have a percentage of children 

(i.e. people aged from 0 to 14 years) less than or equal to 18.02. 

In response to the user’s operation, Dynamic Query divides all the dis-

tricts into two groups: the districts satisfying the constraint (i.e. having not 

more than 18.02% of children in their population) and the districts not sat-

isfying the constraint (i.e. having more than 18.02% of children). Every 

display present on the screen reacts to this. On the map, the districts not 

satisfying the constraint are “muted”: only their contours are drawn, using 

an inconspicuous light grey colour; the interior is not coloured; and the 

names of those districts are not shown. Moreover, these contours become 

insensitive to mouse operations. They are merely placeholders, rather than 

real, active graphical objects. The real objects are not there any more; they 

have been filtered out.

A similar metamorphosis has happened in the dot plots of Dynamic 

Query to the dots symbolising the districts that do not satisfy the current 

query. These dots have become pale and inactive. At the same time, the 

scatterplot has reacted in a different manner: only the dots representing the 

districts that satisfy the query continue to be visible, and the remaining 

dots have been removed from the display. For comparison, the original 

appearance of the scatterplot display (i.e. before the constraint was set) is 

presented in Fig. 4.95. 

Fig. 4.95. The scatterplot from Fig. 4.94 as it looked before any query constraints 

were specified 

The histograms, which do not represent individual districts but only dis-

trict counts, have been transformed in their own way. For each bar, the 
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proportion of the districts that belong to this bar and satisfy the query has 

been computed. The bar has been divided into two differently coloured 

segments in accordance with this proportion. The darker segment shows 

the number of districts that satisfy the query, and the lighter segment the 

number of districts that do not satisfy the query. 

The reaction of all of these displays to the outcome of the Dynamic 

Query tool allows an analyst to obtain quite an amount of valuable infor-

mation about the districts of Portugal with a small proportion of children 

and about those with a high proportion. Thus, the analyst can immediately 

see where the districts in each group are geographically located. The map 

exhibits two major clusters of districts with a small proportion of children: 

in the central inland part of the country and in the south. It can also be con-

cluded that the proportions of children are mostly higher than 18.02% in 

the north and in the central districts close to the western coast.  

From the frequency histogram of the attribute “% employed in agricul-

ture 1991”, the analyst may see that proportions of children over 18.02% 

prevail in the districts with a small percentage of people employed in agri-

culture. These districts are represented by the bars on the left of the histo-

gram, and the dark parts of these bars, which show the numbers of districts 

satisfying the query constraints, are much smaller than the light segments, 

corresponding to the districts that do not satisfy the query, i.e. have more 

than 18.02% of children in their population. In the centre of the histogram, 

where the proportions of people employed in agriculture have medium 

values, the division of the bars according to the percentage of children 

demonstrates a slight prevalence of districts with a low percentage of chil-

dren. On the right, where the proportions of people employed in agricul-

ture are high, there are again more districts with a higher percentage of 

children. However, the bars in this part of the histogram are quite short, i.e. 

there are not many districts with a so high employment in agriculture. 

From the histogram of the attribute “% employed in industry 1991”, one 

can see that the bars corresponding to low employment of the population 

in industry (these bars are on the left) are divided into nearly equal parts 

with respect to the satisfaction of the query constraints. In the centre, the 

darker parts become somewhat smaller than the light parts, and on the 

right, there is only a very small dark segment in one of the bars. This 

means that higher percentages of children prevail in districts with a high 

proportion of people employed in industry. 

After the query constraint has been set, the scatterplot demonstrates a 

certain correlation between the attributes “% employed in services 1991” 

and “% pop. no primary school education”, whereas no clear correlation 

was visible in the original view (see Fig. 4.95). This means that in the dis-

tricts with a low percentage of children, the proportion of people without 
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primary education tends to decrease as the proportion of people employed 

in services increases. 

Some information can also be obtained from the dot plots included in 

the Dynamic Query device. One can see that excluding high values of the 

attribute “% 0 14 years” excludes also high values of the attribute “% 

15 24 years”: the dots on the right of the corresponding dot plot are 

“muted”. This means that the districts with a high percentage of children 

usually have a high percentages of young people (i.e. aged from 15 to 24 

years) as well. From the remaining two dot plots, it may be concluded that 

many of the districts with a high percentage of children (which have been 

filtered out) have a low percentage of people of working age (i.e. from 24 

to 65 years) and of people of retirement age (i.e. 65 or more years). At the 

same time, in the districts with less than 18.02% of children, high percent-

ages of people aged from 25 to 64 years occur quite rarely as well. 

The purpose of this detailed description of what can be seen in various 

displays after setting a constraint in Dynamic Query was to demonstrate 

the role of querying in exploratory data analysis. This role does not imply 

that the user searches for anything specific, as in querying a hotel reserva-

tion system. In EDA, the task of finding objects with particular characteris-

tics (for example a hotel in a particular city situated close to the railway 

station and with a price within a certain price range) is not typical. It is 

more typical to use queries for answering questions such as:  

How many objects possess/do not possess the given characteristics? 

Where are these objects located in space? 

How are these characteristics related to other characteristics? 

Moreover, the analyst is usually not very interested in answering these 

questions in regard to just one particular subset of characteristics. He/she 

would rather take various subsets of characteristics and ask these questions 

again and again. Thus, in our example, it is not actually the goal of the 

analyst to explore the characteristics of districts that have the percentages 

of children up to 18.02. Instead, the goal is to investigate how demo-

graphic characteristics are distributed over the territory of Portugal and 

what links exist between different demographic attributes. Repeated selec-

tion of various subsets of districts by means of querying is an instrument 

used for this investigation. This purpose and this method of using a query 

tool explain why the tool needs to be dynamic: it is important that the ana-

lyst is able to change the subset selection easily, and that the properties of 

the new subset become promptly available for observation.  

Let us return to the dot plots included in the Dynamic Query interface. 

In the following discussion, for the sake of brevity, the references with 
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corresponding characteristics that satisfy the current query constraints will 

be referred to as active references.  References with characteristics that do 

not satisfy the current constraints will be called inactive.

So, the role of the dot plots in Dynamic Query is to provide three cate-

gories of information:  

1. The distributions of the values of different attributes over the whole set 

of references (in our example, the districts of Portugal). 

2. The distributions of attribute values over the subset of active references.

3. The distributions of attribute values over the subset of inactive refer-

ences.

The first category of information is shown by the distribution of all dots 

along a slider line, irrespective of their colouring. The second category of 

information is shown by the distribution of the “active”, dark grey dots. 

The lighter, “inactive” dots indicate what characteristics pertain to the in-

active references.  

Besides showing the distributions and characterising the subsets of ac-

tive and inactive references, the different colouring of the dots in the dot 

plots can often help to reveal correlations between characteristics. Thus, in 

the example in Fig. 4.94, the colouring of the dots in the dot plots indicates 

that low percentages of children typically co-occur with low to medium 

percentages of young people and with medium to high percentages of eld-

erly people.  

At the same time, the information shown by the dot plots allows the ana-

lyst to anticipate what modifications of the current query will cause sig-

nificant changes to the query results and what modifications will have only 

a slight effect or no effect at all. Thus, moving the right delimiter on the 

second from top slider line to the left will not change anything until the 

rightmost dark grey dot is reached. Analogously, the current set of active 

districts will be almost insensitive to moving the left delimiter on the third 

or fourth slider line to the right by about one-fifth or even one-fourth of the 

total length of the slider line. In contrast, moving the right delimiter on the 

topmost slider line further to the left will significantly reduce the number 

of active districts, since this part of the slider line corresponds to a concen-

tration of dark dots. For the same reason, moving this delimiter to the right 

will notably extend the subset of active districts. 

Providing such query-related information directly within the query de-

vice is very convenient, since this information can be taken into account in 

query building. Of course, not only dot plots may be used for this pur-
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pose.21 Moreover, using dot plots is not an ideal solution, because they 

very often suffer from overplotting, i.e. some symbols covering others. 

Hence, one dot may actually stand for several or even quite many objects, 

and it becomes impossible to estimate the sensitivity of the query to a par-

ticular slider movement.  

Using frequency histograms instead of dot plots appears to be a suitable 

alternative although histograms are not problem-free either. Thus, when 

the distribution of the values of a attribute is very skewed, the correspond-

ing histogram may contain one or a few extremely high bars while the re-

maining bars are very low. It should be taken into account that the maxi-

mum height available for a histogram in a dynamic query device is usually 

quite limited; hence, some bars in a histogram may be indiscernible. 

A typical approach to dealing with skewed distributions in statistics is to 

transform the values, for example by taking their logarithms. However, 

such a transformation may cause difficulties in using a dynamic query de-

vice: the correspondence between positions on a slider line and the values 

of the respective attribute becomes non-intuitive. The same distance has 

different meanings in different parts of a slider line; therefore, the proce-

dure of moving the delimiters involves a significant cognitive effort. 

We are aware of a realisation of Dynamic Query where information 

about value distributions is shown by means of built-in histograms, i.e. 

each slider bar has a histogram inside (this is described, for example, in Li 

and North (2003)). The user has an opportunity to switch between linear 

and logarithmic functions for encoding attribute values by positions. How-

ever, the histograms do not change in response to modifications of query 

constraints. Hence, this query interface provides only the first category of 

information about the distribution in the list given above. Therefore, it 

does not facilitate the revealing of correlations between attributes and, in 

fact, does not properly indicate the sensitivity of the query result to possi-

ble modifications of the query. There is another dynamic query tool, called 

Attribute Explorer (Spence and Tweedy 1998, Spence 2001), where histo-

grams are also used, and here they change dynamically as the query con-

straints are changed. This tool utilises the idea of marking rather than fil-

tering; and we shall discuss this in more detail in the next subsection. 

                                                     
21  In the original implementation of the Dynamic Query tool (Ahlberg et al. 

1992), dot plots were not used. However, some information to estimate the 

(in)sensitivity of the query was provided by different colouring of segments of 

the slider bars: grey segments represented value subintervals for which there 

were no references satisfying the current query constraints, while yellow col-

ouring of a segment indicated the presence of active references with values in 

the corresponding subinterval. 
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We have discussed so far how a single constraint is set in the Dynamic 

Query tool and what impact this may produce on various data displays. 

Although it may easily be guessed what outcomes can be expected from 

further manipulations of the controls in the Dynamic Query device, we 

shall still say a few words on this topic and give an illustration. 

Fig. 4.96. Changes in the data displays from Fig. 4.94 after adding one more query 

constraint in Dynamic Query 

Any change of delimiter positions in Dynamic Query can modify the di-

vision of the reference set into the references satisfying the query and the 
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references not satisfying it, or active and inactive references. Adding a new 

constraint or tightening an existing constraint (by moving a left delimiter 

to the right or a right delimiter to the left) turns some of the currently ac-

tive references into inactive ones. Loosening or removing a constraint 

moves some of the currently inactive references into the class of active 

references.

Figure 4.96 demonstrates the effect of moving the right delimiter of the 

slider line corresponding to the attribute “% 25 64 years” to the left, i.e. 

setting an upper limit on the values of this attribute. Now, the set of active 

references consists of districts with relatively low proportions of children 

(up to 18.02%) and low to medium proportions of the population aged 

from 25 to 64 years (specifically, up to 49.98%). As could quite naturally 

be expected, these districts are characterised by rather high proportions of 

elderly people, and this is clearly seen in the dot plot at the bottom of the 

Dynamic Query window. The range of the values of the attribute “% 

15 24 years” corresponding to the active districts has shrunk. Now, the 

active dot representing the maximum value is located in about the middle 

of the slider line for this attribute. The “What’s this?” query tool allows us 

to see this maximum value and the name of the district that this value re-

fers to, as is shown in Fig. 4.97. 

Fig. 4.97. The maximum value of the attribute “% 15 24 years” available in the 

subset of the districts of Portugal satisfying the current query constraints is the 

value 15.79, in the district of Barrancos 

The displays that we saw earlier in Fig. 4.94 have changed in response 

to adding the new query condition. The map in Fig. 4.96 shows us the spa-

tial distribution of the districts satisfying the query: they are mostly located 

inland, in the east of the country. The upper histogram characterises the 

active districts as having mostly medium proportions of people employed 

in agriculture while the lower histogram indicates, as before, mostly low 

proportions of people employed in industry. In the scatterplot, the group of 

dots with low values of the attribute “% pop. no primary school education 
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1991” and high values of the attribute “% employed in services 1991” (in 

the upper left corner of the scatterplot in Fig. 4.94) has disappeared: it can 

no longer be seen in Fig. 4.96. This means, first, that such combinations of 

values of these two attributes were pertinent to districts with relatively 

high proportions of people aged from 25 to 64 years; and second, that the 

districts satisfying the query have medium to high percentages of unedu-

cated people and mostly low proportions of people employed in services. 

The negative correlation, which could be seen in the scatterplot in Fig. 

4.94, can no longer be seen in Fig. 4.96. 

A shortcoming of Dynamic Query, as well as of any filtering-oriented 

dynamic query tool, is the difficulty of comparing results of different que-

ries. In particular, it may be not easy to note the changes that occur after a 

modification of the current query constraints, and after a few such modifi-

cations the user can completely forget his/her earlier observations. Of 

course, it is possible to take screenshots and compare them, as we did with 

Figs 4.94 and 4.96, but this substantially reduces the dynamism. Another 

option is to return to the previous states by appropriate modification of the 

query constraints. This can easily be done, but there is a danger of forget-

ting the later states. 

Daniel Carr and his colleagues (Carr et al. 2000, 2002) have suggested a 

witty, although partial, solution known as “conditioned maps”. The main 

idea is to use a matrix composed of 3  3 maps (or, in principle, any other 

type of display) in order to represent simultaneously answers to nine que-

ries. The queries are not arbitrary but are specified through division of the 

value ranges of two numeric attributes. Each value range is divided into 

three subintervals. The selection of one subinterval for each attribute de-

fines a two-condition query in terms of these attributes. In accordance to 

the possible number of different ways of choosing the intervals, the divi-

sion specifies 3  3 = 9 different queries, the answers to which are shown 

in the 3  3 = 9 displays. In each display, only the data items satisfying the 

respective query are visible. Hence, the filtering technique is applied in the 

individual displays, whereas the entire collection of displays contains the 

complete information. The answers to the different queries can easily be 

compared. The user may dynamically change the intervals that the value 

ranges of the attributes are divided into. This results in the displays being 

updated to represent the answers to the modified queries. 

In principle, the same approach can be used for querying in terms of a 

single attribute. In this case, a one-dimensional horizontal or vertical dis-

play arrangement is appropriate, instead of a display matrix. Extension of 

the technique to more than two attributes is hardly possible. The division 

of the attribute value ranges into exactly three subintervals is not a limita-
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tion in principle; there could equally well be two or four subintervals. 

However, increasing the number of subintervals multiplies the queries and, 

consequently, the displays needed for the representation of the answers to 

the queries. This may decrease the legibility of each display and increase 

the user’s cognitive load, since the user will need to view and compare 

many individual displays. 

Further opportunities for the comparison of the results of several queries 

exist in marking-oriented dynamic query tools. 

4.6.2.2 Marking 

Let us start by discussing a simple variant of marking, which assumes that 

a display element may be in one of two possible states, selected (active) or 

neutral. The selected state is indicated by a particular visual means, for 

example a certain colour. In our examples, this will be a black colour. For 

illustration, we shall use the same map, histogram and scatterplot displays 

as in Figs 4.94 and 4.96, except that each histogram will have ten bars in-

stead of 20 (i.e. the value ranges of the respective attributes are divided 

into ten rather than 20 subintervals). The filter will be cancelled; hence, all 

the displays will portray the full set of districts of Portugal. 

Figure 4.98 demonstrates the result of clicking on the rightmost bar of 

the histogram representing the value distribution of the attribute “% em-

ployed in agriculture 1991”. This bar corresponds to the last one-tenth of 

the attribute’s value range, i.e. to the interval from 55.29 to 61.41. After 

the clicking, the bar has become “active”, which is indicated by its being 

shaded in black. However, what is interesting is not the change in the col-

our of this bar but the changes that have occurred in the other displays. The 

clicking on the bar has divided the set of districts into two subsets: the dis-

tricts with more than 55.29% of people working in agriculture, and the dis-

tricts where this percentage is less than or equal to 55.29. The former sub-

set of districts is treated as selected, or active, and the latter as neutral. In 

response to this division of the districts into selected and neutral, all the 

displays have changed so that the selected districts are specially marked 

using black (for consistency, selections must be shown in a similar way in 

different displays). 

On the map, the selected districts are marked by thick black boundaries. 

All these districts are in the northern part of the country. The second histo-

gram indicates the position of the selected subset of districts with respect 

to the value range of the attribute “% employed in industry 1991”. Almost 

all of these districts have values of this attribute in the first of the ten sub-

intervals represented in the histogram. The number of such districts is in-

dicated in the histogram by shading a segment of the respective bar in 
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black. The height of this segment is proportional to the number of selected 

districts with attribute values in this interval. A small black segment can 

also be noticed in the second bar from the left. This shows that there are 

some districts (or, most likely, just one district) with values of “% em-

ployed in industry 1991” in the second subinterval. Anyway, it is clear that 

very high proportions of employment in agriculture co-occur with very 

low percentages of employment in industry. In the scatterplot, the selected 

districts are shown as black dots. It can be seen that these districts are 

characterised by low employment in services, while the percentage of un-

educated people varies significantly. 

Fig. 4.98. Clicking on a bar in a histogram selects the districts with attribute val-

ues that fit into the corresponding interval. All the displays respond to the selec-

tion by special marking of the selected districts. For consistency between different 

displays, the selection is indicated using the same colour (black) in all cases 
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Let us now click on the two neighbouring bars of the bar that we have 

just selected (see Fig. 4.99). This extends the set of selected districts by 

adding the districts with attribute values that fit into the intervals corre-

sponding to these bars. Hence, the resulting selection consists of the dis-

tricts with more than 43.06% of people employed in agriculture. 

Fig. 4.99. Clicking on two other bars in the same histogram extends the set of se-

lected districts by adding the districts with attribute values that fit into the inter-

vals corresponding to these bars. The resulting selection consists of the districts 

with more than 43.06% of people employed in agriculture 

All the displays present on the screen have been updated to represent the 

result of the new query. In the map, we can see that all but one of the ac-

tive districts are situated in the northern part of Portugal. The frequency 

histogram of the attribute “% employed in industry 1991” shows us that 

the active districts have low values of this attribute. In the scatterplot, it 

can be observed that the selected districts have low values of the attribute 
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“% employed in services 1991”. Only one of the selected districts has a 

low percentage of uneducated people, while all of the others are character-

ised by medium values of this attribute. 

For further investigation, the user may click arbitrarily on graphical 

elements in any of the displays: bars in any of the histograms, district 

shapes in the map, or dots in the dot plot. This operation puts the corre-

sponding districts into the active state if the graphical element has not been 

previously selected, and deselects the corresponding districts if the graphi-

cal element has been previously selected (a bar of a histogram is consid-

ered as selected if it is completely rather than partly black). Hence, each 

click sets or cancels a query constraint. Several query constraints are 

treated in this query tool as being connected by the logical operation “OR” 

(non-exclusive). 

Query constraints may be set not only by clicking but also by outlining 

graphical elements in a display, for example by drawing a frame around 

the elements that need to be selected. Figure 4.100 demonstrates how a 

group of dots in a scatterplot may be selected in this way, and Fig. 4.101 

shows the impact of this selection (the previous selection, shown in Fig. 

4.99, was cancelled before the new one was made).  

Fig. 4.100. Selection by drawing a frame around dots on a scatterplot 

The frame has been drawn on the scatterplot so as to select districts with 

relatively low values of both “% employed in services 1991” and “% pop. 

no primary school education 1991”. The corresponding dots are located in 

the lower left corner of the display. After the query has been formulated in 

this way, we can see the spatial positions of the active districts and their 

characteristics in terms of the attributes “% employed in agriculture 1991” 

and “% employed in industry 1991”. Thus, we can observe that the active 

districts are located mostly in the north-west of the country, where they 

form a cluster with a rather interesting shape: it stretches along the coast in 

a north south direction and has a peculiar “tail” at its southern end ori-

ented inland, to the east. However, the city of Porto and a few neighbour-
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ing districts do not belong to this cluster. Most probably, these districts 

have relatively high percentages of people employed in services and hence 

do not satisfy the query constraints. 

Fig. 4.101. After the selection of a group of dots in the scatterplot, as shown in 

Fig. 4.100, the corresponding districts have become active. All the displays repre-

sent these districts by marking 

The histograms show us that the districts with low employment in ser-

vices and a low percentage of uneducated people are mostly characterised 

by quite low employment in agriculture and quite high employment in in-

dustry. However, there is an exception, indicated by the narrow black 

segment in the rightmost bar in the histogram for the attribute “% em-

ployed in agriculture 1991”. By applying the “What’s this?” query tool, we 

can find out that this segment corresponds to the district of Sernancelhe, 

which has 58.01% of working people employed in agriculture and 18.14% 
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of people employed in industry. The latter value fits into the second bar 

from left in the histogram for the attribute “% employed in industry 1991”, 

where we can also see a small black stripe. We have drawn an arrow on the 

map to point to the geographical location of this district. It can be seen that 

this district stands somewhat apart from the main cluster of districts satis-

fying the query constraints. If we look at the map in Fig. 4.98, where the 

districts with high employment in agriculture are marked, we can notice 

that the outline of Sernancelhe is also marked there. Apparently, the active, 

black dot in the lower left corner of the scatterplot in Fig. 4.98 corresponds 

to this district.  

The method of querying demonstrated here, by direct manipulation of 

graphical data displays with the results being presented by means of mark-

ing elements of these displays, is commonly referred to as “brushing” (this 

term seems to originate from Newton (1978)). Brushing is a very popular 

technique and can be found almost in all software systems that have been 

suggested for exploratory data analysis. Some of them implement more 

sophisticated forms of brushing than what we have just described. One of 

the enhancements that exists is multicolour brushing: the explorer can use 

distinct colours for marking different selections. This facilitates the com-

parison of results of several queries. However, it is unclear with this ap-

proach how to mark references that satisfy more than one query; therefore, 

multicolour brushing is usually applied to non-overlapping selections.  

Some researchers apply the term “brushing” to any dynamic query tools 

where query results are represented by marking rather than filtering, irre-

spective of whether query constraints are specified through direct manipu-

lation, or by means of sliders or checkboxes or in any other way (a rather 

comprehensive study on various variants of brushing can be found in Chen 

(2003)). In this sense, the tool developed by Robert Spence and Lisa 

Tweedy and widely known as Attribute Explorer (Spence and Tweedy 

1998, Spence 2001) is often described as “brushing histograms”. As in 

Dynamic Query, sliders are used in Attribute Explorer to set query con-

straints. As we have already mentioned, the slider bars in Attribute Ex-

plorer are associated with frequency histograms. Query results are shown 

in these histograms by means of marking. Different colours are used to 

denote the fulfilment of all query constraints, one constraint failure, two 

constraint failures, and so on. 

To demonstrate the idea, we have produced some screenshots using for 

this purpose an analogue of Attribute Explorer, which differs from the 

original tool in using dispersion graphs rather than histograms to represent 

attribute value distributions. The dispersion graph is a modification of the 

dot plot technique, where dots that fit in the same position are put one 

above the other. In Fig. 4.102, we see the specification of the same query 



4.6 Querying      369 

as in Fig. 4.96 using this dispersion-graph-based query tool. Specifically, 

the upper limit for the attribute “% 0 14 years” has been set to 18.02, and 

the upper limit for the attribute “% 25 64 years” has been set to 49.98. 

In response to the setting of constraints, the dots on all the dispersion 

graphs become coloured in various ways depending on how many con-

straints they satisfy. In the example shown in Fig. 4.102, black is used to 

denote complete satisfaction of the query, white means that none of the 

constraints is fulfilled, and grey marks the references that fail to satisfy one 

of the constraints (no matter which one). When there are more than two 

constraints, different shades of grey are used, with darker shades corre-

sponding to more constraints being satisfied. 

Fig. 4.102. A dynamic query tool where marking is used to represent information 

about constraint satisfaction. Here, two query constraints are specified: the value 

of “% 0 14 years” must be below 18.02 and the value of “% 25 64 years” must 

be below 49.98. The black colour marks the references (districts of Portugal) satis-

fying both constraints, grey indicates that one of the constraints is not fulfilled, 

and white means that none of the constraints is fulfilled 

Not only the graphs included in the user interface of the dynamic query 

tool, but also other data displays, may apply colour coding to represent 

constraint satisfaction. Thus, Fig. 4.103 demonstrates how the map, histo-

grams, and scatterplot that were used in our earlier examples represent the 

result of the query shown in Fig. 4.102. 

Multicolour marking can show not only how many query constraints are 

satisfied but also which constraints, in the case of multiple constraints, are 

satisfied. This is illustrated in Fig. 4.104C: for the two query constraints 

specified in Fig. 4.102, the colours have the following meanings: 
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Fig. 4.103. Various displays react to the query shown in Fig. 4.102 by marking 

graphical elements according to the degree of satisfaction of the query 

Green: Both constraints are fulfilled, i.e. the districts have no more than 

18.02% children and no more than 49.98% people aged from 25 to 64 

years. 

Yellow: Only the first constraint is fulfilled, i.e. the districts have no 

more than 18.02% children and more than 49.98% people aged from 25 

to 64 years. 

Blue: Only the second constraint is fulfilled, i.e. the districts have no 

more than 49.98% people aged from 25 to 64 years and more than 

18.02% children. 

White: None of the constraints is fulfilled, i.e. the districts have more 

than 18.02% children and more than 49.98% people aged from 25 to 64 

years. 
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As we can see, such a refined representation of query results requires 

many different colours to be used. In our example, with just two query 

constraints, four colours are involved. When more constraints are added, 

the necessary number of colours increases dramatically: three constraints 

require eight different colours, four constraints require 16 colours, and so 

on.22 The resulting displays become very difficult to understand. In fact, it 

is already difficult with just two constraints and four different colours, as 

in Fig. 4.104C: it is necessary to remember the meaning of each colour or 

repeatedly consult the colour legend. 

To reduce the cognitive load, some researchers (see, for example, 

Spence (2001)) suggest using distinct colours only for particular combina-

tions of query constraints selected interactively by the user. The references 

satisfying these constraint combinations are marked by dedicated colours, 

while the remaining references are shown uniformly. Thus, in our example 

in Fig. 4.104C, the user might wish that the districts belonging to the 

“white” and “blue” classes were shown in some neutral colour such as 

light grey. This would facilitate the user’s concentration on the “yellow” 

and “green” classes. When the number of query constraints increases, the 

advantages of such “selective marking” become more evident. 

4.6.2.3 Marking Versus Filtering 

The question arises: which technique is better, marking or filtering? As in 

almost all situations, there is no straightforward answer. Each technique 

has its advantages and its shortcomings. The main advantage of marking is 

its potential for a more refined representation of query results. A filtering 

tool always divides the reference set into two classes: one class corre-

sponds to the satisfaction of all query constraints and the other class unites 

all remaining cases, from the failure of just one query constraint to none of 

the constraints being satisfied. With marking, these remaining cases can be 

separated. However, the number of different classes that can be considered 

concurrently is limited by human cognitive capabilities. This necessitates 

the use of “selective marking”, which complicates the user interface of the 

query tool. 

An advantage of filtering is the possibility to simplify data displays by 

reducing their information content when it is necessary to concentrate on a 

subset of the data. This, however, entails a disadvantage: it is impossible to 

compare several subsets satisfying different query constraints or constraint 

combinations. 

                                                     
22  Generally, 2N colours are needed to represent the satisfaction of all different 

combinations of N query constraints. 
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The approach of marking may reveal further benefits when applied to 

big datasets which do not allow truly dynamic querying, i.e. immediate 

response to query modification. With filtering, the user would have to wait 

each time when a query condition was added or removed. An appropriate 

solution would a combination of the following approaches: 

Data aggregation and display of the aggregates, for example by means 

of histograms.  

Formulation of a query with multiple constraints connected by the con-

junction “AND”. 

Scanning the database and counting, for each aggregate, the number of 

references satisfying each combination of query conditions. This proc-

ess will obviously take some time, and the user will have to wait. 

Selective marking on the displays of aggregates using the counts so ob-

tained.

When the above counts are available, the displays can react immediately 

to selection by the user of particular combinations of query constraints by 

marking the corresponding reference subsets or, more precisely, showing 

the proportions of the references that satisfy these constraint combinations 

in each of the aggregates displayed. Thus, when histogram displays are 

used, these proportions are shown by means of bar segmentation as in Figs 

4.101, 4.103, and 4.104C. 

Hence, after the initial preparation stage, the analyst may use quite dy-

namic facilities to examine reference subsets with different properties and 

compare these subsets. As long as the analyst does not need to change the 

current set of constraints but only selects different combinations of those 

constraints, no delays are involved. The explorer needs only a convenient 

user interface for making such selections and choosing colours for mark-

ing.

We are not aware of any practical realisation of these ideas. The existing 

tools for querying large datasets represent query results mostly statically. 

An interesting example is a tool called InfoCrystal (Spoerri 1999). This 

allows the user to specify a query with several conditions. In the result, it 

shows the number of objects satisfying each possible combination of these 

conditions. The user can then consider any subset of objects in more detail. 

The most interesting feature of the tool is its particular method of graphical 

representation of the possible constraint combinations, which utilises the 

idea of the Venn diagram.23

                                                     
23  As a reminder, a Venn diagram is made up of two or more overlapping circles. 

It is often used in mathematics to show relationships between sets. 



4.6 Querying      373 

It is hard to say which of the techniques, filtering or marking, is easier 

or more pleasant to use; this depends strongly on the specifics of the reali-

sation. Nevertheless, some user studies have been conducted, such as a 

comparison of one of the recent implementations of the Dynamic Query 

tool, which employs filtering, and a histogram-brushing tool (similar to 

Attribute Explorer), which uses marking (Li and North 2003). The conclu-

sion from this comparison was that brushing histograms was superior for 

more complex discovery tasks such as revealing attribute correlations, 

comparing objects according to multiple criteria (attributes), and evaluat-

ing the position of a particular object among others in terms of its charac-

teristics. Dynamic Query was superior for the simpler tasks of finding ob-

jects with characteristics that lie within certain ranges. 

If we were asked which of the variants of the dynamic query tools is the 

best to have at the analyst’s disposal, our answer would be quite straight-

forward: all of them. This includes “What’s this?” questioning, filtering, 

simple and multicoloured marking (brushing) through direct manipulation 

of various data displays and through using specialised devices for setting 

query constraints, and selective marking to indicate the satisfaction of par-

ticular combinations of query constraints. Then, the analyst may choose 

which of these tools is the most suitable for a particular task or use several 

tools in combination, as, for example, a “What’s this?” interrogation was 

used together with Dynamic Query in Fig. 4.97.  

4.6.2.4 Relations as Query Results 

We are not aware of any existing query tools that specialise in determining 

relations between references or between characteristics, except for dis-

tances and other metric relations, which are expressed by means of num-

bers. It is quite logical to assume that an analyst can perform various com-

parisons effectively and make qualitative judgements concerning relations 

easily when an appropriate data representation is provided. For example, 

when values of a numeric attribute are represented by positions along a 

common coordinate axis, it is a trivial task to determine which of them are 

greater than others. Topological and directional relations in space are eas-

ily perceived from a map display. 

Sometimes, however, it may be difficult to determine relations through 

mere observation of a data display. In this case, display manipulation may 

be helpful. Thus, in an unclassified choropleth map, two values of an at-

tribute may be represented by rather close colour shades, and it may be 

hard to say which of the values is greater. Analogous problems may arise 

when attribute values are represented by symbol sizes: it may be difficult 

to judge which symbol is larger. In both cases, the problem may easily be 
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solved by applying the display manipulation technique of visual compari-

son, as was illustrated in Figs 4.34C and 4.35C. A single mouse click may 

transform the display in such a way that multiple comparisons are facili-

tated at the same time. For example, one district of Portugal may be com-

pared simultaneously with all other districts: the districts with greater val-

ues than the value in this district and the districts with smaller values will 

be marked by different colour hues. 

A need for a special tool arises when it is insufficient just to ascertain 

the existence of relations but it is necessary to determine their numeric 

characteristics. For example, one may need not only to estimate whether 

two attribute values are the same or different but also to find the precise 

difference between them. For two spatial objects, it may be insufficient to 

judge whether they are located close together or far from each other but, 

instead, it may be necessary to measure the exact distance between them. 

Finding differences or ratios between numeric values is usually done by 

means of appropriate data transformations. For determining spatial dis-

tances, specialised tools for measuring distances are typically provided in 

software systems and packages that deal with spatial data. 

When the outcome of measuring or computing a metric relation consists 

of just a single number, there is usually no need to find any special method 

to represent it: it may be shown as it is, for example in a special field of the 

display area or in a pop-up window. A particular visualisation method may 

become necessary when a tool computes multiple metric relations, for ex-

ample, pairwise distances between several cities. An appropriate represen-

tation for this kind of information could be a distance matrix. Such matri-

ces are often included in street atlases.  

What was said above refers to situations where comparison is performed 

in terms of values of a single attribute (numeric or spatial). However, it is 

often necessary to compare references with respect to multiple characteris-

tics. It is difficult to do such comparisons merely visually, and some com-

putational tools have been developed to support this task. The basic idea is 

to somehow aggregate the differences between the values of multiple at-

tributes corresponding to two distinct references into a single number. The 

resulting number is assumed to indicate the degree of similarity (or dis-

similarity) between these two references. This degree of (dis)similarity is 

often called the distance between the two references in the abstract multi-

dimensional space formed by all possible values of all attributes. Here, the 

term “distance” is a generalisation of the notion of a metric distance in 

geographical space. 

One of the possible distance measures is the Euclidean distance, which 

is computed, for two references X and Y and n different numeric attributes, 

according to the formula 
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where xi is the value of the ith attribute corresponding to the reference X

and yi is the value of the same attribute corresponding to the reference Y.

The attributes participating in the computation of the distance must be pre-

viously standardised so that their value ranges become comparable. Some 

methods of standardisation are considered in Sect. 4.5.1.1. 

A generalisation of the Euclidean distance formula is the family of dis-

tance measures called Minkowski metrics, after a German mathematician 

Hermann Minkowski (1864 1909). The generalised formula looks as fol-

lows:
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When r = 2, this is the typical Euclidean distance. The case when r = 1 is 

often called the “city block distance” or “Manhattan distance”. 

Besides these distance measures, other measures for characterising the 

degree of similarity between objects or observations in terms of multiple 

attributes have been suggested. While some of them have been specially 

invented for measuring dissimilarities with respect to qualitative character-

istics, most of these measures deal with numeric attributes. There are also 

measures specially developed for the comparison of time-series data. Of all 

of the distance measures, Minkowski metrics are the most often used, and 

tools for computing them can be found in a number of software systems 

for data analysis. 

Let us give an example of the use of such a tool for computing distances 

between references in terms of multiple attributes. In our Portuguese cen-

sus data, we would like to see how similar the age structure of the popula-

tion in various districts is to that in Porto. For this purpose, we start a dis-

tance computation tool, which allows us to choose the reference district, 

the set of attributes that will participate in the evaluation, and the metrics 

to be used. So, we choose Porto as the reference district and the attributes 

“% 0 14 years”, “% 15 24 years”, “% 25 64 years”, and “% 65 or more 

years” to characterise the age structure of the population. From the metrics 

available, we choose the Euclidean distance. In response, the tool produces 

a new attribute with values that are the Euclidean distances of all the dis-

tricts of Portugal to Porto with respect to the age structure characteristics. 

The computation results are presented in Fig. 4.105. 
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Fig. 4.105. Results of computing the Euclidean distances of all districts to Porto 

with respect to the age structure of the population of the district. The rows of the 

table (top left) are arranged in order of increasing distance. The characteristics of 

the districts most similar to Porto can be seen in the table fragment visible. On the 

map, the districts are divided into five classes according to their distances to Porto. 

White is used to indicate the districts most similar to Porto, and the darkest shade 

of grey corresponds to the most dissimilar districts. In the parallel-coordinates 

display (bottom left), profile lines represent the characteristics of the most similar 

and most dissimilar districts. The black line corresponds to Porto itself 

The computed distances range from 0, which corresponds to Porto itself, 

to 0.7512, which corresponds to the district of Idanha-a-Nova, which is 

located in the east of Portugal. The numbers as such are hardly interpret-

able; more meaningful and important are the relative positions between the 

minimum and the maximum distances. 

The names and characteristics of the districts most similar to Porto can 

be seen in the table display in the upper left corner of Fig. 4.105. The rows 

of the table are arranged in order of increasing distance from Porto. It can 

be noted that the percentages of the four age groups in these districts are, 

indeed, very close to those in Porto. 

On the map, the districts are classified according to their distances to 

Porto. White corresponds to the class of districts closest (i.e. most similar) 

to Porto; more precisely, with distances below 0.1. Two light shades of 
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grey are used to indicate the districts that are a little farther from Porto but 

still not too far. The darkest colour marks the districts most dissimilar to 

Porto.

In the parallel-coordinates display in the lower left corner of Fig. 4.105, 

only the districts in the classes with the lowest and highest distances to 

Porto are represented. The profile lines show the age structures in those 

districts and their distances to Porto. The white lines correspond to the dis-

tricts closest to Porto. It can be seen that these lines are quite similar to 

each other and to the black line, which represents Porto itself. The shapes 

of the lines show that this group of districts is characterised by medium 

proportions of children and young people, rather high (but not extremely 

high) percentages of people aged from 25 to 64 years, and rather low (but 

not extremely low) percentages of elderly people. 

The dark grey lines represent the districts most distant (i.e. most dis-

similar) from Porto. From the shapes of the lines, we can detect two differ-

ent age structure patterns in this group of districts: a “young population” 

(with a very high percentage of children and young people, a very low per-

centage of people aged from 25 to 64 years, and a quite low proportion of 

elderly people) versus an “old population” (with a very low proportion of 

children and young people and a very high proportion of elderly people). It 

is interesting that the proportions of the age group from 25 to 64 years are 

quite low in both subgroups. 

This observation prompts us to look for other districts that can be char-

acterised as “young” or “old”. For this purpose, we choose from the dis-

tricts most dissimilar to Porto two representative districts with “young” 

and “old” population structures. To represent the “young” districts, we 

choose the district of Mondim de Basto, situated in the northern part of 

Portugal (its location is indicated in Fig. 4.105). As a sample of the “old” 

districts, we choose the district of Alcoutim in the south-east of the country 

(it is labelled on the map in Fig. 4.105). We prefer Alcoutim to Idanha-a-

Nova, which is the most dissimilar to Porto, because the latter district 

seems to be extremely “old”, and there is a risk that very few districts will 

have a similar population structure. The profile of the district Idanha-a-

Nova in the parallel-coordinates display lies quite apart from the profiles 

of the other districts (this is the line crossing the two bottom axes at their 

right ends). The characteristics of the districts of Mondim de Basto, Al-

coutim, and Idanha-a-Nova can also be seen in the table fragment shown in 

Fig. 4.106. 

We employed the same distance-computing tool to compute the dis-

tances from all districts to Mondim de Basto and to Alcoutim with respect 

to the four attributes characterising the age structure of the population of 

the district. After that, we applied multicolour marking to compare three 
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groups of districts: districts similar to Porto, districts similar to Mondim de 

Basto, and districts similar to Alcoutim. To define the groups, we assumed 

a district X to be similar to the model district M (where M is one of the 

districts of Porto, Mondim de Basto, and Alcoutim) if the distance from X

to M lies in the first one-third of the range of distances from M to all other 

districts. Thus, the range of the distances to Porto is from 0 to 0.7512, the 

distances to Mondim de Basto range from 0 to 0.7212, and the distances to 

Alcoutim range from 0 to 0.8205. Accordingly, a district was classified as 

similar to Porto if its distance to Porto was up to 0.25, similar to Mondim 

de Basto if its distance to Mondim de Basto was up to 0.24, and similar to 

Alcoutim if its distance to Alcoutim was up to 0.27. If none of these condi-

tions was fulfilled, the district was treated as dissimilar to any of the three 

model districts.  

Fig. 4.106. In the bottom part (shown here) of the table sorted according to dis-

tances to Porto, the characteristics of the districts with age structures most dissimi-

lar to Porto are presented. The top fragment of the table is shown in Fig. 4.105 

The resulting groups of districts are presented in a map and parallel co-

ordinates display in Fig. 4.107C. The districts similar to Porto are coloured 

yellow, those similar to Mondim de Basto are red, and those similar to Al-

coutim are green. The districts that are not similar to any of the three 

model districts are shown in grey. 

From the parallel-coordinates display, it can be noted that the age struc-

tures in the groups of districts similar to Porto, Mondim de Basto, and Al-

coutim are quite consistent. Filtering has been applied to the display in or-

der to hide the lines for the districts that do not belong to any of the three 

groups. The characteristics of the remaining districts can be seen in an-

other screenshot of the same parallel-coordinates display, which is pre-

sented in Fig. 4.108 on the left. Here, the filter conditions have been speci-

fied so that only the lines for the districts not included in any of the three 

similarity groups remain visible. 
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Fig. 4.108. The parallel-coordinates display (left) represents the age structures in 

the districts that were not included in any of the three similarity groups shown in 

Fig. 4.107C. On the three axes at the bottom, the distances of these districts to 

Porto, Mondim de Basto, and Alcoutim are portrayed. Two subgroups of districts 

with the largest distances to Alcoutim have been detected; the corresponding lines 

are coloured in white and black. On the right, the geographical positions of these 

subgroups of districts are shown on a map 

When we examine this display, we note that while the distances from all 

the districts to Porto and to Mondim de Basto lie in the middle of the cor-

responding distance ranges (the second and third axes from the bottom), 

the distances from some of the districts to Alcoutim are very large. The 

lines for these districts cross the bottom axis, which represents the distance 

to Alcoutim, close to its right end. By means of a direct-manipulation 

query tool, we have marked these lines in the parallel-coordinates display 

and notice that all the corresponding districts have very low percentages of 

people aged 65 or more years. This can be seen from the fourth axis of the 

display. However, the districts split into two subgroups with respect to the 

other three age groups. In Fig. 4.108, these subgroups are marked in dif-

ferent ways. White marks the profiles of the districts with high proportions 

of the age groups 0 14 years and 15 24 years and medium proportions of 

people aged from 25 to 64 years. Black marking is used for the districts 

with very high proportions of the age group 25 64 years and medium pro-

portions of children and young people. The geographical positions of the 

two subgroups of districts are indicated on the map on the right in Fig. 
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4.108. The “white” group forms two compact clusters in the north-west of 

Portugal. The “black” group is located in the central part of the country, 

close (geographically) to the capital, Lisbon. 

It can be seen in the parallel-coordinates display that the “white” and the 

“black” group are distinctly separated according to their distances (in the 

sense of similarity of the age structure) to Mondim de Basto. These dis-

tances are represented on the axis second from bottom. The “white” dis-

tricts are more similar to Mondim de Basto than are the “black” ones. It is 

interesting that the “white” districts are also geographically close to Mon-

dim de Basto and to the districts classified as similar to this model district. 

On the map in Fig. 4.108, the districts of the Mondim de Basto group are 

shown in dark grey. 

The remaining districts are characterised by medium values of the four 

age structure attributes. In Fig. 4.109, their characteristics can be compared 

with the mean values of these attributes. The axes of the parallel-

coordinates display have been scaled and aligned so as to facilitate this 

comparison. 

Fig. 4.109. The axes of the parallel-coordinates display have been transformed 

here to facilitate comparison of the characteristics of the districts not included in 

any of the groups with the means of the age structure attributes 

In this example, we have applied a tool for computing the degree of dis-

similarity, or distance, between characteristics of different references in 

order to discover groups of references with similar characteristics. The ma-

jor benefit of using this tool is the opportunity to consider multiple attrib-

utes simultaneously, which is generally not an easy task. 

We have mentioned the existence of many methods for measuring the 

degree of dissimilarity but have used only one of them in our example, 

specifically, the Euclidean distance. We are not ready to give any general 
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recommendations concerning what distance measures to use in different 

cases. We personally take a pragmatic approach: we apply the measure 

proposed by the tool as its default option and then look at a suitable 

graphical display, such as parallel coordinates, to see whether the results of 

the computation agree with our intuitive conception of what can be consid-

ered as similar. In our example investigation, the Euclidean distance 

served quite well; otherwise, we would try out other measures. 

A more or less general recommendation would be not to apply measures 

specially developed for particular types of data (e.g. time series) to data of 

other types. On the other hand, if you have a tool capable of computing 

similarity measure that was specifically designed or optimised for the type 

of data that you need to analyse, it seems reasonable to try that measure 

first.

Let us now recall the context for considering this example of explora-

tion of a population structure. We have discussed what answers may be 

given to comparison (i.e. relation establishment) queries and how they can 

be presented to the analyst. We have mentioned that special, comparison-

oriented query tools are typically used when it is necessary to determine 

numeric characteristics of relations, for example distances as a numeric 

measure of a similarity/dissimilarity relation, whereas qualitative judge-

ments concerning the presence of this or that relation are usually made 

through observing and manipulating appropriate data displays.  

A need for visualisation and analysis of the output of a comparison tool 

arises when this output is not just a single number but consists of multiple 

numbers. In our example, the output was the set of distances from all dis-

tricts of Portugal to a selected district. Such an output may be treated as a 

new attribute and hence visualised and analysed like any other numeric 

attribute, alone or together with other attributes. We have demonstrated 

some approaches to analysing this kind of derived data. We have applied 

visualisation methods such as classified choropleth maps, table displays, 

and parallel-coordinates displays in combination with dynamic query tools 

that enable filtering and multicolour marking. 

4.6.3 Non-Elementary Queries 

At the beginning of Section 4.6, we said that, typically, query tools can 

provide answers only to elementary questions. However, some of our ex-

amples of the use of query tools seem to contradict this statement. In these 

examples, we explored spatial and statistical distributions of various char-

acteristics and tried to discover correlations between attributes. These are 

undoubtedly synoptic tasks. How can we explain this contradiction? 
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A close look at the examples presented above may lead one to notice 

that the query tools were never used alone but were used together with 

other tools, in particular, visual data displays. It was these displays that 

allowed us to derive synoptic information from the outcomes of the query 

tools. We could hardly do anything similar using just a list of references 

satisfying our query conditions, even though such a list (if not too long) 

could be quite sufficient for the task of choosing a hotel to stay in for a 

night.

The role of the query tools in our example analyses was that they were 

used for defining subsets of references with specific characteristics. Then, 

we looked at these subsets (with known characteristics) on various dis-

plays in order to grasp the distribution patterns of these characteristics. In 

so doing, we considered each subset as a unit rather than attend to its indi-

vidual members, hence the synoptic level of analysis. 

It is this special way of using query tools that makes them suitable not 

only for finding objects that satisfy somebody’s requirements (such as ho-

tels in the city centre with a price within a certain range) or finding par-

ticular information about particular objects (e.g. the job position and salary 

of Mr Smith) but also for sophisticated, synoptic-level tasks of exploratory 

data analysis. This method of use implies that an explorer defines, concur-

rently or sequentially, multiple subsets of references with different charac-

teristics, rather than a single subset, as in a traditional search. This ex-

plains, in particular, why the query tools used for exploratory analysis need 

to be dynamic in the sense of allowing easy, quick switching from one 

subset to another. 

There is another, slightly different way of using query tools for synoptic 

analysis tasks: under certain circumstances, such tools may allow one to 

search for specific behaviours. One such case arises when there is a spe-

cific representation of data consisting of multiple numeric time series, such 

as the dataset about crime in the states of the USA: for each state, we have 

a series of attribute values referring to 41 consecutive years. 

Every such time series characterises the behaviour of a numeric attribute 

over a time period. As we have seen earlier, such a behaviour can be repre-

sented graphically by a line on a time graph. This allows one to reformu-

late a task of searching for a particular behaviour as a task of finding lines 

with a particular shape. The former task is synoptic with respect to time, 

whereas the latter is elementary: it refers to individual objects represented 

by lines, for example the states of the USA, and has no regard for time.  

Hence, the representation of behaviours by geometrical objects (lines) 

allows one to replace a synoptic task with an equivalent elementary task. 

Since the task becomes elementary, a query tool may be designed to sup-

port it. The main idea of such a tool is quite straightforward: it should al-
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low the user to specify the shape to be searched for and then look for lines 

with this shape. The problem yet to be solved is how the user specifies the 

shape that he/she is interested in. 

One approach is to allow the user to draw the shape that needs to be 

found, as is described in Wattenberg (2001). It should be understood, how-

ever, that such a drawing is just an approximate expression of the user’s 

idea, and hence trying to find lines with exactly this shape may have no 

sense. The user, most probably, would like the tool to return him/her lines 

that have similar shapes to what has been specified. But what does the user 

mean by “similar”? Suppose, for example, that the user has drawn a line 

that initially goes up and then turns down. The line has numerous geomet-

ric characteristics: its length, its maximum height, its slope, the vertical 

positions of its beginning and end, the horizontal position of the maximum, 

the curvature at this position – are all of these characteristics important? Or 

does the user just want to find all lines that first go up and then go down, 

irrespective of how steeply and how high they rise and at what position 

they turn down? Depending on what is understood by “similarity”, the 

search may be based simply on computing distances (for example, Euclid-

ean distances) and comparing them with some threshold, or involve 

stretching and shrinking or other computationally intensive transforma-

tions of lines. Algorithms for the latter type of search are being developed 

in the research area of data mining (interested readers may be referred to 

the review by Keogh and Kasetty (2003)). 

Hence, the seemingly simple and intuitive way of specifying a model 

shape to be searched for turns out to be quite awkward. Either it is neces-

sary to figure out what the user really means (and hence complicate the 

user interface) or some simplifying assumptions have to be made. 

A different approach is taken in the TimeSearcher tool developed in Ben 

Shneiderman’s laboratory (Hochheiser and Shneiderman 2004). Instead of 

sketching a line, the user specifies the shape by drawing rectangles, called 

timeboxes, in various places over the area of a time graph. Each timebox 

plays the role of a filter: only lines passing through it remain active, and all 

other lines are hidden. The filtering occurs already during the process of 

box-drawing. Through timeboxes, the user conveys his/her ideas concern-

ing the distinctive features of the shape that he/she is looking for, and si-

multaneously sees which of the available lines have those features.  

Let us consider the example presented in Fig. 4.110. We have applied 

TimeSearcher to the USA crime dataset, specifically, to the attribute “Bur-

glary rate”. We have drawn four boxes (Fig. 4.110, top) such that each 

timebox, from left to right, is shifted to a higher vertical position with re-

spect to the previous one. In the result, we have created a mask to find 

lines with an increasing trend.
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Fig. 4.110. TimeSearcher has been used to find a 16-year increase pattern among 

the behaviours of the burglary rates in the states of the USA. The illustration was 

produced using the demo version of the “TimeSearcher” tool available at 

http://www.cs.umd.edu/hcil/timesearcher. This and further screenshots the Time-

Searcher are used with permission of the Human-Computer Interaction Lab, Uni-

versity of Maryland, 2005 
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Fig. 4.111. Top: the states where the burglary rates increased during the period 

from 1960 to 1975 as specified by the mask in Fig. 4.110. Moving the mask in the 

vertical direction has allowed us to ignore the actual values of the burglary rates 

and reveal lines with similar shapes in the interval 1960 1975 

The left side of the first box coincides with the beginning of the time pe-

riod, i.e. the year 1960, and the right side of the last box corresponds to the 

year 1975; hence, the total length of the mask corresponds to a 16-year 

time interval, and it will help us to separate behaviours with a period of 

growth 16 years long. The vertical dimensions of the timeboxes specify the 

permitted ranges of variation of the values. Thus, in our example, the value 

at the beginning must be within an interval from 0 to about 290, and at the 

end between 567 and 943. From the screenshot at the top of Fig. 4.110, it 

may be seen that there is only one line satisfying our query. 

If this were the only way of using timeboxes, we would not count 

TimeSearcher as an effective tool for detecting specific behaviours. We 

could achieve the same result with “ordinary” Dynamic Query by simply 

limiting the value intervals for the burglary rates in the years from 1960 to 

1975. However, TimeSearcher allows one to achieve somewhat more than 

this, owing to the high manipulability and transformability of timeboxes. 

The user can easily move the mask as a whole or any of its components 

over the plot area, stretch or shrink it, and even flip it.  

For example, in the middle of Fig. 4.110, we have moved the entire 

mask that we have built upwards. As may be seen from the picture, the 

rightmost timebox now specifies the value subrange from 827.54 to 
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1203.7, instead of the initial 567.54 to 943.4. In response, the tool shows 

us three lines passing through the repositioned timeboxes. These lines have 

the same generally increasing trend during the years from 1960 to 1975 as 

the line found before (see the upper image), but the corresponding attribute 

values are higher. We can continue moving the mask in the vertical direc-

tion and thereby reveal other lines with similar shapes. The whole group of 

lines found in this way can be seen in Fig. 4.111, top. The map in the 

lower part of Fig. 4.111 shows the states represented by these lines. Unfor-

tunately, TimeSearcher does not provide the possibility to store or mark 

findings for further analysis: all previous query results are lost after 

movement or modification of the mask. Therefore, we used another tool to 

see all of the results obtained with TimeSearcher together.  

Let us return to Fig. 4.110. The image at the bottom demonstrates that a 

mask can be moved not only in the vertical but also in the horizontal direc-

tion. In so doing, we have revealed two lines with a 16-year-long increase 

starting in the year 1962 rather than 1960. Hence, moving a mask to the 

right or to the left allows one to detect line fragments with particular shape 

features irrespective of their relative positions on the time axis. 

We can also stretch or shrink the mask in the vertical or horizontal di-

rection. Stretching the mask in the vertical direction allows greater vari-

ability of the slopes of the lines but also permits higher fluctuations. 

Shrinking in the vertical direction, conversely, tightens the constraints and 

consequently reduces the variation and fluctuation in the query results. 

Stretching in the horizontal direction makes the mask longer. In our case, 

we could search for increases over more than 16 years. Conversely, shrink-

ing may be used to search for shorter fragments that have the same general 

shape features. 

Not only the whole mask, but also the individual boxes that it com-

prises, can be transformed. Thus, if we wished to search for line fragments 

with steeper growth, we would need to move each box except for the first 

one to a higher vertical position in relation to its left neighbour.  

Flipping a mask inverts the shape specified by it. Thus, if the initial 

mask was meant to search for increasing trends, the transformed mask will 

be suitable for detecting decreasing trends. Figure 4.112 shows how the 

mask that we earlier created looks after flipping it and moving it to the 

right. The transformed mask has “captured” a line with a generally down-

ward orientation in the interval from 1975 to 1990. It may be noted, how-

ever, that the line fluctuates greatly, especially inside the second box from 

the left. Besides, its behaviour within the rightmost box can hardly be clas-

sified as a decrease. If such deviations from the model shape are strongly 

undesirable, we need to specify a more refined mask using smaller boxes 

as its components. 
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Fig. 4.112. After the mask in Fig. 4.110 has been inverted, it can be used to search 

for decreasing trends 

We would like to demonstrate one more opportunity provided by Time-

Searcher: one may select any individual line and automatically derive a 

search mask from it, as is shown in Fig. 4.113. This search mask can be 

used (after some modification if needed) to search for lines similar in 

shape to the selected line. 

In Fig. 4.113, we have chosen the line numbered 27, which corresponds 

to the state of Minnesota. The tool has built a mask consisting of as many 

boxes as there are different time moments, in our case 41. Each box has a 

certain default height that specifies the permissible range of variation of 

the values and is positioned vertically so that the value at the respective 

time moment lies in the middle of it. The top image in Fig. 4.113 shows 

the mask after a slight manual modification, which has made it a little 

smoother. The mask thus built has immediately “caught” another line, spe-

cifically, the line numbered 49, corresponding to Utah.  

After that, we have moved the mask up and down and succeeded in 

finding one more line with a similar shape. This is line 55, representing 

Wisconsin. In Fig. 4.114, top, all three lines are shown together. For better 

distinguishability, the lines are coloured differently: the line for Minnesota 

is white, the line for Utah is black, and the line for Wisconsin is grey. The 

lower image presents the same lines after smoothing (the smoothing was 

done using the technique of the centred moving average over 5-year inter-

vals). It may be seen that the shapes of all three lines are quite similar, es-

pecially after smoothing, which mitigates fluctuations. It is a pity that 

TimeSearcher itself does not provide the opportunity for line smoothing – 

it would make much sense to apply timeboxes to previously smoothed 

lines.
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Fig. 4.113. A mask has been automatically built on the basis of a selected line. 

Using the mask, we have found two other lines with shapes similar to that of the 

selected line 

Fig. 4.114. Lines with similar shapes revealed using the mask in Fig. 4.113. The 

upper image shows the original lines, while the lower image presents the same 

lines after smoothing 
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Despite some small criticism, we find TimeSearcher to be a quite pow-

erful dynamic query tool for dealing with temporal behaviours of numeric 

attributes. The opportunities for interactive specification and easy modifi-

cation of search masks allow the explorer to disregard irrelevant peculiari-

ties of individual behaviours and find groups of behaviours with distinctive 

features, such as growth followed by a fall. It is important that no assump-

tions are made concerning what features are relevant and what are irrele-

vant for the user. The user has full control: he/she performs only those 

kinds of mask transformations that conform to his/her idea of what is rele-

vant and what is irrelevant. 

There may also be other approaches to working with geometrical repre-

sentations of temporal behaviours. One of them is demonstrated in Fig. 

4.115. The idea is to show on a time graph only line segments that have a 

certain inclination, which is specified through setting lower and/or upper 

limits on the degree of absolute or relative change (i.e. difference or ratio) 

in comparison with the previous moment. In Fig. 4.115, the user has speci-

fied the lower limit on the relative change to be 1.01, which corresponds to 

an increase of 1% or more in the current year in comparison with the pre-

vious year. In response, the tool shows only the line fragments complying 

with this specification; all other line fragments have been hidden. The time 

graph represents the same burglary rate data as before. The lines have been 

previously smoothed using a 5-year centred moving average, as in the 

lower image in Fig. 4.114. 

Fig. 4.115. The query tool shows only line fragments with a specified inclination. 

In this example, the visible line segments correspond to an increase of no less than 

1% increase (a ratio of 1.01) in comparison with the previous time moment 

Now, it is possible to apply marking in order to find out which states 

had no less than 1% increase in the burglary rate in particular years. This 

can be done by clicking on the line segments, but there is also another op-

portunity: the user can click on the years, that is, on the positions corre-
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sponding to different years below the horizontal axis of the graph. In the 

result, the lines with an increase of no less than 1% in these years become 

marked, and so do the corresponding graphical elements in other displays, 

in particular, the outlines of the states on a map display. Selection of two 

or more years marks the lines that have the specified inclination in all of 

these years.  

Fig. 4.116. Looking for states with an increase of 1% or more in the burglary rate 

in consecutive years starting from 1986 



4.6 Querying      391 

Figure 4.116 demonstrates the effect of a series of successive selections. 

The vertical lines on the time graph indicate the selected years. The lines 

with the specified degree of increase in these years are marked in black. To 

the right of each time graph there is a map with the corresponding states 

marked by thick black boundaries. 

First, we selected the year 1986 and observed on the map which states 

had the specified increase in the burglary rate in that year. After that, we 

clicked on the next year. In the result, the marking of two states disap-

peared, and only the states with an increase in both 1986 and 1987 re-

mained marked. Then, we clicked on the year 1988, and so on. With each 

subsequent selection, the number of marked states decreased. At the end, 

when six years from 1986 to 1991 had been selected, only one state re-

mained marked. It may be seen from the graph at the bottom that the corre-

sponding line fragment (shown in black) ends in the year 1991, and hence 

the selection of the year 1992 would remove the last marking. 

Looking at the maps allows us to note some quite prominent spatial pat-

terns formed by the marked states. Thus, the topmost map demonstrates a 

cluster of marked states in the south and south-east of the country. These 

are the states where burglary rates increased in 1986 in relation to 1985 by 

at least 1%. There is also one marked state separated from the others; this 

is Washington, in the north-west. In the map second from top, which 

shows the states with an increase in the years 1986 and 1987, Washington 

is no longer marked, and the cluster in the south-west has lost the state of 

New Mexico, west of Texas. In the next map (an increase in 1986 1988),

the cluster has decreased further on its western side by losing Texas and 

Oklahoma, north of Texas. In the remaining three maps, the cluster ceases 

to exist. In the fourth map from top we see two small clusters, one with 

three and one with two marked neighbouring states, and in the next map 

only two spatially separated states are marked. 

For comparison, we have looked for which states had a persistent value 

decrease in the same period from 1986 to 1992. For this purpose, we 

changed the settings of the tool: we specified an upper limit of 0.99 for the 

ratio between the value in each year and that in the previous year. As a 

result, we see only the line segments corresponding to a decrease of at 

least 1%. From Fig. 4.117 it may be seen that the number of descending 

line fragments in the 1980s and 1990s greatly exceeds the number of as-

cending ones, which are visible in Figs 4.115 and 4.116. During the years 

1986 1992, there were six states with persistently decreasing burglary 

rates. Moreover, the decreasing trend in all of these states had already be-

gun in 1983, and in some of them even earlier. Furthermore, the decreasing 

trend in all of these states, except for Nevada continued until 1998 (the line 

“tails” corresponding to the years 1999 and 2000 have been cut off in the 
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result of the smoothing). The decrease in the burglary rate in California 

and Colorado started as early as in 1980. We have discovered all these 

facts through interaction with the tool, but, to save space, we have not il-

lustrated each of these findings by appropriate screenshots, in the hope that 

the idea is already sufficiently clear. 

Fig. 4.117. Finding the states where the value decreased by at least 1% in each of 

the years from 1986 to 1991 in relation to the previous year 

Using the example of TimeSearcher and the line segmentation tool, we 

have demonstrated the possibility of using query tools to search for spe-

cific behaviours in a case where each behaviour can be represented by a 

single geometrical figure. In this case, the task of behaviour (pattern) 

search appears as a search for geometrical figures with specific shapes. 

Both tools that we have considered deal with data consisting of a nu-

meric attribute and two referrers, one of which is temporal and the other of 

which is treated as a population referrer. We are not aware of any existing 

tools where similar ideas have been applied to other types of data. We can 

try to imagine what tools could be created. Thus, a behaviour over a popu-

lation-type reference set can be viewed as a certain distribution of value 

probabilities, which can be represented graphically by a histogram or a 

probability density function. Hence, to search for such behaviours, one can 

specify the geometrical properties of the histogram or density function cor-

responding to the behaviours of interest. Distinctive features of behaviours 

(distributions) in two-dimensional space could be represented by sketches, 

such as those in Figs 4.34C and 4.37. However, it may be hard to design an 

easy and convenient user interface for making such sketches. Besides, an 

automatic search for spatial patterns complying with a user-provided 

sketch may be rather computationally intensive. 
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4.6.4 Recap: Querying 

The process of exploratory data analysis consists of finding answers to 

numerous questions about the data. In Chap. 3, we have suggested a typol-

ogy of such questions, also called data analysis tasks. To obtain answers to 

the questions, an analyst uses tools. In most cases, the tools do not provide 

direct and full answers to the analyst’s questions but only supply some 

convenient devices that can help the analyst to find the answers through 

observation combined with imagination and reasoning. The analyst typi-

cally does not even put any explicit question to a tool but keeps the ques-

tions in his/her mind. 

However, for some types of questions, specific software tools for find-

ing answers may be created. Such tools are called query tools. A query tool 

allows an analyst to formulate his/her questions explicitly using some lan-

guage or using interactive graphical widgets. The tool responds by giving 

direct answers to these questions. The answers are presented so as to be 

readily perceived and require no additional mental effort. 

Most of the existing query tools are intended to give answers to elemen-

tary questions, i.e. questions that entail searching for individual objects, 

locations, time moments, etc. and the corresponding attribute values. This 

does not mean that a query result cannot consist of a number of objects, 

locations, or time moments; it means only that the query tool does not deal 

with this collection of references as an integral entity and does not treat the 

corresponding collection of attribute values as a behaviour. It is the analyst 

who can, in the process of further analysis, consider this group of refer-

ences as a united whole, try to grasp the corresponding behaviours of the 

attributes, and compare these with behaviours based on other reference 

subsets and on the entire set. We have demonstrated such analyses of 

query tool outcomes by examples. 

However, there are also query tools that search for certain types of be-

haviours. This becomes possible when a behaviour can be represented as a 

single graphical object. For example, a single line on a time graph may 

represent the behaviour of a numeric attribute over a time period. A line on 

a map may portray the trajectory of movement of some object such as a 

stork or a vehicle. There may be many such behaviours, and an analyst 

may need to search among them for behaviours with particular characteris-

tics. The graphical representation of the behaviours makes it possible to 

substitute this search task by an equivalent task of searching for graphical 

objects with particular features such as a particular shape, size, or colour. 

Query tools may be characterised and classified according to a number 

of criteria: 
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(A) What types of questions they answer: 

(1) direct lookup: Find attribute values corresponding to given refer-

ences;

(2) inverse lookup: Find references characterised by given attribute val-

ues;

(3) direct comparison: Measure the degree of similarity/difference be-

tween characteristics of given references; 

(4) relation-seeking: Find references with specified relations between 

their characteristics; 

(5) pattern search: Find behaviours with given characteristics, and the 

corresponding reference sets; 

(6) behaviour comparison: Measure the degree of similarity/difference 

between behaviours based on given reference sets. 

(B)  How the questions are asked: 

(1) query language, formal or visual; 

(2) direct manipulation of graphical displays: 

(i) mouse pointing (“What’s this?”); 

(ii) selection of display elements, e.g. for subsequent marking (brush-

ing);

(iii)drawing within the graph area, e.g. to specify a mask for filtering; 

(3) special graphical user interface controls such as sliders, switches, se-

lection lists, etc. 

(C) In what form the answers are given: 

(1) query results are presented independently of the previous content of 

the screen (e.g. in additional windows); 

(2) the previous content of the screen changes: 

(i) new items representing query results are added; 

(ii) items not satisfying query constraints are removed (filtered out); 

(3) the appearance of the display(s) present on the screen changes: 

(i) items satisfying the query are marked; 

(ii) items representing aggregates are segmented, and some segments 

are then marked. 

(D) What mode of query building is assumed: 

(1) the user builds a complete query, and each subsequent query is in-

dependent of the previous one(s); 

(2) the user starts with a rough or partial query and then iteratively re-

fines and modifies it, taking into account the feedback received from 

the tool. 
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Table 4.12. A summary of popular dynamic query tools and techniques 

Name References Profile Intended usage 

Brushing (Buja et al. 

1991) 

(Chen 2003) 

A1,2; 

B2ii; 

C3i,ii; 

D1,2; 

E1

Select a subset of references in one 

display and look for where they are 

in other displays. Select two or more 

subsets and compare their positions 

in different displays.  

Dynamic 

Query 

(Ahlberg et al. 

1992) 

(Norman et al. 

2003) 

A2;

B3; 

C2ii; 

D2; E1 

Specify a combination of intervals of 

attribute values and look for where 

the corresponding references are in 

different displays. 

Attribute  

Explorer 

(Spence and 

Tweedy 1998) 

(Spence 2001) 

A2;

B3; 

C3ii; 

D2; E1 

Specify intervals of attribute values 

and observe in segmented histo-

grams what values of other attributes 

co-occur with values from these in-

tervals. 

Time Wheel; 

Temporal 

brushing 

(Edsall and 

Peuquet 1997)  

(Harrower et 

al. 1999) 

(Monmonier 

1990) 

A1,2; 

B3; 

C2ii; 

D1; E1 

Choose a specific time of day, day of 

the week, or month of the year and 

study what happens at this time over 

many days, weeks, or years (e.g. on 

an animated map). Helps to disre-

gard cyclic fluctuations and consider 

longer-term trends. 

Temporal  

focusing 

(Harrower et 

al. 1999) 

(Monmonier 

1990) 

A1,2; 

B3; 

C2ii; 

D1; E1 

Choose a time interval for considera-

tion, e.g. on an animated map. 

TimeSearcher (Hochheiser 

and Shnei-

derman 2004) 

A5, 

B2iii, 

C2ii, 

D2, E1 

Find lines on a time graph with par-

ticular shape features specified by 

means of a mask, which may be 

moved over the display area. 

(E) How reactive and dynamic the tool is: 

(1) the tool immediately updates its results in response to any user’s op-

eration of setting or modifying a query constraint, possibly during 

the very process of performing the operation; 

(2) the search may be prolonged (because of a large data volume) but 

the results allow dynamic manipulation to explore the satisfaction of 

individual query constraints and various constraint combinations; 

(3) dynamic behaviour is not provided. 
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For exploratory data analysis, highly reactive and dynamic tools are es-

pecially valuable, together with the possibility to set and modify query 

constraints easily and quickly. These requirements arise from the main 

purposes of using query tools in exploratory analysis, specifically, study-

ing the distribution of characteristics (i.e. the behaviours of attributes) over 

a reference set and revealing relationships between attributes. These pur-

poses imply two primary modes of use of query tools: 

repeated definition of various reference subsets for subsequent consid-

eration and comparison of the corresponding attribute behaviours; 

repeated specification of various combinations of characteristics for 

subsequent investigation of their relatedness to other characteristics per-

taining to the same references. 

It is the repetitive way in which these tools are used that calls for ease of 

query construction and modification and for fast feedback from the query 

tool. We call tools satisfying these requirements “dynamic query tools”. 

Some widely known dynamic query tools and techniques have been de-

scribed or mentioned in this section. Table 4.12 gives a brief summary of 

these and some other tools. The column “Profile” characterises the tools in 

terms of the criteria enumerated above. 

Some query tools involve not only a search in a database but also quite 

intensive computation, for example when determining the degree of simi-

larity of references with respect to multiple attributes or finding lines with 

shapes similar to a given sketch. Together with some other computation-

based techniques for data analysis, such query tools are part of the field of 

data mining, which will be discussed briefly in the next section. 

4.7 Computational Tools 

In this section, we are going to overview analysis techniques that rely sig-

nificantly upon computation. These techniques are different from the data 

manipulation tools discussed earlier. While data manipulation is used for 

preparing data for subsequent analysis (whereas the analysis itself is done 

using other tools), the computational tools that we are going to discuss 

here are intended to produce something that can already be treated as a 

result of analysis since it provides a certain kind of generic information 

about the entire dataset or a substantial part of it. This may take a form of a 

formula, a logical expression, a classification, or just a single numeric 

measure. The application of other tools to such a result is, in principle, not 

required, although it is not excluded.  
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There are two major groups of computational tools intended for data 

analysis: statistical and data-mining tools. These groups of tools originate 

from two big research disciplines, which have made great advances and are 

continuing to develop. The tools (i.e. methods and algorithms) are very 

numerous and are described in thick books. Thus, even a book on elemen-

tary statistics (Burt and Barber 1996) has 640 pages! We therefore find it 

completely unfeasible to give a brief but still useful description of statisti-

cal and data-mining methods in this book. What is even more important, 

both groups of methods require deep understanding in order to be used 

properly. A very brief description cannot give the required level of under-

standing to inexperienced readers (and would be worthless for experienced 

readers), but it could encourage them to use these methods, which could 

lead to totally wrong conclusions. We would like to avoid this. 

What we can try to do is to present some general thoughts concerning 

the possible purposes of using statistical and data-mining methods in ex-

ploratory data analysis and the possible benefits from them. If this arouses 

interest in readers who have not used these methods before, those readers 

will find opportunities to learn more about them. Many educational mate-

rials are available not only in books but also on the Internet. Thus, we can 

recommend the Electronic Statistics Textbook (StatSoft 2004), which ex-

plains both statistical and data-mining methods. 

We can also present some examples from our practical experience. It 

happens that we have never used any sophisticated methods of statistical 

analysis but only some basic computations, such as calculation of the mean 

and standard deviation, of positional measures, or of the correlation coeffi-

cient for values of two attributes. Our experience with data-mining tools 

may be more interesting for readers, and we shall try to share it.  

We shall not try to explain what happens inside the computational tools 

that we are going to talk about. We shall treat them as “black boxes”, i.e. 

consider only their inputs and outputs. Accordingly, we shall talk about 

preparing data for such tools and about interpreting and using the out-

comes of these tools. In particular, we shall focus on the ways to represent 

the results of these tools so as to facilitate their interpretation and their use 

in further analysis with the application of other tools. 

4.7.1 A Few Words About Statistical Analysis 

Statistics is the cradle of exploratory data analysis, and many people still 

view EDA as a branch of statistics. Statistics pays much attention to 

graphical representation of data, and most of the widely used graphical 

data displays originate from statistics. In one of the electronic handbooks 
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on statistics available on the Internet (Dallal 1999), a section entitled 

“Look At the Data!” precedes the introduction of the basic statistical no-

tions and terminology. The author of that handbook explains how histo-

grams, scatterplots, dot plots, box plots, parallel-coordinates plots, and line 

plots (which are called time graphs in the present book) are constructed, 

and what to look for in these data displays before trying to apply any com-

putational methods. 

Computational statistics is traditionally divided into descriptive and in-

ferential statistics. The role of descriptive statistics is to summarise data, 

i.e. express the most important characteristics of the data in a few numbers. 

Thus, for a statistically educated person, the mean and the standard devia-

tion of a set of numeric values tells him/her nearly everything that he/she 

needs to know about these data, provided that the numbers are normally 

distributed. A normal distribution means that the histogram representing 

the set of numbers has a symmetric shape resembling a bell, as is shown in 

Fig. 4.118, for example. So, if a set of numbers is normally distributed, the 

mean can be treated as the most typical value, and the standard deviation 

shows the degree of variability, or spread, around this most typical value. 

Moreover, a statistician knows that ap-

proximately 68% of all of the data lie 

within a distance of one standard devia-

tion from the mean, that approximately 

95% of the data lie within two standard 

deviations of the mean, and approxi-

mately 99.7% of the data lie within three 

standard deviations of the mean. Hence, 

just two numbers provide quite a lot of 

information and may be used in many 

situations instead of the whole set, irre-

spective of its size. 

However, it may easily be guessed that data are not always distributed 

normally. When they are not, the use of the mean and the standard devia-

tion can be misleading. Sometimes, a skewed distribution can be turned 

into a normal distribution by applying some non-linear transformation to 

the data. A logarithmic transformation is most often used. Another way to 

summarise arbitrary data with a non-normal distribution is to use posi-

tional measures, i.e. percentiles, in particular, the median and the quartiles. 

We have discussed the use of positional measures in the Sect. 4.5.4. 

Generally, descriptive statistics summarises data by measures of loca-
tion and measures of variability. The arithmetic mean and the median are 

examples of measures of location. One more example is the mode, i.e. the 

most frequently occurring value. The standard deviation is a measure of 

Fig. 4.118. A histogram of a nor-

mally distributed set of numbers 
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variability. Some other possible measures of variability are the data range 

(the difference between the minimum and the maximum) and the coeffi-

cient of variation (the standard deviation expressed as a percentage of the 

mean). It is crucial to understand which statistical measure should be used 

as a summary index in each particular case. 

Measures of location and variability are used to summarise a single at-

tribute. There is also a need to describe the joint behaviour of two or more 

attributes. The numerical summary includes the mean and standard devia-

tion of each attribute separately, plus a measure of the degree of their relat-

edness. The most widely used measure is the correlation coefficient, a 

summary of the strength of the linear association between the attributes. If 

the attributes tend to go up and down together, the correlation coefficient 

will be positive. If the attributes tend to go up and down in opposition, 

with low values of one attribute associated with high values of the other, 

the correlation coefficient will be negative. “Tends to” means that the as-

sociation holds “on average”, not for any arbitrary pair of attribute values. 

It should be noted that statistical practitioners warn against using any 

numerical measures without looking at appropriate graphical displays of 

the data: “There are too many ways to be fooled by numerical summaries!” 

(Dallal 1999). In particular, the correlation coefficient can give misleading 

results if not used in combination with scatterplots. Thus, this coefficient is 

greatly affected by outliers. A scatterplot can expose outliers in data, 

which can be removed before computing the correlation coefficient. 

Another problem arises when attributes are related in a non-linear way. 

For example, data that are symmetrically placed on the curve Y = X2 will 

have a correlation coefficient of 0, although Y can be predicted perfectly 

from X. The reason why the correlation is zero is that high values of Y are 

associated with both high and low values of X.24

Unfortunately, there is no simple way to measure non-linear relations. If 

something like a monotonic curve (i.e. a curve that increases or decreases 

continuously) can be traced on a scatterplot, one can try to transform the 

values of one or both attributes to remove the curvilinearity and then recal-

culate the correlation. A typical transformation used in such cases is the 

logarithmic function. Another approach is to try to identify the specific 

function that best describes the curve perceived from the scatterplot. After 

a function has been found, an analyst can test its “goodness-of-fit” to the 

data.

Besides the generic statistical measures, there are measures specially de-

signed for certain types of data, in particular, spatial and temporal data. 

                                                     
24  Illustrations of other cases where the correlation coefficient fails can be found, 

for example, in Dallal (1999), in the section “Correlation Coefficients”. 
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Concerning spatial data, different measures are used for area, point, and 

directional data. For time-series data, the field of descriptive statistics in-

cludes methods for decomposing time series into several components: 

trend, cyclical, seasonal, and irregular or random component. 

The methods of inferential statistics allow an analyst to generalise the 

result of a study of a few individuals to some larger group, or, in statistical 

terms, to generalise from a sample to a population. The term “population” 

in statistics means a collection of all possible observations of a specified 

characteristic of interest. A sample is a subset of a population. 

There are two main approaches used in inferential statistics: estimation

and hypothesis testing. In estimation, the information obtained from the 

sample is used to guess the value of a certain parameter of the entire popu-

lation, where the term “parameter” means one of the statistical measures 

such as the mean, the standard deviation, the proportion (i.e. fraction of the 

observations that have a particular property in the entire set of observa-

tions), or the correlation. A parameter value is estimated together with a 

confidence interval, that is, a range of values that has a high probability of 

containing the actual parameter being estimated. For example, a 95% con-

fidence interval contains the actual parameter value with a 95% probabil-

ity. This percentage is called the level of confidence. There is a trade-off 

between the amount of confidence that one has in an interval and its 

length.

In hypothesis testing, one makes a reasonable assumption about the 

value of a population parameter and then uses the sample information in 

order to decide whether or not this hypothesis is supported by the data. 

Both estimation and hypothesis testing are based on statistical relationships 

between samples and populations; therefore, these two approaches are 

closely related. 

It is hard to say more about statistical analysis without introducing com-

plex definitions and formulae. Since we cannot give a systematic exposi-

tion of the whole of statistics in a section of this book, we prefer to stop at 

this point with our introductory notes. On the basis of the introduction that 

we have given, we shall now try to present our opinion concerning the use 

of computational statistical methods in exploratory data analysis. 

Let us start with descriptive statistics. One can hardly argue against the 

assertion that data summarisation by a single number or a few numbers has 

quite a limited value. First, it cannot replace the consideration of graphical 

representations of the data. Moreover, such consideration must always pre-

cede the computation of any summary measure and must justify the use of 

this measure. Second, descriptive statistics does not give any additional 

understanding of the data, as compared with graphical data displays. In 

fact, it is not intended to give understanding. Its role may be described as 
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giving an analyst some way to express what he/she sees on a graphical dis-

play without using graphics or referring to graphics. This may be neces-

sary, for example, for reporting purposes, including the reporting of find-

ings obtained with the use of graphics. 

For judging the role and value of inferential statistics, let us recall that 

the goal of exploratory data analysis is to gain understanding of the phe-

nomenon behind the data. According to a metaphorical expression from 

one of the Web courses on EDA (NIST/SEMATECH 2005), the data are 

used as a “window” to peer into the heart of the process that generated the 

data. Continuing with this metaphor, we could say that the analyst needs 

some methods to validate the impressions received by looking through the 

window. Can these impressions be trusted and used as a basis for conclu-

sions about the phenomenon? 

This task is analogous to that of inferential statistics: from a limited 

sample, generalise to the entire population, i.e. the collection of all possi-

ble observations. Therefore, the apparatus of inferential statistics can be 

used for the validation of findings obtained by means of exploratory tech-

niques, which are predominantly based on the viewing and manipulation of 

various data displays. The whole analysis process might be constructed in 

the following way: by means of exploratory analysis, an analyst generates 

some hypotheses about the phenomenon under study, and then applies in-

ferential statistical methods in order to test these hypotheses. 

Finally, we would also like to remind readers that a great many of the 

data transformation methods that have proved to be useful in exploratory 

data analysis are based on statistics. Examples considered in this book in-

clude various methods of data normalisation and standardisation, smooth-

ing, interpolation, and aggregation. Moreover, statistical techniques are 

also involved in many data-mining methods. 

4.7.2 A Few Words About Data Mining 

StatSoft (2004) defines data mining as “an analytic process designed to 

explore data (usually large amounts of data  typically business or market 

related) in search of consistent patterns and/or systematic relationships be-

tween variables, and then to validate the findings by applying the detected 

patterns to new subsets of data”. According to the same source, the ulti-

mate goal of data mining is prediction. 

It is interesting that the phrase “an analytic process designed to explore 

data … in search of consistent patterns and/or systematic relationships be-

tween variables” can also be used as a definition of exploratory data analy-

sis. Actually, the authors of StatSoft (2004) see EDA as a part of data min-
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ing. The process of data mining consists of three stages: (1) the initial ex-

ploration, (2) model-building or pattern identification with valida-

tion/verification, and (3) deployment, i.e. the application of the model to 

new data in order to generate predictions. Exploratory data analysis is used 

in the first stage, which also includes data preparation. EDA is done using 

a variety of techniques, both graphical (i.e. various methods of data visu-

alisation and display manipulation) and computational, such as cluster 

analysis, multidimensional scaling, and building classification trees.  

Another view is taken in Fayyad et al. (2002), where data mining is de-

fined as a “mechanised process of identifying or discovering useful struc-

ture in data”. This definition emphasises automation of the analysis proc-

ess as a distinctive feature of data mining, and hence separates data mining 

from graphics-based data exploration. Graphical displays, however, need 

to be used for visualisation of the results of data mining, so that a human 

explorer may perceive and understand them. 

In our opinion, neither of these two views is wrong, and we are not go-

ing to adhere firmly to either of them. We allow readers to regard our book 

either as a book on data mining with an emphasis on graphical data-mining 

techniques, or as a book on exploratory data analysis with a suggestion to 

combine classical (that is, graphics-based) exploratory techniques with 

computational techniques from other disciplines, in particular, data mining. 

In fact, our position with respect to computational and graphical tech-

niques differs from both of these views. While the first view tends to con-

sider these groups of techniques as alternatives and the second view does 

not explicitly acknowledge any relation between computational and 

graphical techniques, we think of computational methods as a complement 

to graphical methods. From our viewpoint, the purpose of applying com-

putational data-mining techniques is to gain additional knowledge about 

data which cannot be (easily) gained directly from the viewing and ma-

nipulation of graphics. In particular, it may be recommended that one 

should apply computational techniques to very large datasets, both in terms 

of the size of the reference set and in terms of the number of attributes. 

We do not mean, however, that computations produce ready-to-use 

knowledge, which needs only to be transferred somehow to the mind of a 

human analyst. We mean that a human analyst gains knowledge by means 

of exploration of the output of computational methods, similarly to the ex-

ploration of the original data. 

Moreover, some researchers admit that gaining knowledge is not the 

primary role of data mining, and many data-mining techniques are not at 

all meant for helping an analyst to understand phenomena characterised by 

data. If we look once more at the definition given by Fayyad et al. (2002), 

we notice that it talks about “useful structure in data” rather than “knowl-
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edge”. This emphasis on usefulness is a distinctive feature of data mining. 

The focus is on deriving models that can generate useful predictions (in 

particular, in business applications) rather than uncover the nature of the 

underlying phenomena. It should not be thought that the former is impos-

sible without the latter. Thus, data-mining techniques based on neural net-

works can give valid predictions, but these predictions are not based on 

any revealed interrelations between data components. A neural-network 

model has to be accepted as a “black box”: even if a human analyst were to 

try to find out how it makes its predictions, this would not add any under-

standing of the phenomenon. 

Not all data-mining methods, however, are based on neural networks, 

and not all models that they produce are incomprehensible to humans. As 

we already noted, many data-mining methods are based heavily on statis-

tics. Data mining also incorporates approaches and techniques from other 

disciplines, such as information theory, graph theory, and inductive logic. 

In many cases, the output of data mining when properly interpreted, can 

really contribute to the understanding of phenomena. While this knowl-

edge increment can be seen as a kind of “by-product” of data mining, 

whose primary concern is to make useful predictions, there are also re-

searchers who believe that the primary goals of data mining include the 

description of data, which entails finding patterns within the data that are 

understandable to humans (Rhodes 2002). 

In Chap. 3, which deals with data analysis tasks, we listed the tasks rec-

ognised in data mining. Since these tasks are defined in such a way that 

they give an idea of what types of results are produced by various data-

mining techniques, it is useful to list them once again here (Table 4.13). 

Practical needs are driving the development of special data-mining 

methods that are intended to be capable of analysing spatial data, taking 

into account positions, distances, neighbourhood, and other spatial rela-

tions. A basic problem is that computers can only process numbers and 

letters arranged in chains, tables, or logical expressions. Hence, in order to 

be automatically “mineable”, spatial information needs to be represented 

by properly arranged numbers or letters. The general approach taken in 

“spatial data-mining methods” is to transform spatial information into nu-

meric or symbolic form and then to apply standard processing techniques.  

Suppose, for example, that we have a dataset containing various census 

data collected for small enumeration districts, including data concerning 

the health of the population in these districts. The dataset also contains 

data about the motorways that cross the territory. On the basis of these 

data, distances from each district to the nearest motorway may be com-

puted (if the districts are large, and the road network is dense, it may be 

more reasonable to compute, for example, the average road density per 
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district). The new attribute derived in this way may be processed by a 

computational data analysis tool together with the original census attrib-

utes. A possible finding resulting from the application of the tool might be 

that districts situated close to motorways (or having a denser road network) 

tend to have higher percentages of ill people in their population. 

It should be borne in mind that spatial information is complex and mul-

tifaceted, whereas any transformation procedure can encode only a limited 

part of it, only a specific aspect, in a machine-processable form. Thus, in 

our simple example, the distances to motorways were suitably represented 

and therefore could be taken into account in the analysis. However, the 

computational tool could not tell us anything concerning the pattern of the 

spatial distribution of illnesses over the territory; in particular, whether 

districts with a high percentage of ill people form spatial clusters or are 

scattered over the territory. In order to answer this sort of question, compu-

tational tools need the information about the neighbourhood relations be-

tween the districts to be appropriately encoded, for example in the form of 

Table 4.13. Data-mining tasks and techniques (from Fayyad et al. (1996) and 

Miller and Han (2001)) 

Task Techniques 

Segmentation: Partitioning data into mean-

ingful groupings or classes. This includes 

two major subtasks: 

Clustering: Determining a finite set of 

implicit classes that describes the data. 

Classification: Finding rules to assign 

data items to pre-existing classes. 

Cluster analysis 

Bayesian classification 

Decision or classification trees 

Artificial neural networks 

Dependency analysis: Finding rules to 

predict the value of an attribute on the ba-

sis of the values of other attributes. 

Bayesian networks 

Association rules 

Deviation and outlier analysis: Searching 

for data items that exhibit unexpected de-

viations or differences from some norm. 

Clustering 

Outlier detection 

Trend detection: Fitting lines and curves to 

data in order to summarise the database. 

Regression 

Sequential pattern extraction 

Generalisation and characterisation:

Compact description of the database, e.g. 

as a relatively small set of logical state-

ments that condense the information in the 

database. 

Summary rules 

Attribute-oriented induction 
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a neighbourhood matrix. There are data-mining methods that have been 

specially devised to work with such matrices and can, for example, detect 

spatial clusters of districts with similar characteristics. 

However, neighbourhood matrices again represent only a limited part of 

the potentially relevant spatial information. A method that uses such a ma-

trix cannot, for example, tell us that the proportion of ill people tends to 

increase from north to south or discover any other fact related to spatial 

directions. To make this possible, one needs to find a suitable representa-

tion for directional information, for example by predicates such as 

SOUTH-OF (A, B), where A and B are the identifiers of two districts. 

Then, one can apply a method designed to deal with predicates, and this 

method will probably detect some regularities related to directions, but will 

not take account of district sizes, relief, closeness to particular types of 

industrial enterprise, and so on. 

The message we want to convey is that there is no computational tool 

for spatial analysis that can take account of all potentially relevant aspects 

of spatial information or detect automatically what aspects are the most 

important in any particular case, in order to properly encode and analyse 

those aspects. Human eyes, when supplied with a map representing spatial 

data, are definitely superior in this respect to any computational tool be-

cause they immediately see all aspects: neighbourhood, relative distances, 

sizes, directions, spatial grouping, heterogeneity of the geographical space, 

various topological relations, symmetry, and so on. Only a human analyst 

can judge what aspects may be important. Therefore, we do not think that 

it will ever be possible to devise a computational tool that, once it has been 

fed with spatial data, will tell us all we need to know about the data. 

A realistic scenario for the application of computational tools, in par-

ticular, data-mining tools, in the analysis of spatial data is that the analyst 

first explores the data visually using cartographic representation(s) of spa-

tial information, i.e. map displays. Maps are very important in the explora-

tion of spatial data because they are structurally similar (isomorphic) to 

two-dimensional space, in particular, geographical space. Therefore, a rea-

sonably faithful representation of locations and outlines is sufficient for a 

map to properly convey to human eyes all spatial properties and relations 

that exist in reality. On this basis, an explorer can uncover the significant 

aspects that require a close look and think about the directions and meth-

ods of further investigation, including computational methods. Only then 

can computational tools be applied effectively. However, to interpret and 

make use of their results, the explorer will again need visualisation, espe-

cially map displays. 

This scenario can be recommended for the analysis of not only spatial 

but also any other type of data. Of course, when the data are non-spatial, 
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other representations should be used instead of maps, but the general prin-

ciple remains the same: visualise first, and then, on this basis, choose and 

apply computational tools. We would like to emphasise this principle and, 

for this purpose, we have included a special subsection below. 

4.7.3 The General Paradigm for Using Computational Tools 

In our work, we have never used data-mining or statistical computations 

alone but have always used them in combination with visual and interac-

tive exploratory techniques, i.e. data visualisation, display and data ma-

nipulation, and querying. We have developed and applied a paradigm for 

using computational data analysis techniques. According to this paradigm, 

data analysis with the use of computational tools consists of the following 

steps:

1. Look at the data in order to understand what computational tools could 

be useful to apply. This requires data visualisation with display manipu-

lation.

2. Choose a computational method to apply. 

3. Bring the data to a form suitable for applying the method, e.g. transform 

absolute data into relative data. In this step, data manipulation tools 

need to be involved. 

4. Apply the method and store its outcomes for future use. 

5. Explore the outcomes of the method in order to properly interpret them; 

possibly, compare them with results produced by other methods or by 

the same method with different parameter settings. This requires using a 

range of exploratory techniques, at least visualisation and display ma-

nipulation tools. 

6. Return to one of the earlier steps; try the same method with different 

settings (step 4), a different data transformation (step 3), or a different 

method (step 2), possibly after taking a new look at the data (step 1). 

This analysis paradigm is represented schematically in Fig. 4.119. We 

are far from claiming that this paradigm is our own invention, and that no 

one has used it before us. On the contrary, we are sure that something like 

this is always used in the practice of data analysis, since this seems to be 

the most logical way of using computational methods in data analysis. 

Thus, no one would start any computation without previously looking at 

the data using appropriate graphical representations, although not every 

handbook on statistics or data mining emphasises the necessity for data 

visualisation prior to any computation. Similarly, no one would feel fully 

satisfied immediately after receiving the results of a computation without 
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trying to interpret and/or verify those results using appropriate visualisa-

tions and other techniques. Moreover, any serious analyst would not be 

happy with having the results of just a single run of a single method. 

He/she would at least try to investigate the sensitivity of the results to 

changes in the parameters of the method, and it is not unusual for several 

different methods to be applied to the same data in order to gain better un-

derstanding. Hence, our scheme should be regarded as a description of 

how data analysis is actually done, rather than a prescription of how it 

should be done. 

Data 

preview 

visualisation, 

display 

manipulation, 

etc. 

Method

selection

Data 

preparation

data 

manipulation

Method 

application

Result 

exploration 

and

interpretation 
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Fig. 4.119. The paradigm for applying computational tools in exploratory data 

analysis

Let us now consider a few examples of the use of computational data 

analysis tools. For these examples, we have utilised some of the techniques 

available in an open-source software system for data mining called Weka 

(see Witten and Frank (1999); the system is available on the Web at 

http://www.cs.waikato.ac.nz/ml/weka/). 

4.7.4 Example: Clustering 

Section 4.6 contains an example of data analysis where districts of Portu-

gal were grouped according to their similarity to certain selected districts 

in terms of the age structure of the population, which was represented by 

four attributes: “% 0 14 years”, “% 15 24 years”, “% 25 64 years”, and 

“% 65 or more years”. For this purpose, we used a query tool that com-

puted distances between characteristics corresponding to pairs of refer-

ences.

The data-mining methods for clustering are intended to do something 

similar: they group references by closeness of their characteristics. How-

ever, they do not require the previous selection of any “models” so that 

references could be grouped according to their closeness to those models. 

The idea is to find “natural” groupings, with small distances between 

members of a group and large distances between groups. 
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There are various approaches to doing this and, accordingly, there is a 

range of clustering methods. We shall not describe the differences between 

the existing methods, but would like to point out that 

different clustering methods applied to the same data may produce very 

different groupings (moreover, the results of the same method will differ 

depending on the parameters chosen); and 

none of the existing clustering methods can explain its results, i.e. why 

the references have been grouped in this or that way. 

Therefore, an analyst needs to visualise clustering results in such a way 

that he/she can see the distribution of the characteristics across the groups 

and understand in what way the members of each group are similar and 

how they differ from the members of the other groups. It may happen that 

the groups do not seem to have consistent characteristics. In this case, it is 

necessary to perform another trial, where the parameters of the same clus-

tering method are changed or another method is chosen. This can also be 

recommended even when the results are satisfactory: why not try to im-

prove them further? 

Let us try to apply clustering to our data characterising the age structure 

in the districts of Portugal. Figure 4.120C demonstrates the result of apply-

ing one of the clustering methods available in Weka, which is called “sim-

ple k-means”. We shall not describe how this method works or explain its 

name; our intention is only to demonstrate its use. From this perspective, it 

is important to mention that the method requires the user to specify the 

desired number of groups, or clusters, that must be produced. We have 

specified that the districts of Portugal must be divided into three groups. 

To represent the resulting division, we have used a map display where 

the districts are shown in three different colours, depending on the cluster 

in which they have been included. This map can be seen on the left in Fig. 

4.120C. It demonstrates a quite distinctive spatial clustering of districts 

belonging to the same group. However, what do the groups mean? The 

clustering tool does not provide any description of the clusters produced. 

We only know that the members of each group must have relatively close 

characteristics in terms of the age structure of the population. But what are 

these characteristics? This needs to be investigated. 

Since the clustering tool does not give any meaningful names to the 

clusters but only numbers, we shall refer to them as the “yellow cluster”, 

“blue cluster”, and “red cluster”. The colour assignment is arbitrary. 

In order to see the characteristics of the clusters in terms of the four age 

structure attributes, we have constructed a frequency histogram display for 

each attribute. We have then propagated the cluster colours from the map 

to the histograms as multicolour marking. In the result, the bars of the his-
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tograms have been divided into segments according to how many districts 

from each cluster fit into each bar. The segments are shown in the colours 

of the clusters. The segmented histograms, which can be seen on the right 

in Fig. 4.120C, can help us to interpret the meaning of each cluster. 

From the positions of the yellow segments in the histograms, it may be 

seen that the yellow cluster consists of districts with a high proportion of 

children (i.e. people aged from 0 to 14 years) and young people (aged from 

15 to 24 years), and low a proportion of working-age people (aged from 25 

to 64 years) and elderly people (i.e. aged 65 years and more). Hence, we 

can interpret the yellow cluster as a group of “young” districts. From the 

map, we see that this group is located in the north of the country. 

The red cluster seems to have characteristics quite opposite to the yel-

low one. From the histograms, it may be seen that this cluster is character-

ised by a low proportion of children and young people and a high propor-

tion of elderly people. The proportion of working-age people is mostly 

medium. Geographically, this cluster occupies rather a vast territory, 

mainly inland, in the east and south-east of Portugal. 

The blue cluster consists of districts with mostly a medium proportion 

of children and young people, a quite high proportion of working age peo-

ple and a relatively low proportion of elderly people. Geographically, this 

cluster stretches mainly along the western coast in the central part of the 

country. However, there are several blue spots in other parts of Portugal. 

Although we can regard this grouping of districts as quite good (since 

the characteristics of the groups are rather consistent and understandable), 

it is useful to check whether a division into more than three clusters can 

give an even clearer picture. So, we asked the clustering tool to divide the 

set of districts into four groups. The results are presented in Fig. 4.121C. 

We need to explain here that each run of the clustering tool is independ-

ent of other runs. Therefore, when a cluster obtained from the second run 

has the same number as a cluster obtained from the first run, this does not 

mean that these clusters are related to each other. In order to make the re-

sult of the second run more comparable to the results of the first run, we 

have assigned colours to the clusters obtained after the second run so as to 

make the resulting map look as similar as possible to the map shown in 

Fig. 4.120C. 

In Fig. 4.121C, we again have yellow, red, and blue clusters, plus an ad-

ditional green cluster. In both their geographical positions and their charac-

teristics in terms of the age structure of the population, the yellow and blue 

clusters in Fig. 4.121C are quite similar to the yellow and blue clusters in 

Fig. 4.120C. The green cluster seems to result from the former red cluster 

being split so that “extremely old” districts have been separated from 

“moderately old” ones. As can be seen from the histogram of the attribute 
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“% 65 or more years” in Fig. 4.121C, the green cluster contains the dis-

tricts with the highest proportion of elderly people (specifically, from 

23.8% to 35.2%, which is the maximum for Portugal). The red cluster con-

sists of districts with a medium proportion of elderly people. 

The same histogram shows us clearly that the blue, red, and green clus-

ters are differentiated mostly on the basis of the proportion of people aged 

65 or more years: low proportions in the blue cluster, medium in the red 

cluster, and high in the green cluster. The yellow cluster is characterised 

by low to medium proportions of elderly people and is close in this respect 

to the blue and, partly, the red cluster. The yellow cluster differs from the 

blue and red ones in terms of the proportions of the other age groups, espe-

cially children (high proportions in the yellow cluster and low or medium 

proportions in the other two). There is also a quite clear distinction be-

tween the yellow and blue clusters in terms of the proportion of people 

aged from 25 to 64 years: quite low proportions in the yellow cluster and 

mostly high proportions in the blue cluster. 

It can be seen that the blue cluster has become significantly smaller than 

before. More precisely, it has decreased from 108 to 76 districts; the re-

maining 32 districts have moved to the red cluster. The yellow cluster has 

lost five of the initial 60 districts; these five districts have also moved to 

the red cluster. However, the red cluster has increased by only five districts 

(from 107 to 112), since 32 districts have been grouped into the green clus-

ter. As a result, the yellow and blue clusters have become more coherent, 

in terms of both their geographical distribution and their age structure. The 

members of the green cluster also have rather consistent age structure 

characteristics (i.e. many elderly people and few children and young peo-

ple) but are more scattered geographically. The red cluster may be re-

garded as average in all respects. 

In general, we cannot say definitely that the division into four groups is 

much clearer than the division into three groups, in terms of the consis-

tency of characteristics of the districts within the groups. Both divisions 

are quite interpretable. The representation of the clusters on the map al-

lows us to get a clear idea about the distribution of the age structure of the 

population over the territory of Portugal. For us, this is the main result of 

applying the clustering tool, not the clusters by themselves. Therefore, it is 

not so important how many clusters the districts are finally divided into. 

In order to demonstrate that different clustering methods may produce 

different results, we have applied another clustering method, called “ex-

pectation maximisation”, or EM, to the same data. As with the previous 

method, we have let the method divide the districts first into three and then 

into four clusters. The results are shown in Figs 4.122C and 4.123C. 

Again, for a more convenient comparison with the previous groupings, we 
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have assigned colours to the clusters in such a way that the appearance of 

the map is maximally preserved, i.e. the yellow cluster is positioned on the 

north, the blue cluster in the west, and the green cluster in the east. 

It may be observed that the two methods do not group the districts in 

exactly the same manner, although the results are quite similar, especially 

in the case of four clusters. Interested readers can look at Fig. 4.124 to 

compare the summary statistics of the divisions into four clusters produced 

by the two methods. The greatest differences between the results of the 

two methods can be observed in the parts corresponding to the attribute “% 

25 64 years”. The groups produced by the EM method have much higher 

variability with respect to this attribute than the groups resulting from the 

method of simple k-means. However, the results of EM have notably lower 

variability with respect to the three other age structure attributes. 

Fig. 4.124. Summary statistics of the clusters resulting from the application of two 

clustering methods: simple k-means (left) and expectation maximisation (right). 

The box-and-whiskers plots and the table rows in each section correspond, from 

top to bottom, to the entire set of districts, to the green cluster, to the blue cluster, 

to the red cluster, and to the yellow cluster. The table columns show “N”, the 

number of districts in each set; “N?”, the number of districts with missing values; 

“min”, the minimum attribute value among the members of the set; “q1”, the 

lower quartile (25% percentile), “med” – the median, “q2” – the upper quartile 

(75% percentile); “max”, the maximum attribute value; “ave”, the average (mean); 

“stdd”, the standard deviation 

We would like to emphasise once again that the goal of our example in-

vestigation was not to produce “nice” groups but to understand the distri-

bution (or, in other words, behaviour) of the age structure over the territory 
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of Portugal. Such a goal is more typical of exploratory data analysis 

(whereas good grouping might be rather important in a map intended for 

presentation purposes). From this perspective, both methods produce quite 

good results. Nevertheless, it might be interesting to look at the character-

istics of the districts that the methods have included in distinct clusters. 

Visualisation, display manipulation, and querying tools can help us to 

do such an investigation. In Fig. 4.125C, we see a map (on the left) repre-

senting the outcomes from both clustering methods together. Green, blue, 

red, and yellow colours are used to show the districts included in the same 

clusters by both methods. However, there are four groups of districts in the 

result of EM that have “moved” to other clusters, in comparison with the 

results of simple k-means: 

11 districts have moved from the green to the red cluster; these are 

shown in brown. 

9 districts have moved from the blue to the yellow cluster; these are 

shown in cyan. 

42 districts have moved from the red to the blue cluster; these are shown 

in magenta. 

6 districts have moved from the yellow to the blue cluster; these are 

shown in pale green. 

On the right in Fig. 4.125C, the districts that have not changed their cluster 

membership are shown in grey, so that it is easier to focus on the differ-

ences between the two groupings. Between the maps, the absolute and 

relative sizes of the eight groups of districts are shown as numbers and by 

a bar chart. 

While the map allows us to see the geographical differences between the 

two groupings of districts, the differences in terms of the age structure can 

be explored using other displays, for example a parallel-coordinates plot 

with axes corresponding to the age structure attributes. Using a filtering 

tool, we can focus on the characteristics of any group of districts. It is in-

teresting to look at the age structures in the districts for which the out-

comes of the two methods differ and compare these with the characteristics 

of the subgroups for which the results of the methods overlap. 

Figure 4.126 represents the characteristics of the common parts of the 

two groupings of districts. In four screenshots from a parallel-coordinates 

display, we can see the age structure profiles of the districts belonging to 

the green (upper left), blue (upper right), red (lower left), and yellow 

(lower right) clusters according to both groupings. The images are labelled 

G, B, R, and Y, respectively. Analogously, Fig. 4.127 shows the profiles of 

the subgroups of districts for which the results of the two methods differ.  
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Fig. 4.126. Four screenshots from a parallel-coordinates display representing the 

age structure profiles in the four subgroups of districts that have been put in the 

same cluster by both clustering methods. Upper left, green cluster; upper right, 

blue cluster; lower left, red cluster; lower right, yellow cluster 

Fig. 4.127. Four screenshots from a parallel-coordinates display representing the 

age structures in the four subgroups of districts for which the results of the cluster-

ing methods differ. Upper left, green-to-red districts; upper right, blue-to-yellow; 

lower left, red-to-blue; lower right, yellow-to-blue 
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The upper left image represents the green-to-red group of districts (these 

districts are coloured brown in the map in Fig. 4.125C), the upper right 

image represents the blue-to-yellow (cyan) group, the lower left image 

represents the red-to-blue (magenta) group, and the lower right image 

represents the yellow-to-blue (pale green) group. These images are labelled 

GR, BY, RB, and YB, respectively. 

It may be seen that the age structure profiles in the coinciding subgroups 

(Fig. 4.126) are rather clear: 

green (G): Low proportions of children and young people, medium pro-

portion of working-age people, and high proportion of elderly people; 

blue (B): Medium proportions of children and young people, high pro-

portion of working-age people, and low proportion of elderly people; 

red (R): Medium proportions of all age groups, with a slight shift to 

lower values for the proportions of children and young people and rather 

high variability for the proportion of working-age people; 

yellow (Y): High proportions of children and young people and low pro-

portions of the two other age groups. 

The profiles visible in Fig. 4.127 seem to be “boundary cases”. Thus, 

the lines in the image labelled GR have a certain similarity to the profiles 

of the green subgroup but also to those of the red subgroup. The corre-

sponding districts have somewhat higher proportions of children and 

young people and lower proportions of elderly people than in the green 

subgroup, but the proportions of elderly are slightly higher than in the red 

subgroup. 

Analogously, we can see that the profiles in the BY section look as if 

they are intermediate between those of the blue and yellow subgroups. The 

profiles in the RB section could be attached to the red subgroup but have 

higher proportions of children and young people and therefore are also 

similar to the profiles of the blue subgroup. The lines in the image labelled 

YB appear to be similar to the profiles of the yellow and blue subgroups 

but in a different way than for the lines in the BY section: the YB lines 

indicate much higher proportions of elderly people than do the BY lines 

but notably lower proportions of the age group 25 64 years. 

Now we can feel reasonably comfortable with the results of the two 

clustering methods: we have understood quite well how and why they dif-

fer and, at the same time, have learned quite a bit about the age structure 

profiles in the districts of Portugal and their geographical distribution. We 

know, for example, that “young” districts form a cluster in the north, and 

that the area around Lisbon and the Atlantic coast north of it are character-

ised by a high proportion of working-age people and a low proportion of 
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elderly people. Similar structures occur in a group of districts situated on 

the southern coast. The inner parts of the country generally have an older 

population, and some districts in the centre and in the east may be charac-

terised as “extremely old”, with very low proportions of children and 

young people and also quite a low proportion of working age people. 

Let us now leave this analysis and move on to another example. 

4.7.5 Example: Classification 

This time, we shall try to use another data-mining method, which con-

structs classification trees. The task of classification is defined in data min-

ing as finding rules to assign data items to pre-existing classes. For exam-

ple, we can group the districts of Portugal in a certain way and let a classi-

fication method characterise these groups in terms of the available attrib-

utes. We have at our disposal a classification tool called J48, which is 

available in the data-mining toolkit Weka; so, let us look at how it can be 

used in analysing the Portuguese dataset. 

If we look at the values of the attribute “% pop. change from 1981 to 

1991”, which characterises the change in the population of each district in 

1991 in relation to 1981, we can notice that there are very many districts 

where the population decreased. In fact, the number of such districts ex-

ceeds the number of districts with a population increase: there are 168 dis-

tricts where the population decreased by more than 1% and only 88 dis-

tricts where the population increased by more than 1%. The population in 

the remaining 19 districts is quite stable: it changed by less than 1%. 

We would like to know whether the districts with a population decrease 

have consistent characteristics in terms of any of the available demo-

graphic attributes. So, we divided the districts into two classes, a class of 

districts with a decreased population and a class of districts with a stable or 

increased population. We sent these classes of districts to the J48 classifi-

cation tool, together with the values of all attributes characterising the dis-

tricts except for the attribute “% pop. change from 1981 to 1991”, which 

had been used for defining the classes. Then we ran the classification tool 

and received a result in the form of a classification tree, which can be visu-

alised as is shown in Fig. 4.128, for example. 

A classification tree is a hierarchy of nodes, in which the uppermost 

node (which is called the root node or simply the root) corresponds to the 

entire set of classified references (in our case, all districts of Portugal), and 

the other nodes correspond to subsets of that set, which may contain mem-

bers of one or more classes. The subsets result from successive divisions of 

the reference set. Each division is made on the basis of one attribute.  
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Fig. 4.128. A classification tree distinguishes the districts with a population de-

crease from those with a stable population or a population increase 

In the display in Fig. 4.128, each line describes one node of the classifi-

cation tree constructed by the J48 tool for the classes of districts that we 

have defined. The topmost line corresponds to the root node of the tree. 

This line shows that the whole set, which consists of 275 districts, includes 

168 districts classified as “decrease” and 107 districts classified as “stable 

or increase”. The bars on the left represent visually the relative sizes of the 

classes. The darker bar corresponds to the class “decrease” and the lighter 

bar to “stable or increase”.  

The two second-level nodes described in the second and third lines cor-

respond to the division of the whole set of districts into two subsets ac-

cording to the values of the attribute “% 65 or more years”. One of the 

subsets, which is represented in the second line, consists of the districts 

where the values of this attribute are less than or equal to 15.61. The for-

mula 99 = 18 + 81 in the description of this tree node means that the subset 

contains 99 districts in total, of which 18 belong to the “decrease” class 

and 81 to the “stable or increase” class. Again, the bars on the left repre-

sent the relative sizes of these two parts of the subset. 

The third line describes the subset of districts where the values of the at-

tribute “% 65 or more years” are more than 15.61. There are 176 such dis-

tricts, of which 150 belong to the “decrease” class and only 26 to the “sta-

ble or increase” class.  

Each of these two subsets is subdivided on the basis of other attributes. 

However, the node corresponding to the first subset is shown in Fig. 4.128 

in a “folded” form, so that the lower-level nodes descending from it are 

hidden. The node corresponding to the second subset has been opened, and 

we can see the further division of this subset. We see that it is subdivided 

into two smaller subsets according to the values of the attribute “% pop. 

with primary school education 1991”, with the break point at 27.68. The 

subset of districts where the values of this attribute are less than or equal to 

27.68 consists of 101 districts, of which 89 belong to the class “decrease” 

and 12 to the class “stable or increase”. This subset is not subdivided fur-



4.7 Computational Tools      417 

ther; the corresponding node is final. The other subset consists of 75 dis-

tricts where more than 27.68% people have primary school education. Of 

these 75 districts, 61 have a population decrease and 14 have a stable or 

increased population. This subset is subdivided further into two subsets 

according to the values of the attribute “% female among unemployed 

1991”, with the break point at 52.88, and so on. 

In such a tree, every node except the root has a corresponding descrip-

tion in terms of values of attributes. The description of a second-level node 

consists of a single expression concerning values of one attribute, for ex-

ample “% 65 or more years > 15.61”. The description of a third-level node 

consists of two expressions linked by the conjunction (logical operation) 

“and”, for example “% 65 or more years > 15.61 and % pop. with primary 

school education 1991 <= 27.68”. The description of a fourth-level node 

consists of three expressions linked by the conjunction “and”, and so on. 

The recursive divisions of the reference set are aimed ultimately at ob-

taining homogeneous subsets, that is, where each subset consists of mem-

bers of a single class. Therefore, when a subset resulting from a division 

contains a mixture of members of different classes, it needs to be further 

subdivided. For this purpose, an appropriate attribute and an appropriate 

split of its value set need to be found, so that the subsets are as close to 

homogeneity as possible. The challenge is to arrive at homogeneous sub-

sets by means of the least possible number of recursive divisions. 

If the homogeneity criterion is achieved, the descriptions of the final 

tree nodes may be used in two different ways. First, they can help an ana-

lyst to understand the differences between the classes. Thus, we hope to 

understand the differences between the districts with a decreased popula-

tion and those with a stable or increased population. Perhaps we might 

even be able to identify the possible reasons that make people move to 

other districts. Analogously, a market analyst may hope to understand the 

distinctive characteristics of successful stores as compared with unsuccess-

ful ones in order to identify the factors contributing to success or failure. 

Second, the descriptions can be treated as a set of rules that determine the 

class membership of any reference according to its characteristics. This 

allows one to use this set of rules to assign previously unclassified refer-

ences to appropriate classes. For example, if a market analyst has obtained 

a set of rules that discriminate between good and bad sites where existing 

retail stores are situated, he/she may use these rules in order to evaluate the 

suitability of other sites for opening new stores. Such practical utility is 

probably the primary aspiration of data mining. 

However, classification algorithms often fail to achieve a perfect differ-

entiation between the classes and therefore produce classification trees 

with “impure” final nodes. Thus, the fourth line in Fig. 4.128 represents a 
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final node that corresponds to a “mixed” subset of districts: 89 districts of 

the subset belong to the “decrease” class and the remaining 12 to the “sta-

ble or increase” class. Evidently, the classification tool could not find suit-

able attributes to separate effectively these two subgroups of districts on 

the basis of their characteristics. Analogously, the final node represented 

by the second line from bottom in Fig. 4.128 stands for a subset containing 

57 members of the “decrease” class and six members of the “stable or in-

crease” class. The tool could not find a way to separate the latter six dis-

tricts from the former 57. 

It is unlikely that a tree with such “impurities” could satisfy a market 

analyst who needed a good instrument for prediction. Our goals are differ-

ent and, despite the tree being far from perfect, we can gain some useful 

information from it. Thus, we see clearly that most districts with a de-

creased population (150 of 168, or 89%) have a medium to high proportion 

of elderly people, more exactly, over 15.61%, while the whole range of the 

proportion of elderly over Portugal is from 6.7% to 35.2%. Furthermore, a 

large fraction of these 150 districts (89, or 59%) is characterised by a not 

very high percentage of people who have had primary school education – 

not more than 27.68% (the values of the attribute range from 18.69% to 

35.14%). The remaining part, i.e. 61 districts, or 41% of 150, is character-

ised mostly by a rather high (more than 52.88%) percentage of females 

among the unemployed and quite a low proportion of males in the total 

population (up to 49.69%). 

Besides looking at the classification tree, we can also explore the results 

obtained by means of other analysis tools. In particular, we can use visu-

alisation and filtering tools in order to see which districts are contained in 

the subsets described in the tree nodes and where these districts are geo-

graphically located. Thus, in Fig. 4.129, there are five screenshots from a 

map display. The map at the upper left represents the whole set of districts, 

i.e. it corresponds to the root node of the tree. A dark shade is used for the 

districts with a population decrease, and a lighter shade of grey for the dis-

tricts with a stable or increased population. The next screenshot, i.e. the 

one in the centre, corresponds to the tree node represented in the third line 

of the display in Fig. 4.128. Accordingly, this screenshot shows the subset 

of districts with more than 15.61% of elderly people in their population. 

The districts that do not correspond to this description are not shaded (i.e. 

they are white). The next map (upper right) corresponds to the next node 

(i.e. the fourth line) and shows the subset of districts described as  

“% 65 or more years > 15.61 and % pop. with primary school education 

1991 <= 27.68”. 

The map at the bottom left represents the subset described in the third 

line from bottom in Fig. 4.128: “% 65 or more years > 15.61 and % pop. 
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with primary school education 1991 > 27.68 and % female among unem-

ployed 1991 > 52.88”. The map at the bottom right corresponds to the next 

node (the second line from bottom in Fig. 4.128). This map shows the sub-

set described by the conjunction of four expression: “% 65 or more years > 

15.61 and % pop. with primary school education 1991 > 27.68 and % fe-

male among unemployed 1991 > 52.88 and % male 1991 <= 49.69”. 

Fig. 4.129. The subsets of districts described by different tree nodes are shown 

here in a map display 
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It would be convenient for an analyst if he/she could easily obtain such 

maps, for example by clicking on the nodes of the tree. With a little more 

effort, it is also possible to obtain such views using a query tool.  

It is convenient to observe, by means of visualisation of the subset, the 

effect of adding a new condition to the description of a subset. Thus, as 

may be seen from the maps at the top centre and right in Fig. 4.129, adding 

the condition “% pop. with primary school education 1991 <= 27.68” to 

the description “% 65 or more years > 15.61” was not very effective: it has 

removed a great many districts with a decreased population (black) while 

preserving quite a large number of districts with a stable or increased 

population (grey). At the bottom of Fig. 4.129, we see that adding the con-

dition “% male 1991” to the description “% 65 or more years > 15.61 and
% pop. with primary school education 1991 > 27.68 and % female among 

unemployed 1991 > 52.88” did not result in any notable changes. 

In Fig. 4.130, the classification tree display has been transformed so that 

the branch corresponding to the subset of districts with up to 15.61% of 

elderly people in their population is now exposed for viewing. Only 18 

districts with a decreased population occur in this branch. To separate 

them from the districts with a stable or increased population, the classifica-

tion tool has used the attributes “% female among employed 1991”, “% 

15 24 years”, “% unemployed in total pop. 1991”, “% 25 64 years”, and 

“% 0 14 years”. Most of the final nodes describe very small subsets of 

districts, but one of them describes 61 districts, 59 of which have a stable 

or increased population. We can learn that these districts are characterised 

by quite high female employment (over 31.82%) and quite low unem-

ployment (up to 3.14% of unemployed in the total population). 

Generally, the classification tree suggests that a population decrease 

may be related to ageing of the population and unemployment (which 

might be expected) but that it also has something to do with the educa-

Fig. 4.130. Another branch of the classification tree is exposed for viewing 
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tional level and with the ratio between males and females in the entire 

population and among working and unemployed people. However, one 

should always pay attention to the sizes of the subsets represented by tree 

nodes. Thus, the fifth line from the top in Fig. 4.130 describes only eight 

of 168 districts with decreased population. These 8 districts are character-

ised by a low percentage of females among employed people (up to 

31.82%, which is less than the country median of 35.2%) and a quite high 

proportion of young people (more than 15.29%, whereas the range for the 

whole of Portugal is from 8.82% to 21.32% and the median is 14.94%). It 

is important to understand that this description applies only to these eight 

districts, and one should not conclude from it that all districts with a popu-

lation decrease have a low proportion of working women and a high pro-

portion of young people. 

What is reasonable to do is to investigate, by means of other exploratory 

tools, which of the attributes appearing in a classification tree are really 

related to the specified division of the reference set. For example, we have 

obtained the statistics of the values of the attributes involved in the classi-

fication tree for the entire set of districts of Portugal, the subset of districts 

with a population decrease, and the subset of districts with a stable or in-

creased population. We have noted that there is indeed some relatedness 

between a population decrease or increase and the age structure of the 

population of the district. The districts with a decreased population tend to 

have fewer children, young people, and working-age people and more eld-

erly people than do the districts with a stable or increased population. The 

difference in the trends in the proportion of elderly people is especially 

salient: the lower quartile (i.e. 25% percentile) of the subset of districts 

with a decreased population is higher than the upper quartile (i.e. 75% per-

centile) of the subset with a stable or increased population. The differences 

with respect to the percentage of females among the employed population 

are also quite notable: in the districts with a population decrease, the val-

ues of this attribute tend to be lower than in the districts with a stable or 

increased population. At the same time, the statistics have not demon-

strated any obvious relations between a population decrease and the pro-

portion of unemployed in the population, the percentage of females among 

the unemployed, the proportion of people with primary school education, 

or the proportion of males. 

In general, the major lesson that we have learned from our experiments 

on applying the classification tools of data mining in exploratory data 

analysis is that the outcome of such a method has value mainly as a hint to 

the explorer concerning what attributes might be related to a given division 

of the references into classes. To make use of such a hint, the explorer 
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needs to apply other exploratory tools to study whether these attributes are 

really related to the classes, and how they are related. 

It is also important to take account of the fact that a classification tree 

does not necessarily involve all potentially related attributes. Therefore, it 

makes sense to run a classification tool several times with different subsets 

of selected attributes. For example, Fig. 4.131 demonstrates a tree con-

structed by the J48 tool for the same classes of districts where only the at-

tributes characterising the educational level of the population of the dis-

tricts were allowed to be used. From the tree, we can immediately see that 

the educational level in the districts with a decreased population was quite 

low in 1981: in 147 of 168 districts, the percentage of people without pri-

mary school education was over 52.62%. 

Fig. 4.131. Another classification tree has been constructed using only the attrib-

utes characterising the educational level of the population of the districts in the 

years 1981 and 1991 

Again, we need to use some other tool(s) in order to see which of the at-

tributes appearing in the tree are really related to a population decrease. 

Thus, if we use the statistics-computing tool demonstrated in Fig. 4.124, 

we note a salient shift towards a higher proportion of people without pri-

mary school education in 1981 in the districts with a population decrease 

as compared with those with a stable population or a population increase. 

An analogous observation can be made concerning the values of the same 

attribute in the year 1991. In addition, the districts with a population de-

crease have a tendency towards a lower proportion of people with high 

school education in both 1981 and 1991 and lower proportions of people 

with preparatory school education in 1991. In general, we can conclude 

that there is a link between a population decrease and the educational level. 
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We are not able to include examples of the use of other data-mining 

tools. On the one hand, these tools are very numerous, but on the other 

hand, we have only a limited set of tools at our disposal, and not all of 

them are suitable for generating good and easily understandable examples 

of data exploration. We suggest that interested readers should refer to data-

mining handbooks, for example Klösgen and ytkow (2002). 

4.7.6 Example: Data Preparation 

Earlier we presented a general paradigm for applying computational tools 

in EDA (see Fig. 4.119). According to this paradigm, the analysis process 

involves five steps, which are typically performed iteratively. In our ex-

amples, however, we have not paid equal attention to all five steps but 

have mostly focused on the exploration of the outcomes of computational 

tools. We have also demonstrated returning from the result exploration 

stage to earlier steps: the application of the same computational method 

after changing its input settings (where we selected a different set of at-

tributes for the classification tree tool), and choosing another computation 

method (where we tried two different tools, in the clustering example). 

Although we did not describe it explicitly in relation to the examples, pre-

viewing of data by means of visualisation and display manipulation pre-

ceded all other steps in the analysis. In fact, we have used the Portuguese 

dataset so heavily in our examples throughout the book that there was no 

need to describe once again how we could visualise the age structure or the 

attributes characterising the education level. 

What was really missing in our examples was the preparation of the data 

for the application of computational tools. We applied the data-mining 

methods to the original data present in the Portuguese dataset; there was 

simply no need for any special preparation of the data. However, this is not 

always the case. Let us briefly describe an example where data have to be 

transformed before a data-mining tool can be applied. 

Earlier, we discussed the raster format for spatial data and the problems 

arising in the joint exploration of several attributes. We considered an ex-

ample concerning the distribution of different types of forest over Europe; 

see Figs 4.86C and 4.87C. In order to be able to visualise and explore the 

forest structure, i.e. the proportions of different forest types, we aggregated 

the raster data by means of the cells of a regular rectangular grid. 

The same transformation can be used to make it possible to apply data-

mining or other computational tools to data initially provided in a raster 

format. In fact, we are not aware of any data-mining tools that can work 

directly with raster data. Most data-mining tools require the data to be in 
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table format, where each row contains values of various attributes corre-

sponding to one reference.25 Hence, one needs to transform raster data to 

this format before trying to do data mining. The raster aggregation tool 

discussed earlier does exactly what is needed: after having aggregated the 

data by use of grid cells, it puts the resulting characteristics of the cells in a 

table, which can then be processed by data-mining tools. 

Let us see how we can analyse the European forest data with the use of 

data mining. The data are specified in five raster files, each containing 

proportions of some type of forest or land: coniferous forest, broadleaved 

forest, mixed forest, other wooded land, and non-forest land. We have ap-

plied the raster aggregation tool, which generated a rectangular grid with a 

specified resolution and then computed the mean proportions of each type 

of forest or other land in the cells of the grid. The means computed in this 

way have been put in a table, in which each row characterises a certain 

grid cell. Figure 4.132C demonstrates the result of applying a clustering 

tool to the transformed data. In accordance with our request, the tool has 

produced five clusters. We have constructed a map display where the re-

sult of the clustering is shown by displaying the grid cells in different col-

ours depending on the clusters in which they are included. The assignment 

of the colours to the clusters is arbitrary. The map can be seen in the upper 

left corner of Fig. 4.132C.  

In order to understand the meaning of the clusters that have been con-

structed, we have visualised the characteristics of the grid cells in a paral-

lel-coordinates display. We have applied query tools (multicolour marking 

and filtering) in order to consider each cluster individually and to compare 

different clusters. Figure 4.132C contains five screenshots of the parallel-

coordinates display; each screenshot represents the characteristics of the 

members of one cluster. We can see that each cluster consists of cells with 

quite consistent profiles: 

green: A high proportion of coniferous forest, a medium to quite high 

proportion of mixed forest, and a low proportion of broadleaved forest, 

other wooded land, and non-forest land; 

red: Presence of all forest types in low to medium proportions, and a 

medium proportion of non-forest land; 

blue: Prevalence of mixed or broadleaved forest, while coniferous forest 

is also present; low proportions of other wooded and non-forest land; 

                                                     
25  There is a group of data-mining methods specifically designed for analysing 

spatial data. Some of these methods work with other data representation for-

mats instead of or in addition to tables. Other methods require the spatial com-

ponents of the data (e.g. coordinates or boundaries) to be included in the tables. 
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yellow: Mainly non-forest land; 

pink: Prevalence of other wooded land and a medium proportion of non-

forest land. 

The map shows us the geographical distribution of these different pro-

files of forest/land structure. The northern territories are the most wooded, 

having much coniferous (green), mixed (green and blue), and broadleaved 

(blue) forest. The red and yellow spots in the north may correspond to 

mountains or subarctic regions. Central Europe is mainly poor in forest, 

with much non-forest land (yellow) and rather small proportions of the 

various forest types (red). The south of Europe is clearly distinguished by 

the prevalence of other wooded land. 

As we described earlier, the raster aggregation tool allows us to change 

the grid resolution. In response, it automatically recomputes the character-

istics of the new grid cells. We were interested to see whether changing the 

grid resolution would have any influence on the outcome of using the clus-

tering tool. So, we requested the aggregation tool to construct a finer grid 

than before and reapplied the clustering method to the new aggregated 

data. The result may be seen in Fig. 4.133C. 

Certainly, the map in Fig. 4.133C shows us the geographical distribution 

of the different forest structures in finer detail than the map in Fig. 4.132C. 

However, the overall spatial pattern that we have perceived from Fig. 

4.132C remains valid. From the parallel-coordinates displays in Fig. 

4.133C, we can see that the characteristic profiles of the clusters remain 

the same; only the line density has increased, since we have now about 

four times as many grid cells as there were in Fig. 4.132C. Thus, the blue 

line crossing the “other wooded” axis far apart from the other blue lines in 

the lower left image in Fig. 4.132C have been replaced in Fig. 4.133C by a 

bundle of four lines (in both figures, these lines correspond to the small 

blue spot that can be seen in the north-west of the Iberian peninsula). 

This consistency between the results of applying the clustering tool to 

grids with different resolutions increases our confidence in the validity of 

the analysis and, in particular, of the data transformation involved in it. 

4.7.7 Recap: Computational Tools 

The role of computational methods in data analysis is increasing as com-

puter technology provides, on the one hand, more and more computational 

power, and on the other hand, more and more capacity for storing various 

types of data, which, in turn, expands the amounts of collected data that 

need to be analysed. The contemporary computational methods are very 
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numerous; therefore, we could not comprehensively enumerate and de-

scribe them here. We have just slightly touched upon two major classes of 

computational tools relevant to exploratory data analysis, namely the tools 

of statistics and data mining. 

The main idea that we wanted to convey by our considerations was that, 

although computational techniques may be very useful in exploratory data 

analysis, it is never sufficient to use them alone. They should always be 

combined with other analytical tools, first of all visualisation. The reason 

lies in the primary goal of EDA, which is to an understand phenomena rep-

resented by data. Computations may contribute to understanding of the 

phenomena only if their results are appropriately interpreted. Any figures, 

formulae, classes, structures, etc. obtained from computations are not yet 

knowledge nuggets by themselves; but they can be transformed into 

knowledge nuggets by means of appropriate interpretation. Hence, the re-

sults of computations need to be “made perceptible to the mind or imagi-

nation”, i.e. visualised, according to the definition given in Random House 

(1996).

Let us recall those few things which we have said concerning computa-

tional analysis tools. Speaking about statistical techniques, we have men-

tioned two major categories, descriptive and inferential techniques. De-

scriptive statistical techniques are intended for the summarisation of data, 

i.e. expressing the most important features of a dataset in a few numbers. 

These techniques are recommended for use only in combination with sta-

tistical graphics; otherwise, they may be entirely misleading. Inferential 

techniques allow an analyst to check whether his/her observations made on 

the basis of data characterising some part of a phenomenon (a sample) can 

be taken as valid for the entire phenomenon. Hence, it is assumed that 

some observations have previously been made and some hypotheses gen-

erated. In other words, exploratory data analysis needs to be performed 

before inferential statistical tools are applied, but these tools themselves 

are not exploratory in their nature. 

Data-mining techniques are more exploratory, but are not always aimed 

at understanding phenomena. Data mining aims first of all at deriving use-

ful models, which do not necessarily explain something but allow one to 

predict the development of a phenomenon or the consequences of various 

decisions that can be potentially made. The results of data mining may still 

be intelligible and contribute to understanding phenomena, but, for this 

purpose, they need to be explored with the use of appropriate tools. 

We have considered examples of the application of two different types 

of data mining tools, clustering and classification. Clustering is helpful 

when it is necessary to explore a distribution of characteristics expressed 

by multiple attributes over a reference set. Clustering techniques group 
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references with close characteristics together and thereby allow the ex-

plorer to consider a relatively small number of distinct characteristic pro-

files instead of the original multitude of various combinations of attribute 

values. However, the results of clustering do not explicitly contain these 

profiles. Only appropriate visualisation in combination with other explora-

tory techniques allows the explorer to reveal the profiles and to judge the 

variability of characteristics within the clusters. 

Classification techniques are mostly oriented towards prediction. Their 

value for data exploration may be to suggest to an analyst what attributes 

may deserve attention as being potentially related to a specified classifica-

tion of references. These attributes can then be explored using other tools. 

It is worth mentioning that this manner of using computational techniques 

is sometimes used in software packages for information visualisation. The 

idea is to use the results of computations in order to optimise the data dis-

play for better perception and to reduce the cognitive load of the viewer. 

For example, a large collection of documents may be visualised in a com-

pact way on the basis of grouping of the documents by similarity (Wise et 

al. 1995, Dodge 2000), computation of the degree of relatedness between 

pairs of attributes may be used to obtain an optimal arrangement of the 

axes of a parallel-coordinates display or of scatterplots in a scatterplot ma-

trix (Friendly and Kwan 2003), and individual dots on scatterplots in a 

scatterplot matrix may be replaced by precomputed figures representing 

the shapes of dot clouds (Friendly 2002). 

We have described a general paradigm for applying computational tools 

in EDA; see Fig. 4.119. The main features are the iterative character of the 

analysis process and the prominent role of visualisation both before and 

after the computations. A single run of one computational tool is usually 

not sufficient. One should at least investigate the sensitivity of the results 

of the computation to changes in the tool parameters. Often, a data trans-

formation needs to be done before a computational tool can be applied. We 

have given an example where a transformation of the data format was nec-

essary. This is not the only possible case. Thus, it is often reasonable to 

transform absolute attribute values into relative values or, in time series 

data, original values into changes. 

In this section we have paid much attention to the combination of com-

putational and visual tools. In the examples given in the previous section, 

we did not use query tools alone but used them in combination with data 

displays. Moreover, several data displays were used simultaneously. In 

general, exploratory data analysis is done with the use of multiple tools 

and concurrent displays. Let us now look at the ways and mechanisms that 

exist for tool combination and display coordination. 
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4.8 Tool Combination and Coordination 

It does not seem necessary to us to go into wordy explanations concerning 

the importance of using various tools in data exploration. It is clear that 

each tool has different capabilities, and that there is no tool capable of do-

ing everything. It can also be noticed that the datasets that need to be ana-

lysed are often very large and consist of many components. One could 

hardly find a tool that could process all the data at once and, in the result, 

tell us everything we would like to know about it. It is usually necessary to 

process data piecewise and link the fragmentary information thus obtained 

into a coherent view. Therefore, an explorer needs not only to apply differ-

ent tools but also to apply one and the same tool several times, sequentially 

or concurrently, to different portions of the data. 

Since there is a necessity to use multiple tools and/or multiple “in-

stances” of the same tool, these tools or instances need to be properly 

combined and, in the case of concurrent usage, coordinated. The main rea-

son for combination and coordination is to facilitate the process of linking 

fragmentary observations into a general understanding. 

There are two basic modes of combining tools or tool instances in data 

analysis: 

1. Sequential mode: A tool is applied to the outcomes of another tool. 

2. Concurrent mode: Two or more tools or tool instances are applied inde-

pendently, and the analyst needs to compare and relate their results. The 

tools or tool instances may be applied to the same portion of the data or 

to (partially) different portions. 

Tool 1 Tool 2 
Data

(portion) Result 1 Result 2 1)

2) Tool 

(instance) 1 
Data

portion 1 
Result 1 

Tool 

(instance) 2 

Data

portion 2 Result 2 

Compare, 

relate 

Fig. 4.134. Two basic modes for tool combination in data analysis. (1) One tool is 

applied to an output of another tool. (2) Two different tools or instances of the 

same tool are applied independently to the same portion of the data or different 

portions. Their results need to be compared and linked into a common picture 
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Tool 1 
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Result 1 

Result 2 

Tool 

(instance) 1 
Data 
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Result 1 

Tool 

(instance) 2 
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Tool 1 
Data 

(portion) Result 1 

Result 2 

Data 
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Data

portion 2 

Tool 

(instance) 2

Tool 

(instance) 3
Result 3 

Compare, 
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Tool 3 Result 3 

Fig. 4.135. Various “hybrid” combinations may be derived from the two basic 

modes of tool combination presented in Fig. 4.134 

These two modes are shown schematically in Fig. 4.134. Various “hy-

brid” modes are also possible. Some variants are shown in Fig. 4.135. 

Let us now consider each of the two basic modes in more detail. 

4.8.1 Sequential Tool Combination 

With this mode of tool combination, one tool produces an output, which is 

used as an input for another tool. We have already considered various 

categories of tools used for exploratory data analysis. Let us recall what 

types of outputs they produce and what types of inputs they require for this 

purpose. Here is a list of the types of tool outputs extracted from our de-

scriptions of various tools: 

Visual display, which may be supplied with display manipulation tools. 

Although display manipulation tools are primarily intended to modify 

the visual encoding of the information represented in the display, some 

of them may also produce other types of results, such as ordering or 

classification. These other results may be considered as intermediate 

with respect to the main goal, i.e. modification of the visual encoding 

function. However, nothing prohibits an independent use of these results 
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as, in particular, inputs of other data analysis tools. Therefore, we in-

clude the intermediate, non-visual results of display manipulation tools 

in our list of the types of tool outputs. 

Ordering of references, an output of an ordering tool. 

Division of the reference set into subsets as a result of classification, 

querying, or clustering. 

Selection of a reference subset, which may be an output of focusing, 

zooming, or querying. 

New attributes, which may result from attribute transformation or inte-

gration. In fact, it is possible to treat the results of reference ordering, 

classification, or subset selection as new attributes also. The results of 

ordering may be represented as an attribute with values indicating the 

positions of the references in the arrangement. For example, a linear or-

dering could be reflected in an attribute with values that are integer 

numbers from 1 to the number of existing references. A division of the 

reference set into subsets (classes or clusters) may be represented as a 

qualitative attribute with as many values as there are subsets. For each 

reference, the corresponding value of this attribute indicates which sub-

set this reference belongs to. Analogously, a qualitative attribute may re-

flect the result of subset selection. In this case, the attribute will have 

two possible values, “selected” and “not selected”. 

New references with corresponding characteristics. New references may 

result from interpolation and aggregation tools. In the first case, the new 

references have the same nature as the original references and can sim-

ply be added to the reference set, thereby extending it. In the second 

case, the new references are aggregates, i.e. their nature and level are 

different from those of the original references. Therefore, these new ref-

erences should not be mixed with the original ones; they need to be con-

sidered separately. 

Relations between references, with respect to their characteristics, for 

example distances, neighbourhood, and similarity. Such relations may 

be obtained from querying tools. 

Relations between attributes (e.g. statistical correlations) and ordering 

of attributes on the basis of such relations. This type of result can be 

generated by computational tools, such as statistical or data-mining 

tools. Attribute ordering may also be an outcome of a display manipula-

tion tool, for example a tool for ordering the axes of a parallel-

coordinates display. 

Summaries of the dataset or its subsets, such as various descriptive sta-

tistics, classification trees, rules, or formulae. 
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The most common types of inputs for data analysis tools are references 

and the corresponding values of one or more attributes. Tool outputs in this 

form can easily be sent to other tools for further analysis. This applies to 

tools that produce new references and/or new attributes, including tools for 

ordering, division, and selection, whose results may be represented as new 

attributes. The results of these tools may be visualised, transformed, ag-

gregated, queried, mined, summarised, etc. just like the original data. 

Other types of results may be more restrictive concerning the possibili-

ties for their further processing. The most restrictive of these types is visu-

alisation: in the classes of tools that we have considered, there are no tools 

that could use visual displays as their inputs. We do not claim that this is 

impossible in principle, but we have never encountered such analytical 

techniques.

Relations between references can be visualised or processed by tools 

specifically designed for this purpose. Thus, binary relations could be 

visualised in a matrix-like display, where the rows and columns corre-

spond to individual references, and the relations are represented in the cells 

using some visual encoding, for example by colours. Some information 

visualisation tools treat similarity relations between references metaphori-

cally as distances in space and, on this basis, arrange the references into 

“information landscapes”, which are visualised in maps or three-

dimensional surface displays; see, for example, Wise at al. (1995) and 

Dodge (2000). Such an arrangement involves rather intensive computation. 

As we have already mentioned, there are also specific computational tools 

for spatial data analysis, which take account of spatial distances or 

neighbourhood relations between references. 

While relations between references require, in general, specialised tools 

for visualisation and/or further processing, it is often possible and reason-

able to visualise and analyse some of these relations, which may be repre-

sented by means of attributes of the usual kind. Thus, in one of our exam-

ples, we considered similarity relations between districts of Portugal in 

terms of the age structures of the population; see Figs 4.105 4.109. We did 

not try to analyse the whole set of similarity relations at once. Instead, we 

looked at a subset, specifically, the relations of similarity to the district of 

Porto. This subset was represented by means a new attribute with values 

expressing the degree of similarity to Porto. The new attribute could be 

visualised and analysed with the use of various types of displays (maps, 

tables, parallel-coordinates displays, etc.), as well as many other types of 

tools capable of dealing with references and attributes. In a similar way, 

we considered the relations of similarity to a few other districts. However, 

it would be difficult to analyse the whole set of similarity relations in this 

way. 
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Relations between attributes and ordering of attributes also have quite 

limited usability as inputs of data analysis tools. This type of information 

can be used, for example, for an effective arrangement, from the perspec-

tive of perception, of the axes in a parallel-coordinates display or of scat-

terplots in a scatterplot matrix; see, for example, (Friendly and Kwan 

2003). Another way of utilising this information is in the selection of at-

tribute combinations for analysis. A dataset may contain many attributes, 

such that an analyst cannot explore all possible combinations. A computa-

tional tool may establish relations between attributes and, on this basis, 

suggest the most informative combinations (“projections”) for further 

analysis. 

Dataset summaries resulting from computational tools typically have a 

rather specific form and therefore require dedicated tools for visualisation 

and analysis. An exception is the summary statistics such as mean, median, 

and mode, which can be used as characteristics of aggregates. In this case, 

groups of references are treated as new references, and the summary char-

acteristics of these groups as the corresponding attribute values. The new 

references and new attributes can be visualised and analysed like “normal” 

references and attributes. However, specialised tools for the analysis of 

aggregates also exist and are often more preferable. As we have mentioned 

in the Sect. 4.5.4, one should be very cautious when using any average 

characteristics, since they may be totally misleading. To avoid rash and 

unsound judgements and conclusions, one should examine how the attrib-

ute values are distributed within each aggregate. If the distribution is close 

to normal, the variation is low, and there are no outliers, the data analyst 

can use averages such as the mean, median, or mode as characteristics of 

the aggregates in the further analysis, i.e. apply other exploratory tools to 

these values. Hence, a three-component chain of analytical tools may be 

recommended in the case of aggregation: 

1. A tool to define reference subsets and explore the distribution of attrib-

ute values over each subset. 

2. A tool to produce appropriate general characteristics of aggregates. 

3. A tool applied to the aggregates and their general characteristics for fur-

ther analysis. 

Generally, sequential tool combination is not limited to only two tools, 

as is shown in the diagram in Fig. 4.134; the chain may consist of any 

number of tools. Thus, in one of the latest examples we have considered 

(see Figs 4.132C and 4.133C), a raster aggregation tool was applied to the 

original data in raster format, then the results of the aggregation were 

processed by a clustering tool, and then visualisation and display manipu-

lation tools were used to view and interpret the results of the clustering. 
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It is quite typical that a chain of tool applications ends with visualisa-

tion: in any case, the explorer needs to see the ultimate results of the analy-

sis. However, the explorer may also be interested in viewing intermediate 

results. In fact, it happens very often that the entire chain of data analysis 

is not planned in advance. A typical scenario is that the analyst applies a 

tool, looks at the results obtained, and then decides whether these results 

should be processed further by means of another analytical tool and, if so, 

what tool to use for this purpose. Hence, the scheme of sequential tool ap-

plication might be elaborated, as is shown in Fig. 4.136. 

Tool 1 Tool 2 
Data

(portion) Result 1 Result 2 

Visualisation 

tool 

Visualisation 

tool 

Visualisation 

tool 

…

Data 

display 

Result 1 

display 

Result 2 

display 

Fig. 4.136. The involvement of visualisation tools in sequential tool combination 

When we say that Tool 2 is applied to the results of Tool 1, we do not 

mean that these results are necessarily final and static, i.e. they never 

change after the application of Tool 2. Throughout this chapter, we have 

considered many examples of dynamic tools, i.e. tools whose results can 

change, in particular in response to various interactive operations per-

formed by the user. Let us recall some of these examples: 

Dynamic classification according to values of a numeric attribute. The 

user may change the class breaks and the number of classes (see Figs 

4.16 and 4.18). 

Dynamic integration of attributes. The user may change computational 

parameters such as the attribute weights in computing weighted sums of 

values of multiple attributes (see Figs 4.52 4.57).  

Dynamic aggregation (e.g. Figs 4.68 and 4.71), in particular, raster ag-

gregation (Figs 4.86C, 4.87C, 4.132C, and 4.133C). 

Dynamic querying (e.g. Figs 4.94 and 4.96). 

If Tool 1 is a dynamic tool and Tool 2 is applied to its results, it is nec-

essary that any changes in the results of Tool 1 are reflected in Tool 2 and 

further along the chain. This means that Tool 2 must be reapplied to the 

modified results of Tool 1, the tool following Tool 2 in the chain of tools 
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must be reapplied to the new results of Tool 2, and so on. In modern pack-

ages for exploratory data analysis, such a reapplication of tools is often 

done automatically: when a tool in a chain changes its results, it notifies all 

other tools using these results about the change that has occurred. In re-

sponse, these other tools automatically update their own results and, in 

turn, notify the tools following in the sequence, and so on. An example of 

such automatic reaction can be seen in Figs 4.86C and 4.87C: after the 

granularity of the grid used for the raster aggregation was changed, the 

visualisation tool reapplied the previously used visualisation technique to 

the new aggregates and their characteristics. 

However, it may also happen that a tool that is applied to results of an-

other tool is not capable of such an automatic reaction to changes in those 

results. This depends not only on the implementation of the tool itself but 

also on the availability of an appropriate software platform that enables 

tool linking. In cases where tool reapplication and updating of the results 

do not occur automatically, the explorer needs to take care about this. For 

example, the clustering tool that we applied to the aggregated raster data in 

one of our latest examples (see Figs 4.132C and 4.133C) does not auto-

matically react to changes in the data that it is applied to. Therefore, after 

we had changed the granularity of the aggregation, which resulted in a new 

set of aggregates with new characteristics, we had to send the new data to 

the clustering tool and rerun the tool. 

The absence of automatic tool reapplication and updating of results is 

not always a handicap to analysis. It may be easier to compare the results 

of several tool runs with different input settings when the results of the 

previous runs remain unchanged (until the user explicitly performs certain 

actions to change them) than when all the tools are very reactive, so that all 

results along a chain change immediately after even a slight interaction of 

the user with the first tool. 

4.8.2 Concurrent Tool Combination 

Concurrent tool combination means that two or more tools are independ-

ently applied to data, and the user may, in principle, view and analyse the 

results of each tool with no regard for the results of the other tools (this 

means that visualisation of the results of the tools is necessarily involved). 

However, there are special mechanisms intended to facilitate comparison 

of such results and mental integration of the information conveyed by each 

of them into a coherent general picture of the data and of the phenomenon 

characterised by the data. In order to clarify from the very beginning what 

we mean, we would like to refer to one of the examples given earlier. 



4.8 Tool Combination and Coordination      435 

Figure 4.94 demonstrates the operation of the Dynamic Query tool: 

when a user specifies a query condition, the tool divides the reference set 

of the dataset into two subsets: references with characteristics satisfying 

the query, or active references, and the remainder, or inactive references. 

In the example, the references are the districts of Portugal. The division 

occurs independently of the operation of any other tool.  

Simultaneously with Dynamic Query, several other tools operate and 

present their results on the screen: a map display of the districts of Portu-

gal, two histograms showing the results of different aggregations of the 

districts, and a scatterplot. These other tools are independent of each other, 

as well as of Dynamic Query; they were applied to the original data before 

Dynamic Query started its operation. However, these tools are “listening” 

to everything that happens to the data that they are applied to. Therefore, 

after the activation of Dynamic Query, they “notice” that the reference set 

has been divided into active and inactive references. In response, they re-

flect this event, each tool in its own manner (see the description of Fig. 

4.94 in the text).  

Any modification of the query conditions in the Dynamic Query tool 

changes the division of the reference set into active and inactive refer-

ences. The other tools “notice” the change and reflect it in their appear-

ance, as is shown, for example, in Fig. 4.96. 

The dynamic updating of a display according to the results of a query 

tool allows an analyst to relate the characteristics represented on this dis-

play to the characteristics involved in the query. Thus, the map in Fig. 4.94 

allows us to relate low or high values of the attribute “% 0 14 years” in 

the districts of Portugal to the geographical positions of the districts. Look-

ing at the histograms, we can see how low or high proportions of children 

are related to the percentages of people employed in agriculture and in in-

dustry. In the scatterplot, we can detect a negative correlation between the 

proportion of people employed in services and the proportion of unedu-

cated people in the districts with a low percentage of children. Such frag-

mentary observations contribute to building our overall understanding of 

the data. 

This is not the only example of concurrent tool combination and coordi-

nation that can be found in our book. In fact, almost all of the examples 

given in the Sect. 4.6 involve dynamic reaction of various visualisation 

tools to specification and modification of a query. We have discussed two 

basic modes of such a reaction, filtering and marking, or “brushing”. 

Marking may result, in particular, from direct manipulation of a data dis-

play on the screen, such as clicking on graphical element (see Figs 4.98 

and 4.99) or enclosing graphical elements in a frame (see Fig. 4.100). This 

mechanism allows the user to find easily corresponding parts of different 
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displays, i.e. parts showing characteristics of the same subset of references. 

On this basis, the characteristics shown in different displays may be linked 

mentally into a coherent view. 

In all of the examples of the use of dynamic query tools, there were sev-

eral displays, the outputs of various visualisation tools, and one query tool, 

which was able to modify the appearance of the displays. In all cases, the 

query tool influenced the other tools through the division of the reference 

set into two or more (in the case of multicolour marking) subsets. The 

visualisation tools do not need to be directly related to the query tool; they 

need only to be informed about the division of the reference set when such 

a division occurs or changes. 

If a tool is able to “notice” a reference set division and react to it, the di-

vision need not necessarily result from a query tool. Thus, any classifica-

tion tool also divides the set of references into subsets (classes), and hence 

the classification may be reflected in various displays just as in the case of 

multi-colour marking.26 The same applies to the clustering tools discussed 

in Sect. 4.7.4. In Figs 4.120C 4.123C, the results of the clustering are re-

flected simultaneously in a map and in four histograms, which change their 

appearance after the tool is reapplied and produces a different set of clus-

ters. In this example, two modes of tool combination work together. The 

map display is applied to the results of the clustering tool; hence, this is a 

sequential combination. The histogram displays exist independently of the 

results of the clustering; they represent results of data aggregation, using 

for this purpose the heights of the bars. However, they show additionally 

the division into the clusters by an appropriate segmentation of the bars 

and colouring of the segments. 

There is another approach to the combination and coordination of dif-

ferent tools operating concurrently. As we have discussed earlier, a tool 

may be applied to a subset of references rather than the entire set. For ex-

ample, a map may show only part of a territory, or a time graph may repre-

sent only a subinterval of a time period for which time series data are 

available. Zooming and focusing tools are often used for the selection of 

reference subsets to be represented. In Figs 4.25 4.30, we demonstrated 

                                                     
26  A problem may arise when a display intended to reflect a classification or mul-

ticolour marking already uses different colours for the representation of the 

primary information. For example, districts in a map may be coloured depend-

ing on the values of some attribute(s). This map will not be able to show a clas-

sification or marking of districts obtained from another tool without destroying 

the original representation. Therefore, some tools may have certain “selectiv-

ity” with respect to the results of other tools, for example, they may react only 

to filtering and single-colour marking. 
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the effect of applying such tools to various displays. In these examples, 

each tool affected a single display. However, it is also possible that several 

displays react simultaneously to one and the same zooming or focusing 

tool, and in this way are coordinated. This coordination mechanism is also 

based on a division of the reference set, but functions slightly differently 

from the propagation of marking or of classes of references. In the propa-

gation of marking or classes, the division is shown in a data display addi-
tionally to the information that was present in this display before the divi-

sion was made. In coordinated zooming or focusing, the division makes all 

the displays involved synchronously replace the information shown previ-

ously by other information (which may overlap partly with the previous 

information). 

An example of coordinated zooming of two map displays is shown in 

Fig. 4.137. On the left, there are two maps of the states of the USA repre-

senting the values of two attributes, the robbery rate and the motor vehicle 

theft rate, in the year 1970. A zooming frame is drawn over one of the 

maps with the purpose of enlarging the display of the corresponding part 

of the territory. On the right, the result of the coordinated zooming opera-

tion is demonstrated: both map displays now show only the selected part of 

the territory, specifically, the north-east of the country. 

Fig. 4.137. Coordinated zooming of two map displays of the same territory repre-

senting different attributes 
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Another example that we would like to discuss deals with the use of the 

temporal display dimension in data visualisation. When the temporal di-

mension is used to represent a temporal referrer of a dataset, the display at 

each moment shows the part of the whole reference set that correspond to a 

certain selected time moment or interval. When another moment or inter-

val is selected, the content of the display changes so as to represent the 

appropriate portion of the data. Such displays will be called animated dis-
plays in what follows. We shall also apply the modifier “animated” to par-

ticular display types and talk, for example, about animated maps and ani-

mated scatterplots. 

Several animated displays simultaneously present on the screen may be 

controlled through a common user interface device that allows the user to 

select the current time moment and, in particular, to start automated dis-

play animation, where the current moment is periodically incremented 

without waiting for a command from the user. The displays will react syn-

chronously to changes of the current time moment, either manual or auto-

matic.

An example of synchronous reaction of several animated displays to a 

change in the selection of the current time moment is demonstrated in Figs 

4.138 and 4.139. As before, this example refers to the dataset containing 

the yearly crime data for the states of the USA over the period 1960 2000.

Fig. 4.138. Selected animated displays represent crime data for a selected year, 

1970. The displays have a common time control device (shown in the upper left 

corner) for selecting the year 
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Fig. 4.139. A change of the current time moment in the time control device from 

1970 to 1980 makes all animated displays simultaneously update their information 

content 

In the upper left corner of each figure, one can see a collection of inter-

active widgets called “Time controls”, which are used for selection of the 

current time moment. Upon any change of the current time moment, the 

device issues a corresponding notification. Any display that deals with the 

temporal component of the dataset may “listen” to such notifications and 

modify its information content appropriately. In this example, there are 

three animated displays: a scatterplot representing the attributes “Larceny-

theft rate” and “Motor vehicle theft rate”, a map representing the attribute 

“Violent crime rate” by heights of bars proportional to the values of this 

attribute, and a dot plot, which is included in the focusing device supple-

menting the map. 

Figure 4.138 demonstrates the state of all the displays when the year 

1970 is chosen as the current time moment. All the displays show the val-

ues of their respective attributes referring to the year 1970. In Fig. 4.139, 

the current time moment has been changed from 1970 to 1980. As a result, 

all the displays have simultaneously updated their information content and 

now represent the attribute values referring to 1980.  

When we compare Fig. 4.139 with Fig. 4.138, the differences between 

the situations in 1970 and 1980 are quite noticeable. However, we should 

not forget that, in reality, the picture shown in Fig. 4.139 replaces the one 

from Fig. 4.138, and the latter cannot be seen any more. This greatly hin-
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ders the comparison of the two situations. A prerequisite for an effective 

comparison is that the things to be compared are visible simultaneously 

and, moreover, placed close to each other. As we have discussed earlier, an 

arrangement of multiple maps corresponding to different time moments is 

better suited for making comparisons than is an animated single-map dis-

play. However, the number of maps or other displays that can be simulta-

neously present on the screen is very limited. Thus, in the case of the US 

crime data, we would need 41 maps to represent the value distribution of 

any crime attribute in each year from 1960 to 2000. This is, in principle, 

possible but hardly useful. 

A possible compromise solution is to have a restricted, manageable 

number of simultaneously visible displays corresponding to some selected 

time moments but to be able to change the selection without much effort. 

One approach is that the time moment represented in each display is con-

trolled individually. Another approach is demonstrated in Fig. 4.140: two 

animated map displays are controlled through a common time selection 

interface, but one of the displays is “shifted” in time with respect to the 

current selection. 

Fig. 4.140. Two coordinated animated map displays are manipulated here through 

a common time control device. The upper maps show the situation in the selected 

year, and the lower maps the situation ten years after the selected year 

Here, three screenshots are shown, which correspond to different se-

lected years: 1970, 1975, and 1980 (from left to right). The upper map in 

each screenshot (i.e. the maps labelled A, C, and E, respectively) repre-

sents the distribution of the violent-crime rate over the states of the USA in 

the selected year using the unclassified-chroropleth-map technique.27 The 

                                                     
27  To save space, we have “cut off” the states of Alaska and Hawaii. For a more 

expressive display, we have used a focusing tool to remove outliers, specifi-
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lower map represents the value distribution of the same attribute using the 

same technique (and, moreover, the same visual encoding function). How-

ever, it shows the data referring to the moment ten years after the selected 

moment. This means that the maps labelled B, D, and F reflect the situa-

tions in the years 1980, 1985, and 1990, respectively. The upper and lower 

map displays are coordinated so that a change of the current time moment 

results in simultaneous automatic updating of both of them: the upper map 

represents the selected moment t, and the lower map the moment t + 10. 

Hence, the user can easily choose any two moments with a 10-year interval 

between them for doing pairwise comparisons. Additionally, the second 

display may be supplied with a convenient user interface device for chang-

ing the time shift with respect to the current selection. This facilitates 

choosing arbitrary pairs of moments. 

In Fig. 4.140, coordination with a time shift has been applied to homo-

geneous displays, specifically, two maps representing the same attribute in 

the same way. However, it may also be useful to coordinate animated dis-

plays of different attributes in this way; these displays may employ the 

same or different visualisation techniques. Another useful application is 

overlaid animated visualisations, in particular, maps with multiple ani-

mated layers representing different spatial phenomena. Such visualisations 

are described, for example, in Edsall and Peuquet (1997) and Blok et al. 

(1999). The user may run a map animation after specifying an offset for 

any animated map layer with respect to the current display time. The goal 

is to help an analyst to detect and investigate cause effect relationships 

between phenomena when effects caused by events or changes appear after 

a delay. 

Let us now try to summarise the variants of concurrent tool combination 

considered thus far. All of these variants involve the simultaneous reaction 

of several visualisation tools to one of two types of events: 

1. Selection of a reference subset (by means of dynamic querying or focus-

ing tools). 

2. Division of the entire reference set into two or more subsets (by means 

of dynamic classification or extended querying, which divides the refer-

ence set according to the satisfaction of different combinations of query 

conditions).

Although reference subset selection can be treated as a particular case of 

division into subsets, we prefer to consider it separately because this is 

more convenient for our further discussion. 

                                                                                                                         
cally, extremely high values in the District of Columbia. The removed outliers 

are signified by triangles placed at the corresponding locations in the maps. 
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The following types of reaction of tools to these types of events can be 

seen in the examples provided in the book: 

Subset selection: 

Highlighting (single-colour marking) of display items corresponding 

to the selected references. Highlighting is shown on top of the infor-

mation already present in the display. In aggregate visualisations, 

such as histograms, highlighting is applied to segments of the visual 

elements that represent aggregates. 

Filtering, i.e. removing or “muting” display items corresponding to 

the references that are not selected. 

Focusing, i.e. adjusting the display so as to represent the selected ref-

erence subset and the corresponding characteristics with the maxi-

mum possible expressiveness and distinctiveness at the cost of skip-

ping the rest. 

Division:

Multicolour marking of display elements. Like highlighting, multi-

colour marking is combined with the previous information content of 

the display and applied in aggregate visualisations to segments of the 

visual elements that represent aggregates. 

Display multiplication. A display is replaced or supplemented by sev-

eral displays, each representing one of the reference subsets and the 

corresponding characteristics. 

Rearrangement of display items so as to group them spatially accord-

ing to the division of the reference set. Colour marking is typically 

also used in addition to rearrangement. 

Although we have not mentioned the latter two types of reaction in this 

section yet, examples of them are present in the book. Examples of display 

multiplication can be seen in Figs 4.20, 4.132C, and 4.133C (multiplied 

parallel coordinates displays), 4.24 (multiplied maps), and 4.124 (multi-

plied box-and-whiskers plots). An example of rearrangement is the group-

ing of rows in a table display so that rows corresponding to references 

from the same subset are put together. This can be seen, although not very 

prominently, in Fig. 4.105. 

As may be noticed, different reactions to one and the same type of event 

are possible. In principle, any particular tool may respond in its own way, 

i.e. coordinated tools may not necessarily demonstrate the same behaviour 

with respect to the coordination mechanism used. However, it is desirable 

that coordinated tools react similarly to each event, since inconsistent be-
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haviours can hinder mental integration of the information from different 

displays and even cause frustration to the user. 

We admit that the two-level taxonomy that we have introduced does not 

encompass all imaginable methods of tool coordination but only the most 

generic and widely used ones. An example of a less generic coordination 

technique is the use of a common visual encoding function in different 

displays. Thus, the map displays in Fig. 4.137 represent the values of two 

different attributes using the same function for encoding the values by cir-

cle sizes. This means that circles with the same size represent the same 

numeric value irrespective of the display in which these circles occur. The 

display manipulation tools (such as the visual comparison tool; see Fig. 

4.35C) are in this case also common to both map displays. 

Another example of the same kind is the coordination of several histo-

gram displays of different attributes, which can have common scales on 

the vertical and/or the horizontal axis, as is demonstrated in Fig. 4.141.  

Fig. 4.141. Coordinated histogram displays. Section A: each display has its indi-

vidual horizontal and vertical scales. Section B: the displays have been brought to 

a common vertical scale so that bar sizes can be compared between different his-

tograms. Section C: both the vertical and the horizontal scales are now common to 

all the displays. The relative positions and sizes of the value ranges can now be 

compared 
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At the top (section A), we see four histograms for the various age struc-

ture attributes characterising the districts of Portugal: “% 0 14 years”, “% 

15 24 years”, “% 25 64 years”, and “% 65 or more years”, from left to 

right. Each histogram has its individual scales on the horizontal and verti-

cal axes. The horizontal scale is determined by the value range of the re-

spective attribute, and the vertical scale by the maximum number of dis-

tricts fitting into one interval. In each histogram, the horizontal scale is 

divided into 25 equal-length subintervals. 

In the centre (section B), the histograms have been transformed so as to 

have the same vertical scale. This scale is now determined by the maxi-

mum district count per subinterval in all four histograms. In this case, the 

maximum count is 33; it is reached in the histogram of the attribute “% 65 

or more years”. So, the upper edge of each histogram after the transforma-

tion corresponds to the number 33, and district counts are encoded by bar 

heights in the same way in all of the histograms. Hence, the user can now 

compare sizes of bars in different histograms. 

At the bottom (section C), one more transformation has been applied to 

the histograms. In the result, all histograms now have a common horizontal 

scale, which is determined by the difference between the maximum and 

the minimum of the values of all four attributes. The beginning of the hori-

zontal scale in each histogram corresponds to the value 6.70 (the minimum 

of the attribute “% 65 or more years”), and the end to the value 55.99 (the 

maximum of the attribute “% 25 64 years”). As in section B, the histo-

grams also have a common vertical scale. Since the histograms now repre-

sent a longer value range (from 6.70 to 55.99) while the number of the 

subintervals remains the same (specifically, 25), the length of each subin-

terval has increased, and so has the maximum district count per subinter-

val, which now equals 95. So, the upper end of the vertical axis in each 

histogram corresponds to 95. As in section B, the user can compare bar 

sizes between different histograms. Additionally, the histograms show the 

relative positions and sizes of the value ranges of the attributes. 

A limitation of tool combination through common visual encoding is 

that this method is applicable only to homogeneous displays (e.g. several 

maps or several histograms) of comparable attributes. One cannot link a 

map to a histogram in this way, nor displays of numeric and qualitative 

attributes, or displays of two numeric attributes, one of which has values 

ranging from 0 to 1 and the other has values from 100 to 1000. 

We have thus far considered two groups of tool combination methods: 

1. Combination on the basis of a common reference set (through division 

or subset selection). 

2. Combination on the basis of a common visual encoding. 
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It is also possible to imagine two more categories: 

3. Combination on the basis of a common set of attributes. 

4. Combination on the basis of a common transformation of attribute val-

ues.

The third type of combination and coordination might be applied when 

several tools handle the same attributes in different ways. For example, 

one and the same subset of attributes may be represented simultaneously in 

a parallel coordinates display, a table display (as columns), a scatterplot 

matrix, and a map (e.g. by bar charts or pie charts). In that case, the user 

could select one of the attributes, and, in response, the corresponding parts 

on all the displays could be highlighted. Or the user could order the attrib-

utes, for instance by rearranging the axes on the parallel-coordinates dis-

play, and all the displays could react to this by an appropriate rearrange-

ment of their corresponding parts: columns in the table, scatterplots in the 

matrix, and bars in the bar charts on the map. However, we have not en-

countered such a coordination mechanism in practice and are not quite 

convinced of its utility. 

An example of the fourth type of combination is a simultaneous consis-

tent transformation of several temporally referenced attributes, such as 

change computation or smoothing. Changes in transformation parameters 

apply to all attributes in this case. This is demonstrated in Fig. 4.142, 

which shows, from top to bottom, three different states of two map dis-

plays representing two different attributes. The upper pair of maps (A and 

D) portrays the original attribute values, while the other two pairs reflect 

the results of consistent transformations applied to both attributes in paral-

lel. More specifically, the map images on the left in Fig. 4.142 (i.e. A, B, 

and C) correspond to the attributes “Population total”, and the images on 

the right (i.e. D, E, and F) to the attribute “Violent crime total”. The values 

of both attributes refer to the states of the USA and the years from 1960 to 

2000. The upper two maps portray the values of the attributes in the year 

2000. The same representation technique, bar symbols, has been used in 

both displays for more convenience in comparison (different techniques 

could also be used in this case). However, each display uses its own visual 

encoding function: on the map labelled A, the highest bar height corre-

sponds to the value 33 871 648 (this is the maximum value of the attribute 

“Population total” in 2000), while on the map labelled D, the maximum 

bar height represents the value 210 531 (the maximum of the attribute 

“Violent crime total” in 2000). A similarity between the spatial distribu-

tions of the two attributes may be noticed from a comparison of the maps 

A and D. 
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Fig. 4.142. The same transformation has been applied simultaneously to two dif-

ferent attributes represented on two map displays. The maps on the left represent 

the attribute “Population total”, and the maps on the right the attribute “Violent 

crime total”. At the top, the original values of both attributes in the year 2000 are 

portrayed. The two maps in the middle represent the results of computing changes, 

specifically, the ratios between the values for the year 2000 and the year 1960. 

The maps at the bottom result from changing one of the transformation parame-

ters; specifically, the year 1960 has been replaced by the year 1980 

The maps in the middle, labelled B and E, reflect the result of trans-

forming both attributes by computing ratios between the values for 2000 

and 1960. Of course, each attribute has been transformed independently of 

the other, but the same transformation function, with the same parameters, 

has been used for this. We can see that the ratio for the total population 

ranges from 0.749 to 7.005 (map B), while the ratio for violent crimes 

ranges from 2.04 to 26.75 (map E). The spatial distributions of the trans-

formed values are also quite different. 

The maps C and F at the bottom of Fig. 4.142 result from a simultane-

ous change of one of the transformation parameters: the year 1960, chosen 

before as the base for the computation of changes, has been replaced by the 

year 1980. This parameter change has been applied to both attributes, 

which has resulted in a concurrent change in the map displays. Now, the 

transformed values of the attribute “Population total” portrayed in map C 

range from 0.91 to 2.497, and the transformed values of the attribute “Vio-
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lent crime total” (map F) range from 0.583 to 1.932. While the change that 

occurs in the map of population numbers after the parameter is changed is 

not so striking (maps B and C are quite similar, and the difference in the 

ranges of the transformed values is moderate), the same cannot be said 

concerning the number of crimes. The range of the transformed values has 

changed dramatically. In quite many states, the total number of violent 

crimes decreases in comparison with 1980 (a decrease is signified by trans-

formed values below 1), and the maximum increase is by a factor of 1.9 

(see map F). With respect to the year 1960, the number of crimes in each 

state increased by a factor of 2 at a minimum, and the maximum increase 

was by a factor more than 26 (see map E). The spatial patterns are also 

quite different in maps E and F. 

A certain commonality exists between tool combination on the basis of 

a common visual encoding and on the basis of a common transformation 

of attribute values. In both cases, attribute values are involved in some 

way. In the first case, they are transformed into visual items (positions 

within a display, colours, sizes, etc.), and in the second case they are trans-

formed into non-visual things such as numbers or characters, which, how-

ever, need to be visualised in order to make the results of the transforma-

tion perceivable by a human. Coordinated transformation of attribute val-

ues is less restrictive in its applicability in comparison with common visual 

encoding. It can, in principle, be applied to heterogeneous displays such as 

maps involving different visualisation techniques, or a map and a time 

graph. Still, a big diversity of concurrent tools that apply a common data 

transformation is not necessarily useful even when achievable. 

We do not claim that we have enumerated all possible ways of linking 

tools. One can, in principle, imagine various linking mechanisms that can-

not be subsumed under our typology, and one can even find software im-

plementations of these mechanisms. For example, changing weights in a 

tool for attribute integration (see Figs 4.52 and 4.56) may change the 

lengths of axes in a parallel-coordinates display, as is described in An-

drienko and Andrienko (2001). However, these methods of linking are 

specific to certain types of tools and not easily generalisable. As for more 

generic methods, we believe that our inventory is sufficiently complete. 

4.8.3 Recap: Tool Combination 

There are two basic modes of combining tools: 

Outputs of one tool are used as inputs for another tool. The second tool 

starts its operation and produces results only after receiving the output 

of the first tool. This mode of tool combination is called sequential.
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Two or more tools operate independently, and their results can be seen 

simultaneously on the screen. However, there are certain mechanisms 

that facilitate the work of the analyst in comparing these results and 

linking the pieces of information provided by the separate tools into a 

coherent mental image of the features of the data under analysis, and of 

the underlying phenomena. This mode of combined use of several tools 

is called concurrent.

In sequential tool combination, it depends on the type of results a tool 

produces, what tools can be used after it to process these results further. As 

a rule, any non-visual tool requires visualisation of its results. We have 

considered various types of results, some of which require very specific 

tools for visualisation or further processing. However, some types of re-

sults, such as new attributes or new references, have the same form and 

meaning as the original attributes and references present in the data; hence, 

general data visualisation and analysis tools can be applied to these results. 

It is important to remember that some tools can change their results, in 

particular, in response to interactive modification of the tool parameters by 

the user. If other tools use these results, they must take these changes into 

account. Visualisation tools must update their display so that the new re-

sults are properly represented, computational tools must rerun their com-

putations, and query tools must once more check the satisfaction of the 

query conditions. Not all tools do this automatically; sometimes the analyst 

needs to reapply a tool when its input changes. 

In concurrent tool combination, the analyst deals with several displays 

present simultaneously on the screen. Accordingly, the outputs of several 

concurrently operating tools are most often linked by means of display co-

ordination, i.e. simultaneous consistent reaction of the displays to certain 

events. Another approach is a kind of “static” linking, where two or more 

displays apply the same visual expressive means to the pieces of informa-

tion that need to be compared and/or related. Such displays may be con-

trolled through common display manipulation tools. This intensifies the 

effect of the static visual linking. Different approaches to tool combination 

can be used together. 

We have suggested the following taxonomy of mechanisms for linking 

concurrently running tools: 

Coordination on the basis of selection of a subset of the references. Sev-

eral displays take special measures to show a selected subset of refer-

ences (resulting from a querying or focusing tool, for example) and the 

corresponding characteristics prominently, so that the user can readily 

see the information relevant to the selected subset in each display. Vari-

ous methods may be used to achieve this: 
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Highlighting (special marking, e.g. by changing the colour or increas-

ing the size) of the display items corresponding to the selected refer-

ences so that they can be easily discerned from the remaining items. 

Filtering, i.e. removing the display items that do not correspond to 

the selected references or “muting” their visual appearance and re-

stricting user interaction with them. 

Focusing or zooming.  A display is adjusted so that the information 

relevant to the selected subset is shown with the maximum possible 

expressiveness and legibility at the cost of the rest of the information 

being omitted or reduced in its conspicuousness. 

Coordination on the basis of a division of the reference set. The refer-

ence set is divided into two or more non-overlapping subsets (for exam-

ple, using a classification tool), and, in response, several displays take 

special measures to make the information relevant to each subset easily 

recognisable and distinguishable from the information related to the 

other subsets. This can be achieved in various ways: 

Multicolour marking. Each subset receives a unique earmark (typi-

cally a colour), which is used for marking the display elements corre-

sponding to this subset in all coordinated displays. 

Display multiplication. A display is replaced or supplemented by sev-

eral displays of the same type so that each display represents one of 

the subsets and the corresponding characteristics. 

Rearrangement of display items. Display items corresponding to the 

same subset are put close to each other within the display space. 

Display linking on the basis of a common set of attributes. The values 

and value combinations of the attributes may be represented in different 

ways, but special techniques help the user to discern the visual elements 

corresponding to any particular attribute in all the displays. Examples of 

such techniques are:

Identical arrangement of display items corresponding to different at-

tributes (such as the order of the axes in a parallel-coordinates display 

or the order of the bars in a bar chart map). 

Colour marking of the display items (such as bars in bar charts or sec-

tors in pie charts) so that a unique colour corresponds to each attrib-

ute. The marking must be consistent between the displays. 

Changes of the arrangement or the colours must occur simultaneously in 

all of the displays linked in this way. 

Linking on the basis of a common visual encoding of attribute values in 

several displays, such as:  
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Common scales along the display dimensions.  

Common meanings of colours, sizes, symbols, etc. 

When the encoding is changed by means of display manipulation tools, 

the changes must affect all the linked displays. 

Linking on the basis of a common transformation of attribute values

when the same transformation function (tool) is applied to values of at-

tributes represented in different displays (the attributes in the displays 

may also be different, or the same attribute(s) may be represented in dif-

ferent ways). When the user changes any transformation parameters, the 

changes affect all the linked displays.

Besides these general methods of tool linking, there are also methods 

specific to particular display types. 

Sequential and concurrent modes of tool combination are often used to-

gether. Moreover, different mechanisms of sequential and concurrent tool 

combination can be used simultaneously, for example filtering can be used 

together with multicolour marking and common transformation of attribute 

values. In any tool combination, at least one visual display needs to be pre-

sent so that the user can perceive the results of the operation of the tools.  

As a final note, we would like to mention that tool combination and co-

ordination is currently a hot topic in the research areas related to explora-

tory data analysis, such as information visualisation, geographic visualisa-

tion, and statistical graphics. Dedicated international conferences have 

been convened (see (CMV 2003) and (CMV 2004)) and special journal 

issues published (InfoVis 2003). The papers describing various specific 

cases of the combined use of multiple exploratory tools are innumerable. A 

few papers of a more general kind could be recommended to interested 

readers, specifically Buja et al. (1991), North and Shneiderman (1997), 

and Roberts (1998). For technically oriented readers, we can also recom-

mend some papers that suggest models and software architectures for tool 

combination, for example North and Shneiderman (1999), North et al. 

(2002), and Boukhelifa and Rodgers (2003).  

4.9 Exploratory Tools and Technological Progress 

All the tools discussed in this chapter (perhaps with the exception of the 

visualisation tools) rely significantly upon modern computer technology. 

They did not exist and could not have existed at the time when John Tukey 

wrote his pioneering work, which launched the term “exploratory data 

analysis” (Tukey 1977). Technological development has and will continue 
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to have a strong influence on the variety, capabilities and characteristics of 

the exploratory tools that are being designed and implemented. Computers 

are increasing in capacity – this means that more extensive, more compre-

hensive, and more detailed datasets can be stored and processed. Com-

puters are increasing in speed – this means that data transformation, query-

ing, computational analysis, and other data processing can be quick and 

responsive to any modification of data or parameters. Computers are in-

creasing in sophistication and are developing new capabilities – this means 

that they are becoming able to release human analysts from various routine 

operations and thereby make more of their time available for imaginative 

perception and creative thinking. Computers are increasing in user-

friendliness – this means that analysts may benefit from new, more con-

venient, and more effective possibilities for interaction. Computers are in-

creasing in portability – this means that data analysis can be done when-

ever and wherever needed, possibly in tight combination with data collec-

tion and observation of real things and processes. 

However, despite great progress, computers cannot (yet?) substitute for 

human analysts who possess capabilities to link, comprehend, generalise, 

and abstract, which are indispensable for any exploration. Computers can 

act as technical assistants that provide the results of their work to higher-

level staff for summary, synoptic processing, and the drawing of conclu-

sions or implications. The results provided to an analyst must have such a 

form that the analyst can use them in his/her further work. Since this work 

is done mostly in the analyst’s mind, the results must be presented in a 

form perceptible by the mind, that is, they must be visualised.

We have emphasised many times the prominent role of visualisation in 

exploratory data analysis. We started this chapter with a hymn to visualisa-

tion and are expressing our appreciation of it again at the end. Visualisa-

tion is involved in every example given in this chapter, be it an example of 

data transformation, querying, or computational analysis. Visualisation 

provides food to our brain in a form that can be digested much better than 

numbers or even words (recall the Chinese proverb that a picture is worth a 

thousand words). 

So, what does technological development mean for visualisation? The 

benefits are quite numerous: 

Quick display generation, which allows an analyst to make displays on 

demand and discard them when they are no longer needed, and to have 

purpose-oriented displays that show only relevant information, rather 

than overloaded multipurpose presentations. 
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Modifiability and interactivity of displays; this enables dynamic presen-

tation (e.g. of time-referenced data), display manipulation, and display 

coordination. 

High resolution (including colour resolution), which allows representa-

tion of larger data volumes and finer detail. 

The possibility to use a three-dimensional display space for the repre-

sentation of data with a complex structure, for example spatio-temporal 

data or other multidimensional data. 

The possibility to combine visual displays with computation, querying, 

and data transformations, which enhances the analytical potential of 

visualisation and allows genuine tool synergism to be achieved. 

It may be noted that we have not included in this list such things as 

highly realistic images or immersive environments. Although we admit 

that these technologies may be very useful in some application domains 

(for example, city or landscape planning), we have doubts about their util-

ity in exploratory data analysis. The basic problem is the high realism of 

the representation: the things look so concrete that the process of abstrac-

tion, which is necessary in exploration, is inhibited, and the mind is con-

fused by the multitude of realistic details. 

We would like to refer again to the book by Rudolf Arnheim that we 

adore so much. He says that highly realistic images do not, by themselves, 

guide understanding: 

Paradoxically, they may even make identification difficult, because to identify an 

object means to recognize some of its salient structural features. A mechanically 

produced replica may hide or distort these features. One of the reasons why per-

sons brought up in cultures that are unacquainted with photography have trouble 

with our snapshots is that the realistic and accidental detail and partial shapeless-

ness of such images do not help perception. (Arnheim 1997, p. 140) 

So, technological progress provides new, exciting opportunities, but the 

designers and developers of tools for EDA need to think carefully about 

how these opportunities can be better utilised. There is yet another impli-

cation of technological progress for exploratory data analysis: besides new 

opportunities, it also creates new challenges. The challenges arise because 

more and more data are being collected and stored, and hence need to be 

analysed and understood. Not only volumes but also the complexity of 

data is increasing as more and more aspects and components of various 

things and phenomena are being sensed and measured. The variety of 

types of data is also increasing: modern analysts need to deal with satellite 

images and DNA structures, behaviours of individuals (humans or ani-

mals) and social groups, sales dynamics and historical events, and many 
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other things. Heterogeneous data types need to be analysed together. All 

this calls for new analytical tools. 

We shall not try to predict what future analytical tools will look like. 

However, we are sure that the key feature of their further development will 

be a synergy of techniques and approaches, in which visualisation will 

continue to play a leading role. Researchers in data-analysis-related areas 

and tool developers should look (but look critically!) for new opportunities 

offered by technological progress and, at the same time, be ready to face 

new challenges. 

Summary 

In this very long chapter, we have reviewed the existing tools that can be 

used to support exploratory data analysis. We have tried to keep a general 

level of discussion and consider the tools as “pure ideas”, without regard to 

the details of specific implementations, although we had to use specific 

software to produce the illustrations. While we have not achieved an abso-

lute “purification”, we consider the resulting level of generality to be quite 

satisfactory. 

We have considered several major classes of exploratory tools accord-

ing to their primary functions: 

visualisation;

display manipulation; 

data manipulation; 

querying; 

computational analysis. 

We have tried to give a systematic review of each class, introducing, 

when possible, intra-class taxonomies. We have demonstrated with nu-

merous examples how various types of tool can be used in data analysis. 

The examples also demonstrate that any non-visual tool needs to be used 

together with visualisation, and show how various types of tool outputs 

can be visualised. 

Not only the combination of non-visual tools with tools that visualise 

their results is important in exploratory data analysis, but also the use of 

multiple tools in various combinations. On the one hand, different tools 

have different capabilities and therefore can aptly complement each other 

and jointly produce synergistic effects. On the other hand, data are often 

very abundant and/or very complex, multidimensional and multifaceted, 

and therefore cannot be adequately analysed using any single tool. 
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We have considered two basic modes of tool combination, sequential 

and concurrent, and enumerated the general mechanisms applied for tool 

combination. Like the tools themselves, these mechanisms can also be 

combined. Modern software packages for EDA typically provide a variety 

of tools and of methods for linking them. 

Generally, we did not intend in this chapter to relate tools to the types of 

analysis tasks that they could support, although we did this from time to 

time, especially when discussing the examples. Now it is time to do this in 

a more systematic way. This will be the content of the next chapter. 
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5 Principles 

Abstract

In this chapter, we describe the major principles that are used in exploring 

data and in choosing tools for this purpose. We have extracted these prin-

ciples from our experience, by inspecting our usual approaches and 

choices when we receive new data that need to be analysed. However, 

these principles correspond very well to ideas expressed by other research-

ers in the areas of visualisation, data analysis, systems analysis, and cogni-

tive psychology. This certifies the principles as generic, relevant not only 

to our particular way of handling data but also to some fundamental proc-

esses involved in exploration, reasoning, and understanding.  

To show where the principles come from, we present a view of the 

process of data exploration as a combination of top-down and bottom-up 

procedures, i.e. analysis and synthesis. At the beginning, an explorer has 

the most general task: to characterise and explain the overall behaviour of 

the characteristics over the entire reference set. In the course of the explo-

ration, this general task is decomposed into subtasks of various types. We 

illustrate this view by several examples, in which datasets with different 

structures are considered and the exploration procedures outlined. These 

examples demonstrate that the major instrument of exploratory analysis is 

the human mind, equipped with appropriate visual displays of the data, 

which provide an object for the explorer’s observations and food for 

his/her thought. 

The great role of visualisation is also pronounced in our presentation of 

the principles. We introduce ten general principles of EDA: 

1. See the whole. Represent the data so that the overall behaviour can be 

perceived by means of vision. This requires that first, nothing essential 

is omitted (ideally, all data items are present in the display); second, all 

aspects are reflected; and third, the visual elements representing the data 

can be perceived all at once as a unified whole. 

2. Simplify and abstract. Disregard excessive detail, fluctuations, and oc-

casional peculiarities, which obstruct one from seeing the essential fea-

tures of the behaviour.  
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3. Divide and group. When it is seen or expected that the overall behaviour 

is not the same throughout the reference set, divide the reference set so 

that the behaviour within each subset can be regarded as sufficiently 

homogeneous. Then, the overall behaviour can be characterised as a 

combination of the partial behaviours. 

4. See in relation. For a proper characterisation of a behaviour divided into 

parts, reveal the substantial differences as well as the similarities be-

tween the parts. It is also important to compare the behaviours of differ-

ent attributes or groups of attributes. 

5. Look for recognisable. Represent the data so that specific sorts of fea-

tures, or subpatterns, can be easily detected. The features to look for de-

pend on the structure and nature of the data. 

6. Zoom and focus. In exploring partial behaviours over reference subsets, 

apply tools that help in concentrating on the part currently being ana-

lysed and in representing this part with the maximum possible expres-

siveness. However, it is important to position this part with respect to 

the entire behaviour, i.e. to see it in context. 

7. Attend to particulars. Detect, thoroughly examine, and try to explain 

various cases of unusual characteristics. 

8. Establish linkages. Integrate the observations and partial patterns de-

rived from the investigation of various parts and aspects of the overall 

behaviour into a coherent view. 

9. Establish structure. When the overall behaviour is suspected to result 

from an interplay of several structural components, such as linear and 

cyclic processes in time-related phenomena, explore each component 

and its interactions with the other(s) by splitting relevant referrers into 

several referrers or introducing additional referrers. 

10.  Involve domain knowledge. Whenever possible, make use of what you 

know concerning the nature and properties of the phenomenon underly-

ing the data, or even make use of your common sense. This may take the 

form of anticipation of general tendencies in the behaviour, of substan-

tial distinctions between certain parts of the data, of the sort of features 

(subpatterns) that can occur, etc. Such anticipations influence the choice 

of tools and their parameters and the focus of attention. 

In our presentation of these principles, we indicate what types of ex-

ploratory tasks they are relevant to and what categories of tools can sup-

port their implementation. By using examples of various kinds of data, we 

demonstrate how the principles can be implemented and what can be 

gained from this. 

At the end of the chapter, we put all the principles into the overall con-

text of exploratory data analysis, viewed as the systematic decomposition 
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and performance of the top-level task “characterise the behaviour of the 

characteristics over the reference set”. We consider four general cases of 

analysis, depending on the peculiarities of the data: 

1. The basic case: A one-dimensional reference set and a single attribute or 

a group of attributes that can be visualised in a way that supports per-

ceptual unification. 

2. Multidimensional data, i.e. data with multiple referential components. 

3. Multiple attributes that need to be analysed jointly. 

4. Data characterised by a large volume, i.e. a large size of the reference 

set.

Each successive case refers to the cases previously described, as the origi-

nal task is decomposed and turned into a sequence of simpler operations 

dealing with subsets and slices of the data. 

The cases are summarised compactly in the form of tables, which list 

the actions performed and specify the types of exploratory subtasks in-

volved, the appropriate tool categories, and the relevant principles. We 

regard this as a summary of the major results of our study. We indicate the 

ways in which these results may be used by data explorers and by design-

ers and developers of instruments for EDA. We also present an example of 

an application of the suggested generic scheme of data analysis to the ex-

ploration of a particular dataset. 

5.1 Motivation 

The general goal of our study is to understand the nature of the tasks aris-

ing in exploratory data analysis and their influence on the choice of tools 

and the ways in which these tools are used. On this basis, we would like to 

formulate guidelines that could help data explorers to choose the right 

tools, as well as help tool designers and developers to anticipate and satisfy 

the demands of explorers. In brief, we would like to relate the tools to the 

tasks, or, more precisely, find the principles by which we can relate tools 

to tasks. 

In Chap. 3, we identified the types of tasks that exist, and in Chap. 4 we 

described and classified the tools available. So, why don’t we simply 

cross-reference these two lists, i.e. specify for each type of task which 

tool(s) can support it, and for each tool which task(s) it supports? Why do 

we want instead to find principles? 

The fundamental reason is that the tasks arising in data exploration are 

too specific (they are always formulated in the terms of data components), 
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whereas the task categories that we identified are too generic. It is impos-

sible to link each specific task to the appropriate tool(s) because the spe-

cific tasks are countless. Linking the tools to the generic task categories is 

also problematic, but for a different reason: the categories are so generic 

that no tool can perform all tasks belonging to the same category.  

Let us take, for example, the task category “behaviour characterisation”. 

Depending on the nature and dimensionality of the reference set and on the 

number and properties of the attributes, there may be numerous possible 

types of behaviours. The spatial variation of the amount of forest and its 

structure, the dynamics of the crime rate in a country, the movements of 

storks or vehicles, the spatial and temporal distribution of earthquakes – 

these are just a few examples of possible behaviour types. It is clear that 

one cannot find or design a tool that would be equally appropriate for 

characterising any of these behaviours. Hence, if we decided to identify the 

tools capable of supporting the task category “behaviour characterisation”, 

we would need to relate each tool to the specific type(s) of behaviour that 

it is suitable for. We would also need to enumerate all possible types of 

behaviours in order to relate each type to the appropriate tool. 

Even on the elementary level, the task “On a given date, what is the 

price of stock X?” is different from the task “What was the population of 

Loures in 1981?”, even though both tasks are classified as direct lookup 

tasks (see Table 3.5 in Sect. 3.4.8). In principle, the situation with elemen-

tary tasks is easier: there are general query tools capable of answering a 

wide range of elementary questions. However, as we discussed in the pre-

vious chapter, to get an answer to a question from a query tool, one needs 

to formulate the question in a form understandable by the tool. Unfortu-

nately, all general query languages, although they allow one to formulate 

almost any question and thereby give full access to the power and flexibil-

ity of general query tools, are difficult to learn and inconvenient to use. 

Specific query tools, applicable to certain types of data and restrictive as to 

the range of possible questions, may be much more helpful for data explo-

ration, at the cost of ease of use and dynamic response (see Sect. 4.6, espe-

cially the discussion of dynamic query tools in Sect. 4.6.1.3). 

So, it seems that relating tools to generic task categories is either unfea-

sible or unhelpful. For an appropriate association, it is necessary that the 

structure and properties of the data to be analysed are taken into account, 

but the generic categories are too abstract for this, they stand too far away 

from the data. Hence, the association has to be done on a much more spe-

cific level, i.e. either for a specific dataset or for a class of datasets with a 

common structure and common properties. The first possibility is more 

appropriate for an explorer, and the second for a tool designer. However, 

to design an appropriate tool or tool combination for a class of datasets, the 
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tool designer needs to have (or at least have in mind) some specific exam-

ples of datasets from this class. 

Although the level of dataset classes is more general than the level of 

specific datasets, this does not significantly help us in achieving our goals: 

the classes are still too numerous to be comprehensively described and 

linked to the right tools. The classes differ according to their data structure, 

i.e. the number and types of referrers and attributes, and the properties of 

the components, such as ordering, the existence of distances, continuity, 

smoothness, etc. There are so many different combinations of numbers, 

types, and properties that it is unfeasible to consider all of them. 

How, then, can we help explorers and tool designers? We can try to set 

out some general principles for choosing and designing exploratory tools. 

We can also demonstrate, with various examples, how these principles can 

be applied in practice. Then, we can try to describe, on a very general 

level, the overall procedure of exploratory data analysis: we consider the 

major cases, specify the steps and the possible options, and refer to the ap-

propriate principles. We believe that this should provide reasonably good 

guidance. One may pick the most suitable case, look through the suggested 

steps of analysis, note the recommended tool categories, and then, by ap-

plying the corresponding general principles, try to choose or devise par-

ticular tools and approaches suited to the data at hand. 

We shall start our search for the general principles from an attempt to 

uncover some generic components and features of the process of explora-

tory data analysis 

5.2 Components of the Exploratory Process 

At the end of the Chap. 3, we characterised the process of data exploration 

as an interplay of two major subprocesses, top-down and bottom-up, or 

analysis and synthesis. At the beginning, the explorer has a very general 

goal: to grasp the distinctive features of a dataset and the underlying  

phenomenon, that is, to build a compact representation of this 

data/phenomenon in his/her mind (a mental model) reflecting these distinc-

tive features. In terms of our task typology, this is a synoptic task of be-

haviour characterisation, or pattern definition.28 Furthermore, the explorer 

may also have the goal of finding the reason for the existence of these par-

                                                     
28  As a reminder, we use the word “pattern” to denote a compact representation or 

description of a behaviour, be it an internal representation in the explorer’s 

mind (i.e. a mental model), a description in some language, a formula, or a 

drawing. 
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ticular features, i.e. of explaining the features as resulting from structural 

or causal links between inherent parts of the phenomenon and/or between 

this phenomenon and other phenomena in its environment. According to 

our framework, this is a synoptic task of connection discovery. The ex-

pected result is some representation of the essential internal and/or external 

links, which is called a connection pattern. 

Typically, such a general goal cannot be achieved immediately, and the 

explorer has to decompose the initial task into smaller and more easily ac-

complishable subtasks. For this purpose, the explorer divides the overall 

behaviour into parts that will be easier to study and describe. For example, 

the explorer may consider individual attributes or small groups of attrib-

utes rather than all attributes simultaneously; he/she may divide the refer-

ence set into subsets and characterise the behaviour on each subset; or, if 

the dataset is multidimensional, he/she may look at various slices and pro-

jections. Depending on the complexity of the data, this process of decom-

position, or analysis, may go down further. As a result of this process, the 

explorer derives a number of fragmentary patterns representing certain 

parts or aspects of the overall behaviour. The explorer cannot be satisfied 

with these fragmentary patterns; he/she needs to integrate them into a 

complete descriptive and/or connectional pattern for the overall behaviour. 

This process of integration, or synthesis, is another intrinsic part of data 

exploration, which complements the process of analysis. 

It should not be thought that the process of synthesis always starts only 

after the process of analysis is fully accomplished. The explorer may 

switch from analytic to synthetic and from synthetic to analytic activities 

many times throughout the process of exploration. For example, the ex-

plorer may characterise a partial behaviour and immediately try to estab-

lish its position with respect to the overall behaviour or relate it to another 

partial behaviour characterised earlier. At this stage, some partial behav-

iours may not yet have been characterised, but this is not an obstacle to the 

integration of the fragments of the general model that have already been 

built.

Regardless of the actual sequence of the analytic and synthetic activi-

ties, we can represent the process of data exploration by the abstract 

scheme drawn in Fig. 5.1. The initial task, i.e. to characterise the overall 

behaviour by an appropriate pattern, is accomplished by means of three 

major groups of activities:  

1. Analyse, i.e. divide the overall behaviour into partial behaviours.  

2. Characterise, i.e. derive (partial) patterns in order to approximate (par-

tial) behaviours.  

3. Synthesise, i.e. integrate the partial patterns into an overall pattern. 
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Overall behaviour

Partial 

behaviours

Partial 

patterns

Overall pattern

Analyse Synthesise

Characterise

(initial task)

Characterise

Fig. 5.1. A schematic representation of the process of data exploration as a combi-

nation of three major groups of activities: analyse (divide the overall behaviour 

into partial behaviours), characterise (derive patterns to approximate behaviours), 

and synthesise (integrate the partial patterns into an overall pattern) 

How does this scheme relate to our task typology? It is clear that the ac-

tivities labelled as “characterise” correspond to the synoptic tasks of be-

haviour characterisation. Note that “characterise” appears on two levels in 

the scheme: on the level of the overall behaviour and on the level of the 

partial behaviours. This means that the initial task of characterisation of 

the overall behaviour involves tasks of characterising the partial behav-

iours as its subtasks. However, subtasks of other types are also involved. 

To determine their positions with respect to the scheme, let us consider 

some examples. 

5.3 Some Examples of Exploration 

Suppose that our task is to characterise the behaviour of the burglary rate 

in the state of California over the period from 1960 to 2000. Probably the 

best way to do this is by looking at a time graph, such as the one in Fig. 

3.12, that represents this behaviour visually. As we mentioned earlier (see 

Sect. 3.8), we do not simply look at the time graph but look for something 

relevant to our task. In this case, certain types of patterns that can be ex-

pected in this type of data are relevant, specifically increases, decreases, 

stability, and fluctuations, which show up as particular shapes of the line. 

In terms of our task typology, we perform pattern search tasks. Since the 

line as a whole does not correspond to any single pattern type, we divide it 

into fragments interpretable as an increase, a decrease, etc. The presence of 

small fluctuations complicates the recognition of patterns. We need some-

how to abstract from these fluctuations, to disregard them.  
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As we detect interpretable patterns, we also note the points where one 

pattern type turns into another one, or, in other words, where substantially 

dissimilar or opposite behaviours take place in contiguous time intervals. 

This corresponds to synoptic relation-seeking tasks in our task typology. 

Noting the turning points also involves pattern comparison tasks, since we 

are comparing the behaviours in the adjacent intervals. 

Hence, in the process of dividing the overall behaviour of the burglary 

rate in California into parts, pattern search tasks play the primary role, and 

are accompanied by comparison and relation-seeking tasks. Another ob-

servation is that tasks of different types may occur in parallel; for example, 

we may recognise a line fragment as having an increasing trend and simul-

taneously note its difference from a neighbouring fragment. 

During the pattern search and behaviour division process, we already 

start to characterise the partial behaviours extracted: we label them as “in-

crease”, “decrease”, etc. Sometimes this is a sufficient characterisation of 

the partial behaviours. However, higher precision of the approximation of 

the behaviour is often desired. For a more specific and detailed characteri-

sation, we need to determine the beginning and ending times of each par-

tial behaviour, the attribute values at the beginning and at the end, the 

minimum and maximum values and when they were attained, etc. These 

are elementary lookup tasks, either direct or inverse. We can use the values 

found to compute certain summary characteristics of the behaviour, such 

as the average rate of increase or decrease. To reflect the fluctuations that 

exist in the behaviour characterisation, we can look for major differences 

between values at adjacent time moments and measure these differences, 

i.e. perform elementary relation-seeking and comparison tasks. However, 

as we said before, elementary tasks mostly play only a subordinate role in 

exploratory data analysis. 

Now, when we have extracted the partial behaviours and characterised 

them, i.e. approximated them by suitable partial patterns, we need to inte-

grate these partial patterns into an overall pattern approximating the over-

all behaviour. While a simple enumeration of the partial patterns may 

sometimes be sufficient, it is usually not the case. Synthetic activities im-

ply that the partial patterns are appropriately linked, that a kind of order 

and/or structure is established among them. Ideally, an overall pattern 

should appear as a cogent, well-substantiated structure, with a clear posi-

tion and role for each partial pattern. To achieve this ultimate goal, we 

need to accomplish connection discovery tasks, i.e. reveal essential rela-

tions between the partial behaviours. Such tasks are very complex; they 

require creative thinking and often insight, and success is never guaran-

teed. In many cases, the data available are simply insufficient for revealing 

essential relations. 
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What is easier but still worthwhile to do is to put the partial patterns in 

chronological order and compare the lengths of the time intervals corre-

sponding to the patterns and other characteristics of the patterns, for exam-

ple the rate of increase of the burglary rate in the first half of the time pe-

riod and the rate of decrease in the second half, or the degrees of fluctua-

tion in those intervals. These are pattern comparison tasks, both direct and 

inverse. By means of pattern comparison, it is sometimes even possible to 

discover a certain order in the arrangement of the partial patterns, such as 

periodicity or a recurrent appearance of one pattern type after another, i.e. 

pattern comparison may eventually lead to connection discovery (this does 

not apply, however, to the behaviour of the burglary rate in California).  

In this example, the analytical activities are mostly driven by pattern 

search tasks, which are supported by pattern comparison and relation-

seeking tasks, and the synthetic activities are mostly driven by connection 

discovery and pattern comparison tasks. 

This example supports the statement made earlier (see Sect. 3.8) that 

tasks of different types and different generality levels may intermingle in 

exploratory data analysis, and therefore that the approach of building a 

specific tool that would optimally serve the needs of a given task is unfea-

sible and counterproductive. An explorer needs instruments that allow 

him/her to do a variety of tasks and have sufficient freedom to switch from 

one task type to another and to change the generality level. Accordingly, 

most tools for EDA are designed so as to be able to support a range of 

tasks and to connect to other tools complementing their capabilities. 

The tool that we used for the exploration of the burglary rate in Califor-

nia was a time graph. It was sufficient almost for all tasks, including the 

synoptic tasks that had the primary importance: pattern search, pattern 

comparison, and relation-seeking (more specifically, looking for major 

changes in the trend). It was very beneficial that we could see the whole 

behaviour as a single image. 

The discussion of this example is, actually, a hint as to where our gen-

eral principles come from: they result from contemplating various exam-

ples and trying to generalise from them. Thus, readers should now be pre-

pared to encounter such formulations as “see the whole”, “look for recog-

nisable”, and “divide and group”.  

To prepare ourselves even better for the following material, let us con-

sider a few other, more complex examples. One of them is the exploration 

of not only the burglary rate but also the rates of other types of crime in 

California. A possible approach is to visualise the behaviour of each at-

tribute on a time graph, as is shown in Fig. 5.2, and compare the behav-

iours. Note that the comparison of the behaviours starts from the very be-
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ginning of the exploratory process and not after each individual behaviour 

has been fully characterised. 

Fig. 5.2. Visualisation of the behaviours of seven attributes characterising the rates 

of different types of crime in the state of California during the period from 1960 to 

2000. Each behaviour is represented on a separate time graph 

As in the previous case, we need to concentrate on the general shapes of 

the lines and disregard small details and fluctuations. This can be done bet-

ter when the lines are smoothed, as in Fig. 5.3. 

By means of pattern comparison, we can note some features common to 

all or many behaviours. Thus, almost all of the crime rates mostly in-

creased in the first half of the time period (from 1960 to 1980), and all of 

the lines have peaks in the year 1980. Four out of seven attributes have 

peaks in 1992, and all attributes have a decreasing trend after 1992. Four 

attributes reach their maximum in 1980, and the remaining three do so in 

1992. 

In this joint characterisation of multiple behaviours, we not only noted 

the distinctive features of the behaviours such as peaks, maxima, and in-

creasing and decreasing trends (such observations belong to the class of 

behaviour characterisation, or pattern definition, tasks), but also associated 

these features with corresponding time moments and intervals by means of 

lookup tasks. In principle, it could be easier to check whether similar fea-

tures of several behaviours occur at the same time moments or in the same 
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time intervals if the behaviours were represented in a common display 

rather than separately. For example, the lines representing the behaviours 

could be overlaid within a single time graph. However, this would require 

a previous transformation of the attributes to make them comparable, since 

the original attributes have quite different value ranges. 

The more detailed characterisation of the detected characteristic features 

of the behaviours is done in basically the same way as in the characterisa-

tion of a single behaviour, i.e. we extract and characterise interpretable 

partial patterns. At the same time, we detect and measure the similarities 

and differences between the behaviours.  

The synthetic process towards an overall pattern approximating the joint 

behaviour of the seven crime rates is based on the common features of the 

behaviours noted. The overall pattern must reflect the peculiarity of the 

years 1980 and 1992, the common trends, the similarities of the behaviours 

of some attributes, and the major differences. It would be also very nice to 

explain why the years 1980 and 1992 are so peculiar and why the behav-

iours 1 and 3 are so similar. However, the data and domain knowledge that 

we have are insufficient for those connection discovery tasks. 

One major difference of this example from the previous one needs to be 

discussed. Whereas in the previous example we began with dividing, the 

exploration in the second example started with linking the behaviours by 

Fig. 5.3. The time graphs in Fig. 5.2 have been smoothed here so that minor fluc-

tuations will not hinder pattern search and comparison 
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similarity, which is more a synthetic than an analytical activity. How can 

this difference be explained? 

Actually, it is not quite right to say that we started with dividing in the 

first case and with linking in the second case. In both cases, we started 

with visualising the data that we needed to analyse. In the first case, we 

managed to represent all the data in just one line, which is a highly holistic 

portrayal. As a result, the entire behaviour could be grasped in one sight, 

and no integration effort was needed. In the second case, the visualisation 

divided the overall behaviour into seven partial behaviours, which could 

not be perceived together. This is not a unique case: a holistic representa-

tion of all data in a single image is a rare possibility. So, the tools that we 

apply often divide the overall behaviour into pieces, and we need to spend 

considerable effort to bring these pieces together. 

From the comparison of these two examples, we see that: 

synthesis may sometimes be prompted by an exploratory tool, such as a 

holistic visualisation, which allows us to perceive a behaviour as a 

whole in one instance of vision; 

besides the deliberate and voluntary division of a behaviour into parts, 

which is done to obtain a more precise behaviour characterisation, there 

may be a division that we are compelled to make, which is caused by 

the impossibility of representing a behaviour in a single image; 

when a piecewise rather than a holistic representation of the overall be-

haviour has to be used, synthetic activities such as linking or grouping 

are involved in the exploratory process from the very beginning. 

The second example was more complex than the first one because we 

had to analyse multiple attributes instead of a single attribute. However, 

the data in both examples had a single referrer, specifically time. Let us 

now briefly discuss what we can do with multidimensional data, i.e. data 

that has two or more referrers. An example of such data is the time-series 

crime data for all states of the USA. The complexity of this dataset is such 

that there is no way to view the overall behaviour of even a single attrib-

ute, and we have to deal with aspectual behaviours (see Sect. 3.4.4): the 

behaviour (distribution) of the local temporal behaviours in space, and the 

behaviour (evolution) of the yearly spatial behaviour in time. Possible 

visualisations of these aspectual behaviours are shown in Figs 3.13 and 

3.16, respectively. Unlike the previous case, where the behaviours of all 

attributes were visualised uniformly, and it was quite easy to do compari-

son and grouping, the representations of the aspectual behaviours in the 

current example are very different and cannot easily be joined into a co-

herent picture. The difference between the visualisations is not accidental; 
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it is a consequence of the intrinsic difference between the aspectual behav-

iours.

Another major distinction from the previous case is that the displays of 

the multiple attributes showed us different and even non-overlapping parts 

of the data, while now we have different views of the same data. There-

fore, comparison and grouping of patterns perceived from different dis-

plays is not only difficult but also meaningless. 

However, in the exploration of each of the two aspectual behaviours, 

comparison and grouping play an important role. Thus, using the visualisa-

tion a Fig. 3.13, we can compare and group the local temporal behaviours 

as we did previously with the behaviours of the different attributes. There 

is a difference from the previous case: while the behaviours of the attrib-

utes could be grouped arbitrarily, we must now take into account the spa-

tial neighbourhood (see Fig. 3.14 for an example of grouping). Using the 

visualisation in Fig. 3.16 (or, rather, a more complete visualisation of the 

same kind, in which all time moments are represented), we can compare 

the spatial patterns, group similar patterns that occurred in consecutive 

years (i.e. take into account the temporal neighbourhood), and note the 

years when major changes of the spatial pattern took place. 

In general, the process of characterising the aspectual behaviours is 

similar to what we did for the overall behaviours in the previous examples. 

However, the aspectual patterns so derived need to be integrated into a pat-

tern characterising the overall behaviour. 

Let us look once again at the representation of the local behaviours. In 

Fig. 5.4C, we have marked two prominent spatial clusters of similar local 

behaviours. One cluster, which is outlined in blue, is situated in the west-

ern and south-western part of the country. The other cluster, outlined in 

green, is in the north-central part. While the green cluster differs from the 

remaining territory by having quite low burglary rates, there are two states 

within the cluster that have even lower values than their neighbours. These 

are North Dakota and South Dakota, which are encircled in yellow. 

It is true that we cannot compare the local behaviours shown in Fig. 

5.4C with the spatial behaviour over the whole territory and its evolution 

over time. But why not to try to put the outlines that we have drawn on a 

representation of a yearly spatial behaviour? 

In Fig. 5.5C, the cluster outlines defined in Fig. 5.4C are superimposed 

on several maps showing the yearly spatial distribution of the burglary 

rates in selected years. Note that, unlike the case for Fig. 3.16, an individ-

ual colour encoding of the crime rate values is applied in each map, and 

hence the same degree of darkness corresponds to different values for dif-

ferent years. This has been done intentionally to achieve the maximum 

possible expressiveness for each individual map.  
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Now we can compare the cluster outlines with the spatial patterns for 

different years that may be perceived from the maps. We can note that the 

blue outline corresponds fairly well to the cluster of high values in 1985. 

In fact, the same cluster can be also seen in 1980, but it does not look so 

homogeneous as in 1985, owing to an extreme value in Nevada, which is 

represented by a dark brown colour. Moreover, from viewing the complete 

sequence of yearly maps (which cannot be reproduced here for reasons of 

space), we have made an observation that this cluster formed in about 1965 

and mostly preserved its unity since then until the mid-1990s; however, in 

the 1990s the southern part of the zone of high values spread to the eastern 

coast. At the end of the 1990s, a zone of high values is observed in the 

south (see the map for the year 2000) and does not correspond any more to 

the blue outline. 

The green outline corresponds to a zone of low values, which was also 

quite stable throughout the whole period. Analogously, comparisons be-

tween the two representations can be done for other groups of states with 

similar behaviours. In this way, we can link our patterns of aspectual be-

haviours.

We can also move in another direction. From observation of the evolu-

tion of the spatial behaviour over time, we have noted several time inter-

vals where there were distinct development trends. Thus, for example, the 

period from 1965 to 1980 was a period of overall increase of the crime rate 

throughout the country, while the character of the spatial distribution re-

mained mostly the same. From 1980 to about 1988, the spatial distribution 

did not change significantly, whereas the rates and the range of their varia-

tion decreased and the contrasts diminished. From 1988 to the mid-1990s, 

the spatial behaviour gradually changed; in particular, the distinction be-

tween the north and north-east, on the one hand, and the west and south-

west, on the other hand, gave way to a distinction mostly between the 

north and the south. Figure 5.6C demonstrates the spatial distributions in 

several representative years. As in Fig. 5.5C, each map uses its individual 

colour encoding. Additionally, an operation of visual comparison with the 

median value for the whole country in the respective year has been applied 

in each map. The values higher than the median are shown in brown, and 

the values lower than the median in blue. 

How can we link our observations of the changes of the spatial behav-

iour to our observations of the local behaviours? A possible approach is to 

look at fragments of the local behaviours corresponding to the different 

intervals revealed in the course of the study of the evolution of the spatial 

behaviour. Thus, the three maps in Fig. 5.7 show us the local behaviours in 

the intervals from 1965 to 1980 (top), from 1980 to 1988 (middle), and 

from 1988 to 1995 (bottom). 
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Fig. 5.7. By means of focusing, we can concentrate on fragments of the local be-

haviours corresponding to selected time intervals 

In the first map, we see a quite consistent growth in most states and can 

easily detect some behavioural outliers, such as Oregon, Arizona, and Flor-

ida. In the second map, we can distinguish states with decreasing trends in 

the south-west and in the east from states in the north with nearly constant 

values. In the south-east, we see many M-shapes indicating decrease fol-

lowed by increase. Again, behaviour outliers (e.g. New Mexico) are visi-

ble. In the third map, we see a decrease in the north-west, in the east, and 

in the south, and value stability almost everywhere else. 
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It can be noted that, if we group the states according to the similarity of 

their partial local behaviours, the grouping will be different for each inter-

val (and different from the initial grouping as shown in Figs 3.14 and 

5.4C). So, on the basis of the perceived pattern of the evolution of the spa-

tial behaviour, we can refine the pattern of the distribution of the local be-

haviours.

We have demonstrated an example of linking patterns that approximate 

different aspectual behaviours. This process is rather non-trivial; it is not 

based on mere comparison in the sense of noting similarities and differ-

ences. Instead, we tried to discover connections between the aspectual be-

haviours: how a change in the spatial pattern is related to the local behav-

iours, and vice versa. We did this by propagating observations made with 

one visualisation to the other visualisation. 

An even more difficult task is to characterise the behaviour of the dif-

ferent crime rates in space and time. We shall not describe how to analyse 

such data, but only mention that we would do the following in this case:  

divide the overall behaviour into the aspectual behaviours of the indi-

vidual attributes; 

investigate these aspectual behaviours for similarities and differences; 

group the attributes according to the similarity of their aspectual behav-

iours;

characterise the aspectual behaviours of each group and the differences 

between the groups; 

as in the previous example, try to relate the aspectual behaviours of each 

group;

try to propagate the observations made for one group of attributes to the 

representations of the aspectual behaviours of other groups of attributes 

and, on this basis, try to find common features and note essential differ-

ences;

if appropriate domain knowledge is available, try to explain the com-

mon features and the differences. 

As a summary of the examples considered, let us recall what types of 

tasks play the most important role in the various exploratory activities: 

In analysis (division, extraction, and separation):  

pattern search (matching behaviour fragments to the types of patterns 

expected);

synoptic relation-seeking (looking for major contrasts, changes, and dis-

continuities; detection of outliers and deviations from the major 

trend);

pattern comparison (differentiation between behaviour fragments). 



5.3 Some Examples of Exploration      477 

In characterisation: 

pattern definition (ascribing the pattern to a particular type, and summa-

risation of characteristics); 

elementary lookup and comparison (establishing the extent of the pat-

tern and characteristic values such as the minimum and maximum, 

and characterising outliers). 

In synthesis (grouping and integration):  

pattern comparison (noting similar patterns, grouping, and arranging); 

pattern search (looking for patterns similar to a given one); 

connection discovery (looking for correlations, dependencies, and struc-

tural links). 

For the sake of fairness, it should be noted that exploratory data analysis 

does not always start with top-down activities, i.e. dividing a whole into 

parts. Moreover, synoptic tasks do not always play the leading role right 

from the beginning, as in the examples discussed. As a counter-example, 

we recall a case of EDA that occurred in our private life when we decided 

to buy a digital camera and needed to make a substantiated choice of the 

right model. The basic difference from the previous examples is that we 

had no full dataset to analyse. In fact, we had no dataset at all; the data had 

yet to be collected. However, it would not have been a good idea to try to 

collect all data about all existing digital cameras. This would have taken 

too much time and effort, and probably would never have ended since new 

models appear almost every day. Since we wanted to start taking snapshots 

quite soon, we took a more feasible approach. 

From the beginning, we had certain constraints such as the price range 

and the minimum resolution, which would help us to reduce the set of all 

models to a subset consisting of potentially suitable models that it would 

make sense to investigate. In order to define this subset, we applied several 

query tools (search engines) available on the Web. These tools typically 

present their results as a list of products with hyperlinks to more detailed 

descriptions of the products, supplied by their producers or dealers (and 

hence not complying with any standard characterisation format). Some-

times opinions of customers and even evaluation reports from experts are 

obtainable, but not for all products. 

So, we had obtained the subset of potentially relevant references (i.e. 

camera models). To establish an order of preference among them, it was 

necessary to compare the characteristics. However, these characteristics 

were dispersed among numerous individual descriptions of the cameras 

and hence could not easily be compared. Since the subset of models was 

still rather big, and the individual descriptions often quite lengthy, it was 
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hardly reasonable to try to put all the characteristics of all the models into 

a common table for a subsequent comprehensive investigation. 

Instead, we approached the problem by means of sampling. We chose a 

few specific models differing in price and appearance, read their descrip-

tions, and compared their characteristics. The purpose was not to assess the 

goodness of those particular cameras but to extract relevant attributes that 

could influence our choice, and the possible values of those attributes. Of 

course, on the basis of our (rather modest) domain knowledge and experi-

ence, we had some initial criteria in mind, such as weight, size, the avail-

ability of an optical zoom, but we did not know the current ranges of val-

ues of those attributes and also did not know how different characteristics 

were related. For example, were there pocket-sized cameras with the pos-

sibility of manual selection or adjustment of the settings for a photograph? 

What was the relation between the memory capacity and the price? 

From an examination and comparison of the characteristics of the se-

lected models, we extracted the set of attributes that needed to be taken 

into account, and some of their possible values. Then, we sampled other 

models in order to learn more about the variety that existed in the values of 

the chosen attributes. In order to obtain more information with less effort, 

we applied certain heuristics: for example, we looked at models with ex-

treme prices, we compared different-looking cameras with the same price, 

and we compared cameras from different producers. In this way, we 

gained a considerable amount of relevant information.  

In the course of collecting information, we judged some characteristics 

as inappropriate for us and, on this basis, pruned the set of options to be 

considered. For example, we discarded the whole class of pocket-sized 

cameras, since they did not allow any manual adjustment of the parameters 

of a shot. Among the remaining models, we already had quite a small sub-

set of favourites, which were chosen with the use of the criteria that we 

had extracted. However, their characteristics were so close that it was very 

hard to make a choice between them. 

Then, we tried to use the knowledge and experience of experts that was 

accessible. We read two or three expert evaluation reports about some of 

the models on our shortlist. This allowed us not only to enrich our knowl-

edge about the models described but also to extract several additional crite-

ria, such as support for focusing in low-light conditions, the lag between 

pressing the release button and taking a snapshot, and colour balance qual-

ity. Then, we had to make an evaluation of the other models with respect 

to these criteria. Information concerning some of the criteria could be ex-

tracted from the official descriptions, while the other criteria required a 

search through expert evaluations and customer comments. It was not pos-

sible to find the data of interest for all models. Therefore, we had to make 
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a decision as to how to deal with the missing data. Since we considered 

some criteria (e.g. image sharpness) to be very important, we decided to 

discard the models for which the corresponding data were missing. Then, 

we made our final selection from the remaining models on the basis of the 

available data. 

We have written this long story in order to demonstrate a different 

method of exploratory data analysis as compared with the examples previ-

ously discussed. It is easy to note that elementary rather than synoptic 

tasks prevailed in this case: most of the time, we were examining the char-

acteristics of specific cameras and comparing selected cameras, i.e. we 

were performing elementary lookup and comparison tasks. It may even 

seem that the exploration process consisted exclusively of such tasks, but 

this is not true. In fact, in a situation where we lacked full data, we used 

elementary tasks to extract the relevant attributes, estimate the ranges or 

varieties of their possible values, find the most typical values and note out-

liers, and learn which values of different attributes typically occur together 

and which combinations never occur. All this can be regarded as building a 

pattern for the distribution of characteristics throughout the set of cameras 

and for the links between attributes. Hence, behaviour characterisation and 

connection discovery tasks were also present in the process of exploring 

the digital-camera market. Of course, the pattern (mental model) that we 

eventually built was incomplete and imprecise, but it was sufficient for 

defining the feasible constraints and arriving at a shortlist of appropriate 

candidates, and we understood quite well the positions of those candidates 

with respect to the remaining models. 

We hypothesise that such a bottom-up manner of data exploration is not 

applied only occasionally but takes place every time when complete data 

are not available at the beginning and cannot be collected because of prac-

tical constraints such as the time and effort required. In such a situation, 

this seems to be the only feasible approach. We should note that, unfortu-

nately, most of the tools that we have considered are not applicable in a 

situation where one has only fragmentary data. We are not ready at the 

moment to tell what tools can be used in such a situation and how they 

might be used. A separate study of exploratory analysis of incomplete and 

uncertain data would be required to provide an adequate answer. There-

fore, we restrict our further consideration to those cases where data have 

already been given, and there is no task of data collection.  
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5.4 Principles of Selection of the Methods and Tools 

In the examples of data exploration that we considered in the previous sec-

tion, we chose, individually in each case, certain approaches to analysing 

the data and, accordingly, certain exploratory tools: a time graph and a col-

lection of time graphs, a map with “behaviour” symbols and a series of 

choropleth maps, smoothing and visual comparison, focusing and selec-

tion. We made this choice on the basis of our experience, which is mostly 

a tacit, subconscious kind of knowledge. The general principles by which 

we selected the approaches and tools were buried somewhere deep in our 

minds. Nevertheless, we have tried to externalise and verbalise them. 

When we extracted some first, vague ideas, named them and put them in 

a list, we recalled that we had already encountered similar formulations in 

the books and papers of Bertin, Shneiderman, Klir, and Arnheim (Bertin 

1967/1983, Shneiderman 1996, Klir 1985, Arnheim 1997). At first, we 

were quite surprised, but we then understood that this was not accidental. 

If our subconscious knowledge of the principles of data exploration indeed 

originates from the literature, this means that we have mastered the teach-

ings of the best experts to such a degree that we have started to feel that 

they are our own. Moreover, this also means that these principles really are 

usable and useful. It is also possible that we have arrived independently at 

at least some of the principles (especially taking into account the fact that 

we read some of the above-mentioned works much later than when we 

started developing exploratory tools and analysing data with them). In that 

case, the coincidence means that these general principles really exist objec-

tively, independently of whether we know them or not, and anyone can 

find them through experimenting and reasoning. Anyway, we feel safe and 

comfortable standing on the shoulders of giants. 

So, let us now enumerate the principles that we extracted from the 

depths of our minds (or from the literature?). We have tried to give them 

short but expressive names: 

1. See the whole. 

2. Simplify and abstract. 

3. Divide and group. 

4. See in relation. 

5. Look for recognisable. 

6. Zoom and focus. 

7. Attend to particulars. 

8. Establish linkages. 

9. Establish structure. 

10.  Involve domain knowledge. 
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The meaning of each name will be explained in the following sections. 

We would like to note that the items in this list are not arranged by impor-

tance or in the recommended order of application. The items can be 

grouped according to their relevance to analytic or synthetic activities. The 

first two principles are equally important for analysis and for synthesis. 

The principles from 3 to 7 are more pertinent to analytical activities, and 

principles 8 and 9 to synthetic activities. Domain knowledge (principle 

10), when available, can be useful both in analysis and in synthesis. 

So, let us now review these principles one by one. 

5.4.1 Principle 1: See the Whole 

As we discussed in Chap. 3, a task, or question, in exploratory analysis 

consists of two parts: the target, i.e. unknown information, which needs to 

be obtained, and the constraints, i.e. known information, which is related 

to the target in a certain way. Of all the classes of tools that we have con-

sidered, only some query tools are designed in such a way that an analyst 

can formulate questions directly, i.e. specify the target and the constraints, 

and, in response, receive the information needed. However, as we noted, 

only elementary questions can be adequately supported in this way, since 

synoptic questions require the human’s capability for abstraction. 

All other tools for exploratory analysis suppose that the explorer finds 

answers to his/her questions by means of perception and reasoning. In 

other words, the explorer has either to see the answer in some display or 

display combination or to derive the answer from what he/she sees and 

what he/she has seen or inferred before (and, possibly, also from his/her 

pre-existing knowledge). Hence, the tools must create suitable conditions 

for the analyst to be able to see the answers to possible questions or to note 

information from which the answers can be derived. 

One such condition is that the information that constitutes the answer or 

allows the answer to be inferred is present on the screen. Since this infor-

mation is not yet known to the analyst and must be looked for, the atten-

tion of the analyst is guided by the constraints of the task. Hence, the in-

formation involved in the constraints must also be present on the screen. 

For example, if we use a graphical display to find the value of the burglary 

rate in California in 1980, the display must give us an opportunity to find 

the visual item corresponding to the year 1980, to the state California, and 

to the attribute “Burglary rate” (these are our task constraints), and then to 

extract the value of the attribute from this visual item. Hence, not only the 

item itself must be available, but also the information that allows us to 

identify it as corresponding to the constraints. 
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This was an example of an elementary task. Synoptic tasks also require 

the target and constraints to be present in a display or combination of dis-

plays. Since synoptic tasks deal with reference sets and the corresponding 

behaviours, these sets and behaviours should be seen on the screen. For 

example, if our task is to characterise the behaviour of the burglary rate in 

California over the period from 1960 to 2000, we need to see this entire 

period and the corresponding visual item(s) that represent the behaviour in 

the display. 

In general, synoptic tasks require that the entire reference set is open to 

view as well as the corresponding characteristics. However, this is not 

enough. For these tasks to be done effectively, it is desirable that the char-

acteristics are represented in such a way that the corresponding visual 

items are easily united into a single whole, so that the analyst can perceive 

them as a behaviour rather than as multiple individual items. Thus, the 

time graph in Fig. 3.12 was produced from 41 individual values of the bur-

glary rate in California, but the representation in the form of a line allows 

these 41 values to be perceived all together as a unit. We can grasp the 

overall behaviour in just one sight. 

Unfortunately, such a unified representation of an entire behaviour is 

rarely possible. In the example concerning multiple crime rates in Califor-

nia, we did not find a way to represent the joint behaviour of seven attrib-

utes as a single image. In the example concerning the burglary rates in all 

the states of the USA, we could not represent the entire reference set, i.e. 

space plus time, in such a way that the corresponding overall behaviour 

could be perceived from the display. The representation methods that we 

used, which involved space embedding and space partitioning (see Sect. 

4.3.2), allowed us to see only the aspectual behaviours. A pattern approxi-

mating the overall behaviour had to be derived from our perception of the 

aspectual behaviours. 

While the complexity of data rarely gives us an opportunity to create 

ideal conditions for accomplishing synoptic tasks, one should strive to 

meet the following requirements: 

Completeness. The entire behaviour (and hence the entire set of corre-

sponding references) must be visible. 

Unification. The visualisation should support effective linking of the 

visual items representing parts or aspects of the behaviour into a single 

perceptual pattern. 

Before considering these requirements in more detail, we would like to 

relate the principle “see the whole” to the teachings of the classics in visu-

alisation. First of all, there is a clear link to Bertin’s views, which were 

discussed in Sect. 4.3.1 and are briefly summarised below: 
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Graphical representation for information processing (i.e., in our terms, 

for exploratory data analysis) must be comprehensive, i.e. avoid any 

prior information reduction and allow one to find answers to any poten-

tial questions of any type or level. 

The most useful questions involve the overall level of reading. 

Ideally, a visualisation should be perceivable as a single image, in the 

minimum “instance of vision”. If it is not possible to construct such a 

visualisation, it is necessary to construct multiple comparable images (as 

few as possible) to provide answers to all questions. 

There is also a link to Shneiderman’s principle “overview first” from his 

well-known “Information Seeking Mantra” . 

We would also like to refer to Arnheim, who does not deal directly with 

data visualisation and analysis but considers the general properties of hu-

man vision and thinking. As we have already mentioned in Sect. 4.2, Arn-

heim argues that that perception consists in the grasping of relevant ge-

neric features of an object, and it is precisely this grasping of the character 

of a given phenomenon that makes productive thinking possible. Percep-

tion does not provide some “raw material” for thinking but immediately 

forms concepts, which are already quite general and abstract. It is these 

visual concepts that serve as material and tools for thinking. Hence, human 

perception and cognition are based on the approach “from above”, that is, 

from the whole to its constituents. This is highly related to our principle 

“see the whole”, which may also be formulated in a more precise form as 

“enable seeing the whole”. Any data analysis should start from an attempt 

to see the whole, and tools should support this appropriately. 

Now, let us have a closer look to the two aspects of seeing the whole, 

referred to as completeness and unification. 

5.4.1.1 Completeness 

The requirement of completeness implies that the entire reference set must 

be represented in a display whenever possible. As we mentioned in the 

section dealing with visualisation (Sect. 4.3.3), the dimensions of the ref-

erence set should preferably be mapped onto display dimensions. The 

mapping should preserve the essential properties and relations of the refer-

ence set such as ordering and distances but inhibit the influence of any 

emergent properties of the display (e.g. irrelevant ordering or distances) 

upon the analyst’s perception and reasoning. 

Recall that display dimensions provide positions for placing visual items 

(marks), i.e. create a kind of reference framework for marks. This is close 

to the role of referrers in data, which provide a reference framework for 
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attribute values. Therefore, it is natural when data referrers are represented 

by display dimensions and attribute values are represented by marks and 

visual properties of these marks, such as colours, shapes, and sizes. Such a 

representation corresponds better to the observer’s expectations and is 

therefore easier to perceive than if other representation principles are used. 

The following display dimensions are available for visualisation: 

the two dimensions of the screen plane, i.e. width and height; 

the third spatial dimension, depth (in perspective views or special me-

dia);

the temporal dimension, or display time; 

various arrangements in space, namely partitioning, embedding, and 

sharing;

space transformations, which change the properties of the display space 

to make them conform better to the properties of the reference set, for 

example node link structures, which introduce specific relations, or 

space segmentation, which eliminates an undesired perception of conti-

nuity. 

There are two aspects of the requirement for a complete representation 

of the reference set: the dimensionality of the reference set, i.e. the number 

of referential components, and the size of the reference set, which depends 

on the number of different values of each referrer. For a complete repre-

sentation, all the referrers must be mapped onto appropriate display dimen-

sions, and all the values must be mapped onto appropriate positions in 

these dimensions. This means that each of the dimensions used must pro-

vide a sufficient number of distinguishable positions for representing the 

values of the referrer mapped onto this dimension. 

It is also admissible that a referrer is represented by means of a retinal 

variable rather than a dimension. Recall that retinal variables correspond to 

the visual properties of marks: size, colour, shape, orientation, texture, etc. 

For example, in Fig. 4.4, where chains of arrow-shaped marks represent 

movements of objects, the orientation of the arrows is used to reflect the 

succession of the values of the temporal referrer. When a retinal variable is 

used, it is necessary that the variable can provide a sufficient number of 

distinguishable values to match the values of the referrer represented. It 

should be said, however, that representation of a referrer by a retinal vari-

able is seldom effective, and hence is not highly recommended. 

Of the display dimensions, the planar dimensions are the least limited 

with respect to the number of positions that they can provide. Although the 

display time also provides a potentially infinite number of different posi-

tions, this is not a priority choice for visualisation, because these positions 
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cannot be seen simultaneously, and hence comparison and grouping activi-

ties are seriously obstructed. It may be said that involving the display time 

in representing a reference set (e.g. in an animated display) does not fully 

meet the requirement of completeness: at each moment, the display shows 

only a part of the reference set or, more precisely, a slice resulting from 

fixing a specific value of one of the referrers.

This does not mean, however, that animated displays should never be 

used. When the spatial display dimensions are already in use, animation 

may be the only reasonable choice for representing a referrer with a large 

value set, since the other remaining dimensions (i.e. arrangements) do not 

provide enough positions. Thus, in Figs 3.16 and 5.6C, we could use a 

space-partitioning arrangement to represent only selected years of the pe-

riod from 1960 to 2000. Because of screen size limitations, it is not practi-

cable to display 41 maps simultaneously. Moreover, even if we had a very 

large screen on which all 41 maps could easily be fitted, the visualisation 

would be very difficult to perceive, since an explorer perceives each map 

as a separate image that needs to be studied and related to the other im-

ages. This process involves very many comparisons, eye movements, and 

attention switches. In contrast, an animated map is perceived as a single 

changing image, and human eyes need only to do their usual job, in which 

they are very well trained: to observe a dynamic scene and detect move-

ments and other changes. If the changes are coherent rather than chaotic, 

the animated presentation promotes unification, i.e. perception of the in-

formation as a single behaviour rather than a sequence of slices. A space-

partitioning arrangement does not have this property; it requires significant 

mental effort to reconstruct the behaviour from multiple distinct images. 

Nevertheless, the transient character of the information representation in 

an animated display is a serious disadvantage, which needs to be compen-

sated somehow. First of all, the user needs good facilities for controlling 

the animation: regulating its speed, stopping and resuming, jumping to a 

specific frame, and moving stepwise back and forth. Besides, the user 

should be able to retrieve selected frames for detailed examination and for 

comparison. The frames thus retrieved can be organised on the screen us-

ing a space-partitioning arrangement. Hence, rather than choose between 

utilising the display time or juxtaposing multiple displays, it is better to 

combine these two approaches to benefit from the strengths of each of 

them and mitigate their weaknesses. 

As we have said before, for a complete representation of a reference set, 

it is necessary to choose a dimension with a sufficient number of distin-

guishable positions (or, less preferably, a retinal variable with a sufficient 

number of distinguishable values) for each referrer. However, it is not al-
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ways possible to fulfil the requirement of completeness. Two basic prob-

lems may arise: 

1. A referrer has so many different values that none of the available di-

mensions or retinal variables can provide enough positions or values. 

2. There are so many referrers that it is impossible to represent all of them 

simultaneously by appropriate dimensions or variables. 

In the case of the first problem, data aggregation is typically used. 

Strictly speaking, aggregation does not solve the problem. It transforms the 

reference set so that the number of different references is significantly re-

duced, and a complete representation through the available display dimen-

sions becomes possible. However, this will be a complete representation of 

the transformed reference set, not the original one. As we discussed in the 

corresponding section (Sect. 4.5.4), data aggregation involves significant 

information loss. Hence, the requirement of completeness is violated at the 

stage of data transformation. 

Still, this does not mean that data aggregation is not recommended for 

use. It deserves to be recommended not only because there may be no 

other possibilities for dealing with a very large reference set, but also be-

cause data aggregation is a way to simplify the data and display, which is 

highly desirable for synoptic tasks. Data aggregation helps the analyst to 

disregard excessive detail and thereby promotes abstraction. 

Another possible approach to the visualisation of data with a very large 

reference set is the representation of selected portions of the data. Of the 

two approaches, aggregation is much more appropriate for synoptic tasks, 

while selection is more suitable for elementary tasks, which do not involve 

grasping of the overall behaviour but require every data element to be ac-

cessible. It may be said that aggregation, as compared with selection, is 

more compliant with the principle “See the whole”, since it provides a 

condensed representation of the whole dataset. Characteristics of aggre-

gates are not just arbitrarily selected attribute values; they are intended to 

provide appropriately condensed information about all the members of the 

aggregates.

As with the use of display animation, certain rules of thumb apply to 

utilising data aggregation in exploratory data analysis. These rules were 

discussed in Sect. 4.5.4, and here we shall briefly recall them: 

Be cautious with averaging. Pay attention to the value range, the charac-

ter of the distribution, and the presence of outliers. 

Prefer positional measures to means. 

Do not rely upon a single aggregation; vary the level and method of ag-

gregation.
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The latter recommendation implies that the tool used for aggregation pro-

vides sufficient flexibility in defining and characterising aggregates, allows 

the user to change choices previously made, and reacts promptly to such 

changes, with corresponding data reaggregation. 

Aggregation and selection are also used in the case when there are too 

many referrers. To be able to visualise highly multidimensional data, the 

explorer needs to eliminate the variation of the values of one or more refer-

rers and to use the available expressive means for the other referrers. There 

are two possible ways to eliminate the variation: either the explorer 

chooses a specific value of a referrer and disregards the others, or the data 

are aggregated by means of combining all values of a referrer. 

Let us explain these two opportunities with an example. In Chap. 2, we 

described a dataset containing the results of a simulation of forest devel-

opment under different forest management scenarios (see Sect. 2.3.7 and 

Fig. 2.11). This dataset includes five referential components: 

two-dimensional geographical space divided into forest compartments; 

time (measured in years; the simulation was done for 200 years); 

management strategy, with four possible values: natural, selective, Rus-

sian, and illegal; 

tree species, with six different values: aspen, birch, oak, pine, spruce, 

and lime (denoted in the dataset by its Latin name Tilia);

age group (represented by an integer number from 1 to 13). 

It is hardly possible to visualise these data in such a way that all the re-

ferrers are completely represented. We need to eliminate the variation 

within some of the referrers. The choice of these referrers depends on our 

goals. Let us suppose that our goal is to compare the development of the 

forest over time under the different strategies of forest management. This 

means that we should not eliminate the variation within the temporal refer-

rer and the management strategy referrer. A good candidate for elimination 

is the spatial referrer: if we choose to represent it fully, this will take two 

spatial dimensions of the display, while any other referrer may be repre-

sented using just a single dimension. For example, we can use the horizon-

tal dimension for the time, the vertical dimension for the age group, and an 

arrangement in which we partition the display space into four rows and six 

columns, and each row corresponds to a management strategy and each 

column to a species. Hence, the visualisation will consist of 24 images, 

each image corresponding to a particular combination of a management 

strategy and a tree species. Within each image, the areas occupied by dif-

ferent age groups at different time moments can be represented by propor-

tional sizes of marks (e.g. circles). 
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However, we need to handle the spatial referrer somehow. There are 

two opportunities: 

We select a specific value of the spatial referrer, i.e. a specific forest 

compartment, and consider how the species and the age structure de-

velop in this compartment over time under the different management 

strategies.

We aggregate all the compartments together; for example, we compute 

the total area for each species, age group, management scenario, and 

year over the whole forest. Then, we analyse how the species and the 

age structure develop in the forest as a whole over time under different 

management strategies. 

We do not claim that the resulting visualisation will be effective, and we 

shall not discuss how it may be used and what strengths and weaknesses it 

has (in fact, the tools that we have at our disposal do not allow us to build 

such a display). The only purpose of this example is to illustrate how the 

dimensionality of a reference set may be reduced by means of selection or 

aggregation.

Nevertheless, to be consistent with our emphasis on the role of visuali-

sation, we would like to give a visual illustration as well. This demon-

strates another possible way to reduce the dimensionality of the same data, 

out of the wide variety of options that exist. 

This time, we reduce the dimensionality at the cost of the referrer “Age 

group”. So, we apply data aggregation; specifically, we sum the areas oc-

cupied by different age groups of the same species, and hence disregard 

the age differences. To visualise the result of the transformation, we con-

struct a collection of four animated maps, each map corresponding to one 

forest management scenario. Hence, we use a space-partitioning arrange-

ment to represent the scenarios, the two-dimensional space within each 

image (map) for the spatial referrer, and the display time for the temporal 

referrer. To represent the species, we apply a space-embedding arrange-

ment: within the space of each map, pie charts portray the areas occupied 

by different species in each forest compartment. The sizes of the pie charts 

are proportional to the total area occupied by all the species together, while 

the angular sizes of the sectors show the proportions of the various species 

in the total area. Figure 5.8C demonstrates a screenshot from this visualisa-

tion corresponding to the 100th simulation year of the 200-year long simu-

lation period, and Fig. 5.9C shows the situation on the 200th year. The 

map in the upper left corner in each figure corresponds to the natural sce-

nario, the map in the upper right to the selective cutting scenario, the map 

in the bottom left to the Russian legal system, and the map in the bottom 

right to the illegal-cutting scenario.  
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We shall not perform a detailed analysis of the information perceivable 

from these maps, but instead suggest that readers note the differences be-

tween the consequences of the different forest management strategies. 

However, we would like to make some comments about the illustration in 

Figs 5.8C and 5.9C. 

In order to construct the animated maps with pie charts, we reduced the 

dimensionality of the data by means of aggregation over the age group re-

ferrer. The other referrers did not undergo reduction. However, we could 

not insert the animated maps in this book as an illustration. Therefore, we 

actually applied another reduction: we selected two particular values of the 

temporal referrer and produced static pictures corresponding to each of the 

values. Hence, both in Fig. 5.8C and in Fig. 5.9C two referrers are in a re-

duced state: the age group referrer has been reduced through aggregation 

and the temporal referrer through selection. 

Another comment is that, as a consequence of aggregation, we have lost 

the information concerning the age structure of the forest, which is very 

important for a comparison of the different scenarios. Therefore, it is nec-

essary also to try other ways to visualise and analyse the same data. Of 

course, it is possible to aggregate the data over the species dimension and 

look at the age structure irrespective of the species. Or, as we already men-

tioned, the dimensionality can be reduced at the cost of the spatial compo-

nent in order to consider both the species dimension and the age groups 

dimension. These and other transformations can be done analogously to 

what we did with the age group component. Of course, not only sums but 

also other aggregate characteristics can be used, depending on the nature 

and distribution characteristics of the data and the goals of the analysis. 

We would like to demonstrate another approach to reducing data dimen-

sionality. It is also based on the selection of values of the referrer(s) un-

dergoing reduction but applies another selection principle. The approach is 

demonstrated in Fig.5.10C. We have taken one screenshot of four ani-

mated maps corresponding to four different forest management scenarios. 

The screenshot corresponds to the 200th year of the simulated develop-

ment of the forest. In each map, the forest compartments are coloured ac-

cording to which species and which age group dominates, i.e. occupies the 

maximal area. Different colour hues represent the species, and the degrees 

of darkness represent the age groups: the older the trees, the darker the 

colour. Black signifies the compartments that have no or very few trees 

because of cutting. 

In this visualisation, reduction has been applied to both the species and 

the age group referrers. The reduction has been done by means of selecting 

certain values of these referrers. However, there are two differences be-

tween this selection and the selection of the 100th year in Fig. 5.8C and of 
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the 200th year in Figs 5.9C and 5.10C. First, the values are selected indi-

vidually for each combination of scenario, simulation year, and forest 

compartment. Second, the selection is not arbitrary but is made according 

to a certain rule. In this example, the rule prescribes that what is selected is 

the combination of species and age group for which the corresponding 

value of the attribute “Area” is the highest among all combinations. In 

principle, other rules may be applied as well. For example, a potentially 

useful rule could be to select the combinations for which the corresponding 

areas reach beyond a specified threshold (which may be specified as an 

absolute value or as a proportion of the total area of the respective com-

partment). For the selected combinations, coloured bars could be applied 

to portray the corresponding areas. 

Again, we shall not go into a detailed analysis of what we can learn 

from the visualisation of the dominant species and ages. Our main goal has 

been to demonstrate different ways of reducing the dimensionality of data 

rather than to perform an actual comparison of the different forest man-

agement strategies. 

Several important notes need to be made concerning dimensionality re-

duction. First, reducing the dimensionality by means of selecting a specific 

value of a referrer implies that the explorer must repeat the process of 

visualisation and analysis for every value of the referrer undergoing the 

reduction. The partial patterns so derived need to be integrated into an 

overall pattern. Second, when using aggregation, one should be aware of 

its pluses and minuses, which have been discussed earlier. The same 

guidelines as for handling large data volumes are also applicable in this 

case. Third, dimensionality reduction inevitably results in information loss. 

It is necessary to ensure that the information thus omitted is not over-

looked. For this purpose, the explorer should apply several different ways 

of reducing the dimensionality, so that components that are reduced in one 

view be fully represented in alternative views (at the cost of reducing some 

other components).  

It is true that the resulting procedure of data exploration becomes very 

complicated and requires considerable cognitive effort to join multiple par-

tial views into an integral overall pattern. However, the requirement of 

completeness can only be fulfilled when appropriate attention is paid to 

every data component. In a situation where it is impossible to consider all 

components simultaneously, there is no other way to fulfil this requirement 

that to use multiple complementary visualisations and try to integrate the 

partial knowledge derived from them into a coherent picture of the overall 

behaviour.

It is necessary to say that effective perception of the overall behaviour is 

not guaranteed even when there are enough display dimensions to repre-
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sent the referential components of the data. Let us recall the example of the 

visualisation of the variation of the burglary rate over the territory of the 

USA and over the time period from 1960 to 2000. Throughout the book, 

we have used three alternative mappings of the referrers of this dataset (i.e. 

two-dimensional space and time) onto the display dimensions: 

1. The spatial referrer is mapped onto the two-dimensional display space 

and the temporal referrer is mapped onto the horizontal dimensions of 

multiple subspaces embedded in the primary display space. This repre-

sentation is applied in the maps with superimposed time graphs shown 

in Figs 3.13 and 5.4C. 

2. The spatial referrer is mapped onto the two-dimensional display space 

and the temporal referrer is mapped onto a space-partitioning arrange-

ment. The resulting display consists of multiple maps corresponding to 

different years, as in Figs 3.16, 5.5C, and 5.6C. 

3. The temporal referrer is mapped onto the horizontal display dimension, 

and the spatial referrer is mapped onto a space-sharing arrangement 

(thereby, the inherent properties of the spatial referrer are ignored, and it 

is treated as a referrer of the population type). This mapping is applied 

in the time graph shown at the top in Fig. 4.47: the variation of the bur-

glary rate in each state is represented as a line on the graph, and the lines 

for the different states are overlaid within the same display space. 

We have also used an animated map display, where the temporal dimen-

sion was represented by means of the display time, but we could not in-

clude this visualisation as an example in the book.  

Let us compare the first and the second visualisation. Formally, they 

represent exactly the same information and are therefore equivalent (we 

cannot say the same about the third visualisation, which omits important 

properties and relations of the spatial referrer). But are they really equiva-

lent with respect to the information perceived from them? 

As we discussed earlier, the first representation allows us to perceive the 

local behaviours of the burglary rates in different states and the distribution 

of various behaviours over the territory of the USA. The second represen-

tation allows us to perceive the distribution of the burglary rates over the 

territory of the USA in different years and how this distribution changes 

over time (the same information can be perceived from the animated map 

display). These are two different sorts of information; we have called them 

“aspectual behaviours” and argued that they are not equivalent to each 

other and that neither of them is equivalent to the overall behaviour of the 

burglary rate in space and time (see Sect. 3.4.4). 

Hence, neither the first nor the second visualisation enables a perception 

of the overall behaviour, although there is no problem with data volume or 
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data dimensionality, and all components of the data are appropriately rep-

resented. What is the reason for our seeing only the aspectual behaviours 

instead of the overall behaviour? 

The reason lies in the distinction between the perceptual properties of 

the various display dimensions. The primary spatial dimensions, i.e. width, 

height, and, to some extent, depth,29 have uniform properties, first of all, 

continuity. Moreover, these dimensions are integrative, i.e. they jointly 

form a unified two- or three-dimensional space. As Bertin claimed and 

psychological studies have confirmed, this space, possibly filled with vis-

ual stimuli differing in a single feature such as colour or size, can be per-

ceived all at once, as a single image. No other dimension has the same ca-

pability. Thus, the temporal dimension does not allow us to see all the in-

formation simultaneously. The space-partitioning and space-embedding 

arrangements produce composite displays containing multiple smaller dis-

plays. Each of these subdisplays has its internal space, and the individual 

spaces of the subdisplays are not perceptually integrated. While each of the 

subdisplays taken separately can prompt holistic perception, the composite 

display is seen not as a single image but as a collection of images.  

When the subdisplays represent slices of the overall behaviour, each of 

the slices can be perceived holistically, i.e. we see each slice as a behav-

iour. Thus, each of the time graphs embedded in the map in Fig. 5.4C is 

seen as a single image of a local behaviour in time. Each map in the mul-

timap display in Fig. 5.5C or 5.6C is seen as a single image of a behaviour 

in space. Then, the entire composite display is perceived as variation of 

these images over a larger space. Thus, we see a variation of local tempo-

ral behaviours in Fig. 5.4C and a variation of momentary spatial behav-

iours in Fig. 5.5C or 5.6C. 

Hence, when there is no possibility to represent the whole reference set 

of a dataset using the primary spatial dimensions of a display, the visuali-

sation does not support the perception of the overall behaviour but only the 

perception of a certain aspectual behaviour. In order to fulfil the require-

ment of completeness, an explorer needs to consider all possible aspectual 

behaviours (if there is no special reason to give more priority to particular 

aspectual behaviours) and, on this basis, try to synthesise a concept of the 

overall behaviour. 

We have not discussed yet the third visualisation of the burglary rate 

data, that is, the time graph with multiple overlaid lines corresponding to 

                                                     
29  Depth is not fully equivalent to width and height unless a special three-

dimensional display medium is used. On a two-dimensional screen, the third 

spatial dimension has to be simulated by means of depth cues; it cannot be util-

ised in exactly the same way as the horizontal and vertical dimensions. 
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different states (Fig. 4.47). We have mentioned that this visualisation is not 

fully appropriate, because it omits the pertinent properties and relations of 

the spatial referrer. Therefore, exploratory analysis of these data should not 

rely upon this visualisation alone. This visualisation can only be used as a 

complement to other visualisations which preserve the essential properties 

of the referrers. 

However, would this visualisation be sufficient if the referrer were not 

spatial? Let us suppose that the time graph represents, for example, the 

variation of the yearly incomes of 50 different people or some other space-

irrelevant phenomenon. Can we say that we can perceive the overall be-

haviour of the phenomenon over the population and over time, since all 

data are shown within a single space, and there are no separate, non-

unifiable spaces of multiple subdisplays? 

We dare to say (merely on the basis of our introspection, since we are 

not aware of any relevant psychological studies) that a time graph has the 

potential to prompt a holistic view of the entire behaviour. However, this 

potential is limited with respect to the data volume; in other words, a 

space-sharing arrangement provides a limited number of distinguishable 

positions. When the lines on a time graph are too numerous, they typically 

overlap greatly, and this impedes the perception of the overall behaviour. 

With fewer lines, it is quite easy to detect some common behavioural fea-

tures, such as a general increase or decrease. Increases and decreases of 

value variability are also easily seen. One can make general observations 

concerning the presence or absence of any periodicity in the data. So, quite 

a large amount of knowledge can be gained just from the overall appear-

ance of the display, without scanning every individual line. 

When the lines are too numerous, data aggregation may be quite helpful 

to the analyst in building a concept of the overall behaviour. In Fig. 4.75, 

we have demonstrated an approach to using aggregation in a time graph 

display. This approach is based on the use of positional measures. Another 

approach is shown in Fig. 5.11C. We have divided the value range of the 

attribute “Burglary rate” (from 0 to 2907) into several intervals. The ag-

gregation tool has counted for each year how many values fit into each of 

the intervals. The resulting counts are represented in the lower part of the 

display in Fig. 5.11C. Here, each vertical bar corresponds to one year. It is 

divided into coloured segments with heights proportional to the number of 

values belonging to each interval. The upper part of the display is the 

original time graph, with the background coloured according to the divi-

sion of the attribute value range, which helps in understanding the lower 

subdisplay. The thick black line on the time graph connects the yearly me-

dian values. This is one more, rather crude, variant of aggregation. 
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The lower subdisplay in Fig. 5.11C offers a highly holistic view of the 

overall behaviour. We see a rapid decline of the green part (i.e. the number 

of states with low values) during the 1960s, a rise of the red part (corre-

sponding to high values) over the first two decades and a gradual decrease 

of this part over the next two decades, a peak of criminality in 1980 and 

1981, and a general improvement in the situation at the end of the entire 

period. This visualisation also allows more detailed observations. How-

ever, as we have already said, aggregation inevitably involves information 

loss. Therefore, the use of only aggregated data displays is not justified 

when there is a possibility to see the full information, as in the current ex-

ample. In such cases, aggregation serves as a useful complement to visu-

alisation of the original data but not as a substitute for it. 

In our discussion concerning the perception of overall and aspectual be-

haviours, we referred to the capability of certain display dimensions to be 

perceptually unified (specifically, the width, height, and depth of the dis-

play are perceived together as an integral space). So, we have already 

touched upon the topic of unification, which is quite closely related to the 

topic of completeness. 

5.4.1.2 Unification 

Data always consist of multiple individual items. Synoptic tasks require 

these multiple items to be regarded as a single unit, as the behaviour of the 

underlying phenomenon. Therefore, the tools used for exploratory data 

analysis, in particular, visualisation, should promote the perception of mul-

tiple data items as a single whole. 

It is relevant to refer here to psychological theories of visual perception, 

which attempt to describe how humans organise visual elements into 

groups or unified wholes. Most contemporary researchers in cognitive 

psychology recognise the “gestalt” principles, which were originally de-

veloped by German psychologists in the 1920s and later extended and re-

fined. The word “gestalt” means a unified or meaningful whole. Gestalt 

theory arose as a reaction to the prevalent psychological theory of the time, 

atomism. Atomism examined parts of things with the idea that these parts 

could then be put back together to make wholes. Gestalt theorists, in con-

trast, focused on studying how our mind perceives wholes out of incom-

plete elements. They believed that human perception and cognition pro-

ceed “from above”, from the whole to its constituents. Here is a brief 

summary of the gestalt principles based on material that we have found on 

the Web (where such material is quite plentiful): 

1. Principle of proximity. We tend to perceive elements as being associated 

when they are close together. 
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2. Principle of similarity. Those elements that share qualities (of colour, 

size, or shape, for example) will be perceived as part of the same form. 

3. Principle of good continuity. We prefer to perceive smooth, continuous 

contours rather than abrupt changes in direction. Elements that continue 

a pattern tend to be grouped together.

4. Principle of closure. We tend to enclose spaces by completing contours 

and ignoring gaps in figures. It follows from the principle of good con-

tinuity and allows us to group elements together or to interpret forms as 

complete even though parts may be missing.

5. Principle of figure/ground. We tend to perceive some visual elements as 

a figure, with a definite shape and border, while other elements appear 

as a ground, further away and behind the main focus of the figure. There 

are two other principles related to the organization of the visual material 

into figure and ground:

a) Surroundedness. The elements of an image that are seen as sur-

rounded will be perceived as the figure, and the elements that are 

doing the surrounding will be perceived as the ground.

b) Smallness/area. When two figures overlap, this principle states that 

the smaller of the two will be considered as the figure and the lar-

ger will be perceived as the ground.

6. Principle of symmetry. When elements may be viewed as parts of some 

symmetrical figure, they are seen as the whole figure. Arnheim consid-

ers symmetry as “a special case of fittingness, the mutual completion 

obtained by the matching of things that add up to a well-organized 

whole” (Arnheim 1997, pp. 64 65).

The most general principle, which embraces all others, is the principle 

of Prägnanz: We are innately driven to organise things in as good a gestalt 

as possible. “Good” can have various meanings, such as regular, orderly, 

simple, or symmetric, which then refer to specific gestalt principles. 

The gestalt principles suggest that human perception has an inherent 

tendency towards unification. However, the unification occurs only if the 

visual material allows this. Arnheim writes:  

Assimilation is probably the primary condition. Homogeneity prevails unless a 

sufficiently strong stimulus breaks up the field into separate units, as when a red 

object is seen on a green ground or when parts of the field are separated by a spa-

tial distance or when an object moves through an immobile environment. Separa-

tion by difference imposes itself also when the observer is called upon to make a 

choice among given items. (Arnheim 1997, p. 65) 

While the gestalt principles can be used consciously in art and design, it 

is not so for data visualisation. An artist or designer is usually quite free to 
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arrange visual elements and choose their colours, shapes, sizes and other 

features. In visualisation, the arrangement and visual properties of display 

items are not arbitrary; their task is to represent data, and hence they are 

determined by the data. When the positions, colours, sizes, shapes, or other 

features of display items encode elements of data, it cannot be guaranteed 

that the resulting picture will allow any of the gestalt principles to work. 

Nevertheless, there are certain techniques that promote holistic percep-

tion and are applicable to a range of display types. We have recently men-

tioned one such technique: in a time graph, positions corresponding to at-

tribute values at different time moments are connected by lines. In the re-

sulting graph, we have a single visual element, a polygonal line or curve, 

instead of multiple separate elements representing individual attribute val-

ues. This helps us to grasp the whole behaviour immediately, in one sight. 

The same technique was applied in our map showing the migration of 

storks (see Fig. 4.4). 

Another technique that works in a similar way is known as adjoining. 

For example, a bar chart is better perceived as a unified whole when the 

bars are in contact than when the bars stand separately. 

One more technique or, rather, recommendation is to use the integrative 

display dimensions, i.e. width, height, and depth, as much as possible. Not 

only are they perceived together as a single space but also facilitate holistic 

perception of marks positioned in this space. However, as Bertin’s image 

theory claims and psychological experiments mostly support, marks can be 

seen together as a unified whole only if they differ in one visual feature, 

for example colour or size. According to Bertin, only a visual construction 

involving two planar variables and one retinal variable can be perceived as 

a single image (Bertin did not consider the third spatial dimension, depth). 

This means, in particular, that only one spatially related attribute can be 

represented on a map display in a way that prompts unification. In such a 

map, the two available spatial dimensions of the display are utilised to rep-

resent the spatial referrer, and a retinal variable has to be used to portray 

the values of the attribute.   

However, data to be analysed typically contain more than three compo-

nents. In Sect. 5.4.1.1, we discussed how multiple referrers can be dealt 

with; here, we shall focus on multiple attributes. The following approaches 

to visualisation of multiple attributes are possible: 

1. Values of several attributes corresponding to a common reference are 

encoded in different visual features of a mark: position within a display, 

size, shape, colour, etc. Very often, positions cannot be used to represent 

attributes, since the spatial display dimensions have been chosen to rep-

resent referrers. In this case, only retinal variables may be combined to 
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encode different attributes. This situation always occurs in map displays 

of spatially referenced attributes. 

2. Multiple attributes are represented by means of charts – compound 

graphical constructions consisting of multiple, typically uniform graphi-

cal elements, where each element stands for one attribute. The elements 

are arranged in a certain way within a chart; this means that a chart uses 

at least one dimension of its internal space for the arrangement of the 

elements. Visual properties of the elements are used to encode the val-

ues of the respective attributes. Some examples are bar charts, pie 

charts, and segmented bars. Multiple charts can be embedded in the 

space of a map or other display. 

3. When there is a spatial dimension that is not used for a referrer, multiple 

attributes may share this spatial dimension, i.e. a space-sharing ar-

rangement may be applied. For example, this technique can be used to 

represent the behaviours of several numeric attributes in a single time 

graph. In this case, the vertical dimension is used for encoding attribute 

values. As we have mentioned before, this requires the attributes to be 

comparable, i.e. to have the same or very close value ranges. If this re-

quirement is not fulfilled, the attributes need to be transformed to be-

come comparable. 

4. Each attribute is represented in an individual display, and the displays 

are juxtaposed on the screen, i.e. a space-partitioning arrangement is ap-

plied. In particular, several spatially referenced attributes may be repre-

sented in multiple maps, which are put side by side for comparison. Ber-

tin and Tufte strongly advocate this technique (Bertin 1967/1983, Tufte 

1983, 1990) but not everyone is so enthusiastic about it. 

Let us now consider a few examples. We assume that the primary spa-

tial dimensions of the display are not available for representing attributes, 

since they are used to reflect referrers. With this assumption, map displays 

will be used for the purposes of illustration. 

We shall start with a situation where two spatially referenced attributes 

need to be jointly explored. Figure 5.12C demonstrates two different ap-

proaches to the representation of a pair of attributes on a map display. Spe-

cifically, we have taken the attributes “% 0 14 years” and “% 65 or more 

years” from the Portuguese census dataset.  

On the left in Fig. 5.12C, the values of both attributes are “packed” to-

gether into the colouring of the districts in the map. From Bertin’s view-

point, only one retinal variable, colour, is used. However, current research-

ers distinguish different components of colour and acknowledge the possi-

bility, in principle, of utilising these components for encoding different 

types of information. While the most widely accepted division of colour is 
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into hue, saturation, and brightness, an alternative division into red, green, 

and blue components also exists, especially in computer-based visualisa-

tion. We have applied the latter division and chosen the red component to 

portray the proportion of elderly people and the green component to por-

tray the proportion of children. So, the degree of greenness of the colour 

encodes the proportion of children in the population (the more children, 

the greener the colour), and the degree of redness encodes the proportion 

of elderly people (the more elderly people, the redder the colour). Low 

values of both attributes appear as yellow shades, and a brown colour, 

which is a mixture of red and green, would reflect high values of both at-

tributes, but such value combinations do not occur in the dataset.  

On the right in Fig. 5.12C, the values of the attributes are represented by 

visual properties of the triangular marks; specifically, the widths represent 

the proportion of elderly people, and the heights the proportion of children. 

So, tall, narrow triangles appear where there are many children but few 

elderly people, and low, wide triangles mark the places with few children 

and many elderly people. 

Is it possible to say which of these displays is better for the exploration 

of the joint spatial behaviour of these two attributes? The coloured map 

prompts unification strongly; it is definitely capable of being perceived all 

at once, as a single image. We cannot readily say the same about the map 

with triangles; it requires at least some training to be seen holistically (for 

us, it took about a minute). On the other hand, the coloured map is more 

difficult to interpret. It is easy to learn that green is used for children and 

red for elderly, but understanding the meanings of the various colour mix-

tures requires the viewer to look repeatedly at the legend. For the interpre-

tation of the triangles, it is sufficient to look at the legend once in order to 

understand the general principle. As soon as the principle has been 

grasped, the viewer can concentrate fully on observing the distribution of 

different shapes throughout the map. 

The triangles allow both selective attention to either of the dimensions, 

i.e. either to the width or to the height, and conjunctive attention to both 

dimensions, which takes the form of judging the shapes of the triangles: 

how harmonious they are. This is different from the perception of the col-

oured map: we cannot selectively attend to the degree of greenness or red-

ness and ignore the other component. However, since current computer-

based visualisation tools allow an explorer to use different displays for dif-

ferent purposes, there is no necessity to support selective and conjunctive 

attention simultaneously. 

A disadvantage of the coloured map in comparison with the triangle 

map is the information loss due to the classification involved: the attribute 

values are not transformed directly into colours, but instead the value 
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range of each attribute is divided into five equal-length intervals, and the 

colours are assigned to combinations of the intervals. However, the classi-

fication is quite fine and does not significantly distort the mental picture of 

the joint behaviour of the two attributes. Although no classification or ag-

gregation is involved in the triangles, they allow in any case only approxi-

mate judgement of the values. Generally, there is no strong necessity to 

combine capabilities to support unification and to enable exact judgement 

of values in a single tool, since there is the possibility to combine tools.  

It seems that we cannot reach a final verdict as to which of the visualisa-

tions is better. This appears to be largely a matter of personal details of 

perception, personal preferences, and training. Still, one general comment 

is relevant here. When data refer to areas in space rather than to points, 

they may be represented on a map either using area colouring or by means 

of symbols or charts (when data refer to points, area colouring is not appli-

cable). A disadvantage of the latter approach is that the symbols or charts 

may overlap significantly, which complicates perception. It is not always 

possible to regulate the sizes of the symbols or charts so that they do not 

overlap but still remain clearly visible. In our example, the overlapping of 

the triangle symbols is tolerable; however, to use diagrams, we need to 

increase the size of the map, as will be seen from the following examples. 

To conclude the current example, we can say that representation of two 

attributes by a combination of two retinal variables works sufficiently well. 

However, one cannot expect that any combination of retinal variables will 

work equally well. Thus, we were not happy with combining symbol size 

and colour. When the sizes of symbols are small, the colours are poorly 

distinguishable. The colours of larger symbols attract more attention than 

the colours of smaller ones. Hence, the attributes represented by the size 

and by the colour are treated unequally, and the values of the attribute rep-

resented by the size distort the perception of the values of the other attrib-

ute. Another remark is that trying to combine more than two retinal vari-

ables is hardly productive; at least, we cannot give an example where such 

a combination was effective. 

In the next example, we shall try to visualise simultaneously four attrib-

utes, specifically, the four age structure attributes of the Portuguese census 

dataset. This time, we shall apply the approach of building charts and then 

compare this with the use of four juxtaposed maps (“small multiples”). 

In Fig. 5.13, the attributes are represented by means of bar charts em-

bedded in a map. To reduce the overlap of the charts, we had to increase 

the size of the map. Since the resulting map is very large, only the northern 

half of it appears in the illustration. The attributes have quite different 

value ranges and are not directly comparable. Therefore, rather than repre-

sent attribute values by proportional bar heights, we have chosen another 
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approach. Each bar represents the value of one of the attributes by the po-

sition of its upper edge between the bottom and the top of the diagram. For 

each attribute, the bottom corresponds to the minimum attribute value and 

the top to the maximum attribute value occurring in the dataset; hence, 

each bar has its own scale. The bars constructed in this way characterise 

the position of each district of Portugal in relation to the other districts in 

terms of the proportions of the four age groups. 

Fig. 5.13. Four age structure attributes are represented on a map here by means of 

bar charts. Each bar represents the value of one of the attributes by the position of 

its upper edge between the bottom and the top of the diagram. For each attribute, 

the bottom corresponds to the minimum attribute value and the top to the maxi-

mum attribute value occurring in the dataset; hence, each bar has its own scale and 

is not comparable to the other bars in the same chart 

However, it is not our current task to investigate the relative position of 

each individual district with respect to the others. We need to overview the 

map and get an overall idea concerning the spatial behaviour of the age 
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structure of the population. For this purpose, we need to focus on the gen-

eral shapes of the charts and on how these shapes vary over the territory, 

rather than on the sizes of the bars in any individual chart. The question is 

whether the map supports this. It is clear that the charts do not form a uni-

fied image as readily as the colouring of the map in Fig. 5.12C, and defi-

nitely they require more training than do the triangles. Nevertheless, the 

overall pattern of the spatial distribution of the age structure can be per-

ceived with some effort. 

Fig. 5.14. The same four attributes as in Fig. 5.13 are represented here by means 

of “wheels” composed of four segments. The angular sizes of the segments are 

equal, and the radii portray the attribute values. The principle is the same as in the 

bar charts in Fig. 5.13: for each attribute, an individual encoding scale is used 

We have also tried another form of chart to represent the age structure. 

Figure 5.14 demonstrates a map of the same territory with the attributes 

represented by “wheels” or “wheel charts”. The principle of construction 
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of these charts is different from that of pie charts. Like a pie chart, each 

wheel is composed of four sectors, one sector per attribute. Unlike a pie 

chart, the angular sizes of the segments are equal, and the radii are used to 

portray the attribute values. As in the bar charts in Fig. 5.13, an individual 

encoding scale is used for each attribute. 

Our personal impression is that the wheels are better suited for grasping 

general shapes and their spatial variation than are the bar charts. We do not 

so much attend to the differences between the sizes of the individual sec-

tors as assess the shape of a wheel as “harmonious”, “nearly harmonious”, 

“distorted”, or “greatly distorted”. A shape close to round is perceived as 

harmonious, and all other shapes are judged according to their degree of 

deviation from roundness. 

Our sight can cover rather large regions, noting where the shapes are 

predominantly harmonious and where they are mostly distorted, and what 

the major character of the distortion is. But it is not only the shapes that are 

grasped. When the sectors are coloured according to which attribute they 

represent, we also attend to the distribution of colours over the map and 

note the regions where the amounts of different colours are balanced and 

the regions where some colours prevail.  

So, we can conclude that charts, at least certain types, can support the 

overall perception of the joint behaviour of several attributes. However, it 

can be predicted that increasing the number of attributes will make the task 

more difficult. Thus, from the map fragment in Fig. 5.15, one may con-

sider whether it is easy to deal with seven-sector wheels. 

Fig. 5.15. Increasing the number of sectors in wheel charts makes them more dif-

ficult to perceive 

Let us now look at the visualisation of the same four age structure at-

tributes by means of four juxtaposed maps, or “small multiples” (Fig. 
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5.16). These are unclassified choropleth maps where the attribute values 

are encoded by degrees of darkness. For consistency with the chart maps 

considered earlier, we have cut the choropleth maps so that they represent 

the same part of the territory of Portugal. 

Each individual map in Fig. 5.16 can be easily grasped as a single im-

age, but do all the maps together promote the formation of a unified mental 

image of the joint behaviour of the four attributes, i.e. the variation of the 

age structure over the territory? 

Fig. 5.16. The four age structure attributes are represented on separate maps here 

by means of area shading: darker shades correspond to higher values. Each map 

uses its individual value-encoding function 

The four maps are not perceptually fused into a single image. The task 

of forming a unified pattern of the joint spatial distribution has to be per-
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formed by means of multiple comparisons between the maps. We are not 

going to say that it is impossible to build an overall pattern in this way. 

Our point is that the multimap visualisation does not facilitate this task. 

This is not only our opinion. Thus, MacEachren refers to psychological 

studies showing that “vision is not particularly well suited to judging spa-

tial correspondence between two variables represented on side-by-side 

maps” (MacEachren 1995, p. 402), and mentions a group of Earth scien-

tists cooperating with his research team who rejected using “small multi-

ples” for multivariate analysis and preferred composite maps instead. 

Even Bertin, a well-known advocate of “small multiples”, admits certain 

deficiencies of this graphical construction and recommends using it in 

combination with a display containing all data components together. Thus, 

when there are three spatially referenced attributes, an array of three maps 

where each map represents a single attribute does not effectively support 

answering questions that address all three attributes simultaneously. There-

fore, in order to respond efficiently to all types of question, two types of 

graphic are necessary: the three-map visualisation and a single map show-

ing all three attributes together, for example by marks in which three reti-

nal properties, such as size, colour, and orientation, vary (Bertin 

1967/1983, pp. 154 155). 

As we have said, deriving an overall pattern from “small multiples” re-

quires numerous comparisons between the images. In such comparisons, 

an observer notes commonalities and differences between the images, but 

then complex synthetic work is required to proceed from these observa-

tions to a kind of overall pattern. The visualisation itself is not especially 

supportive of this work. In this connection, we would like to mention Arn-

heim’s argument concerning how an image is composed of its parts. One 

of the acknowledged rules of visual perception is the rule of similarity: 

things that resemble each other are tied together in vision. However, in 

most examples intended to show that similarity makes perceptual group-

ing, the effect is not created by similarity alone: 

Arrange a number of chips, some white, some black, in a random order, and you 

will see them loosely related by color without any definite grouping; but let the 

white chips form a straight line or a circle, and their segregation from the black 

ones will be immediate and stable. That is, similarity will exert its unifying power 

only if the structure of the total pattern suggests the necessary relation. (Arnheim 

1997, p. 55) 

From this general observation, it may be deduced that noting similarities 

among multiple displays does not by itself stimulate unification. Some or-

der or structure needs to be introduced for the similarity to start working. 

Therefore, it may be useful to provide the explorer with tools for rearrang-
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ing multiple images, analogously to the technique of matrix permutation 

suggested by Bertin (Bertin 1967/1983, pp. 256 259). This pre-computer 

method of manipulating a display, which could be applied to data pre-

sented on cards, consists in reordering rows and/or columns of a matrix. 

The elements of such a matrix may be simple marks varying by size or 

colour, but they may also be more complex graphical constructions such as 

diagrams or maps. The idea of the technique is to move similar elements 

closer together by reordering the rows and/or columns until some promi-

nent visual pattern emerges. The technique is also applicable to one-

dimensional arrangements of multiple displays, such as an array of curves 

representing time-series data. MacEachren acknowledged the potential 

usefulness of this technique in application to multimap displays, noting its 

particular suitability for analysis of large numbers of attributes, probably a 

minimum of 16, for a 4  4 matrix (MacEachren 1995, p. 403). It should 

be noted that it is hardly possible to construct an effective composite map 

that represents so many attributes simultaneously. 

What other approaches to handling large numbers of attributes could be 

used besides reorderable “small multiples”? Computational tools could be 

applied to reveal groups of correlated attributes. Then, it would be possible 

to take a single representative attribute from each group and, in this way, 

reduce the number of attributes considered together. Another approach is 

clustering, which can group references according to the similarity of their 

characteristics in terms of multiple attributes. Clustering results can be rep-

resented as a single multicoloured image, such as the maps in Figs 

4.120C  4.123C. However, a problem with such an image is that it is very 

difficult to understand what characteristics each colour corresponds to. 

Therefore, it is necessary to use additional tools that can provide some-

thing like “portraits” of the clusters. In our examples, we have used collec-

tions of histograms and parallel-coordinates displays. 

The requirement of promoting unification is relevant not only to attrib-

utes but also to referrers. We have touched upon the topic of unification 

several times in our discussion concerning completeness. Referrers are 

preferably mapped onto display dimensions, of which only the primary 

spatial dimensions effectively promote unification. Of the remaining di-

mensions, the display time, while not being ideal from the perspective of 

completeness, has more unifying power than the various possible arrange-

ments. As Arnheim says, “the views that follow each other in the sequence 

are fused in such a way as to appear as states of one and the same persist-

ing thing”, and the mind “is not limited to the view it receives at a given 

moment but is able to see the momentary as an integral part of a larger 

whole, which unfolds in a sequence” (Arnheim 1997, pp. 49 50). We have 
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already discussed some advantages and drawbacks of animated displays. 

Here, we would like only to say that animation is definitely recommended 

for use in combination with “small multiples”, especially when the display 

time represents a temporal or, more generally, a linearly ordered referrer (it 

is relevant to note that reordering of “small multiples” is not encouraged in 

such a situation, since the order is meaningful and cannot be changed arbi-

trarily).  

The formation of an overall pattern is also greatly promoted by means of 

data and display simplification. Let us now proceed to the consideration of 

the second principle, “simplify and abstract”. 

5.4.2 Principle 2: Simplify and Abstract 

We have already written rather much about simplification and abstraction. 

We have referred to Arnheim and the gestalt psychologists who character-

ise the process of human perception and cognition as a process of simplifi-

cation and abstraction, of organising the stimulus material according to the 

simplest pattern compatible with it. We have also referred to Bertin, who 

saw the goal of information processing (i.e. exploratory data analysis) as 

discovering the synthetic schema which is at once the simplest and the 

most meaningful. In defining synoptic tasks, we have introduced the no-

tion of a behaviour and the notion of a pattern as a parsimonious internal 

(mental) or external representation of a behaviour, i.e. a representation that 

is significantly simpler than an enumeration of all data items. 

Besides acknowledging the role of simplification and abstraction, we 

have also pointed out that these processes can and should be supported by 

exploratory tools. In discussing various tools, we have described, when-

ever relevant, how these tools can promote simplification and abstraction. 

Let us recall what categories of tools have been characterised as suitable 

for this purpose. 

In the section dealing with display manipulation, we discussed tech-

niques leading to the simplification of data displays. Most of these tech-

niques do not change the data but only the visual encoding of that data. 

The technique of display smoothing involves a data transformation and has 

therefore been mentioned both in the section on display manipulation and 

in the section on data manipulation. 

Basically, display simplification may be achieved in two different ways: 

1. The display is reorganised so that it appears simpler, while no informa-

tion is hidden. 

2. The display is simplified at the cost of reducing the information con-

tained in it. 
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The first way is preferable but not always possible. According to Bertin, 

the only technique that can lead to display simplification without informa-

tion loss is reordering of the graphical elements contained in the display. 

The basic idea is that reordering (or, more generally, arranging) may result 

in the elements being visually grouped into simple and interpretable shapes 

in accord with the gestalt principles of grouping by similarity, proximity, 

and good continuity. We have shown in Sect. 4.4.6 that the operation of 

visual comparison, which also preserves the entire information, can also 

lead to the same effect. This operation does not change the positions of the 

display items but manipulates their colour hues. Similarly coloured 

neighbouring items are perceptually associated into larger shapes, and this 

favours simplification and abstraction. 

The other tools for display simplification involve information loss. 

Smoothing and other methods of graphical and cartographical generalisa-

tion eliminate excessive detail and random fluctuations. Classification is 

based on uniform representations of groups of characteristics, that is, dif-

ferent characteristics belonging to the same group become visually indis-

tinguishable. In the resulting display, identical-looking neighbouring 

marks may be perceptually associated. Removal of outliers by means of 

focusing helps the explorer to concentrate his/her attention on the bulk of 

the data and abstract from the deviations that confuse the general picture.  

In the application of tools involving information reduction, it is impor-

tant to take care that the principal features of the behaviour under investi-

gation are not hidden. Thus, we have demonstrated that an operation of 

smoothing applied to a time graph may eliminate a significant peak in the 

variation of the values and exhibit a gradual decrease instead. To avoid 

being misled, the explorer should “play” with the tools, i.e. change their 

parameters and observe how this affects the display. The tools, in turn, 

must be designed so as to facilitate such “playing”. It should be very easy 

to change tool settings, and the reaction of a tool to any change should oc-

cur immediately. 

A great many data manipulation tools are also directed towards simplifi-

cation. We have considered two classes of such tools: attribute integration, 

which reduces the number of attributes under analysis, and data aggrega-

tion, which reduces the number of references and, hence, the number of 

corresponding characteristics. These tools also involve significant informa-

tion loss and need to be used cautiously. The same general approach, 

“playing” with tool parameters, may be recommended when one is using 

data reduction tools. There are also specific recommendations for data ag-

gregation: take into account the characteristics of the value distribution 

(such as the range, variability, and presence of outliers) and prefer posi-

tional measures to statistical means.  
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When the necessary precautions are taken, data aggregation becomes a 

very powerful means of simplification and abstraction: it can provide a 

highly abstract view of an entire dataset and expose its most general char-

acteristics in a compact form. Attribute integration is not so generally ap-

plicable. This technique is mostly domain-specific and requires domain 

knowledge to be applied meaningfully. 

Query tools, in particular, filtering techniques, can simplify a display by 

removing some visual items. However, this is not the sort of simplification 

that is the focus of this section. This simplification does not promote ab-

straction and building of an overall pattern; on the contrary, abstraction 

tends to be hindered. We have discussed the fact that query tools are 

mostly intended for answering elementary questions. They are not directly 

suitable for synoptic tasks, since they do not support the abstraction proc-

esses which are necessary for such tasks. However, in combination with 

other tools, query tools may be used for synoptic tasks as well. As we have 

explained in Sect. 4.6.3, query tools in such a combination serve as means 

for extracting groups of data elements with similar characteristics, while 

the other tools, first of all visualisation, aid unification and abstraction. 

The role of query tools in this symbiosis corresponds to the next principle 

on our list, “divide and group”. 

As to the computational tools, abstraction and simplification are their 

primary purpose. Both descriptive statistics and data mining aim at deriv-

ing a sort of “data essence”, characterising the multitude of particular in-

stances as something unified, something that reveals the distinctive fea-

tures of the dataset as a whole. Unlike the other tools for exploratory data 

analysis, computational tools simplify and abstract purely by exploiting the 

power of mathematics, without involving the abstraction capabilities of 

human analysts. The role of the latter is to interpret and verify the abstrac-

tions provided to them. 

Is it always necessary to use aids to simplification and abstraction in ex-

ploratory data analysis? In principle, humans have an inherent capability 

and tendency to simplify and abstract whatever they perceive. In some 

cases, it may be sufficient to supply an analyst with an appropriate data 

display and leave the rest to these natural abstraction and simplification 

processes. However, this is only possible when the data are not too numer-

ous and not too complex in their structure. Look, for example, at the dis-

play of earthquake occurrences in Fig. 4.80. Here, the data are too numer-

ous to be managed without aids to simplification such as aggregation 

(some examples of the results of aggregation of these data are shown in 

Figs 4.81 4.85C). Another example is the multidimensional dataset con-

taining the results of the modelling of forest development considered in 

Sect. 5.4.1.1. These data have a very complex structure, and therefore can-
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not be analysed or even fully visualised without simplification (some ap-

proaches are demonstrated in Figs 5.8C 5.12C).

Many of the tools mentioned in this section produce an effect of simpli-

fication by means of grouping data elements and/or the corresponding dis-

play items. Hence, these tools are also relevant to the principle “divide and 

group”, which will be discussed next. 

5.4.3 Principle 3: Divide and Group 

We would like to begin this section by citing an article from the Electronic

Statistics Textbook (StatSoft 2004). This article, which is titled “Categoriz-

ing, Grouping, Slicing, Drilling-down”, says: 

One of the most important, general, and also powerful analytic methods involves 

dividing ("splitting") the data set into categories in order to compare the patterns 

of data between the resulting subsets. This common technique is known under a 

variety of terms (such as breaking down, grouping, categorizing, splitting, slicing,

drilling-down, or conditioning) and it is used both in exploratory data analyses and 

hypothesis testing. For example: A positive relation between the age and the risk 

of a heart attack may be different in males and females (it may be stronger in 

males). A promising relation between taking a drug and a decrease of the choles-

terol level may be present only in women with a low blood pressure and only in 

their thirties and forties. … 

There are many computational techniques that capitalize on grouping and that 

are designed to quantify the differences that the grouping will reveal (e.g., 

ANOVA/MANOVA). However, graphical techniques (such as categorized 

graphs) offer unique advantages that cannot be substituted by any computational 

method alone: they can reveal patterns that cannot be easily quantified (e.g., com-

plex interactions, exceptions, anomalies) and they provide unique, multidimen-

sional, global analytic perspectives to explore or mine the data. (StatSoft 2004, 

http://www.statsoft.com/textbook/glosc.html) 

The importance of dividing and grouping for data analysis is widely 

recognised. In fact, the primary meaning of the term “analysis” is separa-

tion of a whole into its component parts, and it is hardly possible to do any 

analysis without separation. Therefore, we see no need for an additional 

argument in favour of dividing and grouping. Concerning the contents of 

this subsection, we have the following plan. First, we are going to show 

how the principle “divide and group” is related to our task framework. In 

parallel, we shall explain the difference and the relations between dividing 

and grouping. Second, we shall refer to the tools that can support dividing 

and grouping and remind readers of how these tools can do this. In the next 

subsection, we shall speak about comparing the outcomes of divid-

ing/grouping. In this connection, we shall touch upon the topic of combi-
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nation of different tools, which can be done, in particular, on the basis of 

division of the reference set. 

Dividing and grouping may be regarded as two sides of the same ana-

lytical process aimed at representing the overall behaviour of characteris-

tics over the entire set of references by a compound pattern, i.e. a pattern 

composed of several subpatterns. Each subpattern approximates some part 

of the overall behaviour, which is based on a certain subset of the reference 

set. Each subset is a part of the entire reference set, i.e. the reference set, as 

well as the overall behaviour, is divided. On the other hand, each subset is 

a collection of individual references, which are considered together as a 

unified whole. Hence, the individual references are grouped, as well as the 

corresponding individual characteristics, which are united into the subpat-

terns.

As means of building compound patterns, dividing and grouping are 

relevant to the synoptic tasks of behaviour characterisation (pattern defini-

tion). However, these activities are also strongly related to other types of 

descriptive synoptic tasks, namely pattern search, pattern comparison, and 

relation-seeking, which usually appear as subtasks of the general task of 

characterising the overall behaviour (see the examples in Sect. 5.3). Thus, 

pattern search implies separation of a subset of references that are the base 

of a particular pattern from the remaining references. Pattern comparison is 

typically applied to the outcome of division/grouping but it is also in-

volved in the process of division: an explorer may compare various subpat-

terns in order to decide how to better divide the overall behaviour. Rela-

tion-seeking takes place when the explorer looks for major changes in the 

behaviour from one part of the reference set to another. 

There are various approaches to dividing/grouping: 

1. By using domain knowledge (data semantics); for example, divide peo-

ple into males and females or divide a territory into coastal and inland 

parts.

2. On the basis of data structure; for example, consider the route of each 

stork separately. 

3. By applying a formal rule; for example, divide a time period into regular 

intervals.

4. On the basis of characteristics or behaviour variation; for example, 

group by similarity. 

Examples of the first approach to grouping are given in the above article 

from the Electronic Statistics Textbook: “A positive relation between the 

age and the risk of a heart attack may be different in males and females (it 

may be stronger in males). A promising relation between taking a drug and 

a decrease of the cholesterol level may be present only in women with a 
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low blood pressure and only in their thirties and forties.” In these exam-

ples, the analyst expects that some differences will exist between the be-

haviours based on certain reference subsets: the subset of males versus the 

subset of females or the subset of females with specific characteristics ver-

sus the entire population. These expectations come from the domain 

knowledge of the analyst. This knowledge suggests to the analyst how it is 

meaningful to divide the reference set. 

Examples concerning spatial and temporal data could be the division of 

a territory into coastal and inland parts (or into urban and rural areas, into 

mountains and flatland, etc.) and the division of a time period into working 

days and weekends (or into high, medium, and low tourist seasons, day 

and night time, etc.). In these examples, again some differences in the be-

haviours on these subsets may be expected on the basis of the analyst’s 

domain knowledge. 

Division on the basis of data structure occurs when the data have two or 

more referential components, for example, spatial and temporal compo-

nents. In such cases, the reference set and the overall behaviour are often 

divided into parts corresponding to different values of one of the referrers. 

Thus, one can consider the spatial behaviours of spatio-temporal data at 

different time moments, or one can look at the temporal behaviours in dif-

ferent places in the space. We applied such divisions to the dataset con-

cerning the US crime data. In the example concerning the storks, we have 

a temporal referrer and a population referrer (i.e. the set of storks). We can 

choose a specific stork and consider its behaviour (i.e. movement) in time. 

We can also choose a specific time moment and consider the distribution 

of all the storks in space at this time moment. 

Formal rules of division are frequently applied in classification and in 

data aggregation. Thus, in the classification of references according to val-

ues of a numeric attribute, it is customary to apply a division of the attrib-

ute value range into a specified number of equal-length intervals. Another 

widely used rule is to divide the data into equal-size reference groups, that 

is, the breaks in the value range are chosen so that the corresponding 

classes of references contain approximately equal numbers of elements. 

Demographers, who deal with reference sets consisting of districts of a 

territory, often choose to divide the whole set of districts into subsets with 

approximately equal total populations. 

Space is often divided into regular compartments (cells). We used such 

a division in the examples where we aggregated the earthquake data (see 

Figs 4.81 4.83) and the data about the forest structures (Figs 4.86C and 

4.87C). Division into regular intervals may be applied to a temporal com-

ponent of the data. Thus, in the mosaic signs in Fig. 4.12 representing 

monthly temperature data, we divided the time period into years, i.e. 12-
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month intervals. Then, we arranged the representations of the data for 

these periods so as to reveal the cyclic nature of the temperature changes. 

While this was an expected periodicity, it is also possible to apply the 

same approach to test whether a behaviour on some linearly ordered refer-

ence set is cyclic and, if so, to find the cycle length. In this case, an ex-

plorer iteratively divides the reference set into intervals of different length 

and looks to see whether the arrangement of the corresponding parts of the 

behaviour exposes any regular pattern. The interval length for which a 

regularity appears will be the cycle. 

Probably the most exploratory approach, by its nature, is division on the 

basis of variation of characteristics or of behaviour. In this case, the ana-

lyst does not know in advance how the data will finally be divided. In or-

der to decide how the data could best be divided/grouped, the analyst 

needs to observe the data and detect substantial differences in characteris-

tics or in behaviour tendencies between parts of the data. In Sect. 5.3, we 

have discussed how the behaviour of a numeric attribute over time can be 

divided into fragments of increase, decrease, stability, or fluctuation. In 

this case, the analyst does not divide the time period into any predefined 

intervals. Instead, the analyst looks for certain expected types of patterns 

(i.e. performs pattern search tasks) and notes “turning points” where one 

pattern type changes to another (pattern comparison and relation-seeking). 

Or, perhaps, the analyst does not look specially for occurrences of particu-

lar pattern types such as an increase or a decrease but simply notes the het-

erogeneity of the behaviour and tries to divide it into relatively homogene-

ous parts. In any case, the analyst needs to detect the major changes in the 

character of the behaviour; hence, relation-seeking and pattern comparison 

tasks are involved. These considerations apply not only to numeric attrib-

utes but also to any time-referenced data. Thus, the migration of the storks 

(a time-referenced spatial attribute) can be divided into movement to the 

south and movement back to the north plus, possibly, some smaller move-

ments in other directions. Another possibility is to divide the overall mi-

gration behaviour according to the speed of movement. 

A similar procedure may be applied to spatially referenced data. An ana-

lyst may note a heterogeneity in the spatial behaviour and try to divide the 

entire space into regions with consistent internal behaviours. This proce-

dure is known as regionalisation. It often takes the form of grouping loca-

tions or districts according to similarity of their characteristics in terms of 

one or more attributes. Grouping by similarity can also be applied to a 

population-type reference set, i.e. a set without ordering or distances. For 

example, students can be divided into groups according to their perform-

ance in various subjects. 



5.4 Principles of Selection of the Methods and Tools      513 

Let us now review exploratory tools from the perspective of their rela-

tion to dividing and grouping. A tool that is relevant to dividing/grouping 

may enable dividing or grouping and/or deal with the results of dividing or 

grouping, which may be obtained by means of this tool or a different tool. 

Among the tools for ordering and arranging, the matrix permutation 

technique suggested by Bertin enables grouping by similarity and, on this 

basis, division of the overall behaviour into diversified parts. Hence, the 

division/grouping is done on the basis of characteristics or of behaviour 

variation (approach 4).  The tools for arranging periodic or supposedly pe-

riodic data are based on dividing a linearly ordered reference set into regu-

lar intervals, which is an application of a formal rule (approach 3). 

The classification tools are meant primarily for dividing and grouping. 

There are tools that allow an explorer to define classes completely arbitrar-

ily, according to any criteria that he/she finds to be appropriate. This sup-

ports, in particular, division/grouping on the basis of domain knowledge. 

For example, we may wish to divide the districts of Portugal into several 

geographical regions. For this purpose, we may use a sort of “manual clas-

sification” tool, which allows us to specify the desired number of classes 

(regions), give names to the classes and choose colours for them, and itera-

tively select districts and assign them to one of the classes. 

Other classification tools divide references into classes according to the 

corresponding values of one or more attributes. Different techniques need 

to be applied depending on the types of the attributes, for example whether 

they are numeric, qualitative, spatial, or temporal, and on the number of 

attributes involved. In Sect. 4.4.3, we have considered examples of classi-

fication on the basis of a single numeric attribute (Figs 4.16, 4.18, and 

4.19), according to the dominant attribute among several comparable at-

tributes (Figs 4.21 and 4.22), cross-classification on the basis of two nu-

meric attributes (Fig. 4.23C), and classification on the basis of a temporal 

attribute with the value range divided into seasons (Fig. 4.24). Of course, 

these are not all of the possible variants of classification. 

In classification according to characteristics, various approaches can be 

supported. Most tools allow division/grouping by applying a formal rule. 

For example, the tool described earlier for classification on the basis of a 

single numeric attribute can automatically form a specified number of 

classes by dividing the value range of the attribute into equal-length inter-

vals or by choosing breaks such that the classes have approximately equal 

sizes. It can also produce a statistically optimal classification, which 

minimises the variance within the classes and maximises the differences 

between the classes. Being linked to an enhanced cumulative-curve display 

(see Fig. 4.71), the tool allows the explorer to use classification rules in-

volving other attributes. For example, the explorer can build classes with 
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equal populations or equal areas. A rather different example of a formal 

rule can be seen in classification according to the dominant attribute: the 

attribute with the highest value determines the class. The user may impose 

additional rules, for example that the situation where none of the attributes 

has at least 20% dominance over the attribute with the second highest 

value must be classified as “mixed”. 

A classification tool can also allow the involvement of domain knowl-

edge. Thus, the class breaks in a tool for classification on the basis of a 

numeric attribute may be chosen according to certain domain-specific cri-

teria. For example, we once dealt with a dataset concerning soil pollution 

by pesticides. In the relevant domain, there is a standard set of breaks for 

pesticide concentrations. The resulting value intervals are designated as 

very low, low, medium, high, and very high concentrations. The tool for 

classification on the basis of a numeric attribute allows one to specify such 

standard breaks and use them for definition of classes. Another example of 

using data semantics can be seen in Figure 4.24, where forest fires are 

classified according to the season when they occurred into spring, summer, 

and winter fires. 

Many classification tools also support exploratory classification, that is, 

they allow the analyst to interactively modify class definitions in the 

search for groupings that promote simplification and abstraction and help 

in grasping the distinctive features of the behaviour under study. An ex-

ample is the classification of spatial references (districts or point locations) 

according to various non-spatial attributes so that the classes form coherent 

spatial regions. In order to note when this criterion is achieved, the ex-

plorer watches a map display where the classes are represented by means 

of colouring, for example. The map display should react dynamically to 

changes in the class specifications (e.g. moving class breaks in a classifica-

tion according to a numeric attribute).  

The tool for visual comparison on a map (see Figs 4.34C 4.36C) works 

in a similar way, i.e. the map reacts dynamically when the user changes the 

reference value for the comparison. The primary purpose of this tool is the 

same as in the exploratory classification of spatially referenced data: it 

supports the finding of groupings that produce simple, clear, easily inter-

pretable spatial patterns (“good gestalt”). In principle, this idea can be gen-

eralised from maps to other displays where graphical elements can be col-

oured according to a classification. Thus, one may also look for a “good 

gestalt” in a scatterplot (we are not quite sure, however, whether a “good 

gestalt” can emerge in a parallel-coordinates display). 

Since forming a “good gestalt” is an important criterion in exploratory 

classification, it is appropriate to think how a classification tool can pro-

mote this. Typically, classification does not change the positions of display 
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elements but changes only their colours. Hence, the gestalt principles of 

proximity, good continuity, closure, and symmetry cannot be consciously 

exploited. Classification allows identically coloured display elements to be 

grouped visually according to the principle of similarity, but this principle 

as such is rather weak and can work only in combination with other princi-

ples. However, it may be possible to apply the principle of figure/ground 

differentiation, in particular, through choosing the “right” colours. 

It is beneficial for revealing the distinctive features of the behaviour un-

der investigation when the visual items corresponding to the members of 

some class can be perceived as a unified figure. Therefore, it would be 

good if the colours used for the classes could help the differentiation into a 

figure and a background or at least did not impede such a differentiation. 

Thus, when all classes have equally bright colours, it may be difficult to 

perceive any of them as a unity, as a figure on top of a background formed 

by differently coloured visual items. In the result, the entire image appears 

too complex; no simplification is achieved. A possible solution would be 

to “mute” some classes, i.e. represent them by unsaturated colours so that 

they could produce the effect of a background. The remaining class(es) can 

then be perceived more easily as an integral image. This idea is demon-

strated in Fig. 5.17C. A classification tool can help in perceiving patterns 

by allowing the user to temporarily “mute” or “switch off” the representa-

tion of some classes so that the user can check effectively whether the re-

maining classes form simple and understandable figures. Some of the clas-

sification tools that we know implement this feature. 

Another approach is to represent different classes separately in parallel 

displays rather than all together in a single display. Examples of represen-

tation of classes in multiple parallel displays can be seen in Figs 4.20 and 

4.24. The benefits of this approach are especially evident when the repre-

sentation in a common display suffers from severe overlapping of graphi-

cal elements (compare, for example, Fig. 4.20 with Fig. 4.19). However, 

display multiplication can only be recommended when the number of 

classes is quite small. 

The next big category of tools supporting division and grouping is that 

of data aggregation tools. Generally, the primary purpose of aggregation is 

not forming groups or partitions but rather data summarisation. However, 

for the summarisation, the results of grouping/dividing are needed. There-

fore, aggregation tools typically include facilities to divide or group. In 

principle, aggregation tools may use the same methods for defining groups 

or reference set partitions as do classification tools. Moreover, aggregation 

tools can, in principle, be implemented in such a way that they use the out-

put of any classification tool as their input and produce summaries of the 

classes specified. This is quite meaningful to do, since an explorer is usu-
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ally interested not only in obtaining certain groups or partitions but also in 

seeing the characteristics of groups in a compressed form and comparing 

these characteristics. For example, having defined classes of the districts of 

Portugal according to their geographical positions, we may be interested to 

see whether these classes differ with respect to employment in various sec-

tors of the economy. For this purpose, we need the values of the appropri-

ate attributes related to individual districts to be summarised over the 

classes. We may use an appropriate computational tool to obtain statistics 

such as the minimum, maximum, median, quartiles, statistical mean (aver-

age), and standard deviation of the attribute values for the entire set of dis-

tricts and for the classes.

An essential difference between classification and aggregation tools is 

that aggregation, unlike classification, “hides” individual data elements 

and treats groups as units. The groups and their collective characteristics, 

such as sizes and various statistics, are usually represented by means of 

special visualisation techniques. Therefore, aggregation tools are not so 

limited in the number of aggregates that they can produce and visualise as 

classification tools are in the number of different classes. Thus, the exam-

ple maps in Figs 4.81 4.83, 4.85C 4.87C show simultaneously a great 

number of spatial aggregates. It is interesting that these aggregates may, in 

turn, be grouped visually on the basis of the gestalt principles of proximity, 

similarity, etc. 

In discussing the possible methods of definition of classes in classifica-

tion tools, we did not mention dividing or grouping on the basis of data 

structure (approach 2 in our list of four existing approaches), since this 

approach is not relevant to classification. However, in using aggregation 

tools, this method of grouping is often possible and quite useful. Thus, in 

the example of visualising the multidimensional forest management data 

(see Figs 5.8C and 5.9C), we used aggregation to reduce the dimensional-

ity of the data. Specifically, we united together all references with different 

age groups but a common forest compartment, management strategy, time 

moment, and tree species. In Fig. 5.11C, aggregation has been applied to 

the entire spatial component of the crime dataset. 

The next group of tools that are very relevant to dividing and grouping 

is that of query tools. Typically, a query divides data into at least two 

parts: data satisfying the query constraints and data not satisfying the con-

straints.30 Some query tools produce finer divisions: when a query includes 

                                                     
30  There are some classes of query tools that do not operate according to this prin-

ciple. One class is that of direct manipulation tools that provide additional in-

formation when the user points on a display item (“What’s this?” queries). An-

other class includes tools for measuring metric relations such as distances. 
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several constraints, the data are divided according to how many constraints 

or which constraint combinations they satisfy. In fact, the outcome of such 

a tool is nothing other than as a classification of references according to 

characteristics, and can be visualised in the same way and used for the 

same purposes as other classifications. 

Querying can be a rather powerful and flexible means of defining sub-

sets of references. Most query tools allow the user to make use of domain 

knowledge in the formulation of query constraints. Thus, one can look for 

places and time moments where and when soil contamination by pesticides 

exceeds existing norms. With respect to time, query tools may allow the 

explorer to consider weekends separately from working days, or a period 

of growth of vegetation separately from a period of dormancy. With re-

spect to space, one may use query tools to consider urban areas separately 

from rural areas or mountains separately from lowlands. 

Generic query tools (i.e. with a functionality that is not restricted for the 

sake of dynamic responsiveness), as well as some specialised tools such as 

Time Wheel, temporal focusing, and temporal brushing, may be used for 

building queries and thereby defining subsets on the basis of the data struc-

ture. Thus, one can select crime data for all states for a particular year or, 

conversely, retrieve data for a particular state for the whole time period. 

There are query tools suited for data selection by using formal rules. For 

example, Time Wheel allows the user to select data for a particular month 

in all years, or data referring to particular times of day over a period of 

several weeks. 

Analogously to exploratory classification, where the analyst interac-

tively modifies class definitions and looks for patterns on maps or other 

displays, exploratory querying is possible. In this case, the goal of the ana-

lyst is not to find data with particular characteristics but to find divisions 

that produce simple and meaningful figures in some visual display. As we 

noted in Sect. 4.6, query tools as such do not handle the reference subsets 

that they select as integral entities and do not treat the corresponding char-

acteristics as unified behaviours. It is the job of a human analyst to con-

sider these subsets as wholes, to grasp the characteristics holistically as 

behaviours, to compare the perceived patterns of these behaviours, and, 

eventually, to unite them into an appropriate pattern for the overall behav-

iour. This is the main idea of the exploratory approach to divid-

ing/grouping. Dynamic query tools are especially suited for this purpose. 

Among the computational tools, the clustering techniques of data min-

ing are intended for the purposes of dividing/grouping. Clustering tools 

divide or group references on the basis of characteristics or of behaviour 

variation, i.e. this is a sort of exploratory grouping. The process is fully 

automatic but the user can modify the parameters of the clustering algo-
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rithm used, which may result in significant changes in the results obtained. 

However, the user typically does not know in advance how the results will 

change in response to this or that parameter modification. The user usually 

“plays” with the parameters in the course of seeking simple and readily 

interpretable groupings/divisions. Appropriate visualisation of the results 

of the clustering is needed for the user to understand what unites the refer-

ences within each cluster and differentiates them from the other clusters. 

The characteristics of the various tools and tool categories relevant to 

dividing and grouping are summarised in Table 5.1. 

Table 5.1. Tools and tool categories relevant to dividing and grouping 

Division/grouping principle Tool and/or 

category 

Produces 

division? 

Uses

division? Domain 

know-

ledge 

Data 

struc-

ture

For-

mal

rule

Exploratory 

(behaviour 

variation) 

Interactive 

permutation 

(arrangement) 

+     + 

Periodic

arrangement 

 + +  + + 

Classification +  +  + + 

Aggregation + + + + + + 

Querying +  + + + + 

Clustering  +     + 

Whatever methods and tools are used for dividing or grouping, the out-

comes are never regarded as the final result of exploration but rather as 

material for further analysis. The explorer always strives to understand the 

characteristic features of each reference subset resulting from the division. 

For this purpose, the explorer needs to compare characteristics of the sub-

sets. As Arnheim states, “to see means to see in relation”; so, it is time to 

move gradually to the discussion of the next principle. 

5.4.4 Principle 4: See in Relation 

We would like to start by citing again a statement from Arnheim’s book 

which was quoted in Sect. 3.7, since it is very relevant to the current topic 

of our discussion:  

Experience indicates that it is easier to describe items in comparison with others 

than by themselves. This is so because the confrontation underscores the dimen-
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sions by which the items can be compared and thereby sharpens the perception of 

these particular qualities. (Arnheim 1997, p. 63) 

In the next few sentences, Arnheim warns that comparison entails cer-

tain dangers, which emerge when reference items for comparison are cho-

sen arbitrarily. Thus, a comparison of the United States with China high-

lights characteristics quite different from the ones that can result from a 

comparison with France. We believe, however, that arbitrariness in ex-

ploratory data analysis can be diminished relatively easily. For example, in 

a comparison of results of dividing or grouping, an explorer deals with 

subsets of the same reference set defined in a consistent way by applying a 

common division/grouping procedure. If the explorer compares each sub-

set with all the others, the factor of arbitrariness is excluded. 

Let us now discuss how the results of dividing/grouping may be com-

pared and then consider what other comparisons are useful in EDA and 

how they can be supported by existing tools. 

Whether division/grouping is done interactively or automatically, the 

explorer uses a visual display to see the results. Thereby, the explorer not 

only notes how many groups there are and what elements each group com-

prises, but also compares the general characteristics of the groups visible 

in the display. Thus, when the analyst uses a map display, he/she compares 

the spatial positions and extents of the groups. When a parallel-coordinates 

display is the primary output medium for the results of the group-

ing/division, the analyst tries to grasp and compare the typical profiles of 

the groups and the variability of their characteristics, and to estimate the 

degree of separation or overlap between the characteristics of the elements 

of different groups. 

However, for more comprehensive comparison and characterisation of 

subsets, the explorer needs to combine several tools. In Sect. 4.8, we con-

sidered reference set division as an instrument for the combined use and 

coordination of several analytical tools working sequentially or in parallel. 

Various tools can reflect the outcomes of division/grouping by means of 

highlighting, filtering, focusing, colouring, rearrangement of display items, 

or display multiplication. Data transformation and computational tools can 

take the results of the division as their input and perform further data proc-

essing on this basis. 

Hence, on the one hand, reference set division is used as a means of tool 

combination; on the other hand, tool combination supports comprehensive 

examination and comparison of various characteristics of the subsets re-

sulting from the division. By utilising tool combination, an explorer can 

obtain a many-sided view of any subset. He/she can:  

observe its spatial position, extent, and shape on a map;  
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acquire a general idea concerning the distribution of the values of spe-

cific attributes over this subset from histograms or dot plots; 

grasp typical characteristic profiles from a parallel-coordinates display; 

look for possible correlations between values of different attributes in 

scatterplots; and 

obtain a summarised characterisation of the subset from an aggregation 

tool.

On this basis, characteristics of different subsets can be compared and dis-

tinctive features of each subset extracted.  

For the comparison, it is often especially advisable to use the display 

multiplication technique, i.e. to represent each subset in a separate display 

and to look at several such displays in parallel. We have done this many 

times throughout this book. We have multiplied parallel-coordinates dis-

plays to compare results of classification (Fig. 4.20) and of clustering (Figs 

4.126, 4.127, 4.132C, and 4.133C). We have represented the distribution 

of different classes of forest fires in several maps (Fig. 4.24). We used 

multiple box-and-whiskers plots to compare summarised characteristics of 

subsets (Figs 4.73 and 4.124).  In fact, a multimap display representing 

spatio-temporal data referring to different time moments (see Figs 3.16, 

4.46C, 5.5C, and 5.6C, referring to crime data, and Figs 4.5 and 4.6, refer-

ring to stork movement data) is nothing other than the display multiplica-

tion technique, used to represent different subsets (slices) of the reference 

set. The same applies to the visualisation of the forest management simula-

tion data in Figs 5.8C 5.10C, where the data have been sliced and, corre-

spondingly, the displays multiplied on the basis of the referential compo-

nent “management scenario”. 

The benefit of using multiple displays is that the representations of dif-

ferent subsets do not interfere with each other. As compared with a repre-

sentation in the same display, no effort is needed for an explorer to sepa-

rate one subset from another. The advantage of display multiplication is 

especially evident when representation in a common display results in se-

rious overlapping of marks corresponding to different subsets. Besides the 

convenience of subset separation, display multiplication is better in help-

ing the analyst to perceive each subset (and the corresponding characteris-

tics) as a unit. 

On the other hand, representation in a common display has its advan-

tages as well: as a rule, it is more convenient for perceiving the characteris-

tics of one subset in relation to those of another subset. For example, a 

common map display is convenient for the estimation of the relative spatial 

positions of groups of districts, spatial objects, or events. A common paral-

lel-coordinates display shows better the commonalities and distinctions 
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between the characteristics of two or more subsets in terms of different 

attributes.

Since the advantages provided by the two approaches are complemen-

tary, it is reasonable to use both of them. Thus, a visualisation tool may 

allow the user to switch between the representation of several subsets in a 

single display and display multiplication. In the single-display mode, spe-

cial techniques may be used to combat overlap. These techniques may be 

based on either aggregation or filtering.  

With aggregation, the portraying of individual elements is replaced by 

the representation of summarised characteristics of subsets. An example 

can be seen in Fig. 4.79C: in a parallel-coordinates display, the lines corre-

sponding to individual references have been replaced by elliptical shapes 

representing the deciles (i.e. the 10th, 20th, … percentiles) of the attribute 

values for the entire reference set and for two subsets (classes) of refer-

ences.

With filtering, the analyst may arbitrarily switch the representation of 

this or that subset on and off. For example, the parallel-coordinates display 

in Fig. 4.105 represents the elements of only two classes of a classification 

into five classes. Analogously, the parallel coordinates display in Fig.  

4.107C represents three selected classes of four, and the displays in Fig. 

4.108 and 4.109 represent a single class, with all other classes omitted. 

In principle, aggregation or filtering can also be used in combination 

with multiple displays. Hence, there are a variety of possibilities for the 

synoptic comparison of collective characteristics of several reference sub-

sets in terms of one or more attributes (the same process can be character-

ised, from a slightly different perspective, as the comparison of the partial 

behaviours of the attributes on these subsets). Table 5.2 summarises these 

possibilities.

Of course, it is not only characteristics of reference subsets resulting 

from division or grouping that may be compared. In our task framework, 

there are quite many subcategories of comparison tasks, both on the synop-

tic and on the elementary level. An important subcategory on the synoptic 

level is the comparison of behaviours of different attributes. In principle, 

the same two general approaches, display multiplication and representation 

of several behaviours in a common display, are applicable to such tasks. 

In Sect. 5.3, we considered an example of comparison of the temporal 

behaviours of seven different crime rates in the same place. We repre-

sented these behaviours on time graphs and looked for similarities and dif-

ferences (see Figs 5.2 and 5.3). As in the case of comparing characteristics 

of reference subsets, we used the technique of display multiplication: the 

behaviour of each attribute was represented in a separate display. We have 

mentioned that the behaviours could also be overlaid within a single time 
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graph, but for this purpose the attributes need to be transformed in order to 

make their value ranges comparable. 

We have also discussed earlier the fact that multiple juxtaposed displays 

(“small multiples”) do not promote unification, i.e. perception of the in-

formation contained in them as a single whole. Therefore, for the explora-

tion of the joint behaviour of several attributes, it is desirable to represent 

them in a single display, for example as in the maps using cross-

Table 5.2. General techniques for the comparison of partial attribute behaviours 

on different reference subsets or of the collective characteristics of these subsets 

 Multiple displays, one display 

per subset/behaviour 

Single display with all  

subsets/behaviours 

The analyst grasps the general 

character of each partial behaviour 

and its distinctive features or the 

general characteristic profile of 

each subset, and compares the 

general patterns thus derived.  

The analyst estimates differ-

ences and detects overlaps 

between characteristics of dif-

ferent subsets or between ma-

jor features of the behaviours. 

Technique

itself

Example: compare the spatial dis-

tributions (causes, severity, dura-

tion, etc.) of spring and summer 

forest fires. 

Example: are the areas of the 

highest concentration the same 

for spring and summer forest 

fires? 

The analyst gets a high-level, 

summarised view of the partial 

behaviours or collective character-

istics, and abstracts from details.  

Besides providing a summa-

rised view, aggregation helps 

in reducing mark overlap in 

the display. 

+ Aggrega-

tion 

Example:  compare the spatial 

variations of the density of spring 

and summer forest fires (medians 

of the burnt area, most frequent 

causes, etc.) 

Example: compare the con-

tours of the density isolines 

(equal-value lines) of spring 

and summer forest fires. 

The analyst may focus on particu-

lar subsets or subranges of attrib-

ute values and locate these with 

respect to each reference subset 

and partial behaviour. 

Besides focusing on particular 

value subsets or subranges, the 

analyst may switch on/off the 

representation of an entire 

subset/behaviour. This helps in 

reducing mark overlap. 

+ Dynamic 

filtering 

Example: compare the distribu-

tions of the spring and summer 

forest fires that have the longest 

durations. 

Example: where are the most 

severe spring fires with respect 

to the distribution of the sum-

mer fires? 
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classification and charts in Figs 5.12C-5.14. However, any display that 

favours unification of several attributes inevitably impedes or completely 

prevents the comparison of their individual behaviours. In contrast, multi-

ple displays are very well suited to behaviour comparison tasks. 

When a single display is intended to be used for behaviour comparison, 

a unification effect must be avoided so that the analyst can separate each 

behaviour perceptually from the others. A suitable approach is the use of a 

space-sharing arrangement, i.e. overlaying the representations of several 

behaviours in a common display, such as overlaying several lines in a time 

graph or overlaying several layers in a map display.  Such a representation 

is not sufficiently powerful for producing a unification effect, and the be-

haviours of the different attributes can be distinguished and compared.  

Mark overlap is a typical problem that arises when multiple behaviours 

are overlaid in a single display. This may be a serious obstacle to effective 

perception of the behaviours. To reduce overlap, aggregation and filtering 

are used, as in the previously considered case of comparing partial behav-

iours based on different reference subsets. 

Analogously to the previous case, multiple displays and a single display 

with overlaid behaviours have different perceptual properties and provide 

different possibilities for analysis. Multiple displays are good for grasping 

the general character of each behaviour and its distinctive features. The 

analyst compares the overall holistic patterns resulting from this grasping. 

An overlaid representation is better for the detection of correspondences 

between the distinctive features of different behaviours. For example, with 

an overlaid time graph, the explorer can easily check whether similar fea-

tures of different behaviours (e.g. an increasing or decreasing trend, a peak 

or a low point) occur in the same time interval or at the same moment. 

Let us consider one more example. In Fig. 5.18C, three concurrent map 

displays represent three attributes from the dataset about forests in Europe, 

specifically, the percentage of coniferous forest, the percentage of broad-

leaved forest, and the percentage of mixed forest. Recall that the data are 

specified in a raster format, i.e. the values of the attributes refer to cells of 

a regular grid with rather fine resolution. From the displays in Fig. 5.18C, 

we can grasp the general character of the spatial distribution of the values 

of each attribute. When we compare the maps, we see that the behaviours 

of the attributes are quite different, although there are some similar fea-

tures, more precisely, clusters of high values with similar, rather character-

istic shapes. It is hard to judge from the multiple maps whether these clus-

ters are in exactly the same places and whether they have the same extent. 

To perform such estimations, it would be more convenient to have the be-

haviours represented in a common map display. 
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A map display is, in principle, suitable for an overlaid representation of 

the spatial behaviours of two or more attributes. These behaviours may 

form several map layers, drawn one on top of another. Since upper layers 

may cover lower layers, it is usually necessary to take special measures to 

ensure that all map layers are visible. One possibility is to represent one of 

the behaviours by means of area colouring, while another behaviour is rep-

resented by symbols or by isolines (i.e. lines connecting points that have 

equal attribute values). A disadvantage is that it may be difficult to detect 

similarities when so different representation methods are used. Another 

option is that a layer drawn on top of other layers is made semi-transparent 

so that the information beneath it remains visible. A disadvantage is that 

drawing in a semi-transparent mode distorts the colours in both the upper 

layer and the background layer(s). This is completely unacceptable when 

colour variation is meaningful, that is, it is used to encode data. 

When a single tool is incapable of satisfying the analyst’s needs, tool 

combination is often helpful. In particular, a combination of a multilayered 

map display with a dynamic filtering tool may quite adequately support the 

comparison of several spatial behaviours. The idea is that filtering is ap-

plied to each attribute represented in a separate map layer so that only spe-

cific selected values are shown in the map. These selected values are por-

trayed identically, for example using the same colour, while other colours 

represent selected values of the other attributes. The layers are drawn in a 

semi-transparent mode, and hence colour mixtures correspond to the 

places where the selected values of several attributes are present. The fil-

tering tool allows the analyst to change dynamically the selection of values 

and, in this way, to investigate the behaviours for correspondence. 

An example of the use of a multilayered representation of several attrib-

utes in a map in combination with a filtering tool is demonstrated in Fig. 

5.19C. The same attributes as in Fig. 5.18C are shown in a single map as 

overlaid layers. The screenshots A–D from the map display correspond to 

different layer combinations (the map display tool allows one to switch the 

representation of any layer on and off): A, coniferous and broadleaved; B, 

coniferous and mixed; C, broadleaved and mixed; D, all three layers. In all 

the layers, small attribute values have been filtered out by means of a dy-

namic query tool. The query constraints were selected so as to make the 

characteristic features of each spatial behaviour well exposed.31

The values satisfying the respective query constraints are represented 

using a single colour for each query constraint. The colour correspondence 

is the same as in Fig. 5.18C: blue is used for coniferous forests, green for 

                                                     
31  For this purpose, we introduced a lower limit of 9 for the percentage of broad-

leaved forest and a lower limit of 3 for each of the other two attributes. 
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broadleaved, and red for mixed. Layers drawn on top of others are shown 

in a semi-transparent mode. Hence, colour mixtures occur where the val-

ues of two or three attributes satisfy the respective query constraints. Spe-

cifically, a turquoise blue colour corresponds to a mixture of coniferous 

and broadleaved forest, a purple colour to a mixture of coniferous and 

mixed forest, light brown (or dark orange) to a mixture of broadleaved and 

mixed forest, and dark brown to all three forest types together. 

This overlaid representation of two or three behaviours in a common 

map display allows us to observe a quite good spatial coincidence of the 

distinctive features of these behaviours, specifically, the spatial clusters of 

relatively high values. Thus, from the apparent dark brown shapes in the 

screenshot D, we see that some clusters are common to all three attributes. 

We can also see that there is more commonality between the behaviours of 

coniferous and mixed forests than in the other attribute pairs. 

From the discussion of the example visualisations in Fig. 5.18C and 

5.19C, an observation can be made. It seems that the representation of be-

haviours in multiple displays supports direct behaviour comparison tasks 

better, while the overlaid representation in a single display is more suitable 

for inverse comparison tasks. Thus, with the multiple maps in Fig. 5.18C, 

we can answer the question, “What are the similarities and differences be-

tween these behaviours?” With any of the multilayered maps in Fig. 

5.19C, we can answer another question, “Are the similar subpatterns of the 

different behaviours based on the same reference subsets?” A similar ob-

servation can be made from comparing multiple time graph displays of 

several time-referenced attributes and a single display with overlaid repre-

sentations of the behaviours of all the attributes. 

Let us also briefly discuss how behaviours of attributes referring to a 

(statistical) population, i.e. a discrete reference set without ordering or dis-

tances, may be compared. Such behaviours are usually characterised as 

statistical distributions and can be represented, for example, by frequency 

histograms, cumulative frequency curves, or graphs of the probability den-

sity functions. Hence, to compare the behaviours of different attributes, an 

analyst can look at multiple histograms or multiple graphs. Probability 

density graphs or cumulative curves of different attributes may also be 

overlaid in a single display. The two approaches differ in the same way as 

in the case of maps or time graphs. 

When multiple displays are used for the representation of several behav-

iours, they may be manipulated consistently to allow different types of 

comparison. An example has been demonstrated in Fig. 4.141, where co-

ordinated histogram displays represent the frequency distributions of the 
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values of the four age structure attributes in the Portuguese dataset.32 At the 

beginning, each display has its individual horizontal and vertical scales. 

The horizontal scales represent the value ranges of the attributes, and the 

vertical scales represent the frequencies of the values. In this mode, the 

explorer can compare the general shapes of the histograms. The displays 

can be manipulated to have a common vertical and/or horizontal scale. A 

common vertical scale allows the analyst to compare bar sizes between 

different histograms. A common horizontal scale enables the comparison 

of the relative positions and sizes of the value ranges, as well as the rela-

tive positions of the most typical values of the attributes. As in the other 

examples considered above, transformation of the values of the attributes 

may make them easier to compare. 

For the simultaneous manipulation of multiple map displays represent-

ing different attributes, it is usually required that the displays use a com-

mon visual encoding function. This, in turn, is possible when the attributes 

are comparable, i.e. qualitative attributes have identical or significantly 

overlapping value sets, or numeric attributes have close value ranges. For 

example, in Fig. 5.20C, we have represented three age structure attributes, 

“% 0 14 years”, “% 15 24 years”, and “% 65 or more years”, on three 

unclassified choropleth maps with a common function for encoding nu-

meric values by colour shades (proportional degrees of darkness). This is 

different from the four maps in Fig. 5.16 having individual functions for 

value encoding. It is not occasional that we did not include the attribute “% 

25 64 years” in the visualisation in Fig. 5.20C: its value range differs very 

much from the ranges of the three other attributes characterising the age 

structure.

In the lower part of Fig. 5.20C, we have demonstrated the effect of ap-

plying a common display manipulation tool, specifically “visual compari-

son”, to all three maps simultaneously. In all the maps, the reference value 

in the visual comparison operation is the same, and the colour encoding 

remains consistent. Such a simultaneous manipulation of multiple displays 

may help in noting similarities and differences between the behaviours. 

However, it may be noted that the representation with a common encod-

ing function in Fig. 5.20C does not expose the similarity of the behaviours 

of the attributes “% 0 14 years” and “% 15 24 years” so explicitly as the 

                                                     
32  Although the referrer of this dataset is space rather than a statistical population, 

it is nonetheless quite valid to use frequency histograms or other techniques 

suitable for population-type referrers (e.g. scatterplots or parallel-coordinates 

displays). Such techniques do not take into account the spatial relations be-

tween the references but can be helpful in the exploration of various space-

irrelevant features of the data. 
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visualisation with separate encoding functions in Fig. 5.16. This happens 

because the value ranges of the two attributes, although quite close, never-

theless differ: the values of the first attribute range from 11.13 to 27.5, and 

the values of the second attribute range from 8.82 to 21.32. While the gen-

eral features of the behaviours of these attributes are very similar, the val-

ues in any district are different, and hence are encoded by different shades. 

Therefore, the maps of the two attributes look different, especially when a 

visual comparison operation is applied. Hence, it is not axiomatically rec-

ommendable to use multiple displays with a common encoding function 

for the visualisation of different attributes even when their value ranges are 

quite close. 

On the other hand, it is very convenient to have the opportunity to ma-

nipulate several displays simultaneously. For example, a visual compari-

son operation can be very supportive for noting spatial patterns, and it is 

useful to be able to exploit this capability to compare spatial behaviours of 

several attributes. To make this possible, it is recommended that one trans-

forms the attributes so that they become more comparable. We have men-

tioned such transformations in the Sect. 4.5.2. For attribute integration, it 

was important to ensure that all attributes had comparable value scales. 

The same idea is also applicable to the visualisation of multiple attributes. 

An example is demonstrated in Fig. 5.21C. 

To produce this visualisation, we have transformed the values of the age 

structure attributes into z-scores, or standardised deviations from the re-

spective means (see the formula (4.5) in Sect. 4.5.1.1). Note that this time 

we have included the attribute “% 25 64 years” in the visualisation: after 

the transformation, its value range has become quite comparable with the 

other value ranges. In the visualisation, the brown shades correspond to 

positive values, and the blue shades to negative values. Recall that positive 

values signify positive deviations from the mean (i.e. the original values 

are higher than the mean), and original values lower than the mean are 

transformed into negative z-scores. The display manipulation tool (“visual 

comparison”) used here allows the user to change the default midpoint of 

the diverging colour scale from 0 to any other value. 

From the visualisation in Fig. 5.21C, the similarity of the behaviours of 

the attributes “% 0 14 years” and “% 15 24 years” is clearly visible, 

while differences are also easily detectable. The behaviour of the attribute 

“% 65 or more years” appears to be opposite to that of the attribute “% 

15 24 years”. The behaviour of the attribute “% 25 64 years” is neither 

similar nor opposite to that of any other. 

Not only the standard normal transformation (i.e. the transformation to 

z-scores) may be helpful in behaviour comparison, but also other methods 
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that transform absolute attribute values to relative values and ensure that 

multiple attributes have a common value scale. In particular, temporally 

referenced attributes may be transformed by computing relative changes 

(ratios or percentages) with respect to their values at a selected time mo-

ment, for example the beginning of the period that the data refer to.  

When the data are multidimensional, i.e. have two or more referrers, 

comparison of behaviours becomes quite a difficult job, be it comparison 

of partial behaviours of the same attribute based on different reference 

subsets or comparison of behaviours of different attributes based on the 

same reference (sub)set. Multiple displays may be needed for the visualisa-

tion of a single behaviour, for example multiple maps for space- and time-

referenced data. It may be a problem to have two or more collections of 

multiple displays simultaneously on the screen in order to compare two or 

more behaviours. Limitations are set, on the one hand, by the available 

screen size and resolution, and on the other hand, by the human perceptual 

capabilities. Displays that are too small may be not legible, and displays 

that are too numerous may cause cognitive overload or confusion to the 

user. Viewing two or more animated displays at the same time is also 

hardly productive, since it is impossible to pay equal attention simultane-

ously to all the displays and note similar and different developments over 

time effectively. 

A more feasible strategy may be to consider the behaviours that need to 

be compared one by one. The analyst is expected to grasp the major fea-

tures of one behaviour, store them in his/her mind or somehow note them 

on paper or in an electronic medium, and then try to detect the same fea-

tures in another behaviour. After that, the explorer tries the same process 

the other way around. The analysis may require several iterations of the 

process.

It is sometimes possible to represent multiple behaviours in a common 

display or collection of displays. For example, if the data about European 

forests were time-referenced, we could apply the same solution as in Fig. 

5.19C but the display would be animated, or we could construct several 

displays for different time moments and link them to the same filtering 

tool so that the constraints could be set simultaneously for all the displays. 

It should be remembered, however, that an overlaid representation of mul-

tiple behaviours in a single display provides somewhat different possibili-

ties for exploration than a representation of these behaviours in multiple 

concurrent displays. 

In the section dealing with the principle “see the whole”, we have spo-

ken about the reduction of the dimensionality of the data, which is applied 

when there are not enough display dimensions and variables for an appro-

priate visualisation of all components of a multidimensional dataset. The 
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same approach can be used when it is necessary to compare the behaviours 

of several attributes on a multidimensional reference set. Recall that di-

mensionality may be reduced by means of selection or aggregation. Hence, 

multiple concurrent displays can represent several behaviours in an aggre-

gated form or show selected slices of these behaviours. For example, mul-

tiple aggregated views like those in Fig. 5.11C could be used to represent 

the behaviours of different crime attributes. 

Besides synoptic tasks of comparison of behaviours, there are also ele-

mentary tasks in which values of attributes or referrers are compared. 

Since elementary tasks, in general, play a less important role in exploratory 

data analysis than do synoptic tasks, we prefer to avoid a very detailed dis-

cussion of possible support for various kinds of elementary comparisons. 

So, we shall give only a few brief notes. 

Relations between values of attributes or referrers can often be per-

ceived quite well from a representation in a visual data display. Thus, from 

a representation of numeric values by horizontal or vertical positions or by 

symbol sizes, one may judge which of two values is greater. From a repre-

sentation of values of a spatial attribute or referrer in a map, it is easy to 

see their relative spatial positions (e.g. one value is south of the other) and 

the distance between them. 

Sometimes, when values are close, it may be hard to differentiate them 

only on the basis of their representation. Another problem is that an exact 

measurement of differences or distances may be impossible. The design 

principles developed for paper graphics and maps pay much attention to 

the accuracy of judgements of values from a visual representation. For ex-

ample, it is recommended to prefer a representation of numeric values by 

positions within a display to a representation by symbol sizes since the 

values can be retrieved more accurately from positions than from sizes. 

The use of different colours or even different degrees of darkness of the 

same colour for numeric values is strongly discouraged. 

Unlike paper graphics and maps, data displays on computer screens do 

not force an observer to judge and differentiate values only on the basis of 

their visual representation. When an accurate estimation is required, the 

observer may use query tools. There are query tools specifically intended 

for the measurement of distances (differences) between data items. How-

ever, not only these tools are appropriate for comparison tasks. Various 

dynamic query tools, including direct manipulation tools, which are espe-

cially convenient and time-efficient, can also be very helpful. One can use 

such a tool to retrieve exact values, which can then be compared. 

Besides querying, some computational tools also support comparisons 

quite well, for example a tool for the computation of changes over time. 

The visual comparison tool discussed in Sect. 4.4.6 is suitable not only for 
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synoptic tasks (since it favours mark unification and pattern perception) 

but also for elementary comparison. Thus, one can compare the currently 

chosen reference value with any other value present in the display. While 

the tool does not show the exact differences, it is easy to find out which 

values are greater than the reference value and which are smaller. 

It may be seen that elementary comparisons are done in a quite different 

way from synoptic comparisons and, naturally, require quite different 

tools. Let us now return to the synoptic level and move on to the next prin-

ciple in our list. 

We have mentioned in Sect. 5.4.3 that an explorer looks at the results of 

division represented in various displays in search of “good gestalt”, i.e. a 

simple and easily interpretable pattern. In so doing, the explorer bases 

his/her actions not only upon innate gestalt principles and aesthetic criteria 

but also upon his/her expectations of what sort of meaningful figures might 

be revealed. These expectations depend on the nature of the data and the 

underlying phenomenon and on the type of display used. In the next sub-

section, we shall discuss what tools can support looking for the expected 

patterns or subpatterns and how they can do this. 

5.4.5 Principle 5: Look for Recognisable 

In the examples of data exploration given in Sect. 5.3, we demonstrated 

how pattern search tasks are involved in the analysis process. The basic 

idea is that an explorer does not simply look at data but looks for certain 

features of the behaviour. Thus, in an exploration of the dynamics of the 

burglary rate in California, an analyst may look for increasing and decreas-

ing trends, periods of relative stability, and periods of intense fluctuation. 

The analyst expects in advance that some of these pattern types will be 

present in the data. These expectations are based on a knowledge of the 

nature of the data, specifically, that this is a time-referenced numeric at-

tribute. Besides expecting that certain pattern types may be found in the 

data, the analyst also has an idea of what these patterns may look like in 

the type of display used for the exploration, specifically, a time graph. In a 

time graph, each pattern type appears as a line fragment with certain char-

acteristics of the shape and slope. Hence, the task of the analyst is to divide 

the entire line into fragments with characteristic shapes identifiable as an 

increase, a decrease, etc. 

A similar activity of detecting expected and interpretable patterns takes 

place in the exploration of spatial data (i.e. data that have a spatial referrer 

or a spatial attribute). Thus, when an explorer studies the spatial distribu-

tion of events such as crime incidents or disease occurrences, he/she looks 
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for areas of high concentrations of these events and, perhaps, for some-

thing similar to linear arrangements. The explorer may also expect a pat-

tern such as an increasing or decreasing concentration in some direction, 

for example from north to south, from the coast to inland, or from the cen-

tre to the periphery. When the analyst studies the distribution of the values 

of a spatially referenced attribute, he/she looks for clusters of neighbouring 

locations or districts with the same or close values. If the attribute is or-

dered, in particular, a numeric attribute, another type of pattern that can be 

expected is a consistent change (an increase or decrease) in some direction. 

The principle “look for recognisable” means that the tools for analysis 

need to be selected so as to allow the detection of the expected and mean-

ingful types of patterns, which depend on the nature of the data under 

analysis. Not only the formal characteristics of the data (such as the num-

ber and types of the referrers and attributes) but also domain knowledge 

concerning the underlying phenomenon are important.  

Let us compare, for example, a dataset containing occurrences of a dis-

ease that is typically caused by an infection or a contaminant and a dataset 

containing occurrences of earthquakes. Each dataset consists of a popula-

tion-type referrer (a set of disease cases and a set of earthquakes, respec-

tively) and two major attributes, space (where a disease case or earthquake 

occurred) and time (when the event took place). Hence, from a formal 

viewpoint, the datasets are identical; however, the expected patterns are 

quite different.

For the disease, an explorer may expect one or a few concentration clus-

ters to appear, spread, shrink, and perhaps move over time. Nothing like 

this can be expected in the spatio-temporal distribution of earthquakes. At 

any selected time moment, no clusters typically exist; there will be either a 

single earthquake occurrence or no occurrences at all. Only when earth-

quakes that occurred over an extended time period are considered simulta-

neously will some concentrations perhaps be seen, in particular, around 

geological faults.

Concerning the behaviour of earthquakes over time, an expected and po-

tentially interesting type of pattern is the occurrence of a series of earth-

quakes in the same or nearly the same place during a relatively short time 

period, say, from a few days to a few weeks. Let us call this pattern a “spa-

tio-temporal cluster”. This is different from the major pattern type ex-

pected in the behaviour of disease cases, which can be described as “tem-

poral development of a spatial cluster”, including formation, spreading, 

shrinking, and dissolving. 

The definition of the pattern type actually contains a clue as to what 

kind of tool is needed to detect and observe patterns of this type. “Tempo-

ral development of a spatial cluster” suggests the use of an animated map 
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or a series of juxtaposed maps. In such visualisations, the entire time pe-

riod that the data refer to is typically divided into short, regular intervals 

such as days or 10-day periods, depending on the timescale of the devel-

opment of the underlying phenomenon. Each map state in an animation or 

each individual map in a series shows the events that occurred during a 

certain interval and allows an analyst to detect spatial clusters. If the events 

are numerous, the data on individual events can be transformed into a field 

(raster) of event density so as to make the clusters better visible. By view-

ing the sequence of states of the animated map or the sequence of juxta-

posed maps, the analyst can observe how the clusters develop over time. 

This visualisation, however, would not expose what is meant by “spatio-

temporal cluster”. The definition of this pattern type suggests that space 

and time need to be viewed simultaneously. It may be suitable to use the 

three spatial display dimensions for this purpose: two dimensions represent 

space and the third dimension time. The visualisation may look as is 

shown in Fig. 5.22. In this perspective view, known as a space time cube, 

the two horizontal dimensions represent the geographical space, and the 

vertical dimension the time. The events are represented by circular sym-

bols placed within the cube according to the locations of the events in 

space and the times of their occurrence. In principle, this type of display 

may represent not only the times and places of event occurrences but also 

some characteristics of these events, by varying the size and/or colour of 

the circles. It is possible to use not only simple symbols such as circles but 

also charts, which can portray several characteristics of an event at once. 

It should be noted that the space time cube display does not allow us to 

see all the earthquake data simultaneously since the time period is rather 

long (24 years, from 1 January 1976 to 30 December 1999) and the earth-

quakes are too numerous (10 560 events in total). An attempt to represent 

all of the data at once results in tremendous overlap of the symbols. No 

patterns can be seen under such conditions. Therefore, it is necessary to 

apply focusing, and so we did this. The screenshot in Fig. 5.22 corresponds 

to the 100-day time period from 13 May to 20 August 1990, which was 

chosen using an appropriate temporal-focusing tool (a possible user inter-

face is shown in Fig. 5.23). The display has been automatically adjusted to 

use the whole display height available to represent the selected time inter-

val. The bottom of the display corresponds to the beginning of the interval, 

and the top to the end. 

In a three-dimensional visualisation of the locations and dates of events 

such as earthquakes, a spatio-temporal cluster appears as a vertically 

aligned sequence of circles (or other symbols that are used for representa-

tion of events). One such sequence is enclosed in a frame in Fig. 5.22. It 

should be borne in mind, however, that visual grouping of symbols can 
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also be a mere projection effect resulting from the representation of a 

three-dimensional space on the two-dimensional computer screen. In order 

to verify the genuineness of this or that apparent grouping, the cube dis-

play must allow the user to change his/her viewing perspective. 

In Fig. 5.24A (upper left), we have used a direct-manipulation query 

tool to select several groups of vertically aligned symbols, which poten-

tially indicate spatio-temporal clusters. The selected symbols are marked 

by thick black outlines. Then, we have changed the viewing perspective, 

i.e. rotated the cube. Figure 5.24B (upper right) shows the result: one 

group has dissipated, and two symbols have separated from two other 

groups.

Fig. 5.22. Earthquake occurrences are represented here in a perspective view 

(space time cube). The horizontal dimensions represent the geographical space, 

and the vertical dimension the time 

Fig. 5.23. The time interval represented in Fig. 5.22 was selected using an appro-

priate temporal focusing tool 
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Fig. 5.24. By changing the viewing perspective (rotating the cube), an observer 

can verify whether apparent alignments correspond to real clusters or result from 

projection effects 

Using the same query tool, we have deselected the events that separated 

from the groups (Fig. 5.24C, lower left). Three groups remain. Two of 

these groups consist of three events each, and one includes seven events. 

From the relative positions of the symbols representing these seven events 

in the cube, it may be seen that the time intervals between the first and the 

second event and between the second and the third event are longer than 

the intervals between the subsequent events (recall that earlier events have 

lower positions in the cube). 

Using a link between the cube and a map display, we have looked at the 

positions of the selected events on the map (Fig. 5.24D) and found that 

each of the three groups is compactly located in the geographical space 
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and, hence, can really be treated as a spatio-temporal cluster. The most 

interesting is, of course, the largest of the clusters, which consists of seven 

events; it is situated in the district of Kutahya on the east of the map frag-

ment shown in Fig. 5.24D. The dates and magnitudes of these seven earth-

quakes can be seen in Fig. 5.24E. The first of the earthquakes in the se-

quence occurred on 1 July 1990 and the last on 23 July 1990. The time 

intervals between the earthquakes, in days, are 6, 5, 3, 2, 3, and 3. The 

magnitudes are 2.9, 2.9, 3.1, 3.3, 3.1, 2.9, and 2.9. 

On the map, it may also be noted that there is one more earthquake lo-

cated very close to the selected cluster of seven earthquakes (to the right of 

it). This earthquake, with a magnitude of 3.0, occurred on 24 June, a week 

before the sequence of seven earthquakes. 

To our regret, we have no appropriate domain knowledge to judge 

whether the observations that we have made are meaningful; in particular, 

whether the earthquakes forming the clusters are related in some way. 

Nevertheless, this example allowed us to demonstrate how to look for spa-

tio-temporal clusters of events using a space time cube display, which 

seems to be a quite appropriate tool for this purpose. In general, any three-

dimensional shapes that emerge in such a display owing to visual prox-

imity of event symbols, for example, inclined chains or conical structures 

deserve attention as an indication of possible interactions between events. 

Imagine, for example, the exploration of a set of events in which durable 

clusters may be expected, such as the above-mentioned hypothetical data-

set about disease occurrences (unfortunately, we have no appropriate data 

in reality). The clusters would appear as “clouds” in a space time cube. 

However, taking into account the nature of the expected patterns, i.e. for-

mation and development of spatial clusters, visualisation by means of an 

animated map or map sequence may be more convenient and productive. 

Returning to the space time cube display, we would like to mention that 

this tool is also suitable for the detection of expected patterns in the 

movement of objects in space when the objects are not too numerous. For 

example, we could use this tool for the data about the seasonal migration 

of storks. According to this technique, points in the three-dimensional 

space represent the positions of an object at different time moments. Lines 

connect the points corresponding to consecutive moments. In this repre-

sentation, gently sloping path segments indicate fast movement, i.e. a long 

distance in space travelled in a short time, while steep segments corre-

spond to slow movement. Vertical lines occur when an object stays for 

some time period in the same place. Readers interested in learning more 

about the space time cube technique may be referred to Hägerstrand 

(1970), Hedley et al. (1999), Kraak (2003), and Gatalsky et al. (2004). 
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We have discussed how various types of patterns can be detected visu-

ally. Very often however, data do not readily allow this method of investi-

gation; they may be too voluminous or too complex. Thus, in the example 

concerning earthquakes, we had to zoom into a 100-day interval within the 

overall 24-year period in order to be able to see the patterns. When all  

10 560 earthquakes that occurred during the 24 years were represented in 

the cube, we could not see anything but myriads of overlapping circles. 

Although the selected interval (“time window”) can be shifted back and 

forth in time so that the entire period can eventually be surveyed, the pat-

tern search job becomes very laborious and time-consuming. Similar prob-

lems arise when it is necessary to look for certain types of patterns among 

multiple lines drawn on a time graph. It would be very beneficial for ana-

lysts if pattern search could somehow be automated. 

Unfortunately, there are not many computational tools capable of per-

forming automatic pattern search. A probable reason is that each pattern 

type requires a specific method of search. We can imagine, for example, 

what type of tool could help in searching for patterns in earthquake occur-

rences. Such a tool would scan the sequence of earthquakes ordered ac-

cording to the time of their occurrence. For each earthquake event, starting 

from the second one, the tool would check whether there was an event be-

fore it such that the distances between the two events in space and in time 

did not exceed certain user-specified thresholds, for example, 100 km in 

space and 5 days in time. If this condition was fulfilled, the tool would 

mark these events in some way as possible members of a spatio-temporal 

cluster. If the earlier event had already been marked, the later event would 

receive an identical mark and would thereby be attached to the previously 

constructed chain; otherwise, both events would receive a new, unique 

mark. At the end, the tool would retrieve the groups of events with identi-

cal marks including not less than some user-specified number of events. 

The results could be visualized in a space time cube display without in-

cluding the events that do not belong to any group. Such a tool would be 

helpful in detecting not only vertical alignments of events in the 

space time continuum but also other structures such as inclined chains and 

cloud-like shapes. However, to our knowledge, no such tool exists yet. 

Among the existing computational tools that we are aware of, there are 

tools capable of searching for a specified pattern of temporal behaviour 

among a collection of numeric time series data, such as the collection of 

local behaviours of the various crime rates in the states of the USA. Such 

tools can be categorised as query tools according to their function, but also 

as computational (data-mining) tools since they are based on rather inten-

sive computation. We have mentioned these tools in Sect. 4.6.3, as well as 

some problems involved in judging the similarity between a user-specified 
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general shape of the pattern the user is looking for and a specific time se-

ries from the collection being scanned. Depending on what is understood 

by “similarity”, one can use a tool that simply computes the distance be-

tween the two lines and compares it with a specified threshold or a sophis-

ticated, computationally intensive algorithm of “dynamic time warping”, 

which smoothes, stretches, or shrinks each line in the collection to bring it 

into the maximum possible correspondence with the model shape (see the 

review in Keogh and Kasetty (2003)). 

In Sect. 4.6.3, we have also described some visual query tools that sup-

port a search for particular patterns among multiple lines on a time graph. 

One of these tools selects lines according to a user-specified search mask. 

The other tool shows line fragments that have a specified inclination. 

To some extent, various data transformations, in combination with 

query tools, may be helpful in searching for patterns. Thus, values of a 

time-referenced numeric attribute may be transformed into differences or 

ratios with respect to the previous time moment. Then, if we need to detect 

increasing trends over sequences of time moments, we should look for se-

quences of positive values in the case of differences or values greater than 

1 in the case of ratios. To detect decreasing trends, conversely, we look for 

negative values or values below 1, respectively.  

An example can be seen in Fig. 5.25, where a transformation of the 

original values into ratios with respect to the previous time moments has 

been applied to the attribute “Burglary rate” in the dataset concerning the 

crime statistics over USA. The transformed data are represented in a time 

graph at the top of Fig. 5.25. Using a direct-manipulation query tool, we 

have selected the lines with transformed values in the last five years of the 

period covered by the dataset (i.e. from 1996 to 2000) below 1. This corre-

sponds to a decreasing trend over this interval, as can be seen from the 

time graph at the bottom, where the transformation of the values has been 

cancelled, and the original shapes of the lines can be seen. In both screen-

shots of the time graph display, only the selected lines are visible, and the 

general outlines (“envelopes”) of all the lines, while the lines not satisfying 

the query are hidden. In the middle, we have shown a map in which thick 

black boundaries mark the states that the selected lines correspond to. 

It may be noticed that the decreasing trends in many of the selected lines 

started earlier than 1996. Using the transformed time graph, we can modify 

the query constraint and look for longer decreasing trends over the last 

years of the dataset. Thus, Fig. 5.26 shows us where decreasing trends took 

place over the period 1992 2000 (top) and where they were observed as 

early as 1990 and continued until 2000. The same transformation allows us 

to look not simply for decreasing trends but for decreasing trends with par-

ticular  rates  of  decrease.  For example, to find  where  the decrease rate is 
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10% or more, we need to look for transformed values that are not higher 

than 0.9. 

Similarly to the use of computed changes in time for the detection of 

particular temporal trends by means of a query tool, it is possible to com-

pute changes between locations in space (see, for example, Fig. 4.51) and 

apply a query tool to the output in search of various spatial trends. Data 

about spatially dispersed objects, events, or movements can be transformed 

into spatial densities, and an analyst can detect clusters of high concentra-

tions of the objects, events, or movements by applying a query tool to the 

density or just by viewing a visualisation of the density. For example, the 

map in Fig. 5.27 represents the earthquake density computed from the data 

Fig. 5.25. A transformed time graph showing differences or ratios between attrib-

ute values at consecutive time moments is suitable for searching for increasing or 

decreasing trends in specific time intervals. Here, we have selected the lines that 

have a decreasing trend during the last five years of the period, i.e. from 1996 to 

2000. At the top, the time graph is shown in the transformed mode; at the bottom, 

the transformation has been switched off, and the original shapes of the selected 

lines are visible. In the map in the middle, thick black boundaries mark the states 

that the selected lines correspond to
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about individual earthquakes. Densities are portrayed by means of back-

ground colouring. The dark spot covering the districts of Izmir, Balikesir, 

Bursa, Kutahya, and Manisa is the area of high earthquake density, and the 

area with the darkest shading, near Izmir, is where the density is the high-

est. In the original map, we used a diverging colour scale with varying de-

grees of darkness of red and green colours so that the dark spot was origi-

nally red and the territory around it green. Hence, data transformation plus 

visualisation plus display manipulation (specifically, visual comparison) 

allowed us to detect a concentration cluster (a kind of association pattern), 

as well as a spatial trend of decreasing earthquake density in the outward 

direction from the area near Izmir. We can also add some detail to the 

characterisation of this spatial trend, in particular, that the decrease rate is 

higher in the latitudinal than in the longitudinal direction. 

Fig. 5.26. Using the transformed time graph, we can probe how long the detected 

decreasing trends lasted in different states. The time graph and map at the top 

show the lines and the corresponding states for which a decreasing trend was ob-

served over the last nine years starting from 1992, and the next two pairs of 

screenshots show the decreasing trends over 11 years, starting from 1990. The 

time graph at the bottom is the version of the time graph in the middle obtained 

when the transformation is switched off 
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Fig. 5.27. This map represents the density of earthquakes over the territory of 

Turkey by background colouring. The area near Izmir, with the darkest shading, 

corresponds to the highest earthquake density. The circles on top of the shading 

show the locations of the strongest earthquakes (with magnitudes of 5 or higher). 

It may be seen that the strongest earthquakes occur outside the area of the highest 

earthquake density and sometimes even quite far from it 

Generally, after some feature (subpattern) has been detected in a behav-

iour, an explorer often wishes to examine it in more detail. Similarly, when 

a behaviour has been divided into parts, according to the principle “divide 

and group”, it may be necessary to take a closer look at the parts obtained. 

For this purpose, the explorer usually needs to zoom and focus, and hence 

the tools that he/she uses must support these operations. The importance of 

these operations is stressed in Ben Shneiderman’s Information Seeking 

Mantra: “Overview first, zoom and filter, and then details-on-demand”. 

5.4.6 Principle 6: Zoom and Focus 

The purpose of zooming and focusing is twofold: 

1. To visualise a selected part of the data with the maximum possible ex-

pressiveness so that more detail is visible and more differences are de-

tectable.

2. To disregard the remaining data so that they do not distract the explorer 

from the portion of data of interest. 

We have discussed the tools for zooming and focusing in a dedicated 

section (Sect. 4.4.4) and shall not repeat ourselves. We would like to note, 



5.4 Principles of Selection of the Methods and Tools      541 

however, that not only specific zooming and focusing tools are suitable for 

this purpose. Other tool types may sometimes be applicable and even more 

appropriate than specialised devices, especially with regard to the second 

purpose above. Thus, it may be impossible to focus, by means of only 

zooming and focusing operations, on a particular group of lines on a time 

graph or parallel-coordinates display and disregard the other lines. A query 

tool of the filtering type is in this case more suitable for this purpose. It can 

be noted that the Information Seeking Mantra cited above mentions filter-

ing rather than focusing. 

Filtering not only helps an analyst to get rid of distracting display items 

but can also increase the expressiveness and legibility of the display, 

which is achieved at the cost of reducing mark overlap rather than by 

transforming the display scale or the visual encoding function used in it. 

Sometimes, one and the same query tool may be used either in a mark-

ing or in a filtering style. This is possible in a display that enables a spe-

cial, optionally used visualisation mode showing only selected data items. 

The time graph tool demonstrated in Figs 5.25 and 5.26 offers such a pos-

sibility, which we utilised for producing the illustrations. This tool can be 

easily switched back to the “normal” mode, where all the lines are visible. 

Figures 5.25 and 5.26 demonstrate also the concept known as “focus 

plus context”, which has recently received much attention in the area of 

information visualisation (see, for example, Spence (2001)). The idea is 

that a visualisation tool allows the user to focus on part of information, 

while the remaining information is not entirely removed from the display. 

Instead, it is shown in a reduced or generalised form and provides the 

“context” for the portion of information of interest, that is, it shows the 

position of this portion with respect to the entire data collection. In Figs 

5.25 and 5.26, only a selected part of the data can be viewed in detail as 

lines on a time graph. However, the time graph also shows the general out-

line, or “envelope”, of the whole collection of lines. The outline provides a 

kind of context for the selected data, which allows the analyst to judge 

how the values for the selected states at different time moments are posi-

tioned with respect to the minimum and maximum values attained at these 

moments over the whole country. A similar example can be seen in Fig. 

4.76, where a line for a selected state is drawn upon a background formed 

by an aggregated representation of the remaining data where not only the 

minima and maxima are present but also the medians and quartiles. 

These examples, however, cannot be qualified as classical “focus plus 

context” display techniques. It is more typical to relate this concept to 

zooming, i.e. enlargement of some display items at the cost of other items. 

“Focus plus context” zooming tools increase the sizes of selected items 

and reduce the sizes of the remaining items. The best-known examples of 
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such techniques are Fisheye View (Furnas 1986) and Perspective Wall 

(Mackinlay et al. 1991). 

In our opinion, the “focus plus context” concept in its classical sense has 

more to do with navigation than with exploratory data analysis. However, 

if it is treated in a broader sense, this concept also subsumes such ap-

proaches as the combination of an aggregated view of the whole dataset 

with a detailed representation of a selected portion of the data, which can 

be very useful for data exploration. 

We have demonstrated the combination of aggregated and detailed 

views with an example of a time graph display. Other display types can 

also be modified to allow this. Thus, in Figs 4.77 4.79C, we have shown a 

modification of the parallel-coordinates technique that represents aggre-

gated characteristics of a dataset rather than individual items of data. This 

representation can easily be combined with portraying individual charac-

teristics corresponding to a selected subset of references. For example, the 

display in Fig. 5.28 represents the data on the age structure of the popula-

tion in the districts of Portugal in an aggregated form: the elliptical shapes 

reflect the relative positions of the deciles (i.e. the 10%, 20%, …, 90% 

percentiles) of the attribute values in the entire dataset. In addition to this, 

there are lines portraying the individual age structure characteristics of a 

selected subset of the districts, specifically, the districts with the lowest 

10% of the values of the attribute “% 0 14 years”. This combination al-

lows the selected districts to be easily positioned among the remaining dis-

tricts with respect to their age structure.

Fig. 5.28. This parallel-coordinates display represents aggregated characteristics 

of a whole dataset together with individual attribute values for a selected subset of 

references 

Similarly to the case of the parallel-coordinates visualisation technique, 

there is a modification of the scatterplot display, the binned scatterplot, 

which represents data in an aggregated form (see Fig. 4.64). Such a display 
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can be combined with the representation of a selected subset of individual 

data items. For this purpose, it is better to use the variant of the binned 

scatterplot shown on the right in Fig. 4.64: this can serve as a background 

for individual dots just as the ellipses in Fig. 5.28 serve as a background 

for individual lines. 

It may well be that any visualisation technique suited to the representa-

tion of individual data items is, in principle, extendable to the combined 

display of aggregated characteristics and selected individual data items. In 

contrast, the techniques specifically intended for the representation of ag-

gregated information, such as histograms, cumulative curves, treemaps, 

and mosaic plots, cannot be so easily modified to include the representa-

tion of individual data. 

While the combined display of aggregated data and selected individual 

items can be considered as a specific realisation of the concept “focus plus 

context” (treated in a broad sense), there are a few other concepts in infor-

mation technology that are related to focusing and at the same time to ag-

gregation. Thus, “drill down” means moving from summary information to 

detailed data by focusing in on some part of the data. “Slice and dice” im-

plies a systematic reduction of a body of data into smaller parts or views 

that will yield more information. This term is also used to mean the pres-

entation of information in a variety of different and useful ways. 

For an analyst, the most convenient way of drilling down or slicing and 

dicing is through direct manipulation of a display that provides aggregated 

information. For example, when the analyst clicks on a display item repre-

senting a data aggregate, the item may “expand” to show more detailed 

information, which may be the individual data items included in this ag-

gregate or the data on a lower aggregation level. Many of the existing 

software systems for exploratory data analysis provide this possibility. For 

example, Fredrikson et al. (1999) describe a system that applies various 

methods of aggregation to data about traffic incidents (spatial aggregation 

by road fragments; temporal aggregation by dates; times of the day, or 

days of the week; and categorical aggregation by event types) and displays 

the data in an aggregated form. However, the user can drill down into any 

aggregate by clicking on a display item representing this aggregate. The 

detailed data about the events included in the aggregate are then shown in 

an additional window. 

Zooming and focusing may be viewed as a bridge from the overall level 

of analysis to a detailed consideration of specific places, times, and indi-

viduals. The next subsection deals with access to specific data items. We 

say briefly why an analyst may need this and what tools are suitable for 

this purpose. 
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5.4.7 Principle 7: Attend to Particulars 

In a data display, some visual elements may immediately attract the 

viewer’s attention because they look “strange”, being substantially dissimi-

lar to all others or to their neighbours. Such outstanding display elements 

correspond to outliers in the data, i.e. extraordinary attribute values or 

value combinations. For example, among the values of a numeric attribute, 

there may be one or a few extremely high or extremely low values stand-

ing far apart from the bulk of the data, such as the extremely high popula-

tion densities in three districts of Portugal (see Fig. 4.27). An example of 

“local” outliers, i.e. unusual attribute values in comparison with the values 

in their neighbourhood, is the burglary rates in the District of Columbia in 

the years 1969 and 1970, which amount to 2869.9 and 2873.7, respec-

tively, while the remaining values in these two years range from 249.3 and 

286.4 in North Dakota to 1676.1 and 1753 in California. On a time graph 

(for example, in Fig. 4.3), the two outstanding values appear as a high peak 

against the positions on the horizontal axis corresponding to the years 1969 

and 1970. Nevertheless, these are not the highest two values in the entire 

dataset. The highest burglary rate over the country, 2906.7, was attained in 

Nevada in 1980. However, the peak for the year 1980 does not look so 

prominent as the one for 1969 1970, since quite many states also had very 

high burglary rates in 1980. The maximum value attained in Nevada is not 

so far from the values of 2559.7 in the District of Columbia, 2506.8 in 

Florida, 2316.5 in California, and so on. 

Examples of unusual value combinations (more precisely, examples of 

how such combinations appear on scatterplots or parallel-coordinates dis-

plays) can be seen in Figs 5.29 and 5.30. In Fig. 5.29, we see that the pro-

portion of people in the districts of Portugal employed in agriculture in 

both 1981 and 1991 is negatively correlated with the relative change in the 

population from 1981 to 1991. However, each scatterplot has a dot in the 

upper right corner indicating that some district that had a high proportion 

of agricultural employees also had a significant population increase from 

1981 to 1991. This is rather untypical, and the relative positions of these 

dots (which are marked in white) with respect to the remaining dots clearly 

manifest the uniqueness of the respective value combinations. By the way, 

the marked dots in both scatterplots correspond to the same district, Sao 

Joao da Pesqueira, with a population change from 1981 to 1991 equal to 

27.76% and the proportion of people employed in agriculture equal to 

69.89% in 1981 and 61.41% in 1991. 

Figure 5.30 demonstrates that atypical value combinations manifest 

themselves in a parallel-coordinates display as line segments that differ in 

their inclination from the surrounding lines.  
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Fig. 5.29. An unusual combination of values of two numeric attributes appears on 

a scatterplot as a dot standing apart from the main mass of dots. The mouse cursor 

points at such a dot in the display on the left. This dot corresponds to a district of 

Portugal with a high population growth from 1981 to 1991 and a high proportion 

of people employed in agriculture in 1981. In the scatterplot on the right, the dot 

corresponding to the same district is highlighted (shown in white). It is situated in 

the upper right corner and indicates that the proportion of agricultural employees 

in this district was very high in 1991 as well 

Fig. 5.30. In a parallel-coordinates display, line segments differing in their inclina-

tions from the surrounding lines indicate atypical combinations of attribute values. 

Thus, the black line has an “unusually vertical” segment between the axes for the 

attributes “% 25 64 years” and “% 65 or more years”. The white line is “unusu-

ally oblique” between the axes for “% 0 14 years” and “% 15 24 years” 

Of the two highlighted lines in Fig. 5.30, the black one has a segment 

between the axes for the attributes “% 25 64 years” and “% 65 or more 

years” that is unusually close to vertical. The corresponding district, Alje-

zur, is characterised by quite high proportions of people in the age groups 

25 64 years and 65 or more years (50.68% and 25.33%, respectively), 
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whereas the districts with values of the attribute “% 25 64 years” similar 

to that for Aljezur usually have quite a low proportion of elderly people 

and, vice versa, the districts with a proportion of elderly people close to 

that for Aljezur have a lower percentage of people aged from 25 to 64 

years. The white line has an atypically slanting segment between the axes 

“% 0 14 years” and “% 15 24 years”. The corresponding district, Povoa 

de Lanhoso, has a very high proportion of children from 0 to 14 years old 

(27.5%). While the other districts that have a high proportion of children 

also have a high proportion of young people (i.e. aged from 15 to 24 

years), the proportion of young people in Povoa de Lanhoso is, unusually, 

not very high: 17.94%, which is not very close to the maximum of 21.32%. 

In the examples given above, we have provided quite detailed and pre-

cise information about the outstanding attribute values and value combina-

tions, as well as the corresponding references, that is, states and years in 

the case of the crime data and districts in the case of the Portuguese census 

data. This information resulted from a number of elementary tasks that we 

performed:

Relation-seeking: Find references with characteristics differing greatly 

from those of the other references. 

Direct lookup: What are the values of this or that attribute correspond-

ing to this or that reference? 

Inverse lookup: What reference corresponds to this (unusual) attribute 

value or combination? 

Comparison: Compare the characteristics corresponding to this refer-

ence with the characteristics of other references 

We have said earlier that elementary tasks play a marginal role in ex-

ploratory data analysis. This does not mean, however, that elementary 

tasks do not emerge at all or that they can be skipped without any harm to 

the analysis process. The existence of global and local outliers and unusual 

value combinations is a classic case where elementary tasks necessarily 

arise: the analyst does need to pay attention to any “strange” thing present 

in the data that is exposed by visualisation. The analyst needs to under-

stand whether this strangeness signals an error in the data. If not, the ana-

lyst will seek an explanation of the odd thing detected. This may be not 

easy: “Strange things sometimes require years of thinking before it be-

comes clear how they fit into our picture of the world” (O.Chertov, per-

sonal communication). Nevertheless, the strangeness cannot be ignored; it 

demands proper attention. 

Hence, the explorer needs to ascertain the attribute values that lie behind 

an odd display item and to determine the corresponding reference. The 
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explorer also needs to compare these values with other values and, if the 

reference set has some kind of organisation (e.g. ordering or other relations 

between the elements), position the reference in relation to the other refer-

ences. In particular, when the data are spatially and/or temporally refer-

enced, the analyst must determine the relative spatial and/or temporal posi-

tions of the unusual attribute values within the entire space segment and/or 

time period that the data refer to. Furthermore, fitting the strange thing into 

our picture of the world (or, less generally, into the overall pattern being 

constructed in the course of the analysis) requires the explorer to look for 

values of other attributes corresponding to the reference in focus, and to its 

neighbours. Are these values or their combinations also bizarre? If yes, 

how are the various unusual features related to each other? 

Finally, the explorer needs to find out the reason for the untypical char-

acteristics of the reference in focus. Sometimes, the domain knowledge 

possessed by the analyst allows him/her to explain the oddness without any 

additional analysis. However, it often happens that the explorer needs to 

extend the scope of the analysis by using additional data which character-

ise certain phenomena potentially related to the phenomenon under study. 

For example, to understand the reasons for rises or falls in criminality, the 

explorer may need to look for changes in legislation and/or to consider the 

dynamics of economic indices, unemployment, migration, etc. 

So, what tools does an analyst need in order to attend to particulars in a 

proper way? First of all, a convenient querying tool, which provides vari-

ous “details-on-demand” (Ben Shneiderman). Thus, in describing the ex-

amples included in this section, we have used a direct-manipulation query 

tool of the “What’s this?” type: when the mouse cursor is positioned on a 

display element, a pop-up window appears, in which the data items repre-

sented by this display element are listed. This includes the reference and 

the corresponding values of the attributes portrayed by the display. An ex-

ample is shown in Fig. 5.31: the mouse cursor points to a line in a parallel-

coordinates display, and a pop-up window below the cursor provides the 

relevant information. Specifically, as the parallel-coordinates display 

represents the characteristics of the districts of Portugal in terms of the 

four age structure attributes, the pop-up window shows the name and iden-

tifier of the district that the line corresponds to and the values of the four 

attributes for this district. 

Of course, this way of accessing detailed information is not the only 

possible solution. Moreover, a query tool of this kind has not only advan-

tages (ease of use and quick response) but also drawbacks (transience of 

the pop-up window containing the information, and covering of the origi-

nal content of the display). Therefore, the user may need a combination of 

solutions. Thus, the query tool that we used can also display information in 
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a special, permanently existing window. Information appears in this win-

dow when the user selects one or more display items by clicking on them 

or dragging a frame around them. The information is removed from the 

window when the user explicitly deselects the previously selected items. 

The user may choose the values of which attributes will be displayed in the 

information window. Again, this is only an example of a possible solution. 

Besides querying tools, the analyst needs the possibility to locate the 

references in focus on various data displays present on the screen. This is 

necessary for (1) positioning these references in relation to the entire refer-

ence set, in particular, space and/or time; (2) detecting other “strange” val-

ues or value combinations among the characteristics of these references or 

their neighbours; and (3) possibly looking for corresponding characteris-

tics in data concerning other phenomena. 

Finding display items corresponding to a particular reference or a few 

references on all displays is adequately supported by display-linking tools, 

specifically, the simultaneous reaction of multiple displays to selection of 

references by the user in the form of highlighting (special marking) of the 

corresponding display items.33 Thus, in Fig. 5.31, the line in the parallel-

coordinates display pointed at with the mouse cursor is highlighted in 

white while the other lines are grey. Simultaneously, in the two scatterplots 

beside the parallel-coordinates display, the dots corresponding to the same 

district of Portugal as the highlighted line are also highlighted. For consis-

tency, the same highlighting colour (white) is used in all the displays. 

It can be noted that the displays in Fig. 5.31 also contain some items 

coloured in black. These items represent another district, which was se-

lected earlier by clicking on the corresponding line in the parallel-

coordinates display (this is the line with the unusually steep segment be-

                                                     
33  Not all types of displays can behave in this way. In particular, displays repre-

senting aggregated data characteristics, such as histograms, cumulative curves, 

and box-and-whiskers plots, may be unsuitable for marking selected references. 

Fig. 5.31. A direct-manipulation query tool shows the reference and the exact 

attribute values represented by a selected display item here
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tween the lower two axes). Let us explain the presence of two highlighting 

colours, white and black, in the same displays. The display-linking tool 

that we used to produce the illustration supports two selection modes, tran-

sient and durable. Transient selection of a reference occurs when the 

mouse cursor points to a corresponding visual element in a display. High-

lighting by white colouring appears in response to such a selection. The 

selection is cancelled and the highlighting disappears as soon as the mouse 

cursor is moved away from the visual element. Durable selection may be 

done through clicking on display items, enclosing them in a frame, or in 

some other ways. A reference, once selected, remains in this state until the 

user explicitly deselects it. Marking in black is applied to display items 

corresponding to such durably selected references. 

Fig. 5.32. Six scatterplots, linked through simultaneous highlighting of the dots 

corresponding to selected references. The black dots in all of the displays corre-

spond to the district of Sao Joao da Pesqueira, which has an unusual combination 

of values of the attributes “% employed in agriculture” and “% population change 

from 1981 to 1991”, exposed by the scatterplots in Fig. 5.29 

To demonstrate the use of this display-linking tool, let us look to see 

whether the district of Sao Joao da Pesqueira, with an unusual combination 

of values of the attributes “% employed in agriculture” and “% population 
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change from 1981 to 1991” (see Fig. 5.29) has any other peculiarities. We 

select this district durably by clicking on the corresponding dot in one of 

the scatterplots shown in Fig. 5.29. Then, we generate other displays and 

look in them for items highlighted in black. Displays where the highlighted 

items stand apart from the others or look different from the others are es-

pecially interesting for us.  

Figure 5.32 contains six scatterplots containing black dots separated 

from the rest. We can see that the district of Sao Joao da Pesqueira has 

some quite peculiar traits in addition to the untypical population increase 

for a district with so many people employed in agriculture. 

Thus, the display A shows us that this district has unusual proportions of 

children and young people: the proportion of children is rather high, while 

the proportion of young people is relatively low, in comparison with the 

other districts, in which the proportions of these two age groups are more 

balanced. The display C demonstrates that the district under examination 

has an unusually low percentage of people aged from 25 to 64 years in 

comparison with the other districts with a high population increase. The 

displays D, E, and F show that the proportions of people without basic 

education in 1981 and 1991 and the proportion of people having high 

school education in 1991 are also uncommon for a district with such a 

population growth. 

The display B is, perhaps, the most interesting. In this scatterplot, the 

proportions of females in 1991 are plotted against the proportions of fe-

males in 1981. For better legibility, we have applied a zooming tool and 

removed one outlier, specifically, an exceptionally high value of 86.17 in 

1991, which may be an error in the data. The black dot corresponding to 

the district of Sao Joao da Pesqueira lies on the left edge of the scatterplot. 

Its position in relation to the other dots shows us that this district had an 

exceptionally low percentage of females in 1981, but that this proportion 

became quite regular in 1991. This could be regarded as another error in 

the data, but instead of jumping to a conclusion, let us look carefully at the 

display. We can notice another quite peculiar dot on the right edge, oppo-

site to the black dot. The mouse cursor points to this dot in the display B, 

and the dot is highlighted in white. The position of this dot means that the 

corresponding district, in contrast to Sao Joao da Pesqueira, had a very 

high proportion of females in 1981, which reduced in 1991 to a regular 

value. Furthermore, from the positions of the white dots in the displays C, 

D, E, and F, we can see that the respective district, named Sabrosa, had an 

extreme population decrease between 1981 and 1991. This suggests the 

idea that a large number of women moved between 1981 and 1991 from 

Sabrosa to Sao Joao da Pesqueira so that the resulting gender structure in 

both districts became more balanced. This idea is supported by the obser-
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vation that the two districts are geographical neighbours, as may be seen 

from the map fragment in Fig. 5.33. 

Fig. 5.33. The districts that had peculiar gender structures of the population in 

1981 but quite regular structures in 1991 are geographical neighbours. In this map 

fragment, these two districts are highlighted in black and white 

Moreover, if the hypothesis about a migration of the female population 

from Sabrosa to Sao Joao da Pesqueira is true (despite seeming weird), it 

may explain the unusual ratio in Sao Joao da Pesqueira between the pro-

portions of children aged from 0 to 14 years and of young people aged 

from 15 to 24 years, which is exposed in the scatterplot A in Fig. 5.32. 

Taking into account that the values of the age structure attributes, in par-

ticular, “% 0 14 years” and “% 15 24 years”, refer to the year 1991, we 

may guess that the increase in the female population in Sao Joao da 

Pesqueira and the consequent improvement of the balance between the 

genders could have resulted in a higher birth rate, which, in turn, would 

lead to an increase in the relative number of children.  

Of course, all these speculations need to be verified either on the basis 

of domain knowledge or by analysing additional data. Unfortunately, we 

are not experts in the demography of Portugal and have no other poten-

tially relevant data. Therefore, we propose to regard our investigation as 

just a demonstration of the use of querying and display-linking tools for 

performing various tasks on the elementary level of analysis. 

Besides detecting surprisingly unusual values and value combinations in 

various data displays, an explorer may pay special attention to particular 

references with uncommon characteristics that are expected. Thus, one 

may expect that the age and employment structure of the population in big 

cities will differ from that in the surrounding districts. Similarly, for a 

time-referenced attribute, values corresponding to the dates of public holi-

days may differ from values corresponding to other days of the year. The 
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origin of such expectations is the explorer’s domain knowledge or com-

mon-sense knowledge. As with unexpected deviations from the majority of 

the data, querying and marking can also help the explorer in investigating 

expectable “peculiar” cases. 

In multidimensional data, there may be not only unusual individual val-

ues and value combinations but also unusual aspectual behaviours. For 

example, the behaviour of the burglary rate in the District of Columbia 

over the time period from 1960 to 2000 looks rather odd in comparison 

with the behaviours in the other states. Such “behavioural outliers” are 

usually clearly visible in appropriate displays. Like atypical individual 

values, they require close investigation. Querying and display-linking tools 

are also helpful in this case. 

In this subsection, we have concentrated on elementary tasks and 

showed how display linking supports them. Display linking is also very 

important for synoptic tasks, including such intricate tasks as connection 

discovery. In the next two subsections, we shall switch our focus again to 

synoptic tasks, and display linking will be given proper attention. 

5.4.8 Principle 8: Establish Linkages 

As we have said before, the primary goal of exploring a dataset is to char-

acterise the overall behaviour of the data function and, thereby, the behav-

iour of the underlying phenomenon. “Characterise” means to derive a suf-

ficiently precise and, at the same time, simple (parsimonious) generic pat-

tern reflecting essential features of the behaviour. The essential features 

are the features that pertain to the entire reference set or a substantial part 

of it rather than to individual references. They can be called “reference-

invariant”. Hence, it can be said that a pattern is a reference-invariant de-

piction of a behaviour.   

The goal of deriving a reference-invariant depiction can be best 

achieved if the entire behaviour is exposed to the explorer by means of an 

appropriate visualisation, in accord with the principle “see the whole”. 

However, this is possible only in very simple cases, where the number of 

referential and characteristic components in the data is rather small. Such 

cases are very rare. A more typical case is where there are not enough dis-

play dimensions and retinal variables for the simultaneous representation 

of all data components. It should also not be forgotten that not every dis-

play dimension supports unification. It often happens that, despite every 

data item being represented on the screen, the overall behaviour cannot be 

grasped.
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Another difficulty is that the overall behaviour is often too complex to 

be approximated by a sufficiently simple and, at the same time, expressive 

generic pattern, i.e. the explorer may be unable to derive a meaningful ref-

erence-invariant description that would be valid for the entire reference set. 

The only possible approach to coping with these problems is to consider 

manageable parts and slices of the overall behaviour. As is schematically 

shown in Fig. 5.1, the explorer characterises these parts and slices (called 

“partial behaviours”), i.e. approximates them by suitable patterns. Then, 

these partial patterns need to be integrated into a unified pattern approxi-

mating the overall behaviour.34 In this subsection, we shall focus on the 

possible approaches to the synthesis of a unified overall pattern from par-

tial patterns. 

We need to consider separately the approaches to dealing with multiple 

attributes and with multiple referrers. For multiple attributes, there is a 

possibility in principle to analyse any attribute independently from the oth-

ers since the value acquired by an attribute is fully determined by a combi-

nation of values of referrers and does not depend on the values of the other 

attributes. The possibility of independent consideration is excluded for 

multiple referrers because only all referrers taken together provide com-

plete and unambiguous references to the values of the attributes. 

Let us first discuss how to build an overall pattern approximating the 

joint behaviour of multiple attributes. Two extreme approaches are possi-

ble:

1. The values of all attributes associated with each reference are visually or 

computationally integrated, and the explorer tries to grasp the behaviour 

of the resulting integrated characteristics over the reference set. The pat-

tern thus derived needs then to be interpreted in terms of the original at-

tributes.

2. The behaviour of each attribute is explored independently of the others 

and approximated by an individual pattern. In order to bring the patterns 

together, the explorer tries to establish links between the attributes and 

their behaviours. The explorer not only notes similarities and differences 

but also looks for correlations and influences between the attributes. 

There is also an intermediate approach between these extremes. The 

whole set of attributes may be divided into several attribute groups. The 

first approach is then applied to each group. In order to integrate the result-

ing patterns, linkages between the attribute groups are established, accord-

ing to the second approach. The criteria for defining the attribute groups 

                                                     
34  Such an overall pattern is often called a “model”, particularly, in the data-

mining literature. 
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may come from domain knowledge or result from previous analysis. For 

example, the census attributes characterising the districts of Portugal may 

be divided, on the basis of domain knowledge, into age structure attributes, 

occupation attributes, education-level attributes, etc. Alternatively, the at-

tributes may be grouped according to the similarity of their spatial behav-

iours, i.e. on the basis of some previous analysis. 

It is clear that the second approach to the characterisation of the behav-

iour of multiple attributes involves a decomposition of the overall behav-

iour, as does the intermediate approach. However, it is not only this sort of 

decomposition that is possible. The first approach often results in a com-

pound pattern, derived by dividing the reference set into subsets and char-

acterising the corresponding partial behaviours. This is done when the 

overall behaviour is too complex to be approximated by a single atomic 

pattern.

The decompositions occurring in the first and second approaches are 

different; let us call them Decomposition A and Decomposition B, respec-

tively (Decomposition B includes the consideration of attribute groups as 

well as individual attributes). Decomposition A produces a set of patterns 

such that each pattern includes all the attributes under exploration but re-

fers to a subset of the overall reference set and reflects the reference-

invariant features of the behaviour based on this subset. This can be 

viewed as partial, or local, invariance. The overall, globally invariant pat-

tern is built from the partial patterns by specifying the domain of applica-

bility of each pattern, i.e. the reference subset for which it is valid. 

The partial patterns produced by means of Decomposition B, in contrast, 

apply to the entire reference set, i.e. they are globally invariant. The pat-

terns are partial because each of them reflects only a part of the available 

characteristics, specifically, only characteristics in terms of one attribute or 

subset of attributes. The overall, exhaustive pattern is built from the partial 

patterns by establishing linkages between the characteristics that the pat-

terns reflect. 

Both Decomposition A and Decomposition B may result in an overall 

pattern that has a hierarchical structure: the overall pattern is integrated 

from partial patterns which, in turn, are also composed of smaller patterns, 

and so on. Moreover, Decomposition A and Decomposition B may be ap-

plied to each other. Thus, one can divide the whole set of attributes of a 

dataset into individual attributes or attribute groups and then characterise 

the behaviour of each attribute or group by dividing the reference set into 

appropriate subsets. Or one can first divide the reference set into subsets 

and then characterise the behaviour over each subset by considering indi-

vidual attributes and attribute groups. 
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When we described the principle “divide and group”, we were actually 

referring to Decomposition A, which is based on dividing the reference set 

into subsets. Here, we shall not discuss any further how the division is 

done; instead, we shall briefly touch upon the problem of joining the par-

tial patterns thus derived into an integrated overall pattern. 

As we have mentioned before, with Decomposition A, the overall pat-

tern is built from the partial patterns by specifying the applicability domain 

for each partial pattern. It is usually inappropriate to specify the applicabil-

ity domain by just enumerating all the references included in this domain 

(this may work only in the case of very few references). Hence, the subsets 

that the reference set is divided into should be easily describable without 

enumerating the individual elements. This is, in fact, an important criterion 

to be taken into account during the division process: the explorer needs to 

divide the reference set so that, on the one hand, the behaviour over each 

subset can be characterised effectively in a reference-invariant manner, 

and, on the other hand, the subsets themselves can be described meaning-

fully, parsimoniously, and consistently.  

In Sect. 3.4.2, we tried to formulate some rules for dividing the refer-

ence set into subsets in building compound patterns. The general idea is to 

take account of the properties and relations pertaining to the reference set. 

Thus, a spatial referrer should usually be divided into spatially contiguous 

subsets rather than collections of scattered locations, and a temporal refer-

rer should usually be divided into temporally contiguous intervals rather 

than groups of chaotically dispersed moments. The reference set may also 

be divided on the basis of qualitative differences between the references. 

The choice of the qualities that the division should be based upon is driven 

by domain-knowledge-based expectations of substantial differences in the 

behaviour. For example, in analysing medical data, it is appropriate to di-

vide a set of persons into men and women and/or into age groups. In ana-

lysing time-referenced data in which cyclic changes may be expected, the 

time period can be partitioned according to phases of a cycle rather than 

into contiguous intervals. For example, one can divide a time period with a 

length of several years not into years but into January, February, and so on, 

or into spring, summer, autumn, and winter. A geographical space can be 

partitioned according to the characteristics of the relief and/or land cover. 

Partitions of reference sets on the basis of qualitative differences are usu-

ally easy to describe, but they are only justified when the corresponding 

partial behaviours differ substantially from each other. 

It may happen that a particular division of a reference set does not yield 

good results. Thus, the explorer may try to divide the reference set accord-

ing to the variation of the behaviour (i.e. so as to minimise the diversity 

within subsets and at the same time maximise the differences between sub-
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sets), but the resulting subsets can be hard to identify and interpret. Or the 

explorer may divide the reference set according to some qualities of the 

references but detect no significant differences between the behaviours 

over the resulting subsets. Hence, the explorer needs tools that allow 

him/her to try various divisions and compare them until it becomes possi-

ble to build an appropriate integrated pattern with a clear and parsimonious 

definition of each subpattern and its application domain. This is not always 

achievable, and the explorer often needs to find a suitable trade-off be-

tween the two criteria. 

Let us refer to some examples of Decomposition A that have occurred 

earlier in this book. In Sect. 4.4.3, we discussed various tools for classifi-

cation of references according to the values of one or more attributes. Clas-

sification divides a reference set into subsets so that the corresponding 

characteristics lie within certain ranges. These ranges are, in fact, refer-

ence-invariant characterisations of the parts of the overall behaviour based 

on these subsets, or, in other words, partial patterns (subpatterns). A good 

classification is achieved when the ranges are compact, with little internal 

variance, while the subsets are easily describable. For example, when we 

classified the districts of Portugal, we attempted to define the classes so 

that the territory was divided into coherent parts that could be given mean-

ingful names or descriptions such as “north-western coast”, “areas around 

big cities”, or “deep inland”. For this purpose, we need highly interactive 

and dynamic classification tools, which allow us to modify the definitions 

of the classes quickly and easily, and to immediately observe the resulting 

division of the reference set. 

In Sects. 4.7.4 and 4.7.6, we considered the use of clustering tools, 

which are also intended for dividing a reference set into subsets according 

to values of multiple attributes so as to minimise the variance of the char-

acteristics within the subsets and maximise the differences between the 

subsets. As in the case of classification, we wish the subsets to be easily 

interpretable, for example, to form coherent regions in space. From this 

perspective, some of the clustering results presented in this book are not 

bad, for example the results shown in Fig. 4.120C. However, clustering 

entails another problem: clustering tools do not provide reference-invariant 

descriptions of the characteristics pertaining to the subsets. Such descrip-

tions need to be constructed by the explorer. For this purpose, display link-

ing is helpful. Thus, in our examples, we transmitted a division of the ref-

erence set obtained from a clustering tool to histograms (Figs 

4.120C 4.123C) and parallel-coordinates displays (Figs 4.132C and 

4.133C) that visualised the attributes used for the division. This helped us 

to define the general profiles of the subsets, i.e. the partial patterns from 

which the overall pattern could be constructed. 
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So, Decomposition A requires mainly a good division of the reference 

set, and a description of the logic of this division serves as a means of link-

ing the partial patterns. There is, in principle, no need for any additional 

links because the reference subsets are parts of the whole reference set, and 

it is quite clear how these parts are related to each other. Decomposition B 

is quite different: it is based on considering individual attributes and attrib-

ute groups, which are not viewed as elements and subsets of some unified 

whole. Therefore, the integration of the partial patterns requires establish-

ing explicit linkages between the attributes or attribute groups. 

Linkages between attributes are reference-invariant associations of 

characteristics, where certain values of two or more attributes tend to occur 

together throughout the reference set. “Together” means that the values are 

associated with the same references or with groups of references related to 

each other in an identifiable way, in particular, neighbouring references. A 

co-occurrence of values with common references is usually called a corre-

lation. For example, we have detected in the Portuguese data that a high 

proportion of elderly people in the population of a district is correlated 

with a high percentage of people who have no primary school education, 

and that districts with a high proportion of people working in services tend 

to have a low percentage of uneducated people but quite many people who 

have high school education. To our regret, in the datasets that we have, we 

have not found any associations between values of different attributes 

characterising different although related references. As an example, we 

could refer to the known historical case where an association between a 

higher than usual content of fluoride in a lake providing drinking water to 

the surrounding area and a lower than usual frequency of dental caries in 

that area was detected. 

The latter example demonstrates that the role of establishing linkages 

between attributes or attribute groups is not limited merely to the integra-

tion of partial patterns. This is a way not only to a description of the over-

all behaviour but also to an explanation of it. So, we have in fact moved 

from descriptive synoptic tasks to explanatory, or connectional synoptic 

tasks (see Fig. 3.23), the goal of which is to derive a special kind of pattern 

(we have called it a “connection pattern” or “linkage pattern”) that charac-

terises the behaviour of different attributes or phenomena with respect to 

each other (a “mutual behaviour”). These tasks are usually very complex 

and require much more imagination and creative thinking than do descrip-

tive tasks. There are no recipes for how to discover essential connections 

between attributes or between phenomena. We can refer to potentially 

helpful tools and approaches, but nobody can guarantee that they will al-

ways be effective and lead to satisfactory results. 
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First of all, we would like to mention the realm of computational meth-

ods, in particular, statistics, with its highly developed apparatus of correla-

tion analysis. It should be noted, however, that the techniques of correla-

tion analysis deal mostly with numeric attributes. Moreover, they treat any 

reference set as a statistical population, i.e. they do not take account of dis-

tances, ordering, and other relations between references. Many algorithms 

for data mining are also intended for the discovery of correlations between 

attributes or typical associations between attribute values. Some of these 

algorithms are based on statistical techniques, while others involve infor-

mation theory or other mathematical apparatus. Recently, specific data-

mining methods that search for correlations and associations in spatially 

referenced data have appeared (Openshaw and Openshaw 1997, Miller and 

Han 2001). 

Of the visual techniques, the scatterplot is recognised as the best tool for 

detecting correlations between numeric attributes. A scatterplot can expose 

a relatedness of two attributes irrespective of whether it is linear or non-

linear, while computed correlation coefficients are only suited to linear 

dependencies. The use of the scatterplot technique may be problematic 

when the data volume (i.e. the number of references) is very large. In such 

a case, the classical scatterplot may be replaced by a modification of this 

technique involving data aggregation, such as the binned scatterplot (Fig. 

4.64) or the bagplot (Fig. 4.74). 

Since the scatterplot can be used only for a pair of attributes, other tech-

niques are necessary for dealing with three or more attributes. Scatterplot 

matrices are displays consisting of multiple scatterplots, each representing 

one of the possible pairs of attributes. In such a composite display, one can 

detect pairwise correlations between attributes. Another applicable tech-

nique is the parallel-coordinates display. For two attributes represented on 

adjacent axes of a parallel-coordinates display, the indicator of a positive 

correlation is that the lines between these axes are close to parallel, 

whereas all the lines crossing indicates a negative correlation. However, 

nothing can be said, typically, concerning attributes represented on non-

adjacent axes. Therefore, the parallel-coordinates tool must allow the user 

to change the order of the axes. Some implementations of this technique 

involve computation-based optimisation of the arrangement of the axes so 

that neighbouring axes correspond to the most related attributes. 

Another useful visual tool is the variant of the table display known as 

the “table lens” (see Fig. 4.10), in which the values of numeric attributes 

are represented by bars drawn inside the table cells so that the sizes of the 

bars show the relative positions of the values between the minimum and 

maximum of the respective attribute. In such a display, the rows may be 

sorted according to the values of one of the attributes. Then, the bars in 
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columns corresponding to attributes correlated with this attribute will unite 

visually into shapes close to triangular. Thus, the screenshot in Fig. 4.10 

suggests that the attribute “% employed in agriculture 1991” (the one ac-

cording to which the rows are ordered) is positively correlated with the 

attribute “% pop. no primary school education 1991” and negatively corre-

lated with the attribute “% pop. with high school education 1991”. 

Any display of numeric attributes may be insufficiently expressive with 

regard to exposing correlations when some of the attributes (or all of them) 

have outliers or skewed distributions. In such cases, display manipulation 

tools for removing outliers (focusing) and transformation of the visual en-

coding function (e.g. from linear to logarithmic) are appropriate. 

Besides pairwise correlations, there may be more complex relationships 

which involve more than two attributes, for example when combinations of 

values of two or more attributes influence values of other attributes. We do 

not know of any visualisation technique that would effectively support de-

tecting such dependencies. Dynamic querying tools combined with appro-

priate visual displays have been suggested by some researchers as instru-

ments for the exploration of multiattribute links, for example, Attribute 

Explorer and Influence Explorer (Spence and Tweedy 1998, Spence 2001). 

The idea is demonstrated in Fig. 4.102: the explorer sets limits on the val-

ues of some attributes, these limits are used for filtering the data, and the 

explorer can see which values of the other attributes have been completely 

removed by the filter and which still occur in the active data subset. The 

visualisation can also show how many value occurrences have been re-

moved and how many remain. In principle, such a tool can work not only 

with numeric attributes but also with qualitative ones. 

In a tool such as Attribute Explorer, linked displays play a significant 

role. Linked displays can also be used in combination with direct-

manipulation query tools to allow the user to select visual items in any of 

the displays and immediately see what items correspond to the selected 

items in the other displays. For example, in Fig. 4.101, the explorer has 

selected a group of dots on a scatterplot corresponding to low values of the 

attributes “% pop. no primary school education 1991” and “% employed in 

services 1991”. From the two histograms linked to the scatterplot, the ex-

plorer can see that the selection corresponds to mostly low values of the 

attribute “% employed in agriculture 1991” and medium to high values of 

“% employed in industry 1991”. 

A disadvantage of using any sort of query tools for the discovery of 

links between attributes is that the explorer, in principle, needs to try all 

possible variants of setting limits or making selections, and this is an un-

feasible task. Therefore, such tools can be used when the explorer has 

made some guesses concerning possible dependencies, in particular, which 
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of the attributes can influence the others. Thus, in the Influence Explorer 

tool, the attributes are divided into input and output attributes, with the 

assumption that the values of the output attributes depend on the values of 

the input attributes. The goal is to examine how the choice of various value 

ranges of the input attributes influences the values of the output attributes. 

In searching for links between groups of attributes, a combination of 

Decomposition B with Decomposition A can be utilised effectively. The 

idea is that the explorer divides the attributes of a dataset into groups (De-

composition B). Then, the reference set is partitioned into subsets accord-

ing to the values of the attributes of one of the groups. For this purpose, the 

explorer applies appropriate classification or clustering tools. After that, 

the explorer considers the statistics of the values of the other attributes for 

the reference subsets thus obtained and/or transmits the reference set divi-

sion to various displays of these attributes by applying display coordina-

tion tools. An example is demonstrated in Figs 5.34C and 5.35C. 

To produce these illustrations, we have applied a clustering tool in order 

to divide the districts of Portugal into subsets (classes) according to the 

values of three attributes characterising the structure of the employment of 

the population in different sectors of the economy: agriculture, industry, 

and services. To interpret the meaning of the computationally derived 

classes, we have visualised their characteristics in terms of the employ-

ment attributes in a parallel-coordinates display. On the left in Fig. 5.34C, 

the characteristics are shown in an aggregated form, as “envelopes” con-

taining the lines for each class and divided into stripes according to the 

deciles of the attribute values in the classes. It may be seen that the “blue” 

class is formed by the districts with high employment in agriculture and 

low employment in the other two sectors, the “green” class consists of the 

districts with high employment in industry, the “yellow” class is character-

ised by high employment in services, and the “red” class consists of the 

districts where the employment in all three sectors is from small to me-

dium, and none of the sectors prevails significantly. 

Now, we would like to find out how the employment structure is related 

to the educational level of the population in the districts. On the right in 

Fig. 5.34C, we can see the statistics of the values of four attributes reflect-

ing the education level of the population, specifically, the proportions of 

people without primary school education, with primary school education, 

with preparatory school education, and with high school education, for the 

entire country and for the four classes of districts. The statistics show us 

that high employment in agriculture (the “blue” class) correlates with a 

high proportion of people without education, a low proportion of people 

with preparatory school education, and a still lower proportion of people 

with high school education. The districts with high employment in industry 
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(the “green” class) tend to have low proportions of people without educa-

tion and of people with high school education, while the proportions of 

people with preparatory and, especially, primary school education tend to 

be high. The districts with high employment in services are characterised 

by mostly low proportions of people without education and (surprisingly) 

of people with preparatory school education, a low to medium proportion 

of people with primary school education, and, notably, a high proportion 

of people with high school education. 

In a less aggregated form, the “educational profiles” of the classes can 

be seen in the four parallel-coordinates displays in Fig. 5.35C. Each dis-

play contains only lines for a single class. The background colouring indi-

cates the positions of the first and ninth deciles (i.e. tenth and 90th percen-

tiles) of the values of the education attributes in the respective classes. We 

shall not describe the displays in detail since their meaning is quite clear. It 

is important that we have more or less succeeded in establishing linkages 

between two groups of attributes by utilising Decomposition A, i.e. parti-

tioning of the reference set according to the values of several attributes, 

and tool combination, specifically, application of a statistical tool to the 

division obtained and reflection of that division in visual displays by 

means of multicolour marking and display multiplication. 

The tools discussed so far are primarily intended for attributes referring 

to statistical populations, i.e. reference sets without ordering, distances, or 

other relations between the elements. More precisely, such relations are 

not taken into account; hence, one can, in principle, apply scatterplots or 

Attribute Explorer to spatially and/or temporally referenced attributes, but 

one should keep in mind that a great deal of potentially relevant informa-

tion is thereby simply ignored. Therefore, the explorer should not rely only 

on such tools when dealing with spatial or temporal data. 

The appropriate visual tools for data with spatial and/or temporal com-

ponents are tools that reflect the essential properties and relations pertain-

ing to these components. In particular, an appropriate representation of 

geographical space is a map display, while time can be represented by one 

of the planar display dimensions, as, for example, in a time graph.  

One possible approach to detecting links between spatially or tempo-

rally referenced attributes is to compare visual displays of them, for exam-

ple several maps, as in Figs 5.16 and 5.21C, or several time graphs, as in 

Fig. 5.2. A similarity between the displays indicates relatedness of the at-

tributes. However, this approach may be ineffective when the attributes are 

heterogeneous, for example when one attribute is numeric while the other 

is qualitative.

An overlaid representation of several attributes or even of several het-

erogeneous phenomena within a single display is a more universal and 
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quite effective approach, providing that visibility of all the information 

layers is ensured (some solutions have been discussed in Sect. 5.4.4). 

Thus, links between several temporally referenced attributes or several 

phenomena that have temporal components may be investigated using a 

combined representation of these attributes or phenomena in a time graph 

or some other display in which one of its dimensions represents time. A 

map display can be used for a combined visualisation of several spatially 

referenced attributes or phenomena with spatial components. For example, 

to look for links between the movement of storks and the relief, land cover, 

and climate, one can use a map display with an overlaid representation of 

all these phenomena.

It is interesting to note that in this case the phenomena not only differ in 

their nature but also have different reference sets: relief and land cover 

refer to geographical space, climate refers to space and time, and the 

movement of the storks refers to time, while space is the value domain of 

the attribute reflecting the location of the storks. The presence of spatial 

components in all of the phenomena makes it possible to represent them in 

a common map display. Since some of the phenomena refer also to time, it 

is necessary to incorporate time into the visualisation. For this purpose, 

one can use map animation or multiple juxtaposed maps representing dif-

ferent time moments. 

To our regret, we have no climate data related to the movement of the 

storks, but a representation of the movement trajectories on top of a satel-

lite image showing relief, water, and land cover allowed us to note that the 

storks avoid flying over the sea but prefer to go around it. On the way back 

from Africa to Europe, they avoid flying over deserts, and on the way 

south, they move over a desert but with an increased speed as compared 

with the other segments of their trajectories. These observations provide a 

simple example of a link between several phenomena that may be detected 

using an overlaid representation of them. In Fig. 5.36C, two screenshots 

represent the movement of four storks during the period from 20 August 

1998 to 31 January 1999 (with mostly southward movement) and from 1 

February 1999 to 1 May 1999 (when the storks returned to Europe).  

In looking for spatial or temporal correspondences between phenomena 

or attributes, it should be borne in mind that influences in space and time 

may be “lagged”, that is, the effects of events or characteristics may not be 

observed exactly in the same place and at the same time as where and 

when the event occurred or the characteristics were attained, but at a cer-

tain distance in space and/or time. When all data can be viewed simultane-

ously, for example, on a map or a time graph, it is usually possible to de-

tect such lagged influences. Animated displays or “small multiples” are 

less supportive for such kinds of observations. It may be useful to try a 



5.4 Principles of Selection of the Methods and Tools      563 

“shifted” representation of the temporal development of several attributes 

or phenomena. For example, each individual frame in an animated repre-

sentation or a “small multiples” display may represent the values of one 

attribute referring to the time moment t and the values of another attribute 

referring to the moment t + , where  is a user-specified value for the 

temporal shift. For two time-referenced numeric attributes, it may also be 

useful to look at a scatterplot in which the values of one of the attributes 

referring to the moment t are plotted against the values of the other attrib-

ute for the moment t + . Of course, if the user has no expectation con-

cerning the possible “latency period” after which effects may appear (such 

expectations may come from the user’s domain knowledge), various val-

ues of  need to be tested. 

As we have mentioned in Sect. 3.5.2, essential links may exist not only 

between different attributes or phenomena but between parts of a single 

phenomenon; for example, hot, dry summers may be correlated with sub-

sequent cold winters. This means that, when applying Decomposition A, 

i.e. decomposition on the basis of dividing the reference set, an explorer 

may go beyond the generation of a compound descriptive pattern. He/she 

may try to derive a connectional pattern by establishing linkages between 

the subpatterns of the compound pattern.  

On the basis of our experience, we believe that such tasks can be appro-

priately supported by tools that allow the explorer to visualise the charac-

teristics pertaining to different reference subsets in separate displays and 

flexibly arrange these displays for the most convenient comparison. For 

example, if the explorer is analysing monthly data over many years, it 

could be useful to divide the data into yearly portions and represent these 

portions in a collection of displays arranged in a stack, one below another. 

This would facilitate comparisons between the corresponding months of 

different years. It might also be beneficial to construct an overlaid repre-

sentation of all of the data portions within a single view.  

The tools we have at our disposal do not provide such possibilities. 

Since we would still like to give an example of looking for links between 

subpatterns, we shall describe an attempt to use the available visualisation 

facilities to test whether any relations between the weather in summer and 

in the subsequent or previous winter can be detected in the monthly cli-

mate data we have for the period from January 1991 to May 2003. Al-

though the data were collected at 43 weather stations in Germany and 

hence have a spatial referrer, we are not interested in the spatial compo-

nent; our goal is to find space-invariant correspondences. Therefore, it is 

quite appropriate to reduce the dimensionality of the data by means of ag-

gregation over the spatial referrer. 



564     5 Principles 

For the investigation, we have used the visualisation shown in Fig. 

5.37C, which consists of four vertically aligned displays representing the 

space-aggregated monthly values of various climate attributes: 

the monthly mean of the daily mean temperature (degrees Celsius); 

the monthly mean of the daily minimum temperature (degrees Celsius); 

the total monthly sunshine duration (hours); 

the total monthly precipitation (millimetres). 

The order of the attributes in the above list corresponds to the order of the 

displays, from top to bottom. 

The horizontal dimension of each display represents the temporal refer-

rer. Each display consists of segmented bars, one bar per month. To pro-

duce the display, the monthly data have been aggregated over Germany by 

dividing the value ranges of the attributes into intervals and counting the 

attribute values fitting within these intervals. The sizes of the segments of 

the bars are proportional to the counts. We have specified the following 

interval breaks: 

10, 5, 1, +1, +5, +10, +15, and +20 for the monthly mean of the 

daily mean temperature (the topmost display); 

10, 5, 1, +1, +5, +10, and +15 for the monthly mean of the daily 

minimum temperature (the second display from top); 

50, 100, 150, 200, 250, and 300 for the total monthly sunshine duration 

(the third display from top); 

20, 40, 60, 80, 100, and 200 for the total monthly precipitation (the dis-

play at the bottom). 

In the upper two displays, shades of blue correspond to temperature val-

ues below zero (more precisely, up to –1), yellow to values around zero 

(from –1 to +1), and red to values above +1. Hence, cold periods are indi-

cated by high amounts of blue, and hot periods by high amounts of dark 

red. In the display of sunshine duration (the third from top), yellow corre-

sponds to a duration between 150 and 200 hours, shades of blue to shorter 

durations, and shades of red to longer durations. Hence, an abundance of 

blue indicates periods with low sunshine, in particular, winter, when the 

days are short. In the display of the precipitation, shades of brown corre-

spond to low precipitation, and shades of green to high precipitation. 

Hence, a high proportion of brown in a bar indicates a dry month, and a 

high proportion of green corresponds to wet weather. 

For the purposes of our investigation, we have divided the entire time 

period into “summer” and “winter” seasons, assuming the summer season 

to include the months from May to October and the winter season to in-
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clude the months from November to April of the following year. For orien-

tation, we have put at the bottom of Fig. 5.37C a horizontal bar divided 

into red and blue segments indicating the summer and winter seasons.  

From the visualisation in Fig. 5.37C, we can see that the hottest sum-

mers were in the years 1994, 1995, and 1997: the corresponding bars in the 

upper two displays contain the highest amounts of dark red colour. From 

the relative amounts of green and blue in the corresponding bars of the 

lowest display, we can see that these summers were not very dry, except 

for the second half of the summer of 1997. While the winter after the 

summer of 1995 was very cold, the winter after the summer of 1994 was 

not so cold, and the winter after the summer of 1997 was exceptionally 

mild. The winter before the summer of 1994 was quite mild and, appar-

ently, cloudy: the sunshine duration in this winter is one of the lowest. The 

winter before the summer of 1995 was also rather mild; however, the win-

ter before the summer of 1997 was one of the coldest. Hence, there is no 

stable association between hot weather in summer and the character of the 

weather in the previous or subsequent winter. 

Let us look at whether there is any association between cold winters and 

the weather in the previous or following summer. The coldest winters were 

in the years 1995 1996, 1996 1997, and 2002 2003: the corresponding 

bars in the upper two displays contain the highest amounts of blue colour. 

The winter of 1995 1996 was also exceptionally dry, as may be seen from 

the display at the bottom; the other two winters were also quite dry. The 

summer preceding the winter of 1995 1996 was quite warm and not dry. 

The summer before the cold winter of 1996 1997 was not very warm and 

not dry either. Before the winter of 2002 2003, the summer was quite 

warm and extremely wet; this was a summer of tremendous floods in many 

European countries, including Germany. The summer following the cold 

winter of 1995 1996 was not very warm, while the summer after the win-

ter of 1996 1997 was one of the hottest. The dataset does not contain data 

for the summer of 2003 following the cold winter of 2002 2003 but eve-

rybody in Europe still remembers this extremely hot, dry summer, with 

extensive forest fires and many deaths from heatstroke. 

So, the available data do not allow us to detect any stable association ei-

ther between hot summers and the weather in the preceding or following 

winter or between cold winters and the weather in the preceding or follow-

ing summer. It would be better, of course, to have data for a longer time 

period, since the number of occurrences of hot summers and cold winters 

in the given period is too small for drawing any conclusions. 

In our exploration, it was important that the visualisation tool that we 

used allowed us to find, grasp, and compare parts of the overall behaviour 
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corresponding to various reference subsets, in this particular case, the win-

ters and summers of different years. In general, this is what is basically 

required for any exploration of possible links between partial behaviours 

over reference subsets. Perhaps it would have been a little more convenient 

for us if the available tools had allowed us to split the visualisation into 

views of the behaviours over different subsets and to arrange such views 

for easy comparison. However, it is not always possible to obtain an ideal 

tool for a task, and it is often necessary to find a way of making appropri-

ate use of what is available. Usually, a visual display complying with the 

principle “see the whole”, i.e. one that shows the entire overall behaviour 

(or the aspectual behaviour that is the focus of the investigation, as in the 

present case), is also suitable for making comparisons between parts of the 

behaviour corresponding to various reference subsets. 

Let us now switch to the problem of building an overall pattern in the 

case of multidimensional data, i.e. data with multiple referrers. When it is 

impossible to have a complete and unified view of the entire reference set, 

the explorer needs to consider various slices of the overall behaviour, i.e. 

fix the value(s) of some referrer(s) and explore the behaviour with respect 

to the other referrer(s). For example, when a phenomenon varies in space 

and time, the explorer, on the one hand, fixes various time moments and 

looks at the spatial behaviours at these time moments, and on the other 

hand, fixes various places and looks at the temporal behaviours in these 

places. For a sound, comprehensive investigation, the explorer must con-

sider all possible slices. However, it will not be a useful result of the 

analysis if the explorer just describes every individual slice. The explorer 

needs to use these slices to derive an integrated pattern. 

It is usually quite clear how to unite the slices resulting from choosing 

different fixed values of the same referrer(s). Thus, for a spatially and tem-

porally referenced phenomenon, the series of spatial behaviours referring 

to different time moments can be jointly characterised as the evolution of 

the spatial behaviour over time. Similarly, the collection of local temporal 

behaviours in different places can be characterised as the variation of the 

temporal behaviour over space. However, this will result in two unrelated 

patterns characterising different aspects of the overall behaviour. 

In Sect. 5.3, we introduced an approach to relating such aspectual pat-

terns using the example of the burglary rate data for the states of the USA, 

which refer to space and time. Let us now try to present this approach in a 

general form. The main idea is to use the partitioning or grouping per-

formed in the course of characterising each aspectual behaviour for cross-

sectioning of the reference set. Then, the parts of the overall behaviour 

corresponding to the reference subsets obtained in this way are character-

ised in such a way that all the aspects are accounted for. 
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Thus, the study of the evolution of the spatial behaviour over time can 

result in dividing the time period into several intervals such that either the 

spatial behaviour does not change significantly within an interval or the 

character of the changes is consistent throughout each interval and differs 

from that in the other intervals. The study of the spatial variation of the 

local temporal behaviours may result in a division of the space into parts 

according to similarity of the local behaviours. On this basis, the explorer 

can divide the entire two-dimensional reference set into subsets corre-

sponding to the possible combinations of a time interval and a part of the 

space. If the time period has been divided into N intervals and the space 

into M parts, there will be in total N M subsets of the reference set. Then, 

for each subset, the explorer needs to characterise what was going on in 

the respective part of the space during the respective time interval. 

Let us take once again the example of the burglary rates in the USA and 

try to consider it in a slightly different way than in Sect. 5.3 by consis-

tently applying the idea of cross-sectioning. 

On the basis of observing the evolution of the spatial behaviour of the 

burglary rate (for this purpose, we used an animated choropleth map dis-

play and a “small multiples” map display), we have divided the period 

from 1960 to 2000 into three intervals: 1960 1979, 1980 1986, and 

1987 2000. During the first interval, the general character of the spatial 

behaviour did not change significantly; its “averaged portrait” is shown in 

the first column of Table 5.3. During the third interval, the character of the 

spatial behaviour was also quite stable, but different from the behaviour 

over the first interval. The corresponding “averaged portrait” is shown in 

the third column of Table 5.3. The change in the character of the behaviour 

is clearly visible: over the interval 1960 1979, the highest burglary rates 

Table 5.3. The evolution of the spatial behaviour of the burglary rate over time 

1960 1979 1980 1986 1987 2000 
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were in the western states while the interval 1987 2000 is characterised by 

a cluster of high values in the south of the country. The second interval 

was a time when the spatial behaviour varied significantly; therefore, it 

would not be appropriate to produce a corresponding “averaged portrait”. 

Instead, in the second column of Table 5.3, we have put three screenshots 

corresponding to the years 1980, 1983, and 1986. 

When high precision of behaviour characterisation is required, it may be 

appropriate to divide the temporal referrer into smaller intervals so that 

finer changes in the spatial behaviour can be reflected. However, for the 

purposes of illustration, the three intervals defined above are sufficient. 

To divide the territory of the USA into parts according to the similarity 

of the local temporal behaviours of the burglary rate, we applied a cluster-

ing tool, which produced, in accordance with our request, four clusters. 

These clusters and the corresponding local behaviours are shown in Fig. 

5.38C. The local behaviours in each cluster are represented in a separate 

time graph by lines of the particular colour assigned to the cluster. The 

thick black line in each time graph shows the “running average”, i.e. the 

segments of the line connect the average values for the entire country in 

consecutive years. It may be seen that the green cluster is formed by states 

with mostly low burglary rates and the red cluster consists of states with 

high and very high burglary rates. The blue cluster is characterised by me-

dium burglary rates, which decrease significantly in the second part of the 

time period and become mostly lower than the average for the country. 

The behaviours in the magenta cluster, in contrast, start with values below 

the average but end with values above the average for the country. 

Spatially, the clusters are not equally well formed. While the magenta 

cluster is spatially continuous, the blue cluster is rather scattered. The red 

and green clusters have main bodies formed by adjoining states, and a few 

additional non-adjacent pieces. We could consider each part of a spatially 

disjoint cluster as a separate partition. However, to avoid extending the 

length of this example description, we prefer to stick to four clusters. 

So, we have divided the temporal referrer of the dataset into three sub-

sets (time intervals) and the spatial referrer into four subsets (clusters of 

states). These divisions result from our study of the aspectual behaviours: 

the first division from an investigation of the development of the spatial 

distribution of the burglary rate values over time, and the second division 

from an investigation of the variation of the local temporal behaviour of 

the burglary rate over space, i.e. the territory of the USA. 

Now, according to our general approach, we cross-section the entire ref-

erence set, consisting of space and time, into 3  4 = 12 subsets, and char-

acterise the behaviour in each spatial partition during each time interval. 

For convenience, we have produced 12 pictures of the sub-behaviours  
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corresponding to these reference subsets and organised them in Table 5.4, 

which is placed together with the colour figures at the end of the book. Let 

us now briefly describe what we can see from Tables 5.3 and 5.4. It is 

convenient to organise our observations as is done in Table 5.5. 

Table 5.5. Description of the behaviour of the burglary rate by parts of the terri-

tory (groups of states) and by time intervals 

Area 1960–1979 1980–1986 1987–2000 

Green (cen-

tral north and 

north-east)

Low values; grad-

ual increase; low 

fluctuations 

Low values; decrease 

followed by flatness; 

low fluctuations 

Low values; very 

gentle decrease; 

low fluctuations 

Blue (around 

Great Lakes, 

plus Utah and 

Alaska) 

Medium values; 

increase rate 

higher than in the 

green cluster; 

fluctuations  

Medium values; 

quite sharp decrease 

followed by flatness; 

low to medium fluc-

tuations 

Medium values; 

gradual decrease; 

low fluctuations 

Magenta 

(south-east 

except Flor-

ida) 

Values mostly 

between those in 

the green and blue 

clusters; increase; 

fluctuations 

Medium values; de-

crease followed by 

increase; low fluc-

tuations  

Values higher than 

in the blue cluster; 

gradual decrease; 

low to medium 

fluctuations 

Red (west and 

south-west 

plus Florida 

and Michi-

gan) 

High values; high 

fluctuations; gen-

eral increasing 

trend 

High values; quite 

sharp decrease fol-

lowed by slight in-

crease; high fluctua-

tions 

High values; de-

crease rate higher 

than in the other 

clusters; medium 

fluctuations 

Entire coun-

try

Low values in the 

“green” area, me-

dium values in the 

“magenta” and 

“blue” areas, and 

high and very 

high values in the 

“red” area 

Low values in the 

“green” area, me-

dium values in the 

“blue” area, and un-

stable appearances of 

the “red” and “ma-

genta” areas due to 

incoherent internal 

changes

Low values in the 

“green” area and 

medium values in 

the “blue” area. The 

“red” and “ma-

genta” areas, with 

high values, have 

merged together 

visually. 

This table can be viewed as a verbal compound pattern characterising 

the behaviour of the burglary rate in space and time. It links together the 

patterns characterising the aspectual behaviours. This sort of linking can be 

described as structural linking, as it is based on introducing a certain struc-

ture over the reference set and, accordingly, in the characterisation of the 

behaviour. It should be noted, however, that cross-partitioning can also 
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prompt the detection of cause effect links. Thus, we can relate the change 

in the general character of the spatial behaviour (i.e. the difference be-

tween the behaviour in 1987 2000 and that in 1960 1979) to the character 

of the local behaviours in the magenta cluster. It is the increase in the val-

ues in this cluster in the second half of the interval 1980 1986 (in contrast 

to the flatness in the green and blue clusters) that lead to the high values in 

this cluster attained by the beginning of the interval 1987 2000, and to the 

perceptual merging of this cluster with the red cluster. The character of the 

behaviour in the red cluster over the intervals 1980 1986 and 1987 2000, 

specifically, a sharper decrease in the values than in the other areas, has 

also contributed to the process of cluster merging: the range of values in 

the red cluster became very close to that in the magenta cluster, whereas 

the respective ranges during the interval 1960 1979 were quite different. 

In order to finish properly the topic of linking aspectual patterns, we 

need to answer several questions: 

1. Is it always necessary to partition the value set of each referrer? 

2. How do we analyse the behaviour of multiple attributes? 

3. How does the procedure for analysis change when there are more than 

two referrers? 

Question 1. Partitioning of the value set of a referrer is only necessary 

when the respective aspectual behaviour varies substantially over this 

set. Thus, in the example above, we had to divide the time period into 

intervals because the character of the spatial distribution of the burglary 

rate was not the same during the whole period. Analogously, we had to 

divide the territory of the USA into groups of states (clusters) because of 

the substantial differences in the local temporal behaviours. If this were 

not so, i.e. the character of the spatial distribution were constant and the 

values in all of the states behaved coherently over time, the description 

of the overall behaviour would be much simpler, for example “an in-

creasing spatial trend from north-east to south-west; a general increase 

in the values during the first half of the time period and a decrease dur-

ing the second half”. 

Question 2. To analyse the behaviour of multiple attributes, for example 

several different crime rates, we can apply either Decomposition A or 

Decomposition B described near the beginning of this subsection. Thus, 

we could use a cluster analysis tool to divide the territory according to 

the local behaviours of all crime attributes (we indeed did this, and the 

clusters were similar but not identical to those produced using the bur-

glary rate). We could also represent the joint spatial behaviour of the 

crime rate over the country in each year by maps with appropriate dia-
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grams, and then try to grasp the general character of the behaviour and 

its change over time. If we manage to do this, we can then proceed as 

we did with the burglary rate. This is Decomposition A. It is also possi-

ble to characterise the behaviour of each crime rate attribute separately, 

as we did with the burglary rate and then try to establish linkages be-

tween the attributes. This is Decomposition B. If the attributes do not 

behave in the same way (and this is in fact the case), it is appropriate to 

consider the behaviours on different reference subsets. If divisions and 

cross-divisions of the reference set are performed in the course of the 

analysis of the individual behaviours of the attributes, it is highly desir-

able that these divisions are consistent between the attributes. 

Question 3. Every additional referrer increases dramatically the com-

plexity of the analysis process. In the case of two referrers, we dealt 

with two aspectual behaviours. As we have shown in Sect. 3.4.4, in the 

case of three referrers, the number of aspectual behaviours is six rather 

than three, and in the case of four referrers, there are 24 different aspec-

tual behaviours. With such complexity, the full extent of the task of 

characterising the overall behaviour reaches far beyond the cognitive 

capabilities of a human explorer. However, some possibilities for sim-

plification often exist.  

First, depending on the goals of the exploration, not all aspectual be-

haviours may be of equal interest. Thus, the dataset concerning the 

simulation of forest dynamics is used primarily for comparison of dif-

ferent forest management scenarios. Therefore, the explorer is interested 

in characterising the behaviour of the characteristics of the forest corre-

sponding to each scenario and in detecting the similarities and differ-

ences between these behaviours. However, the analyst is not very inter-

ested in characterising the overall behaviour across the scenarios or any 

aspectual behaviour referring to the set of scenarios as a whole. More-

over, it is even inappropriate to consider the set of scenarios as a unified 

whole, because the scenarios are mutually exclusive. 

Second, referrers of the population type (i.e. those which have dis-

crete value sets without ordering or distances) are usually easier to deal 

with than spatial and temporal referrers. Thus, if the values of a referrer 

are not very numerous, it is possible to treat the slices of the overall be-

haviour corresponding to different values in the same way as different 

attributes in a dataset with lower dimensionality. For example, in the 

case of the forest simulation data, we can treat characteristics related to 

different tree species as different attributes: the area covered by aspen, 

the area covered by birch, and so on. If the values of such a referrer are 

too numerous, it may be possible to categorise them and, on that basis, 

aggregate the data. For example, we could categorise the species into 
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coniferous and broadleaved or into hardwood and softwood, compute 

the total areas for each category, and consider these areas as different at-

tributes. The approaches to dealing with multiple attributes have been 

discussed earlier. 

Third, depending on the explorer’s goals, the variation of the charac-

teristics with respect to some of the referrers may be of minor interest. 

Thus, for a comparison of the forest management scenarios, the spatial 

distribution of the characteristics of the forest and the spatial variation 

of the local behaviours are not so important. In such a case, it is appro-

priate to aggregate the data over the irrelevant referrer(s) and thereby 

reduce the dimensionality of the data, as was described in Sect. 5.4.1.

When we described the example of the analysis of the burglary rate 

data, we mentioned that we had achieved a sort of structural linkage be-

tween the subpatterns, which emerged from introducing a certain structure 

(specifically, cross-partitions) into the multidimensional reference set. 

While introducing a structure may organise and simplify the process of 

exploration, some phenomena may have an inherent structure. When this 

structure is known, it needs to be taken into account; if it is unknown but 

its presence is suspected, it needs to be discovered. This is what the next 

principle is about. 

5.4.9 Principle 9: Establish Structure 

It is widely known that many temporally varying phenomena vary in cy-

cles. Thus, yearly cycles are relevant to climate and to various weather- 

and season-related phenomena and activities such as vegetation, the migra-

tion of animals, forest fires, agriculture, and the tourist industry. People’s 

activities are subject to weekly and daily cycles, as are related phenomena 

such as transport, traffic incidents, and energy consumption. Any explora-

tion of such data cannot be valid if it does not take proper account of the 

cyclical structure of the behaviour. 

The general approach is to split the behaviour into its cyclical and long-

term components and to characterise each component. There may be sev-

eral nested cyclical components, as in the case of the variation of air tem-

perature (daily and yearly) or of people’s activities (daily and weekly). 

Appropriate techniques for splitting numeric time-series data into compo-

nents and analysing those components exist in statistics, but other sorts of 

tools may also be appropriate 

One such tool is the appropriate ordering and arranging of display items. 

Thus, in Fig. 4.12, we represented the local behaviours of the monthly av-

erage temperature at various weather stations in Germany by special “mo-
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saic” signs containing “tiles” arranged in rows corresponding to the years 

from 1991 till 2003 and columns corresponding to the months of the year. 

Each sign represents simultaneously the yearly variation and the long-term 

tendency, but only for a particular location. When we need to consider the 

behaviour of the weather over the entire territory of Germany, we cannot 

apply the same approach, and need to look for other solutions. 

Rather than proposing any solutions for this particular case, let us try to 

find some general approach or principle. If we think of a time-related be-

haviour with a cyclical structure, we may note that the cyclical structure of 

the behaviour responds to the cyclical structure of its temporal referrer. 

Thus, in the case of the climate data, the temporal referrer consists of 

years, which, in turn, have a common internal structure. Hence, the tempo-

ral referrer is not simply a linear sequence of time moments but a chain of 

repetitive occurrences of one and the same structure. The temporal referrer 

consists of two or more components, a linear one (the sequence of the 

years) and a cyclic one (the internal structure of a year, e.g. its division 

into days, weeks, months, quarters, or seasons). The components of the 

behaviour reflect the components of the temporal referrer, and splitting the 

behaviour into components is based on splitting the temporal referrer into 

its structural components, i.e. replacing it by two or more referrers.

Since one temporal referrer is replaced by two or more, the dimensional-

ity of the data increases. Thus, in analysing the climate data for Germany, 

we need to consider its reference set as three-dimensional rather than two-

dimensional. The three dimensions are: 

space, specified as a set of discrete locations over the territory of Ger-

many; 

linear time, i.e. the sequence of years; 

the yearly cycle, i.e. the sequence of months in a year. 

When we want to visualise the temporal behaviour of a climate attribute in 

a particular place, we need to use two display dimensions for the represen-

tation of the two temporal referrers, the linear and the cyclic one. This is 

done in the “mosaic” signs in Fig. 4.12: in the subspace of each sign, the 

vertical dimension represents the linear time and the horizontal dimension 

the cyclic time. 

Increasing the dimensionality of the data makes them more and more 

difficult to analyse. In particular, it may be impossible to visualise such 

data in full agreement with the principle “see the whole”, i.e. so that all the 

data can be seen at once and that the display prompts unification. Thus, the 

visualisation in Fig. 4.12 with multiple mosaic signs scattered over the 

map of Germany does not support unification: we can see the local behav-

iours but not the global one. 
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The approaches to the exploration of multidimensional data that result 

from splitting a temporal referrer into linear and cyclic components are, 

basically, the same as for originally multidimensional data. An explorer 

analyses the data by slices, i.e. selects specific values of one referrer and 

looks at the behaviour with respect to the other referrers. The explorer can 

also aggregate the data over the entire value set of one referrer and look at 

the behaviour of the aggregated characteristics with respect to the other 

referrers. The explorer needs to consider all aspects of the overall behav-

iour, including the sub-behaviours with respect to the linear and cyclic 

times.

Figures 5.39 and 5.40 present two different aspects of the temporal 

variation of the mean monthly temperature in Germany. The time graphs 

in Fig. 5.39 show the behaviours of the January and July temperatures over 

multiple years. The thin grey lines correspond to the individual weather 

stations, and the thick black line to the running median among all the 

weather stations. It may be seen that the long-term behaviour of the Janu-

ary temperatures differs from that of the July temperatures. Analogous dis-

plays can also be produced for the other months. 

Figure 5.40 demonstrates the cyclic aspect of the behaviour of the mean 

monthly temperature. To produce the time graphs, the data corresponding 

to each month of a year were aggregated over all the years; specifically, 

the minimum, maximum, and various percentiles of the data for the same 

month and weather station and for different years were found. Of these 

aggregated characteristics, we have visualised the minima, maxima, and 

medians. These values are shown in the time graphs as varying over a year. 

As before, the thin grey lines correspond to the different weather stations, 

and the thick black lines to the running medians over all the weather sta-

tions in Germany. 

We have demonstrated two major techniques commonly applied in the 

exploration of time-referenced data with a cyclic character of variation, 

namely filtering (i.e. selection of specific elements of a cycle from a se-

quence of cycles) and aggregation (i.e. grouping of the data referring to 

specific elements of a cycle over all the cycles and computing summary 

characteristics of the groups). In Sect. 4.6.1 and 4.6.4, we have mentioned 

the existence of special tools for temporal querying, such as Time Wheel 

and temporal brushing, which take account of the possible temporal cycles 

and allow the user to select elements of a cycle or even several nested cy-

cles. There are also specific aggregation tools that aggregate data by ele-

ments of a temporal cycle across many cycles, for example the tool de-

scribed in Fredrikson et al. (1999). The same operations can also be done 

using sufficiently flexible general-purpose querying and aggregation tools. 
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Fig. 5.39. The variation of the mean January (top) and mean July (bottom) tem-

perature over several years at various weather stations in Germany 

Fig. 5.40. The mean temperatures for each month have been aggregated over years 

here. These time graphs present the yearly variation of these temperatures: top, 

minimum temperatures for each month from all the years; centre, median tempera-

tures; and bottom, maximum temperatures 
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We have now discussed the approaches to dealing with cyclically vary-

ing behaviours when the cycles are known in advance. There may also be 

cases where the presence of a cyclical variation in the data may be sus-

pected but the cycle(s) are unknown. In such a case, the explorer needs to 

discover the cycle(s). For one-dimensional data, a straightforward trial-

and-error approach can be used. The idea is to cut the sequence of values 

into sub-sequences of equal length and visually represent these sub-

sequences in horizontally or vertically aligned displays. The user tries dif-

ferent lengths until the maximum similarity between the displays is 

achieved. The corresponding length will be the length of the cycle. For 

such an investigation, the user needs an interactive tool that allows him/her 

to change the interval length and immediately observe the effect of this 

change.

When the data are multidimensional, and cyclical variation over one of 

the dimensions (i.e. referrers) is suspected, the explorer can apply the one-

dimensional cycle discovery procedure to data corresponding to selected 

values of the other referrers. If a cycle is detected in such a selected data 

series, the explorer can check whether the same cycle exists in other series. 

For this purpose, the analyst can apply the tools and methods suitable for 

data with a known cycle. 

Cyclic variation with regard to time is not the only possible case of a 

behaviour that has an internal structure. Let us give an example of quite a 

different kind, using the data for the forest structure of Europe. Although 

the example is quite trivial, that is, it does not reveal anything really new 

concerning the distribution of forests, it still demonstrates the idea. 

When we look at various representations of the forest structure data 

(see, for example, Figs 4.86C, 4.87C, 4.132C, 4.133C, and 5.19C), we get 

the impression that the spatial behaviour of the forest structure consists of 

two different components. On the one hand, there is a spatial trend: the 

amount of forest clearly increases from the south to the north, as does the 

proportion of coniferous forest. On the other hand, there are areas in the 

centre and in the south of Europe where the amounts of forest are also 

quite high, and some of them also have a high proportion of coniferous 

forest. If we compare the behaviour of the forest structure with relief (this 

can be done using Figs 4.86C and 4.87C), we can note that the high 

amounts of forest in the centre and south correspond to mountain areas. 

Hence, we can suspect that the overall spatial behaviour of the forest struc-

ture contains, besides the latitudinal trend, an elevation-dependent compo-

nent also. 

In order to investigate how the two components of the overall behaviour 

are related to each other, it is convenient to treat the dataset as having, be-

sides the spatial referrer, an additional referential component, the altitude. 
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This is analogous to dealing with a cyclic component of a time-dependent 

behaviour, where the cycle is regarded as an additional referrer. The alti-

tude can be regarded as one more dimension of the space that the forest 

structure data refer to: originally, we dealt with the two-dimensional geo-

graphical space, and now the space becomes three-dimensional when the 

altitude component is included. 

As a method suitable for the visualisation of data referring to three-

dimensional space, we can use, for example, the perspective-view display 

shown in Fig. 5.41. The horizontal dimensions of this display represent the 

two-dimensional geographical space, and the vertical dimension represents 

the altitudinal component. We have chosen the viewing direction so that 

the territory of Europe is seen from the west; hence, the left side of the 

display corresponds to the north, and the right side to the south. 

Fig. 5.41. In order to see how the forest structure is related to the latitude and alti-

tude, the data may be visualised in a perspective view where the horizontal dimen-

sions represent the geographical space and the vertical dimension represents the 

altitude. In these displays, the viewing direction is from the west of Europe, and 

hence the left side of a display corresponds to the north, and the right side to the 

south. The pie charts represent the proportions of coniferous, broadleaved, and 

mixed forest in the cells of a regular rectangular grid. On the right, the pies are 

shown only for the cells where the maximum elevation is 500 m or more 

The visualisation has been constructed from data originally specified in 

a raster format but transformed as is described in Sect. 4.5.4.6, i.e. aggre-

gated by cells of a regular rectangular grid. The forest structures in the 

cells are represented in this perspective view by pie charts located accord-

ing to the geographic positions of the cells and their maximum altitude. 

The sectors of the pies represent the proportions of coniferous, broad-
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leaved, and mixed forest, and the sizes of the pies show the total propor-

tion of the area of the cell covered by the three types of forest. We have 

applied a focusing tool to the display so that charts have been drawn only 

for cells with at least 10% of their area covered by forest (i.e. the sum of 

the proportions of the coniferous, broadleaved, and mixed forest is not less 

than 10%). Additionally, the tool allows us to focus on subsets of the data 

corresponding to specified ranges of altitude. Thus, the screenshot on the 

right in Fig. 5.41 results from focusing on altitudes of 500 m or higher. 

The transparent horizontal plane corresponds to an altitude of 500 m; it 

can be dynamically moved up and down. The representation of the data in 

the currently selected altitude range can also be “stretched” so as to utilise 

the whole display height available. 

Using the facilities provided by this visualisation tool and a link be-

tween it and a map display, we can conveniently and comprehensively ex-

plore how the forest structure behaves with respect to the two-dimensional 

space and to the ground surface elevation. Thus, we can see that for small 

altitudes (below 500 m), the highest amounts of forest are in the north of 

Europe, except for the far north. Towards the south, the amount of forest at 

these altitudes rapidly decreases. The structure also changes from a preva-

lence of coniferous forests to domination by broadleaved forests. 

At altitudes between 500 and 1000 m, the contrast between the north 

and the south is not so dramatic. In the southern part, the amounts of forest 

are notably higher than at altitudes below 500 m. Coniferous forest tends 

to prevail in the north, and broadleaved forest in the south. 

For the altitude range from 1000 m to the maximum (3592 m), there 

are quite a few places in the north where such altitudes are reached. In 

these places, the amounts of forest are quite small compared with the lower 

altitudes. Coniferous forest still prevails, while the proportions of broad-

leaved and mixed forest tend to increase in the northward direction. In the 

southern part, the amounts of forest at these altitudes vary from rather 

small to quite large. There is a tendency towards decreasing amounts in the 

southward direction. At lower altitudes, broadleaved forest clearly prevails 

in the centre, and coniferous forest in the south. At higher altitudes, which 

occur mostly in the centre of Europe, the relative proportions of the differ-

ent forest types vary, but some dominance of coniferous forest can be seen. 

In these observations, we have characterised the overall behaviour (i.e. 

spatial distribution) of the forest structure of Europe as an interplay of two 

components, latitudinal and altitudinal. Of course, we did not discover 

anything new with these observations: it is generally known that vegeta-

tion is influenced not only by the geographical position (which includes, 

besides the latitude, many other aspects, such as the closeness of water 

masses and warm or cold oceanic currents) but also by the elevation. The 
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reason for giving this example was to demonstrate, using available data, 

how a behaviour with a suspected internal structure can be explored. The 

idea is to treat the attribute or phenomenon suspected to be the basis of 

some component of the behaviour as an additional referrer of the dataset. 

In the above example, we were able to visualise the data in such a way 

that all the referrers, including the additional one, were represented by dis-

play dimensions. This was rather convenient, but this is not the only possi-

bility. We could also apply, for example, the technique of cross-

partitioning of the reference set, as was described in the previous subsec-

tion. We could divide the geographical space into the north, centre, and 

south and the altitudes into low, medium, and high and then consider the 

behaviour in each cross-partition: low altitudes in the north, medium alti-

tudes in the north, and so on. 

Our practical experience in the exploration of behaviours comprising 

several components is, unfortunately, insufficient for us to be completely 

sure that the technique of introducing additional referrers is always helpful. 

It would be good to have more examples of appropriate data in order to 

test this. Another problem is how to guess that a behaviour results from an 

interaction of several components. Generally, we believe that such interac-

tions necessarily manifest themselves in an appropriate data display, i.e. 

one that complies with the major visualisation principles and the principle 

“see the whole”. Thus, the presence of a cyclic variation will be seen as a 

repeated pattern, and the interplay of a spatial trend with something else 

will appear as a kind of intrusion disrupting the general picture. However, 

we would like to have more examples to test this and, we hope, to find 

some general rules for how to detect internal structures in behaviours of 

phenomena. 

Very often, an explorer does not really need to detect the presence of a 

structure; he/she simply knows that it exists and uses this knowledge in 

decomposing and characterising the behaviour. Thus, an explorer does not 

need to detect the presence of a seasonal component in the behaviour of 

climate, vegetation, or prices of holiday apartments. He/she knows in ad-

vance that it exists, and considers separately the variation over a year and 

the long-term development. Generally, any relevant bits and pieces of do-

main knowledge can simplify and direct the process of data exploration, 

and therefore should be used whenever possible. 

5.4.10 Principle 10: Involve Domain Knowledge 

We do not feel it really necessary to convince readers of the usefulness of 

involving domain knowledge in data analysis. It should be quite clear that 
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domain knowledge can save the explorer’s time and effort: he/she will fo-

cus rather than wander, distinguish easily between what is relevant and 

irrelevant and between what is typical and peculiar, and understand 

quickly what he/she sees through recognising what is known and looking 

for what is expectable. Besides, domain knowledge can prevent the ex-

plorer from making errors and coming to wrong conclusions. 

In fact, we have mentioned the involvement of domain knowledge al-

ready many times throughout this chapter, as we discussed the various 

general principles of exploratory data analysis. Let us now try to bring all 

these mentions together for easier reference. 

1. In discussing the principle “simplify and abstract”, we have said that 

simplification may be achieved by means of attribute integration, which 

must be based on appropriate domain knowledge. In fact, not only inte-

gration but also virtually any attribute transformation requires the nature 

of the attribute(s) to be properly understood. Thus, before transforming 

absolute values into relative values, the explorer must know definitely 

that the original attribute values are absolute and must understand what 

they can be related to (population, area, an established standard, etc.). 

Accumulation over time is possible only for attributes that express quan-

tities of new items that have appeared in each moment of the measure-

ment as compared with the previous moment. 

2. In the subsection dealing with “divide and group”, we discussed the fact 

that dividing/grouping can be based on the explorer’s domain knowl-

edge. This knowledge induces certain expectations concerning the di-

versity of the behaviour with respect to specific groups/subsets of refer-

ences. For example, in medical studies, differences may be expected be-

tween males and females, in geography-related studies, differences may 

be expected between coastal and inland regions, etc. Later, in discussing 

the principle “establish structure”, we also mentioned that the reference 

set of a time-referenced phenomenon can be divided into linear and cy-

clic components when the explorer’s domain knowledge suggests that 

the phenomenon may vary in cycles. 

3. With regard to the principle “look for recognisable”, we have mentioned 

that the explorer’s expectations concerning the sort of patterns that may 

be present in the data direct the choice of the visualisation methods, as 

well as the appropriate data transformations and querying tools. Fur-

thermore, the explorer knows how the expected patterns may show up in 

the display obtained, and looks purposefully for particular visual ele-

ments or particular arrangements of visual elements. 

4. In the discussion of the principle “attend to particulars”, domain knowl-

edge has been mentioned in two contexts. First, when the analyst en-
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counters “strange” things differing significantly from the bulk of the 

data, domain knowledge may help him/her to understand the reason for 

this strangeness. Second, the analyst may intentionally pay attention to 

expectable deviations from the bulk of the data and give them a different 

treatment, for example, the dates of public holidays in time-referenced 

business data or big cities in demographic studies. 

5. The use of domain knowledge may be extremely helpful in attempts to 

“establish linkages”, i.e. build a unifying overall pattern from a number 

of partial patterns characterising different parts, slices, and aspects of 

the overall behaviour. In fact, establishing linkages starts not when the 

partial patterns have been produced but at the stage of decomposing the 

overall behaviour into parts, slices, and/or aspects. Domain knowledge, 

when available, can help significantly in finding an appropriate decom-

position that reflects pertinent links and essential differences. Domain 

knowledge may suggest how to divide the reference set into subsets and 

what attribute groups to consider, what attributes or phenomena may in-

fluence other attributes or phenomena, and what may be the scope of 

this influence in space and the latent period in time after which the ef-

fect of a change may appear. 

6. In “establishing structure”, the explorer may know in advance what 

structural components exist or might exist in the behaviour of some 

phenomenon. Then, the task is to “distil” and characterise each compo-

nent, as well as how the components are related. Thus, the explorer of-

ten either knows definitely or at least suspects what cycles exist in a 

time-referenced phenomenon. 

We have thus produced a list of cases in which the use of domain 

knowledge is either necessary or helpful. We do not think that this list is 

complete; however, there is no need to try to make a complete enumera-

tion: an analyst who has relevant domain knowledge will intuitively rec-

ognise the situations where this or that piece of knowledge may be helpful. 

What is really needed is that the tools that the analyst uses allow him/her 

to take this piece of knowledge into account. So, let us try to review the 

arsenal of tools for data analysis from the perspective of how domain 

knowledge may be involved in the use of these tools to increase the effec-

tiveness and efficiency of the operations performed.  

Many visualisation tools permit one to involve domain knowledge 

through the use of the display manipulation tools attached to them. Thus, 

when an explorer uses tools for ordering or arranging visual items, he/she 

may use his/her domain knowledge in defining the ordering or arrange-

ment. Tools for the elimination of excessive detail usually allow the user to 

specify the appropriate degree of simplification and level of detail, and this 
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may be based on the user’s domain knowledge. Tools for interactive clas-

sification also provide suitable opportunities for involving domain knowl-

edge, which may influence the definition of classes. Zooming and focusing 

tools allow the user to focus on subsets of the data of primary interest, ac-

cording to the user’s notion of “interestingness” and his/her expectations 

as to the part of the data where the most interesting things may be found. 

In using tools for visual comparison, an analyst may specify the reference 

values on the basis of his/her knowledge of existing standards, typical 

characteristics, or danger thresholds. 

Many tools for data transformation not only allow the user to involve 

domain knowledge but also assume that domain knowledge is involved. 

This concerns, first of all, tools for attribute transformation. We have al-

ready mentioned attribute integration, and computation of relative values 

from absolute ones. In this context, we would also like to say a few words 

concerning one of the examples of data considered in this book, specifi-

cally, the climate data for Germany.  

Climate is a spatially continuous phenomenon; therefore, it is appropri-

ate to view the climate data as distributed continuously over the whole ter-

ritory. However, in the dataset that we have at our disposal, the values of 

the climate attributes are specified only at sample locations – weather sta-

tions. In order to view the data as continuous, the data need to be interpo-

lated between the sample locations so that values at any location can be 

accessed. The operation of computational tools for spatial interpolation is 

based on a certain definition of the notion of neighbourhood, i.e. what 

sample locations should be considered as neighbours of a given arbitrary 

location. In some cases, a formal definition of the neighbourhood may suf-

fice; for example, all sample locations within a specified distance from the 

given location may be treated as its neighbours. However, this approach is 

not valid in climate studies. Two locations may have quite different cli-

mates despite there being a short distance between them if they are sepa-

rated by a mountain range or if one of them is at a high altitude and an-

other in a valley. There are also other factors that influence the climate. 

Therefore, interpolation of climate data from sample locations to the whole 

territory must be controlled by an expert, who defines the neighbourhoods 

on the basis of domain knowledge concerning climate variation. 

Of the tools for data aggregation, some tools allow users to define arbi-

trary aggregates, while others aggregate data on the basis of regular inter-

vals, grids, or other formal methods. In the first case, users can involve 

their domain knowledge in the definition of the aggregates; in the second 

case, users may choose an appropriate degree of granularity for the divi-

sion, according to their domain knowledge. 

Querying tools may be divided into two major categories:  
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dynamic query tools, which are typically quite restrictive concerning the 

sort of questions they are intended to answer but are easy to use and 

quick in response; 

comprehensive query tools, which provide opportunities for the formu-

lation of a wide variety of queries by using special query languages but 

are more difficult to use and less dynamic.  

The latter category of tools provides better opportunities for involving do-

main knowledge than does the former. With comprehensive query tools, 

the user may select arbitrary subsets of data for further examination, ar-

range these subsets in aggregates, and obtain various summary statistics. 

The selection of the data may be based on expected differences in the be-

haviour or on a knowledge of the structural components present in the be-

haviour, such as temporal cycles. For example, a query tool allowed us to 

choose the January temperatures for all years in the German climate data in 

order to look at the long-term behaviour of these temperatures on a time 

graph in Fig. 5.39, and then we did the same for the July temperatures. 

Aggregation of the temperatures for each individual month over multiple 

years, which was used for constructing the displays in Fig. 5.40, is also 

possible with the use of comprehensive querying tools that provide suffi-

ciently powerful query languages. 

Although computational tools for data analysis are supposed to find 

various tendencies, dependencies, and regularities in data automatically as 

well as anomalies, the involvement of a human analyst’s domain knowl-

edge is still possible and useful. Of course, this knowledge cannot be di-

rectly entered into a computational tool in order to be used in the course of 

the operation of the tool; however, indirect ways exist. Some computa-

tional tools allow the user to specify a sort of template for the patterns that 

the tool must look for, or some criteria for the evaluation of the partial re-

sults that the tool achieves in order to prune useless search directions. Such 

templates or criteria are formulated on the basis of domain knowledge. 

Even when a tool does not suppose the user to direct its operation in any 

way, the user can still take the available domain knowledge into account  

by dividing the data into subsets according to expected substantial differ-

ences in their behaviour and running the tool separately for each subset. 

For example, if we decided to analyse the stork movement data with the 

use of a statistical or data-mining tool, we would apply the tool separately 

to three subsets of the movements: (1) the movements that took place in 

August and the beginning of September, when the storks flew from Europe 

to Africa; (2) the movements inside Africa that occurred in the period from 

September to February of the next year; (3) the movements during the pe-

riod when the storks returned to Europe. 
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Many data-mining tools can work only with attributes that have discrete 

value domains. In order to apply such tools to attributes with continuous 

value domains, such as numeric, temporal, or spatial attributes, one needs 

to discretise their value domains, i.e. introduce some equivalence classes 

of values. In defining the equivalence classes, the explorer can and should 

apply the available domain knowledge. Thus, if we were to classify the 

July temperatures for Germany into low, medium, and high temperatures, 

we would do this separately for the two stations located in mountain re-

gions and for the remaining stations, since the notion of low and high tem-

peratures differs between high and low altitudes. 

It appears that the most universal way to involve domain knowledge in 

data analysis is through appropriate dividing/grouping, which is applied to 

the set of references or to the values of attributes. 

At this point, let us finish the individual discussion of each principle and 

try to bring them together and relate them to data analysis tasks. 

5.5 General Scheme of Data Exploration: Tasks, 
Principles, and Tools

The primary goal of our study has been to establish the principles for 

choosing appropriate tools for exploratory data analysis. The main idea is 

that the tools must support finding answers to the various questions that 

can potentially arise in the course of data analysis. We call these questions 

data analysis tasks. 

In Chap. 3, we have shown that the potential tasks are determined by the 

structure of the data under analysis, in particular, the division of the data 

components into referential components and characteristics, and by the 

properties of the data components. Hence, knowing the structure of a data-

set and the properties of its components, one can, in principle, enumerate 

all the tasks that can arise in the course of an analysis of this dataset. 

The tasks differ in their generality level, and less general tasks typically 

appear as subtasks in the course of performing more general tasks. The 

most general task is the task of characterising the overall behaviour of the 

phenomenon reflected in a dataset. This task is often accompanied by the 

task of explaining the overall behaviour, which is classified as connection 

discovery in our framework. 

In order to understand what kind of tool could be appropriate for any 

given type of task, the structure of the task needs to be considered. Accord-

ing to the general model of a task introduced in Chap. 3, a task consists of 

two parts, the target, i.e. an indication of the unknown information that 
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needs to be obtained, and the constraints, i.e. a specification of the known 

information, which is related to the target in a certain way and limits the 

set of items of information that are suitable as an answer. A tool can sup-

port the performance of a task in one of two different ways: 

The tool allows the user to ask the question explicitly, i.e. to specify the 

target and set the constraints, and, in response, provides the required in-

formation. This operation mode is realised in some querying tools. 

The tool represents the data visually, in particular, the components and 

items relevant to the task. Either the organisation of the information in 

the display or some additional tools, for example an index, attached to 

the display allow the user to identify the display items corresponding to 

the constraints of the task. The required information that the target refers 

to is represented in these display items or in their surroundings, and the 

user needs to extract this information by viewing the appropriate parts 

of the display. 

As we have discussed in Sect. 4.6, querying tools are suitable mostly for 

elementary tasks. The second mode of obtaining answers to the explorer’s 

questions is more universal. It is in this way that synoptic tasks are typi-

cally performed. 

Hence, the general strategy for choosing a tool or tool combination to 

accomplish some task is to seek such a tool or combination that can 

appropriately represent the information referred to in the task target, and 

allow the explorer to locate effectively the display items satisfying the 

constraints.

The appropriateness of the representation means that the required informa-

tion must be perceivable from the display items, i.e. the items must be 

legible, the information encoded clearly, etc. For synoptic tasks, it is also 

highly desirable that the display items providing the required information 

can be perceived as a unified whole.

Thus, for the most general task of characterising the overall behaviour 

of a dataset, an ideal supporting tool is a visualisation tool which 

represents the entire reference set of the data by appropriate display di-

mensions so that the essential relations between the elements of the ref-

erence set, such as ordering and distances, are reflected; and 

represents all the characteristics from which the overall behaviour is 

formed, in a way that promotes perceptual unification. 

In fact, this is what the principle “see the whole” basically says. Hence, 

this principle may be viewed as an outcome of applying the general strat-
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egy for choosing a tool for a task to the high-level task “characterise the 

overall behaviour of the attributes of the dataset over the reference set”.  

The other principles (perhaps with the exception of “involve domain 

knowledge”, which is fairly self-evident) also follow logically from the 

consideration of certain task categories and trying to define the appropriate 

supporting tools or the requirements of such tools. Besides taking into ac-

count the structure of the task, i.e. what is in the target and what is in the 

constraints, we also thought about the possible complications that may be 

caused in the analysis by certain characteristics of the data, such as  

multidimensionality of the data, i.e. the presence of several referrers; 

multiple attributes that need to be jointly analysed; 

a very large data volume, i.e. a great number of elements in the refer-

ence set. 

The principles that we have thus formulated, on the one hand, suggest 

approaches to performing various types of tasks, and define the tools that 

can support this. On the other hand, these principles suggest approaches to 

dealing with various complexities that may pertain to the data under analy-

sis, and define the tools that can help in this. In the description of each 

principle, we have referred to the type(s) of tasks and/or to the complexi-

ties that it applies to, and the tools that can help in implementing this prin-

ciple. Now, we would like to make a sort of summary in which the links 

between the principles, the task categories, and the tools are reiterated in a 

maximally explicit way.  

However, we would not like to summarise our study by going once 

again through the list of principles and saying what tasks and tools they 

correspond to. We would also not like to go through the list of task catego-

ries and say what principles and tools are relevant to each category. 

Analogously, we would not like to go through the list of tool categories 

relating them to tasks and principles. In all of these approaches, each task 

type is considered separately from the others, whereas we would like to 

bring all task categories together by defining their places in the common 

context of exploratory data analysis. So, let us try to do this. 

As we have already said, exploratory data analysis may be viewed as 

accomplishing the general task “characterise the overall behaviour of the 

phenomenon represented by a given dataset”, which is equivalent to “char-

acterise the overall behaviour of the characteristics contained in the dataset 

over the entire set of references”. When the phenomenon consists of sev-

eral parts, the task of characterising its behaviour implies that the links be-

tween the parts are also revealed and characterised; hence, the highest-

level behaviour characterisation task may include subtasks of the connec-

tion discovery type, but certainly not only subtasks of this type. In the 
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course of performing the top-level task, this task undergoes gradual de-

composition: subtasks of various types arise, and their results contribute to 

the final result of the original task. 

Hence, we can try to bring all task types together by envisioning how 

the process of performing the overall behaviour characterisation task may 

develop, and by determining the places of the other task types in this proc-

ess. In parallel, we shall relate the stages of the process to the general prin-

ciples of data exploration introduced in this chapter and to the major cate-

gories of tools that may be appropriate for the tasks that the stages com-

prise.

We have previously mentioned that an ideal tool for accomplishing an 

overall behaviour characterisation task is a visualisation that allows the 

explorer to grasp the entire behaviour as a unified whole, i.e. it complies 

with the principle “see the whole”. Although various complexities of the 

data make this optimum rarely achievable, let us start with the situation 

where such a holistic view of the entire behaviour is possible. Moreover, 

we shall assume, to begin with, that the dataset contains only one referen-

tial component, for example time, or space, or a population, but not a com-

bination of two or more referrers. Later, we shall consider how the explo-

ration process will change in response to the possible complications from 

the data side, i.e. a large data volume, multidimensionality, and multiple 

attributes that cannot be visualised together in a holistic manner. 

5.5.1 Case 1: Single Referrer, Holistic View Possible 

As we have said, the visualisation must properly reflect the essential prop-

erties of the reference set, in particular, the presence of ordering, distances, 

and/or other relevant relations between elements. The same requirement 

also applies to the representation of the characteristics, i.e. the attribute 

values associated with the elements of the reference set. To fulfil this re-

quirement, the data display must be built according to the principles of 

visualisation overviewed in Sect. 4.3. 

Some peculiarities of the data may prevent one from getting a clear pic-

ture of the behaviour. Thus, minor fluctuations of characteristics can ob-

scure the view of the general character of the behaviour. Or excessive de-

tail may attract too much attention and obstruct “seeing the wood for the 

trees”. It may also happen that the presence of outliers in the data makes 

the representation of the bulk of the data insufficiently expressive (see, for 

example, the map on the left in Fig. 4.31, which represents the population 

densities in the districts of Portugal). In such cases, the visualisation or the 

underlying data should be transformed in order to make the view simpler 
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and clearer and to allow the analyst to abstract from particulars and con-

centrate on generalities. This is what the principle “simplify and abstract” 

is about. The tools that can lead to display simplification include ordering 

and other ways of arranging the display items, smoothing, cartographic 

generalisation, outlier removal (focusing), transformation of the visual en-

coding function, classification, and aggregation. 

When the display is sufficiently simple and expressive for the explorer 

to perceive the entire behaviour represented in it, the explorer can note 

whether the behaviour is homogeneous throughout the reference set or het-

erogeneous.

5.5.1.1 Subcase 1.1: a Homogeneous Behaviour 

A behaviour can be homogeneous in one of two senses: 

The characteristics are invariant (constant) throughout the reference set, 

i.e. all references have the same characteristics. 

The characteristics change from one reference to another in a regular 

way, which is invariant throughout the reference set. For example, the 

value of a numeric attribute may increase over time at a constant rate. 

For brevity, we shall refer to these meanings as “invariant characteristics” 

and “regular change”, respectively. 

Of course, it rarely occurs in reality that any characteristics are abso-

lutely invariant or that the changes of characteristics are absolutely regular. 

Rather, it is possible that an explorer will regard a certain degree of varia-

tion as negligible. Hence, it is better to say “nearly invariant” or “quasi-

invariant”, and “nearly regular” or “quasi-regular”, respectively. 

When an explorer finds that the behaviour under analysis may be re-

garded as a quasi-invariance of the characteristics, he/she characterises this 

behaviour by indicating its general character, i.e. quasi-invariance, and by 

specifying the characteristics associated with the reference set. In a case of 

real invariance rather than quasi-invariance, the specification of the charac-

teristics consists of a single value of each attribute. In a case of quasi-

invariance, the specification includes the subset of values of each attribute 

that occurs throughout the reference set. This may be supplemented with 

elementary statistics such as the value frequencies, the mean, the mode, 

etc. In Sect. 3.4.3, we have called this sort of pattern a “distribution sum-

mary”. The generation of such a pattern is supported by, in addition to the 

visualisation, querying or computational tools that may provide the neces-

sary statistics. 

When the explorer regards a behaviour as subject to a quasi-regular 

change, he/she characterises the behaviour by referring to its general char-
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acter, as in the previous case, and specifying relevant characteristics of the 

change, such as 

the character of the change, for example an increase, decrease, oscilla-

tion, or repeated succession of states; 

a more detailed description of the change in terms of the attribute values 

involved, for example the starting and final values in the case of an in-

crease or decrease, the minimum and maximum values in the case of an 

oscillation, the sequence of values in the case of a repeated succession 

of states; 

the rate/frequency/period/amplitude of the change; 

the direction of the change with respect to the reference set (in the case 

of the reference set that has no linear order), for example the direction in 

space from north to south. 

This sort of pattern has been called an “arrangement” in Sect. 3.4.3. The 

tools needed for building such a pattern are visualisation, querying (includ-

ing the measurement of distances and possibly other relations), and data 

transformation, in particular, computing changes.  

It may be noted that a number of elementary subtasks are involved in 

building the pattern:  

direct lookup (i.e. ascertaining the attribute values associated with par-

ticular references) – in describing the change in terms of the attribute 

values involved, determining its rate or amplitude, etc.; 

inverse lookup (i.e. finding the references corresponding to specific 

characteristics) – in ascertaining the rate, frequency, or period of the 

change;

direct comparison (i.e. determining the relations between characteris-

tics) – in identifying the character of the change and ascertaining its rate 

or amplitude; 

inverse comparison (i.e. determining the relations between references) – 

in ascertaining the rate, frequency, or period of the change and its direc-

tion;

relation-seeking (i.e. detecting references with characteristics related in 

a certain way) – in determining the period of oscillation (where does the 

increase change to a decrease and vice versa?) or of a repeated succes-

sion of states (where does the state Sn change back to state S0?).

The procedure for characterising a homogeneous behaviour is summa-

rised in Table 5.6. 
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Table 5.6. Characterisation of a homogeneous behaviour (subcase 1.1) 

Actions Subtasks Tools Principles 

Identify the character 

of the homogeneity: 

(A) invariant charac-

teristics;

(B) regular change. 

 Visualisation See the whole 

(A) Get/produce a dis-

tribution summary 

Elementary 

lookup (what val-

ues occur?) 

Querying 

Computation 

(elementary sta-

tistics)

(B.1) Specify the char-

acter of the change 

 Visualisation See the whole 

(B.2) Determine vari-

ous qualities and 

measures of the change 

Elementary 

lookup, compari-

son, and relation-

seeking

Querying 

Data transforma-

tion (e.g. change 

computing) 

See in relation 

5.5.1.2 Subcase 1.2: a Heterogeneous Behaviour 

The general idea in characterising a heterogeneous behaviour is to divide 

the reference set into subsets such that the behaviour over each subset can 

be treated as homogeneous. The underlying principle is “divide and 

group”. In Sect. 5.4.3, we have considered various approaches to divid-

ing/grouping and the tools that support this procedure. Since the behaviour 

over each reference subset resulting from the dividing/grouping is sup-

posed to be homogeneous, the procedure suggested above for characteris-

ing homogeneous behaviours (subcase 1.1) may be applied to each of these 

behaviours. In the result, each part of the behaviour corresponding to a 

reference subset will be approximated by a separate pattern. These separate 

partial patterns, or subpatterns, must then be combined into a single overall 

pattern, i.e. the principle “establish linkages” must be applied to them. 

However, the procedure of dividing the reference set into parts with in-

ternally homogeneous behaviours is not always appropriate. A behaviour 

may consist of two or more interrelated structural components, which can-

not be separated by means of dividing the reference set because they over-

lap greatly or simply exist everywhere over the reference set. An example 

is the presence of linear and cyclic components in a time-based behaviour. 

In the subsection dealing with the principle “establish structure”, we have 

also given the example of the spatial behaviour of forest structure, which 

has a latitudinal and an altitudinal component. 



5.5 General Scheme of Data Exploration: Tasks, Principles, and Tools      591 

We have explained that such structured behaviours can be analysed by 

means of splitting one referential component into two or more components 

or, as in the case of the forest structure, introducing additional referrers 

derived from other attributes or phenomena. This increases the dimension-

ality of the data; hence, the data resulting from the transformation need to 

be analysed by applying a procedure devised for multidimensional data, 

which will be described later. 

Let us now return to the situation where a heterogeneous behaviour can 

be split into internally homogeneous parts by means of dividing the refer-

ence set. As we have described in the respective subsection, the major 

mechanism for linking subpatterns defined on the basis of dividing the ref-

erence set is to specify, with adequate precision, the validity domain of 

each subpattern, i.e. the reference subset on which it is based. We have 

noted that, in principle, this basic linkage may be sufficient; however, the 

explorer may wish or need to relate the subpatterns additionally by reveal-

ing their similarities and differences. We have also noted that the explorer 

may even try to go beyond deriving a merely descriptive pattern and dis-

cover possible interactions between the parts of the entire behaviour, such 

as correlations or influences. We have given an example of seeking such 

interactions in the case of climate data; however, the result of our investi-

gation was negative rather than positive. 

Table 5.7 summarises the procedure for characterising a heterogeneous 

behaviour through reference set partitioning and refers to the relevant sub-

tasks, tools, and principles. 

So, we have reviewed how to characterise a behaviour in the case where 

the dataset contains a single referential component and the corresponding 

characteristics can be visualised in such a way that a viewer perceives 

them as a unified whole, as an image of the behaviour. We have consid-

ered two subcases: first, when the behaviour can be treated as homogene-

ous, and second, when it is heterogeneous but can be divided into homo-

geneous parts. The analysis procedure applied in the second subcase in-

cludes the procedure for the first subcase. 

Before the consideration of these subcases, we mentioned that various 

simplification measures may be applied to the display and/or to the data. 

Some of them, such as reordering, do not reduce the amount of informa-

tion present in the display, while others, such as smoothing, aggregation, 

or outlier removal, involve information loss. If some information reduction 

has taken place in the initial stage of data analysis, it is appropriate, after 

the general pattern has been constructed, to pay attention to the informa-

tion previously removed and to describe how it is related to the general 

pattern. In other words, after simplification, abstraction, and concentrating 

on generalities, it is time to “attend to “particulars”. 
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Table 5.7. Characterisation of a heterogeneous behaviour through reference set 

partitioning (subcase 1.2) 

Actions Subtasks Tools Principles 

Estimate the charac-

ter of the heteroge-

neity:  

(A) the behaviour is 

divisible into parts 

based on different 

reference subsets;  

(B) the behaviour 

consists of two or 

more interrelated 

components 

Relation-seeking: 

locating behaviour 

changes

Behaviour/pattern 

comparison 

Pattern search: look-

ing for recognisable 

pattern types 

Visualisation 

Various tools for 

dividing/grouping: 

classification, que-

rying, clustering 

Arranging (e.g. 

permutation, jux-

taposing, overlay-

ing) 

See the 

whole 

Divide and 

group 

See in rela-

tion 

(A.1) Divide the 

reference set into 

subsets so that the 

respective behav-

iours are homoge-

neous 

See abovea See abovea See abovea

(A.2) Characterise 

each partial behav-

iour (go to subcase 

1.1)

Behaviour characteri-

sation (for each sub-

set)

Focusing or query 

tools to focus on 

each partial behav-

iour 

See also subcase 

1.1

Zoom and 

focus 

(A.3) Specify the 

validity domain of 

each subpattern 

Inverse lookup: estab-

lish the limits of each 

subpattern in the ref-

erence set 

Inverse pattern com-

parison: position the 

reference subsets that 

the subpatterns are 

based on in relation to 

each other 

Querying 

Visualisation 

Establish 

linkages 

(A.4) Reveal the 

similarities and dif-

ferences between 

the subpatterns 

Behaviour/pattern 

comparison 

Visualisation 

Display multiplica-

tion 

Arranging of the 

subpattern displays 

See in rela-

tion 

(A.5) Discover cor-

relations and influ-

Connection discovery Visualisation 

Display multiplica-

Establish 

linkages 
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Actions Subtasks Tools Principles 

ences between the 

subpatterns

tion 

Arranging of the 

subpattern displays 

(B.1) Split the struc-

tural components by 

introducing addi-

tional referrers 

 Querying 

Aggregation 

Establish 

structure

(B.2) Characterise 

the resulting multi-

dimensional behav-

iour (go to case 2)

Behaviour characteri-

sation 

Connection discovery 

See case 2 Establish 

structure

Establish 

linkages 
a The partitioning of the reference set is first done in a “trial” mode in order to 

estimate the feasibility of this approach. If the approach is judged appropriate 

(case A), a “conclusive” division takes place, which is referred to in item A.1. 

If the display or the data have been simplified by means of smoothing, it 

is appropriate to compute the residuals, i.e. the differences between the 

original and transformed values. If all the residuals can be regarded as 

small, the explorer may leave the derived pattern as it is, or perhaps add 

some numeric measure of the imprecision of the pattern (for this purpose, 

statistical techniques can be applied). If some residuals are large, the ex-

plorer needs to consider them specially, according to the principle “attend 

to particulars”. The same applies to outliers previously removed to make 

the data display more expressive and to make the general character of the 

behaviour more prominent. The “particulars” need to be characterised and, 

whenever possible, explained. These characterisations and explanations 

complete the general pattern. 

The procedure for analysing a behaviour over a reference set composed 

of values of a single referrer can be summarised as is shown in Table 5.8. 

5.5.2 Case 2: Multiple Referrers 

When two or more referential components are present in a dataset, it is 

often impossible to visualise the overall behaviour in such a way that it can 

be perceived as a unified whole. However, there are cases where this is 

possible. If, for example, we have the results of some measurements of the 

traffic density along a road over time, it is possible to represent the two 

referrers of this dataset, the position along the road and the time, by two 

spatial display dimensions. The values of the attribute, the traffic density, 

can be encoded in the sizes or degrees of darkness of marks drawn within 
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the coordinate system thus formed. We have also demonstrated some ex-

amples of the use of three-dimensional display space simulated in a per-

spective view; see Figs 5.22, 5.24, and 5.41. In these examples, two di-

mensions represent geographical space. Although the geographical space is 

considered as a single referrer, it has two dimensions of its own. For this 

reason, the visual representation of it consumes two display dimensions. 

The third display dimension in Figs 5.22 and 5.24 represents time, and in 

Fig. 5.41 it represents altitude. 

In this subsection, we shall consider both the situation where a holistic 

representation of the entire behaviour is possible and the situation where 

this is impossible, since some of the steps and methods of the analysis are 

common to both situations. We shall start with the situation where a holis-

tic view is possible. 

Table 5.8. Characterisation of a holistically representable behaviour over the 

value set of a single referrer (case 1) 

Actions Subtasks Tools Principles 

Estimate whether fluctua-

tions and outliers in data 

obstruct seeing the charac-

ter of the behaviour: 

(A) yes; (B) no 

 Visualisation See the whole 

(A.1) Simplify the view, 

abstract from details and 

particulars 

 Smoothing 

Aggregation 

Outlier removal 

(focusing) 

Reordering 

Simplify and 

abstract

(A.2), (B.1) Estimate 

whether the behaviour is  

(C) homogeneous or 

D) heterogeneous 

 Visualisation See the whole 

(C) Characterise the be-

haviour as homogeneous 

(go to subcase 1.1)

Behaviour char-

acterisation

See subcase 1.1 See subcase 
1.1

(D) Characterise the be-

haviour as heterogeneous 

(go to subcase 1.2)

Behaviour char-

acterisation

See subcase 1.2 See subcase 
1.2

(A.3) Characterise the 

deviations from the gen-

eral pattern 

Elementary 

lookup and 

comparison 

Computation (of 

residuals)

Querying 

Attend to 

particulars 
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5.5.2.1 Subcase 2.1: Holistic View Possible 

The visual analysis of a data display where a combination of several refer-

rers is mapped onto a unified display space differs from the consideration 

of a display of a dataset with a single referrer, even when the two displays 

have the same dimensionality and appear quite similar. Thus, a two-

dimensional display representing the distribution of the traffic density 

along a road over time differs inherently from a two-dimensional display 

of the distribution of the values of a numeric attribute over a two-

dimensional physical space. The analyst must always remember the mean-

ing of each display dimension in order to interpret correctly any shape or 

structure visible in the display and, ultimately, to characterise the behav-

iour adequately. 

Consider, for example, the display in Fig. 5.42, representing an artificial 

behaviour of a numeric attribute. The values of the attribute are portrayed 

by the degrees of darkness of the square marks drawn in the two-

dimensional display space. If the display space reflects two-dimensional 

geographical space, the structure visible in the display can be interpreted 

as a zone of high values extended linearly in the north-east south-west 

direction. If one of the display dimensions represents a one-dimensional 

space, such as the extent of a road, and the other dimension represents 

time, the structure means a zone of high values, the spatial position of 

which changes over time. Thus, if we assume that the display represents 

the variation of the traffic density along a road over a period of time, the 

structure may mean a traffic congestion zone that has formed around sev-

eral slow vehicles moving together. The zone shifts gradually along the 

road as the vehicles move. 

Fig. 5.42. The interpretation of a shape or structure visible in a data display de-

pends on whether the display space represents a single referrer or a combination of 

two or more referrers 

In considering the case of a single referrer, we pointed to divid-

ing/grouping as the key approach to characterising a heterogeneous behav-

iour. In the case of several referrers, the idea of dividing the behaviour into 
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sufficiently homogeneous parts does not seem quite appropriate. In this 

case, the primary approach is a search for interpretable patterns, i.e. apply-

ing the principle “look for recognisable”. This requires, first of all, ade-

quate visualisation and display manipulation tools. As we have mentioned 

in the subsection dealing with the principle “look for recognisable”, spe-

cific computational and querying tools may also be helpful. 

As in the single-referrer case (case 1), the general character of a behav-

iour based on multiple referrers may be difficult to grasp from a visual dis-

play owing to outliers, excessive fluctuations in the data, or the absence of 

any apparent organisation among the display items. In such situations, it is 

appropriate to try to simplify the display, according to the principle “sim-

plify and abstract”. We have previously mentioned reordering, smoothing, 

aggregation, and outlier removal as techniques that support simplification 

and abstraction. Outlier removal is done in the multidimensional case in 

basically the same way as in the one-dimensional case. Reordering, if al-

lowed by the properties of the reference set, is done separately with respect 

to each display dimension. Recall that reordering of display items posi-

tioned along a display dimension is allowed when the component repre-

sented by this dimension has no inherent ordering among its elements. 

When two display dimensions represent two unordered referential compo-

nents, i.e. the display has the form of a matrix filled with marks, it is pos-

sible to change the relative positions of the rows or columns of this matrix 

but not to arbitrarily move the individual marks within the matrix. Smooth-

ing in a multidimensional space jointly formed by several referrers re-

quires an appropriate definition of the neighbourhood of a given reference, 

which may be rather non-trivial, taking into account the different natures 

and properties of the referrers. Thus, the application of smoothing to spa-

tially and temporally referenced data requires the definition of the spatio-

temporal neighbourhood of an element of the reference set, which is a 

combination of a spatial location and a time moment.  

If outlier removal or smoothing has been applied, the explorer needs to 

attend to the omitted information after characterising the general character 

and properties of the behaviour. 

Besides joint consideration of the multiple referrers, it is usually also 

appropriate to focus on each referrer individually and study how the attrib-

utes behave with respect to it. This is done in the situation where the di-

mensionality of the data does not permit a holistic view of the overall be-

haviour. In such a situation, this is in fact the only possible approach. The 

exploration of aspectual behaviours, i.e. behaviours with respect to particu-

lar referrers, is considered below as subcase 2.2. Before that, we summa-

rise what has been said concerning case 2.1 in Table 5.9. 
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Table 5.9. Characterisation of a behaviour based on a multidimensional reference 

set but still allowing a holistic view (subcase 2.1) 

Actions Subtasks Tools Principles 

Estimate whether 

fluctuations and out-

liers in data obstruct 

seeing the character 

of the behaviour: 

(A) yes; (B) no 

 Visualisation See the whole

(A.1) Simplify the 

view, abstract from 

details and particulars 

 Outlier removal 

Reordering 

Smoothing 

Aggregation 

Simplify and 

abstract

(A.2), (B.1) Detect 

and describe inter-

pretable shapes and 

arrangements of dis-

play items 

Pattern search Visualisation 

Focusing 

Querying 

Computation 

Look for rec-

ognisable 

(A.3), (B.2) Compare 

the subpatterns de-

tected

Direct pattern com-

parison: compare 

pattern properties 

Inverse pattern 

comparison: com-

pare positions with 

respect to the refer-

ence set 

Visualisation 

Querying 

Computation 

(summary statis-

tics)

See in relation 

(A.4) Characterise the 

deviations from the 

general pattern 

Elementary lookup 

and comparison 

Computation (of 

residuals)

Querying 

Attend to par-

ticulars 

(A.5), (B.3) Charac-

terise the aspectual 

behaviours (go to 

subcase 2.2)

Behaviour charac-

terisation 

Connection discov-

ery

See also subcase 
2.2

See subcase 2.2 Establish 

structure

Establish 

linkages 

(A.6), (B.4) Join the 

subpatterns and the 

aspectual patterns into 

a unified overall pat-

tern 

Pattern comparison 

Connection discov-

ery

Visualisation 

Display coordi-

nation 

Establish 

linkages 

See in relation 
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5.5.2.2 Subcase 2.2: Behaviour Explored by Slices and 
Aspects

When the behaviour with respect to a selected referrer is examined (we call 

such a behaviour “aspectual”), there are two opportunities concerning the 

other referrer(s): 

slicing: Specific values of the other referrer(s) are selected, and the be-

haviours of the corresponding characteristics over the referrer in focus 

are investigated; 

aggregation: The characteristics are aggregated over the other refer-

rer(s), and the behaviour of the aggregate characteristics over the refer-

rer in focus is explored. 

Which of these techniques to apply depends on the nature of the data and 

the goals of the analysis. In some cases, it may be reasonable to apply one 

of them, and in other cases both.  

Thus, in the case of the hypothetical traffic density data (which would 

not necessarily distributed in space and time as is shown in Fig. 5.42), it 

would be useful to consider the variation of traffic over time by fragments 

of the road as well as the temporal variation of the aggregate characteris-

tics of the entire road. On the other hand, it might be interesting to con-

sider the distribution of traffic along the road at different time moments as 

well as the aggregated characteristics of the traffic along the road for the 

entire time period. 

An example where only one technique may be appropriate is the case of 

the monthly variation of the temperature in a particular place or set of 

places during a time period of several years. According to the principle 

“establish structure”, the exploration of this dataset involves splitting the 

temporal referrer into two referrers reflecting the linear and cyclic compo-

nents of the time (see also subcase 1.2). It is reasonable then to investigate 

the variation of the temperature with respect to the linear component by 

means of slicing, for example to consider the long-term variation of Janu-

ary temperatures, February temperatures, and so on (see Fig. 5.39). It may 

be less meaningful to aggregate the temperatures for each year into, for 

example, the average or median yearly temperature and to consider the 

variation of this aggregated characteristic. The major reason is that the 

temperature usually varies greatly over a year. At the same time, the ag-

gregation of January, February, … temperatures over many years can 

make sense (see Fig. 5.40). 

The exploration of behaviour slices in the case where the entire behav-

iour can be represented in a single display does not, in principle, require 

any additional tools. Thus, with a display organised like that in Fig. 5.42, 
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an explorer may focus his/her attention on any row or any column. Appro-

priate focusing or marking tools, such as “muting” of the irrelevant display 

items or drawing a frame around the slice currently being examined, can 

make concentration easier. 

In the case where a holistic display of the entire behaviour is impossible, 

slicing can be done with the help of querying tools. Dynamic querying 

tools are typically not intended for such operations, and one needs to apply 

comprehensive tools with sufficiently powerful query languages. In some 

cases, slicing may also be done with a visualisation tool that allows the 

user to select a subset of the data for visualisation. However, visualisation 

tools are rarely flexible to such an extent that one may choose only data 

referring to a particular month over a sequence of years. Slicing of a data-

set with linear and cyclic temporal components can be done by means of 

specialised query tools such as Time Wheel or “temporal focusing”.  

Irrespective of whether slicing or aggregation is applied, the dimension-

ality of the data is reduced. If it has been reduced to a single dimension 

(i.e. a single referrer), the resulting selected or transformed data can be 

analysed as in the single-referrer case discussed earlier. If the data still 

contain multiple referrers, the procedure described in this section is applied 

recursively. However, individual behaviour slices do not usually undergo 

such deep and detailed examination as is suggested in Tables 5.6 5.9. It 

may be sufficient just to grasp the general character of the behaviour in 

each slice. 

Generally, the exploration of a behaviour by slices does not suppose that 

each slice is considered in isolation from the other slices. It should not be 

forgotten that an explorer usually seeks to gain a general understanding of 

the entire behaviour, not just of individual slices. For this purpose, the ex-

plorer needs to merge his/her observations extracted from multiple partial 

views into a coherent mental image and, when needed, an explicit overall 

pattern. This task implies the grouping of the slices of the behaviour by 

similarity, taking into account the relations (ordering and distances) be-

tween the referrer values that they correspond to. For example, when the 

behaviour slices correspond to different time moments, the explorer groups 

similar slices referring to consecutive moments together, rather than slices 

referring to arbitrary moments. When the slices refer to different locations 

in space, the explorer tries to identify spatial clusters of similar local be-

haviours.

Comparison and grouping of behaviour slices may be supported by an 

appropriate arrangement of partial views. It is convenient when all these 

views can be present simultaneously on the screen – this greatly supports 

comparisons and the grasping of the general tendencies in the changes 

from slice to slice. The arrangements that support simultaneous visibility 
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of different slices are space partitioning (display juxtaposition, for example 

a sequence of maps for different time moments, as in Fig. 3.16), space em-

bedding (for example a map with embedded time graphs, as in Fig. 3.13), 

and space sharing (for example overlaid time graphs in a common coordi-

nate framework, as in Fig. 4.3). Simultaneous visibility of behaviour slices, 

however, is not always possible, since the partial views may be too numer-

ous.

Another way of arranging partial views is to use the display time, where 

a view of one slice is replaced by a view of another slice. This may be 

done in an animation-like mode, which needs to be complemented by 

flexible controls that allow the user to choose any slice. Since the use of 

the display time is not an ideal solution from the perspective of supporting 

comparisons, it may be appropriate to combine it with display juxtaposi-

tion. For example, one may have a dynamic display where slices replace 

each other and, simultaneously, a static display showing a specific selected 

slice, which can thus be compared with all the other slices. 

The outcome from exploring slices and aggregates of the data is a num-

ber of aspectual patterns, which need to be brought together, in accord 

with the principle “establish linkages”. If some initial general pattern has 

been derived at the stage of joint consideration of all the referrers, the 

compound pattern resulting from the study of the aspectual behaviours is 

attached to it as an extension, which adds relevant details and increases the 

precision of the overall pattern. 

In Sect. 5.3 and Sect. 5.4.8, we have presented an approach to establish-

ing linkages between aspectual patterns, which is based on cross-

partitioning, i.e. transferring partitions made in the course of the explora-

tion of one aspectual behaviour to the view(s) of the other aspectual behav-

iour(s). For this purpose, display coordination is the primary instrument. 

Besides responding to reference set division through multicolour marking 

or display multiplication, it may also be useful to allow the user to make 

sketches on top of displays and transfer these drawings to other displays, 

as is shown in Figs 5.4C and 5.5C. 

Table 5.10 deals with the exploration of a single aspectual behaviour. 

Table 5.11 refers to the procedure specified in Table 5.10 as a sort of sub-

routine and describes the entire process of analysing a behaviour based on 

a multidimensional reference set by means of considering the aspectual 

behaviours.
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Table 5.10. Characterisation of an aspectual behaviour in a behaviour based on a 

multidimensional reference set 

Actions Subtasks Tools Principles 

Overview the set of 

behaviour slices corre-

sponding to different 

values of one of the 

referrers. Is the percep-

tion of the character of 

the behaviour ob-

structed by outliers or 

fluctuations? 

(A) yes; (B) no 

 Visualisation: single 

display; spatial and/or 

temporal arrangement 

of multiple displays 

See the 

whole 

(A.1) Simplify the 

view; in the case of 

multiple displays – con-

sistently simplify all of 

them 

 Outlier removal 

Smoothing 

Aggregation 

Reordering; in the case 

of multiple displays, 

re-arrangement of the 

displays 

Simplify 

and ab-

stract

(A.2), (B.1) Grasp the 

character of the behav-

iour and its properties 

in each slice, and their 

variation between the 

slices. Group the slices 

by similarity, taking 

into account the rela-

tions (ordering and dis-

tances) between the 

referrer values that they 

correspond to 

Behaviour 

characterisation 

(for each slice) 

Pattern com-

parison (be-

tween the 

slices)

Synoptic rela-

tion-seeking: 

detect signifi-

cant pattern 

changes be-

tween the 

slices

Visualisation: single 

display, spatial and/or 

temporal arrangement 

of multiple displays 

Data standardisationa

Display coordination 

Display grouping 

Aggregation (similar 

slices)

Clustering (similar 

slices)

Computing changes 

Overlaying 

See in 

relation 

Divide 

and group 

Zoom and 

focus 

(when 

looking at 

individual 

slices)

(A.3) Characterise the 

deviations from the 

general pattern, both 

“elementary outliers” 

(individual values) and 

“behavioural outliers” 

(slices with uncommon 

behaviours) 

Elementary 

lookup and 

comparison 

Pattern com-

parison 

Computation (of re-

siduals) 

Querying 

Display arrangement: 

juxtaposition, overlay-

ing 

Attend to 

particulars 

See in 

relation 

a For a better comparability; for example, transformation to z-scores. 
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Table 5.11. Characterisation of a behaviour based on a multidimensional refer-

ence set by means of exploring the aspectual behaviours (subcase 2.2) 

Actions Subtasks Tools Principles 

For each referrer, explore the 

corresponding aspectual behav-

iour as specified in Table 5.10

Behaviour char-

acterisation; see 

Table 5.10

See Table 
5.10

See the 

whole 

For selected referrers, whenever 

appropriate, explore the varia-

tion of the characteristics aggre-

gated over the other referrers: 

depending on the dimensional-

ity, apply the procedure for case 

1 or case 2

Behaviour char-

acterisation

See also case 1

and case 2

Aggregation 

Querying 

See also case 

1 and case 2

See the 

whole 

Join the aspectual patterns and 

the aggregated patterns (if any) 

into a unified overall pattern 

Connection dis-

covery 

Pattern compari-

son

Visualisation 

Display co-

ordination 

Establish 

linkages 

Establish 

structure

See in 

relation 

5.5.3 Case 3: Multiple Attributes 

The presence of multiple attributes in a dataset does not necessarily ex-

clude a holistic perception of their joint behaviour. In the part of Sect. 

5.4.1 dealing with unification, we have given several examples of the visu-

alisation of multiple attributes in a single display; see Figs 5.12C 5.14. In 

these examples, values of multiple attributes have been encoded in various 

visual properties of display elements or in components of structured marks 

(diagrams). A slightly different example can be seen in Fig. 5.19C, where 

several layers overlaid in a single display represent the behaviours of dif-

ferent attributes. Such displays are often quite difficult to interpret, but, 

after some training, an explorer can grasp the general character and essen-

tial features of the joint behaviour from them. 

If a holistic visualisation of the joint behaviour of several attributes is 

possible, it can be analysed as described in the previous subsections deal-

ing with case 1 and case 2. However, this possibility is quite limited; it can 

work only with a fairly small number of attributes. Moreover, increasing 

the dimensionality of the data (i.e. the number of referrers) reduces the 

possibilities for joint visualisation of several attributes. 

In Sect. 5.4.8, we have discussed two approaches to the exploration of 

the joint behaviour of multiple attributes. The first approach is based on 
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visual or computational integration of the attribute values associated with 

each reference. The second approach involves a separate consideration of 

individual attributes or groups of attributes and establishing linkages be-

tween the patterns thus derived. These approaches were called Decomposi-

tion A and Decomposition B, respectively. 

The example displays in Figs 5.12C 5.14 and 5.19C demonstrate the 

possibilities for visual integration of attribute values. Computational inte-

gration means producing a single attribute from several original attributes, 

as is described in Sect. 4.5.2. It has been noted that such a method for at-

tribute integration is usually quite domain-specific, and its applicability is 

therefore rather limited. Besides, it involves tremendous information loss. 

There is yet another method of integration, specifically, classification or 

clustering of the references according to the corresponding values of the 

multiple attributes. Typically, the explorer seeks to obtain a division of the 

reference set into subsets such that the corresponding parts of the overall 

behaviour can be regarded as (sufficiently) homogeneous. The process of 

classification or clustering may involve many trials until an appropriate 

result is obtained. The final result may be viewed as a new qualitative at-

tribute, the values of which denote the classes or clusters. 

With any sort of attribute integration, the subsequent analysis can be 

subsumed under either case 1 or case 2 discussed earlier, depending on the 

dimensionality of the reference set. With the separate analysis of individ-

ual attributes or groups (followed by pattern linking), each individual at-

tribute is analysed as in case 1 or 2. Consideration of an attribute group 

means that the members of the group undergo visual or computational in-

tegration, as described above, and are then analysed as in case 1 or 2. 

Establishing linkages between the behaviours of individual attributes or 

groups involves a comparison of these behaviours to detect similarities and 

corresponding features. For this purpose, the behaviours can be visualised 

in separate displays, or the visualisations may be combined (overlaid) in a 

single display. Sometimes, it is possible to transform the data so as to 

make the behaviours more comparable; the views of the transformed data 

can be manipulated through a common display manipulation tool. The ap-

proaches to behaviour comparison and the supporting tools for this are dis-

cussed in Sect. 5.4.4, which deals with the principle “see in relation”. 

Besides behaviour comparison, establishing linkages may involve 

searching for correlations or typical associations of values of the attributes 

which correspond to either the same reference or neighbouring references. 

The appropriate tools, which are overviewed in Sect. 5.4.8, include various 

computational methods for correlation analysis, special visualisation tech-

niques such as scatterplots and scatterplot matrices, display linking 

through selection or division, and overlaying of several visualisations. 
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It is not supposed that an explorer must choose a single approach, i.e. ei-

ther Decomposition A or Decomposition B, and never try to go another 

way. For a comprehensive study, it is appropriate to explore both the joint 

behaviour of multiple attributes and the individual behaviours of the at-

tributes.

Table 5.12. Characterisation of a joint behaviour of multiple attributes through 

value integration 

Actions Subtasks Tools Principles 

Option A: visualise 

the joint behaviour 

in a single display 

in a way that pro-

motes unification. 

Apply case 1 or 

case 2, depending 

on the number of 

referrers. 

Behaviour charac-

terisation 

See also case 1 and 

case 2

Visualisation See the 

whole 

Option B: integrate 

the attributes into a 

single attribute. 

Apply case 1 or 

case 2 to the result-

ing attribute. 

Behaviour charac-

terisation 

See also case 1 and 

case 2

Data transformation 

(attribute integration) 

Visualisation, in par-

ticular for testing 

sensitivity to integra-

tion parameters 

Simplify 

and abstract 

Option C(1): by 

means of classifi-

cation or cluster-

ing, divide the ref-

erence set into sub-

sets according to 

the similarity of 

characteristics 

Behaviour charac-

terisation, pattern 

search, pattern com-

parison: estimate the 

goodness of division 

and/or interpret the 

results of clustering 

Elementary lookup 

and comparison: 

interpret the results 

of clustering 

Classification

Clustering 

Visualisation 

Display linking, que-

rying, computing 

summary statistics to 

interpret the results 

of clustering 

Divide and 

group 

See in rela-

tion 

Look for 

recognisable

Option C(2): re-

gard the resulting 

classes or clusters 

as a new attribute 

with qualitative 

values. Apply case

1 or case 2 to ex-

plore its behaviour. 

Behaviour charac-

terisation 

See also case 1 and 

case 2

Visualisation 

See also case 1 and 

case 2

Simplify 

and abstract 
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The case of the analysis of multiple attributes is summarised in Tables 

5.12 and 5.13. As in the previous subsection, the first of these tables speci-

fies a kind of subprocedure, which is then referred to from the second ta-

ble. Specifically, Table 5.12 deals with the attribute integration approach, 

which may be combined with Decomposition A, and Table 5.13 deals with 

the approach of separation and linking, i.e. Decomposition B.  

Table 5.13. Characterisation of a behaviour consisting of values of multiple at-

tributes (case 3) 

Actions Subtasks Tools Principles 

Explore the behav-

iours of the individ-

ual attributes by ap-

plying case 1 or case 

2

Behaviour char-

acterisation (indi-

vidual behav-

iours) 

See case 1 and case 2

Compare the behav-

iours of the individ-

ual attributes 

Behaviour/pattern 

comparison 

Visualisation 

Display arrangement: 

juxtaposition, overlay 

Data standardisation
a

Joint display manipu-

lation 

Display linking 

See in rela-

tion 

If appropriate, form 

attribute groups for a 

joint study according 

to domain knowledge 

or similarity of be-

haviours. Character-

ise the joint behav-

iour of each group as 

specified in Table
5.12

Behaviour char-

acterisation

(groups of attrib-

utes) 

See Table 5.12 See the 

whole 

Establish linkages 

between individual 

attributes and attrib-

ute groups 

Connection dis-

covery 

Computational meth-

ods; in particular, 

correlation analysis 

Specific visualisa-

tions, e.g. scatterplots 

Linked displays 

Overlaid visualisa-

tions 

Establish 

linkages 

a For better comparability; for example, transformation to z-scores. 
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5.5.4 Case 4: Large Data Volume 

By “large data volume” we mean a large number of references, i.e. ele-

ments of the reference set, for which characteristics are specified in terms 

of attribute values. Leaving aside the technical problems of computer per-

formance and memory capacity, the main problem that such data pose to 

an explorer is the impossibility of obtaining a clear view of the overall be-

haviour by applying the usual methods of visualisation. Visual displays of 

large datasets suffer from cluttering of marks and overlap of marks, or the 

marks have to be so small that one hardly sees them, or the display size is 

simply too small for all the data items to be fitted in. The functionality of 

all tools that suppose user interaction with the data display, such as dy-

namic querying and display manipulation, also deteriorates greatly. 

There are two basic approaches to handling large amounts of data: se-

lection and aggregation. The former approach means that the explorer se-

lects subsets of the data and analyses those subsets. This approach con-

flicts with the principle “see the whole”: it is very difficult to gain a coher-

ent picture of the overall behaviour in this way, or, formally speaking, to 

derive a unified pattern approximating the overall behaviour. The latter 

approach means that the original references are united into groups, these 

groups are treated as new references, and hence the number of different 

references decreases substantially and becomes manageable. The charac-

teristics corresponding to the new references are derived from the original 

characteristics by means of statistical summarisation over the groups. This 

approach involves significant information loss and conflicts with the prin-

ciple “attend to particulars”, since there is a risk of missing important de-

viations from what is standard and usual. 

A feasible solution of the problem may lie in combining these two ap-

proaches. Some examples can be seen in Figs 5.25 5.28, where selected 

subsets of individual data items are represented together with aggregated 

data as additional layers superimposed upon the visualisation of the aggre-

gated data. In order to detect particulars requiring the explorer’s attention, 

it may be recommended that one examines the statistical distribution of the 

attribute values within the aggregates, for example by using positional sta-

tistical measures. It is also possible to explore the general features of the 

overall behaviour by means of aggregation and then to apply zooming, 

focusing, and filtering in order to look at different subsets of the original 

data and detect and inspect various particular features that may occur in 

those subsets. 

The main purpose of using aggregation is to reduce the size of the refer-

ence set of the data that it is applied to. However, aggregation may result 

in a much more serious transformation of the reference set than just size 
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reduction. Thus, we have discussed the fact that aggregation may be used 

as a tool for reducing the dimensionality of data (see Sect. 5.4.1): the data 

are aggregated through bringing together all values of a referrer, which 

excludes this referrer from further analysis. Aggregation may also increase 

the dimensionality of the data and/or replace the original referential com-

ponents by completely new ones. In fact, when data are aggregated accord-

ing to the values of an attribute, this attribute becomes a new referrer, 

while the original referrer may be ignored.  

This occurs, for example, in aggregating earthquake data by territorial 

compartments and time intervals. Originally, the dataset has a single refer-

rer of population type, specifically, the set of earthquakes. Among the at-

tributes, there are the place and the time of the occurrence of the earth-

quake. To do the aggregation, one takes the value domains of these two 

attributes and divides them into subsets: equal-size rectangles for the spa-

tial attribute and equal-length intervals for the temporal attribute. Then, for 

each rectangle interval combination, the number of earthquakes is 

counted, and summary statistics of the corresponding values of attributes 

such as the magnitude or depth are computed.  

The resulting dataset has two referrers, spatial and temporal, with value 

sets consisting of rectangular territorial compartments and regular time 

intervals, respectively. The values of the attributes refer to these compart-

ments and intervals. The original referrer has been omitted from further 

consideration. Hence, as a result of such a transformation, one obtains, 

strictly speaking, a new dataset with its own behaviour, which is not the 

same as the behaviour of the original data.  

Is this a valid substitution? We would prefer to say “no”, unless the 

transformation agrees with the goals of the exploration. In this particular 

case, the explorer may be specifically interested in investigating the spatial 

and temporal distribution of the number and characteristics of the earth-

quakes. Hence, transforming the original dataset into a dataset with space 

and time as referrers is convenient for the explorer and adequate for 

achieving the goal. At the same time, the transformed data are unsuitable 

for the task of detecting spatio-temporal clusters of earthquakes described 

in Sect. 5.4.5. That task has to be performed by means of selection. 

Generally, aggregation is done by means of introducing equivalence 

classes of values of one or more data components, i.e. disregarding differ-

ences between some values and treating them as being the same. Unless 

the aggregation is done over the entire value set of a component, there has 

to be some basis for considering different values as equivalent. Typically, 

this basis is sufficient closeness of the values, which means that the value 

domain that they belong to must have distances (or the values may be se-

mantically close; for example, both pine and spruce are coniferous trees). 
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A component used as a basis for data aggregation may be either a refer-

rer or an attribute. If a referrer of a dataset has distances between values, it 

is generally preferable to use it as a basis for data aggregation, since this 

does not radically change the structure of the data, and the behaviour of the 

transformed data may be viewed as a “coarsened” version of the original 

behaviour rather than as a different behaviour. An example of this kind of 

aggregation may be seen in Figs 4.86C and 4.87C, in which we aggregated 

spatially referenced data by dividing the territory into regular compart-

ments and averaging the values within the compartments. In the result, we 

obtained spatially referenced data again, i.e. the structure of the structure 

did not change. 

In the case of the earthquakes, the reference set of the original data is 

the set of individual earthquakes, i.e. a population in the statistical sense, 

with no distances between members defined. Hence, the data cannot be 

aggregated on the basis of the referrer but only on the basis of one or more 

appropriate attributes, i.e. attributes with distances between their values. 

The date of occurrence of the earthquake and the location of the epicentre 

are, in this respect, suitable attributes. However, other attributes with dis-

tances, such as the magnitude, the depth, or the time of day, could, in prin-

ciple, be chosen as well to be the basis for aggregation.  

The goals of the analysis and/or the explorer’s domain knowledge may 

dispose him/her to choose particular attributes or attribute combinations. 

Thus, a typical preference in the exploration of a set of events is to aggre-

gate them on the basis of their spatial and/or temporal attributes. Another 

criterion for choosing attributes to be the basis for aggregation is the statis-

tical distribution of the attribute values. Thus, if some attribute values oc-

cur extremely frequently while others occur very rarely, such an attribute 

is hardly suitable as a basis for aggregation. Thus, in the earthquake data-

set, 3588 of the 10 560 earthquakes (34%) have magnitudes in the range 

from 2.9 to 3.0 (more precisely, 1878 earthquakes have a magnitude of 2.9 

and 1710 earthquakes have a magnitude of 3.0) and there are only 54 

earthquakes with magnitudes in the range from 5.0 to 7.3, which is the 

maximum value in the dataset. Hence, the earthquakes cannot be divided 

on the basis of this attribute into groups of comparable size. 

In cases where there are no well-grounded preferences, it is necessary to 

consider aggregation on the basis of all appropriate attributes and investi-

gate how the resulting behaviours are related to each other. Such an inves-

tigation may be supported by linked displays, for example histograms that 

support selection of a subset of the data through clicking on bars and rep-

resent the selection by means of marking (see Fig. 4.99). 

We would like to stress once again the importance of reaggregation (we 

did this in the Sect. 4.5.4 dealing with data aggregation), i.e. redefining the 
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value equivalence classes in different ways and checking the validity of the 

patterns perceived earlier. 

The procedure for analysing a dataset with a large number of references 

is presented in Table 5.14. The major approach is data aggregation. Table 

5.14 refers to cases 1, 2, and 3, which have been described earlier, as sub-

procedures to be applied for the analysis of the results of data aggregation. 

Table 5.14. Characterisation of the overall behaviour in the case of a very large 

reference set (case 4) 

Actions Subtasks Tools Principles 

Can the data be aggre-

gated on the basis of 

the referrer(s)? 

(A) yes; (B) no 

   

(A.1) Aggregate the 

data by uniting close 

references and averag-

ing their characteristics 

 Aggregation See the

whole 

Simplify 

and abstract 

(B) Are there well-

grounded preferences 

for choosing particular 

attributes as the basis 

for aggregation? 

(C) yes; (D) no 

   

(C.1) Aggregate the 

data on the basis of the 

chosen attribute(s) 

 Aggregation See the

whole 

Simplify 

and abstract 

(A.2), (C.2) Character-

ise the overall behav-

iour of the aggregated 

data by applying case

1, case 2, or case 3

Behaviour 

characterisation 

(aggregated 

data) 

See case 1, case 2,

and case 3

See the 

whole 

(A.3), (C.3) Re-

aggregate the data and 

check the validity of 

the pattern derived  

Behaviour 

characterisation 

Pattern com-

parison 

Visualisation 

Display arrangement: 

juxtaposition, overlay 

Joint display manipu-

lation 

Display linking 

See in rela-

tion 

(D.1) Perform multiple 

aggregations of the 

data according to the 

 Aggregation See the

whole 

Simplify 
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Actions Subtasks Tools Principles 

suitable attributes and abstract 

(D.2) Characterise the 

overall behaviour with 

respect to each attrib-

ute by applying case 1

Behaviour 

characterisation 

(aggregated 

data) 

See case 1 See the 

whole 

(D.3) Reaggregate the 

data and check the 

validity of the patterns 

derived  

Behaviour 

characterisation 

Pattern com-

parison 

Visualisation 

Display arrangement: 

juxtaposition, overlay 

Joint display manipu-

lation 

Display linking 

See in rela-

tion 

(D.4) Compare the 

behaviours with re-

spect to different at-

tributes  

Behaviour/ pat-

tern comparison 

Visualisation 

Display arrangement: 

juxtaposition, overlay 

Joint display manipu-

lation 

Display linking 

See in rela-

tion 

(D.5) Establish link-

ages between the at-

tributes 

Connection 

discovery 

Linked displays 

Computational meth-

ods; in particular, 

correlation analysis 

Establish 

linkages 

Detect outliers by con-

sidering the statistical 

distribution of attribute 

values within the ag-

gregates or over the 

whole dataset. Exam-

ine the outliers found 

Elementary 

lookup and 

comparison 

Computation (ele-

mentary statistics; in 

particular, positional 

measures)

Visualisation (distri-

bution displays such 

as histograms or box-

and-whiskers plot) 

Querying 

Combined visualisa-

tion of aggregated 

data and selected in-

dividual data items 

Attend to 

particulars 

See in rela-

tion 

Select various subsets 

of the original data and 

compare the individual 

data items with the 

aggregated characteris-

tics. Detect and exam-

ine atypical values and 

value combinations, in 

Elementary 

lookup and 

comparison 

Querying 

Zooming and focus-

ing 

Combined visualisa-

tion of aggregated 

data and selected in-

dividual data items 

Display coordination 

Zoom and 

focus 

Attend to 

particulars 

See in rela-

tion 
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Actions Subtasks Tools Principles 

particular, local out-

liers

If the behaviour of the 

original data may have 

specific features of 

interest that could have 

been erased by the 

aggregation, explore 

the original behaviour 

by scanning data sub-

sets

Pattern search 

Elementary 

lookup and 

comparison 

Visualisation 

Zooming and focus-

ing 

Querying 

Display coordination 

Specialised computa-

tional tools for pattern 

detection 

Zoom and 

focus 

Look for 

recognis-

able

Attend to 

particulars 

5.5.5 Final Remarks 

This subsection has been conceived as a summary of what has been said 

earlier concerning tasks, tools, principles, and the relationships between 

these. We have tried to describe how to accomplish the primary task of 

exploratory data analysis, that is, characterisation of the overall behaviour 

of the phenomenon underlying a dataset. In the course of the analysis, this 

task is decomposed into subtasks and supporting actions (e.g. data trans-

formation), which are performed by means of certain tools. The actions, 

the subtasks, and, hence, the tools differ depending on the structure and 

peculiarities of the data under analysis. These differences are reflected in 

Tables 5.6 5.14, which deal with four general cases: 

1. Data with a single referrer and a single attribute or several jointly ex-

plored attributes that may be visualised holistically together. 

2. Data with multiple referrers. 

3. Data with multiple attributes. 

4. Data with a large reference set. 

For these cases, the tables show how the primary task is decomposed, and 

they relate the actions and subtasks involved to the appropriate tool catego-

ries and the appropriate general principles of data analysis and tool selec-

tion (the principle “involve domain knowledge” is not explicitly mentioned 

in any of the tables, but it is relevant virtually everywhere).  

By looking through the tables, it can be noted that almost every table re-

fers to the cases considered earlier as subprocedures to be applied after a 

data transformation, partitioning, or subset selection. Hence, if the dataset 

to be explored contains both multiple referrers and multiple attributes and, 

in addition, has a very large reference set, the whole procedure for analys-
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ing this dataset is reflected in the entire collection of tables, which need to 

be viewed in a backward order, starting from the last one. 

The tables contained in this section have been meant to establish explicit 

links between the possible exploratory tasks and the tools capable of sup-

porting these tasks. We wrote at the beginning of this chapter that direct 

linking between task types and appropriate tools is hardly meaningful be-

cause of the very high level of generality of the task typology. Such link-

ing cannot provide useful guidance for an explorer, whose tasks (ques-

tions) are very specific, in the sense of being formulated in terms of par-

ticular data components. 

Therefore, although we have indicated what tool categories may be ap-

propriate for various types of tasks, we give the primary role in tool selec-

tion to the general principles that have been formulated in this chapter. Ac-

cordingly, the tables also link the tasks to these principles. The general 

idea is that an explorer can find what principle(s) are relevant to the task 

category that his/her specific task belongs to and then apply these princi-

ple(s) to choose suitable analysis tools, taking into account the structure 

and properties of the actual dataset. For example, an explorer may learn 

from a table that the relevant principle for a certain kind of task is “see the 

whole”. This principle means that all referential and characteristic compo-

nents need to be represented visually according to certain requirements, 

which are defined in Sect. 5.4.1, which deals with this principle. Knowing 

the structure and properties of the dataset at hand, the explorer can trans-

late the general requirements into more specific ones, which can help to 

define the appropriate visualisation technique. 

Moreover, the tables and the entire content of this section have been or-

ganised so that the explorer is not required to determine what general task 

category his/her particular question belongs to. The explorer does not even 

need to have any explicit question (in Sect. 3.8, we have mentioned that an 

explorer may be unaware that his/her actions in the course of data analysis 

are actually aimed at finding answers to certain questions) and, conse-

quently, does not need to look through all the tables to try to find the ap-

plicable row containing the guiding information. The organisation of the 

material supposes a different way of using the tables.  

It was essential that we did not just list the task types in an arbitrary or-

der or arrange them according to their formal properties; instead, we had to 

define their places in the common context of exploratory data analysis, i.e. 

organise the tasks into a hierarchical system where less general tasks ap-

pear as subtasks of more general ones. Besides tasks in the sense of ques-

tions that need to be answered, we have also mentioned various supporting 

actions, which do not involve seeking answers to questions but prepare the 

data for further analysis.  
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With this organisation, the intended use of this section may be described 

as follows. The explorer determines what referential and characteristic 

components exist in the data that he/she needs to analyse, and finds out 

which of the four cases is applicable to the data. Then, the explorer looks 

at the corresponding table, which simultaneously suggests an appropriate 

procedure for data exploration, refers to the relevant general principles, 

and mentions the categories in which to look for suitable tools. Hence, it is 

not required that the explorer explicitly considers any tasks, either specific 

or general.

The various task types mentioned in the columns entitled “Subtasks” are 

not intended in fact for explorers and are not intended to play any role in 

the process of tool selection and data analysis. Instead, these links to our 

task typology may be helpful for tool designers and developers, who are 

also regarded as potential users of the results of our study. Unlike explor-

ers, tool designers do not seek answers to exploratory questions concerning 

data. However, they do need to anticipate the questions that may arise so 

that the tools they design can really support finding the answers. Corre-

spondingly, the references to the task types are meant to guide tool design-

ers in identifying the questions that potential tool users may have. The cor-

responding principles can help in defining the essential requirements to the 

tools. Designers do not necessarily need to look in the column listing the 

relevant tool categories. They can, in principle, try to invent something 

completely new, not fitting into the current tool classification. On the other 

hand, they could use the existing approaches as a basis, and modify the 

existing techniques or use them as building blocks for new tools. 

We have thus summarised our dual-use theory and indicated how it can 

be applied in the practice of exploratory data analysis and that of designing 

tools for EDA. In the next section, we demonstrate the first type of use 

with an example. In the concluding part of the book we present some ideas 

intended to promote the application of our theory. 

5.6 Applying the Scheme (an Example)

Let us now briefly demonstrate how the suggested scheme can be applied 

to a particular dataset. As an example, we shall take the data mentioned 

earlier about earthquake occurrences. Recall that the dataset consists of  

10 560 records of earthquakes that occurred in western Turkey and the sur-

rounding area during the period from 1 January 1976 to 30 December 

1999. The reference set here is the set of all earthquakes, which may be 

described as a statistical population, i.e. a set without ordering or distances. 
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It may be objected that the earthquakes are ordered according to the time 

of their occurrence and that distances exist between their epicentres in 

geographical space. However, this ordering and these distances are not the 

properties of the set of earthquakes as such but are “borrowed” from the 

attributes of the earthquakes, specifically, the date of occurrence and the 

epicentre location. Besides these two attributes, the dataset specifies the 

magnitudes of the earthquakes, their depths, and the times of day when 

they occurred. 

The major complexity of this dataset is the large size of the reference 

set; hence, of the cases described above, case 4 applies to it. According to 

the recommended procedure, we need to aggregate the data. As we have 

already mentioned, the referrer of this dataset is not suitable as a basis for 

aggregation: the absence of distances between the values does not provide 

a reasonable basis for introducing equivalence classes of values. Conse-

quently, the aggregation has to be done on the basis of some attribute(s). 

We have noted that the date of earthquake occurrence and the location of 

the epicentre are suitable candidates. This corresponds to our major inter-

est concerning the data: we would like to know, first of all, how the earth-

quakes are distributed in space and time. Of the other attributes, the magni-

tude and the depth are completely unsuitable as bases for aggregation be-

cause of the peculiarities of their statistical distributions: there are ex-

tremely many occurrences of small values and quite few cases of high val-

ues. The time of day has a more even distribution of values; so, we may try 

this as well. However, let us consider aggregation on the basis of the spa-

tial and temporal attributes first. 

For the aggregation, we divide the value domain of the spatial attribute, 

i.e. the territory of western Turkey and its neighbourhood, into regular spa-

tial compartments, namely rectangular cells, as has been shown in Figs 

4.81 4.83 and 4.85C. Simultaneously, we divide the value domain of the 

temporal attribute, i.e. the time period from 1 January 1976 to 30 Decem-

ber 1999, into regular intervals. The length of an interval is chosen to be 

one year. Then, we apply the available software to count, for each combi-

nation of a spatial compartment and a time interval, the number of earth-

quake occurrences in this compartment during this interval. The software 

also computes summary statistics of the magnitudes and depths of the 

earthquakes aggregated in this way, specifically the minimum, maximum, 

and median. 

In the result of the aggregation, we obtain a dataset with two referrers: a 

spatial referrer, the values of which are the spatial compartments, and a 

temporal referrer, the values of which are the time intervals. The attributes 

are the earthquake count, and the minimum, maximum, and median magni-

tude and depth. 
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This is a case of multiple attributes, i.e. case 3. We do not know a good 

way of simultaneous visualisation of all the attributes so that an effect of 

unification can be achieved. We also do not know a reasonable method for 

integrating all the attributes into a single attribute. Hence, according to Ta-

ble 5.13, we need to explore the behaviour of each attribute individually. 

Let us start with the earthquake count. The behaviour of this attribute is 

based on a two-component reference set, where one of the referrers is time 

and the other is geographical space, which is, in turn, two-dimensional. 

Hence, three display dimensions are necessary for the representation of the 

reference set, i.e. we need one more dimension in addition to the usual two 

spatial dimensions of a display. A simulation of the third spatial dimen-

sion, as in the space time cube in Fig. 5.22, cannot help in this case, since 

the cube would have to be filled with marks representing the attribute val-

ues, and very many marks would be hidden behind marks positioned in 

front of them. Consequently, we need to involve either the display time or 

an arrangement in order to represent all the dimensions of the reference 

set. As we have discussed in Sect. 5.4.1, neither of these solutions supports 

the perception of the resulting display as an integral space, in a single 

glance. Hence, this is not a case where a holistic view is possible (case 1), 

but rather a case where the behaviour of an attribute splits into aspectual 

behaviours, i.e. case 2.  

According to Table 5.11, we need to explore each aspectual behaviour. 

In this particular case, we have two aspectual behaviours:  

the temporal variation of the distribution of the earthquake frequency 

over the territory;  

the spatial distribution of the local temporal behaviours, i.e. the varia-

tions of the earthquake frequency at different spatial locations. 

This is quite analogous to the case of the behaviour of the burglary rate 

over the territory of the USA and the time period from 1960 to 2000, 

which we considered earlier. 

As in the case of the burglary rate data, the first aspectual behaviour can 

be explored by means of a series of maps, where each map represents one 

slice of the overall behaviour corresponding to one fixed value of the tem-

poral behaviour, in our case corresponding to one year. Such a map series 

is shown in Fig. 5.43. Since there are 24 maps corresponding to the 24 

years from 1976 to 1999, each of the maps has to be quite small. Of 

course, the maps are not suitable for retrieving any detailed information, 

but are intended mostly to give an overall impression of the spatial distri-

butions of the earthquake frequency in the respective years. The frequen-

cies are represented by shading the rectangles corresponding to the space 
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compartments with varying degrees of darkness: the higher the frequency, 

the darker the colour.

Fig. 5.43. The “small multiples” here represent one of the aspectual behaviours of 

the earthquake frequency, specifically, the temporal variation of the spatial distri-

bution 

Actually, what can be seen in Fig. 5.43 is not the original appearance of 

the “small multiples” display. The original view was insufficiently expres-

sive owing to a few outliers, which were represented by the darkest shades 

while the remaining rectangles were light. Therefore, according to the rec-

ommendation given in Table 5.10, we have simplified the view by remov-

ing the outliers. Specifically, we have applied a focusing tool and limited 
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the range of values to be represented by shading to values from 0 to 15. 

This manipulation has been consistently applied to all 24 maps. So, the 

highest value represented by shading in Fig. 5.43 is 15 earthquake occur-

rences per compartment. By means of focusing, we have removed three 

outliers: 18, 23, and 21 earthquakes per compartment, which occurred in 

the years 1980, 1992, and 1995, respectively. Figure 5.44 shows the posi-

tions of the outliers on maps corresponding to these years. The compart-

ments where the high values were attained are marked by thick black 

boundaries. In 1980, a frequency of 18 earthquakes was attained at the 

western edge of the territory under study. In the years 1992 and 1995, fre-

quencies of 23 and 21 were attained in one and the same compartment in 

the centre of the territory, on the border between the districts of Izmir and 

Manisa.

Fig. 5.44. The outliers that have been removed from the previous picture: 18 in 

1980 (on the western edge), 23 in 1992 (in the district of Manisa), and 21 in 1995 

(in the same place) 
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Let us now attend to the “small multiples” in Fig. 5.43 and try to grasp 

the character and major properties of each behaviour slice and the variation 

of these properties between the slices, as Table 5.10 recommends. We 

have to admit that what we see does not immediately produce an impres-

sion of a consistent development of a prominent spatial pattern. However, 

certain general observations can be made. Thus, we can note that in the 

period from 1976 to 1990 there were many more earthquakes in the west 

outside the territory of Turkey than later, especially after 1992. The fre-

quency of the earthquakes in the territory of Turkey, in contrast, increased 

after 1990. We can see that the part of the Turkish territory affected by 

earthquakes increased in size as compared with the beginning of the period 

under investigation. The “shakiest” area is in the south-west of Turkey, in 

the district of Izmir and its neighbourhood.  

The slice corresponding to the year 1982 looks like a “behavioural out-

lier” in the sequence of slices for the years from 1976 to 1989, which are 

quite similar to each other. From 1990 to 1992, the character of the spatial 

behaviour changes: the earthquake-affected area moves to the east and 

north-east. The patterns that can be perceived starting from the year 1993 

appear as a result of this movement. 

In order to obtain a kind of general view of the character of the behav-

iour during each of the three periods that we detected (i.e. 1976 1989 with 

the exception of 1982, 1990 1992, and 1993 1999), we have summed the 

frequencies over these periods and visualised the sums thus obtained in 

three maps. For better comparability, we have transformed the computed 

values into z-scores, i.e., roughly speaking, deviations from the mean fre-

quency for the respective periods (the mean frequency has been computed 

individually for each period). The result can be seen in Fig. 5.45C. Shades 

of green correspond to frequencies lower than the means, and shades of red 

to frequencies higher than the means. The difference between the charac-

ters of the behaviour in the first and the third period is clearly seen. The 

behaviour in the second period looks intermediate between the former and 

the latter. 

So, we have managed in a sense to grasp the character and properties of 

each behaviour slice and the variation of the character and properties over 

time, as is recommended in Table 5.10. We have also mentioned the devia-

tions from the general pattern: first of all, the three outliers that were re-

moved from the initial view (see Fig. 5.44), and second, the “behavioural 

outlier”  the spatial distribution in the year 1982. According to Table 

5.10, we need to characterise these deviations; however, we shall not do 

this now, hoping instead that the book contains a sufficient number of ex-

amples of how to “attend to particulars” and “see in relation”. As a re-
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minder, we shall note only that the elementary outliers can be investigated 

by means of querying tools, and the behavioural outlier by visualising the 

uncommon behaviour and comparing it with the typical behaviours. In Fig. 

5.46C, the spatial behaviour of the earthquake frequency in 1982 is visual-

ised in the same manner as for the three summarised behaviours in Fig. 

5.45C. We have transformed the original values into z-scores for a more 

convenient comparison of the untypical behaviour with the typical behav-

iours.

According to Table 5.11, we may try to aggregate the data over the tem-

poral referrer and look at the spatial distribution of the summary earth-

quake frequencies over the entire period. In fact, we did such an aggrega-

tion earlier to produce Fig. 4.81; however, for a more convenient compari-

son, we reproduce the result of this aggregation once again in Fig. 5.47, 

which shows the same territory as in the “small multiples” in Fig. 5.43 (for 

better visibility, we have slightly zoomed into the part of the territory 

mostly affected by earthquakes). 

Fig. 5.47. The total earthquake number aggregated over all 24 years; the maxi-

mum count is 90 

As is stated in Table 30, the behaviour of the aggregated data should be 

characterised by applying case 1 or case 2. Since we now have a single 

referrer (specifically, a spatial referrer), case 1 is applicable. The behaviour 

may be described as heterogeneous (subcase 1.2) and characterised 

through dividing the reference set into subsets, as is suggested in Table 

5.7.

To characterise the behaviour represented in Fig. 5.47, we can divide the 

reference set, i.e. the territory under investigation, into a “background” 

with relatively low earthquake frequencies and a number of “spots” of high 

and very high frequencies. The largest “spots” are roughly outlined in Fig. 

5.47. The “background” can be characterised, according to Table 5.6, as 

having relatively invariant characteristics. We need to apply appropriate 

querying and statistical tools to specify the range of frequencies in the 
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“background”, the mean and median frequencies, the variance, etc. Before 

doing that, we used the manual classification tool mentioned in Sect. 5.4.3 

to separate the “spots” from the “background”. 

For each of the “spots”, we need to specify its location and extent, and 

characterise its internal behaviour by a suitable partial pattern. By specify-

ing the location and extent, we define the applicability domain of the par-

tial pattern, as is required in Table 5.7. We shall not now characterise 

every “spot”, but shall give a rough example of how this may be done. 

Thus, the spot marked in the lower left can be described as extending from 

the south-west of the district of Canakkale to the north-west of the district 

of Izmir, including a coastal part of the Turkey and the nearby part of the 

sea. The behaviour inside this area can be characterised as a behaviour of 

increasing frequency in the directions from the centre (which is in the sea) 

towards the north-west and the south-east. The rate of increase in the latter 

direction is higher than in the former. Hence, we have characterised the 

partial behaviour in the Canakkale Izmir spot as a more or less regular 

change. By means of querying, we can obtain various numeric characteris-

tics of the change, as is recommended in Table 5.6. The behaviour in the 

nearby “spot”, which could be called Balikesir Manisa spot, could be de-

scribed as one of decreasing frequency in the direction from the central 

“core” to the periphery. 

Fig. 5.48. The local behaviours of the earthquake frequency (after removing the 

outliers >15)  
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After describing the entire aggregated behaviour, we must attend to the 

second aspectual behaviour, i.e. the spatial distribution of the local tempo-

ral behaviours of the earthquake frequency. This aspectual behaviour can 

be visualised as is shown in Fig. 5.48. The local behaviours in the spatial 

compartments are represented in a map by bar charts with bars correspond-

ing to the years from 1976 to 1999. As previously, in Fig. 5.43, the outliers 

have been removed from the representation by focusing on the value range 

from 0 to 15. According to Table 5.10, we need to grasp the character and 

properties of each behaviour slice (i.e. each local behaviour in this case) 

and their variation over the territory, and to group the local behaviours by 

similarity, taking spatial distances into account. It should be noted, how-

ever, that the visualisation in Fig. 5.48 is not very supportive of data explo-

ration, because the diagrams are very numerous and very small. It is much 

more difficult to group the local behaviours by similarity than in the case 

of the burglary rates in the USA, where we have only 51 states. 

Fig. 5.49. The earthquake counts summed over the three periods (1976 1989, 

1990 1992, and 1993 1999) are represented here by bar charts, after having been 

transformed into z-scores 

We can try to simplify the view a little more by applying the results of 

our previous exploration of the other aspectual behaviour, specifically, the 

division into three time periods with different characters of behaviour. In 

Fig. 5.49, we have simplified the bar charts by representing the local 

earthquake frequencies in only the three periods. Like previously in Figs 
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5.45C and 5.46C, we have applied a standard normal transformation to the 

computed sums, so the bars represent z-scores. 

This picture is easier to deal with than the previous one. We are now 

better able to detect clusters of compartments with similar profiles of the 

earthquake frequency in the three periods. As with Fig. 5.47, we can divide 

the territory into a “background” where the earthquake frequencies are 

low, and several relatively small “spots” with higher frequencies. Concern-

ing these spots, it should be noted that the profiles of the earthquake fre-

quencies differ quite a lot even between neighbouring locations, but there 

are also quite a few cases of neighbouring locations with earthquake fre-

quencies above the mean that have similar profiles. Some of these cases 

are marked in Fig. 5.49. 

Alternatively or additionally to the visual exploration of the spatial dis-

tribution of the local behaviours and “manual” grouping, we can try to ap-

ply a clustering tool and look at how it groups the local behaviours. We 

should remember, however, that the clustering tool will not take into ac-

count the spatial distribution of the local behaviours and the distances be-

tween them. In Fig. 5.50C, we see the result of applying a clustering tool 

to the local behaviours. The tool has built six clusters (we tried different 

numbers of clusters but found the result with six clusters to be the most 

appropriate). In Fig. 5.51C, we see six time graphs showing the envelopes 

of the lines belonging to each of the clusters. 

It cannot be said that the clusters are nicely shaped on the map – the 

compartments included in each of the clusters are quite scattered. The gen-

eral character of the behaviours in each group can be understood from the 

time graphs. Thus, the cluster shown in the lightest shade of pink consists 

of the places where the earthquake frequencies are the lowest, and the clus-

ter shown in the darkest red contains the “shakiest” places. The behaviour 

envelope represented in the middle of the right side of Fig. 5.51C is rather 

interesting: the earthquake frequencies were quite high until 1992 but then 

dramatically decreased. The major part of the respective cluster is situated 

in the south-western corner of the territory under study. This corresponds 

to our earlier observation concerning the time period from 1993 to 1999, 

when quite a few earthquakes occurred in the south-west.  

The upper right time graph shows a quite opposite behaviour: low 

earthquake frequencies from the beginning until 1989 and then an increase 

to rather high values. The corresponding compartments are very scattered 

but are mostly located in the centre and the east of the territory. The loca-

tions are in agreement with our earlier observation concerning the increase 

in the earthquake-affected area in the centre and the east after 1989. 

This is more or less the way in which the second aspectual behaviour 

might be explored and characterised. It may be noted that, simultaneously 
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with exploring and characterising the local behaviours and their spatial 

distribution, we have been establishing linkages with the pattern derived as 

a result of the exploration of the first aspectual behaviour, i.e. the temporal 

variation of the spatial distribution. Thus, we have used the division made 

earlier of the entire time period into three intervals for the simplification of 

the view of the local behaviours. We have also compared the behaviours in 

the clusters with this division and linked the difference between the spatial 

distributions in 1976 1989 and 1993 1999 to the peculiarities of the local 

behaviours in two groups of territory compartments. Furthermore, the car-

tographic representation of the clustering results can be compared with the 

maps of the earthquake frequency that we used for the exploration of the 

first aspectual behaviour, for example, the maps showing the summed fre-

quencies for the three time periods (Fig. 5.45C). All such linkages and 

comparisons contribute to joining the aspectual patterns into an overall 

pattern, as is suggested in Table 5.11. 

As in our exploration of the spatial aspect of the overall behaviour, 

when we aggregated the data over the entire temporal dimension, we can 

also aggregate the data over the entire value set of the spatial referrer and 

consider the temporal variation of the earthquake frequency for the whole 

territory. The result of the aggregation can be represented in a histogram 

display as is shown in Fig. 5.52 (the dark segments at the bottom of the 

histogram will be discussed a little later). 

Fig. 5.52. Earthquake frequency by year for the entire territory. The proportions of 

earthquakes that have magnitudes of 4 or higher are highlighted 

The data resulting from the aggregation have a single temporal referrer 

and hence correspond to case 1. The behaviour of the data can be explored 

as is suggested in Table 5.8, which, in turn, refers to Tables 5.6 and 5.7. 

We shall not discuss this behaviour in much detail but can note that, disre-

garding the outlier corresponding to the year 1982, it can be divided into 

three roughly homogeneous parts based on the intervals from 1976 to 

1989, from 1990 to 1992, and from 1993 to 1999. These partial behaviours 
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can be described as showing relatively stable frequencies in the range from 

285 up to 417 earthquakes per year (except for the outlier of 564 in 1982) 

in the first interval, a rapid increase to 696 earthquakes per year in 1992 in 

the second interval, and an initial drop followed by a gradual decrease and 

stabilisation in the third interval. We would like to point out that this char-

acterisation corresponds to our previous observations made with the use of 

the “small multiples” (Fig. 5.43): we noted then that the year 1982 was 

quite particular and divided the whole time period into almost the same 

intervals. The only difference is in the break between the first and the sec-

ond interval. In fact, the situation in the year 1989, as may be seen from 

the “small multiples”, is similar both to that in 1988 and to that in 1990, 

and it is possible to regard the year 1989 both as the end of the first inter-

val and as the beginning of the second interval. 

We have now more or less finished with the exploration of the behav-

iour of the attribute “earthquake frequency” resulting from the aggregation 

of the data by space compartments and time intervals (years). According to 

Table 5.11, we need to join the aspectual and aggregate patterns derived 

thus far into a unified pattern. In fact, we have been establishing linkages 

between the patterns in the course of the exploration by noting commonal-

ities between various findings. The job of bringing all the observations 

together is quite technical, and we do not think that we need to do this 

now.

The attribute “earthquake frequency” is not the only attribute whose be-

haviour we need to explore and characterise. According to Table 5.13, we 

need to repeat the exploration procedure for the other attributes, specifi-

cally, the aggregated magnitudes and depths. Since our major goal here is 

to demonstrate the procedure, not to do a full analysis, we shall not reapply 

the procedure to the other attributes now. We shall only make a general 

note that each attribute behaves quite differently from the others, and it 

does not make much sense to join them into groups and consider the be-

haviours of the groups, as is suggested in Table 5.13 (with the reservation 

“if appropriate”). Concerning establishing linkages between the attributes, 

we could not detect any correlations or other indications of possible con-

nections except for a slight positive correlation between the earthquake 

frequency and the maximum magnitude, which is demonstrated in a scat-

terplot in Fig. 4.84. 

Let us assume that we have finished with Table 5.13 and return to Table 

5.14, from which we started. According to Table 5.14, we need now to 

reaggregate the data and check the validity of the observations made ear-

lier. In the present case, we can choose larger or smaller spatial compart-

ments and longer or shorter time intervals. 
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We shall not do a detailed analysis with a different degree of data ag-

gregation now but shall only note that the observations made earlier re-

main generally valid. As an illustration, we include here a visualisation of 

the spatial distribution of the earthquake frequency aggregated over the 

entire temporal referrer but by smaller territorial compartments (Fig. 5.53) 

and a display of the temporal behaviour of the earthquake frequency ag-

gregated over the whole territory but by time intervals with an approximate 

length of one-quarter of a year (Fig. 5.54). These displays can be compared 

with those in Figs 5.47 and 5.52, respectively. It is interesting that the his-

togram in Fig. 5.54 reveals two outliers, which are marked in black. The 

left one corresponds to the second quarter of the year 1982, which agrees 

with the outlier for 1982 visible in Fig. 5.52. The right outlier corresponds 

to the second quarter of the year 1992. In Fig. 5.52, the bar for the year 

1992 is the highest, but it does not look very much higher than the 

neighbouring bars. So, we have an opportunity to refine our earlier obser-

vations concerning the times of maximum seismic activity and the behav-

iours before and after those times. Analogously, we can define more pre-

cisely the time of the minimum seismic activity: the lowest bar in Fig. 5.54 

corresponds to the last quarter of the year 1988. This bar looks much more 

unusual than the bar for the year 1988 in Fig. 5.52. It becomes clear from 

Fig. 5.54 that the earthquake frequency for the entire year 1988 does not 

look so low in Fig. 5.52 because the small number of earthquakes in the 

fourth quarter of this year has been summed with the quite large number in 

the second quarter of the same year. 

Fig. 5.53 The earthquake frequencies have been counted here for smaller territo-

rial compartments 
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Fig. 5.54. The earthquake frequencies have been counted here for smaller time 

intervals (quarters of years). The highlighted bars correspond to the second quarter 

of the year 1982 (left) and the second quarter of the year 1992 (right) 

After trying various degrees of data aggregation, we can feel quite con-

fident concerning what we have learned about the general character and 

major features of the behaviour of the dataset. Now, as Table 5.14 sug-

gests, it is time to attend to various particulars: global and local outliers, 

atypical value combinations, and data subsets of special interest. We have 

detected some outliers in the course of the previous exploration; now, we 

can explore and characterise them in more detail. Thus, we can use query-

ing and display linking in order to see the spatial distributions of the earth-

quakes in the shakiest period, the second quarter of 1992, and the quietest 

period, the fourth quarter of 1988, and to find out how the earthquake 

magnitudes varied in those periods (in fact, there were no strong earth-

quakes during the period of the highest earthquake frequency; the highest 

magnitude in that period was 4.5). 

Besides attending to the unusual values and behaviours that have been 

discovered, it is also appropriate to do this for expectable atypical charac-

teristics. In the earthquake dataset, high earthquake magnitudes are quite 

atypical. Therefore, this is an interesting target for a special investigation. 

In the histogram in Fig. 5.52, the dark segments of the bars show the 

proportion of earthquakes with a magnitude of 4 or higher in all the earth-

quakes that occurred in the respective year. In Fig. 5.55, the histogram has 

been zoomed to make these segments more clearly visible. The proportions 

of earthquakes with magnitudes of 5 or higher can now be seen in black. 

Figure 5.56 shows the result of another zooming operation, which has 

made the black segments more clearly visible. 

It can be noted that stronger earthquakes occurred more frequently in 

the period from 1976 to 1986 than after 1986. On a higher-granularity his-

togram (by quarters of years) in Fig. 5.57, we can see in more detail when 

the earthquakes with magnitudes of 5 or more occurred. In Fig. 5.58, we 

can see where these earthquakes occurred. By exploiting a dynamic link 



5.6 Applying the Scheme (an Example)      627 

between the histogram and the map, we can find the locations of the strong 

earthquakes that occurred in particular time intervals. Using querying 

tools, we can access detailed data about any specific earthquake. 

Fig. 5.55. The histogram from Fig. 5.52 has been zoomed here for better visibility 

of the numbers of earthquakes with magnitudes of 4 or higher (grey bars). The 

black segments show the proportions of earthquakes with magnitudes of 5 or 

higher 

Fig. 5.56. The histogram has been zoomed once again here so that the numbers of 

earthquakes with magnitudes of 5 or higher can be seen better 

Fig. 5.57. On this histogram display with bars corresponding to quarters of years, 

the dark segments show the numbers of earthquakes with magnitudes of 5 or 

higher. The display has been strongly zoomed into make the segments visible 
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Fig. 5.58. This map shows the locations of earthquakes with magnitudes of 5 or 

higher 

In this way, by applying zooming and filtering, querying, and display 

coordination, we can explore various particulars as is suggested in Table 

5.14. This table also says that we need to think whether the aggregation 

that we applied earlier could hide some potentially interesting features of 

the overall behaviour and, if so, we should explore the original behaviour 

(i.e. not aggregated) by manageable parts in order to detect such features. 

In the present case, the aggregation hides potentially existing spatio-

temporal clusters of earthquake occurrences, i.e. sequences of earthquakes 

that occurred shortly one after another in the same place. So, we need to 

look for such clusters. In Sect. 5.4.5, we have described some methods for 

doing this, specifically, a visual search using a space time cube display, 

and special computational techniques. Therefore, we shall not describe this 

part of the analysis here. 

We have also tried to aggregate the earthquake data by the time of day. 

The result of this aggregation may be explored using a histogram display, 

as with aggregation by years or quarters of years. Therefore, we shall not 

describe the process of analysing this variant of aggregated data but shall 

note only that we did not detect anything interesting, except for a lower 

than usual earthquake frequency for times between 6 and 7 a.m. 

In the course of our analysis, we have gone through many tables, corre-

sponding to different cases in terms of the structure and properties of the 

portion of the data under analysis. Table 5.15 provides an overview of our 

route and summarises the actions taken and the tools applied. 
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Table 5.15. A schematic view of the process of analysing the earthquake dataset 

Tables Actions Tools 

Aggregate data by spatial grid 

cells and time intervals 

Aggregation 

Choose an attribute 

(frequency) 

Choose behaviour aspect: 

temporal variation of spatial 

distribution 

Explore the aspectual 

behaviour (temporal variation 

of spatial distribution) 

Multiple maps 

Outlier removal 

Grouping/dividing 

Aggregation 

Querying 

Aggregate the data over the 

whole time by grid cells 

Aggregation 

Explore the spatial behaviour 

of the aggregated data 

Map 

Divide the behaviour into 

homogeneous parts 

Map 

Marking, sketching 

Characterise the partial 

behaviours 

Map 

Querying 

Define the applicability 

domains of the partial patterns, 

compare the patterns 

Map 

Querying 

Choose another behaviour 

aspect: spatial distribution of 

local temporal behaviours 

Explore the aspectual 

behaviour (spatial distribution 

of local temporal behaviours) 

Map with diagrams 

Outlier removal 

Aggregation 

Clustering 

Aggregate the data over the 

whole territory by time 

intervals 

Aggregation 

Explore the temporal 

behaviour of the aggregated 

data 

Time-based histogram 

Querying 

Establish linkages between the 

aspectual and aggregate 

patterns 

Visualisation 

Display linking 

Querying 

Choose another attribute  

Repeat the analysis procedure 

for the other attribute 

Compare the behaviours of the 

different attributes; establish 

linkages between the attributes 

Visualisation 

Display linking 

Scatterplots 

Table 5.14 

Table 5.13 

Table 5.11 

Table 5.10 

Table 5.11 

Table 5.8 

Table 5.7

Table 5.6

Table 5.7

Table 5.8 

Table 5.11 

Table 5.10 

Table 5.11 

Tables 5.8, 5.7, 5.6 

Table 5.11 

Table 5.13 

Tables 5.11, 5.10, … 

Table 5.13 

Table 5.14 

Re-aggregate and validate 

patterns 

Examine outliers and other 

particulars 

Detect spatio-temporal clusters 

Aggregation 

Visualisation 

Display linking 

Zooming and filtering 

Space time cube 

We would like to point out the wide range of exploratory tools that we 

have applied in the course of our example analysis. One could hardly find 

a single tool that, alone, could support every step and task of our explora-
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tion. We would also like to note that the suggested analysis scheme does 

not impose a very strict sequence of actions. Of course, there are cases 

where some action creates prerequisites for another action and, hence, 

must be performed before that other action. For example, data aggregation 

must precede the exploration of the aggregated data, which is quite natural. 

In cases where there is no logically determined ordering, actions can be 

done in any sequence or even in parallel. Thus, the action “explore the 

original behaviour by scanning data subsets” at the end of Table 5.14 does 

not mean that this action must necessarily be the last in the analysis proc-

ess – it is possible to do it right at the beginning, before any aggregation, 

or after the exploration of one of the aspects of the behaviour of the aggre-

gated data. The investigation of outliers and other particulars need not nec-

essarily be done after the observation of the general character and features 

of a behaviour – it may be more convenient to do these actions in parallel, 

as we actually did in our example. Some of the suggested actions may be 

skipped as being irrelevant to a particular case. For example, we did not try 

to discover correlations or influences between the spatial clusters of high 

earthquake frequencies, since we did not expect that such links might exist. 

Unfortunately, we have no appropriate domain knowledge in order to 

judge whether our observations are really meaningful and interesting. As 

we said earlier, the use of domain knowledge is very welcome in data 

analysis. Most probably, if we were seismologists, we would not have un-

dertaken such a broad investigation but would have focused from the very 

beginning on specific aspects, features, and subsets of interest. It is also 

probable that we would have used some domain-specific analysis methods 

and tools. It might also be that we would not have even tried to explore 

these data, knowing in advance that they alone could not tell us anything 

interesting and that additional data would need to be used. 

So, our analysis should be regarded as just a demonstration of how the 

scheme suggested in the previous section can be applied. It also demon-

strates that the scheme is not an algorithm that can be executed formally 

and mindlessly. Nevertheless, the scheme can provide useful guidance to 

those who might need it, and this is what we wanted to achieve.  

Summary 

The principal objective of this chapter has been to relate exploratory tools 

to the tasks that they can support. Recall that we have used the word 

“tasks” to refer to various questions concerning data that a data analyst 

may seek answers to. According to our idea, the links should be directed 
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not from tools to tasks but from tasks to tools. We believe that this direc-

tion is more practical as a basis for guiding data analysts in choosing right 

tools for their tasks. 

Although the idea of creating an instruction book that recommends ap-

propriate tools for all possible tasks may seem quite straightforward, there 

is an inherent problem that makes it hard to achieve. The real tasks arising 

in the course of data analysis are too specific: they are always formulated 

in terms of particular data components or even particular data items. For 

this reason, the possible tasks are countless and hence cannot be listed in 

any book. The idea of considering task categories instead of tasks is also 

ineffective: the task categories are too broad, in the sense of embracing a 

mixture of tasks that differ substantially from each other owing to the dif-

ferences in the structure and properties of the respective datasets. Hence, 

any tool suitable for one group of tasks may turn to be completely inap-

propriate for other tasks belonging to the same task category. Each task 

category has therefore to be linked to a long list of tools or to broad tool 

categories. This sort of linkage cannot be regarded as providing good 

guidance.

As a way to overcome this difficulty, we arrived at the idea of formulat-

ing general principles for tool selection that could help analysts in finding 

the right tools for their own tasks whatever data they might need to ana-

lyse. It was clear from the very beginning that the content of such princi-

ples would necessarily extend beyond just tool selection. Choosing a tool 

means, in fact, deciding on a particular approach to processing and analys-

ing the data. Moreover, this implies a particular attitude to the data, a par-

ticular way of treating it. Hence, the principles have to deal with ap-

proaches and attitudes as much as with tools. They teach us, in quite a 

broad sense, how to do exploratory data analysis, which involves adopting 

a certain attitude of mind, adhering to a certain philosophy, paying atten-

tion to certain aspects, organising the work in a certain way, and, as a con-

sequence of all these considerations, choosing certain approaches and cer-

tain kinds of tools. 

The principles that we have formulated are strongly related to the tasks. 

They have been derived from an examination of our experience: how, be-

ing equipped with a variety of tools, we usually deal with a new dataset in 

accordance with the general philosophy of exploratory data analysis. We 

have taken the task “characterise the overall behaviour of the characteris-

tics over the entire set of references” as the primary task of EDA and con-

sidered how we approach it and decompose it into subtasks, what we look 

for, how we bring together the bits and pieces of information gained, and, 

of course, what tools we use for the decomposition, characterisation, and 

synthesis. 



632     5 Principles 

At the same time, these principles correspond greatly to the ideas of 

other researchers in the areas of visualisation, data analysis, systems analy-

sis, and cognitive psychology. We have mentioned the relation of our prin-

ciples to Ben Shneiderman’s “Information Seeking Mantra”, to Jacques 

Bertin’s image theory and the primacy of the overall level of information 

processing, and to gestalt psychology and Rudolf Arnheim’s ideas about 

“visual thinking”. We have not explicitly mentioned the relation of our 

ideas concerning reference-invariant depiction of a behaviour and concern-

ing approaches to the decomposition of a complex behaviour to George 

Klir’s general theory of system analysis, and would like to acknowledge 

here that we were greatly influenced by this theory. 

So, we have presented each of the ten principles that we have arrived at 

with many examples of their operation. At the end, we have provided a 

sort of guide through the principles and the corresponding tasks and tools. 

For this purpose, we have taken the general task “characterise the overall 

behaviour” and considered how to perform it in various situations, depend-

ing on the dimensionality and size of the reference set and the number of 

attributes. We did not consider the possible types of data components; this 

needs to be done specifically for each dataset. An analyst is thus expected 

to apply these general procedures and principles to his/her specific case, as 

we did in the example of the earthquakes. We hope that the multitude of 

examples provided in this and the previous chapter can help analysts to 

make the right choice of tools and approaches. 
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6 Conclusion 

Throughout our professional life, we have been involved in various pro-

jects in which some partners had data and wanted to understand what these 

data meant and how they could be used. These partners often complained 

that, despite having tools and even instructions on how to use the tools, 

they could not figure out how to apply these tools to their own data in a 

sensible way. Usually, we proposed that they sent us their data so that we 

could “play” with those data and thereby find the right ways to handle 

them. As a result of such “playing”, we produced collections of screen-

shots demonstrating the observations we had made and the features we had 

discovered. We also made suggestions concerning further analyses and the 

possible uses of the findings. 

Our partners have often asked us, “How do you know what tool or 

method to apply in this or that situation?” The answer is obvious: this 

comes from experience, from regular “playing” with various data and vari-

ous tools, which converts one’s knowledge of the tools and methods from 

theoretical to practical, from declarative to procedural. 

However, just as the data owners and domain specialists encountered 

difficulties in choosing appropriate approaches and tools, we also encoun-

tered difficulties in analysing the data because of our lack of domain 

knowledge and insufficient understanding of the semantics of the data pro-

vided to us. Because of this, it turned out sometimes that our findings were 

meaningless or trivial to domain experts. In fact, the most effective and 

fruitful cases of data exploration took place when we had an opportunity to 

sit together with domain experts. The experts formulated their questions 

concerning the data, and we chose the appropriate visualisations, data 

transformations, divisions, computations, etc., which helped the experts to 

find the answers. 

This means that what is needed is to find a way of combining domain 

knowledge and expertise in using tools. It is hardly possible to supply 

every domain expert with a professional analyst who knows the tools that 

exist and is experienced in using them, although some high-level special-

ists and decision makers enjoy such a privilege. 

Some of our partners have asked us, “Can you teach us to analyse our 

data by ourselves, without calling for your help?” We had to answer that 
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this was not an easy task. Experience is not a set of verbal statements but 

something tacit, probably subconscious, and significant effort is needed to 

externalise it, systemise it, and make it comprehensible to others. How-

ever, we understood that we ought at least to try to do this. So we did, and 

the result is this book. 

We hope that the book will be useful. However, we also understand that 

reading it will not guarantee that one will know how to approach this or 

that particular dataset. The reason is simple: theoretical knowledge, which 

can be acquired by reading this book, is not the same as practical experi-

ence. One needs sufficient practice in order to turn the theory into one’s 

own skills. Hence, even if we assume that every person who is going to 

explore data will read this book (which is a rather bold assumption), the 

desired synergy of domain knowledge and tool-related experience will not 

be reached. 

Is it possible to cope with this problem? We believe that good solutions 

will eventually be found. As computer scientists, we can for the present 

suggest a solution, which seems to us feasible and worth trying out. The 

idea is to put knowledge about tools and methods for analysing data on the 

computer side so that the computer could act as an intelligent assistant to a 

domain expert who is exploring data. The assistance might include  

suggestion of appropriate procedures and methods for data analysis; 

selection of relevant tools from a tool kit; 

automatic application of the tools to the data; 

help in the operation of the tools; 

instruction concerning the interpretation and use of the outcomes of us-

ing the tools. 

For such intelligent functioning, the computer, of course, needs to be 

knowledgeable about the capabilities of the tools and their applicability 

domains, i.e. what data they allow as their input. It needs to be aware of 

the typical tasks of exploratory data analysis and the approaches to per-

forming them. It needs to know how to handle various complex cases by 

decomposing them into simpler ones. In short, the content of this book 

plus information about the specific tools available in the tool kit need to be 

put in the computer’s “mind”, which is quite possible.  

This is not enough, however. In order to make apt suggestions, the com-

puter must understand the meaning of the data under analysis, exactly like 

a human analyst. Thus, we have sometimes received data with components 

with names such as “QN”, “TNN”, and “TMM”, or with names in other 

languages that we could not understand. Without having our partners’ ex-

planations of what the components meant, trying to apply any tool or 



Conclusion      637 

method to the data would be completely pointless. The computer also 

needs the user, i.e. the domain expert, to state the meaning of the data 

components. However, a true “understanding” of the semantics of the data 

is hardly achievable and, in fact, is not necessary.  In our case, we visualise 

the data, look at the displays, and try to interpret what we see. In the case 

of a computer cooperating with a domain expert, it is supposed that it is the 

expert who looks and interprets, whereas the computer only visualises, 

transforms, and computes. The limited understanding of the data required 

by the computer includes knowing  

which data components are referential and which are characteristics;  

the types of the components: spatial, temporal, population, numeric, or-

dinal, or nominal; 

some other characteristics, in particular, the meaning of spatial refer-

ences: whether they are discrete locations, sample locations in which a 

continuous phenomenon is observed and measured, discrete spatial ob-

jects, or territorial divisions. 

This information needs to be provided to the computer at the beginning 

of the data analysis. A good human computer interface design is certainly 

needed in order to make the procedure of informing the computer about 

the data quick and easy for anyone who wishes to utilise the intelligent 

services. Another design problem is to make the computer assistant sup-

portive but not annoying, advising but not prescriptive, and informing but 

not boring. 

We believe that these design problems are solvable, and true hu-

man computer partnership in exploratory data analysis will soon be 

achieved. We hope that we shall be able to contribute to this. 



Appendix I: Major Definitions 

I.1 Data 

Data

Data are viewed abstractly as a set of records with a common structure, 

each record being a sequence of elements, such as numbers or strings, 

which either reflect the results of some observations or measurements or 

specify the context in which the observations or measurements were ob-

tained. The context may include, for example, the place and the time of 

observation or measurement, and the object or group of objects character-

ised.

A dataset reflects characteristics of a certain phenomenon. By means of 

data analysis, an explorer gains knowledge about that phenomenon. 

The elements that a data record consists of are called values. Values that 

reflect results of measurements or observations are also called characteris-

tics. Values that reflect the context of the observation or measurement are 

called references.

For example, to make a study of climate, one measures various proper-

ties of the climate such as the air temperature and the wind direction in 

various places and at various time moments. Each combination of meas-

ured values of the air temperature and wind direction refers to a particular 

place and a particular time moment, which are indicated in the correspond-

ing data record. The measured values of the air temperature and wind di-

rection are characteristics. The data elements indicating the places and 

time moments are references.  

Structure and Components of Data  

All records of a dataset are assumed to have a common structure, with 

each position having its specific meaning, which is common to all values 

appearing in it. These positions may be named to distinguish between the 

positions. The positions are usually called components of the data. 
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A component may correspond to a certain measured or observed prop-

erty of the phenomenon reflected in the data, for example air temperature 

or wind direction, or may reflect a certain aspect of the context in which 

the observations or measurements were made, for example the geographi-

cal location or time moment.  

All possible elements that can potentially appear in data as values of a 

particular component constitute the value domain of that component. If the 

value domain consists of numbers, it is often viewed as a value range, de-

fined by specifying the minimum and maximum possible values of the 

component. 

Attribute, or Characteristic Component 

A data component corresponding to a measured or observed property of 

the phenomenon reflected in the data is called a characteristic component,
or attribute. Some examples of attributes are air temperature are wind di-

rection, which reflect properties of the climate. Values of attributes are 

also called characteristics.

Referrer, or Referential Component 

A data component reflecting an aspect of the context in which the observa-

tions or measurements were made is called a referential component, or 

referrer. For example, the geographical location and the time moment are 

referrers for measurements of properties of the climate such as air tempera-

ture or wind direction. 

The most frequently occurring types of referrers are space, time, and a 

(statistical) population, i.e. a collection of items or, more generally, any 

referrer with a value domain that has no ordering and no distances between 

the elements. 

Reference

The value of a single referrer or the combination of values of several refer-

rers that fully specifies the context of some observation(s) or measure-

ment(s) is called a reference, or, more specifically, the reference of the 

characteristic(s) obtained in this context. 
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Reference Set 

The set consisting of all references occurring in a dataset is called the ref-

erence set of this dataset. The reference set of a subset of data consists of 

all references occurring in this subset. 

Multidimensional Data 

A dataset with two or more referrers is called multidimensional. A dataset 

with two referrers may be called two-dimensional, a dataset with three re-

ferrers three-dimensional, and so on. Attributes are not counted as dimen-

sions of a dataset. 

It may also be said about a particular dataset that it has a multidimen-

sional reference set (two-dimensional, three-dimensional, etc.) 

Independent and Dependent Data Components 

Referrers are regarded as independent data components, since the context 

for making observations or measurements, i.e. the times, places, objects to 

be observed, etc., may be usually chosen arbitrarily, and the choice con-

cerning any particular aspect of the context, such as time or space, may be 

made independently of the other aspects.  

A particular choice of the context fully determines the characteristics 

obtained in that context. Hence, characteristics (attribute values) depend on 

references, and attributes are therefore dependent components. Attribute 

values are always associated with particular references and have no mean-

ing separately from the references. For example, a particular value of the 

air temperature is meaningless if the place and time of its measurement are 

unknown.  

It may also be said that references are subjective, since an observer may 

choose them more or less arbitrarily, and characteristics are objective,

since they reflect something measured or observed rather than arbitrarily 

chosen.

Data Function, Functional Data Model 

Data may be viewed formally as a function, in the mathematical sense, 

with the referrers as independent variables and the attributes as dependent 

variables. The function, which is called the data function, defines the cor-

respondence between the references (combinations of values of the refer-
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rers) and the characteristics (combinations of values of the attributes). For 

each combination of values of the referential components, there is no more 

than one combination of values of the attributes. 

A data function may be represented by the formula (see Chap. 3) 

f(x1, x2, …, xM) = (y1, y2, …, yN) (3.2) 

where M is the number of referrers in the dataset, N is the number of at-

tributes, f is the function symbol, the independent variables x1, x2, …, xM

stand for the referrers, and the dependent variables y1, y2, …, yN stand for 

the attributes. 

Any attribute of a dataset may be considered independently of the other 

attributes. This allows the formula (3.2) to be split into an equivalent set of 

expressions:

 f1(x1, x2, …, xM) = y1

 f2(x1, x2, …, xM) = y2

…

 fN(x1, x2, …, xM) = yN (3.3)

Each of the N functions f1, f2, …, fN. represents one of the attributes. 

Ordered Component, Ordering of Values  

Ordering is defined mathematically as a binary relation, i.e. a relation be-

tween two items, which has the following properties (in the expressions 

below, the symbol “ ” denotes the ordering relation): 

1. Antisymmetry: For any two items a and b, if a b and b a, then a = b.

This means that if the items a and b are different, the statements a b

and b a may not be true simultaneously. 

2. Transitivity: For any three items a, b, and c, the truth of the statements  

a b and b c implies that a c.

A data component is called ordered if an ordering relation exists be-

tween at least some elements of its value domain. The ordering among the 

elements of a value domain is called linear or total if, for any pair of ele-

ments a and b from this domain, either a b or b a; otherwise, the order-

ing is called partial.

Some examples of linearly ordered value domains are the set (range) of 

values of a numeric data component, and a set of time moments. 
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Set (Value Domain) with Distances 

Distance is a numeric measure defined for pairs of elements of a set (a 

value domain) and has the following properties (in the statements below, 

the expression d(a, b) denotes the distance between the elements a and b):

1. d(a, b)  0 (the distance between any two elements is non-negative). 

2. d(a, a) = 0 (the distance from an element to itself equals zero). 

3. d(a, b) = d(b, a) (the distance from a to b is the same as the distance 

from b to a for any two elements a and b).

4. d(a, c) d(a, b) + d(b, c) (for any three elements a, b, and c, the dis-

tance between any two of them is not more than the sum of the distances 

from each of them to the third element). 

A set or value domain is considered as a set with distances if it is possi-

ble to determine the distance between any two elements.  

Some examples of sets with distances are space, time, and the value 

range of a numeric data component. Distances between numeric values are 

usually defined as the arithmetic differences between them. Distances be-

tween time moments are the lengths of the time intervals between them. A 

distance in space is often defined as the length of the straight line connect-

ing the pair of locations. However, it is possible to define distances differ-

ently. For example, in geographical space, distances may take account for 

the Earth’s curvature and/or relief or be measured along roads. 

Continuous Set (Value Domain)

A set with distances is continuous if, for any element a and any number  

D > 0 (which may be arbitrarily small but not equal to zero), there is an-

other element b in this set, b a, such that d(a, b) < D (the distance from a
to b is less than D).

I.2 Tasks 

Behaviour

The Behaviour of a data function (or of an attribute or group of attributes) 

over a set of references is the particular configuration (arrangement) of the 

characteristics corresponding to all the elements of this reference set, taken 
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together, and considered together with the relations that exist between ref-

erences. 

Thus, the behaviour of a function over a linearly ordered reference set is 

the particular sequence of characteristics that corresponds to the sequence 

of ordered references. The behaviour of a function over a space (which is 

an unordered set with distances) is the distribution of the characteristics 

over this space. This includes relations between various characteristics 

with respect to the distances between the corresponding references, for 

example whether the changes between neighbouring locations are smooth 

or abrupt. The same can be said concerning a behaviour over any reference 

set with distances. A behaviour over a population, i.e. a reference set with-

out any relations between the elements and without distances, may be 

viewed as the frequency distribution of the various value combinations. 

When we are considering the behaviour of a data function (or attribute 

or attribute group) with respect to some reference set, this reference set 

may be called the base of this behaviour.  

Pattern

A pattern is a construct that reflects essential features of a behaviour in a 

parsimonious manner, i.e. in a substantially shorter and simpler way than 

specifying every reference and the corresponding characteristics. The con-

struct may be a description in some language (natural, formal, or graphi-

cal) or a mental image of the behaviour. Some examples of patterns are an 

increasing or decreasing trend of a numeric attribute over time, a spatial 

cluster of events or of high attribute values, and a skewed frequency distri-

bution of attribute values over a statistical population. 

A pattern derived by means of observing or analysing a behaviour is 

said to approximate this behaviour. Different patterns may approximate 

one and the same behaviour. 

Compound Pattern 

A compound pattern approximating some behaviour is a combination of 

two or more patterns such that each of these patterns approximates only a 

part of the behaviour but all the patterns jointly approximate the entire be-

haviour.
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Aspectual Behaviour, Aspectual Pattern, Behaviour Slice 

When the base of some behaviour is a multidimensional reference set, it is 

possible to choose a specific value of one referrer and consider the behav-

iour of the attributes with respect to the other referrers, i.e. over the subset 

composed of all references containing the chosen referrer value. The latter 

behaviour may be called a slice of the entire behaviour. 

Choosing different values of a referrer gives different slices of the entire 

behaviour. The particular arrangement of the slices with respect to the 

whole set of values of this referrer and relations between them is called an 

aspectual behaviour.

For a two-dimensional dataset, i.e. a dataset with two referrers R1 and 

R2, there are two aspectual behaviours of the attributes: 

1. The behaviour (arrangement) of the behaviour slices based on R1 over 

the set of values of R2.

2. The behaviour (arrangement) of the behaviour slices based on R2 over 

the set of values of R1.

For example, for a behaviour with a base formed by a spatial and a tempo-

ral referrer, the partial behaviours are the following: 

1. The behaviour of the spatial behaviour over time, i.e. how the spatial 

distribution changes over time. 

2. The behaviour of the temporal behaviour over space, i.e. how the local 

temporal behaviours (behaviours at individual locations) are distributed 

over space. 

For a dataset with N referrers, the number of different aspectual behav-

iours is N! (N factorial), i.e. N (N 1) (N 2) … 2 1. For the case of three 

referrers, this yields six aspectual behaviours. For example; 

1. The behaviour (arrangement) over the set of values of R1 of the aspec-

tual behaviour over the set of values of R2 formed by the behaviour 

slices based on R3.

2. The behaviour (arrangement) over the set of values of R1 of the aspec-

tual behaviour over the set of values of R3 formed by the behaviour 

slices based on R2.

3. The behaviour (arrangement) over the set of values of R2 of the aspec-

tual behaviour over the set of values of R1 formed by the behaviour 

slices based on R3.

And so on. 
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Task, Exploratory Task, Data Analysis Task 

A task is a question concerning data that can be answered on the basis of 

the information contained in the data, for example “What characteristics 

correspond to this reference?” or “What is the behaviour of this attribute 

(or group of attributes) over this reference set?” 

A task is viewed as consisting of two parts: a target, i.e. what informa-

tion needs to be obtained, and the constraints, i.e. what conditions this in-

formation needs to fulfil. The target and constraints can be understood as 

unknown and known (specified) information, respectively; the goal is to 

find the initially unknown information corresponding to the specified in-

formation.

In the task “What characteristics correspond to this reference?”, the 

specified reference is the constraint and the corresponding characteristics 

are the target. The constraint specifies, besides the reference, its relation to 

the characteristics specified by the target: these characteristics must corre-

spond to the reference (as defined by the data function). 

In the task “What is the behaviour of this attribute (or group of attrib-

utes) over this reference set?”, the specified reference set, including all its 

elements and the relations between them, if any, is the constraint. Another 

constraint is the specification of the attribute or group of attributes and the 

requirement that the behaviour must be based on the specified reference 

set. The target is some pattern that approximates this behaviour appropri-

ately. 

Elementary Task, Elementary Level of Analysis 

An elementary task is a task stated in terms of individual elements, i.e. in-

dividual references and characteristics, for example “What characteristics 

correspond to this reference?” An elementary task may involve two or 

more references and/or characteristics, which are dealt with as individual 

items rather than as a unified whole, for example “Compare the character-

istics corresponding to these two references”. 

The elementary level of analysis is the finding of answers to various ele-

mentary tasks. Elementary tasks play a marginal role in exploratory data 

analysis. 

Synoptic Task, Synoptic Level of Analysis 

Synoptic tasks are tasks stated in terms of sets of references and the corre-

sponding behaviours of attributes or attribute groups, for example “What is 
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the behaviour of this attribute (or group of attributes) over this reference 

set?” A set of references in a synoptic task is considered as a unified 

whole.

The synoptic level of analysis is the finding of answers to various synop-

tic tasks. Synoptic tasks play the primary role in exploratory data analysis. 

Comparison, Comparison Task 

Comparison is understood in a broad sense as identifying the relations ex-

isting between two or more items, which may be individual references or 

characteristics, sets of references, or behaviours. The types of relations that 

may be of interest to an explorer include 

“same” or “different” (between any items); 

order (between values of an ordered component or sets of such values); 

distance (between values of a component with distances);  

“including”, “overlapping”, or “not overlapping” (between sets); 

“similar”, “dissimilar”, or “opposite” (for behaviours). 

Behaviour characterisation 

A behaviour characterisation task is a task that may be stated in the form 

“What is the behaviour of this attribute (or group of attributes) over this 

reference set?” or, in slightly other words, “What pattern can adequately 

approximate the behaviour of this attribute (or group of attributes) over 

this reference set?” 

The exploratory analysis of a particular dataset may be viewed as find-

ing the answer to the overall behaviour characterisation task, i.e. the ques-

tion “What pattern can adequately approximate the overall behaviour of all 

the attributes over the entire reference set?” In the course of the analysis, 

this general task is decomposed into smaller, less general tasks of various 

types.

I.3 Tools 

Visualisation

Visualisation is understood as the representation of data in a visual form, 

i.e. creating various pictures from data: graphs, plots, diagrams, maps, etc. 
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For this purpose, elements of data are translated into graphical features 

such as positions within a display, colours, sizes, or shapes. 

Marks

Marks are any distinguishable visual items that can appear in a display, 

such as dots, lines, or shapes. 

Display Dimensions 

The display dimensions provide a set of positions at which marks or 

groups of marks can be placed. The primary display dimensions are: 

two spatial dimensions, width and height, which are available in any 

display medium, including computer screens and paper;  

the third spatial dimension, depth, which is available in some techno-

logically advanced media and can be simulated on a two-dimensional 

medium; 

the temporal dimension, i.e. the display time, which may be available in 

a computer-based visualisation and means that the content of the display 

changes over time. 

Besides the primary dimensions, there are also secondary dimensions 

called arrangements, which use the primary dimensions as a basis. 

Arrangements 

Arrangements are used for the following purposes: 

to provide positions for multiple displays (rather than elementary 

marks), which represent certain parts of the data and may have their 

own, internal dimensions; 

to change the perceived properties of the display space, for example to 

mitigate the perception of continuity of the space. 

The most frequently used arrangements are: 

space partitioning: The display space is divided into compartments, in 

which multiple displays may be put; 

space embedding: Positions in the space of one display are used for 

placing other displays, which are superimposed on it; 

space sharing: Overlaying multiple displays within the same space; 
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space transformation: Changing the perceived properties of the space 

and introducing specific relations between positions. 

Arrangements utilise the primary display dimensions and are, therefore, 

secondary with respect to them. 

Retinal Variables 

The retinal variables are abstractions of various visual properties of 

marks: colours, shapes, sizes, etc. Thus, for shapes, the retinal variable 

“shape” can be introduced, and all possible shapes are considered as its 

values. The most frequently used visual variables are colour hue, colour 

brightness (or darkness), colour saturation, size (which may be subdivided 

into length, height, area, and volume), texture, shape, and orientation. 

Visual Encoding Function 

A visual encoding function is a mechanism specifying the conversion of 

data items into values of display dimensions and visual variables, i.e. it 

defines how each data item is represented in a display. Such a mechanism 

may have the form of a rule or a set of rules, a formula or a set of formu-

lae, etc.

A visual encoding function typically involves items that may be chosen 

arbitrarily from a range of options, for example particular colours or the 

maximum size of a mark. The function can thus be generalised by substi-

tuting variables for such arbitrary items and defining the domains of ad-

missible values for these variables, which are called parameters of the vis-

ual encoding function. By assigning various values to the parameters, one 

can obtain a family of specific visual encoding functions. 

Display Manipulation 

Display manipulation includes various interactive operations that change 

the values of the parameters of the visual encoding function applied in the 

display and thereby modify the appearance of the display. Dynamic display 

manipulation means that the display reacts immediately to any change in 

the parameters of the visual encoding function by updating the picture in 

accordance with the new parameter values. 

In exploratory data analysis, it is not any kind of display manipulation 

that is of interest, but only such manipulation that can facilitate or prompt 
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the analysis; for example, it may allow the answers to various questions to 

be found faster or make a pattern “pop up” from the display. 

Display manipulation should be distinguished from data manipulation:

display manipulation does not change the data but changes only the visual 

representation of the data, while data manipulation modifies the data, one 

result of which may be a change in the appearance of visual displays of 

those data. 



Appendix II: A Guide to Our Major Publications 

Relevant to this Book 

In this book, we have omitted many details of our work that are relevant to 

the exploratory analysis of spatio-temporal data. In this appendix, we 

would like to provide references to some of our papers that extend the ma-

terial presented in this book. 

In recent decades, we have made several attempts to use expert knowl-

edge of data visualisation principles for the automated generation of data 

displays. Thus, in [1], we describe how various thematic mapping tech-

niques can be chosen automatically, depending on the characteristics of the 

data, such as the number and types of attributes and the semantic relation-

ships between them. To enable knowledge-based design of thematic maps, 

it is necessary to describe the semantics of the data. We discuss the rele-

vant aspects of the semantics of data in [2]. Reference [3] proposes a dia-

logue procedure for acquiring such information from domain experts. This 

procedure is an adaptation of our previous work on knowledge engineering 

and expertise transfer [4]. In our later papers, we extend the idea of knowl-

edge-based user support from automated visualisation design to helping 

users to choose and apply various tools for exploratory data analysis. In 

[5], we discuss what categories of knowledge are needed for an intelligent 

software assistant. Reference [6] describes how knowledge-based visuali-

sation and intelligent guidance can support data analysts and decision mak-

ers.

In parallel to our research on knowledge-based visualisation design and 

user guidance, we have developed a concept of interactive maps that 

change their appearance in response to manipulation by the user [1]. This 

concept was later extended to dynamic classification maps [7] and to tech-

niques for the exploration of raster data [8]. Reference [9] reports the re-

sults of our study of the usability of interactive maps. Our general experi-

ence is that new users must first learn and “feel” the high interactivity of 

the novel tools with some examples. A short introduction of 30 to 60 min-

utes and some hands-on experience should generally induce a sufficient 

sense of fun and sufficient courage that users can continue with their own 

exploration of further tools. 
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The next group of publications relates to our contribution to forming the 

research agenda for geovisualisation and computer cartography. Reference 

[10] demonstrates the need for extending cartographic knowledge to inter-

active and dynamic maps. Two collective papers consider the research 

agenda in cartographic representation [11] and in the design of geovisuali-

sation tools [12]. References [13, 14] present some steps towards the im-

plementation of the research agenda in the area of the visualisation and 

interactive exploration of spatio-temporal data. Writing these papers initi-

ated our thinking about this book. 

The next series of publications presents the tools and techniques that we 

have designed to support the exploratory analysis of various categories of 

spatio-temporal data: exploration of object movement [15], detection of 

changes and analysis of variance in spatially distributed time series data 

[16, 17], characterisation and comparison of spatial development scenarios 

[18], and analysis of point events [19]. 

Several publications deal with the use of interactive statistical graphics. 

Thus, in [20], we have suggested a procedure of classification according to 

the dominant attribute. In [21], we have considered several different ways 

of scaling the axes of parallel-coordinates displays with the aim of support-

ing particular types of tasks. Reference [22] proposes an extension of the 

parallel-coordinates technique to large data sets. In [23], we introduce our 

extension of the cumulative-curve technique that generalises the ideas of 

histograms and the Lorenz curve. 

The next group of publications reflects our work on visual data mining – 

the combination of interactive visualisation with computational methods of 

data analysis. We have proposed some methods for the visualisation of 

data-mining outputs and for the use of various data-mining techniques in 

combination with thematic maps [24]. In [22], we suggest some specific 

visualisation enhancements for cluster analysis. Reference [25] describes 

the integration of two software research prototypes: Descartes for geo-

graphic visualisation, and Kepler for data mining. 

A significant part of our research relates to multicriteria decision analy-

sis. We have highlighted the importance of visualisation for this kind of 

activity and proposed several visualisation techniques supporting various 

computational optimisation methods [26], as well as purely visual and in-

teractive decision support methods that suit a variety of individual deci-

sion-making styles [27]. In [28], we discuss the value of display coordina-

tion for making informed, well-grounded spatial decisions. 

In several publications, we describe the application of our tools and data 

exploration methods in various domains: simulation modelling [29, 30], 

forestry [31], seismology [32], and official statistics [23, 33]. 
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Appendix III: Tools for Visual Analysis of Spatio-

Temporal Data Developed at the AIS Fraunhofer 

Institute

In this appendix, we present the history of the development of Com-

monGIS – a software system for interactive visual analysis of spatially and 

temporally referenced data – and give an overview of its functionality. 

The roots of our approach to building interactive systems for visual data 

analysis originate from the software system IRIS (Information Retrieval 

Intelligent System), which was developed for Windows in the early 1990s 

(Andrienko and Andrienko, 1997). IRIS was implemented in C++. IRIS 

realised several innovative ideas: 

1. The concept of interactive maps that change their appearance in real 

time upon activation of interactive manipulators by the user. 

2. A knowledge-based approach to the automated selection of map sym-

bolism depending on the characteristics of the data and the user’s needs. 

The development of IRIS was continued by applying the Java program-

ming language and environment designed for the Internet. IRIS, renamed 

Descartes, became one of the first interactive mapping systems available 

on the Internet (Andrienko and Andrienko, 1999). As early as September 

1996, it was included in the list of the Top 1% Web applets and top ten 

Web applets by the independent Java Applet Rating Service 

(http://www.jars.com/). In Descartes, we implemented dynamic linking 

between maps and statistical graphic displays (brushing). 

In 1998 2001, further development continued within the framework of 

ESPRIT Project 28983 called CommonGIS (Andrienko et al. 2003), which 

was proposed and coordinated by AIS. In the course of the project, the 

software was renamed CommonGIS. 

CommonGIS is unique among both commercial and research software 

systems as being composed of well-integrated tools, which can comple-

ment and enhance each other, thus allowing sophisticated analyses. The 

system includes various methods for cartographic visualisation; non-spatial 

graphs; tools for querying, search, and classification; and computation-
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enhanced visual techniques. A common feature of all the tools is their high 

user interactivity, which is essential for exploratory data analysis. 

The main features of CommonGIS are the following: 

1. A variety of interactive mapping techniques, statistical graphic displays, 

and computational methods. 

2. Comprehensive tools for analysis of spatial time series, including ani-

mated maps, and time-aware map visualisations. 

3. Novel information visualisation tools (dynamic query tools, a table lens, 

parallel-coordinates plots, etc.). 

4. Tools for interactive multicriteria decision-making and sensitivity 

analysis for individuals and small groups of decision makers, supporting 

various styles of and procedures for informed decision-making. 

5. A possibility to complement interactive visual data analysis with mathe-

matical methods of statistics and data mining. 

6. A prototype of intelligent user guidance that helps users to follow prob-

lem-solving scenarios and utilise all tools for selected data-analysis and 

decision-making problems. 

7. Space time cube display for analysis of spatio-temporal events. 

8. Tools for interactive aggregation of raster data, tightly coupled to dy-

namic visualisation of the results. 

The system integrates all visualisation techniques via multiple mecha-

nisms of coordination and linking: dynamic highlighting and selection, 

queries, synchronised zooming etc.  

A commercial version of the CommonGIS software has been released 

by SPADE, the spatial decision support department of the AIS Fraunhofer 

Institute; see www.commongis.com for details. Universities and schools 

can order free licences from the same site for research and educational use. 
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elementary tasks, 8, 9, 47, 60, 61, 

75, 81, 86, 107, 112, 113, 115, 

119, 151, 158, 242, 257, 293, 382, 

464, 468, 479, 482, 486, 546, 585, 

646 

equivalence class, 29, 294, 584, 607, 

614 

Euclidean distance, see distance,

Euclidean 

filtering, 352, 353, 359, 368, 371, 

378, 381, 383, 394, 412, 418, 424, 

435, 449, 508, 519, 521, 532, 541, 

559, 574, 606 

focusing, 82, 234, 244, 249, 258, 

261, 312, 430, 436, 448, 507, 517, 

519, 540, 559, 582, 588, 599, 606, 

616 

focus plus context, 541 

frequency histogram, see histogram 

generalisation, 157, 258, 260, 337, 

507 

map generalisation, 214, 588 

geographical objects (features), 188, 

195, 196, 232 

geographical space, see space, 

geographical

gestalt principles, 90, 174, 494, 506, 

514, 530, 632 
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graduated circles, 101, 249, 261, 

268 

Green, Mark, 174, 183, 206 

heterogeneity, 96, 195, 512 

of geographical space, 195, 196 

histogram, 300, 312, 316, 334, 353, 

363, 372, 392, 398, 408, 435, 505, 

520, 525, 543, 556, 559, 608, 652 

holistic visualisation, holistic 

perception, see unification 

(perceptual) 

image, 50, 86, 163, 173, 183, 197, 

207, 214, 228, 258, 472, 482, 485, 

492, 495, 515 

image theory (Bertin), 173, 496, 

632 

mental image, 85, 166, 252, 448, 

503, 599, 644 

InfoCrystal, 372 

information loss, information 

reduction, 216, 226, 250, 258, 

276, 293, 332, 483, 486, 498, 507, 

591, 603, 606 

Information Seeking Mantra, 4, 15, 

146, 149, 483, 540, 541, 632 

interpolation, 30, 154, 164, 288, 

335, 401, 430, 582 

invariance, reference-invariant, 552, 

588, 632 

isomorphism principle, 168, 187, 

195 

Klir, George, 3, 4, 19, 27, 49, 152, 

480, 632 

levels of data analysis 

elementary, 81, 115, 125, 219, 

464, 521, 646 

synoptic, 48, 115, 120, 125, 382, 

521, 647 

levels of measurement (of 

attributes), 33 

interval, 33, 172, 299, 312 

nominal (qualitative), 32, 33, 172, 

190, 207, 276, 294, 299, 300, 

333, 375, 430, 444, 513, 526, 

559, 637 

ordinal, 32, 33, 172, 299, 333, 

637 

quantitative, or numeric 

(combined interval and ratio), 

19, 27, 32, 33, 62, 172, 190, 

295, 298, 333, 375, 444, 513, 

526, 558, 637 

ratio, 33 

levels of reading (Bertin), 47, 49, 

52, 81, 120, 154, 171, 173, 202, 

226, 483 

linked displays, see display 

coordination 

lookup tasks, 61, 73, 78, 113, 115, 

140, 151, 341, 351, 468 

direct lookup tasks, 61, 66, 74, 

78, 107, 342, 394, 464, 546, 

589 

inverse lookup tasks, 61, 67, 74, 

78, 79, 107, 113, 342, 394, 546, 

589 

MacEachren, Alan, 153, 178, 183, 

191, 197, 504 

Manhattan distance, see distance,

Manhattan 

map animation, see animation, 

animated map 

map as a model of the world, 169 

map layers, 217, 441, 524 

marking (of display items), 352, 

359, 363, 371, 389, 394, 435, 437, 

449, 541, 548, 599, 608 

multicolour marking, 352, 368, 

369, 372, 377, 381, 408, 424, 

436, 449, 561, 600 

marks (in visualisation), 163, 171, 

182, 190, 194, 197, 207, 231, 253, 

257, 302, 321, 331, 483, 496, 498, 

507, 593, 595, 602, 606, 615, 648, 

649 

mean, see statistical mean 
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median, 96, 263, 274, 299, 316, 331, 

334, 398, 411, 432, 516, 541, 574, 

614 

metric relations, 195, 343, 348, 373 

Minkowski distance, see distance, 

Minkowski 

model, 76, 105 

behaviour model, 85, 134, 135, 

149, 426, 466 

data model, 26, 75, 139, 158 

mathematical model, 288 

mental model, 149, 335, 465, 479 

simulation model, 132 

task model, 139, 154, 158, 584 

mosaic plot, 307, 543 

multidimensional data, 9, 16, 27, 

105, 124, 136, 150, 452, 463, 466, 

472, 487, 508, 516, 528, 552, 586, 

591, 596, 641, 645 

neighbour, neighbourhood, 89, 93, 

97, 129, 146, 158, 182, 218, 250, 

259, 269, 288, 335, 349, 403, 430, 

468, 531, 544, 557, 582, 596, 603, 

622, 644 

Occam’s razor (principle of 

parsimony), 90, 174 

ogive, see cumulative curve 

OLAP, 332 

outlier, 91, 93, 95, 97, 151, 157, 

210, 235, 263, 274, 299, 321, 333, 

334, 399, 432, 475, 486, 507, 544, 

559, 587, 596, 616 

outlier removal, 236, 249, 261, 

507, 550, 591, 621 

parallel coordinates, 202, 207, 221, 

323, 331, 376, 398, 412, 424, 427, 

430, 432, 442, 449, 505, 514, 519, 

521, 541, 544, 556, 558, 652, 658 

parameter (of an analysis or 

transformation method), 281, 335, 

446 

changing the tool parameters, 

406, 408, 427, 433, 448, 451, 

507, 517 

sensitivity to parameters, see 
sensitivity analysis 

parsimony, principle of, see 

Occam’s razor 

pattern, 8, 85, 86, 91, 644 

arrangement pattern, 91, 94, 131, 

135 

association pattern, 91, 97, 131, 

135, 219, 539 

compound pattern, 88, 96, 97, 

510, 554, 600, 644 

differentiation pattern, 91, 93, 

131, 135 

distribution summary pattern, 91, 

95, 131, 135, 588 

pattern comparison tasks, 138, 468, 

510, 603 

pattern definition tasks, see 
behaviour characterisation tasks 

pattern search tasks, 107, 113, 135, 

138, 150, 157, 394, 467, 510, 530, 

536 

percentile, see positional measures 

perception, 90, 146, 167, 173, 452, 

481, 483, 494 

perceptual integration, see 

unification (perceptual) 

permutation (in a matrix or table), 

208, 505, 513 

Peuquet, Donna, 32, 153 

phenomenon, 19, 25 

abrupt, 29, 31, 644 

continuous, 28, 32, 582, 637 

discrete, 28 

smooth, 28, 30, 31, 288, 644 

pie chart, 239, 302, 313, 331, 340, 

445, 449, 488, 497, 577 

population (statistical population), 

type of referrer, see statistical

population 

positional measures, 299, 316, 321, 

323, 332, 334, 336, 398, 486, 507 



664     Index 

quartile, see positional measures 

query language, 12, 337, 349, 394, 

464, 583, 599 

spatial query language, 343 

SQL, 337, 343 

visual query language, 337, 344, 

350, 394 

raster data model, 32, 272, 292, 296, 

330, 423, 523, 532, 651 

redundant use of visual variables, 

180, 191, 199 

reference (in data), reference set, 7, 

16, 17, 18, 19, 639, 640, 641, 643 

referrer, referential component, 16, 

17, 18, 22, 640 

types of referrers, 17, 25, 26, 28, 

640 

regionalisation, 214, 219, 512 

relational tasks, 62, 141 

relation-seeking tasks, 64, 69, 78, 

80, 115, 135, 140, 150, 341, 351, 

394, 468, 469, 510, 546, 589 

residuals, 274, 593 

retinal variables, 163, 171, 182, 190, 

193, 196, 213, 217, 258, 484, 496, 

552, 649 

robustness analysis, see sensitivity 

analysis

Salichtchev, Konstantin, 169, 181 

sample, 400, 426 

sampling, 29, 478 

sample locations, 32, 291, 582, 

637 

scatterplot, 126, 145, 265, 330, 353, 

363, 398, 427, 432, 435, 514, 520, 

542, 544, 558, 603, 624 

binned scatterplot, 302, 542, 558 

scatterplot matrix, 427, 432, 445, 

558, 603 

segmented bars, 302, 313, 316, 409, 

497, 564 

sensitivity analysis, 281, 335, 359, 

407, 427, 658 

Shneiderman, Ben, 4, 15, 146, 156, 

338, 383, 480, 483, 540, 547, 632 

similarity, 374, 383 

grouping by similarity, 378, 407, 

427, 505, 507, 510, 568, 621 

measuring (dis)similarity, 109, 

380, 394 

simplification, 89, 174, 207, 214, 

217, 250, 257, 260, 270, 293, 338, 

486, 506, 514, 571, 580, 588, 591, 

596, 623 

slices of a behaviour, see behaviour, 

slices of a behaviour 

slider, slider bar, slider line, 250, 

280, 338, 344, 346, 350, 353, 368, 

394 

small multiples, 185, 197, 199, 265, 

491, 497, 522, 562, 616 

smoothing, 214, 215, 258, 270, 335, 

387, 401, 445, 506, 588, 591, 596 

space

absolute and relative view of 

space, 26 

as a type of referrer, 18, 19, 341, 

487, 496, 529, 530, 555, 576, 

623, 640 

as an attribute, 20, 26, 44, 342, 

529, 530, 561, 607, 614 

dual treatment of space, 26, 113 

geographical, 29, 62, 89, 116, 

188, 194, 196, 374, 532, 555, 

561, 577, 595, 614, 643 

space time cube, 196, 532, 615, 

628, 658 

spatial relations, 113, 343, 403 

standard deviation, 263, 298, 331, 

398, 411, 516 

standard normal transformation, see 

z-score 

standardisation of attribute values, 

263, 375, 401 

statistical mean, 92, 96, 97, 263, 

270, 298, 329, 332, 334, 336, 398, 

411, 424, 432, 486, 507, 516, 588, 

618 
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statistical population (type of 

referrer), 18, 19, 26, 27, 86, 89, 

186, 202, 327, 392, 400, 491, 512, 

525, 531, 558, 607, 613, 637, 640, 

644 

statistics, 1, 3, 14, 85, 95, 132, 164, 

214, 274, 303, 359, 397, 403, 406, 

426, 430, 558, 572, 588, 658 

descriptive statistics, 398, 426, 

430, 508 

inferential statistics, 398, 426 

summary statistics, 411, 432, 583, 

607, 614 

subtask, 63, 74, 75, 119, 135, 142, 

150, 157, 158, 461, 466, 510, 584, 

586, 591, 611, 631 

synoptic level of analysis, see levels 

of analysis, synoptic 

synoptic tasks, 8, 9, 47, 61, 81, 119, 

127, 134, 135, 141, 157, 158, 173, 

219, 257, 293, 381, 465, 469, 482, 

486, 494, 506, 508, 510, 557, 585, 

646 

target (of a task), 47, 53, 57, 61, 73, 

77, 86, 109, 120, 139, 154, 158, 

336, 344, 481, 585, 646 

task (of data analysis), see data 

analysis tasks 

temporal relations, 113, 346 

temporal variation, 100, 258, 464, 

531, 574, 598, 607, 615, 623 

time 

absolute and relative view of 

time, 26 

as a type of referrer, 19, 89, 195, 

196, 213, 346, 484, 555, 573, 

598, 619, 640, 645 

as an attribute, 20, 25, 26, 44, 

229, 295, 346, 513, 561, 607, 

614 

cyclic and linear time, 32, 213, 

347, 462, 512, 555, 572, 580, 

590, 598 

time graph, 82, 99, 166, 186, 213, 

214, 241, 266, 270, 321, 340, 382, 

393, 398, 436, 467, 482, 491, 496, 

507, 521, 530, 541, 544, 561, 562, 

574, 600, 622 

time series, 154, 181, 263, 323, 381, 

382, 400, 427, 436, 536, 652 

Time Wheel, 347, 350, 517, 574, 

599 

TimeSearcher, 383 

treemap, 307, 313, 543 

trend, 8, 48, 50, 82, 86, 91, 94, 97, 

107, 113, 131, 133, 150, 154, 157, 

166, 214, 219, 236, 273, 293, 322, 

383, 400, 468, 530, 537, 576, 579, 

644 

triad model of spatio-temporal data, 

153 

Tufte, Edward R., 181, 185, 497 

Tukey, John, 3, 5, 96, 148, 316, 450 

unification (perceptual), 257, 463, 

472, 482, 485, 494, 508, 522, 552, 

573, 585, 602, 615 

value (of a data component), 7, 18, 

639, 640, 641, 642, 649 

value domain, 19, 21, 59, 66, 69, 

110, 190, 196, 584, 607, 614, 640, 

642, 643 

vector data model, 31 

Venn diagram, 372 

visual comparison (display 

manipulation technique), 248, 

259, 261, 330, 374, 443, 474, 507, 

514, 526, 539, 582 

reference value, 249, 259, 262, 

330, 514, 526, 582 

visual differentiation, 191, 194, 197 

visual encoding function, 164, 242, 

250, 257, 429, 441, 526, 541, 559, 

588, 649 

linear, 244, 258, 559 

logarithmic, 244, 258, 559 

non-linear, 244, 259 

parameterised, 247, 649 

visual linking, 191, 194, 197, 311, 

448 
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visual variables, 163, 171 

perceptual properties, 171, 180 

visualisation, 163, 166, 647 

basic principles, 10, 189, 316 

cartographic, 181, 194, 204, 330 

visualisation-based research 

method, 169 

weighted linear combination, 

weighted sum, 279, 280, 335, 433 

weighting, weights, 272, 279, 280, 

290, 298, 311, 335, 433 

Weka, 407, 408, 415 

Wilkinson, Leland, 182, 185, 321, 

333 

zooming, 82, 221, 231, 258, 312, 

430, 436, 449, 532, 540, 550, 582, 

606, 626, 658 

z-score, 263, 278, 280, 527, 618 



Colour Plates 

Fig. 4.23C. Cross-classification of the districts of Portugal according to the values 

of the attributes “% 25 64 years” and “% 15 24 years”. The division into classes 

and the assignment of colours to the classes are schematically shown in the top left 

corner. To divide the value range of each attribute into three subintervals, the al-

gorithm for statistically optimal classification was applied (Sect. 4.4.3) 
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Fig. 4.34C. Visual comparison in an unclassified choropleth map. The values of 

the attribute “% female 1991” in the districts of Portugal are compared with 50%: 

values below 50 are represented by shades of blue, and values over 50 – by shades 

of brown. The outlier 86.17 has been excluded from the visualisation by means of 

focusing (Sect. 4.4.6) 
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Fig. 4.35C. Visual comparison on a map using graduated circles. The circles rep-

resent the values of the attribute “% pop. no primary school education 1981” com-

pared with 50%: the size (area) of a circle is proportional to the difference be-

tween the corresponding attribute value and 50, a cyan colour of the circle indi-

cates that the value is less than 50, and a red colour indicates that the value is 

greater than 50 (Sect. 4.4.6) 



670      Colour Plates 

Fig. 4.36C. By gradually changing the reference value (midpoint) of a diverging 

colour scale, one can observe various spatial patterns formed by the visual asso-

ciation of districts coloured in the same hue (Sect. 4.4.6) 
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Fig. 4.38C. Left: a classified choropleth map with a diverging colour scale. Centre 

and right: the same classification is represented by single-hue colour scales with 

increasing and decreasing darkness, respectively (Sect. 4.4.6) 
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Fig. 4.41C. The distribution of the absolute numbers of people without primary 

school education over Portugal. Left, original view; right, after removing the out-

lier 56 442 and applying visual comparison with the country mean, 5140. The blue 

circles correspond to values below the country mean (Sect. 4.5.1.1) 

Fig. 4.42C. The distribution of the percentage of people without primary school 

education in the entire population of a district, over Portugal. Left, original view; 

right, after applying visual comparison with the country mean, 33.36%. The blue 

circles correspond to values lower than the mean (Sect. 4.5.1.1) 
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Fig. 4.43C. A change map representing the changes in the proportions of people 

employed in industry from the year 1981 to the year 1991. Positive changes (i.e. 

increases) are encoded by shades of brown, and negative changes (i.e. decreases) 

by shades of blue (Sect. 4.5.1.2) 
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Fig. 4.46C. A series of change maps showing how the burglary rates changed 

from year to year over the states of the USA during the period from 1991 to 2000. 

Each map represents the differences between the burglary rates in the year indi-

cated above the map and in the previous year. Brown shades encode positive dif-

ferences, i.e. an increase in the burglary rate, and blue shades correspond to nega-

tive differences, i.e. a decrease in the burglary rate (Sect. 4.5.1.2) 
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Fig. 4.60C. Visualisation of data specified in a raster format. On the left, the relief 

of Europe is visualised by encoding altitudes by colours of screen pixels. On the 

right, the effect of interpolation is demonstrated. The image fragment at the top 

right has been produced without interpolation. At the bottom right, the same data 

are visualised using linear interpolation (Sect. 4.5.3) 
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Fig. 4.79C. Comparison of aggregate characteristics of three sets: the set of all 

districts of Portugal (grey), the set of districts with a population decrease (popula-

tion change between –31.3 and –3%; blue), and the set of districts with a popula-

tion increase (population change between 3 and 31.11%; red) (Sect. 4.5.4.5) 
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Fig. 4.85C. Application of a visual comparison technique to the visualisation of 

the maximum earthquake magnitudes. Blue shades represent values below 4, and 

brown shades values over 4. Cells where no earthquake occurrences were recorded 

are shaded in grey (Sect. 4.5.4.6) 
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Fig. 4.86C. The forest data have been aggregated here by the cells of a regular 

rectangular grid. The pie charts represent the mean percentages of different types 

of forest: coniferous, broadleaved, mixed, and other wooded land. The sizes of the 

pies are proportional to the sums of these values, and hence show the approximate 

proportions of forest-covered land in the cells of the grid (Sect. 4.5.4.6) 
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Fig. 4.87C. The resolution of the aggregating grid has been increased as compared 

to Fig. 4.86C. The aggregate characteristics have been recomputed, and the same 

visualisation technique as before has been applied to the new data (Sect. 4.5.4.6) 



680      Colour Plates 

Fig. 4.104C. Colour coding is used here to denote the satisfaction of different 

query conditions. For a query with two conditions, four different colours are 

needed (Sect. 4.6.2.2) 
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Fig. 4.107C. Groups of similar districts defined on the basis of their distances in 

terms of attribute values to Porto, Mondim de Basto, and Alcoutim. Districts simi-

lar to each of these three districts are coloured in yellow, red, and green, respec-

tively. The districts dissimilar to any of these three districts are shown in grey 

(Sect. 4.6.2.4) 
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Fig. 4.120C. The result of dividing the districts into three clusters by the method 

of “simple k-means” (Sect. 4.7.4) 

Fig. 4.121C. The result of dividing the districts into four clusters by the method of 

“simple k-means” (Sect. 4.7.4) 
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Fig. 4.122C. The result of dividing the districts into three clusters by the method 

of EM (expectation maximisation) (Sect. 4.7.4) 

Fig. 4.123C. The result of dividing the districts into four clusters by the method of 

EM (Sect. 4.7.4) 
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Fig. 4.125C. The differences between the results of the methods of simple k-

means and expectation maximisation can be seen better when the results are over-

laid on the same map (left). On the right, only the districts that have moved to dif-

ferent clusters are shown in colour, while the districts that have preserved their 

membership are shown in grey (Sect. 4.7.4) 
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Fig. 4.132C. Results of applying a clustering tool to transformed raster data about 

the forest structure in Europe (Sect. 4.7.6) 

Fig. 4.133C. The result of reapplying the clustering tool after the resolution of the 

aggregating grid was increased. The profiles of the clusters are consistent with 

those of the previously obtained clusters shown in Fig. 4.132C (Sect. 4.7.6) 
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Fig. 5.4C. The most prominent clusters of similar local behaviours of the burglary 

rates in the states of the USA (Sect. 5.3) 

Fig. 5.5C. Comparison of the clusters of states with similar local behaviours with 

the evolution of the spatial distribution over time (Sect. 5.3) 
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Fig. 5.6C. Changes of the spatial behaviour of the burglary rate over time. To in-

crease expressiveness, visual comparison with the yearly country median has been 

applied in each map (Sect. 5.3) 
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Fig. 5.8C. Visualisation of the forest management data. In order to reduce the di-

mensionality, the data have been aggregated: the areas occupied by different age 

groups of the same species have been summed. The result of the transformation 

has been visualised by means of a collection of four animated maps, each map 

corresponding to one forest management scenario: natural (upper left), selective 

cutting (upper right), Russian legal system (lower left), and illegal cutting (lower 

right). The screenshot shown here corresponds to the 100th simulation year of the 

whole 200-year long simulation period. The pie charts represent the areas in each 

forest compartment occupied by different tree species (all age groups being com-

bined). The sizes of the pie charts are proportional to the total areas occupied by 

all the species together (Sect. 5.4.1.1) 
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Fig. 5.9C. Another screenshot of the same visualisation as in Fig. 5.8C, 

showing the situation in the 200th simulation year achievable under each 

forest management strategy (Sect. 5.4.1.1) 
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Fig. 5.10C. The maps here portray the dominant species and age groups by forest 

compartment in the 200th simulation year under the four different forest manage-

ment strategies. Colour hues are used to represent the species, and degrees of 

darkness represent the age groups, with light shades corresponding to young ages 

and dark shades to older ages. Black signifies compartments that have no or very 

few trees because of cutting (Sect. 5.4.1.1) 
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Fig. 5.11C. An aggregated representation of multiple time series based on divid-

ing the value range of the attribute into intervals. The lower display represents the 

sizes of the aggregates at each moment in time by proportional heights of the col-

oured bar segments (Sect. 5.4.1.1) 
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Fig. 5.12C. Two age structure attributes, “% 0 14 years” and “% 65 or more 

years”, are jointly represented on each map. On the left, the colouring of the dis-

tricts corresponds to the values of the two attributes. The degree of greenness cor-

responds to the proportion of children in the population (the more children, the 

greener the colour), and the degree of redness corresponds to the proportion of 

elderly people (the more elderly people, the redder the colour). Low values of both 

attributes are reflected in yellow shades. On the right, the values of the attributes 

are “packed” into the dimensions of the triangular marks: the widths represent the 

proportion of elderly people, and the heights represent the proportion of children 

(Sect. 5.4.1.2) 
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Fig. 5.17C. When equally bright, saturated colours are used to represent classes, 

this may impede the differentiation into figure and background, and hence compli-

cate the visual grouping and perception of the overall pattern. Thus, spatial clus-

ters of districts with close characteristics are better perceived from the map on the 

right (one can see red figures against a grey background) than from either of the 

two other maps, where the same two classes are represented using red and green 

colours (Sect. 5.4.3) 

Fig. 5.18C. Three concurrent map displays representing three attributes character-

ising the forest structure in Europe: the percentage of coniferous forest (blue, on 

the left), the percentage of broadleaved forest (green, in the centre), and the per-

centage of mixed forest (red, on the right) (Sect. 5.4.4) 
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Fig. 5.19C. The same three forest structure attributes as in Fig. 5.18C are repre-

sented here as different map layers overlaid in a single map display. The maps A–

D correspond to different layer combinations: A, coniferous and broadleaved; B, 

coniferous and mixed; C, broadleaved and mixed; D, all three layers. The layers 

drawn on top of others are shown in a semi-transparent mode. In all the layers, 

small attribute values have been filtered out by means of a dynamic query tool. 

The query constraints were selected so as to make the characteristic features of the 

spatial behaviours well exposed (Sect. 5.4.4) 
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Fig. 5.20C. Behaviours of several numeric attributes with close value ranges may 

be compared using multiple displays with a common visual encoding function and 

common display manipulation tools. Here, three attributes are represented in un-

classified choropleth maps with a common function for encoding the values by 

colour shades. In the lower row, the operation of visual comparison has been si-

multaneously applied to all three maps. The reference value in the visual compari-

son is the same in all the maps (Sect. 5.4.4) 
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Fig. 5.21C. Transformation from the original attribute values to z-scores makes 

the behaviours of different attributes more comparable. In particular, the similari-

ties between the behaviours of “% 0 14 years” and “% 15 24 years” can be seen 

more clearly than in Fig. 5.20C (Sect. 5.4.4) 

Fig. 5.34C. By use of a clustering tool, the districts of Portugal have been divided 

into four classes according to the employment of the population in different sec-

tors of the economy, namely agriculture, industry, and services. The characteris-

tics of the classes are represented in an aggregated form in the parallel-coordinates 

display on the left. On the right, the statistics of the values of four attributes re-

flecting the education level of the population are shown for the entire country and 

for the four classes of districts (Sect. 5.4.8) 
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Fig. 5.35C. For the four classes of districts of Portugal defined according to the 

employment structure of the population, the profiles in terms of the four educa-

tion-related attributes are shown here in four different parallel-coordinates dis-

plays (Sect. 5.4.8) 
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Fig. 5.36C. A satellite image with a superimposed representation of the movement 

of the storks demonstrates links between the movement and the characteristics of 

the underlying ground surface. On the left, the movement during the period from 

20 August 1998 to 31 January 1999 is shown, and on the right, the movement 

from 1 February 1999 to 1 May 1999 (Sect. 5.4.8) 
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Fig. 5.37C. This display represents the temporal variation of the values of four 

climate attributes aggregated over Germany by months. From top to bottom: the 

monthly mean of the daily mean temperature, the monthly mean of the daily 

minimum temperature, the total monthly sunshine duration, and the total monthly 

precipitation (Sect. 5.4.8) 
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Fig. 5.38C. The states of the USA have been divided here into four clusters ac-

cording to the similarity of their local temporal behaviours (Sect. 5.4.8) 

Table 5.4. Partial temporal behaviours of the burglary rate by groups of states and 

by time period (Sect. 5.4.8) 

1960 1979 1980

1986 

1987 2000 
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Fig. 5.45C. After summing the frequencies over three time periods, namely 

1976 1989, 1990 1992, and 1993 1999, we have obtained a sort of generalised 

portrait of the typical spatial behaviours in these periods. The data for the year 

1982 have not been included in the computation, since the behaviour in this year 

differs from those in the other years of the period 1976 1989 (Sect. 5.6) 
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Fig. 5.46C. The spatial behaviour of the earthquake frequency in 1982 is visual-

ised here in the same way as for the “summarised” behaviours in the three time 

periods in the previous figure for a more convenient comparison (Sect. 5.6) 

Fig. 5.50C. Results of clustering according to similarity of the local behaviours 

(Sect. 5.6) 
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Fig. 5.51C. The outlines of the behaviours united in the clusters shown in Fig. 

5.50C (Sect. 5.6) 




