
Smart
Infrastructure
and Applications

Rashid Mehmood
Simon See · Iyad Katib
Imrich Chlamtac Editors

Foundations for Smarter Cities and
Societies

EAI/Springer Innovations in Communication and Computing

EAI/Springer Innovations in Communication
and Computing

Series editor
Imrich Chlamtac, European Alliance for Innovation, Gent, Belgium

Editor’s Note

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes
already perceived in everyday life is hard to estimate without understanding the
technological driving forces behind it. This series presents contributed volumes
featuring the latest research and development in the various information engineering
technologies that play a key role in this process.

The range of topics, focusing primarily on communications and computing engi-
neering include, but are not limited to, wireless networks; mobile communication;
design and learning; gaming; interaction; e-health and pervasive healthcare; energy
management; smart grids; internet of things; cognitive radio networks; computation;
cloud computing; ubiquitous connectivity, and in mode general smart living, smart
cities, Internet of Things and more. The series publishes a combination of expanded
papers selected from hosted and sponsored European Alliance for Innovation (EAI)
conferences that present cutting edge, global research as well as provide new
perspectives on traditional related engineering fields. This content, complemented
with open calls for contribution of book titles and individual chapters, together
maintain Springer’s and EAI’s high standards of academic excellence. The audi-
ence for the books consists of researchers, industry professionals, advanced level
students as well as practitioners in related fields of activity include information and
communication specialists, security experts, economists, urban planners, doctors,
and in general representatives in all those walks of life affected ad contributing to
the information revolution.

About EAI

EAI is a grassroots member organization initiated through cooperation between
businesses, public, private and government organizations to address the global
challenges of Europe’s future competitiveness and link the European Research
community with its counterparts around the globe. EAI reaches out to hundreds of
thousands of individual subscribers on all continents and collaborates with an insti-
tutional member base including Fortune 500 companies, government organizations,
and educational institutions, provide a free research and innovation platform.

Through its open free membership model EAI promotes a new research and inno-
vation culture based on collaboration, connectivity and recognition of excellence by
community.

More information about this series at http://www.springer.com/series/15427

http://www.springer.com/series/15427

Rashid Mehmood • Simon See • Iyad Katib
Imrich Chlamtac
Editors

Smart Infrastructure and
Applications

Foundations for Smarter Cities and Societies

123

Editors
Rashid Mehmood
High Performance Computing Center
King Abdulaziz University
Jeddah, Saudi Arabia

Simon See
Nvidia AI Technology Center
Singapore, Singapore

Iyad Katib
Faculty of Computing and Information
Technology (FCIT)
King Abdulaziz University
Jeddah, Saudi Arabia

Imrich Chlamtac
European Alliance for Innovation
Gent, Belgium

ISSN 2522-8595 ISSN 2522-8609 (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-030-13704-5 ISBN 978-3-030-13705-2 (eBook)
https://doi.org/10.1007/978-3-030-13705-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13705-2

Preface

Infrastructure can mean several things and has been defined in several ways. It
could refer to the fundamental systems and facilities that an organization, city,
or country needs to function. Infrastructure could be provided by private, public,
or public-private partnerships (PPPs) and could include roads, railways, bridges,
airports, water, sewage, telephone, mobile and broadband equipment, manufac-
turing facilities, clinics and hospitals, schools and universities, and many more.
Infrastructure could be hard or soft. Hard infrastructure is referred to as physical
things such as ports, buildings, and electricity installations. Soft infrastructure
refers to the institutions that facilitate organization and nations to function, and
these include, for example, bodies, procedures, and programs for management,
education, health, transport, law enforcement, and military. ICT infrastructures
were considered separate from hard infrastructure in the past; however, with the
increasing need for ICT penetration in societies, i.e., digital societies or economies,
it is increasingly being considered part of the basic infrastructure.

Infrastructure needs to be understood in the context of the evolution of our
societies, recent trends in urbanization, and the broader life. Smart cities provide the
state-of-the-art approaches for urbanization, having evolved from the developments
carried out under the umbrella of the knowledge-based economy and subsequently
under the notion of digital economy and intelligent economy. Smart cities encom-
pass all aspects of modern day life, transportation, healthcare, entertainment, work,
businesses, social interactions, and governance. Smart cities exploit physical and
digital infrastructure, as well as the intellectual and social capital, for urban and
social development. Technically, smart cities are complex systems of systems that
rely on converged and ubiquitous infrastructures. The smart city phenomenon is
driven by several interdependent trends including a pressing need for environmental
sustainability and peoples’ increasing demands for personalization, mobility, and
higher quality of life. The notion of smart cities can be extended to smart societies,
i.e., digitally enabled, knowledge-based societies, aware of and working toward
social, environmental, and economic sustainability.

Since knowledge and human and social capital are at the heart of the smart
city and smart society developments, the role of education should extend beyond

v

vi Preface

the mainstream “education for employment” scope. It should extend to the notion
of social and collaborative governance where the society collaborates to train
each other in maintaining its knowledge, moral fiber, operations, good prac-
tice, resilience, and competitiveness and for bringing innovation and becoming
a knowledge-based economy. The key to such efforts would be the creation of
an ecosystem of digital infrastructures that are able to work together and enable
dynamic real-time interactions between various smart city subsystems.

The word infrastructure was imported from French in English in 1887. The
prefix “infra” in it means “below” which implied “structures” which mostly were
underground such as water and sewage systems and tunnels. However, the meaning
of infrastructure is continuing to be broadened, and the prefix “infra” could be
taken as “foundational,” i.e., “foundational structure,” hard, soft, virtual, and digital,
everything that we use today and we will use in the future, to support smart
life. We define smart infrastructure as “knowledge-based, collaborative, converged,
ubiquitous, self-aware, adaptive, resilient, digitally-enabled, and self-governing
foundational structure; comprising hard, soft, virtual, and digital facilities and
systems, and intellectual and social capital; enabling social, environmental and
economic sustainability; enabling innovation and competitiveness; facilitating
personalization in all aspects of modern-day and future living, the aspects including
transportation, healthcare, entertainment, work, businesses, social interactions,
and governance; to meet societal, economic and other demands of organizations,
cities or countries.” Smart infrastructure would include the Internet of Things
(IoT) to monitor and actuate. High-performance computing (HPC), big data,
artificial intelligence, cloud, fog, and edge computing will be needed to provide
the necessary intelligence, storage, compute, and communication resources for the
smart infrastructure.

We are delighted to introduce this book, which brings 26 chapters together on
cutting-edge topics related to smart infrastructure and applications. Thirteen of these
chapters are invited extended versions of papers from the proceedings of the first
EAI (European Alliance for Innovation) Conference on Smart Societies, Infras-
tructure, Technologies and Applications (SCITA 2017) held at King Abdulaziz
University (KAU), Jeddah, Saudi Arabia, on 27–29 November 2017 (see https://
www.springer.com/la/book/9783319941790). The book is divided into two major
themes and five parts. The first theme contains chapters where the focus is on the
applications, in contrast to the second theme where the contributed chapters are
mainly focused on infrastructure. Looking at the titles of the contributed chapters
in this book, the distinction between the applications and infrastructure could be
subtle in many cases because many applications eventually become part of the
infrastructure and vice versa. The placement of the chapters in the two themes is
based on the primary objectives and focus of the chapters, except in a couple of
cases where the chapter placement is prioritized to keep the book structure.

Chapter 1 looks at enterprise systems and the role that they will play in the
conceptualization and implementation of networked smart cities, particularly the
information systems aspects of smart infrastructure. The “networked” aspect of
smart cities is emphasized because smart cities will integrate its multiple subsystems

https://www.springer.com/la/book/9783319941790
https://www.springer.com/la/book/9783319941790
http://dx.doi.org/10.1007/978-3-030-13705-2_1

Preface vii

to create operational dynamicity and efficiency among other goals. The authors
review a good number of conceptual definitions of smart cities to derive its
system requirements. The technological foundations of smart cities and societies
are reviewed along with many smart city applications from the literature. Partial
least square regression is described as a method to model various interdisciplinary
smart city constructs along with example applications from the literature. We have
placed this chapter at the beginning of the book outside the five book parts because
it provides foundational material on smart cities and infrastructures.

The applications theme of the book comprises 13 chapters divided into 3 parts.
Part I includes seven chapters related to smart transportation. The first three chapters
of this part are focused on detection of events or incidents using Twitter or inductive
loops data. Chapter 2 proposes a methodology for analyzing traffic-related tweets
in the Arabic language using SAP HANA. A technique is proposed for sentiment
classification using lexicon-based approach to understand driver’s feelings. The
tweets are collected from Jeddah and Makkah cities (Saudi Arabia) in order to
identify the most congested roads in the cities and to detect events such as accidents,
roadworks, fire, and weather conditions. Chapter 3 is aimed at developing data
management and analysis techniques for smart societies. It specifically uses big
data, machine learning, and other platforms including Spark, MLlib, Tableau, and
Google Maps Geocoding API, to study Twitter data for the detection and validation
of spatiotemporal events in London. It empirically demonstrates that physical,
virtual, and conceptual events can be detected automatically by analyzing data.
It finds and locates congestion around London and the occurrence of multiple
events including “London Notting Hill Carnival 2017” and their locations and times,
without any prior knowledge of the events. Chapter 4 brings together transport big
data, deep learning, in-memory computing, and GPU computing to predict traffic
incidents on the road. Three different kinds of datasets are combined together to
predict road traffic incidents. The three datasets include road traffic characteristics
dataset, vehicle detector station (VDS), and incident data, acquired from the Cali-
fornia Department of Transportation (Caltrans) Performance Measurement System
(PeMS).

Chapter 5 provides a review and tutorial on a hybrid statistical machine learning
method for big data road traffic modelling. The method is based on ARIMA (auto-
regressive integrated moving average) and SVM (support vector machine). The
authors use GPS road traffic data for prediction. Chapter 6 extends the authors’
earlier work where they had developed a methodology to integrate supervised
learning and decision fusion to enhance object classification accuracy in a driving
environment. This chapter extends their earlier work and provides an in-depth
performance comparison of deep learning and C5.0 decision tree classifier for
object classification in driving environments using a bigger dataset. Chapter 7 uses
road traffic data made publicly available by the UK Department for Transport
and provides an extended analysis of a disaster management system that they
have proposed in their earlier work. Chapter 8 proposes a system called Big Data
Shortest Path Graph Computing (BDSPG) system for single-source shortest path
computations of big data road network graphs using Apache Spark. They use the US

http://dx.doi.org/10.1007/978-3-030-13705-2_2
http://dx.doi.org/10.1007/978-3-030-13705-2_3
http://dx.doi.org/10.1007/978-3-030-13705-2_4
http://dx.doi.org/10.1007/978-3-030-13705-2_5
http://dx.doi.org/10.1007/978-3-030-13705-2_6
http://dx.doi.org/10.1007/978-3-030-13705-2_7
http://dx.doi.org/10.1007/978-3-030-13705-2_8

viii Preface

road network data, modelled as graphs, and calculate shortest paths between a set
of large numbers of vertices in parallel on a supercomputer. Spark’s parallelization
behavior is analyzed by solving problems of varying graph sizes, various states of
the USA (with over 58 million edges), and a varying number of shortest path queries
reaching up to one million.

Part II includes three chapters related to smart healthcare. The use of DNA typing
or profiling is rapidly growing in smart applications such as for the diagnosis of
genetic diseases, paternity tests, and criminal identification. Chapter 9 provides an
extended review of DNA profiling methods and tools with a particular focus on
their computational performance and accuracy. The computational complexity of
DNA typing increases significantly with the number of unknowns in the mixture.
Faster interpretations of DNA mixtures with a large number of unknowns and
higher accuracies are expected to open up new frontiers for this area. Chapter 10
proposes methods and architecture to improve cloud security for healthcare. Chapter
11 presents a review on the use of big data in healthcare supply chains with topics
including big data, big data analytics, the role of big data in healthcare, supply chain
management (SCM), healthcare supply chain management, and the role of Twitter
data in SCM.

Part III includes three chapters on a mix of smart applications. Chapter 12
proposes a framework that uses mobile and cloud computing technologies to provide
context-aware and portable recommendations for smart markets. The underlying
algorithms and a prototype are developed to support automation, user intervention,
and customization of users’ preferences during the recommendation process. Chap-
ter 13 uses association rule mining to gain insight into grades of a set of computer
science students. Chapter 14 proposes SelecWeb, an automatic tool for selecting a
Web framework based on a set of criteria and developer preferences. The authors
develop the set of selection criteria using the analytic hierarchy process (AHP) and
provide a detailed description and analysis of the tool including a case study for the
Web framework selection.

The second theme of the book focuses on smart infrastructure with its 12
chapters, divided into 2 parts. Part IV presents a selection of nine chapters on
big data, high-performance computing (HPC), and their convergence. The first
four chapters are more focused on HPC. Chapter 15 investigates and presents
the design and implementation of Hadoop clusters using ARM-based single-
board computers (SBCs). The cost, energy consumption, and performance of the
SBC clusters are discussed. Chapter 16 investigates the performance of parallel
implementations of the Jacobi iterative method on Intel MIC Knights Corner (KNC)
architecture looking at execution time, offloading time, and speedup. Chapter 17
reviews important performance characteristics of sparse matrix-vector (SpMV)
computations on graphics processing unit (GPU) architectures along with various
strategies to improve SpMV performance. Several well-known SpMV storage and
solution schemes are discussed. SpMV multiplication is an essential building block
for numerous scientific and engineering smart applications. Chapter 18 provides
a review of performance analysis tools and techniques for HPC applications and

http://dx.doi.org/10.1007/978-3-030-13705-2_9
http://dx.doi.org/10.1007/978-3-030-13705-2_10
http://dx.doi.org/10.1007/978-3-030-13705-2_11
http://dx.doi.org/10.1007/978-3-030-13705-2_12
http://dx.doi.org/10.1007/978-3-030-13705-2_13
http://dx.doi.org/10.1007/978-3-030-13705-2_14
http://dx.doi.org/10.1007/978-3-030-13705-2_15
http://dx.doi.org/10.1007/978-3-030-13705-2_16
http://dx.doi.org/10.1007/978-3-030-13705-2_17
http://dx.doi.org/10.1007/978-3-030-13705-2_18

Preface ix

systems along with common HPC applications and a comparative analysis of HPC
benchmarking suites.

The next four chapters of Part IV are focused on big data. Chapter 19 presents a
review of the state-of-the-art tools and techniques for the processing of big data
applications. In doing so, it critically analyzes their objectives, methodologies,
and key approaches to address the challenges associated with big data. A detailed
review and taxonomy of the research efforts of few core applications are provided.
Although this chapter discusses applications, it is included in the infrastructure part
due to its major focus on tools and technologies. Chapter 20 discusses opportunities,
issues, and challenges of big data with the focus on the Hadoop platforms taking
perspectives on data locality, load balancing, heterogeneity issues, scheduling
issues, in-memory computation, multiple query optimizations, and I/O issues of big
data. A taxonomy of big data opportunities and challenges is also proposed. Chapter
21 provides a review of the technologies related to software quality in emerging big
data, IoT, and smart city environments. The roles of model checking and big data
in software quality are discussed. Chapter 22 discusses the growing significance
of open software and open data licenses in big data and smart infrastructures
and proposes frameworks for the selection of open-source software and open data
licenses. A review of notable open-source and open data licenses and the suitability
of these licenses for various kinds of data and software is provided.

Chapter 23 concludes Part IV with a review of and a proposed architecture for
big data and HPC convergence. The driving forces, challenges, and current and
future trends associated with the integration of HPC and big data are identified.
The programming models and frameworks of big data and HPC are reviewed, and
their challenges in the exascale computing era are discussed.

Book Part V provides a selection of three chapters on IoT. Chapter 24 proposes
a test execution platform based on the TTCN3 standard for dynamically adaptable
IoT networks in smart cities. The platform considers both structural and behavioral
adaptations and affords a platform-independent test system for isolating and exe-
cuting runtime tests. Chapter 25 proposes a hierarchical clustered dynamic source
routing (HCDSR) technique to improve fault tolerance and energy-efficient routing
for wireless sensor networks (WSNs) in IoT environments. HCDSR is evaluated
using simulations and compared with LEACH (low-energy adaptive clustering hier-
archy) and DFTR (dynamic fault-tolerant routing) protocols. Chapter 26 proposes
a model-based approach for testing security aspects of the Internet of Things for
smart cities which consists of (a) modelling the system under investigation with an
appropriate formalism, (b) deriving test suites from the obtained model, (c) applying
some coverage criteria to select suitable tests, (d) executing the obtained tests, and
(e) finally collecting verdicts and analyzing them in order to detect errors and repair
them.

The book comprises research articles, and hence, it is aimed at early to advanced
researchers. Some of the chapters are written in a tutorial manner and therefore can
also be used for teaching purposes in universities.

We would like to acknowledge the support of many people who helped realize
the publication of this book. The various committees of SCITA 2017 including the

http://dx.doi.org/10.1007/978-3-030-13705-2_19
http://dx.doi.org/10.1007/978-3-030-13705-2_20
http://dx.doi.org/10.1007/978-3-030-13705-2_21
http://dx.doi.org/10.1007/978-3-030-13705-2_22
http://dx.doi.org/10.1007/978-3-030-13705-2_23
http://dx.doi.org/10.1007/978-3-030-13705-2_24
http://dx.doi.org/10.1007/978-3-030-13705-2_25
http://dx.doi.org/10.1007/978-3-030-13705-2_26

x Preface

TPC are acknowledged for their contributions in reviewing the papers, which are
included in this book. Special thanks go to Eliška Vlčková, the managing editor at
the European Alliance for Innovation (EAI), whose help and patience have been
fundamental in bringing this book to publication.

This book is being introduced in an important time when so much is happening
in ICT and smart infrastructure space. Many new smart districts and cities are being
built around the world, while many exiting cities are evolving or transforming
into smart cities. In Saudi Arabia, it is also a very high time with the recent
announcement of its plans to build a smart city called NEOM supported by $500
billion from the Saudi government. This book will contribute to and shape these
smart developments in Saudi Arabia and globally.

Jeddah, Saudi Arabia Rashid Mehmood
Singapore Simon See
Jeddah, Saudi Arabia Iyad Katib
Gent, Belgium Imrich Chlamtac

Contents

1 Enterprise Systems for Networked Smart Cities . 1
Naim Ahmad and Rashid Mehmood

Part I Smart Transportation

2 Sentiment Analysis of Arabic Tweets for Road Traffic
Congestion and Event Detection . 37
Ebtesam Alomari, Rashid Mehmood, and Iyad Katib

3 Automatic Detection and Validation of Smart City Events
Using HPC and Apache Spark Platforms . 55
Sugimiyanto Suma, Rashid Mehmood, and Aiiad Albeshri

4 In-Memory Deep Learning Computations on GPUs for
Prediction of Road Traffic Incidents Using Big Data Fusion 79
Muhammad Aqib, Rashid Mehmood, Ahmed Alzahrani,
and Iyad Katib

5 Hybrid Statistical and Machine Learning Methods for Road
Traffic Prediction: A Review and Tutorial . 115
Bdoor Alsolami, Rashid Mehmood, and Aiiad Albeshri

6 Comparison of Decision Trees and Deep Learning for Object
Classification in Autonomous Driving . 135
Furqan Alam, Rashid Mehmood, and Iyad Katib

7 A Smart Disaster Management System for Future Cities Using
Deep Learning, GPUs, and In-Memory Computing . 159
Muhammad Aqib, Rashid Mehmood, Ahmed Alzahrani,
and Iyad Katib

xi

xii Contents

8 Parallel Shortest Path Big Data Graph Computations of US
Road Network Using Apache Spark: Survey, Architecture,
and Evaluation . 185
Yasir Arfat, Sugimiyanto Suma, Rashid Mehmood,
and Aiiad Albeshri

Part II Smart Healthcare

9 A Survey of Methods and Tools for Large-Scale DNA Mixture
Profiling . 217
Emad Alamoudi, Rashid Mehmood, Aiiad Albeshri,
and Takashi Gojobori

10 An Architecture to Improve the Security of Cloud Computing
in the Healthcare Sector . 249
Saleh M. Altowaijri

11 The Role of Big Data and Twitter Data Analytics in Healthcare
Supply Chain Management . 267
Shoayee Alotaibi, Rashid Mehmood, and Iyad Katib

Part III Miscellaneous Applications

12 A Mobile Cloud Framework for Context-Aware and Portable
Recommender System for Smart Markets . 283
Aftab Khan, Aakash Ahmad, Anis Ur Rahman, and Adel Alkhalil

13 Association Rule Mining in Higher Education: A Case Study
of Computer Science Students . 311
Njoud Alangari and Raad Alturki

14 SelecWeb: A Software Tool for Automatic Selection of Web
Frameworks . 329
Thaha Muhammed, Rashid Mehmood, Ehab Abozinadah,
and Sanaa Sharaf

Part IV Big Data and High Performance Computing

15 On Performance of Commodity Single Board Computer-Based
Clusters: A Big Data Perspective . 349
Basit Qureshi and Anis Koubaa

16 Parallel Iterative Solution of Large Sparse Linear Equation
Systems on the Intel MIC Architecture . 377
Hana Alyahya, Rashid Mehmood, and Iyad Katib

Contents xiii

17 Performance Characteristics for Sparse Matrix-Vector
Multiplication on GPUs . 409
Sarah AlAhmadi, Thaha Muhammed, Rashid Mehmood,
and Aiiad Albeshri

18 HPC-Smart Infrastructures: A Review and Outlook
on Performance Analysis Methods and Tools . 427
Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri,
and Fawaz Alsolami

19 Big Data Tools, Technologies, and Applications: A Survey 453
Yasir Arfat, Sardar Usman, Rashid Mehmood, and Iyad Katib

20 Big Data for Smart Infrastructure Design: Opportunities
and Challenges . 491
Yasir Arfat, Sardar Usman, Rashid Mehmood, and Iyad Katib

21 Software Quality in the Era of Big Data, IoT and Smart Cities 519
Fatmah Yousef Assiri and Rashid Mehmood

22 Open Source and Open Data Licenses in the Smart
Infrastructure Era: Review and License Selection Frameworks 537
Emad Alamoudi, Rashid Mehmood, Wajdi Aljudaibi, Aiiad Albeshri,
and Syed Hamid Hasan

23 Big Data and HPC Convergence for Smart Infrastructures: A
Review and Proposed Architecture . 561
Sardar Usman, Rashid Mehmood, and Iyad Katib

Part V Internet of Things (IoT)

24 Towards a Runtime Testing Framework for Dynamically
Adaptable Internet of Things Networks in Smart Cities 589
Moez Krichen and Mariam Lahami

25 HCDSR: A Hierarchical Clustered Fault Tolerant Routing
Technique for IoT-Based Smart Societies . 609
Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri,
and Ahmed Alzahrani

26 Security Testing of Internet of Things for Smart City
Applications: A Formal Approach . 629
Moez Krichen, Mariam Lahami, Omar Cheikhrouhou,
Roobaea Alroobaea, and Afef Jmal Maâlej

Index . 655

About the Editors

Rashid Mehmood is the Research Professor of Big Data Systems and the Director
of Research, Training, and Consultancy at the High Performance Computing
Center, King Abdulaziz University, Saudi Arabia. He has gained qualifications
and academic work experience from universities in the UK including Cambridge
and Oxford. Rashid has over 20 years of research experience in computational
modelling and simulation systems coupled with his expertise in high-performance
computing. His broad research aim is to develop multidisciplinary science and
technology to enable a better quality of life and smart economy with a focus on
real-time intelligence and dynamic system management. He has published over 150
research papers including 5 edited books. He has organized and chaired international
conferences and workshops in his areas of expertise including EuropeComm
2009 and Nets4Cars 2010–2013. He has led and contributed to academia-industry
collaborative projects funded by the Engineering and Physical Sciences Research
Council (EPSRC), EU, UK regional funds, and Technology Strategy Board UK
with the value over £50 million. He is a Founding Member of the Future Cities
and Community Resilience (FCCR) Network. He is a Member of the Association
for Computing Machinery (ACM) and The Optical Society (OSA), Senior Member
of the Institute of Electrical and Electronics Engineers (IEEE), and former Vice-
Chairman of IET Wales SW Network.

Simon See is currently the Solution Architecture and Engineering Director and
Chief Solution Architect for Nvidia AI Technology Center. He is also a Professor
and Chief Scientific Computing Officer in Shanghai Jiao Tong University. Professor
See is also the Chief Scientific Computing Advisor for BGI (Beijing Genomics
Institute, China) and has a position in Nanyang Technological University (Singa-
pore) and King-Mong Kung University of Technology (Thailand). Professor See
is currently involved in a number of smart city projects, especially in Singapore
and China. His research interests are in the area of high-performance computing,
big data, artificial intelligence, machine learning, computational science, applied
mathematics, and simulation methodology. Professor See is also leading some of the
AI initiatives in Asia Pacific. He has published over 200 papers in these areas and has

xv

xvi About the Editors

won various awards. Professor See is also a member of SIAM, IEEE, and IET. He
is also a Committee Member of more than 50 conferences. Professor See graduated
from the University of Salford (UK) with a Ph.D. in Electrical Engineering and
Numerical Analysis in 1993. Prior to joining Nvidia, Prof. See worked for SGI,
DSO National Lab. of Singapore, IBM, International Simulation Ltd (UK), Sun
Microsystems, and Oracle. He is also providing consultancy to a number of national
research and supercomputing centers.

Iyad Katib is an Associate Professor with the Computer Science Department
and the current Vice Dean and the College Council Secretary of the Faculty of
Computing and Information Technology (FCIT) in King Abdulaziz University
(KAU). He is also the Director of KAU High Performance Computing Center.
Iyad received his Ph.D. and M.S. in Computer Science from the University of
Missouri-Kansas City in 2011 and 2004, respectively. He received his B.S. in
Statistics/Computer Science from King Abdulaziz University in 1999. His current
research interest is on computer networking and high-performance computing.

Imrich Chlamtac is the President of EAI, the European Alliance for Innovation,
where he pioneered EAI as a global initiative for promoting growth of ICT-
based economy and digital society. Based on community cooperation principles,
EAI supports research and innovation with events, publications, and its innovation
platform through the cooperation of over hundred and fifty thousand subscribers
worldwide. Dr. Chlamtac is also the Founding President of CREATE-NET and
Bruno Kessler Professor at the University of Trento, top ranked ICT institutions in
Italy.

Prior to coming to Europe Dr. Chlamtac served as Associate Provost for Research
and Distinguished Chair in Telecommunications at the University of Texas in Dallas,
the number one “young university” in the USA in the Times of Higher Education
ranking 2017. Prior to that he was a Professor at Boston University, University of
Massachusetts, and Technion.

Dr. Chlamtac holds multiple academic and honorary appointments including at
the University of Trento, the Tel Aviv University, the Beijing University of Posts and
Telecommunications, and the Budapest University of Technology and Economics.

Dr. Chlamtac scientific recognitions include IEEE and ACM Fellowship, the
ACM Award for Outstanding Contributions to Research on Mobility, the IEEE
Award for Outstanding Technical Contributions to Wireless Personal Commu-
nications, New Talents in Simulation of SCS, Fulbright Scholarship, and IEEE
Distinguished Lecturer. He was listed in ISIHighlyCited.Com among the 250 most
cited computer science researchers worldwide. Dr. Chlamtac is also included in the
list of Notable People from the University of Minnesota where he received his PhD
and holds an Honorary Citizenship in Slovakia where he was born.

Dr. Chlamtac published over 400 refereed articles and multiple books. He is the
coauthor of the first textbook on Local Networks (Lexington Books 1980) and IEEE
Network Editor’s choice and Amazon.com engineering books best seller Wireless
and Mobile Network Architectures (John Wiley & Sons 2000).

About the Editors xvii

As part of his contribution to the research community, Dr. Chlamtac founded the
ACM SigMobile, serves as Editor in Chief of the Springer WINET and MONET
journals, and established ACM Mobicom and other leading conferences. As the
original architect and current President of EAI (http://www.eai.eu/) he is leading
the scientific development of one of the largest research communities in Information
Sciences and their impact on society.

Dr. Chlamtac is a co-founder and past President of CONSIP Ltd, the first network
emulator company, and of BCN Ltd, currently KFKI Ltd (http://www.kfkizrt.hu/),
one of the largest system integrator companies in Central Europe.

http://www.eai.eu/
http://www.kfkizrt.hu/

Chapter 1
Enterprise Systems for Networked
Smart Cities

Naim Ahmad and Rashid Mehmood

1.1 Introduction

The twenty-first century is witnessing unfathomable pace of change. Almost every
decade some cutting-edge innovation transforms the way people are going to live in
the next decade. This opens at one hand challenges to cope up with and on the other
hand opportunities to live in the better world. One recent invention is the concept
of smart city. A city that functions as a device and yet pleases the hearts and minds
of its habitants. A city where in technology is part and parcel of everyday life but
invisibly blended with nature and acts more like a natural entity. The concept sounds
like utopia in the context that technology has perfectly been harnessed as peer to
human in achieving the perfection in society.

The field of smart city is highly interdisciplinary and requires coordinated efforts
from all the stakeholders such as city administrators and planners, government,
academia, industry, and professionals. All the stakeholders must present unified
and consistent vision of the smart city. Integration of physical, institutional, and
digital aspects [1] is essential. Advancements in information and communication
technology (ICT) have made it possible to start the journey of smart city.

Today there exists enough hardware and software frameworks to convert a
city into a digital device. Internet of Things (IoT) and cloud computing together
will provide the autonomous behavior to the real-world entities. Whereas, big
data is capable to handle gigantic data streams generated every day. Enterprise

N. Ahmad
Department of Information Systems, King Khalid University, Abha, Saudi Arabia
e-mail: nagqadir@kku.edu.sa

R. Mehmood (�)
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_1&domain=pdf
mailto:nagqadir@kku.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_1

2 N. Ahmad and R. Mehmood

systems technologies and frameworks are well suited to define, develop, and
implement smart city systems. And web services and service-oriented architecture
is ideal platform for the development of smart city systems. Further, semantic web
technologies will help in achieving the autonomous behavior of the systems.

To further the cause of smart city, researchers must study and develop interre-
lationship models between different constructs. Partial least square regression, a
structural equation modeling technique will be helpful in establishing the causal
links between different constructs. This chapter sheds some light on the concept
of smart city (Sect. 1.2), application of enterprise systems to develop city level
integrated info-structure (Sect. 1.3), latest information technology innovation to
build foundations (Sect. 1.4) and structural equation modeling to establish the
interrelationship between multidisciplinary latent variables (Sect. 1.5). Conclusions
are drawn with future research directions (Sect. 1.6).

1.2 The Concept of Smart City

The concept of smart cities originates from the excellence of multitudes of
disciplines such as information technology, sustainability, architecture and urban
planning, social and economic development to mention some. There are numerous
definitions available in the literature on the smart city focusing on different aspects.
Some of them are given below in the chronological order.

Hall et al. [2] presented vision of smart city as integration of science and
technology through information system, and new relationships between govern-
ment, city managers, business academia and the research community. And gave
working definition as “A city that monitors and integrates conditions of all of its
critical infrastructures, including roads, bridges, tunnels, rails, subways, airports,
seaports, communications, water, power, even major buildings, can better optimize
its resources, plan its preventive maintenance activities, and monitor security aspects
while maximizing services to its citizens.” He moreover predicted that “smart cities
vision, systems and structures will monitor their own conditions and carry out self-
repair as needed.”

Giffinger [3] defined smart city as “A city well performing in a forward-looking
way in these six characteristics (smart economy, smart people, smart governance,
smart mobility, smart environment, and smart living), built on the smart combination
of endowments and activities of self-decisive, independent and aware citizens.” He
identified thirty-three factors and 1–4 indicators to measure the six characteristics of
the state of the smart city and ranked 70 mid-sized European cities. He stressed on
reporting of metrics along with ranking to make the whole exercise more actionable.

Hollands [4] didn’t give the formal definition but pointed that literature on smart
city talks about “utilization of networked infrastructure to improve economic and
political efficiency and enable social, cultural, and urban development,” where
the term infrastructure indicates business services, housing, leisure and lifestyle
services, and ICTs (mobile and fixed phones, satellite TVs, computer networks,
e-commerce, and internet services). He gives a discourse on how the overemphasis

1 Enterprise Systems for Networked Smart Cities 3

on technology can develop false smart cities which can further aggravate the
problems such as gentrification and power imbalance. Therefore, in his view smart
city initiative should start from the people and ensure the balance of power between
privileged class and ordinary people.

Washburn et al. [5] mention the smart city definition of Forrester as “The use
of Smart Computing technologies to make the critical infrastructure components
and services of a city––which include city administration, education, healthcare,
public safety, real estate, transportation, and utilities––more intelligent, intercon-
nected, and efficient” and smart computing as “A new generation of integrated
hardware, software, and network technologies that provide IT systems with real-
time awareness of the real world and advanced analytics to help people make
more intelligent decisions about alternatives and actions that will optimize business
processes and business balance sheet results.” They assert that the CIOs are the
primary enablers of smart cities. They have defined the roles of CIOs such as city
level CIO, critical public infrastructure and services related CIOs, and CIOs related
with entities that act as consumer of critical public infrastructure and services in
planning, implementing and delivering the smart city vision.

Harrison et al. [6] have defined the smart city from the perspective of information
technology as “connecting the physical infrastructure, the IT infrastructure, the
social infrastructure, and the business infrastructure to leverage the collective
intelligence of the city.” They have presented the IT infrastructure that will improve
the operational efficiency of the city and quality of life. They proposed the service-
oriented architecture (SOA) model and mentioned its shortcomings as well such as
it can handle only up to 1000 events per second.

Chen [7] defined the concept as “Smart cities will take advantage of commu-
nications and sensor capabilities sewn into the cities’ infrastructures to optimize
electrical, transportation, and other logistical operations supporting daily life,
thereby improving the quality of life for everyone.” The focus of his note challenged
the capability of existing network infrastructure that is based on TCP/IP, the protocol
that utilizes the stateless routers and trusts the hosts. He emphasizes on the new
inherent capabilities in the network such as fast self-healing, sender authentication,
and per-hop packet accounting for packet trace back to support smart city critical
infrastructure.

Caragliu et al. [8] identified the characteristics of smart cities through literature
review as: utilization of networked infrastructure, business-led urban development,
social inclusion, high-tech and creative industries, social and relational capital, and
social and environmental sustainability. Further they gave the operational definition
as “city is smart when investments in human and social capital and traditional (trans-
port) and modern (ICT) communication infrastructure fuel sustainable economic
growth and a high quality of life, with a wise management of natural resources,
through participatory governance.” Based on the analysis of Urban Audit data for
the years 2003–2006 (more than 250 indicators for around 260 cities of EU27
nations) they found the positive correlation between urban wealth (measured using
PPP), and the presence of vast number of creative professionals, a high score in
multimodal accessibility indicators, the quality of urban transportation networks,
the diffusion of ICTs, and the quality of human capital.

4 N. Ahmad and R. Mehmood

Velosa et al. [9] defines the smart city as “A smart city is based on intelligent
exchanges of information that flow between its many different subsystems. This
flow of information is analyzed and translated into citizen and commercial services.
The city will act on this information flow to make its wider ecosystem more resource
efficient and sustainable. The information exchange is based on a smart governance
operating framework designed to make cities sustainable.”

Komninos [1] brings the concept of spatial intelligence to describe the phe-
nomenon of smart cities. The spatial intelligence materializes from the agglom-
eration and integration of intelligence of intellectual capital, social capital and
infrastructural capital. And emergence and utilizations of this spatial intelligence to
solve diverse problems makes a city smart. He also poised that sustainable knowl-
edge economy and internet are the primary drivers for the smart cities. Thereafter
from cases of Bletchley Park, Cyberport Hong Kong, and Amsterdam Smart City, he
brings out three types of spatial intelligence such as orchestration intelligence (inte-
gration along community-based workflows), amplification intelligence (integration
of skills, digital tools, and city infrastructures), and instrumentation intelligence
(integration of city infrastructure, activity data flows, measurement devices, and
predictive modeling). These spatial intelligences can be adopted in isolation or
in combination to develop smart cites. He also mentions that the smart cities
should address the challenges of competitiveness through knowledge economy,
efficient employment market to reduce poverty and environmental sustainability as
pointed out in the report of European Commission, 2008. Finally, he points out that
research should focus on to develop architectures of integration between physical,
institutional and digital aspects of cities to have higher special intelligence that will
lead to real smart city.

Nam and Pardo [10] have proposed the strategies to make a smart city. They
gave the working definition of it as “A smart city infuses information into its
physical infrastructure to improve conveniences, facilitate mobility, add efficiencies,
conserve energy, improve the quality of air and water, identify problems and fix
them quickly, recover rapidly from disasters, collect data to make better decisions,
deploy resources effectively, and share data to enable collaboration across entities
and domains.” Then they identified three core factors such as technology, human
and institution critical to achieve the vision of smart city. Technology factor helps
in integrating the technologies, systems, infrastructures, services, and capabilities
into an organic network. Human factor should facilitate learning more so the social
learning that can bridge the gap of digital divide. Institution factor will provide
dynamic governance to connect citizens, communities, and business in real time to
spark growth, innovation, and progress in assistance with the pivotal and visionary
role of leadership.

Thite [11] puts forth the point that smart city needs smart people and using
the economic geography theory illustrates on the factors that influence knowledge
worker in choosing a place to live and work. From this perspective he posited
that “Smart city aims at nurturing a creative economy through investment in
quality of life which in turn attracts knowledge workers to live and work in smart
cities.” The New Economic Geography relating to “economies of scale and spatial

1 Enterprise Systems for Networked Smart Cities 5

development” describes the agglomeration of firms and workers. On the other hand,
New Neoclassical Urban Economics relating to “optimal preference- satisfying
behaviors” describes the joining of more firms and individuals.

Rios [12] defined a smart city as “A city that gives inspiration, shares culture,
knowledge, and life, a city that motivates its inhabitants to create and flourish in their
own lives.” His emphasis is on to create empowered spaces that help diverse people
and culture to achieve identity and generate ideas. And the architectural design of
city should cause motivation to create great places, inspiration (connectivity) to
become entrepreneur, innovation to reinvent themselves, and identity to become
leader.

Thuzar [13] defined the concept as “Smart cities are cities that have a high quality
of life; those that pursue sustainable economic development through investments in
human and social capital, and traditional and modern communications infrastruc-
ture (transport and information communication technology); and manage natural
resources through participatory policies. Smart cities should also be sustainable,
converging economic, social, and environmental goals.” He emphasized the corre-
lation of smart city with the livability and entities to promote prosperity, equity, and
sustainability.

Barrionuevo et al. [14] proposed “Being a smart city means using all available
technology and resources in an intelligent and coordinated manner to develop urban
centers that are at once integrated, habitable, and sustainable.” They identified five
types of capital such as economic, human, social, environmental, and institutional
that can be nurtured through innovation, social cohesion, sustainability, and con-
nectivity. They also presented the step by step process along with timeline to build
a smart city such as diagnose the situation (2–5 months), develop a strategic plan
(5–12 months) and take action (2–10 years). Further city must assess the levers
of change such as strategic and scenario planning; collaboration and communi-
cation; public–private partnerships; funding strategies; capacity management; and
technological infrastructure in the context of its competitive situation and strategic
position.

Cretu [15] identified two main streams of research ideas with respect to smart
cities: “(1) smart cities should do everything related to governance and economy
using new thinking paradigms and (2) smart cities are all about networks of
sensors, smart devices, real-time data, and ICT integration in every aspect of
human life.” Exploring further the second dimension he proposes three axioms
regarding a smart city that it has well-designed ICT infrastructure, transforms
real-time data into meaningful information, and allows inhabitants to predefined
automated action in response to events. He proposed the system perspective for
smart city as “Event-driven Smart City (EdSC) as a system (software platform)
representing an internet-aware digital living, environment where people, software
services, sensors and smart devices interact by means of events and listeners.” The
basic ingredients of this platform are ability to convert signal to event; knowledge
sharing; action definition, storage and event-condition-action (ECA) relationship;
and ability to convert action into signals. The Smart Community Space (SCS)
is the central architectural component of EdSC that implements the partial view

6 N. Ahmad and R. Mehmood

over the world. The SCS is built on subset of common interest such as family,
school, and physical area in order to sustain complexity when it comes to real-
time data processing and complex event processing (CEP). EdSC requires event
driven architecture (EDA) and semantic event processing based on ECA. That
will use different ontologies and domain knowledge to remove ambiguity with
events. And the modular event ontologies can also encompass different languages in
addition to different ontologies. Semantic web technologies such as RDF (Resource
Description Framework), LOD (Linked Open Data) Cloud, OWL (Web Ontology
Language), SWRL (Semantic Web Rule Language), RIF (Rule Interchange Format),
SBVR (Semantics of Business Vocabulary and Business Rules), and SPARQL
(RDF Query Language) are useful in implementing the EdSC. RDF can be used
to represent event and ontologies in LOD Cloud to attach semantic to identify
the meaning of signals in EdSC platform. OWL can be used in signal-to-event
transformer, CEP algorithms, and identification of listeners for particular events.
SWRL and RIF are apt for defining listeners and SBVR can provide the natural
language extension. And SPARQL can provide the advanced support for querying
the right listeners for the particular event.

Kourtit and Nijkamp [16] define the concept as “Smart cities are the result
of knowledge-intensive and creative strategies aiming at enhancing the socio-
economic, ecological, logistic and competitive performance of cities. Such smart
cities are based on a promising mix of human capital (e.g. skilled labor force),
infrastructural capital (e.g. high-tech communication facilities), social capital (e.g.
intense and open network linkages) and entrepreneurial capital (e.g. creative and
risk-taking business activities).” They also assert that the productivity gain in smart
city should offset the rise in the local problems. These places attract and retain
variety of creative people and offer innovative and sustainable solution. And these
places exploit the agglomeration advantages to its maximum.

Kourtit et al. [17] posit the concept as “Smart cities have high productivity as they
have a relatively high share of highly educated people, knowledge-intensive jobs,
output-oriented planning systems, creative activities and sustainability-oriented
initiatives.” They identified that the knowledge orientation and cultural diversity are
the key factors in present era of smart cities. The physical, geographical, and social
proximities amplify the agglomeration effects to facilitate knowledge processes.
ICT can help in codified knowledge but fails in tacit and contextual knowledge.
Therefore, the proximities and agglomeration phenomenon remain important.

Lazaroiu and Roscia [18] define the concept of smart city as “A community
of average technology size, interconnected and sustainable, comfortable, attractive
and secure.” They proposed the smart city assessment model having 18 indicators
devised with the help of fuzzy logic.

Lombardi et al. [19] define the concepts as “The application of information and
communications technology (ICT) with their effects on human capital/education,
social and relational capital, and environmental issues is often indicated by the
notion of smart city.” They have proposed a smart city assessment model with
the help of ANP (Analytical Network Process) technique. They developed their
model on the four helices principal such as Civil Society, University, Industry, and

1 Enterprise Systems for Networked Smart Cities 7

Government. Further, they identified the civic involvement along with social and
cultural capital endowments, shapes the relationship between the triple helices such
as university, industry and government. And the interplay between all four helices
including the civic society determines the progress of smart city. They modeled
the five clusters (Smart Government, Smart Economy, Smart Human Capital, Smart
Living, and Smart Environment), four helices (Government, University, Industry,
and Civil Society), and four policy visions (Connected City, Entrepreneurial City,
Livable City, and Pioneer City) along with the indicators. The result was that all the
clusters are trying to pursue the policy strategy of entrepreneurial city.

Bakici et al. [20] in the context of Barcelona city posited “Smart city as a high-
tech intensive and advanced city that connects people, information and city elements
using new technologies in order to create a sustainable, greener city, competitive
and innovative commerce, and an increased life quality with a straightforward
administration and good maintenance system.” Achieving competitiveness of the
Barcelona has been the foremost factor to transform it into a leading smart city in
Europe. The city has sagaciously used the advanced ICT technology to develop
infrastructures such as Open Data, Living Labs, and Smart District. to foster
the dynamism of triple helix (faculty, company and citizen interaction) to boost
creativity, knowledge, and innovation and hence supports the conceptual model of
Barcelona for smart city, knowledge economy and knowledge society.

Zygiaris [21] illustrates the concept as “A smart city is understood as a certain
intellectual ability that addresses several innovative socio-technical and socio-
economic aspects of growth. These aspects lead to smart city conceptions as
“green” referring to urban infrastructure for environment protection and reduction
of CO2 emission, “interconnected” related to revolution of broadband economy,
“intelligent” declaring the capacity to produce added value information from the
processing of city’s real-time data from sensors and activators, whereas the terms
“innovating”, “knowledge” cities interchangeably refer to the city’s ability to raise
innovation based on knowledgeable and creative human capital.” He proposed
six layers for smart city planning in addition to The City Layer as Layer 0.
These six layers are: The Green City Layer, The Interconnection Layer, The
Instrumentation Layer, The Open Integration Layer, The Application Layer, and
The Innovation Layer. The City Layer (Layer 0) refers to the recognition of city’s
identity and planning of urban infrastructure in compliance with the smart city
priorities and socially inclusive vision. The Green City Layer (Layer 1) refers to
the environment friendly development such as CO2 footprint reduction, alternative
energy options, green transport management, and green building specification. The
Interconnection Layer (Layer 2) refers to the holistic broadband connectivity to
bring all communities online. The Instrumentation Layer (Layer 3) refers to real-
time event aggregation from the range of sensors and actuators through Internet of
Things framework. The Open Integration Layer (Layer 4) refers to the development
of Urban Operating System to share the data, content and services. This platform
is designed and implemented on technologies such as Semantic Web, Linked
Open Data, Visualization of APIs, Internet of Trust and Cloud Computing. The
Application Layer (Layer 5) refers to the development of intelligent application in

8 N. Ahmad and R. Mehmood

different domains such as e-traffic, e-government, e-democracy, and smart energy
grids etc. The Innovation Layer (Layer 6) refers to the community wide utilization
of urban innovation ecosystem of a smart city to develop new business models
to navigate the city on the sustainable growth. Author also emphasizes upon the
development of processes-oriented assessment model for smart city success rather
than simple benchmarking indexes.

Marsal-Llacuna et al. [22] define the concept as “Smart Cities initiatives try to
improve urban performance by using data, information and information technolo-
gies (IT) to provide more efficient services to citizens, to monitor and optimize
existing infrastructure, to increase collaboration among different economic actors,
and to encourage innovative business models in both the private and public sectors.”
And they also gave more technical definition of it as “cities wishing to become
smart must be equipped with a “brain” (software) supplied with lots of real-time
information (data collected from sensors) enabling them to take more sustainable,
efficient and citizen-centric decisions, smoothly transforming decisions into actions
by means of technological solutions.” He emphasized on the normalization process
of indicators and development of summarization index, essential to compare the
smartness of the cities in addition to their rankings. And real-time data is more
important than the statistical data for which ubiquitous computing, remote sensing
imaginary, smart meters, etc. should be utilized.

Albino et al. [23] identified four common characteristics for the smart city
“a city’s networked infrastructure that enables political efficiency and social and
cultural development; an emphasis on business-led urban development and creative
activities for the promotion of urban growth; social inclusion of various urban
residents and social capital in urban development; the natural environment as a
strategic component for the future.” Author also proposes that the assessment of
smart city initiatives should be tailored to its unique characteristics and vision.

Mehmood et al. [24] define, “smart cities provide the state of the art approaches
for urbanisation, having evolved from the developments carried out under the
umbrella of knowledge-based economy, and subsequently under the notion of digital
economy and intelligent economy.” Smart society is an extension of the smart
cities concept, “a digitally-enabled, knowledge-based society, aware of and working
towards social, environmental and economic sustainability” [24]. Muhammed et al.
[25] note that smart cities are considered a major driver for the transformation of
many industries due to the fact that smart cities are driven by, or involve, integration
of multiple city systems, such as transport, healthcare, and operations research, with
the aim to provide its citizens a high quality of life.

To identify the frequent dominating themes of smart city, the word cloud has been
generated from these definitions (see Fig. 1.1). Looking at the word cloud created
from the definitions of smart cities three major areas can be identified, first is the
enablement through advanced information and communication technology (ICT)
infrastructure. Second is the achievement of highest standards of needs of a society
or community such as knowledge, economy and life. And the third deals with the
operationalization, meaning doing so in resource efficient way or sustainable way.
These challenges or requirements can define the vision for the smart city system as
follows.

1 Enterprise Systems for Networked Smart Cities 9

Fig. 1.1 Word cloud generated from the smart city definitions

“Smart City System is a convergence of integrated systems supporting city
processes reengineered on sustainability principles and utilizing state of the art
technology to advance frontiers of knowledge, economy and life in a society.” In
the organizational context, these types of integrated systems have been existing
since 1990s. They were labeled by different names such as Enterprise Systems
(ES) or Enterprise Resource Planning (ERP). Also known with the application-
specific modules such as customer relationship management (CRM) or supply chain
management (SCM). Following section illustrates upon this innovative technology.

1.3 Enterprise Systems: Technology and Evolution

Enterprises face stiff competition and operate at times on raiser thin margins.
Sustaining the business requires innovation and proactive approach in anticipation
of future issues and problems. It is mandatory to maintain optimal productivity,
excellent customer service and reduced cycle times. Enterprises have been applying
ICT to gain competitive advantages since 1950s. This section gives the introduction
of information technology in enterprises, technology of enterprise systems and its
architecture.

10 N. Ahmad and R. Mehmood

1.3.1 Information Technology in Organizations

Investments in IT are ever increasing and none of the organization wants to miss
this band wagon of IT. A sizable portion of 4.2% of annual revenue is spent on IT
[26]. On an average organizations’ 50 percent capital expenditure budget is utilized
by IT that has steadily increased every decade from less than 5% in the year 1965
[27].

The core functions of the information technology are data storage, data transport,
and data processing. The cost to carry out these functions is decreasing as hypoth-
esized by Moore’s Law “Every two years the number of transistors on integrated
circuit doubles.” The information technology can be thought of a bundle of shared
services to cater to the need of communication and foundation for implementing
business applications [28]. IT infrastructure is defined as a set of shared IT resources
which is a foundation for both communication across the organization and the
implementation of present/future business applications [29]. IT infrastructure is
composed of two components, Technical consisting of hardware, software, network,
telecommunications, applications, and tangible IT resources, and Human referring
to knowledge and skill required to orchestrate the technical components [29].

Weill et al. [30] collected data belonging to the period of 1990–2001. They
gathered the data for 180 business initiatives from 118 businesses in 89 enterprises.
The enterprises selected were top three in their industry. After analysis of the
data collected, they proposed that the IT infrastructure has to be thought of in
terms of services since the agreement level can be made stable whereas underlying
technology is more dynamic. These infrastructural services are deployed at multiple
level enterprise wide or business unit level. Where to place a capability is a strategic
decision pursued by the concerned organization. For instance, keeping a single point
of customer contact requires capability to be developed at the enterprise wide scale
so that the data can be shared and facilitate cross selling.

They further identified 70 IT infrastructural services and grouped them into 10
capability clusters. Six layers were defined as the physical layer of IT infrastructure
capability, namely Channel Management, Security and Risk, Communications,
Data Management, Application Infrastructure, and IT Facilities Management. And
reaming four clusters IT Management, IT Architecture and Standards, IT Education,
and IT Research and Development were considered as management-oriented IT
infrastructure capability. Applications like enterprise systems such as Enterprise
Resource Planning (ERP), Supply Chain Management (SCM), and Customer
Relationship Management (CRM) fall under the cluster of application infrastructure.

Technical components of IT are readily available and more or less have become
commodity input to the whole infrastructure. The distinction lies in skills and
abilities to utilize them to gain strategic advantage. Whereas some authors like [27]
have gone to the extent that IT doesn’t add any strategic value and whole of IT has
become an infrastructural technology similar to railroads, telegraph, electricity, etc.

1 Enterprise Systems for Networked Smart Cities 11

1.3.2 About Enterprise Systems

Most organizations have, broadly speaking, following divisions procurement, pro-
duction and operations inventory management, finance, marketing, and sales and
distribution. Each department has got its own processes and procedures. Information
and control from one department to another department need to be coordinated in
order to execute a business. Traditionally these departments used to work in a very
fragmented fashion. That often resulted in the creation of information silos.

Every department used to tackle its own IT initiatives often in isolation with
the overall strategic direction of the organization. At times same software was
implemented in multiple business units incurring unnecessary cost. As we know
software is nothing, but a set of complex code written in a programming language.
Due to infinite scenarios possible with any simple software, testing the software is a
Herculean task. As time passed by these isolated software could not cope up with the
important parameters of IT like scalability, portability, robustness, and integration.

The innovations in the information technology have led to the creation of a
perfect network of information interchange that allows the removal of all the hassles
in information sharing. Moreover, software packages have been developed that can
ideally suit to any organization’s processes. These packages are known as enterprise
systems that are set of applications that interconnect the different processes and
procedures of the organization. They utilize a central database for all the data needs
[31].

1.3.3 Evolution of Enterprise Systems

Enterprise systems are also known as enterprise applications or business appli-
cations. These systems allow the seamless integration of information flow in the
organizations internally and externally. The current ES have a long evolutionary
history with them. The promoters of ES have been broadening the canvass of
integration from financial and accounting, production and manufacturing, marketing
and sales, logistics and distribution, human resource to strategic functions [31].
The offerings are increasing day by day along with the complexity and failures of
implementations [32]. Accordingly, researchers and practitioner have been labeling
these systems as they are growing.

Inventory management and control processing software were famous in the fifties
and sixties. These systems were developed on mainframe platform using third-
generation programming languages such as Fortran and Cobol. The focus of these
systems was on managing and tracking inventory effectively and efficiently by
automating inventory management and production schedules.

The next in line were Manufacturing Resource Planning (MRP) software in the
seventies. This software was developed on the same technological paradigm as the
previous one. The focus of these systems got enlarged to include sales and marketing

12 N. Ahmad and R. Mehmood

by linking the planning of product or parts requirements to the master production
schedule. The next version of manufacturing resource planning was termed as MRP
II. They were developed on the mainframe legacy platform using fourth-generation
database software and manufacturing applications. The focus of these systems was
further refined to manufacturing strategy and quality control, and included the
support for designing production supply chain processes.

In the nineties, the most comprehensive software packages, Enterprise Resource
Planning (ERP) came into existence. These systems had originated from MRP and
MRP II [33]. They were developed on multiple platform mainframe and client-
server using fourth-generation database software and packages software application.
The focus of these systems was application integration and customer service by
automating and optimizing all the processes sales and distribution, finance and
accounts, human resource, procurement, etc.

At one end promoters were trying to integrate information flow internally and
ended up in developing ERP packages. On the other hand, some software vendors
were working on to integrate the external information flow from the customer
and supplier side and developed CRM and SCM software packages. The ERP
vendors integrated the functionalities of SCM and CRM in their packages [34].
Hence researchers and practitioners have started using the term ERP II [35]. These
systems are developed on web-based client-server platform and integrated with fifth-
generation applications like SCM, CRM, and SFA etc. The focus of these systems
is agility and customer-centric global environment by e-enablement. Table 1.1
describes the timeline, system, and platform they utilized.

1.3.4 Definitions of Enterprise Systems

The term ERP in the press was first used in 1992 by Lopes and in the year 1996
Davenport introduced it to IS community at AMCIS ‘96 and called these packages
metapackages [36]. ERP systems are said to have packaged processes for best
business practices as business blueprint that can guide the organization for product
engineering, evaluation and analysis, and implementation [33].

The term enterprise systems was in use since 1980s to refer to any enterprise
wide integrated systems [37]. Davenport [38] used the same term enterprise systems
instead of ERP in his famous article “Putting the enterprise into the enterprise
system.” Thereafter academic fraternity prefers to use the term enterprise systems
and includes many other enterprise wide integrated systems such as SCM, CRM,
and PLM. Few of the definitions of enterprise systems are given in the following
paragraphs.

“An, integrated, multi-dimensional system for all functions, based on a business
model for planning, control, and global (resource) optimization for the entire supply
chain, by using the state of the art IS/IT technology that supplies value added
services to all internal and external parties” [39].

1 Enterprise Systems for Networked Smart Cities 13

Ta
bl

e
1.

1
T

im
el

in
e

of
ev

ol
ut

io
n

of
en

te
rp

ri
se

sy
st

em
s

[4
0]

T
im

el
in

e
Sy

st
em

Pl
at

fo
rm

D
es

cr
ip

tio
n

19
60

s
In

ve
nt

or
y

m
an

ag
em

en
t

an
d

co
nt

ro
l

M
ai

nf
ra

m
e

le
ga

cy
us

in
g

th
ir

d-
ge

ne
ra

tio
n

so
ft

w
ar

e
(e

.g
.,

C
ob

ol
,F

or
tr

an
)

T
he

se
sy

st
em

s
w

er
e

de
si

gn
ed

to
m

an
ag

e
an

d
tr

ac
k

in
ve

nt
or

y
ef

fic
ie

nt
ly

an
d

he
lp

th
e

pl
an

ts
up

er
vi

so
rs

on
pu

rc
ha

se
or

de
rs

,a
le

rt
s,

ta
rg

et
s,

pr
ov

id
in

g
re

pl
en

is
hm

en
tt

ec
hn

iq
ue

s
an

d
op

tio
ns

,i
nv

en
to

ry
re

co
nc

ili
at

io
n,

an
d

in
ve

nt
or

y
re

po
rt

.
19

70
s

M
at

er
ia

lr
eq

ui
re

m
en

t
pl

an
ni

ng
(M

R
P)

M
ai

nf
ra

m
e

le
ga

cy
us

in
g

th
ir

d-
ge

ne
ra

tio
n

so
ft

w
ar

e
(e

.g
.,

C
ob

ol
,F

or
tr

an
)

W
ith

th
e

fo
cu

s
on

sa
le

s
an

d
m

ar
ke

tin
g,

th
es

e
sy

st
em

s
w

er
e

jo
b

sh
op

sc
he

du
lin

g
pr

oc
es

se
s.

M
R

P
ge

ne
ra

te
d

sc
he

du
le

fo
r

pr
od

uc
tio

n
pl

an
ni

ng
,o

pe
ra

tio
ns

co
nt

ro
l,

an
d

in
ve

nt
or

y
m

an
ag

em
en

t.
19

80
s

M
at

er
ia

lr
eq

ui
re

m
en

t
pl

an
ni

ng
II

(M
R

P
II

)
M

ai
nf

ra
m

e
le

ga
cy

us
in

g
fo

ur
th

-g
en

er
at

io
n

da
ta

ba
se

so
ft

w
ar

e
an

d
m

an
uf

ac
tu

ri
ng

ap
pl

ic
at

io
ns

W
ith

a
fo

cu
s

on
m

an
uf

ac
tu

ri
ng

st
ra

te
gy

an
d

qu
al

ity
co

nt
ro

l,
th

es
e

sy
st

em
s

w
er

e
de

si
gn

ed
fo

r
he

lp
in

g
pr

od
uc

tio
n

m
an

ag
er

s
in

de
si

gn
in

g
pr

od
uc

tio
n

ch
ai

n
pr

oc
es

se
s—

fr
om

pr
od

uc
tio

n
pl

an
ni

ng
,p

ar
ts

pu
rc

ha
si

ng
,i

nv
en

to
ry

co
nt

ro
l,

an
d

ov
er

he
ad

co
st

m
an

ag
em

en
tt

o
pr

od
uc

td
is

tr
ib

ut
io

n.
19

90
s

E
nt

er
pr

is
e

re
so

ur
ce

pl
an

ni
ng

(E
R

P)
M

ai
nf

ra
m

e
or

cl
ie

nt
se

rv
er

us
in

g
fo

ur
th

-g
en

er
at

io
n

da
ta

ba
se

so
ft

w
ar

e
an

d
pa

ck
ag

e
so

ft
w

ar
e

ap
pl

ic
at

io
n

to
su

pp
or

t
m

os
to

rg
an

iz
at

io
na

lf
un

ct
io

ns

W
ith

a
fo

cu
s

on
ap

pl
ic

at
io

n
in

te
gr

at
io

n
an

d
cu

st
om

er
se

rv
ic

e,
th

es
e

sy
st

em
s

w
er

e
de

si
gn

ed
fo

r
im

pr
ov

in
g

th
e

pe
rf

or
m

an
ce

of
in

te
rn

al
bu

si
ne

ss
pr

oc
es

se
s

ac
ro

ss
th

e
co

m
pl

et
e

va
lu

e
ch

ai
n

of
th

e
or

ga
ni

za
tio

n.
T

he
y

in
te

gr
at

e
bo

th
pr

im
ar

y
bu

si
ne

ss
ac

tiv
iti

es
lik

e
pr

od
uc

tp
la

nn
in

g,
pu

rc
ha

si
ng

,l
og

is
tic

s
co

nt
ro

l,
di

st
ri

bu
tio

n
fu

lfi
llm

en
t

an
d

sa
le

s;
ad

di
tio

na
lly

,t
he

y
in

te
gr

at
e

se
co

nd
ar

y
or

su
pp

or
ta

ct
iv

iti
es

lik
e

m
ar

ke
tin

g,
fin

an
ce

,a
cc

ou
nt

in
g,

an
d

hu
m

an
re

so
ur

ce
20

00
s

E
xt

en
de

d
E

R
P

or
E

R
P

II
C

lie
nt

-s
er

ve
r

us
in

g
th

e
w

eb
pl

at
fo

rm
,o

pe
n

so
ur

ce
an

d
in

te
gr

at
ed

w
ith

fif
th

-g
en

er
at

io
n

ap
pl

ic
at

io
ns

lik
e

SC
M

,C
R

M
,S

FA
.A

ls
o

av
ai

la
bl

e
on

so
ft

w
ar

e
as

a
se

rv
ic

e
(S

aa
S)

en
vi

ro
nm

en
t

W
ith

a
fo

cu
s

on
ag

ili
ty

an
d

cu
st

om
er

ce
nt

ri
c

gl
ob

al
en

vi
ro

nm
en

t,
th

es
e

sy
st

em
s

ex
te

nd
ed

th
e

fir
st

-g
en

er
at

io
n

E
R

P
in

to
in

te
r-

or
ga

ni
za

tio
na

l
sy

st
em

s
re

ad
y

fo
r

e-
bu

si
ne

ss
op

er
at

io
ns

.T
he

y
pr

ov
id

e
an

yw
he

re
an

yt
im

e
ac

ce
ss

to
re

so
ur

ce
s

of
th

e
or

ga
ni

za
tio

n
an

d
th

ei
r

pa
rt

ne
rs

;
ad

di
tio

na
lly

,t
he

y
in

te
gr

at
e

w
ith

ne
w

er
ex

te
rn

al
bu

si
ne

ss
m

od
ul

es
su

ch
as

su
pp

ly
ch

ai
n

m
an

ag
em

en
t,

cu
st

om
er

re
la

tio
ns

hi
p

m
an

ag
em

en
t,

sa
le

s
fo

rc
e

au
to

m
at

io
n

(S
FA

),
an

d
ad

va
nc

ed
pl

an
ni

ng
an

d
sc

he
du

lin
g

(A
PS

)

14 N. Ahmad and R. Mehmood

American Production and Inventory Control Society (APICS) defines ERP as
“a method for the effective planning and controlling of all the resources needed to
take, make, ship and account for customer orders in a manufacturing, distribution or
service company.”

“Enterprise Systems (ES) are typically comprehensive, complex, customizable
integrated application software that support core business processes and main
administrative areas of enterprises in different industries” [37].

“ERP is a standardized software packaged designed to integrate the internal
value chain of an enterprise. An ERP system is based on an integrated database
and consists of several modules aimed at specific business functions” [35].

In the sustainable future city context enterprise systems have been defined
as “ES that supports the integration, management, and regulatory compliance of
environmental, social and economic sustainability, in addition to providing support
for all internal and external business processes and organizational information needs
to enhance firm’s performance, resilience and sustainability” [41].

1.3.5 Business Process

Enterprise systems break through the traditional functional boundaries and try to
automate a business process such as order fulfillment. Process view is very critical
while implementing enterprise systems. The process has been defined as “a set of
logically related tasks performed to achieve a defined business outcome” [42]. A
process is “a structured, measured set of activities designed to produce a specified
output for a particular customer or market. It implies a strong emphasis on how
work is done within an organization” [38]. There are numerous modeling methods
for business process modeling. One such IDEF3 method captures the process where
domain expert can define a scenario as a set of ordered events along with the
participating objects [43].

1.3.6 Components of Enterprise Systems

The first wave of success of ES was more focused on the internal processes of the
organization and the packages were termed as ERP. The success of ERPs provided
impetus for the ES vendors to venture in the other dimensions. And the major
thrust was given to logistics and customer relationship management since both of
these processes have to be optimized for success of any enterprise. Therefore, these
emerging business needs led to the concept of ERP II [35].

The core components deal with the distributed central database and application
framework such as .NET or J2EE (Table 1.2). The central components consist of
ERP as a transaction processing system with all the traditional sub-components
sales and distribution, finance and accounts, human resource, procurement, etc. In
addition, it also contains business process management tools to design, execute, and
evaluate business processes [35].

1 Enterprise Systems for Networked Smart Cities 15

Table 1.2 The four layers in ERP II [35]

Layer Components

Foundation Core Integrated database (DB)
Application framework (AF)

Process Central Enterprise resource planning (ERP)
Business process management (BPM)

Analytical Corporate Supply chain management (SCM)
Customer relationship management (CRM)
Supplier relationship management (SRM)
Product lifecycle management (PLM)
Employee lifecycle management (ELM)
Corporate performance management (CPM)

Portal Collaborative Business-to-consumer (B2C)
Business-to-business (B2B)
Business-to-employee (B2E)
Enterprise application integration (EAI)

The third layer is more analytical in nature and provides the tools for manage-
ment to answer the challenges in a timely fashion. Supply chain management (SCM)
helps in the planning and production of goods. On the other hand, SRM, CRM,
ELM, and PLM help in maintaining the lifecycle of supplier, customer, employee,
and product, respectively. Corporate performance management (CPM) provides the
indices and matrices to see the overall performance of the organization.

Collaborative layer takes the business online and provides the window to the
external and internal world without any bias or control. It provides a portal for
customers (B2C), suppliers (B2B), and employees (B2E) to transact with the
organization from the internet platform using a simple client like a web browser.
In addition, it also provides a mechanism for the integration of third-party systems
via EAI.

1.3.7 The Architecture of Enterprise Systems

Enterprise systems have three distinct characteristics in their architecture data
dictionary, middleware and repository [33]. Data dictionary contains thousands of
domains along with their fields that can be used in all functions or entire value
chain of the organization. Middleware can allow users to set up software routines
and databases at different location that can route data intelligently. Repository at
the base acts as a business framework containing semantics of business processes,
business objects and organizational model [44]. It consists of complete information
of application including metainformation on models, business objects, and technical
programming objects [33].

16 N. Ahmad and R. Mehmood

1.4 Technological Foundations of Smart Cities

This section will discuss the latest advancements in the area of ICT that can be
leveraged to lay the foundation of the smart city systems. As the humongous size and
complexity of city will require resilient ICT services, service oriented architecture
is an ideal way to develop services as opposed to monolithic huge software.
Similarly, the computing resources should not be a constraint, rather expandable
cloud computing model should be utilized. Sensors and actuators are going to be an
indispensable part of smart city and should be integrated through internet of things.
To make sense out of daily trillions of bytes of new data, big data technology is
essential. Likewise, in highly mechanized world concepts of semantic web should be
implemented to increase the machine-to-machine interactions. Finally, this section
concludes with possible modules of the smart city systems.

1.4.1 Service-Based Distributed Computing

Service-based computing is one of the fundamental technologies driving smart cities
developments. Cloud computing can be considered as a stage in the realization
of service-based computing. Cloud computing paradigm offers virtually unlimited
computing. The National Institute of Standards and Technology (NIST) defines it
is defined as “a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources that can be rapidly provisioned
and released with minimal management effort or service provider interaction” [45].
And its “capability to serve on-demand, share and instant commissioning and
de-commissioning of configurable computing resources causes it to be resilient,
sustainable and near-utility computing” [46].

Cloud computing is offered majorly through Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). And deploy-
ment could be private, public, community, or hybrid cloud. City level systems will
require huge computing resources with great variance at peak and off-peak times.
Therefore, cloud computing will be best to deploy smart city services. There are
numerous studies that propose different models to implement smart city services
on cloud computing. For example, Alazawi et al. [47] have proposed an intelligent
disaster management system based on cloud enabled vehicular networks. Suciu et al.
[48] gave framework to automatically manage, analyze, and control data of varied
characteristics in smart city context by distributed cloud-based services.

Cloud computing has been extended with fog computing to address its latency
and other challenges. Fog computing “is an architecture that uses edge devices
to carry out a substantial amount of computation, storage, communication locally
and routed over the internet backbone” [49]. Other concepts related to fog com-
puting include cloudlets and edge computing. Muhammed et al. [25] address the
network latency, bandwidth, and reliability challenges of mobile cloud computing

1 Enterprise Systems for Networked Smart Cities 17

in delivering services for anytime, anywhere capture and analyses of patients’
data required by personalized healthcare systems. They propose UbeHealth, a
ubiquitous healthcare framework that leverages edge computing, deep learning,
big data, high-performance computing (HPC), and the Internet of Things (IoT) to
address the aforementioned mobile cloud computing challenges. The framework
comprises three main components and four layers, which enable provision of an
enhanced network quality of service (QoS). The authors develop a proof-of-concept
UbeHealth system based on the framework and evaluate its performance using
three widely used datasets. A mobile computing system that provides enhanced
mobility information through fog computing is proposed in [50]. A middleware fog
computing platform is used along with a mobile application and a backend cloud-
based big data analysis system to provide timely information to the systems users.

Twalbeh et al. [51] propose a mobile cloud computing model for healthcare
applications that uses cloudlets to allow the mobile device users to connect directly
to cloud resources using cheaper technologies such as WiFi. A user is connected
to the enterprise cloud only if the service is not available at the cloudlet layer.
Networked healthcare and the role of mobile cloud computing and big data analytics
in its enablement are discussed in [52]. The authors introduce and analyze a
cloudlet-based mobile cloud computing infrastructure to be used for healthcare big
data applications.

1.4.2 Internet of Things

One of the most important aspects of smart city is the digital sensing and actuation
of real-world entities. Whole city is provided with the capability to be integrated
with the ICT infrastructure. To facilitate this, entities or objects need to be uniquely
identifiable, wirelessly connected, able to send and receive instruction and data,
etc. Internet of things (IoT) is a new paradigm of internet that addresses these
challenges and extends internet to principally non-computing entities. In the most
simpler terms, it may be defined as “The worldwide network of interconnected
objects uniquely addressable based on standard communication protocols” [53].

An elaborative working definition of IoT is given by IEEE “Internet of Things
envisions a self-configuring, adaptive, complex network that interconnects ‘things’
to the Internet through the use of standard communication protocols. The inter-
connected things have physical or virtual representation in the digital world,
sensing/actuation capability, a programmability feature and are uniquely identifi-
able. The representation contains information including the thing’s identity, status,
location or any other business, social or privately relevant information. The things
offer services, with or without human intervention, through the exploitation of
unique identification, data capture and communication, and actuation capability. The
service is exploited through the use of intelligent interfaces and is made available
anywhere, anytime, and for anything taking security into consideration” [54].

18 N. Ahmad and R. Mehmood

Zanella et al. [55] gave the technologies, architectures, and protocols for the
urban IoT. They also explained the case of Padova Smart City project as a proof-of-
concept deployment. The smart city IoT network will be operationalized through
web services. The services could be several in domains such as traffic, waste,
electricity, parking, and health. Irfan and Ahmad [56] have reviewed the existing
IoT application in the healthcare area. They summarized the prevalent architectural
model and technologies into three layers such as things layer, intermediate (mid-
dleware or gateway) layer, and backend computing (cloud computing) layer. Things
layer consists of real-world entities laced with sensors and actuators. Intermediate
layer uses multi-agent, SAO, RESTful, or fog computing technologies to offer quick
pre-processing and communication to the physical objects. Backend layer working
on cloud computing paradigm offers high performance computing and big data
support.

Alam et al. [57] study the use of eight well-known data mining algorithms
for IoT including deep learning. Their study uses three widely used real datasets
and shows C4.5 and C5.0 to have better accuracy, memory efficiency, and higher
processing speeds. Deep learning is found to have better accuracy but requires
relatively intensive computations. A survey of data fusion techniques for IoT is
provided in [58]. They focus particularly on mathematical methods for data fusion
including artificial intelligence, probabilistic, and theory of belief methods. They
also review specific IoT environments including nonlinear, object tracking and
heterogeneous environments. The challenges, opportunities, and areas of future
developments for data fusion techniques for IoT are also discussed. Muhammed
et al. [59] propose a new fault-tolerant routing technique for hierarchical sensor
networks in IoT environments. A taxonomy for fault-tolerant techniques in IoT
environments is given along with a quantitative comparison of some existing fault-
tolerant techniques. A distance learning system is proposed in [60] which analyzes
user activity real data acquired from IoT devices to understand and predict their
spatio-temporal activities and other patterns of the user. This analysis is used further
in optimizing the mode (text, voice or video) of module delivery to the users.

1.4.3 Big Data, High-Performance Computing (HPC),
and their Convergence

Big data refers to the “emerging technologies that are designed to extract value
from data having four Vs characteristics; volume, variety, velocity and veracity”
[61]. Big data is being generated from various sources such as Internet of Things
(IoT) and social media, and is being used in many application areas, see e.g., [62–
64]. Arfat et al. [63] draw attention to the need for developing new technologies for
big data processing because big data cannot be processed by traditional tools and
technologies due to their volume, velocity, veracity, and variety properties. They
focus on graph computing that is becoming increasingly popular to model real-
world problems, which are typically large and, hence, give rise to large graphs.
These large graphs could be analyzed and solved using big data technologies. They

1 Enterprise Systems for Networked Smart Cities 19

explore the performance of single source shortest path graph computations using
the Apache Spark big data platform. They use the United States road network data,
modeled as graphs, and calculate shortest paths between vertices. The experiments
are performed on the Aziz supercomputer, a Top500 machine. They solve problems
of varying graph sizes, i.e., various states of the USA, and analyze Spark’s
parallelization behaviour. They report that the speedup is expectedly dependent on
both the size of the data and the number of parallel nodes.

A study on the use of big data for gaining insight into the experiences of citizens
with government services is undertaken in [65]. The authors use Twitter data to
evaluate the various services provided by the Ministry of Education in Saudi Arabia.
Specifically, they investigate the users’ opinions and expectations regarding the new
university system launched by the ministry. Their aim with this study is to help the
decision makers in the governments to identify the gaps between the government’s
expectations and the needs of the users informed by their study reflected in users’
opinions and expectations.

The transformative potential of big data on urban transportations is investigated
in [64]. The authors propose a theoretical framework that brings together big data,
autonomous vehicles, and car free urban environment to improve inefficiencies of
transportations and logistics operations through optimizations of shared resource
capacity. The proposed framework is refined in a Markovian model to investigate
several big data scenarios matching the demands of transportation operations of
freight and people mobility with shared capacity of urban resources. Rapid, constant
and extreme urbanization have created acute stress on urban infrastructure and
quality of life. The authors claim their work to be “an initial first step in building
theory, knowledge and critical understanding of the social implications being posed
by the growth in cities and the role that big data and smart cities could play
in developing a resilient and sustainable city transportation system.” The authors
recommend the reorganization and optimization of transportation operations in
order to lower the costs and carbon footprint by moving from “individual firms
optimizing their own transportation supply to a shared collaborative load and
resourced system.” This work is an extension of their earlier work presented in [62]
that focuses on the use of big data in healthcare and transport capacity sharing.

Suma et al. [66] propose a big data architecture and system to detect spatio-
temporal events around the London city with the aim to improve urban logistics
and planning. Specifically, they use big data and AI platforms including Hadoop,
Spark, and Tableau, and the Google Maps Geocoding API to study Twitter data
about London and locate events. They find and locate congestion around the London
city. They also discover that, during a certain period, top third tweeted words were
about job and hiring, leading them to locate the source of the tweets which happened
to be originating from around the Canary Wharf area, UK’s major financial center.
They extend their earlier work in [67] and present an enhanced methodology,
big data pipeline, and software tool based on machine learning. They empirically
demonstrate that events can be detected automatically by analyzing data and detect
the occurrence of multiple events, their locations and times, without any prior
knowledge of the events.

20 N. Ahmad and R. Mehmood

Arfat et al. [68] propose a mobile computing system that enables smarter cities
with enhanced mobility information through big data, fog and cloud computing
technologies. The system includes a mobile application, a backend cloud-based
big data analysis system, and a middleware platform based on fog computing.
The system brings multiple cutting-edge technologies together to provide uniquely
focused information on user mobility. The system proposes to pull in and provide
information to the users about their travel locally, nationally, and internationally.
More importantly, relevant information is pulled in from multiple news media and
other sources. The UTiLearn system [24] is another example of big data system. It
uses big data and other emerging technologies to provide enhanced development,
management, and delivery of teaching and learning in smart society settings. We
have discussed this in the smart city systems section.

The need to optimize supply chain activities in healthcare using big data is
highlighted in [69]. The authors note that since medical equipment and devices
generate massive amounts of data, big data analytics, which is proven to be helpful
in forecasting and decision-making, can be a powerful tool to improve healthcare
supply chains. They present a survey on the use of big data in healthcare supply
chains and discuss the challenges, opportunities and future directions for big data
enabled healthcare supply chains.

The role of big data, high-performance computing (HPC), and deep learning
for disaster management is proposed in [70]. The authors extend the earlier work
of Alazawi et al. [71] and use deep learning to predict urban traffic in disaster
situations. They use Graphics Processing Units (GPUs) to address the compute-
intensive nature of deep learning. They use open road traffic data made available by
the Department for Transport, UK. They claim their work to be the first in applying
deep learning for disaster management.

Numerous scientific, engineering, and smart city applications require the solution
of sparse linear equation systems and Sparse Matrix Vector (SpMV) computations.
For example, Markov chains have been used to model many smart city systems,
see e.g., [72]. These problems require HPC techniques. Alyahya et al. [73] study
SpMV performance on Intel Many Integrated Core (MIC) Architecture which has
seen limited works in the past. Intel MIC and other many core architectures will be
among the range of heterogeneous devices available in smart cities computational
infrastructures and, hence, studying the behavior of smart city applications on such
devices is of high importance.

High-performance computing (HPC) has traditionally been associated with
tightly coupled supercomputing platforms and later on with cluster computing.
However, broadly speaking, any techniques that aim to enhance computational
performance by using the capacity of the underlying computational resources (hard-
ware, software, caches, etc.), particularly using parallel or concurrent computing
paradigms, can fall under HPC. Usman et al. [74] discuss the convergence of big
data and HPC, reviewing the driving forces, challenges, current and future trends
of the convergence. They note that the rise of HPDA (High Performance Data
Analytics) has resulted in the expansion of HPC market in many new territories
including big data. Farber [75] reviews a number of recent initiatives and trends on
the HPC and big data convergence.

1 Enterprise Systems for Networked Smart Cities 21

1.4.4 Smart City Applications and Systems

Apart from the architectural complexities and technological components, it is
also necessary to organize the different essential services of a smart city system
into a modular fashion. As described in the previous chapter, there are six
major dimensions, into which the city must show performance. Therefore, smart
city systems should identify different services in these dimensions that need to
be digitized to tread the path of smartness. These modules can be termed as
Smart Economy Management (SEM), Smart People Management (SPM), Smart
Governance Management (SGM), Smart Mobility Management (SMM), Smart
Environment Management (SEM), and Smart Living Management (SLM). We
review below some proposals on smart city systems and services.

Many works have been proposed on the design and evaluation of disaster man-
agement systems for smart cities. These include, for example, a system architecture
using cloud computing [47], a system using vehicular ad hoc networks (VANETs)
[76], a system with specific focus on city evacuation strategies [77, 78], and other
improvements to the earlier proposed disaster management systems [71]. These
works were based on mathematical modeling and simulation studies of disaster-
related scenarios. These works were extended in [70] using a deep learning based
study.

Alomari et al. [79] present a study on the use of Twitter data for detecting road
traffic conditions in the Jeddah city. They discover the most congested roads in
Jeddah and the traffic relationship with the tweeting behavior. This study is carried
out using tweets in the Arabic language on the SAP Hana platform. Suma et al. [66]
note the emerging use of social media for sensing the information about the people
and their spatiotemporal experiences around the living spaces. They use Twitter data
to detect spatio-temporal events around the London city with the aim to improve
urban logistics and planning. They extend in [67] their earlier work and present an
enhanced methodology and software tool based on machine learning techniques.
They empirically demonstrate that various conceptual, virtual, or physical events
can be detected automatically by analyzing data and detect the occurrence of
multiple events including “Underbelly Festival,” “The Luna Cinema” and “London
Notting Hill Carnival 2017,” their locations and times, without any prior knowledge
of the events.

A study on the computing single source shortest path routes for the United
States road network data is presented in [63]. The authors model the United States
road network as graphs and calculate shortest paths between vertices. An object
recognition method for autonomous driving for smart cities called Decision Tree
and Decision Fusion based Recognition System (D2TFRS) is proposed in [80].

Mehmood et al. [24] accentuate the changing landscape of the education industry
worldwide due to the emergence of the Massive Open Online Course (MOOC)
models, changing behaviors of digital learners, and the continuing gloomy global
economy. Driven by the lacking sophistication of distance eTeaching and eLearning
(DTL) systems, due to the challenges related to “data analysis and management,
learner-system interactivity, system cognition, resource planning, agility, and scal-
ability,” they propose UTiLearn, a personalized ubiquitous eTeaching & eLearning

22 N. Ahmad and R. Mehmood

framework. UTiLearn “leverages Internet of Things, big data, supercomputing,
and deep learning to provide enhanced development, management, and delivery
of teaching and learning in smart society settings.” They develop a proof-of-
concept UTiLearn system based on the proposed framework and provide a detailed
design, implementation, and evaluation of the UTiLearn system, including its five
components, using 11 widely used datasets.

Al-dhubhani et al. [81] review cutting-edge technologies and their potential
use for border security. They review literature related to the data acquisition
technologies, storage, processing, analysis, and decision-making technologies of
border security. They propose a smarter border security system along with ideas
for future research and development.

Alamoudi et al. provide a review of DNA profiling methods and tools in [82].
DNA typing or profiling, as defined by them, “is a widely used practice in various
forensic laboratories, used, for example, in sexual assault cases when the source of
DNA mixture can combine different individuals such as the victim, the criminal, and
the victim’s partner.” Highlighting the motivations for DNA profiling, they state that
faster interpretations of DNA mixture profiles will expectedly open up new frontiers
for this area in smart society applications. Khanum et al. [83] propose a novel fuzzy
logic based framework for managing the complex tasks of smart farming in smart
society scenarios. The framework is called Semantically Enriched Computational
Intelligence (SECI). The authors discuss attributes of SECI that make it a suitable
computational technique to be applied to various dimensions of smart farming. They
describe three possible applications of SECI in smart farming that they plan to
implement in the future. The implementation of one of the described applications of
smart farming is discussed in detail along with its preliminary results.

Al-Dhubhani et al. [84] provide a review of location privacy research related to
smart cities. They review smart city architectures, frameworks, and platforms, and
discuss the extent to which the preservation of location privacy has been addressed.
They claim based on the provided literature review that the preservation of location
privacy has not received sufficient attention in smart city applications. They discuss
the issues that should be addressed to improve the preservation of location privacy
for smart city applications and propose a location privacy preservation system for
smart city applications.

Numerous other smart city technologies and systems have been proposed, for
example, related to mobile computing [85], emerging applications [86], healthcare
and life sciences [25, 51, 69, 82], information systems [41, 87], and IoT-based
smart applications [59]. Moreover, smart mobility is a key dimension of smart city
designs and operations [88]. Plentiful approaches have been proposed to address
transportation challenges and develop smart transportation infrastructures, see e.g.,
autonomic transport systems [89–91], vehicular networks (VANETs) and systems
[92–95], emergency management system [78], simulations [96, 97], urban logistics
[62, 72], big data [62–64], location based services [98], and social media based
approaches [67, 99]. Some of these works on transportation are multidisciplinary
and these have already been discussed in this section or other sections. A recent
book has covered a number of topics related to Smart Societies, Infrastructure,
Technologies, and Applications [100].

1 Enterprise Systems for Networked Smart Cities 23

The smart city planner should develop the whole system utilizing the latest ICT
such as web services and SoA, cloud computing, IoT, big data and semantic web.
This will provide the needed scalability, resilience, and portability to address the
city level complexity and challenges.

1.5 Structural Equation Modeling

The smart city domain is highly interdisciplinary and requires modeling different
variables of interest including latent variables. First-generation statistical techniques
such as regression, factor analysis, or cluster analysis use empirical data to confirm
or identify the theoretical hypothesis. These techniques have certain limitations or
make unrealistic assumption such as multiple independent variables regress to one
dependent variable, variables to be observable, and the error free measurements of
variables [101].

Structural equation modeling (SEM) defeats the limitations of first-generation
statistical techniques and allows for the modeling of multiple independent constructs
and multiple dependent construct in a holistic, systematic, and unified way [102].
Every variable is considered either exogenous (independent) or endogenous (depen-
dent). And the latter is being explained by the relationships postulated in the model
[103]. SEM employs two techniques covariance or variance to analyze the model.
Partial least square (PLS) regression uses a variance-based approach.

In order to develop a model profound understating of theory is mandatory. So that
the model structure is in sync with the theoretical structures available in the theory.
The theory consists of theoretical concepts and derived concepts both defined as
latent variables and an empirical concept defined as an indicator variable. Moreover,
these concepts are linked with non-observational hypothesis (linking theoretical
concepts with theoretical concepts), theoretical definitions (linking theoretical
concepts with derived concepts), and correspondence rules (linking theoretical or
derived concepts with empirical concepts) [104]. This section will illustrate upon
the basics of SEM more specifically PLS SEM and its application in the smart city
logistics domain.

1.5.1 Reflective Versus Formative Constructs

Reflective constructs cause the items or measurements whereas formative constructs
are caused by the items or measurements [105]. In the case of reflective constructs
any change in the latent construct is reflected in the measurement and measurement
error is associated with the measurements [105]. On the other hand, formative
constructs are derived from measurements and the measurement error is introduced
at the level of construct [105].

24 N. Ahmad and R. Mehmood

LISREL, EQS and AMOS, covariance-based SEM doesn’t support formative
constructs [102] whereas variance-based, PLS SEM supports both formative and
reflective constructs [102]. Moreover, PLS doesn’t make any assumption about the
population or scale of measurement [106]. Therefore, it works with nominal and
higher scale and with no assumptions of the distribution [101].

1.5.2 Partial Least Squares (PLS) Regression

PLS utilizes the concept of maximization of variance of the dependent variables
explained by the independent variables in contrast to the reconstructing of the
covariance matrix [101]. The PLS model consists of a structure showing all
the latent or unobservable constructs along with their measurements, items, or
indicators. Secondly it consists of paths showing the relationships among them.
Finally, it has an additional component that defines the weight relation used to
estimate the unobservable variables [101].

The order of computation goes as follows first the weight relations are calculated,
next using these weights the case values are estimated that is weighted average of
indicators, finally the structural relations are calculated with the help of a set of
regression equations [106]. Therefore, the most important step is the estimation
of weight relations since all successive steps depend on it. In a more simplistic
approach, one may give equal weights to all the indicators, but it will be difficult
to get theoretical support for the same [101]. Moreover, it will also undermine the
more reliable indicators supposed to get higher weights [107].

PLS employs two-step outside and inside approximation, iteratively until the case
values converge. For outside approximation, the latent variable is estimated with
their respective indicators with the help of regression for formative constructs as
proposed in this research [101]. And for inside approximation, the case value is
weighted with the help of neighboring latent variables using centroid, factor or path
weighing Scheme [101]. Moreover, the problem of consistency is removed if the
sample size and the number of indicators approach infinity.

1.5.3 Construct Reliability and Validity

Outside approximation more known as an outer model or measurement model
provides the reliability and validity of blocks of manifest variables [108]. There
are five criteria for the assessment of outer model for the reflexive constructs,
namely indicator reliability, internal consistency reliability, convergent validity, and
discriminant validity at indicator and construct levels [108].

1 Enterprise Systems for Networked Smart Cities 25

Indicator reliability or the reliability of the manifest variable is achieved when
factor loading is more than 0.7 [109]. Composite reliability or Cronbach’s alpha
more than 0.6 is required for the internal consistency reliability or reliability of
block of manifest variable [109]. Convergent validity, a measure indicating manifest
variables represent the underlying construct, is assessed by average variance
extracted (AVE) and should be more than 0.5 [109]. Discriminant validity at the
construct level is a measure of the extent to which constructs don’t correlate with
other constructs. It is estimated with the Fornell–Larcker criterion that is construct’s
AVE should be higher than its squared correlation with other constructs [110].
Whereas, the indicator level discriminant validity is established when manifest
variable loads highest on the mapped construct.

For the formative constructs, the indicator reliability is meaningless due to
the assumption of error free measures [109]. Three criteria are used to assess
the measurement model for the formative constructs, namely indicators relative
contribution to the construct, significance of weight, and multicollinearity [108]. Of
these last two are more important to establish since they decide as to which indicator
will enter the model. Bootstrapping method is used to assess the significance of the
estimated indicators weight [109]. The multicollinearity among formative constructs
is estimated with the help of variance inflation factor (VIF) and a value more than
10 shows critical multicollinearity [109]. However, the value of VIF less than 3.3
is considered excellent [111]. Moreover, the value of condition number for the
construct below 30 signifies the absence of any collinearity [112].

1.5.4 Assessment of Inner or Structural Model

Once the reliable and valid outer model is achieved, the inner model is estimated.
The coefficient of determination R2 value of endogenous variable is an essential
criterion [109]. The values of R2 0.67, 0.33, or 0.19 define the endogenous latent
variable to be substantial, moderate, or weak, respectively [113]. The lesser value of
R2 is acceptable where one or two exogenous variables explain endogenous variable.
The second criterion is the path coefficient assessed for value, sign, and significance.
The significance is estimated with the help of bootstrapping method.

The third criterion is the effect size f2. The values of f2 0.02, 0.15, or 0.35 can
be considered as a measure of weak, medium, or large effect at the structural level
[109]. Last but not the least measure is the predictive capability of the structural
model. This is estimated with the help of predictive relevance Q2, that measures how
well observed values are reconstructed by model and its parameters [108]. The value
of Q2 is calculated by blindfolding procedure. A value above zero indicates that the
observed values are close to predicted values and proves the predictive relevance of
the model [109].

26 N. Ahmad and R. Mehmood

1.5.5 PLS Applications in Smart City

In the previous studies [87, 114], authors have applied PLS SEM in the context of
enterprise systems and future city logistics. A success predictive model that will
ensure the benefits of enterprise systems was developed using PLS SEM. Further
the study synthesized the benefits of ES in different dimensions of future city
logistics. Abbasi et al. [115] have used hybrid support vector machine and PLS
model to forecast municipal solid waste forecasting. Another study has used PLS
regression to analyze the model of RFID adoption in public transportation services
using innovation diffusion theory [116].

The discipline of smart city is highly interdisciplinary and will have multiple
phenomenon or constructs, observable and latent. As pointed out earlier that latent
variables can be reflexive or formative, PLS SEM will be most suited to study these
variables in order for theory building in smart city domain. For instance, authors
believe that connectedness leads to integration, integration leads to dynamism,
dynamism leads to smartness and finally smartness, will further give impetus for
more connectedness. This proposed model herein of smart city systems adoption
shown in Fig. 1.2 may also be established using PLS SEM or any other system of
variables.

Fig. 1.2 Smart city systems
adoption model

1 Enterprise Systems for Networked Smart Cities 27

1.6 Conclusion

The smart city microcosm should be defined by all the stakeholders of the
society unlike corporate organizations. People from every strata and trade should
collectively define, design, develop, and deliver the smart city. That’s the only way
to avoid gentrification. No city in the world would dare not to aspire to become smart
city and if the purpose is to beat the competition then cities should have to focus on
to invest heavily on differential or strategic assets such as knowledge infrastructure
along with other necessary commodity infrastructures.

This chapter has done extensive literature review on the concept of smart city in
order to derive the systems perspective of smart city. Nonetheless, the alignment of
ICT with the true concept of smart city, strategically and operationally, needs to be
exemplified in the definition of smart city systems. Authors have defined the smart
city systems as “Smart City System is a convergence of integrate systems supporting
city processes reengineered on sustainability principles and utilizing state of the art
technology to advance frontiers of knowledge, economy and life in a society.” The
field of enterprise systems has also been explained as SCS will make use of different
aspects of this technology. Similarly, the emerging areas of ICT such as service
based distributed computing, IoT, Big Data and High-Performance Computing, have
been illustrated upon. Also, there are numerous applications in the smart city context
such as disaster management, traffic management, spatio-temporal experiences of
citizens, and DNA profiling for crime prevention. SEM section gives important
insight into concepts and applications of PLS SEM essential for theory building
in this domain.

ICT must be utilized in every aspect of smart city as it can bring true connected-
ness that leads to integration and integration leads to dynamism and dynamism leads
to smartness (Fig. 1.2). Smartness will further give impetus for more connectedness
and hence the cycle of innovation continues to realize best in class smart city.

References

1. Komninos, N.: Intelligent cities: variable geometries of spatial intelligence. Intell. Build. Int.
3, 172–188 (2011)

2. Hall, R.E., Bowerman, B., Braverman, J., Taylor, J., Todosow, H.: The vision of a smart city.
2nd Int. Life Ext. Technol. Work. 7, (2000)

3. Giffinger, R.: Smart cities ranking of European medium-sized cities. October. 16, 13–18
(2007)

4. Hollands, R.G.: Will the real smart city please stand up? City. 12, 303–320 (2008)
5. Washburn, D., Sindhu, U., Balaouras, S., Dines, R.A., Hayes, N., Nelson, L.E.: Helping CIOs

understand “Smart City” initiatives. Growth. 17, 1–17 (2009)
6. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J.,

Williams, P.: Foundations for smarter cities. IBM J. Res. Dev. 54, 1–16 (2010)

28 N. Ahmad and R. Mehmood

7. Chen, T.: Smart grids, smart cities need better networks. Journals & Magazines. 24(1), 2–3
(2010)

8. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol. 18, 65–82
(2011)

9. Velosa, A., Tratz-Ryan, B., Anavitarte, L., Fernando, H.: Market Trends: Smart Cities Are
the New Revenue Frontier for Technology Providers. (2011). https://www.gartner.com/doc/
1615214/market-trends-smart-cities-new

10. Nam, T., Pardo, T. a.: Conceptualizing smart city with dimensions of technology, people, and
institutions. In: Proceedings of the 12th Annual International Digital Government Research
Conference on Digital Government Innovation in Challenging Times - dg.o ‘11. p. 282 (2011)

11. Thite, M.: Smart cities: implications of urban planning for human resource development.
Hum. Resour. Dev. Int. 14, 623–631 (2011)

12. Rios, P.: Creating“ The Smart City”. 1–126 (2012)
13. Thuzar, M.: Urbanization in Southeast Asia: developing smart cities for the future? Reg. Econ.

Outlook. 96, 100 (2012)
14. Barrionuevo, J.M., Berrone, P., Ricart, J.E.: Smart cities, Sustainable Progress. IESE Insight.

14, 50–57 (2012)
15. Telefónica, F., CRETU, G.L.: Smart cities design using event-driven paradigm and semantic

web. Inform. Econ. 16, 57–67 (2012)
16. Kourtit, K., Nijkamp, P.: Smart cities in the innovation age. Innov. Eur. J. Soc. Sci. Res. 25,

93–95 (2012)
17. Kourtit, K., Nijkamp, P., Arribas, D.: Smart cities in perspective – a comparative European

study by means of self-organizing maps. Innov. Eur. J. Soc. Sci. Res. 25, 229–246 (2012)
18. Lazaroiu, G.C., Roscia, M.: Definition methodology for the smart cities model. Energy. 47,

326–332 (2012)
19. Lombardi, P., Giordano, S., Farouh, H., Yousef, W.: Modelling the smart city performance.

Innov. Eur. J. Soc. Sci. Res. 25, 137–149 (2012)
20. Bakici, T., Almirall, E., Wareham, J.: A Smart City initiative: the case of Barcelona. J. Knowl.

Econ. 4, 135–148 (2013)
21. Zygiaris, S.: Smart City reference model: assisting planners to conceptualize the building of

Smart City innovation ecosystems. J. Knowl. Econ. 4, 217–231 (2013)
22. Marsal-Llacuna, M.: Lessons in urban monitoring taken from sustainable and livable cities to

better address the Smart Cities initiative. Forecast. Soc. (2015)
23. Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions, performance,

and initiatives. J. Urban Technol. 22, 3–21 (2015)
24. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn: a

personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 3536,
1–22 (2017)

25. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258–
32285 (2018)

26. Gomolski, B., Grigg, J., Potter, K.: IT spending and staffing survey results. Stamford, CT
(2001)

27. Carr, N.G.: IT doesn’t matter. Educ. Rev. 38, 24–38 (2003)
28. Terry Anthony Byrd, D.E.T.: Measuring the flexibility of information technology infrastruc-

ture: Exploratory analysis of a construct. J. Manag. Inf. Syst. 17, 167–208 (2000)
29. Chanopas, A., Krairit, D., Ba Khang, D.: Managing information technology infrastructure: a

new flexibility framework. Manag. Res. News. 29, 632–651 (2006)
30. Weill, P., Subramani, M., Broadbent, M.: Building IT infrastructure for strategic agility. MIT

Sloan Manag. Rev. 44, 57–65 (2002)
31. Davenport, T.H.: Putting the enterprise into the enterprise system. Harv. Bus. Rev. 76,

121–131 (1998)
32. Xue, Y., Liang, H., Boulton, W.R., Snyder, C.A.: ERP implementation failures in China: case

studies with implications for ERP vendors. Int. J. Prod. Econ. 97, 279–295 (2005)

https://www.gartner.com/doc/1615214/market-trends-smart-cities-new

1 Enterprise Systems for Networked Smart Cities 29

33. Hwa Chung, S., Snyder, C.A.: ERP adoption: a technological evolution approach. Int. J. Agil.
Manag. Syst. 2, 24–32 (2000)

34. Davenport, T.H., Brooks, J.D.: Enterprise systems and the supply chain. J. Enterp. Inf. Manag.
17, 8–19 (2004)

35. Møller, C.: ERP II: a conceptual framework for next-generation enterprise systems? J. Enterp.
Inf. Manag. 18, 483–497 (2005)

36. Klaus, H., Rosemann, M., Gable, G.G.: What is ERP? Inf. Syst. Front. 2, 141–162 (2000)
37. Sathish, S., Pan, S., Raman, K.: A stakeholder perspective of enterprise systems. In: PACIS

2003 Proceedings. pp. 669–682. , Adelaide, South Australia (2003)
38. Davenport, T.H.: Process Innovation: Reengineering Work through Information Technology.

Harvard Business Press, Boston, MA (1993)
39. van Slooten, K., Yap, L.: Implementing ERP information systems using SAP. In: AMCIS

1999 proceedings. p. 81. Milwaukee (1999)
40. Motiwalla, L.F., Thompson, J.: Enterprise systems for management. Pearson, Boston, MA

(2012)
41. Ahmad, N., Mehmood, R.: Enterprise systems: are we ready for future sustainable cities.

Supply Chain Manag. 20, 264–283 (2015)
42. Davenport, T.H., Short, J.E., others: The new industrial engineering: information technology

and business process redesign. Sloan Manage. Rev. 11–27 (1990)
43. Shen, H., Wall, B., Zaremba, M., Chen, Y., Browne, J.: Integration of business modelling

methods for enterprise information system analysis and user requirements gathering. Comput.
Ind. 54, 307–323 (2004)

44. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice-Hall, Inc., Englewood Cliffs, NJ (1997)

45. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

46. Ahmad, N.: Cloud computing: Technology, security issues and solutions. In: Anti-Cyber
Crimes (ICACC), 2017 2nd International Conference on. pp. 30–35 (2017)

47. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: ITS Telecommunications (ITST),
2011 11th International Conference on. pp. 361–368 (2011)

48. Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G., Suciu, V.: Smart cities built on
resilient cloud computing and secure internet of things. In: Control Systems and Computer
Science (CSCS), 2013 19th International Conference on. pp. 513–518 (2013)

49. WikiPedia: Fog Computing
50. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:

Enabling Smarter Societies through Mobile Big Data Fogs and Clouds. In: Procedia Computer
Science (2017), 109, 1128

51. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud
computing for healthcare applications. In: 2016 IEEE Global Communications Conference,
GLOBECOM 2016 - Proceedings (2016)

52. Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and
big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)

53. Bassi, A., Horn, G.: Internet of things in 2020: a roadmap for the future. Eur. Comm. Inf. Soc.
Media. 22, 97–114 (2008)

54. Minerva, R., Biru, A., Rotondi, D.: Towards a definition of the internet of things (IoT). IEEE
Internet Initiat. 1, 1–86 (2015)

55. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart
cities. IEEE Internet Things J. 1, 22–32 (2014)

56. Irfan, M., Ahmad, N.: Internet of Medical Things: Architectural Model, Motivational Factors
and Impediments. In: 2018 15th Learning and Technology Conference (L&T). pp. 6–13
(2018)

57. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of Eight Data Mining Algorithms
for Smarter Internet of Things (IoT). In: Procedia Computer Science. pp. 437–442 (2016)

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

30 N. Ahmad and R. Mehmood

58. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for
smart ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

59. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, vol 224. pp. 169–184. Springer, Cham
(2018)

60. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

61. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review
and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning
the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

62. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

63. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224.
pp. 323–336. Springer, Cham (2018)

64. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

65. Alsulami, Mashael; Mehmood, R.: Sentiment Analysis Model for Arabic Tweets to Detect
Users’ Opinions about Government Services in Saudi Arabia: Ministry of Education as a
case study. In: Al Yamamah Information and Communication Technology Forum. pp. 1–8. ,
Riyadh (2018)

66. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling Next Generation
Logistics and Planning for Smarter Societies. Procedia - Procedia Comput. Sci. 1–6 (2017)

67. Suma, S., Mehmood, R., Albeshri, A.: Automatic Event Detection in Smart Cities Using Big
Data Analytics. In: International Conference on Smart Cities, Infrastructure, Technologies
and Applications SCITA 2017: Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, Volume 224. pp. 111–122.
Springer, Cham (2018)

68. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through Mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

69. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: Oppor-
tunities and challenges. In: Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering (LNICST), Volume 224. pp. 207–215.
Springer, Cham (2018)

70. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 139–154 (2018)

71. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM international
workshop on Wireless and mobile technologies for smart cities - WiMobCity ‘14. pp. 1–10.
ACM Press, New York, New York, USA (2014)

72. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

73. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on intel
MIC: Performance analysis. In: Smart Societies, Infrastructure, Technologies and Applica-
tions, SCITA 2017, Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, Volume 224. pp. 306–322. Springer, Cham
(2018)

1 Enterprise Systems for Networked Smart Cities 31

74. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: The cutting edge and
outlook. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 11–26. Springer, Cham (2018)

75. Rob Farber: The Convergence of Big Data and Extreme-Scale HPC
76. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An

intelligent cloud based disaster management system for vehicular networks. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, Volume 7266. pp. 40–56. Springer, Vilnius, Lithuania
(2012)

77. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: Transportation evacuation strategies
based on VANET disaster management system. Procedia Econ. Financ. 18, 352–360 (2014)

78. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673–678 (2014)

79. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST. pp. 98–110. Springer, Cham (2018)

80. Alam, F., Mehmood, R., Katib, I.: D2TFRS: An object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 155–168. Springer, Cham (2018)

81. Al-dhubhani, Raed; Al Shehri, Waleed; Mehmood, Rashid; Katib, Iyad; Algarni, Abdullah;
Altowaijri, S.: Smarter Border Security: A Technology Perspective. In: 1st International
Symposium on Land and Maritime Border Security and Safety, Saudi Arabia. pp. 131–143. ,
Jeddah (2017)

82. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
A review. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 216–231 (2018)

83. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224.
pp. 247–257. Springer, Cham (2018)

84. Al-Dhubhani, R., Mehmood, R., Katib, I., Algarni, A.: Location privacy in smart cities era.
In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering, LNICST Volume 224. pp. 123–138. Springer, Cham (2018)

85. Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and Smarter Phones for
Future Cities: Characterizing the Impact of GPS Signal Strength on Power Consumption.
IEEE Access. PP, 1–1 (2016)

86. Graham, G., Mehmood, R.: The strategic prototype “crime-sourcing” and the science/science
fiction behind it. Technol. Forecast. Soc. Change. 84, 86–92 (2014)

87. Ahmad, N., Mehmood, R.: Enterprise systems and performance of future city logistics. Prod.
Plan. Control. 27, 500–513 (2016)

88. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., San-
giorgi, D.: Intelligent mobility systems: Some socio-technical challenges and opportunities.
In: Communications Infrastructure. Systems and Applications in Europe, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST 16. pp. 140–152 (2009)

89. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0. In: Intelligent Transportation Systems – Problems and Perspec-
tives, Volume 32 of the series Studies in Systems, Decision and Control. pp. 3–35. Springer
International Publishing (2016)

90. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50–62 (2015)

32 N. Ahmad and R. Mehmood

91. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013, pp. 201–
210. Springer International Publishing, Ingolstadt, Germany (2014)

92. Mehmood, R., Nekovee, M.: Vehicular AD HOC and grid networks: Discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555–
1562 (2007)

93. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A Survey on Security in Vehicular Ad
Hoc Networks. Springer, Berlin (2013)

94. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: A two-pronged
approach. In: 7th IEEE International Symposium on Communication Systems, Networks and
Digital Signal Processing, CSNDSP 2010. pp. 401–405 (2010)

95. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: lecture notes
in computer science (including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics). LNCS Volume. 6596, 216–223 (2011)

96. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality
simulations. In: 11th International Conference on Computer Modelling and Simulation,
UKSim 2009. pp. 411–416 (2009)

97. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793–1799 (2007)

98. Ayres, G., Mehmood, R.: LocPriS: A security and privacy preserving location based services
development framework. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 566–575. Springer
(2010)

99. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

100. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.): Smart Societies, Infrastructure,
Technologies and Applications, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering (LNICST), Volume 224. Springer
International Publishing, Cham (2018)

101. Haenlein, M., Kaplan, A.M.: A beginner’s guide to partial least squares analysis. Underst.
Stat. 3, 283–297 (2004)

102. Gefen, D., Straub, D., Boudreau, M.-C.: Structural equation modeling and regression:
guidelines for research practice. Commun. Assoc. Inf. Syst. 4, 7 (2000)

103. Diamantopoulos, A.: Modelling with LISREL: a guide for the uninitiated. J. Mark. Manag.
10, 105–136 (1994)

104. Bagozzi, R.P., Phillips, L.W.: Representing and testing organizational theories: a holistic
construal. Adm. Sci. Q. 27, 459–489 (1982)

105. Freeze, R.D., Raschke, R.L.: An Assessment of Formative and Reflective Constructs in IS
Research. In: ECIS. pp. 1481–1492 (2007)

106. Fornell, C., Bookstein, F.L.: Two structural equation models: LISREL and PLS applied to
consumer exit-voice theory. J. Mark. Res. 19, 440–452 (1982)

107. Chin, W.W., Marcolin, B.L., Newsted, P.R.: A partial least squares latent variable modeling
approach for measuring interaction effects: results from a Monte Carlo simulation study and
an electronic-mail emotion/adoption study. Inf. Syst. Res. 14, 189–217 (2003)

108. Ismail, I.R., Hamid, R.A., Idris, F.: PLS application in Journals of Operations Management: a
review. In: Proceedings of Global Conference on Operations and Supply Chain Management.
pp. 1–6 (2012)

109. Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in
international marketing. In: New challenges to international marketing. pp. 277–319. Emerald
Group Publishing Limited (2009)

110. Jnr, H.J.F., Money, A.H., Samouel, P., Page, M.: Research Methods for Business, UK Edition.
Wiley, West Sussex, England (2007)

1 Enterprise Systems for Networked Smart Cities 33

111. Diamantopoulos, A., Siguaw, J.A.: Formative versus reflective indicators in organizational
measure development: a comparison and empirical illustration. Br. J. Manag. 17, 263–282
(2006)

112. Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Date Analysis with
Readings, (Engleweood Cliffs, NJ). Prentice Hall, Englewood Cliffs, NJ (1995)

113. Chin, W.W.: The partial least squares approach to structural equation modeling. Mod.
Methods Bus. Res. 295, 295–336 (1998)

114. Ahmad, N.: Adoption, Implementation and Usage of Enterprise System: An Empirical Study,
(2012)

115. Abbasi, M., Abduli, M.A., Omidvar, B., Baghvand, A.: Forecasting municipal solid waste
generation by hybrid support vector machine and partial least square model. Int. J. Environ.
Res. 7, 27–38 (2013)

116. Liu, Y., Yang, Y., Wei, J., Wang, X.: An examination on RFID innovation diffusions in
Chinese public intelligent transportation services. Int. J. Mob. Commun. 13, 549–566 (2015)

Part I
Smart Transportation

Chapter 2
Sentiment Analysis of Arabic Tweets for
Road Traffic Congestion and Event
Detection

Ebtesam Alomari, Rashid Mehmood, and Iyad Katib

2.1 Introduction

More recently, Twitter has become a popular social platform to share traffic
information. Mainly, Twitter can provide information about future events, the causes
behind certain behavior, anomalies, and accidents, as well as the public feelings on
a matter. Furthermore, there are specific, and official Twitter accounts created to
report on traffic conditions and events in particular cities. These accounts generate
useful sources of information for the followers. Hence, there is an enormous amount
of traffic updates and information available in different Twitter accounts and can be
freely obtained via the easy-to-access APIs [1].

Several researches have been proposed to monitor road traffic in different
countries by analyzing text from different languages such as English and Chinese.
However, the difficulty of performing such analysis in Arabic social media lies in
the fact that the dialectical Arabic is used more than the formal Modern Standard
Arabic (MSA), which produce new challenges for Arabic text classifications and
Sentiment Analysis (SA) [2]. To the best of our knowledge, none of the existing
works about sentiment analysis on Saudi dialect tweets have focused on traffic
condition. Moreover, the existing analysis approaches for Arabic event detection
did not focus on road traffic in Saudi Arabia. Further, they did not apply big data

E. Alomari (�) · I. Katib
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi
Arabia
e-mail: EAlomari0011@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_2&domain=pdf
mailto:EAlomari0011@stu.kau.edu.sa
mailto: iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_2

38 E. Alomari et al.

technologies to properly handle such huge amounts of social data which required
high processing speed, large storage, and other challenges.

Currently, road traffic congestion is one of the biggest problems in Saudi Arabia
especially in large cities like Jeddah. Jeddah city is the second largest city in Saudi
Arabia and arguably the most congested one. Further, Makkah is the Islam’s holiest
city, where millions of Muslims visit. The increasing number of vehicles and an
enormous number of pilgrim visitors all year round have increased accidents and
traffic jams in many major roads in this city. Moreover, the Kingdom accounts for
over 40% of all active Twitter users in the Arab region [3]. By 2016, the number of
Twitter users in Saudi Arabia had reached 4.99 million [4]. Hence, Twitter presents
an excellent opportunity for extracting useful information. This raises the need for
proposing a novel approach to analyze Arabic dialectical social data to monitor road
traffic in Saudi Arabia.

In this paper, we extend our previous work [5] about analyzing and extracting
traffic congestion information from Arabic tweets. In our previous work, we ana-
lyzed only negative tweets that refer to traffic jam and congestion where we designed
the search queries to fetch tweets that contain specific negative traffic-related
keywords. Subsequently, we extracted the traffic causes and the top congested roads
and streets in Jeddah city.

In this work, we collect all traffic-related tweets regardless of the type (negative
or positive). We fetch tweets about traffic in Jeddah and Makkah during Ramadan,
which is the Islam’s month of fasting. We chose this period to study the impact of
this month on road traffic because in this month the traffic behavior and the road
traffic rush hours change significantly. The main objectives and contributions of this
paper can be summarized as follows:

– Improve our previous methodology by applying normalization on the extracted
Arabic tokens.

– Provide a mechanism to detect events that could affect the traffic condition.
– Propose an approach for sentiment analysis to classify a driver’s feeling and

emotions.

Sentiment classification is one of the areas in which “big data” requires pro-
cessing. Thus, we have built our approach on SAP HANA, which is an in-memory
processing platform that can help to improve both the performance and the quality
of the results. We analyzed the data by applying a lexicon-based approach. We have
built lexicons (dictionaries) for Arabic and Saudi dialect words. The dictionaries
include the most common words regarding traffic condition. The main goal is to
classify traffic-related tweets into one of four sentiment classes (Strong positive,
Positive, Strong negative, and Negative).

The rest of the paper is organized as follows. Section 2.2 reviews the related
works. Section 2.3 illustrates the methodology. Section 2.4 discusses the results.
Finally, we draw our conclusions in Sect. 2.5.

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 39

2.2 Literature Review

2.2.1 Transportation and Smart Cities

Traditional approaches for traffic measurement have relied on sensors that are buried
under the road (such as inductive loops) or installed on roadside [6]. Additionally,
many traffic monitoring systems have been proposed to detect road congestion
using video [7] or image [8] processing technologies. However, these approaches
require sensors and other equipment such as cameras and thus the deployment and
maintenance are costly.

Several approaches have been proposed, particularly during the last decade, to
use vehicular ad hoc networks (VANETs) for monitoring traffic [6, 9, 10], in general,
and for specific purposes, such as for traffic coordination and disaster management
[11–13]. Simulations have also been playing a key role in transportation planning
and control [14]. A number of works on operations research related to transportation
in smart cities have also been proposed, e.g., car-free cities [15], intelligent mobility
[16], big data in transport operations [17, 18], prototyping in urban logistics [19],
and autonomic transportation systems [20–22]. Furthermore, Alomar et al. [23]
visualized traffic incidents in the city of Riyadh for the 2013–2015 timeframe.
However, they did not work on social data. They get the data from the General
Directorate of Traffic (GDT). Other researchers study road traffic crashes in Pakistan
during Ramadan [24]. They also analyzed structured data from formal sources.

2.2.2 Event Detection from Social Media

Several approaches have been proposed to detect events from social data in different
languages.

Kurniawan et al. [25] conducted experiments to classify real-time road traffic
tweets using data mining. They collected real-time data about Yogyakarta Province,
Indonesia using Twitter Streaming API. Additionally, they compared classification
performance of three machine learning algorithms, namely Naive Bayes (NB),
Support Vector Machine (SVM), and Decision Tree (DT). However, they only
classified tweets into the traffic or non-traffic categories. Similar work is proposed
by D’Andrea et al. [26]. They suggested an intelligent system, based on text mining
and machine learning algorithms. They collected real-time tweets of several regions
of the Italian road networks and then assigned the appropriate class label to each
tweet, as to whether the tweet is related to a traffic event or not.

Ribeiro et al. [27] analyzed tweets to detect traffic events in Belo Horizonte,
Brazil. They created a set of place names, called GEODICT. Subsequently, they
detected the locations and streets names by using string matching technique
by searching for substrings from the tweet that can be detected in GEODICT.
Wongcharoen and Senivongse [28] built a congestion severity prediction model to

40 E. Alomari et al.

predict traffic congestion severity level. However, like previous approaches [25, 27],
the tweets are fetched only from particular accounts.

Hanifah et al. [29] filtered tweets using SVM to detect traffic congestion in
Bandung, Indonesia. Also, they extracted the information of location, time, date,
and image. For information extraction, they applied a rule-based approach, which is
based on the structure of the sentence. However, they did not detect traffic-related
events. Gu et al. addressed this limitation [30]. They have collected historical and
real-time tweets about traffic in Pittsburgh and Philadelphia, Metropolitan. They
used a dictionary of relevant keywords and their combinations that can indicate
traffic condition.

Moreover, D’Andrea et al. [26] collected real-time Italian tweets and classi-
fied them into traffic and non-traffic tweets. Alifi and Supangkat [31] suggested
approaches for extracting location information. Additionally, they extracted valu-
able information from real time including traffic condition, congestion causes,
weather condition, and time of occurrence. However, researchers in [26, 29, 30],
and [31] did not perform sentiment analysis. Additionally, none of them applied big
data technologies in their proposed methods. Suma et al. [32, 33] have analyzed
Twitter data to detect events related to road traffic and other topics for smart cities
planning purposes. Their focus is on the use of big data platforms to analyze large
amounts of tweets about the London city. However, they did not perform sentiment
analysis. Moreover, in our previous work [5] we used SAP HANA to detect road
traffic conditions in Jeddah city. However, we did not perform SA.

Several approaches have been proposed to detect events from Arabic social data.
AL-Smadi and Qawasmeh [34] used an unsupervised rule-based technique to extract
events about technology, politics, etc. In [35], the researchers detect events related to
disasters, sports, arts, crime, politics, and elections. Other researchers classified real-
time tweets to detect high-risk floods [36]. Moreover, researchers in [37] annotated
Arabic events related to politics and election. Furthermore, Alsaedi and Pete [38]
proposed a framework for detecting disruptive events from Arabic tweets. They
extended their work and suggested an integrated event detection framework related
to the riots events [39]. However, none of these studies focused on traffic events.

2.2.3 Arabic Sentiment Analysis

The existing work about Arabic sentiment analysis (not specific to transportation)
can be classified into lexicon (dictionary) based, ML-based, or hybrid. Researchers
in [40–42] applied a hybrid approach for Jordanian dialect. On the other side, there
are some studies based on machine learning for Modern Standard Arabic (MSA)
[43], Egyptian dialect [44], and Jordan dialect [45]. Furthermore, researchers in [46,
47] proposed lexicon-based Arabic SA, but they are not proposed for Saudi dialect.

Few studies have applied SA to Saudi dialect. Aldayel and Azmi proposed hybrid
(SVM and lexical) classifier [2]. However, they only performed two-way (positive,
negative) classification. Moreover, the Saudi dialect lexicon has been developed

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 41

in [48]. But, it is domain specific (restaurants reviews). Al-twairesh proposed
AraSenTi-tweet [49] corpus for sentiment analysis. It is available online for the
research community. Even though the corpus annotated manually, they extracted
from a large dataset that contains Arabic tweets. Most of the existing words in their
lexicon are not useful in our case (traffic detection). Further, some of them do not
belong to the Saudi dialect.

From the above discussion for the literature review, we found that the existing
Arabic sentiment lexicons are either not supporting Saudi dialect or not efficient
to be used in traffic detection domain. Therefore, there is a need to create a new
sentiment lexicon to classify the traffic-related tweets.

On the other side, big data processing technologies provide great opportunities
for addressing transportation problems for which traditional approaches are not
competent. To the best of our knowledge, none of the existing work about event
detection from Arabic social data has used big data platforms and technologies to
address the complex processing and analytics tasks on such big data. Therefore, our
text classification technique will be built on SAP HANA, which is an in-memory
processing platform offering groundbreaking performance.

2.3 Methodology

Figure 2.1 illustrates the workflow of tweets acquisition, processing, and analytics.
We have built our approach on SAP HANA, which is developed by SAP SE. It is
the integration of transactional and analytical workload within the same database

Fig. 2.1 Overview of the main implementation steps

42 E. Alomari et al.

management system [50]. Further, SAP HANA Extended Application Services
(SAP HANA XS) provides the SAP HANA Web-based Development Workbench
that supports developing entire applications in a Web browser without the need to
install any development tools. SAP HANA Web-based Development Workbench
includes i) Catalog and ii) Editor tools [51].

Catalog enables developing and maintaining SQL catalog objects in the SAP
HANA database. It also supports creating tables, executing SQL queries, and
creating a remote source to collect data. Additionally, catalog supports text analysis
and text mining. Moreover, Editor enables data modeling, which is an activity of
creating information view. This information views can be used for reporting and
decision-making purpose. SAP HANA supports a great information view, which is
a calculation view. The data foundation of the calculation view can include tables,
column views, analytic views, and calculation views. Also, it enables creating joins,
unions, aggregation, and projections on data sources.

2.3.1 Tweets Collection

We collected tweets about traffic in Jeddah and Makkah during Ramadan (17 May–
14 June), 2018. We generated a list of Arabic keywords related to road traffic and
transportation. We also searched for the most popular Twitter accounts that tweet
about traffic conditions in Jeddah and Makkah cities. We have used the collected
list of twitter accounts and Arabic keywords to write a large number of queries.

Search queries were executed in SAP HANA Workbench Catalog to collect
historical tweets using twitter REST search API. Unlike streaming API that enables
fetching real-time tweets, the REST API allows us to query historical tweets with
locations and keywords simultaneously. REST API supports geocode parameter to
restrict query by a given location using “latitude, longitude, radius.” Thus, when
executing the queries, the search API will first attempt to search for tweets which
have lat/long within the queried geocode. But not all tweets are geotagged because
some users disable location service in their smartphones. In this case, Tweet’s
location information will be detected from the location data in the user’s profile.

However, if the user did not add information about the city and county in his/her
profile, “Country” and “Place_name” fields would be empty. To handle this issue
and fetch the non-geotagged tweets, we re-execute all queries after adding the city
name and without specifying a location to collect all traffic tweets that include the
city name. However, there are still some tweets that are not included in our analysis
because they are not geotagged and not carrying location information. We created
a table to store the retrieved tweets in SAP HANA databases. The created table
includes several attributes such as “UserId,” “Tweet,” “UserName,” “CreatedAt,”
“Latitude,” “Longitude,” “Country,” and “Place_name.”

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 43

2.3.2 Pre-processing and Analysis Configuration

SAP HANA supports text analysis for different languages including Arabic. They
used the pre-processor server to extract and classify unstructured text into entities
and domains by applying linguistic and statistical techniques [52]. To analyze the
text in SAP HANA, there is a need to create full-text indexing on the text column
with specifying the type of analysis configuration and setting TEXT ANALYSIS
parameter “ON” and this results in a new table “$TA__<index name>”. This table
will include linguistic or semantic analysis results.

SAP HANA supports three main types of text analysis configurations, which
are [53]:

– Linguistic Analysis: supports natural language processing.
– Entity and Fact Extraction: enables named entity extraction, sentiment

analysis, public sector events, and enterprise facts. It named EXTRAC-
TION_CORE_VOICEOFCUSTOMER.

– Grammatical Role Analysis: enables functional syntactic roles in the sentence,
such as subject or object. It supports English language only.

In this work, the data are analyzed based on “Voice Of Customer” (VOC) analysis
configuration. We have selected this type of text analysis configuration because it
supports handling entity extraction, fact extraction, and sentiment analysis. Further,
it enables tokenization, which means it decomposes the phrase or sentence into
tokens. Unlike “Linguistic analysis” configuration that extracts every word in the
text, VOC extracts only basic entities from the text and entities of interest including
a person, address, organization, URLs, and other common terms. The token type is
stored in TA_TYPE field.

To use the default configuration, developers simply need to include VOICEOF-
CUSTOMER parameter in a query. However, the standard configuration doesn’t
suffice to the requirement especially with the Arabic language. Further, the default
normalizer is not efficient. Thus, we need to customize keywords in new dictionaries
and include them in a modified configuration file.

Custom Dictionaries

We noticed that the standard text analysis in SAP HANA using the VOICEOF
CUSTOMER-configuration does not suffice where not all Arabic tokens are clas-
sified under the right token type. Therefore, we need to add a custom dictionary
for unknown terms in the SAP HANA system and then create a new configuration
file. We created our own dictionaries because none of the existing dictionaries
for Saudi dialect are designed to be used for road traffic condition detection. The
created lists of custom dictionaries were used to create a new configuration file
for analysis using SAP HANA Web-based Development Workbench. Then, the
generated configuration file was used to create the fulltext index on “Tweets”

44 E. Alomari et al.

column to split the text into tokens and specify the token type based on the created
dictionaries.

We created several custom dictionaries, which help to improve tokenization,
normalization, and entity type extraction. The main dictionaries are as follows:

– Transportation: includes the collected Arabic keywords about transportation
(such as).

– Makkah Streets/Jeddah Streets: contain the names of streets and roads names.
– Places: includes the keywords referred to places names like Mosque, Restaurant,

and Mall.
– Religion: contains the synonyms of words related to fasting and the activities

during Ramadan month (e.g.,).
– Sentiment: includes a list of Arabic and Saudi dialect sentiment words and

expression.
– Events types: contains the common words representing events types and list of

their corresponding synonyms.

Tokenization, Normalization, and Entity Extraction.

To analyze the tweets in SAP HANA, we need to create a full-text index on “Tweet”
column. Creating the index requires executing SQL statement, which will lead to
creating a new table containing the tokens and named entity extraction results. The
created table will include the following:

– TA_Token: contains the list of tokens extracted from the tweets.
– TA_Type: refers to the entity type.
– TA_Normalized: stores a normalized representation of the token.

The created custom dictionaries enable identifying a standard name for each
entity. The TA_Type field can contain built-in type (e.g., NOUN_GROUP) or one
of the types that are specified in our newly created dictionaries, i.e., Jeddah_Street.
Moreover, the normalization process is very important especially for Arabic text
where some letter has different representation. For instance, “Alif” has four forms
(), “Yaa” has two forms (), and “Haa” has two forms (). SAP HANA
supports case normalization by converting the initial letter of a word to upper or
lower case. However, this type of normalization is not relevant to languages that do
not distinguish between upper and lower case such as Arabic. So, we modified the
analysis configuration to represent the normalized form of the entity as specified in
our custom analysis dictionaries. For example, “ ” and “ ” will be normalized
to “ ” and “ ” where “TAA MARBUTAH/ ” was replaced with “HAA/ .”

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 45

2.3.3 Tweets Analysis

Location Extraction

Generally, there are two types of location information: (i) Latitude/longitude
coordinates of the locations where users posted the tweets and (ii) Location name
referred in tweet texts. We specified either coordination information or cities name
in our search queries to force them to retrieve only tweets posted in our targeted
cities. Further, to extract specific location information such as streets name from the
text, we used the Entity Extraction feature in SAP HANA. However, the existing
entity extractor with default configuration did not detect all the places names. So, we
created our own dictionaries for the main streets/roads names and then we included
them in the modified configuration file. We used OpenStreetMap1 to create a list of
streets and roads names in Jeddah and Makkah. When we run the analysis query
(create full-text index), the places name will be extracted from the text and stored in
the analysis results table.

Traffic Events Detection

We created a dictionary containing a list of words representing the road traffic
events. We took into account the following events:

– Accident ().
– Fire ().
– Roadworks “ ” including maintenance () and construction ().
– Weather condition “ ” such as rain () and storm ().
– Other events that could affect the traffic including sports () events and social

events (e.g., festival “ ”).

We expand the dictionary by adding a list of corresponding synonyms under each
event type. Consequently, each type of traffic event is extracted taking into account
the set of relevant words. For instance, accident “ ” associated with words like
“ ,” and maintenance “ ” associated with words like “ ” or “ .” To
clarify, during the tokenization and entity extraction phases, each token will get a
Token_Type based on our custom dictionaries where our event detection technique
relies on matching synonyms with terms available on the tweet. For instance, the
following tweet contains the word “ ,” and thus the extracted event type will be
“fire.” We consider the fires as traffic-related events even though it is not a vehicle
fire because it may effect on the traffic condition and cause congestion.

Example: “@JeddahNow:
.”

1http://openstreetmap.org

http://openstreetmap.org

46 E. Alomari et al.

Translation: “@JeddahNow: Live #Jeddah | A huge fire at # Extra stores on
Tahlia Street, with an intensive presence of the Civil Defense teams, we will update
you about the status soon.”

Sentiment Analysis

The literature review suggests two approaches for building a lexicon: manual
construction by experts or automatic construction. Although automatic lexicon
construction from a seed of words is faster and required less human effort, there are
weaknesses regarding accuracy and robustness due to the lack of human supervision.
Thus, in this work, we followed a lexicon-based approach that relies on a manually
constructed dictionary. We built lexicons for Saudi dialect words that related to
traffic condition. We created a list of strong positive words (e.g., “Faster”),
positive words (e.g., “no traffic jam”), negative words (e.g., “Slow”), and
strong negative words (e.g., “Death”). Then, we expanded the lists by adding
synonyms.

After that, we included the created custom dictionaries in the analysis configura-
tion file. When we created a full-text index, the analyzer simply splits each word in
the tweet, normalize it using our dictionaries, then classify each token in the tweet
into one of the four categorized. Subsequently, we created a calculation view to
classify the tweets. Each tweet will be scored based on the number of the tokens
from each sentiment class and on how many times these words occurred in the text.
Subsequently, the tweets are classified appropriately based on the calculated score.

2.4 Results and Dissection

SAP offers a data visualization tool for reporting on top of SAP HANA, named SAP
Lumira.2 Figure 2.2 shows the percentage of tweets at different time of day. The
chart in Fig. 2.2a shows that most tweets about traffic in Jeddah are posted during
the night. The highest tweeting time is at 22. The percentage of tweets is started
decreasing after 3 and the lowest tweeting time is at 8. The results are reasonable
where the business hours during Ramadan are changed, and people used to go to the
markets and restaurants before Iftar in addition to that they usually go shopping after
Al-Taraweeh prayer Additionally, during Ramadan, the work hours are changed,
and most employees in public sector and private companies work from 10 am
to 3 pm.

On the other side, Fig. 2.2b shows that the percentage of tweets about traffic in
Makkah is always high except for the period between Al-Fajr prayer and Al_Dhuhr

2http://saplumira.com/

http://saplumira.com/

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 47

Fig. 2.2 Percentage of Tweets on different time. (a) Jeddah. (b) Makkah

prayers (5–12). Like the tweets about Jeddah, the number starts decreasing after
Al-Fajr prayer where most people used to sleep at this time.

Moreover, we filtered the collected tweets to show only the tweets messages
that contain street/road names. After that, we drew a chart to represent the top
mentioned street/road. However, we noticed that the number of tweets messages
that contains place name is not very large. The main reasons that could explain that
are (i) the limit in the characters number in Twitter, (ii) people may post a message
to reply to another tweets or participate in a hashtag about specific events, which
don’t required re-mentioning the name of the place, (iii) the tweets that describe
feelings or emotions usually do not contain a specific place name.

As shown in Fig.2.3a, the most mentioned names in the collected tweets about
traffic in Jeddah are Prince Sultan St., Altahliah St., King Abdul Aziz Rd., Palatine
St., and Almadinah Rd. On the other side, Fig. 2.3b illustrates that the top five
mentioned roads/streets names in the tweets about Makkah, which are Makkah-
Jeddah highway, Alhaj street, Almadinah Almunawwarah road, Ajyad street, and
Alsail road. This result is reasonable where millions of Muslims visited Makkah in
Ramadan to perform Umrah and pray in Al-Masjid Al-Haram, which could affect
the traffic to/from the city, in addition to the traffic to/from Al-Haram. Ajyad is one

48 E. Alomari et al.

Fig. 2.3 Top mentioned roads/street names. (a) Jeddah. (b) Makkah

of the main streets leading to Alharam. Alhaj street is one of the main streets in
Makkah and connects many districts. The other roads are the main roads connecting
Makkah with Jeddah, Al-Madinah, and Al-Ta’if (Alsail Rd.) cities.

Furthermore, Fig. 2.4 illustrates the top detected events in Jeddah and Makkah.
The events are detected based on the existing of terms in the created dictionaries. In
this work, we exclude the retweets (repost of another user’s posts) except when
detecting the top mentioned events. The number of retweets is an indication of
popularity. Further, it has been implemented to detect events [38]. So, we included
the retweets number when detecting the top events.

As shown in Fig. 2.4a, the top three detected events in Jeddah are accidents,
fires, and inauguration. To validate our event detection mechanism, we searched in
newspapers websites (Okaz, Sabq, etc.) to compare the results. We found that there
was a fire in “Extra Store” (on May 28) near Altahliah St., and another building

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 49

T
o

ta
l N

u
m

. o
f

T
w

ee
ts

20 28

5 6

2 7
0

200

400

MONTH / DAY

(Accident)

(Inauguration)

(Fire)
T

o
ta

l N
u

m
. o

f
T

w
ee

ts

18 21 24 27
5

MONTH / DAY

(Accident)
(Rain)

150

100

50

0

Fig. 2.4 Top detected events. (a) Jeddah. (b) Makkah

fire (on June 2) leads to 14 injured. In addition, Jeddah Municipality announced
that construction work in Al-Andalus Tunnel was done and the tunnel inaugurated
at the beginning of Ramadan. We also found articles about several car accidents
occurred during Ramadan, one of them was on June 2, where a driver lost control
of his car. Further, our tool detected accident on June 7. However, we discovered
from searching that the accident occurred on June 5, but there were new posts about
it two days later when a nurse honored by the ministry of health for helping injured
people in that accident while she is out of work hours.

Moreover, Fig. 2.4b shows the top detected events in Makkah which are rains and
accident. We found posts on online newspapers about rains in Makkah on May 21.
Additionally, our tool detected several accidents during Ramadan. One of them was
on May18. We found details in newspapers articles where there were 9 deaths and 18
injured in a bus accident. Additionally, we found posts about another car accidents
(on May 24) in the road connects between Makkah and Al-Madinah cities. From the
above discussion, we can notice that the developed tool can automatically detect the
traffic events from twitter posts.

50 E. Alomari et al.

Table 2.1 Examples of sentiment classification for driver’s feeling and opinions

Tweets English Translation Classification

1 From this street, the congestion is
unusual

Negative

2 Rains in Makkah Almukarramah, a
photo of one of the streets in the
holy capital, magnificence.

Positive

3 Unbelievable, the tunnel project of
Al-Andalus Rd. Palestine street
intersection opened two days ago,
and today maintenance, only
one-way opened, which caused a
traffic jam ... Unfortunately ...

Strong negative

4 @jedgovsa @jedgovsa Alandalus tunnel or
bridge or road in Jeddah is excellent
and creative, opened a few days or a
month ago.

Strong positive

Table 2.1 shows examples of sentiment classification for driver’s feelings and
opinions. We gave an English translation for non-Arab readers. We provided a
literal translation to avoid giving meaning from our side. The tweets are classified
into one of 4 sentiment classes based on the total score that is calculated after
dividing the text into tokens and identifying the class for each token. For instance,
the combination of the two negative terms “congestion” and “unusual” in tweet#1
leads to classifying the tweet as negative. Furthermore, the word “Rain” is labeled
as negative where it almost causes negative effect on traffic. However, the existence
of the word “magnificence” in tweet#2, which is a strong positive keyword leads to
classifying the tweet as positive.

Furthermore, we draw a chart to illustrate the list of the top mentioned words
related to the causes of congestions. Figure 2.5 indicates that the word “ ”
(accident) was the most traffic cause mentioned in the collected tweets about traffic
in Makkah and Jeddah. Figure 2.6 shows the word cloud for the top used terms
about roads and traffic which include street “ ,” road “ ,” accident “ ,” and
congestion “ .”

2.5 Conclusions

In this work, we analyzed Saudi dialect tweets about road traffic conditions. We
collected tweets during Ramadan and focused on two large cities (Jeddah and
Makkah). We developed our method on SAP HANA, which is an in-memory
processing platform to store and analyze the data. The default analysis configuration
in SAP HANA is not efficient for Arabic text analysis. So, we created a new
configuration file. We added new dictionaries for the Arabic and Saudi dialect

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 51

(Accident)

(Speed Bump)

(Fire)

(Inauguration)

(Maintenance)

(Accident)

(Umrah)

(Rain)

(Inauguration)

(Speed Bump)

Fig. 2.5 Top mentioned terms related to congestion causes. (a) Jeddah. (b) Makkah

Fig. 2.6 The most frequent terms. (a) Jeddah. (b) Makkah

keywords related to sentiment, traffic events, and streets names. These dictionaries
help in improving tokenization, normalization, and entity extraction. The main
contributions of this work are detecting traffic-related events and applying sentiment
analysis based on lexicon approach to classify driver’s feeling and emotions.

52 E. Alomari et al.

Moreover, we have used SAP Lumira to visualize the results by creating charts.
We drew a chart to represent the top mentioned traffic events in the tweets.
Additionally, we showed the most frequently mentioned terms related to congestion
causes. To validate the proposed event detecting mechanism, we compared the
results with data from local newspapers websites. In the future, we plan to measure
the accuracy of our proposed sentiment classification approach. Additionally, we
will expand our sentiment lexicon and include more words.

References

1. Wang, S., He, L., Stenneth, L., Yu, P.S., Li, Z.: Citywide Traffic Congestion Estimation with
Social Media

2. Aldayel, H.K., Azmi, A.M.: Arabic tweets sentiment analysis – a hybrid scheme. J. Inf. Sci.
42(6), 782–797 (2016)

3. Mourtada, R., Salem, F., Al-Shaer, S.: Citizen engagement and public services in the Arab
world: the potential of social media. Arab Soc. Media Rep., no. 2014

4. www.statista.com, Twitter: number of active users 2010–2016 | Statista. 2016
5. Alomari, E., Mehmood, R.: Analysis of Tweets in Arabic Language for Detection of Road

Traffic Conditions, pp. 98–110. Springer, Cham (2018)
6. Mehmood, R., Nekovee, M.: Vehicular AD HOC and grid networks: discussion, design and

evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007, vol. 2, pp.
1555–1562 (2007)

7. Kanungo, A., Sharma, A., Singla, C.: Smart traffic lights switching and traffic density calcu-
lation using video processing. In: 2014 Recent Advances in Engineering and Computational
Sciences (RAECS), pp. 1–6 (2014)

8. Wei, L., Dai, H.-Y.: Real-time road congestion detection based on image texture analysis.
Procedia Eng. 137, 196–201 (2016)

9. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad hoc
networks, vol. 7865 LNCS. (2013)

10. Alvi, A., Nabi, Z., Greaves, D.J., Mehmood, R.: Intra-vehicular verification and control: a two-
pronged approach. Int. J. Veh. Inf. Commun. Syst. 2(3–4), 248–268 (2011)

11. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks, in 2011 11th International Conference on
ITS Telecommunications, ITST 2011, pp. 361–368 (2011)

12. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An intel-
ligent cloud based disaster management system for vehicular networks, vol. 7266. Springer,
Vilnius, Lithuania (2012)

13. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities, WiMobCity ‘14. Int. Work. Wirel. Mob. Technol. Smart
Cities, pp. 1–10, (2014)

14. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality
simulations, in 11th International Conference on Computer Modelling and Simulation, UKSim
2009, pp. 411–416 (2009)

15. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22(6), 804–817 (2011)

16. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: some socio-technical challenges and opportunities. In:
Mehmood, R., Cerqueira, E., Piesiewicz, R., Chlamtac, I. (eds.) Communications Infrastruc-
ture. Systems and Applications in Europe, pp. 140–152. Springer, Berlin (2009)

http://www.statista.com

2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event. . . 53

17. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1),
75–104 (Jan. 2017)

18. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

19. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics
prototyping: a technical viewpoint. Supply Chain Manag. 20(3), 341–352 (2015)

20. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15(5), 50–62 (2015)

21. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European Cities and metropolitan areas by Facilitating Autonomic Road
Transport Systems (ARTS). In Sustainable Automotive Technologies 2013 Proceedings of the
5th International Conference ICSAT 2013, pp. 201–210 (2014)

22. Schlingensiepen, J., Nemtanu, F.: Autonomic transport management systems—enabler for
smart cities, personalized medicine, participation and industry grid/industry 4.0. In: Slad-
kowski, A., Pamula, W. (eds.) Intelligent Transportation Systems – Problems and Perspectives,
pp. 3–35. Springer International Publishing, London (2016)

23. H.A., Alomar, A., Alrashed, N., Alturaiki, I.: How visual analytics unlock insights into traffic
incidents in urban areas. In: Business (2017)

24. Mehmood, A., Khan, I.Q., Mir, M.U., Moin, A., Jooma, R.: Vulnerable road users are at greater
risk during ramadan—results from road traffic surveillance data. J. Pak. Med. Assoc. 65(3),
287–291 (2015)

25. D. A. Kurniawan, S. Wibirama, and N. A. Setiawan, Real-time traffic classification with Twitter
data mining, 2016

26. D’Andrea, E., Ducange, P., Lazzerini, B., Marcelloni, F.: Real-time detection of traffic from
twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 16(4), 2269–2283 (2015)

27. Ribeiro, S.S., Davis, C.A., Oliveira, D.R.R., Meira, W., Gonçalves, T.S., Pappa, G.L.: Traffic
observatory: a system to detect and locate traffic events and conditions using Twitter Sílvio.
Proc. 5th Int. Work. Locat. Soc. Networks—LBSN ‘12, p. 5, (2012)

28. Wongcharoen, S., Senivongse, T.: Twitter analysis of road traffic congestion severity estima-
tion. In 13th Int. Jt. Conf. Comput. Sci. Softw. Eng. (2016)

29. Hanifah, R., Supangkat, S.H., Purwarianti, A.: Twitter information extraction for smart city.
In Proc.—2014 Int. Conf. ICT Smart Soc. Smart Syst. Platf. Dev. City Soc. GoeSmart 2014,
ICISS 2014, pp. 295–299, (2014)

30. Gu, Y., (Sean) Qian, Z., Chen, F.: From twitter to detector: real-time traffic incident detection
using social media data. Transp. Res. Part C Emerg. Technol. 67, 321–342 (2016)

31. Alifi, M.R., Supangkat, S.H.: Information extraction for traffic congestion in social network.
In International Conference on ICT For Smart Society, pp. 20–21 (2016)

32. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia—Procedia Comput. Sci., pp. 1–6. (2017)

33. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In International Conference on Smart Cities, Infrastructure, Technologies and
Applications SCITA 2017: Smart societies, Infrastructure, Technologies and Applications, pp.
111–122 (2018)

34. AL-Smadi, M., Qawasmeh, O.: Knowledge-based approach for event extraction from Arabic
Tweets. Int. J. Adv. Comput. Sci. Appl. 7(6), (2016)

35. Hasanain, M., Suwaileh, R., Kutlu, T.M., Elsayed, H.A.: EveTAR: building a large-scale multi-
task test collection over Arabic Tweets, arXiv Prepr. arXiv1708.05517., (2017)

36. Alabbas, W., Haider, M., Mansour, A., Epiphaniou, G., Frommholz, I.: Classification of
colloquial Arabic Tweets in real- time to detect high-risk floods. Soc. Media, Wearable Web
Anal. (Social Media), 2017 Int. Conf. IEEE., 2017

37. Aliane, H., Information, T., Guendouzi, A., Mokrani, A.: Annotating events, time and
place expressions in Arabic texts. In Proceedings of Recent Advances in Natural Language
Processing, pp. 25–31. (2013)

54 E. Alomari et al.

38. Alsaedi, N., Burnap, P.: Arabic event detection in social media. In LNCS, vol. 9041, pp. 384–
401 (2015)

39. Alsaedi, N., Burnap, P., Rana, O.: Can we predict a riot? Disruptive event detection using
Twitter, vol. 17, no. 2, (2017)

40. Siddiqui, S., Monem, A.A., Shaalan, K.: Towards improving sentiment analysis in Arabic. In
Advances in Intelligent Systems and Computing, vol. 533, pp. 114–123 (2017)

41. Duwairi, S.R.R.M., Marji, R., Sha’ban, N.: Sentiment analysis in Arabic Tweets. In Informa-
tion and communication systems (icics), 2014 5th international conference on. IEEE, vol. 12,
no. 11 (2014)

42. Duwairi, R.M.: Sentiment analysis for dialectical Arabic. In 2015 6th International Conference
on Information and Communication Systems, ICICS 2015, pp. 166–170 (2015)

43. Abdul-Mageed, M., Diab, M., Kübler, S.: SAMAR: Subjectivity and sentiment analysis for
Arabic social media. Comput. Speech Lang. 28(1), (2014)

44. Rafea, A., Shoukry, A., Rafea, A.: Sentence-Level Arabic sentiment analysis sentence-
level Arabic sentiment analysis. In Collaboration Technologies and Systems (CTS), 2012
International Conference on. IEEE, (2012)

45. Alomari, K.M., Elsherif, H.M., Shaalan, K.: Arabic Tweets sentimental analysis using machine
learning. In International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, pp. 602–610 (2017)

46. Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-Ayyoub, M., Al-Kabi, M.N., Al-rifai, S.:
Towards improving the lexicon-based approach for Arabic sentiment analysis. Int. J. Inf.
Technol. Web Eng. 9(3), 55–71 (2014)

47. Al-Horaibi, L., Khan, M.B.: Sentiment analysis of Arabic Tweets using semantic resources.
Int. J. Comput. Inf. Sci. 12(2), (2016)

48. Al-Hussaini, H., Al-Dossari, H.: A Lexicon-based approach to build service provider reputation
from Arabic Tweets in Twitter, (IJACSA). Int. J. Adv. Comput. Sci. Appl. 8(4), (2017)

49. Al-twairesh, N., Al-khalifa, H., Al-salman, A., Al-ohali, Y.: AraSenTi-tweet: a Corpus for
Arabic sentiment analysis of Saudi tweets. Procedia Comput. Sci. 117, 63–72 (2017)

50. SAP, What is SAP HANA | In Memory Computing and Real Time Analytics, 2016.
51. SAP HANA Web-Based Development Workbench - Introduction to SAP HANA Development

- SAP Library.
52. SAP HANA Text Analysis Language Reference Guide, 2016
53. SAP HANA Text Analysis Developer Guide, 2016

Chapter 3
Automatic Detection and Validation
of Smart City Events Using HPC
and Apache Spark Platforms

Sugimiyanto Suma, Rashid Mehmood, and Aiiad Albeshri

3.1 Introduction

Smart city developments are driving an unprecedented growth and innovation in
everyday life, urban, rural, and elsewhere. Big data, high performance computing
(HPC), and machine learning technologies are playing a key role in supporting
smart city and society systems and applications. There is a need to sense the
cities and other environments at micro-levels, to make intelligent decisions, and
to take appropriate actions, all within stringent time bounds. Social media have
revolutionized our societies and are gradually becoming a key pulse of smart
societies by sensing the information about the people and their spatio-temporal
experiences around the living spaces. All these developments together are driving
the growth of data generation, i.e., the big data dimension. The management of
various devices, sensors, and other entities, as well as the data generated by these
entities, is an essential requirement. HPC and machine learning, together with big
data are enabling the data management and the development of smart infrastructure
to support smart cities and societies.

One of the key functions in smart cities and societies is the automatic detection of
interesting events. Detecting an event is important in finding out what is happening

S. Suma (�)
Division of Data, Department of Engineering, Kumparan, Jakarta Selatan, Indonesia
e-mail: sugimiyanto.sugimiyanto@kumparan.com

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

A. Albeshri
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: aaalbeshri@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_3&domain=pdf
mailto:sugimiyanto.sugimiyanto@kumparan.com
mailto:RMehmood@kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_3

56 S. Suma et al.

in the city for decision-making or future planning purposes. Compared with sensor-
based event detection, analyzing social media data such as twitter is a cost-effective
way to detect events. Sensor-based detection analyzes traffic data collected from
the installed sensors and cameras in certain places. It is costly and requires long-
term planning due to the hardware procurement and network installation, among
other things. In addition, the number of installed measurement instruments limits
the detection coverage. Social media event detection has wider coverage, and is
more efficient in terms of resources. However, they both have their pros and cons
and could complement each other in terms of the convenience of event detection
and information coverage.

In this paper, we continue our work on using twitter for the detection of spatio-
temporal events in London. Specifically, we use big data, HPC, and AI platforms
including Spark [1], and Tableau [2], to study twitter data about London. This
paper extends our earlier work presented in [3, 4]. In [3], we had introduced our
preliminary work on the use of social media for the detection of spatio-temporal
events related to logistics and planning. In [4], we had improved on our data
analytics architecture by implementing machine learning for contextual analysis
awareness using Apache Spark MLlib. We use technologies that integrate big data
and high performance computing (HPC) to improve performance of the event
detection system. Big data and HPC convergence is an emerging area of research,
see e.g., [5]. We use Apache Spark for parallel data processing, which is installed
on top of the Aziz supercomputer [6]. We utilize the parallel file system FEFS
system [7] for high-speed data distribution between the distributed Spark nodes.
Moreover, we use the Google Maps Geocoding API [8] to locate the tweeters and
make additional analysis.

We find and locate congestion around the London city. We also empirically
demonstrate that events can be detected automatically by analyzing data. We detect
the occurrence of multiple events including “Underbelly festival” [9] and “The
Luna Cinema” [10]. Underbelly festival was located at south bank, while The Luna
Cinema was located in multiple places including around Greenwich Park, Crystal
Palace Park, and National Trust-Morden Hall Park. As well as, we detect the London
Notting Hill Carnival 2017 event [11, 12]. This is located around Notting Hill as
it was the location of Notting Hill carnival, the Europe’s biggest street festival
which was organized by London Notting Hill carnival enterprises trust. We detect
those event’s locations and times, without any prior knowledge of the event. The
results presented in the paper have been obtained by analyzing over three million
tweets. This paper makes the following specific enhancements over our earlier work
[3, 4].

• Provides a comparison of three machine learning methods, support vector
machine, logistic regression, and Naïve Bayes for event detection purposes using
various performance metrics.

• Introduces an enhanced methodology to automatically validate the factuality of
the detected events, i.e., to confirm that the events which were detected by our
system did actually happen at the detected time and place.

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 57

• Provides an extended literature review.
• Elaborates on the methodology and architecture of the event detection and

validation system and provides algorithms for the main components of the
proposed system.

While researchers have studied social media based event detection in the recent
past, the use of Apache Spark for social media based event detection has not been
found in the literature. The specific data, its analysis, and event detection and
validation proposed in our work also make our contributions novel.

The rest of the paper is organized as follows. Section 3.2 reviews the relevant
literature. Section 3.3 introduces the design and methodology for the proposed event
detection system. Section 3.4 provides a discussion on the results and analysis.
Section 3.5 concludes the paper and gives future research directions.

3.2 Literature Review

Smart cities “provide the state of the art approaches for urbanization, having
evolved from the developments carried out under the umbrella of knowledge-based
economy, and subsequently under the notion of digital economy and intelligent
economy” [13]. Smart society is an extension of the smart cities concept, “a
digitally enabled, knowledge-based society, aware of and working towards social,
environmental, and economic sustainability” [13]. Many new smart city applications
are being developed, see e.g., knowledge learning and management [13], green
computing [14], future applications [15], healthcare and life sciences [16–19], smart
farming [20], disaster management [21], autonomous driving [22], and IoT-based
smart applications [23].

Big Data refers to the “emerging technologies that are designed to extract value
from data having four Vs characteristics; volume, variety, velocity, and veracity”
[24]. Big data technologies are being used in many application areas, see e.g.,
[25–27].

Detecting events is an important area of research in many fields, such as
in distributed systems [28] and eLearning [29]. Mobility and transportation (an
important area of focus for event detection in this paper) is a key dimension of
smart city designs and operations [30]. Many approaches have been proposed to
address transportation challenges and develop smart transportation infrastructures,
see e.g., autonomic transport systems [31–33], vehicular networks (VANETs) and
systems [34–37], emergency management system [38–40], simulations [41, 42],
urban logistics [25, 43, 44], big data [25–27], location-based services [45], and
social media based approaches [3, 4].

Research for smart cities using big data analytics is becoming increasingly
important. Rahman et al. proposed a forecasting system to predict the amount
of power required by cities at a rate close to the electricity consumption in the
United States [46]. Khan et al. developed a prototype analytics as a cloud service,
for managing and analyzing big data in smart cities [47]. Herrera-Quintero et al.

58 S. Suma et al.

combined big data and IoT to support transportation planning system for Bus Rapid
Transit (BRT) systems [48]. Kolchyna et al. predicted spikes in sales by detecting
twitter events of 150 million tweets [49]. In order to enable smarter cities with
enhanced mobility information, Arfat et al. [50] proposed an architecture for smart
city as a mobile computing system with big data technologies, fogs, and clouds.

Researchers have addressed data management and analysis in the past. Garcia
et al. [51] reviewed data preprocessing methods, the definitions, categorization,
and characteristics. They also discussed research challenges on developments on
different big data frameworks such as Hadoop, Spark, and Flink. Fang & Zhan
[52] proposed a general process for sentiment polarity categorization which aims to
classify positive or negative users sentiment. Event detection cases were conducted
using various methods. Hu et al. [53] proposed event detection techniques for social
networks (interaction call and mail) according to link prediction. Ma et al. [54]
proposed multimedia event detection approach which exploits the external concepts-
based videos and event-based videos simultaneously. Rao et al. [55] developed a
probabilistic detection of crowd events with various categories (running, walking,
splitting, merging, and evacuation) by analyzing video data.

For spatio-temporal event detection purposes, exploiting social media data could
complement traditional method using installed sensors and cameras. There have
been a number of works analyzing social media data for detecting event. Doulamis
et al. [56] proposed an approach for event detection in Twitter dataset using
fuzzy technique. Events are detected through a multi-assignment graph partitioning
algorithm and were performed on python system. Gu et al. [57] developed a real-
time detector of traffic incident with five categories, including occurring events.
It applies semi-Naïve Bayes classification. Nguyen and Jung [58] proposed an
approach for early event identification, by combining content-based features from
the social text data and the propagation of news between viewers. Unankard et al.
[59] identified strong correlations between user location and event location to detect
emerging hotspot events.

Wang [60] combined visual sensors (cameras) with social sensors (twitter
feeds) to detect events. Image processing is applied to detect abnormal patterns
indicating occurring events. Kaleel and Abhari [61] proposed an algorithm to detect
interesting events by matching its keywords on cluster labels of tweet (clustering).
Subsequently, trend is based on time, geo-locations, and cluster size. Tonon et al.
[62] focused on detecting events related to natural disasters and terrorist activity
using Twitter data. Pandhare et al. [63] have classified tweets to distinguish whether
or not the tweets are related to traffic.

There are several other event detection works related to road traffic [64–66];
however, none of them use big data technologies and they use different analysis
technique. While researchers have studied social media based event detection in the
recent past, the use of Apache Spark for social media based event detection has not
been properly investigated in the literature. The specific big data, focus detection, its
analysis, and the event detection method and workflow presented in this paper also
make the contributions of this paper unique. Note that this paper considers tweets in
English language only. Another similar strand of our work considers event detection
using tweets in Arabic language [67].

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 59

3.3 Methodology and Design

We developed a system architecture to detect spatio-temporal events as shown in
Fig. 3.1. First, we crawl the status message (twitter) according to a predefined
keyword set and a set of social media user accounts, which is relevant to traffic.
Thereafter, we store the crawled data into a data pool. Secondly, we preprocess the
acquired raw data before going to classification learning, where-upon social media
data has lots of noises. It is not standardized, and there are plenty of unnecessary
characters and words. Third, detecting events are using supervised learning for
targeted event (traffic or non-traffic) and word frequency analysis for general events.
Fourth, the detected general events are validated by retrieving information from
the internet. Fifth, both detected events targeted and general are extended to get
more location information. Finally, the events related tweets with spatio-temporal
information are visualized by using a map visualization.

We use Apache Spark platform [1] to do heavy computation with huge data.
Since spark is an in-memory computation platform, spark has better speedup to
process big data in parallel, compared with other parallel data processing such as
Hadoop map reduce. We use spark for data processing and classifier stages. For data
pool, where all machine processors take the acquired data for further processing,
we utilize the power of Fujitsu Exabyte File System (FEFS). It is a parallel file
storage system technology. FEFS is a software for HPC cluster systems, developed
by Fujitsu Ltd. It enables high-speed parallel distributed processing of huge amounts
of transactions [7]. As well as, it has superior features such as actual operational
convenience, system scalability, and high reliability for zero operational downtime
during a long computation. Thus, it contributes to significant improvements in
system performance. Those FEFS and spark technologies are installed on top of
HPC cluster.

Fig. 3.1 Spatio-temporal events detection: the workflow

60 S. Suma et al.

3.3.1 Data Acquisition

We use social media data source (twitter) related to traffic. It is done by defining a set
of keywords and a set of twitter user accounts which tend to post messages relevant
to traffic such as government and media user accounts. Data crawling is performed
by invoking Twitter streaming API through a java-based crawler application. The
acquired data subsequently be stored in a data pool as raw data in FEFS system,
which has been described in Sect. 3.3. Any further data processing will pull raw
data from this pool.

Dataset Structure

The acquired data is in raw JavaScript object notation (JSON) as a Twitter data
format. It is stored in a file system as JSON file extension. In raw format, each status
message contains a bunch of attributes. For our experiment purposes, we use several
selected required attributes for spatio-temporal event detection. The structure of raw
and extended status message is shown in Tables 3.1 and 3.2, respectively.

The illustration of selected fields of raw twitter JSON data is shown in Fig. 3.2.
It is delimited by “|” character for each attribute.

After the data processing, classification, and geo-extender function are applied,
it extends additional attributes for spatio-temporal purposes, in order to easily plot
status message’s location on map visualization, as shown in Table 3.2.

Each attribute is defined as follows:

– Created_at: the time when the status message is posted by user (timestamp).
– Latitude, Longitude: geolocation of status message.
– Text: the message content posted by user.

Table 3.1 Raw status
message data structure

Attribute Length Data type

Created_at 30 Time stamp
Latitude Double
Longitude Double
Text 140 String

Table 3.2 Extended status
message data structure

Attribute Length Data type

Created_at 30 Time stamp
Latitude Double
Longitude Double
Text 140 String
Postal_code 8 String
Type 100 String

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 61

Fig. 3.2 Illustration of raw twitter JSON data

Fig. 3.3 Illustration of processed data after applying data processing, classification, and geo-
extender function

– Postal_code: the postal/zip code of status message, e.g., “SE6.”
– Type: the location type of detected road name from text attribute, e.g., “route,”

“point_of_interest.”

The illustration of data after applying data processing, classification, and geo-
extender function is shown in Fig. 3.3. It is delimited by “|” character for each
attribute.

3.3.2 Data Preprocessing

Data preprocessing is the first action against the acquired data in the data pool.
Since it has a significant impact on accuracy and quality of learning the data by
machine, it is an essential stage in big data analytics workflow [3]. In fact, social
media status text contains lots of noise. It has plenty of unnecessary characters
and words such as URL, user mention, illegal character, e.g., ‘&,’ punctuation, and
stop word. Therefore, the raw data should be preprocessed to clean those up from
outliers and make it standard. We utilize spark SQL and regular expression function
to preprocess the data, by referring to our defined stop word dictionary, which is
adopted from stop word list website [68–70]. Data preprocessing also includes data
extraction and parsing such as “created_at” field as the date time posting to get the
formatted date time, and “coordinates” field as location precision of status message
to get the spatio-temporal information. As well as, tokenization technique is used to

62 S. Suma et al.

Fig. 3.4 Data cleansing and transformation algorithm

transform a set of words or sentences from the tweet into unit pieces called token
using predefined separator including whitespace and punctuations. Furthermore, the
preprocessed data is used to feed supervised machine learning for classification.
Note that we ignore retweet (repost of another user’s post) status message, because,
it contains the same information. Thus, it leads to efficient processing. The result of
data processing is stored back in data pool as cleaned data. Figure 3.4 gives the data
cleansing and parsing algorithm. Figure 3.5 shows the algorithm for tokenization
and stop word removal.

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 63

Fig. 3.5 Algorithm for tokenization and stop word removal

3.3.3 Event Detections

We implemented two types of event detections, they are targeted event and general
event. The targeted events are events which are important and become focus of
detection, such as traffic in our case. Whereas, general event is any event which
occurs at any place and is being discussed in social media corpus. We use supervised
learning to detect targeted event, and word frequency analysis to detect general
events. Furthermore, the result of general event detections is verified by retrieving
information from the Internet, which will be discussed in section Word Frequency
Analysis and Validation.

Supervised Learning

This supervised learning is used to detect targeted events. In our case, it is traffic
event detection which classifies tweet corpus into either traffic-related or non-traffic-
related. We built a supervised model to predict the class.

64 S. Suma et al.

Feature Extraction

Twitter is a text type data which contains sentences. Therefore, we utilize text-
feature extraction (also known as bag-of-words representation) to extract features
from the corpus. The bag-of-words approach treats a piece of text content as a set
of words, and possibly numbers in the text. The process of text-feature extraction
in this thesis is tokenization, stop words removal, and vectorization in a row.
Tokenization and stop words removal have been discussed in Sect. 3.3.2. While
vectorization is the last stage in text-feature extractions, it turns the processed terms
into a vector representation. We use term frequency-inverse document frequency
(TF-IDF) method for feature extraction. TF-IDF is a widely used method in text
mining, which can be used for feature extraction, and perform good result for
learning.

We use the hashing technique (HashingTF), which is available in Spark through
MLlib. It works by mapping a raw word into an index (term) by applying a hash
function. The term frequencies are calculated using the mapped indices. Denote a
term by t, a document by d, and the corpus by D. Term frequency, TF(t,d) is the
number of times that term t appears in the document d, while document frequency
DF(t,D) is the number of documents that contain the term t. If we only use term
frequency to measure the importance, it will lead to over-emphasize terms which
appear very often but carry little information about the document, e.g., “the,” “or,”
and “a.” If a term appears very often in the corpus, it means it does not carry special
information about a particular document [71]. Inverse document frequency (IDF) is
a numerical measure of how much information a term provides. IDF is calculated by
using IDF(t,D) = log|D|/DF(t,D), where |D| denotes the total number of documents
in the corpus. Since logarithm is used, IDF will return 0 if a term appears in all
documents. Thus, the TF-IDF measure is calculated by multiplying TF(t,d) and
IDF(t,D), that is TFIDF(t,d,D) = TF(t,d).IDF(t,D).

Classification

The goal of classification is to predict the categorical labels of a given new input
according to the learning phase in the past. We utilize classification algorithms
to detect specific targeted event such as traffic event detection. We applied a sort
of binary classification, which categorizes the tweets into two classes, traffic-
related or non-traffic-related. In order to get the best model which fits with traffic
event detection purposes, we compared the performance of three classification
models (logistic regression, Support Vector Machine, and Naïve Bayes) as shown in
Table 3.3. The comparison is according to the model evaluation method including
evaluation metrics (prediction accuracy, area under precision and recall, and area
under ROC). The detail of model evaluation methods and result is explained in
section Accuracy Evaluation. Furthermore, the model with best performance will
be used for classifying the real-world twitter data related to London. Figure 3.6
gives the classification algorithm.

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 65

Table 3.3 Performance comparison of three classification models

Model Prediction accuracy Area under PR Area under ROC

SVM 73.395 81.461 74.204
LR 78.734 84.706 78.825
NB 70.721 77.349 71.955

Fig. 3.6 The Classification Algorithm

We use MLlib in Apache Spark to build and train a model using parallel
computing. First, we trained the model with more than 1000 training data with
its labels for learning purposes. Label 1 denotes traffic-related, and label 0 for
non-traffic-related. Secondly, we built and trained three models with default input
parameters. The model learns from the training data, and finds the pattern from
labels of each tweet text in the training data. Thirdly, we evaluate the model’s
accuracy by utilizing cross-validation approach with evaluation metrics using testing
data. Fourthly, using the best selected model, we predict the labels of new tweets
and categorize them into two categories (0 and 1) iteratively. Finally, we filter out
the tweets which are not related to traffic for further processing. Furthermore, we
summarize the data for analysis purposes and to get the insight by applying several
data summaries such as counting number of tweets with hourly basis, and plotting
for displaying location dissemination of traffic events.

66 S. Suma et al.

Accuracy Evaluation

We need to know how well our model performs, especially when dealing with
unseen data. First, we use cross-validation approach to divide the dataset into
training and testing data. Finally, we evaluate the prediction results of testing data
by utilizing evaluation metrics. We compared the performance of three classification
models (logistic regression, support vector machine, Naïve Bayes). Furthermore, we
select the best model to predict the real-world twitter data. We use train–test split
with ratio 80/20 for training set and testing set. It is a good starting point for splitting
technique according to the literature.

Cross-Validation

We use a train–test split, which is one of the cross-validation evaluation approaches.
It is straightforward, yet effective for validation purposes. We divide our dataset into
two non-overlapping parts (training set and testing set). Training set is used to train
our model, whereas testing set or hold-out set is used to evaluate the performance of
our models when dealing with unseen data using evaluation measurement. We use
various training/testing split ratios of the dataset in our experiment. These splitting
ratios include 50/50, 60/40, 70/30, and 80/20 ratios.

Evaluation Metrics

The performance of models when predicting the class/label of testing set (unseen
data) is measured by utilizing evaluation metrics, which is commonly used in binary
classification. The evaluation metrics include prediction accuracy, the area under
the precision-recall curve, and the area under ROC curve (AUC). It is according
to cross-validation using train-test split which was discussed in section Cross-
validation.

Word Frequency Analysis and Validation

We built a workflow as shown in Fig. 3.7. in order to detect general event detections,
as well as the validation of detected events. The used technique is word frequency
analysis. The workflow begins by pulling the cleaned and tokenized data, generating
the most frequent words among the whole tweets yields in a list of event candidates,
checking the validity of each event candidate by scrapping a London government’s
website (london.gov.uk), and finally resulting in a list of occurred events with its
detail, time, and location. The London government website/source is used for proof
of concept purposes. Future work will look into building up a list of resources and
methods for validation. Figure 3.8 gives the master algorithm for the validation of
the detected events.

http://london.gov.uk

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 67

Fig. 3.7 Workflow of general
event detection

Fetch the most
frequent words as
event candidates

Check the
existence of each
event candidates
(london.gov.uk)

Exist?

List of
events with
the details
(time and
location)

T

start

end

F

Cleaned and
tokenized data

The data preprocessing process includes data cleansing (meaningless object
removal, stop word removal) and tokenization. The most frequent words (fw) are
generated by counting each word occurrence (wo) in the tweets collection, then,
sorting them by wo in descending, and picking ten terms in the first list. The first ten
terms are chosen according to the defined threshold n, which represents the number
of wo. If the wo is greater or equal to n, then it is listed in the first ten terms. The
size of n is adjusted until the size of fw is equal to ten. The list of chosen terms in
fw is considered as a list of event candidates (ev).

Furthermore, in order to validate ev, we created two functions, googleSearch (gs)
and webExtractor (wx). The algorithms for these functions are given in Figs. 3.9 and
3.10, respectively. We pass a parameter with pattern “<fw> London <current_year>”
to gs, and gs will invoke google search API to find the pattern as a keyword.
Thereafter, gs returns a list of URLs related to the pattern, if the list contains
london.gov.uk, it means the event exists and has been detected. Finally, function
wx extracts the events information including event name, time, location, ticketing,
and description from london.gov.uk. Therefore, we only detect major events in
London which are listed in london.gov.uk. The functions gs and wx are python-
based program, which is bundled as one function searchScrape (ss), and requires
four input parameters, which are file path of list of fw, the trusted link to get event
information, minimum size of fw, and threshold number of n. The output of ss
function is a list of detected events and its information such as event name, time
(start-end date), event location, tickets, and event description.

http://london.gov.uk
http://london.gov.uk
http://london.gov.uk

68 S. Suma et al.

Fig. 3.8 Validation of the Detected Events: The Master Algorithm

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 69

Fig. 3.9 Google Search Algorithm

Fig. 3.10 The Web Extractor Algorithm

3.3.4 Geo-Extender

In order to find the geographical distribution of traffic status using tweets in the
form of a geographical map, we need to get geographic location of traffic-related
status messages in the form of Cartesian coordinates (latitude, longitude). This
will help in analyzing the tweets and extracting useful information. This process

70 S. Suma et al.

is done by invoking Google Maps Geocoding API. It is a web service provided by
Google Inc. which provides geocoding and reverse geocoding of given addresses
[8]. Geocoding is a process of converting given addresses (i.e., a street address)
into geographic coordinates (latitude, longitude), which can be used to pinpoint a
location of given input on a map, or position on the map. The reverse geocoding
facilitates the opposite. It converts given geographic coordinates into a human-
readable address. Reverse geocoding will provide the detail of location information
of the given point, which is easy to read and understand by humans, such as the
postal code, road name, city, street number, and district.

We take the tweet data and the geo location information including the postal code
as a data source of Tableau. Moreover, we generate several visualization summaries
such as a graph, word cloud, and map. With a graph, we can see the number of tweets
with the time-frequency distribution in order to see the anomaly which indicates
higher traffic than the usual. With word cloud, we can see the most mentioned words
which imply the top hot topics. With a map, we can depict the dissemination of
traffic condition on a particular area. We plot the location spreading and its intensity
of tweets related to the road traffic in London.

3.3.5 Analysis and Visualization

There are many ways to plot geolocation data into a map visualization for analysis
purposes. One of them is by using Tableau software. Tableau is a business
intelligence software which helps people to see and have a better understanding of
their data [2]. It enables users to explore their data with limitless visual analytics. As
well as, it eases user to perform ad-hoc analysis with just a few clicks. We take the
processed and geolocated data as a data source of Tableau; then we generate several
visualization summaries such as a graph, word cloud, and map. With a graph, we
can see the number of tweets with the time-frequency distribution in order to see the
anomaly which indicates, for instance, higher traffic than usual. With word cloud,
we can see the most mentioned words which imply the hot topic. With a map, we
can depict the dissemination of traffic conditions on a particular area.

3.4 Result and Discussion

For experiment purposes, we gathered twitter data between 21st August and 13th
September 2017, represented as hourly data in the range (0, 576). In total, it consists
of three million records of tweet related to our defined keyword. However, after
classification process which aims to filter out non-related traffic tweet, the number
of tweets was reduced to a smaller number. This reduction in the tweet count is
expected, as these status messages are not genuinely related to traffic. Even though
it contains a traffic-related word, it does not mean a road traffic problem. Figure 3.11

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 71

Fig. 3.11 Hourly number of tweets related to traffic in London

shows that the time-frequency distribution of the number of tweets is varied hourly.
The peak hours are around 375th and 500th hours. By looking at this, we get an
indication that there might be an ongoing event occurring at that time which affected
the traffic condition in London.

The location-intensity distribution of the number of tweets related to traffic in
London is shown in Fig. 3.12. Red color level varies the number of distribution. The
higher the intensity of red, the more traffic an area has. The figure shows that the
areas around downtown had more traffic. We assume that an increase in the number
of traffic-related tweets indicates higher intensity of road traffic. Grey color denotes
the areas where we could not get geotagged tweets since not all acquired tweets are
geotagged. There are three main areas with high-intensity traffic (the red color) on
the map. These are in South Bank (shown as 1), around Greenwich park (shown
as 2), around Crystal Palace Park and National Trust-Morden Hall Park (shown
as 3), in Fig. 3.12. The postal codes are SE1, SE10, SE19, and SM4, respectively.

According to the London events calendar [72], in south bank, there has been
an event held, called “underbelly festival.” It has started from 28th April to 30th
September 2017. It was a festival event held by Underbelly, which showcases
cabaret, comedy, live circus, and family entertainment [9]. In another hand, around
Greenwich Park, Crystal Palace Park, and National Trust-Morden Hall Park, there
have been another events, called “The Luna Cinema” [10] running from June to
October 2017. It is an outdoor cinema for citizens or tourist to spend their warm
summer evening watching a new film release or age-old classics.

Moreover, to detect the occurred events automatically, we built a workflow as
described in section Word Frequency Analysis and Validation. By using the ss
function, we retrieved a list of detected events and their information such as event

72 S. Suma et al.

Fig. 3.12 Tweet intensity related to traffic in London

Fig. 3.13 Details of a detected event

name, time (start-date and end-date), event location, tickets, and event description.
This is shown in Fig. 3.13. for the Notting Hill Carnival event.

In conclusion, we detected an event by a term “carnival,” which is among the
most frequent words. The event name is called “Notting Hill Carnival 2017.” The
location spreading of tweets related to the carnival are shown in Fig. 3.14. Most of
the tweets come from one area, as shown by the red color intensity in the figure.
By inspecting this circumstance, we can infer that there was an event related to the
carnival on that area. This red color area lies around Notting Hill London, and was
the location of Notting Hill carnival [12], the Europe’s biggest street festival which
is organized by London Notting Hill carnival enterprises trust.

The daily frequency distribution of the number of tweets about the carnival is
shown in Fig. 3.15. We can see that the peak is on the 28th August, while it is
increasing gradually from 26th August and decreasing by the 30th August. By
observing this phenomenon, we can conclude that around those dates, there was
an event related to a carnival. The carnival event was held on 26th–28th August
2017 in London [12].

This information about the event was detected automatically without any prior
knowledge of the event, its location and time.

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 73

Fig. 3.14 Tweet intensity related to Notting Hill carnival in London

Fig. 3.15 Number of tweets in the period related to Notting Hill carnival in London

74 S. Suma et al.

3.5 Conclusion

Social media have revolutionized our societies and are gradually becoming a key
pulse of smart societies by sensing the information about the people and their spatio-
temporal experiences around the living spaces. Analyzing social media data such
as twitter has become a cost-effective way to detect events, by utilizing big data
technologies such as spark, FEFS, and tableau. In this paper, we use Twitter for the
detection of spatio-temporal events in London. Specifically, we use big data and AI
platforms including Spark, and Tableau, to study twitter data about London.

We have empirically demonstrated that events can be detected automatically
by analyzing Twitter data. We detect the occurrence of multiple events including
“Underbelly festival” and “The Luna Cinema.” The Underbelly festival was located
at South Bank, while The Luna Cinema was located in multiple places including
around Greenwich Park, Crystal Palace Park, and National Trust-Morden Hall
Park. We have also detected the London Notting Hill Carnival 2017 event, the
Europe’s biggest street festival which was organized by London Notting Hill
carnival enterprises trust. This was located around Notting Hill [12]. We have
detected the locations and times of these events automatically, without any prior
knowledge of the events. The results presented in the paper have been obtained
by analyzing over three million tweets. The textual analysis of the tweets was
used to ensure that the tweets are truly related to the road traffic. We have also
used the integration of big data technologies with HPC to enhance scalability and
computational intelligence.

This paper has made the following specific enhancements over our earlier work
[3, 4]. It has provided a comparison of three machine learning methods, support
vector machine, logistic regression, and Naïve Bayes for event detection purposes
using various performance metrics. It has introduced an enhanced methodology
to automatically validate the factuality of the detected events. The validation
methodology is used to confirm that the events, which were detected by our system,
did actually happen at the detected time and place. This paper elaborates on the
methodology and architecture of the event detection and validation system and
provides algorithms for the main components of the proposed system. Moreover,
an extended literature review has been added to this paper.

We have improved the data management and processing methodology compared
to the earlier versions. However, it still needs improvements to have better detection
accuracy, wider spatio-temporal detection, and better quality of analysis. For
better detection accuracy, we plan to continue to enhance our automatic validation
methodology and compare the result with actual information by associating it with
events reporting such as news or media websites. For wider spatio-temporal event
detection, we would consider additional social media data such as Facebook. For
better quality of analysis, we hope to utilize better AI techniques.

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 75

Acknowledgments The authors acknowledge with thanks the technical and financial support from
the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-651-611-38. The experiments reported in this paper were
performed on the Aziz supercomputer at KAU.

References

1. Apache Software Foundation: Apache Spark, https://spark.apache.org/
2. Tableau: What Is Tableau - Make Your Data Make an Impact, https://www.tableau.com/trial/

tableau-software
3. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation

logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)
4. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big data

analytics. In: International Conference on Smart Cities, Infrastructure, Technologies and Appli-
cations SCITA 2017: Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, Volume 224. pp. 111–122. Springer, Cham
(2018)

5. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge and
outlook. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 11–26. Springer, Cham (2018)

6. Aziz Supercomputer. Top500, https://www.top500.org/site/50585
7. Fujitsu Ltd.: Fujitsu Releases World’s Highest-Performance File System, http://

www.fujitsu.com/global/about/resources/news/press-releases/2011/1017-01.html
8. Google Inc.: Getting Started | Google Maps Geocoding API | Google Developers, https://

developers.google.com/maps/documentation/geocoding/start
9. Underbellyfestival.com: About underbelly festival, http://www.underbellyfestival.com/about

10. The Luna Winter Cinema 2018, https://thelunacinema.com/
11. Wikipedia: Notting Hill Carnival, https://en.wikipedia.org/wiki/Notting_Hill_Carnival
12. London.gov.uk: Notting Hill Carnival 2017, https://www.london.gov.uk/events/2017-08-26/

notting-hill-carnival-2017
13. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn: a

personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 3536,
1–22 (2017)

14. Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for
future cities: characterizing the impact of GPS signal strength on power consumption. IEEE
Access. pp, 1–1 (2016)

15. Graham, G., Mehmood, R.: The strategic prototype “crime-sourcing” and the science/science
fiction behind it. Technol. Forecast. Soc. Change. 84, 86–92 (2014)

16. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud
computing for healthcare applications. In: 2016 IEEE Global Communications Conference
(GLOBECOM). pp. 1–6. IEEE (2016)

17. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities, (2018)

18. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
207–215. Springer, Cham (2018)

19. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 216–231 (2018)

https://spark.apache.org/
https://www.tableau.com/trial/tableau-software
https://www.top500.org/site/50585
http://www.fujitsu.com/global/about/resources/news/press-releases/2011/1017-01.html
https://developers.google.com/maps/documentation/geocoding/start
http://underbellyfestival.com
http://www.underbellyfestival.com/about
https://thelunacinema.com/
https://en.wikipedia.org/wiki/Notting_Hill_Carnival
http://london.gov.uk
https://www.london.gov.uk/events/2017-08-26/notting-hill-carnival-2017

76 S. Suma et al.

20. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp.
247–257. Springer, Cham (2018)

21. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 139–154 (2018)

22. Alam, F., Mehmood, R., Katib, I.: D2TFRS: An object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST. pp.
155–168. Springer, Cham (2018)

23. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, Volume 224. pp. 169–184. Springer, Cham
(2018)

24. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

25. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

26. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp.
323–336. Springer, Cham (2018)

27. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence
of Big Data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag.
Forthcomin, (2016)

28. Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive
debugging. In: Proceedings - IEEE/ACM International Workshop on Grid Computing. pp. 186–
193 (2005)

29. Adamson, M.K., Mehmood, R.: Developing event based hierarchical middleware for E-
learning. In: Miguel Baptista Nunes and Maggie McPherson (series editors: Piet Kommers,
P.I. and N.-S.C. (ed.) Proceedings of the IADIS International Conference on e-Learning (e-
Learning 2007). pp. 284–291. IADIS, Lisbon, Portugal (2007)

30. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: Some socio-technical challenges and opportunities. In:
Communications Infrastructure. Systems and Applications in Europe, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST 16. pp. 140–152 (2009)

31. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0. In: Intelligent Transportation Systems – Problems and Perspectives,
Volume 32 of the series Studies in Systems, Decision and Control. pp. 3–35. Springer
International Publishing (2016)

32. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50–62 (2015)

33. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013, pp. 201–210.
Springer International Publishing, Ingolstadt, Germany (2014)

3 Automatic Detection and Validation of Smart City Events Using HPC. . . 77

34. Mehmood, R., Nekovee, M.: Vehicular AD HOC and grid networks: Discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555–
1562 (2007)

35. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad hoc
networks. (2013)

36. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: a two-pronged
approach. In: 7th IEEE International Symposium on Communication Systems, Networks and
Digital Signal Processing, CSNDSP 2010. pp. 401–405 (2010)

37. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: Lecture notes
in computer science (including subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics), LNCS Volume 6596,. pp. 216–223 (2011)

38. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM international workshop
on Wireless and mobile technologies for smart cities - WiMobCity ’14. pp. 1–10. ACM Press,
New York, New York, USA (2014)

39. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: an
intelligent cloud based disaster management system for vehicular networks. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, Volume 7266. pp. 40–56. Springer, Vilnius, Lithuania (2012)

40. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673–678 (2014)

41. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality simula-
tions. In: 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
pp. 411–416 (2009)

42. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793–1799 (2007)

43. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

44. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics
prototyping: a technical viewpoint. Supply Chain Manag. 20, 341–352 (2015)

45. Ayres, G., Mehmood, R.: LocPriS: a security and privacy preserving location based services
development framework. (2010)

46. Naimur Rahman, M., Esmailpour, A., Zhao, J.: Machine learning with big data an efficient
electricity generation forecasting system. Big Data Res. 5, 9–15 (2015)

47. Khan, Z., Anjum, A., Soomro, K., Tahir, M.A.: Towards cloud based big data analytics for
smart future cities. J. Cloud Comput. 4, 1–11 (2015)

48. Luis Felipe Herrera-Quintero, Klaus Banse, Julian vega-Alfonso, A.V.-S.: Smart ITS Sensor
for the transportation Planning using the IoT and Bigdata approaches to produce ITS cloud
services. 3–9

49. Kolchyna, O., Treleaven, P.C., Aste, T.: A framework for Twitter events detection, differentia-
tion and its application for retail brands. (2016)

50. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through Mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

51. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing:
methods and prospects. Big Data Anal. 1, 9 (2016)

52. Fang, X., Zhan, J.: Sentiment analysis using product review data. J. Big Data. 2, 5 (2015)
53. Hu, W., Wang, H., Peng, C., Liang, H., Du, B.: An event detection method for social networks

based on link prediction. Inf. Syst. 71, 16–26 (2017)
54. Ma, Z., Yang, Y., Sebe, N., Zheng, K., Hauptmann, A.G.: Multimedia event detection using a

classifier-specific intermediate representation. IEEE Trans. Multimed. 15, 1628–1637 (2013)
55. Rao, A.S., Gubbi, J., Marusic, S., Palaniswami, M.: Crowd event detection on optical flow

manifolds. IEEE Trans. Cybern. 46, 1524–1537 (2015)

78 S. Suma et al.

56. Doulamis, N.D., Doulamis, A.D., Kokkinos, P., Varvarigos, E.M.: Event detection in twitter
microblogging. IEEE Trans. Cybern. 46, 2810–2824 (2016)

57. Gu, Y., Sean, Z., Chen, F.: From twitter to detector : real-time traffic incident detection using
social media data. Transp. Res. Part C Emerg. Technol. 67, 321–342 (2016)

58. Nguyen, D.T., Jung, J.E.: Real-time event detection for online behavioral analysis of big social
data. Futur. Gener. Comput. Syst. 66, 137–145 (2017)

59. Unankard, S., Li, X., Sharaf, M.A.: Emerging event detection in social networks with location
sensitivity. World Wide Web. 18, 1393–1417 (2015)

60. Wang, Y., Kankanhalli, M.S.: Tweeting cameras for event detection categories and subject
descriptors. Int. World Wide Web Conf. Comm. 1231–1241 (2015)

61. Kaleel, S.B., Abhari, A.: Cluster-discovery of twitter messages for event detection and
trending. J. Comput. Sci. 6, 47–57 (2015)

62. Tonon, A., Cudré-Mauroux, P., Blarer, A., Lenders, V., Motik, B.: ArmaTweet: detecting events
by semantic tweet analysis. In: Proc. of the 14th extended semantic web conference (ESWC).
pp. 138–153. Springer, Champions (2017)

63. Pandhare, K.R., Shah, M.A.: Real Time Road Traffic Event Detection Using Twitter and Spark.
Int. Conf. Inven. Commun. Comput. Technol. 2017, 445–449 (2017)

64. D’andrea, E., Ducange, P., Lazzerini, B., Marcelloni, F.: Real-time detection of traffic from
twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 16, (2015)

65. Hou Lei, K., Khadiwala, R., Chen-Chuan Chang, K.: TEDAS: a Twitter based event detection
and analysis system. (2012)

66. Gutierrez, C., Figuerias, P., Oliveira, P., Costa, R., Jardim-Goncalves, R.: Twitter mining for
traffic events detection. In: 2015 Science and Information Conference (SAI). pp. 371–378.
IEEE (2015)

67. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST. pp. 98–110. Springer, Cham (2018)

68. Ranks.nl: stopwords, http://www.ranks.nl/stopwords
69. Lextek.com: Stop Word List 1, http://www.lextek.com/manuals/onix/stopwords1.html
70. Github.com/Alir3z4: stop-words, https://github.com/Alir3z4/stop-words/blob/master/

english.txt
71. Spark, A.: Apache Spark - Feature Extraction and Transformation - RDD-based API, https://

spark.apache.org/docs/2.2.0/mllib-feature-extraction.html#tf-idf
72. Visitlondon.com: London Events Calendar, http://www.visitlondon.com/things-to-do/whats-

on/special-events/london-events-calendar#KRbiWhui4SMAd9PT.97

http://www.ranks.nl/stopwords
http://lextek.com
http://www.lextek.com/manuals/onix/stopwords1.html
http://github.com/Alir3z4
https://github.com/Alir3z4/stop-words/blob/master/english.txt
https://spark.apache.org/docs/2.2.0/mllib-feature-extraction.html#tf-idf
http://visitlondon.com
http://www.visitlondon.com/things-to-do/whats-on/special-events/london-events-calendar#KRbiWhui4SMAd9PT.97

Chapter 4
In-Memory Deep Learning Computations
on GPUs for Prediction of Road Traffic
Incidents Using Big Data Fusion

Muhammad Aqib, Rashid Mehmood, Ahmed Alzahrani, and Iyad Katib

4.1 Introduction

Road transportation is the backbone of modern economies. Unfortunately, every
year 1.25 million people die due to road traffic crashes around the globe, equaling a
shocking 3400 deaths/day, or 2 deaths/min [1]. Another 20–50 million people suffer
injuries annually due to road traffic collisions and many of these incur disability as
a consequence of their injuries [1]. These incidents cause great socio-economic and
environmental damages globally [2]. Road traffic collisions are the leading cause
of deaths of young people aged 15–29 years. Half of the road traffic deaths are
of people aged 15–44 years. Certainly, the human loss is the major element here
which negatively affects individuals and families, their mental states, motivations,
energies, and well-being. Children in broken families are susceptible to becoming
criminals or subjects of crimes. The death of family members is likely to affect
financial circumstances of the families, depriving children good education and
upbringing. These deaths also make our nations lose skills and increase the burden
on the social security system.

Road collisions are also a major cause of sudden and unexpected congestion on
the road networks. INRIX Research has conducted the biggest study on congestion
costs based on the data acquired by 300 million vehicles and devices from 1360

M. Aqib · A. Alzahrani · I. Katib
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: mpervez@stu.kau.edu.sa; asalzahrani@kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood (�)
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_4&domain=pdf
mailto:mpervez@stu.kau.edu.sa
mailto:asalzahrani@kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_4

80 M. Aqib et al.

cities in 38 countries during 2017 [3]. The study revealed that Los Angeles was the
worst congested city globally where drivers spent 102 peak hours in congestion,
equaling an average of 12% of their total drive time, and the congestion in the city
costing $19.2 billion to the drivers and the US economy. The cost of congestion
in New York was the highest at $33.7 billion for any single city in the world. The
total congestion cost across the US, UK, and Germany was about $461 billion. The
cost of congestion to the US economy, alone, exceeded $305 billion. According
to a Texas Transportation report [4], 2.9 billion gallons of fuel was wasted in the
USA alone during 2012 due to traffic congestion. Traffic congestion also causes air
pollution that damages public health and the planet environment [5].

Traffic congestion could be recurrent or nonrecurrent [6]. It could be caused
by a demand exceeding the road capacity (e.g., during peak hours) or it is due to
different types of incidents or events on the roads such as roadworks. Accidents and
crashes are considered a key source of nonrecurrent congestion in up to 60% of the
congestion cases on the road networks [7] and these types of congestion are difficult
to manage due to their abrupt nature.

Reducing the number of road collisions and better managing their aftermath are
of paramount importance to avoid or minimize deaths, injuries, congestion, and
other socio-economic losses and environmental damages. One approach to avoid
and minimize losses is to automatically predict road traffic incidents and crashes
either before they happen or as soon as possible afterward. Traffic management
authorities use the so-called incident management systems to manage the situations
during and after the incidents. Traffic incident management (TIM) is one such
planning process that defines a clearance time between the occurrence of the
incident and the removal of all the vehicles, etc., from the incident scene [8].

Many researchers have attempted to address the road incident prediction and
management problem. Simulations and modeling have been widely used in the
past for event detection on the roads or to foresee the impact of certain events,
see, e.g., [9–13]. Several works have emerged in the recent years that use artificial
intelligence (AI) and data mining techniques to analyze real road traffic data and
predict future traffic characteristics, such as flow, speed, and occupancy [14–20].
Various AI techniques have also been applied to road traffic data for incident
prediction [21–23]. Moreover, incident data has been used to predict the duration,
spatiotemporal impact, and cost of the incidents by analyzing the incident data [24–
34].

Smart infrastructure developments have accelerated the pace of technological
advancements and the penetration of these technologies to all spheres of everyday
life including transportation [35–39]. The use of GPS devices and mobile signals
to collect vehicle location and congestion data, the use of big data [40–42]
and high performance computing (HPC) [40, 42–44] technologies, cloud and fog
computing [45–49], image processing and artificial intelligence (AI) for traffic
analysis, urban logistics prototyping [50], vehicular ad hoc networks [46, 51–54],
autonomous driving [55], autonomic transportation systems [56–58], and the use of
social media for traffic event detection [59–61] are but a few examples.

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 81

This paper brings together transport big data, deep learning, in-memory comput-
ing, and GPU computing to predict traffic incidents on the road, thereby providing a
novel and comprehensive approach toward large-scale, faster, and real-time incident
prediction. Big data refers to the “emerging technologies that are designed to
extract value from data having four Vs characteristics; volume, variety, velocity
and veracity” [62]. GPUs provide massively parallel computing power to speed
up computations. Big data leverages distributed and high performance computing
(HPC) technologies, such as GPUs, to manage and analyze data. Big data and
HPC technologies are converging to address their individual limitations and exploit
their synergies [63]. In-memory computing allows faster analysis of data by the
use of random access memories (RAMs) as opposed to the secondary memories.
Deep learning is a branch of machine learning that uses hierarchical architectures to
learn high-level abstractions in the data [64]. Different deep learning approaches are
used to train the models for different purposes including convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), restricted Boltzmann machines
(RBMs), auto-encoders, and more.

We have fused together three different kinds of datasets to predict road traffic
incidents. The road traffic dataset provides 5-min interval traffic data on the
freeways. It includes vehicle flow, speed, occupancy, the ID of the vehicle detector
station (VDS), and other data. The VDS dataset provides data about the vehicle
detector stations on the freeways including the identification number of each VDS,
location, length, and other attributes. The incident dataset provides information
about the recorded incidents. It includes ID of the incident, its location, type,
timestamp, duration, and other data about the incidents. The data is acquired from
the California Department of Transportation (Caltrans) Performance Measurement
System (PeMS) [65].

The fused dataset is used for the training of deep convolution neural networks.
Different combinations of the dataset along with different network configurations
of the deep learning model are used for training and prediction. The data fusion
methodology is explained in detail along with the algorithms. We have analyzed
over 10 years of PeMS road traffic data. This work-in-progress paper reports
incident prediction results using 3 months’ data, September to November 2017.
Conclusions are drawn from the current status of the results and ideas for future
improvements are given. This paper does not give details of the system architecture,
and big data, in-memory, and GPU computing aspects of our software due to the
space limitations. These details along with the system architecture can be found in
our earlier paper [44] and another chapter to appear in this book [66].

The rest of the paper is organized as follows: Sect. 4.2 discusses the work related
to this paper. A detailed discussion on the research methodology including the input
dataset and deep model is given in Sect. 4.3. Performance evaluation and analysis of
the proposed system are detailed in Sect. 4.4. Section 4.5 concludes this paper and
provides future directions.

82 M. Aqib et al.

4.2 Literature Review

In this section we will review the work done in the area of incident prediction in
recent years. This includes the work done in traffic behavior modeling using big
traffic data, approaches for prediction of traffic behavior and incident prediction
using deep learning or other modeling techniques, and the work done by researchers
to model the impact of incidents in terms of congestion, travel time variability, etc.,
by using different techniques.

An incident detection method using vehicles data collected by GPS is proposed in
[9]. In this work, the vehicles data during the incidents has been collected by probe
vehicles which are equipped by the GPS. They have proposed incident detection
algorithms that are used for the prediction of incident by analyzing the collected
traffic data during the incidents. The proposed algorithm is able to predict the
spatial and temporal details about the traffic congestion that was caused due to
the incident. Performance of the proposed method is measured by analyzing the
vehicles flow in the outbound direction and a traffic flow simulator has been used
for this purpose. The results presented in terms of incident detection rate and false
alarm rate are better than the other methods, but, still, it has shortcomings that limit
the scope and worthiness of the proposed approach. The authors have predicted the
traffic congestion and have considered that it is in result of some incident on the
road which is not true in general because incident is not the only cause of traffic
congestion. Also the error rate calculated by using the defined formula is very high
and sometimes more than 50%. The results have been compared with the simulation
results instead of using the actual vehicles data on selected road network.

GPS data has also been used in [10] for the detection of traffic congestion and
incidents. In this work, GPS data is collected from the driver’s devices and the
accessed GPS traces are used to identify the congestion on the road. Threshold
values have been defied to categorize the traffic flow as congested or normal flow.
This work uses a dataset of 24 incidents in total and simulation results have been
used for analysis purpose. This could also be considered as a congestion prediction
work that is capable of classifying the traffic into slow or very slow categories. Also,
due to the very small dataset, where simulation results have been evaluated instead
of using the real traffic dataset, traffic flow status results cannot be used as the key
information so that it could be used to predict the occurrence of an incident.

In another work by Oskarbski et al. [11], telematics has been used for the
prediction of incidents on the road intersections. They have discussed ad urban
transport management system and have presented some simulation results obtained
by selecting some features from the data and to detect the incidents on the road
junctions which are equipped with the signals and working on the data that could
lead them toward the incident prediction on the junctions and on the road networks.

In incident detection work, some methods have been proposed that are not
directly related with the incident prediction but those could be used to analyze and
predict the impact of incidents. Hojati et al. [30] present an approach to model the
incident duration and its recovery time. Similarly, in [67], an approach has been

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 83

proposed to model the impact of incidents on travel time. Spatiotemporal impact
of traffic incidents on road network has been predicted in [31]. A framework to
estimate the variations in the travel time due to incidents has been proposed in [34].
So, a lot of work has been done in this area that deals with the incidents in terms of
its impact on the road networks, travel time, etc. In [24], the authors have reviewed
the methods that have been proposed to predict the traffic incidents duration by
analyzing the incidents data.

In [21], the authors have proposed a dynamic Bayesian network approach to
predict the crashes on highways in real-time by using the traffic speed conditions
data. In this work, the relation between the crash incidents and the traffic states has
been established, so that it could be used to predict the possibility of crashes on
highways. Traffic states on the crash site have been divided into the upstream and
downstream states. Here upstream is the state just before the crash and downstream
is the state just after the crash in traffic flow direction. A vehicle speed threshold
of 45 km/h was defined to identify the free flow (FF), i.e., traffic state is FF if the
vehicles average speed is above 45 km/h. Average speed below 20 km/h identifies
the jam flow (JF) and it is considered congested traffic (CT) if the flow is between
the FF and JF threshold values. By using these three states values, nine combinations
(upstream and downstream) have been defined to identify the occurrence of crashes
in those states combinations. Crash reports data used in this work includes 551
records where 411 records were used for training and the remaining 140 records
were used for the testing purpose. A confusion matrix was created to see the
results. Several metrics based on the confusion matrix data were used to analyze
the prediction results. Best DBN accuracy reported in this work is 76.4% where the
false alarm rate reported in this case is 23.7%.

The authors in [68] have proposed a Bayesian structure equation model to predict
the secondary incidents on the freeways. By analyzing the non-recurring congestion
situations on the roads, their model identifies the road segments where there is the
possibility of incidents. For this purpose, they use a boxplot and the area under
that plot shows the area where there is traffic congestion and it could cause an
incident. Bayesian neural networks (BNN) have been implemented and its results
were compared with the logistic regression model. Hojati et al. in [67] have worked
on the traffic incidents by modeling their impact on the travel time. They have used
historic traffic data and nonrecurrent congestion has been identified by analyzing
the vehicles speed data.

Traffic incidents detection work has done by using the data source other than the
traffic data as well. Some researchers have used social media data, e.g., Twitter
data, and by analyzing the tweets in a particular area, they have predicted the
occurrence of road and other incidents [69–73]. In [59], the authors have presented
an approach to detect events by analyzing Twitter data. In this work, they have
collected Twitter data for a specific period of time (days) having some specific
keywords. For example, they have collected Twitter data to analyze the traffic flow in
the UK by using some traffic related keywords and by the number of tweets falling
in that criteria. They have done this in some specific region to identify some traffic
problems (e.g., high density). They have concluded that the increased number of

84 M. Aqib et al.

tweets regarding traffic gives insight of some traffic problems in that area. The work
is further extended in [60]. In another work [61], a similar analysis approach has
been adopted to detect the traffic conditions on the roads in Jeddah city.

4.3 Methodology

In this section, we will give details about the methodology used in this work. This
includes detailed discussion about the input dataset and the deep learning models
used to predict the incidents on the road network. First, we have given an overview
of the PeMS incident dataset and the terms used in this data. In the next section, we
have discussed in detail the datasets used in this work and the process to parse these
datasets to be used as an input to the deep learning algorithm At the end, we have
given details about the deep learning model used for the prediction purpose in this
work. Algorithm 1 gives the overall work-flow of incident prediction work.

Algorithm 1 Incident detection main algorithm
Input: Vehicles and Incident Data.
Output: Predicted Incidents.
1: raw_inc_data ← load_incident_data

2: vds_list_all ← load_I5N_vds_data

3: vehicle_data ← load_vehicles_data

4: if incident_data is parsed then
5: inc_prsd_dt ← load_parsed_data

6: if deep_model is trained then
7: pred_incidents ← MakeP redictions(model_trained)

8: else
9: model_conf ← load_model_conf ig()

10: model_trained ← T rainModel(inc_prsd_dt, model_conf)

11: pred_incidents ← MakeP redictions(model_trained)

12: end if
13: else
14: inc_prsd_dt ← ParseIncidentsData(raw_inc_data, vds_list_all, vehicle_data)

15: model_conf ← load_model_conf ig()

16: model_trained ← T rainModel(inc_prsd_dt, model_conf)

17: pred_incidents ← MakeP redictions(model_trained)

18: end if
19: return pred_incidents

4.3.1 Input Data Collection

In this section, we will give some details about the input incidents dataset which we
have collected from PeMS [65]. For incident dataset in PeMS, the following terms
have been used:

• CHP (California Highway Patrol)
• CAD (Computer-aided Dispatch)
• TASAS (Traffic Accident and Surveillance Analysis System)

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 85

CHP incident reports provide all the incident data found in CHP CAD (Fig. 4.1).
On the other hand, TSAS includes all the accidents data on state highways which are
manually verified by the Caltrans staff. Therefore, it approximately takes 1–2 years
to report TSAS data to PeMS. TSAS records in PeMS provide the following details
about the incidents:

• Starting time,
• Freeway,
• Direction,
• Postmile,
• Severity, and
• Location of incident.

Data available on the incidents is in the form of different graphs and reports.
Reports on incidents data are available in different formats and provide different
information. Following are some types of incident reports available in PeMS:

• Time Series, view incidents over a time range.
• Time of Week, radial (CHP incidents only), view incidents in a radial chart by

time of day and day of week
• Time of Day, view incidents over time of day by hourly average
• Day of Week, view the total number of incidents for each day of week
• Duration (CHP incidents only), view distribution of the durations of incidents
• Characteristics (TASAS only), view percentage breakdown by selected charac-

teristics for a time range
• Detail, view listing of individual incidents over a selected time range

Fig. 4.1 CHP incidents data collection from PeMS on freeway I5-N in Los Angeles County

86 M. Aqib et al.

• Contours, view concentrations of incidents along a corridor segment over time
period

• Comparison (CHP incidents only), view comparison of incident types with
average duration

• Relationships, view the relationship between performance measures and the
number of incidents

• Spatial Distribution (CHP incidents only), view the number of incidents along
corridor segment

• Segments (TASAS only), view the number of incidents along corridor segment

4.3.2 Input Data Preparation

We are using incidents data collected from PeMS to predict incidents on the
freeways. We have collected the incidents, vehicles flow/speed, etc., from a small
patch of the freeway I5. The length of selected corridor is 13.784 miles and two
directions on this patch are denoted by I5-N and I5-S. For I5-N, there are 26
vehicle detection stations (VDSs) to collect the data about the vehicles traveling
on this route. On the opposite direction, i.e., I5-S, there are 25 such stations for data
collection. In this work, we are considering only one side of this freeway patch, i.e.,
13.784 miles of I5-N.

Now the total length of I5-N freeway is around 796.5 miles. We are considering
the whole I5-N freeway because the incident data is available for the whole I5-N
highway and the number of VDSs on the whole I5-N is 948.

In this work, we have prepared incidents input dataset by combining the data
collected from three different datasets. This includes incidents dataset (Table 4.1),
VDS stations details dataset (Table 4.2), and the vehicles flow/speed/occupancy

Table 4.1 Schema of incidents dataset

S.No Attribute name Description

1 Incident.Id Numeric Id value of incident

2 Start.Time Timestamp value of the incident. This includes data and time in 24 h
format

3 Duration..mins. Time in minutes that describes the duration of the incident

4 Freeway Name of the freeway, e.g., I5-N

5 CA.PM Caltran postmiles value for the location where the incident occurred

6 Abs.PM Absolute postmiles value that gives location of the incident

7 Source Source of incident information/data collection, e.g., CHP, TSAS, etc.

8 Area Name of the area where the incident was reported

9 Location Gives details of location, e.g., freeway name with street/bridge/boule-
vard

10 Description Numeric value of the incident type along with the description, e.g.,
traffic collision, traffic hazard, etc.

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 87

Table 4.2 Schema of vehicles detection station dataset

S.No Attribute name Description

1 Fwy Name of freeway, e.g., I5-N in this case

2 District Numeric Id values of different districts through that the selected
highway passes

3 Count Name of county

4 City City name

5 CA.PM Caltran postmiles value for that VDS

6 Abs.PM Absolute postmiles value for that VDS

7 Length Length of freeway patch covered by this VDS

8 ID Numeric Id value of VDS

9 Name Name of VDS station

10 Lanes Number of lanes on freeway at a VDS

11 Type Type of freeway, e.g., mainline

12 Sensor.Type Types of sensors used at a VDS (e.g., loop detector)

13 HOV High occupancy vehicle

14 Distance (Self-defined attribute) This defines the distance between the two
consecutive VDS stations. It is calculated by using the absolute
postmiles (Abs.PM). If x is the Abs.PM value for first VDS and y is
the Abs.PM value for the second VDS, then distance = y − x, where
y > x

(Table 4.3) dataset. In the following paragraphs we will discuss in detail why we
need to combine these datasets and how we did it to get a final incidents dataset.

Incident dataset we are using in this work has ten attributes that provide different
information about the incidents occurred on the freeway. The information about
which we are concerned in our work includes the incident timestamp, its duration,
exact location, and type of incident. We already have freeway information, because
we are collecting the incident data for I5-N freeway. To get incident location, we
are not using CA.PM because Abs.PM provides us the exact incident location by
providing the distance in miles. Similarly, three other parameters (source, area,
and location) are not very important while linking the incident data with the other
freeway vehicles data. On the other hand, description attribute is very important that
gives us the type of an incident. Therefore, we can say that the following five (out of
ten) attribute values in our incident dataset are very important to combine this data
with the other traffic data on the same freeway patch and at the same time.

• Incident Id
• Start time (time is further broken into minutes, hours, days, months, and years

attribute values.)
• Duration minutes
• Abs.PM
• Description

88 M. Aqib et al.

Table 4.3 Schema of vehicles dataset

S.No Attribute name Description

1 Timestamp Defines the time when data is captured at a vehicle detection
station (VDS). Timestamp gives both date and time when data was
calculated at a specific VDS

2 StationId Id of a vehicle detection station (VDS). In this data, station Id is a
numeric value

3 StationTotalFlow Total number of vehicles passed through a specific VDS at a
specific time interval

4 StationAvgOcc Average occupancy rate; calculated at a VDS at a given time
interval defined in timestamp attribute

5 StationAvgSpeed Average speed calculated at a specific VDS at specific time interval

6 StationPercent
Observed

Number of lanes at this VDS station

7 Lane1TotalFlow Number of vehicles in Lane1

8 Lane1AvgOcc Average occupancy calculated w.r.t. lane1

9 Lane1AvgSpeed Average speed calculated at lane1

10 Lane1Observed Either values observed or imputed for lane1

11 Lane2TotalFlow Number of vehicles in Lane2

12 Lane2AvgOcc Average occupancy calculated w.r.t. lane2

13 Lane2AvgSpeed Average speed calculated at lane2

14 Lane2Observed Either values observed or imputed for lane2

. . .

. . .

. . .

35 Lane8TotalFlow Number of vehicles in Lane8

36 Lane8AvgOcc Average occupancy calculated w.r.t. lane8

37 Lane8AvgSpeed Average speed calculated at lane8

38 Lane8Observed Either values observed or imputed for lane8

As we are using the incident dataset with the freeway traffic dataset, we will
give details about the freeway traffic datasets as well. Freeways traffic dataset
provides us the information about the vehicles flow/occupancy/speed, etc., at a given
vehicle detection station on the selected freeway. Vehicle detection stations are the
monitoring stations on the freeways that are equipped with different kind of devices
(loop detectors, cameras, etc.) to monitor the traffic and to collect the traffic data.
Suppose, if we are interested in collecting vehicles flow on the freeway at the time of
the incident, then the data collected from these VDSs can provide us the following
information:

• Station Id
• Timestamp
• 5-min interval vehicles data

As shown in Table 4.3, there are 38 input attributes but if we are talking about
the vehicles flow only, then we are interested only in the flow values, VDS Id, and

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 89

timestamp values. Timestamp value is in the format “dd:mm:yyyy hh:mm,” so we
have broken it down to get minutes, hours, day, month, and year values. In addition
to this, we can also get the day of the week values (Saturday–Friday) which are very
important to see different traffic patterns on specific days, e.g., on weekends. Station
Id gives us the numeric Id value of VDS on the freeway and 5 min flow values are
collected from the total flow attribute values.

Now, we want to use both datasets to predict incidents on the freeways, and we
need to combine both datasets so that it could be used to predict the incidents. For
this purpose, we have to relate each incident with a VDS within the vicinity of that
a particular incident was occurred. But in the incident dataset, we are not given
the VDS Id. Instead we are given the absolute postmiles (Abs.PM) values that give
the location of the incident on the freeway. On the other hand, the vehicles dataset
provides the unique VDS Id for each vehicle detection station on the freeway. So,
in order to relate the incidents dataset with the vehicles dataset, we have used VDS
details (Table 4.2) that give details about the VDSs on the freeways.

VDS details dataset provides unique VDS Id (Station Id in vehicles dataset) and
Abs.PM to define the exact location of the VDS. There are other attributes in this
dataset but VDS Id (Station Id) and the Abs.PM are two attributes that could be
used to combine the incident and the vehicles flow data. For this purpose, we first
have calculated the distance between each successive VDS stations. We named this
attribute “Distance” and added this as a 16th attribute in the VDS details dataset in
Table 4.2. The purpose to calculate the distance between the two VDS stations on
a freeway is that this gives the range or distance covered by a VDS on the freeway.
And by using this information, we can identify the VDS station in that vicinity an
incident was reported. If the incident was reported on x Abs.PM value, and the
location of vehicle detection station v before this location is y, and the distance
between this VDS station and next VDS station is d, then the reported incident is
considered to be within the vicinity of VDS v if the condition in Eq. (4.1) is satisfied.

x ≥ y and x < y + d (4.1)

Then we can say that the incident has occurred within the vicinity of that
particulate VDS (whose Abs.PM location is y). So, we can link this incident data
with the vehicles flow data collected at that VDS at the same timestamp values. By
using this criteria, first of all, we have linked the incident data with the station Ids,
i.e., each incident record was assigned the corresponding vehicle detection station
Id and created a new dataset as defined in Table 4.4. This includes incident Id, year,
month, day, hours, duration mins, description from the incident dataset (Table 4.1),
and “StationId” is collected from the VDS dataset (Table 4.2). By using this new
dataset, we have created a new dataset that not only contains the important attribute
values from the incident dataset, but it can also combine the vehicles data attributes
like flow, speed, occupancy, etc., as shown in Table 4.5. Algorithm 2 gives an
overview of important steps to parse the input dataset and to get the resulting input
dataset.

90 M. Aqib et al.

Table 4.4 Schema of incident+VDS dataset to link incidents with vehicles data

S.No Attribute name Description

1 Incident.Id Numeric Id value of incident

2 Year Year value (numeric), e.g., 2017

3 Month Month of the year (numeric value), e.g., 11 is used to represent the
month of November

4 Day Day of the month (numeric value), e.g., 13

5 Hours Hours of the day. These are also numeric values so these start from 0
to 23

6 Duration..mins. Time in minutes that describes the duration of the incident

7 Description Numeric value of the incident type along with the description, e.g.,
traffic collision, traffic hazard, etc.

8 StationId Id of the vehicle detection station. Incident occurred within the
vicinity of this VDS

Algorithm 2 Incident data parsing
Input: Raw Incident, VDS, and Vehicles Data.
Output: Parsed Incidents Dataset.
1: vds_list_sorted ← SortV DSList (vds_list_all)

2: vds_dist ← CalcDiff (V DS_AbsPMi+1, V DS_AbsPMi)

3: vds_list_dist ← AddDistAttribT oV DS(vds_dist)

4: vds_in_veh_data ← UniqueV DS(vehicle_data)

5: selected_vds ← Get vds_list_dist value if exists in vds_in_veh_data

6: for i = 1, i + +, i ≤ length(raw_inc_data) do
7: for v = 1, v + +, v ≤ length(vds_list_dist) do
8: if inci occured within the vicinity of vdsv then
9: inc_vds_data ← MergeIncV dsData(inci , vdsv)

10: continue

11: end if
12: end for
13: end for
14: SplitIncT imeStampV als()

15: inc_comb_data ← Merge(vehicle_data) {based on timestamp and stationIds}
16: if Data veracity issues exist then
17: inc_new_data ← DealWithDataV eracityIssues() {e.g., remove NAs}
18: inc_comb_data ← inc_new_data

19: end if
20: if Required normalization is required then
21: inc_norm_data ← NormalizeData(inc_new_data)

22: inc_comb_data ← inc_norm_data

23: end if
24: inc_data_f inal ← AddIncBasedOnIncDuration(inc_comb_data)

25: return inc_data_f inal

Now each incident was linked with the corresponding vehicles data values. As we
have combined each incident with the vehicles data by comparing some particular
attributes values like hour, day, month, year, station Id, etc., each incident was linked
with only one record in the vehicles dataset. There were two important attributes

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 91

Table 4.5 The final schema of incident+vehicles dataset used for incident detection

S.No Attribute name Description

1 stationId This attribute defines the numeric value assigned to each vehicle
detection station (VDS) on the highway. VDSs in PeMS are the
data collection points on highways. Data used in this experiment
includes I5-N highway and has 26 VDSs

2 dayOfMonth Defines the day of a month in a Gregorian calendar in “dd” format.
So, its value ranges from 1 to 31. This could be helpful in getting
some traffic flow trends on some specific events, e.g., traffic flow
on Christmas every year

3 Month Gives the numeric value for a Gregorian month in “mm” format
and its value ranges from 1 to 12

4 Year Value for a Gregorian year in the “yyyy” format

5 Hours Clock hours in numbers starting from 0 to 23. This could help us
in identifying traffic flow trends and other information in specific
hours in a day, e.g., traffic flow at 9 a.m.

6 weekDays Day of a week, e.g., Monday. weekDays values are also in numeric
format ranging from 1 to 7, where 1 represents Sunday, and 7
represents Saturday. This is important in identifying specific trends
on specific days, e.g., on weekends

7–18 flow (flow_00,
flow_05, flow_10,
. . . , flow_55)

As defined on PeMS, flow defines the number of vehicles passing
through a vehicle detection station (VDS) at a given time. In this
dataset, we have used 5-min interval flow values where the flow_00
defines the total number of vehicles passing through a VDS during
the first 5 min of an hour. Similarly, flow_55 defines the total
number of vehicles passing through a VDS during the last 5 min
of the hour

19 No_incident This column is added to the data to define no incident. It contains
binary data, i.e., 1 or 0. If no incident was reported during that
hour, it is 1 else 0

20–38 Different incident
types reported in
this data have been
used as attribute
names. For exam-
ple, Collision (with
injury)

These attributes define the different types of incidents. These also
contain binary values. 1 is used if an incident of that particular type
is occurred, and therefore, the values of all the others incidents will
be 0 and vice versa

values in the incidents dataset. One of them was timestamp that gives the temporal
information about the incident and the other one is the duration of the incident.
Duration of incident defines the duration in minutes of that incident. Both these are
very critical and important in the sense that the incident’s duration effects directly
the vehicles flow, their speed, and occupancy on the incident location and a patch of
road before and after it. For example, if a traffic collision was reported on 15:34, and
its duration was 128 min, then it means that it affected the traffic till 17:42. But as
we were comparing timestamp as well while combining an incident record with the

92 M. Aqib et al.

vehicles data, so only one record with an hour value 15 will indicate that incident
and if there was no other incident during the next 2 h, then the next two records with
hour values 16 and 17 will indicate no incident. But in actual, vehicles data, e.g.,
flow, has been affected during the next 2 h due to this incident. In addition to this,
if an incident was occurred on 23:40 and continued for 50 min, then it means that it
continued during the first hour of next day as well. Also, it may change the month
and year values as well. Therefore, we have developed an algorithm (Algorithm 3)
that manages the resulting incidents dataset and deals with these situations and
relates multiple records in the vehicles dataset with an incident depending upon
its start time and duration.

4.3.3 Deep Model for Prediction

We are using deep neural networks for prediction purpose in this work. In a neural
network, many neurons are used in such a way that the output of a neuron could be
used as an input to the other neurons in the network. Left most layer in the network
is the input layer and the right most layer is the output layer. The number of neurons
in input layer is the number of input parameters in our input dataset, whereas we
are predicting traffic flow for a specific time interval, so the output layer returns one
single neuron considered as an output or predicted value.

In this work we are using vehicles data (average occupancy) on a road network
and some other parameters as input and training our deep model to predict the
type of incident that could occur depending upon the input values provided for a
particular record as an input. We have classified the incident into different types
(almost 19) depending upon the incident type and the severity, duration, etc., of
an incident. The architecture of our classification model is shown in Fig. 4.2. As
shown in this figure, there are n input parameters to be fed to our deep model.
Here the value of n depends upon the vehicles data attributes, e.g., speed, flow,
occupancy, etc., used as input for incidents classification. There are k hidden layers
in our deep model where the number of neurons in each hidden layer could be
same in all or some of the hidden layers or it could be different from all or some
of the hidden layers. Therefore, neurons in hidden layers in this figure have been
represented by Hij , where i represents the number of hidden layer and j represents
the j th neuron in ith hidden layer. For example, H56 represents the 6th neuron in
the 5th hidden layer in our deep classification model. Right most layer in our deep
model architecture represents the output layer and it is showing the output values
from O1 to Oz where z represents the number of incidents classes defined in this
work for classification. Training process using the deep learning model is given in
Algorithm 4.

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 93

Algorithm 3 Algorithm to add incidents in records based on incident duration
Input: Incident input dataset.
Output: Incidents input dataset with additional incident records according to the incidents durations.
1: incDuration ← incInputData["durationMins"]
2: tmpIncData ← incInputData

3: for i = 1, i + +, i ≤ length(incDuration) do
4: if incDuration[i] has characters then
5: getDurationInMinutes(incDuration[i])
6: end if
7: end for
8: count ← 0
9: for r = 1, r + +, r ≤ length(incInputData) do

10: record ← incInputData[r]
11: min ← r["minutes"]
12: dur ← r["durationMins"]
13: totalT ime ← min + dur

14: if totalT ime > 59 then
15: hours ← f loor(totalT ime/60)

16: tmpMin ← 0
17: tmpRec ← record

18: while count ≤ hrs do
19: if hours < 23 then
20: tmpRec["hrs"] ← tmpRec["hrs"] + 1
21: else
22: tmpRec["hrs"] ← 0
23: if tmpRec["day"] < 28 then
24: tmpRec["day"] ← tmpRec["day"] + 1
25: else if tmpRec["mnth"] is 2 then
26: if (tmpRec["year"] is leapYear) && (tmpRec["day"] is 28) then
27: tmpRec["day"] ← tmpRec["day"] + 1
28: else
29: tmpRec["day"] ← 1
30: tmpRec["mnth"] ← 3
31: end if
32: else if (tmpRec["mnth"] is 4|9|11) && (tmpRec["day"] < 30) then
33: tmpRec["day"] ← tmpRec["day"] + 1
34: else if (tmpRec["mnth"] is 1|3|5|7|8|10|12) && (tmpRec["day"] < 31) then
35: tmpRec["day"] ← tmpRec["day"] + 1
36: else
37: if tmpRec["mnth"] is 12 then
38: tmpRec["mnth"] ← 1
39: tmpRec["day"] ← 1
40: tmpRec["year"] ← tmpRec["year"]1
41: else
42: tmpRec["day"] ← 1
43: tmpRec["mnth"] ← tmpRec["mnth"] + 1
44: end if
45: end if
46: end if
47: tmpIncData.add(tmpRec)

48: end while
49: count ← count + 1
50: end if
51: end for
52: return tmpIncData

94 M. Aqib et al.

Fig. 4.2 Architecture of our deep classification model

Algorithm 4 Training incident detection deep model
Input: Parsed Incident Input Data.
Output: Trained Deep Model.
1: inc_data ← load_incident_data

2: batchSize ← setDef inedBatchSize()

3: epochs ← setNumEpochs()

4: nRepeatModel ← 5
5: count ← 1
6: while count ≤ nREpeatModel do
7: model ← trainDeepModel()

8: saveT rainedModel()

9: count + +
10: end while
11: return model

4.4 Performance Analysis

This section defines our deep classification model configurations and the per-
formance metrics which have been used to analyze the results obtained by this
model.

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 95

4.4.1 Deep Model Setup

We have used the modified incidents data (Table 4.5) to predict the incidents in
this work. For this purpose, we have used 3 months (September 2017–November
2017) vehicles occupancy and incidents data. There were 56,879 records in our
input dataset. The data was divided in the ratio of 8, 1, 1, for training, testing,
and prediction, respectively. We have executed our deep model with different
configuration setups. The number of hidden layers and number of hidden units in
those hidden layers were same in all the configuration setups. Also, because the
same input data was used, the number of input parameters and output parameters
was also same. The main difference was in the batch sizes and the number of
iterations (epochs). In both the cases we used softmax activation function because
we were trying to identify and then classify the incidents on the selected freeway
I5-N.

We have used different combinations of vehicles data (flow/speed/occupancy)
with the incidents data to predict the incidents on the freeways. For each resulting
combination (e.g., vehicles flow and incident dataset as shown in Table 4.5)
we have used different deep model configurations. Model configurations used in
different sections are summarized in Table 4.6. Input data combination and model
configuration details have been discussed in detail in respective sections for analysis
of prediction results.

Table 4.6 Configuration of deep model for incident prediction using vehicles data

Input Output
DL param- param- Hidden Hidden Batch Number Activation
model Description eters eters layers units size of epochs function

Model configurations using vehicles flow

1 Incidents
prediction

18 1 5 18, 36,
36, 9,
3

100,
200,
500

500, 1000,
2000

Softmax

Model configurations using vehicles speed and flow

2 Incidents
prediction

30 1 6 30, 90,
45, 9,
3, 3

26, 52 500, 1000 Softmax

Model configurations using vehicles occupancy

3 Incidents
prediction

18 20 6 18, 18,
90, 90,
30, 20

26, 52,
100,
500

50, 100,
200, 500,
1000

Softmax

Model configurations using vehicles occupancy, speed, flow, and percent observed

4 Incidents
prediction

54 1 6 54,
108,
216,
54, 9,
3

13, 26,
52

100, 500 Softmax

96 M. Aqib et al.

4.4.2 Performance Metrics

We are using classification model for our deep learning model. Therefore, to
calculate the accuracy of our prediction results, we have analyzed the results using
the confusion matrix that has been created by comparing the predicted and the actual
results. Different methods and techniques are used to evaluate the correctness of the
predicted classification results. According to [74], it could be done by calculating
the four terms defined below:

• True positives: Number of class instances that were identified correctly in
prediction results.

• True negatives: Number of correctly identified class instances that do not belong
to that class.

• False positive: Number of class instances that were incorrectly assigned to the
class.

• False negative: Number of class instances that were not identified as an instance
of a class.

The results obtained by using the above definition could be summarized in the
form of a table known as a confusion matrix as shown below in Table 4.7.

We have calculated the average prediction accuracy by using the formula as given
in Eq. (4.2).

Average Accuracy =
∑l

i=1
tpi+tni

tpi+fni+fpi+tni

l
(4.2)

In the above formula, l is the number of classes in multi-class classification
problem. tpi represents the true positives, fni represents the false negatives, fpi

represents the false positives, and tni represents the true negatives for class Ci .
In addition to these classification results, we have used system generated mean

absolute error (MAE), mean absolute percentage error (MAPE), and root mean
squared error (RMSE) to analyze the prediction results. MAE is used to show
the closeness between the actual and the predicted values and MAPE shows the
relative difference between the actual and the predicted values. MAPE is not suitable
to calculate error rate if the input data or actual values contain zeros because in
this case it suffers from the division by zero error. RMSE is used to calculate
the standard deviation of the prediction errors. It tells how much scattered are the
residuals and thus tells how far are the predicted data points from the regression

Table 4.7 Confusion matrix
for classification of predicted
class instances

Classification
categories

Classified as
positive

Classified as
negative

Positive True positive
(tp)

False negative
(fn)

Negative False positive
(fp)

True negative
(tn)

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 97

line. MAE, MAPE, and RMSE values are calculated by using the formulas given in
Eqs. (4.3), (4.4), and (4.5), respectively.

MAE = 1

N

N∑

i=1

|Vi − Pi | (4.3)

MAPE = 1

N

N∑

i=1

|Vi − Pi |
Vi

(4.4)

RMSE =
√
∑N

i=1 (Vi − Pi)2

N
(4.5)

Here N is the size (number of values predicted by the model) of dataset used for
prediction purpose, V is the set of actual values used as labels, and P is the set of
values predicted by our deep learning model.

4.4.3 Incident Prediction Using Vehicles Flow

In this section, we will discuss the prediction results that have been obtained while
using vehicle flow with the incident dataset as shown in Table 4.5. Note that for this
work, we have used the first 18 input parameters as an input to our model and instead
of predicting incident classes we just have predicted whether an incident is reported
or not. So, we have only one output variable instead of the 18 or more incident
classes as shown in this table. Model configuration and input/output parameters
details are given in Table 4.6 (DL Model 1). As shown in the table, we have executed
our deep model with different batch sizes. But because of limited space, we are
showing only the results obtained by executing the model with the batch size 500 as
shown in Fig. 4.3. We have calculated MAE, MAPE, and RMSE for all the cases.
The results show that we obtained very low MAE and RMSE error rate, but on
the other hand, high MAPE values are pointing toward the low accuracy rate in
prediction results which is true unfortunately. We have discussed these results in
detail in discussion and analysis section (Sect. 4.4.7) and not only have highlighted
the factors behind these results but also have shed light on how can we improve
them.

4.4.4 Incident Prediction Using Vehicles Flow and Speed

In case of an incident on the road, it affects the average speed of vehicles and in
addition to the decrease in vehicles flow, their average speed also decreases in that

98 M. Aqib et al.

0.018
0.016
0.014
0.012

0.01

M
ea

n
A

bs
ol

ut
e

E
rr

or

0.008
0.006
0.004
0.002

0
1 2 3

Deep model execution

Epoch 500a

b

c

Epoch 1000 Epoch 2000

4 5

1

0.8

0.6

0.4

0.2

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or

0
1 2 3

Deep model execution

Epoch 500 Epoch 1000 Epoch 2000

4 5

0.14

0.12

0.1

0.08

0.04

0.02

0.06

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

0
1 2 3

Deep model execution

Epoch 500 Epoch 1000 Epoch 2000

4 5

Fig. 4.3 (a) MAE, (b) MAPE, and (c) RMSE values when using vehicles flow and incident data
with the batch size 500

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 99

Table 4.8 Description of additional speed attributes added to incident data to combine vehicles
flow and speed for incident prediction

S.No Attribute name Description

19–
30

speed (speed_00,
speed_05,
speed_10, . . . ,
speed_55)

As defined on PeMS, speed defines the average speed of vehicles
passing through a vehicle detection station (VDS). In this dataset,
we have used 5-min interval speed values where the speed_00
defines the average vehicle speed calculated at a VDS during the
first 5 min of an hour. Similarly, speed_55 defines the average speed
value at a VDS during the last 5 min of the hour

31 IncidentOccured A binary valued attribute to define whether an incident was reported
during this time slot or not. 1 means a predicted incident (of any
type) and 0 means no incident

place. Therefore, we can say that unusual change (decrease) in the average speed is
also helpful in identifying the occurrence of an incident on the road. So, in this
section, instead of just using the vehicles flow for incident prediction, we have
used 5-min interval vehicles average speed values as well to predict the incident.
Therefore, we have added 12 more input parameters in addition to the parameters
shown in Table 4.5. The description of these additional input parameters is given in
Table 4.8.

By adding 12 5-min interval speed values, now the number of input parameters
in this case is 30, because, before we were using first 18 parameters (including 12
5-min interval flow values) in Table 4.5 as input parameters. Now the parameter
numbered as 31 in Table 4.8 is the only output parameter and its expected values is
defined in this table.

Table 4.6 (DL Model 2) gives the details about the configuration settings of the
deep model used in this case for training and prediction. The results obtained by
analyzing the predicted values are shown in Fig. 4.4. This shows the MAE, MAPE,
and RMSE values when batch size was 26. Although we have executed the deep
model by using different configuration setups, here we have shown only the results
obtained by executing the model with batch size 26 because of similar trends shown
in other results as well. By analyzing these graphs, we can say that these results
also look similar to those discussed in the previous section where we used only
the vehicles flow values with the incidents dataset. A detailed discussion on these
similar trends and accuracy/error rate is given in Sect. 4.4.7.

4.4.5 Incident Prediction Using Vehicles Flow, Speed,
Occupancy, and Percent Observed

Vehicles occupancy in PeMS data defines the amount of time a vehicle takes to pass
through a VDS on the freeways. In order to see the effect of occupancy when used
with other vehicles data attributes like flow and average speed, we have now used
the dataset that includes 5-min interval values of all (flow, speed, and occupancy)

100 M. Aqib et al.

0.02

0.015

0.01

M
ea

n
A

bs
ol

ut
e

E
rr

or

0.005

0
1 2 3

Deep model execution

Epoch 500a

b

c

Epoch 1000

4 5

1

0.8

0.6

0.4

0.2

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or

0
1 2 3

Deep model execution

Epoch 500 Epoch 1000

4 5

0.15

0.1

0.05

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

0
1 2 3

Deep model execution

Epoch 500 Epoch 1000

4 5

Fig. 4.4 (a) MAE, (b) MAPE, and (c) RMSE values when using vehicles speed with flow and
incident data with the batch size 26

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 101

Table 4.9 Description of additional occupancy and percent observed attributes added to incident
data prediction

S.No Attribute name Description

31–
42

Occupancy
(occupancy_00,
occupancy_05,
occupancy_10, . . . ,
occupancy_55)

As defined on PeMS, Occupancy is the amount of time it takes
for a vehicle to pass through a VDS deployed on the freeways.
In this dataset, we have used 5-min interval occupancy values
where the occupancy_00 defines the average vehicle speed
calculated at a VDS during the first 5 min of an hour. Similarly,
occupancy_55 defines the average speed value at a VDS during
the last 5 min of the hour

43–
54

StationPercent
Observed
(obsrvd_00,
obsrvd_05,
obsrvd_10,
. . . obsrvd_55)

The percent observed refers to the percentage of data points
used to generate a report that were directly observed versus
imputed. The higher the percent observed, the better the data
quality of a report. The percent observed is summarized on every
PeMS report and should always be referenced to understand the
underlying data quality

55 IncidentOccured A binary valued attribute to define whether an incident was
reported during this time slot or not. 1 means a predicted incident
(of any type) and 0 means no incident

these attributes. In addition to these attributes, we also have considered the number
of lanes that were in use when the incident was occurred. The number of lanes at a
VDS is defined by the attribute “percent observed.” The details of additional 5-min
interval attributes used in this section are given in Table 4.9.

Now we are using 12 5-min interval values for occupancy, and another 12 5-
min interval values for percent observed as well. So, now the total number of
input attribute values is 55 which includes first 18 attributes from Table 4.5, 19–
30 attributes from Table 4.8, and the next 24 attributes (31–54) from Table 4.8,
whereas the 55th attribute is used as an output. Complete input parameters details
and configuration settings details are shown in Table 4.6 (DL Model 4). Prediction
results obtained by executing this model are presented in Fig. 4.5. Again, instead
of showing all the results obtained by executing our deep model with different
configurations settings, we have shown the results for one model with batch size
26 only. The results show that although we have combined all the four vehicles
traffic data attribute to improve the incident prediction accuracy, the graphs shown
does not indicate the signs of any big change.

4.4.6 Incident Class Prediction Using Vehicles Occupancy
Data

In the above sections, we have discussed the models and results where there was
only one output attribute value. It was either predicting whether an incident has
occurred or not. There was no classification of results according to the incidents
category. In this section, we are discussing the model where we have categorized

102 M. Aqib et al.

0.02

0.015

0.01

M
ea

n
A

bs
ol

ut
e

E
rr

or

0.005

0
1 2 3

Deep model execution

Epoch 100a

b

c

Epoch 500

4 5

1

0.8

0.6

0.4

0.2

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or

0
1 2 3

Deep model execution

Epoch 100 Epoch 500

4 5

0.15

0.1

0.05

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

0
1 2 3

Deep model execution

Epoch 100 Epoch 500

4 5

Fig. 4.5 (a) MAE, (b) MAPE, and (c) RMSE values when using vehicles occupancy, speed,
percent observed with flow, and incident data with the batch size 26

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 103

the output according to their type. In the incident data which is used in this work,
around 19 different types of the incidents have been reported. Therefore, here we
are using multi-class classification model and the incidents for each record in our
incident dataset have been represented by using the one-hot encoding notation. That
is, we have created a matrix with 20 columns (19 incident classes plus one additional
entry to represent no incident) and if a record in our dataset is reporting an incident
of specific type, then the corresponding category value for that record is 1 and all
the other values are 0. A very simple case to explain this thing is that if a record is
not reporting an incident, then the column representing the “no_incident” for that
record will contain 1, whereas all the other incident categories for that record will
have 0.

We have used vehicles occupancy data in this work with the incident data
for prediction and classification of incidents on the freeway. There are 18 input
attributes where the first six attributes are same as shown in Table 4.5, and the rest
12 5-min attributes are same as shown with the “S.No” values 31–42 in Table 4.9.
As we are predicting the class of expected incident as well, now the number of
our output parameters is 20. Configuration settings and other details are given in
Table 4.6 (DL Model 3).

4.4.7 Discussion and Analysis

In this work, we have used vehicles 5-min interval data in combination with the
incidents data provided by PeMS [65] for incidents prediction on the selected patch
of freeway I5-N. We used different combinations of vehicle data attributes with
the incident input data to predict the incidents. In Sect. 4.4.3, we have used 5-min
interval vehicles flow values and the prediction results obtained by analyzing the
predicted and the actual values have been shown in Fig. 4.3. In this figure, we have
shown the MAE, MAPE, and RMSE values obtained by executing the defined deep
model with specific configuration settings. MAE and RMSE values in this figure
were very low that shows the high accuracy of the predicted results but on the other
hand, there is MAPE values graph as well which shows high error rate. We will
discuss its reason in detail at the end after discussing all the results from the other
sections as well. We are using the vehicles data with other attributes because it has
direct link with the incidents on the freeway. Here we have used flow values because
it is obvious that the vehicles flow values will be affected in case of an incident.

Another factor that is affected by an incident on the freeways is vehicles speed in
that area. PeMS provides us 5-min interval vehicle speed data as well. So, taking
the advantage of this data, we included these speed values as well to help our
model to detect the anomalies in the data and to predict the incidents. The details
about our deep model with the vehicles flow and average speed data as input were
given in Sect. 4.4.4. Same like the previous model where we used only vehicles
flow values, we executed our model defined in this section multiple times with the
different configuration settings to see the difference between the output produced

104 M. Aqib et al.

by our deep models in both these sections. Although this model was executed with
different configurations, here we have presented the results obtained by executing
the model with the batch size 26 in Fig. 4.4. In this section, deep models were
executed with two different batch sizes and two different epochs values as shown in
Table 4.6 (model 2). The results in this case were almost same as we obtained in the
case where we used only the flow values, i.e., MAE, and RMSE values were quite
low but MAPE values were very high. We executed these models with many other
configurations but in all the cases the results were almost the same. Therefore, we
are including the results for only one configuration settings.

Another important factor when working with vehicles data is occupancy. Occu-
pancy according to PeMS manual [65] is the time a vehicle takes on average while
passing through the vehicle detection stations on the freeways. So it is obvious that
there will be a change in its value on the places before and after the place where
the incident was occurred. In addition to this it is very important that how the data
was collected. In PeMS, this is named as “vehicle percent observed” that shows the
percentage value to represent whether the results given were reported/recorded by
the VDS or they were imputed. Therefore, we included these two attributes values in
the new incident dataset as well. So, at this point the incident data was including the
values of four vehicles data attributes (flow, speed, occupancy, and vehicle percent
observed). Each of these attributes values were in 5-min interval data form, so by
including the other attributes as well, there were 54 input parameters in our input
dataset this time as discussed in Sect. 4.4.5. The results obtained in this section are
shown in the graphs in Fig. 4.5. Although we included two other important vehicles
data attributes in this dataset for incident prediction, the results obtained in this
section were also similar to the results obtained in the previous sections.

From the results in the previous sections, we identified that there are some factors
that are affecting the prediction accuracy and are critical in the sense that they should
be addressed and issues related to them should be sorted out before using a dataset
for prediction purpose.

In Sect. 4.4.6, we have used the input data that divides the reported incidents into
incidents classes according to their types and description. Here, instead of just using
one variable to define the occurrence or non-occurrence of an incident, a multi-
class classification model has been followed. The results obtained by this model
are shown in the form of a confusion matrix shown in Table 4.10. It is clear from
the confusion matrix that although there were 19 incident classes in our training
dataset, not all of those incident types were present in the dataset used as an input
for prediction purpose. The incident classes were assigned alphabets from A to T as
shown in Table 4.11, where A represents the first incident class and T represents that
no incident was reported/predicted. From those classes, ten classes were included
in the prediction dataset but the model was unable to detect any of those incidents
and in all the cases it predicted only the non-occurrence of an incident. Although if
we calculate the accuracy by using the defined average accuracy formula, it shows
accuracy more than 97% which is because of the fact that there were more than 97%
records where the input data was not reporting an incident. It means that our models
were unable to predict the incidents accurately and we have investigated the reasons

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 105

Table 4.10 Confusion
matrix for multi-class
incident prediction results

A B C D E F H L P T

A 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0

T 25 41 46 4 1 7 2 1 12 5555

Table 4.11 Types of
incidents in PeMS incident
data

S.No Incident class Incident type

1 A 1183-Trfc Collision-Unkn Inj

2 B 1182-Trfc Collision-No Inj

3 C 1125-Traffic Hazard

4 D 20002-Hit and Run No Injuries

5 E 20001-Hit and Run w/Injuries

6 F 1179-Trfc Collision-1141 Enrt

7 G SIG Alert

8 H 1179-Trfc Collision-1141Enrt

9 I DOT-Request CalTrans Notify

10 J BREAK-FSP Req Traffic Break

11 K BREAK-Traffic Break

12 L FIRE-Report of Fire

13 M CLOSURE of a Road

14 N 23114-Object Flying From Veh

15 O CFIRE-Car Fire

16 P MZP-Assist CT with Maintenance

17 Q 1125A-Animal Hazard

18 R ANIMAL-Live or Dead Animal

19 S 1166-Defective Traffic Signals

20 T No_Incident

which led us to these results so that researchers should address them and take care
of those facts when using these kind of datasets for incidents prediction in future.

If we divide our prediction dataset (5694 records) according to different incidents
that were reported in that dataset, then we can see that in this dataset, the number
of incidents was very less, and it was just making less than 2.5% of the whole
dataset used for incident prediction. The number of different incidents reported in
the incident dataset used for prediction purpose is shown in Fig. 4.6.

As shown in the figure, 5555 records out of 5694 records in the dataset say that
there was no incident recorded and only 139 of those records were representing

106 M. Aqib et al.

Fig. 4.6 Distribution of incident categories data in the prediction input dataset

an incident occurred on that selected patch of the freeway I-5N. This is the most
important and probably the biggest factor that leads our model to predict no incident
in almost all the cases. Because when more than 97.5% data is representing no
incident, then it is very difficult to predict the rest 2.5% incidents accurately. If we
see this scenario in the context of accuracy, then it has accuracy more than 97.5
where the model accurately predicted the non-occurrence of an incident, whereas
only 2.5% results were not representing the actual incidents. But this accuracy, in
actual, does not represent the correct picture of prediction results. In actual, the
results obtained from this data are predicting the only value that was repeated in the
dataset for more than 97.5%.

In our work, we have used vehicles flow, speed, and occupancy values in
combination with the incidents data for the prediction of incidents. We have used
this data for modeling because incidents on the freeways have direct link with
these vehicles data attributes and it is obvious that in case of an incident the trend
graphs of these values will reflect the change in their values. For the analysis of
data to identify the change in the values of these attributes, we have selected the
vehicles data during a week when an incident was reported in a specific area. On
the selected patch of freeway I5-N, an incident was reported in the vicinity of the
VDS station (Id = 715918), on 11th of September, 2017, after 11 a.m. The type of
incident reported by the system was traffic collision, and its duration was 202 min.
This shows that although no injury was reported, the collision was quite severe.
It might have caused a congestion on that part of the road. Therefore, we have
collected the vehicles for the whole week when the incident was reported.

In Fig. 4.7, we have shown the vehicles flow values during the week when
the incident was occurred. It ranges from 10th to 16th September, 2017. Weekly
vehicles flow values clearly show the general trends on weekends (Saturday and
Sunday), the flow was very low in the morning but it was gradually increasing till
10 a.m. But on Monday, when the incident was reported it shows high flow during
the morning peak hours, but it was then normal before the occurrence of the incident
around 11:10 a.m. But if we see it carefully, we do not see any significant change in
the graph or clear change in it before or after the incident.

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 107

Fig. 4.7 Vehicles flow for the week 10–16 September 2017

Fig. 4.8 Vehicles speed for the week 10–16 September 2017

Vehicles speed is also an important vehicles data attribute which is affected in
case of an incident on a road. We also have examined the vehicles speed values
during the week to see the trends before and after the same incident. Figure 4.8
shows the vehicles average 5-min interval speed values during the same week (10–
16 September 2017). Vehicles speed graph will be showing high or normal speed
values during the off-peak hours or morning hours till 10 a.m. on the weekends but
it shows low speed values during the morning and evening peak hours in week days.
It shows the normal trend during other times on week days as well. So, if we see the
trend on Monday at 11 a.m. when this incident was occurred, same like flow, there
is no significant change in the red line showing the speed values on Monday. This

108 M. Aqib et al.

Fig. 4.9 Vehicles occupancy for the week 10–16 September 2017

also shows that the vehicles speed was not affected by the incident or there was no
significant change which affected the vehicles speed.

In addition to the flow and speed values, vehicles occupancy values graph for
selected week is shown in Fig. 4.9. During the peak hours, vehicles average speed
decreases and in result their average occupancy value increases. This could be seen
from the figure that occupancy values are very high during the week days peak hours
especially in morning from 6 a.m. to 9 a.m. But it is very low especially on week
days when there is very less traffic on the roads. Therefore, we expect that in case of
an incident on the road, there could be a congestion and in result, occupancy value
graph will show an increasing trend during that time. Occupancy graph here instead
is not showing any significant change in the vehicles occupancy values.

We conclude from these facts that for incident detection using traffic data, it is
not only important that the input data should be balanced but also we need to find the
anomalies in the input dataset that could help our deep model to accurately predict
an incident. There could be some abrupt changes in flow or speed or in other vehicle
data attributes values. Also it is expected that there will be gradual normal change
in the data after the incident. Although these changes could not be reflected due
to many reasons as it happened in this case, there could be a number of reasons
behind these facts discussed in the above paragraphs. One possible reason is that
there would have been multiple lanes (may be four or five) in that area of the freeway
and the collision was occurred on the right most lane which did not affect the flow.
So, it is an important factor to know the number of lanes that were practically in use
at the incident place at the time of incident. Another important factor is to know that
how far was the vehicle detector station (VDS) from the place where the incident
occurred. Because it is possible that the incident occurred in the blind area which
is out of the range of the vehicle detection station because each VDS has an area

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 109

coverage range and as per our examination of VDS data, distance values between
many VDS stations were bigger than their coverage length values. So, if this is the
case, it might be possible that the traffic was affected in that area, but because it
was outside the range of respective VDS, its effect was not very clear when traffic
reached under the coverage area of next VDS. Data collection duration could also
be a factor, as in this case we are using 5-min interval data and although it took long
for the authorities to manage it completely, it might be possible that they were able
to manage it in a way so that it affected the traffic for just few minutes and thus
no change is reflected in the data. In addition to this, although we have compared
the data for changes with the same station’s data on the next day during the same
hours, it could be more helpful if the data was covered with the same weekday’s
data, i.e., if the incident was recorded on Monday, then for comparison we should
use the Monday’s data during the same hours. Another important thing is that what
were the circumstances that caused the incident. So, we can say that these are some
of the factors that could help the researchers to make good incidents predictions in
future.

4.5 Conclusion and Future Work

In this work we have used deep learning to predict incidents on the freeways
using traffic data from PeMS. We have combined incident data with the traffic data
attributes, e.g., flow, speed, and occupancy to predict incidents. Incidents on the
road networks directly affect the vehicles data values, and therefore, we can train
the deep model to learn from the vehicles data patterns to detect anomalies in the
data and to predict the incident. We used different combinations of vehicle data
attributes and incident dataset to predict the incidents. First, we combined 5-min
interval vehicles flow and incident data, then we combined vehicles flow and average
speed with the incident data, we also used 5-min interval average occupancy values
with the incident dataset for prediction of incidents. We also used combination of
four vehicle dataset attributes including flow, speed, occupancy, and station percent
observed (48 5-min interval input attributes) for this purpose.

By using the input datasets, we executed our deep models with different
configuration setups multiple times to see the variation in the results. We have
presented all the results in the respective sections by using different performance
metrics. Although the results were not quite satisfactory, and despite having very
low error rates while using MAE and RMSE, we have no harm in saying that our
deep models gained this accuracy by identifying the most recurring output class
instead of identifying the correct incident class. But these results are still important
for us and for other researchers as well because these highlighted some issues
that are very important and should be considered while working with the incidents
using deep learning. It is very important to use balanced input dataset for incident
prediction and arranging such kind of data is not a piece of cake. With the data,
we need to analyze the data patterns before and after the occurrence of an incident

110 M. Aqib et al.

both in spatial and temporal ways. Vehicles data pattern are also very important that
could be analyzed on the similar weekdays/events, etc.

In future, first we would like to work on these data related issues. Because data
is very important when using deep learning models. We will try to find some other
datasets as well that could be helpful in dealing with the issues highlighted above
and in addition to this we will see how deep learning could effectively be used to
improve the accuracy of prediction results.

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-673-793-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. World Health Organization: Road Traffic Injuries. http://www.who.int/news-room/fact-sheets/
detail/road-traffic-injuries (2018). Accessed 27 Nov 2018

2. World Bank: The High Toll of Traffic Injuries: Unacceptable and Preventable. World
Bank (2017). http://www.worldbank.org/en/programs/global-road-safety-facility/publication/
the-high-toll-of-traffic-injuries-unacceptable-and-preventable

3. Cookson, G.: INRIX Global Traffic Scorecard. INRIX Research (2018). http://inrix.com/
scorecard/

4. Schrank, D., Eisele, B., Lomax, T.: TTI’s 2012 urban mobility report. Texas A&M Transporta-
tion Institute. The Texas A&M University System 4 (2012)

5. El Hatri, C., Boumhidi, J.: Traffic management model for vehicle re-routing and traffic light
control based on multi-objective particle swarm optimization. Intell. Decis. Technol. 11(2),
199–208 (2017)

6. Kim, H.J., Hoi-Kyun, C.: A comparative analysis of incident service time on urban freeways.
IATSS Res. 25(1), 62–72 (2001)

7. Skabardonis, A., Varaiya, P., Petty, K.: Measuring recurrent and nonrecurrent traffic conges-
tion. Transp. Res. Rec. J. Transp. Res. Board 1856(1), 118–124 (2003)

8. Ghosh, I., Savolainen, P.T., Gates, T.J.: Examination of factors affecting freeway incident
clearance times: a comparison of the generalized f model and several alternative nested models.
J. Adv. Transp. 48(6), 471–485 (2014)

9. Asakura, Y., Kusakabe, T., Nguyen, L.X., Ushiki, T.: Incident detection methods using probe
vehicles with on-board gps equipment. Transp. Res. C Emerg. Technol. 81, 330–341 (2017)

10. D’Andrea, E., Marcelloni, F.: Detection of traffic congestion and incidents from gps trace
analysis. Expert Syst. Appl. 73, 43–56 (2017)

11. Oskarbski, J., Zawisza, M., Żarski, K.: Automatic incident detection at intersections with use
of telematics. Transp. Res. Procedia 14, 3466–3475 (2016)

12. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality
simulations. In: 11th International Conference on Computer Modelling and Simulation, 2009.
UKSIM’09, pp. 411–416. IEEE, Piscataway (2009)

13. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: Proceedings of
the 14th World Congress on Intelligent Transport Systems (ITS), held Beijing, October 2007
(2007)

14. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for
short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
http://www.worldbank.org/en/programs/global-road-safety-facility/publication/the-high-toll-of-traffic-injuries-unacceptable-and-preventable
http://www.worldbank.org/en/programs/global-road-safety-facility/publication/the-high-toll-of-traffic-injuries-unacceptable-and-preventable
http://inrix.com/scorecard/
http://inrix.com/scorecard/

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 111

15. Fouladgar, M., Parchami, M., Elmasri, R., Ghaderi, A.: Scalable deep traffic flow neural
networks for urban traffic congestion prediction. In: 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 2251–2258. IEEE, Piscataway (2017)

16. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., et al.: Traffic flow prediction with big data: a
deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

17. Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep learning method. In: 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), pp. 1217–1222. IEEE,
Piscataway (2016)

18. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach
for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International
Conference on Data Mining, pp. 777–785. SIAM, Philadelphia (2017)

19. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for
traffic speed prediction using remote microwave sensor data. Transp. Res. C Emerg. Technol.
54, 187–197 (2015)

20. El Hatri, C., Boumhidi, J.: Fuzzy deep learning based urban traffic incident detection. Cogn.
Syst. Res. 50, 206–213 (2018)

21. Sun, J., Sun, J.: A dynamic Bayesian network model for real-time crash prediction using traffic
speed conditions data. Transp. Res. C Emerg. Technol. 54, 176–186 (2015)

22. Ki, Y.K., Heo, N.W., Choi, J.W., Ahn, G.H., Park, K.S.: An incident detection algorithm using
artificial neural networks and traffic information. In: Cybernetics & Informatics (K&I), 2018,
pp. 1–5. IEEE, Piscataway (2018)

23. Agarwal, S., Kachroo, P., Regentova, E.: A hybrid model using logistic regression and wavelet
transformation to detect traffic incidents. IATSS Res. 40(1), 56–63 (2016)

24. Li, R., Pereira, F.C., Ben-Akiva, M.E.: Overview of traffic incident duration analysis and
prediction. Eur. Transp. Res. Rev. 10(2), 22 (2018)

25. Boyles, S., Fajardo, D., Waller, S.T.: A naive bayesian classifier for incident duration
prediction. In: 86th Annual Meeting of the Transportation Research Board, Washington, DC,
Citeseer (2007)

26. Nam, D., Mannering, F.: An exploratory hazard-based analysis of highway incident duration.
Transp. Res. A Policy Pract. 34(2), 85–102 (2000)

27. Lee, J.Y., Chung, J.H., Son, B.: Incident clearance time analysis for Korean freeways using
structural equation model. In: Proceedings of the Eastern Asia Society for Transportation
Studies (The 8th International Conference of Eastern Asia Society for Transportation Studies,
2009), vol. 7, pp. 360–360. Eastern Asia Society for Transportation Studies, Tokyo (2009)

28. Zhan, C., Gan, A., Hadi, M.: Prediction of lane clearance time of freeway incidents using the
m5p tree algorithm. IEEE Trans. Intell. Transp. Syst. 12(4), 1549–1557 (2011)

29. Vlahogianni, E.I., Karlaftis, M.G.: Fuzzy-entropy neural network freeway incident duration
modeling with single and competing uncertainties. Comput. Aided Civ. Infrastruct. Eng. 28(6),
420–433 (2013)

30. Hojati, A.T., Ferreira, L., Washington, S., Charles, P., Shobeirinejad, A.: Modelling total
duration of traffic incidents including incident detection and recovery time. Accid. Anal. Prev.
71, 296–305 (2014)

31. Pan, B., Demiryurek, U., Shahabi, C., Gupta, C.: Forecasting spatiotemporal impact of traffic
incidents on road networks. In: 2013 IEEE 13th International Conference on Data Mining
(ICDM), pp. 587–596. IEEE, Piscataway (2013)

32. Miller, M., Gupta, C.: Mining traffic incidents to forecast impact. In: Proceedings of the ACM
SIGKDD International Workshop on Urban Computing, pp. 33–40. ACM, New York (2012)

33. Chung, Y., Recker, W.W.: A methodological approach for estimating temporal and spatial
extent of delays caused by freeway accidents. IEEE Trans. Intell. Transp. Syst. 13(3), 1454–
1461 (2012)

34. Javid, R.J., Javid, R.J.: A framework for travel time variability analysis using urban traffic
incident data. IATSS Res. 42(1), 30–38 (2018)

112 M. Aqib et al.

35. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.): Smart Societies, Infrastructure,
Technologies and Applications. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (LNICST), vol. 224. Springer International
Publishing, Cham (2018)

36. Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for
future cities: characterizing the impact of gps signal strength on power consumption. IEEE
Access 4, 858–868 (2016)

37. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

38. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–
32285 (2018)

39. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: some socio-technical challenges and opportunities. In:
International Conference on Communications Infrastructure. Systems and Applications in
Europe, pp. 140–152. Springer, Berlin (2009)

40. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015). Elsevier

41. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of united
states road network data on apache spark. In: International Conference on Smart Cities,
Infrastructure, Technologies and Applications, pp. 323–336. Springer, Cham (2017)

42. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1),
75–104 (2017)

43. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22(6), 804–817 (2011)

44. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by
forecasting traffic plan using deep learning and gpus. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) International Conference on Smart Cities, Infrastructure, Technologies and
Applications (SCITA 2017): Smart Societies, Infrastructure, Technologies and Applications,
pp. 139–154. Springer International Publishing, Cham (2018)

45. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: ITS Telecommunications (ITST), 2011
11th International Conference on, pp. 361–368. IEEE, Piscataway (2011)

46. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: Icdms: an intelligent
cloud based disaster management system for vehicular networks. In: International Workshop
on Communication Technologies for Vehicles, pp. 40–56. Springer, Berlin (2012)

47. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM International Workshop
on Wireless and Mobile Technologies for Smart Cities, pp. 1–10. ACM, New York (2014)

48. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: Communication Systems, Networks & Digital Signal
Processing (CSNDSP), 2014 9th International Symposium on, pp. 673–678. IEEE, Piscataway
(2014)

49. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

50. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics
prototyping: a technical viewpoint. Supply Chain Manag. 20(3), 341–352 (2015)

51. Mehmood, R., Nekovee, M.: Vehicular ad hoc and grid networks: discussion, design and
evaluation. In: Proceedings of the 14th World Congress on Intelligent Transport Systems (ITS),
held Beijing, October 2007 (2007)

4 Deep Learning Computations on GPUs to Predict Road Traffic Incidents 113

52. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad hoc
networks. In: International Workshop on Communication Technologies for Vehicles, pp. 59–
74. Springer, Berlin (2013)

53. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: a two-pronged
approach. In: 2010 7th International Symposium on Communication Systems, Networks &
Digital Signal Processing (CSNDSP 2010), pp. 401–405. IEEE, Piscataway (2010)

54. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: International
Workshop on Communication Technologies for Vehicles, pp. 216–223. Springer, Berlin (2011)

55. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol.
224, pp. 155–168. Springer, Cham (Nov 2018)

56. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013, pp. 201–210. Springer International Publishing, Ingolstadt (2014)

57. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems-enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems–Problems and Perspectives, pp. 3–35.
Springer, Cham (2016)

58. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15(5), 50–62 (2015)

59. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

60. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies and
Applications, pp. 111–122. Springer, Cham (2017)

61. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, vol. 224, pp. 98–110. Springer, Cham (Nov 2018)

62. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

63. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge
and outlook. In: International Conference on Smart Cities, Infrastructure, Technologies and
Applications (SCITA 2017). Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, vol. 224, pp. 11–26. Springer,
Cham (Nov 2018)

64. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual
understanding: a review. Neurocomputing 187, 27–48 (2016)

65. Berkeley, U.: Caltrans (2005) freeway performance measurement system (PEMS) 5.4. pems.
eecs. berkeley. edu/Public (2005). Accessed 30 June 2005

66. Aqib, M., Mehmood, R., Alzahrani, A., Albeshri, A.P: A smart disaster management system
for future cities using deep learning, GPUs, and in-memory computing. In: Mehmood, R., See,
S., Katib, I., Chlamtac, I. (eds.) Smart Infrastructure and Applications: Foundations for Smarter
Cities and Societies. Springer (2019). https://doi.org/10.1007/978-3-030-13705-2_7

67. Hojati, A.T., Ferreira, L., Washington, S., Charles, P., Shobeirinejad, A.: Modelling the impact
of traffic incidents on travel time reliability. Transp. Res. C Emerg. Technol. 65, 49–60 (2016)

68. Park, H., Haghani, A.: Real-time prediction of secondary incident occurrences using vehicle
probe data. Transp. Res. C Emerg. Technol. 70, 69–85 (2016)

69. Paule, J.D.G., Sun, Y., Moshfeghi, Y.: On fine-grained geolocalisation of tweets and real-time
traffic incident detection. Inf. Process. Manag. 56, 1119–1132 (2018)

https://doi.org/10.1007/978-3-030-13705-2_7

114 M. Aqib et al.

70. Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents
from social media data. Transp. Res. C Emerg. Technol. 86, 580–596 (2018)

71. Gu, Y., Qian, Z.S., Chen, F.: From twitter to detector: real-time traffic incident detection using
social media data. Transp. Res. C Emerg. Technol. 67, 321–342 (2016)

72. Gutiérrez, C., Figueiras, P., Oliveira, P., Costa, R., Jardim-Goncalves, R.: An approach for
detecting traffic events using social media. In: Emerging Trends and Advanced Technologies
for Computational Intelligence, pp. 61–81. Springer, Cham (2016)

73. Nguyen, H., Liu, W., Rivera, P., Chen, F.: Trafficwatch: real-time traffic incident detection and
monitoring using social media. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 540–551. Springer, Cham (2016)

74. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification
tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

Chapter 5
Hybrid Statistical and Machine Learning
Methods for Road Traffic Prediction:
A Review and Tutorial

Bdoor Alsolami, Rashid Mehmood, and Aiiad Albeshri

5.1 Introduction

Mobility is one of the major dimensions of smart city design and development.
Many approaches have been proposed to address smart mobility–related challenges
[1]—for example, social media–based approaches [2–4], location-based services [5,
6], telematics [7], modeling and simulation–based approaches [8, 9], approaches
based on vehicular networks (VANETs) and systems [10–12], autonomic mobility
management [13–15], autonomous driving [16], mobility in emergency situations
[17–22], approaches to improve urban logistics [2, 23–25], and big data–based
approaches [2–4, 26, 27]. A recent book has covered a number of topics related
to smart cities, including smart mobility [28].

Traffic flow modeling and prediction play important roles in smart city trans-
portation systems. The modeling of transportation traffic is usually done by using
data acquired through various sensors [10], such as inductive loops and Motorway
Incident Detection and Automatic Signalling (MIDAS) [9], use of surveys [17],
vehicular ad hoc networks [10], and social networks [2–4]. Various methods are
in practice to model and predict traffic, including mathematical modeling [9, 17,
18], simulations [8, 19–21], and deep learning [22]. Accurate prediction of the
transport network state can improve information services for travelers and help them

B. Alsolami (�) · A. Albeshri
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: balsolami0069@stu.kau.edu.sa; aaalbeshri@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_5

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_5&domain=pdf
mailto:balsolami0069@stu.kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_5

116 B. Alsolami et al.

to make informed travel decisions. Furthermore, precise prediction of road traffic
can improve road safety by decreasing congestion problems, air pollution, traffic
costs, and accidents [29]. The predicted information leads to good planning of the
traffic infrastructure.

Today, the transportation sector has truly entered the big data era. The rapid
increase of Global Positioning System (GPS) device use in vehicles and on
smartphones has provided opportunities for researchers to use transport data for
studying traffic states and solving traffic problems. In addition, social networking
applications such as Twitter and Facebook have become sources of traffic data
because most people share their various statuses and environmental conditions,
including the status of road traffic. Many governments make their transport data
available so that researchers can analyze it and propose solutions to traffic problems
[30].

In the last few years, many research attempts have emerged to provide accurate
and timely traffic flow prediction models. However, most of the existing prediction
models are based only on a single prediction method, such as statistical methods or
machine learning methods. Neither statistical nor machine learning methods can
completely capture traffic flow patterns, because of the complex relationship of
traffic data. Statistical methods provide good performance when traffic data have
a linear relationship, while machine learning methods work well with nonlinear
traffic data [31]. Furthermore, most of the existing prediction models are built on
stand-alone models because of the data and compute-intensive nature of the complex
models. There is a need for novel prediction methods that provide higher accuracy
for prediction of traffic with diverse characteristics. Moreover, there is a need to use
distributed and parallel big data platforms for traffic prediction [32]. This chapter:

– Gives a review of traffic flow prediction and modeling methods.
– Discusses the limitation of each method.
– Introduces a review of various types of traffic data sources.
– Describes notable big data analysis tools.
– Describes a hybrid method for road traffic prediction and provides a tutorial

on the process of hybrid traffic flow prediction. This method is based on the
autoregressive integrated moving average (ARIMA) and support vector machine
(SVM) methods.

The rest of the chapter is organized as follows. Section 5.2 reviews methods for
road traffic analysis and prediction, and discusses a classification for the methods.
We also discuss the limitation of using a single method type. In Sect. 5.3, we discuss
a classification of the available traffic data sources. Big data analysis tools are
introduced in Sect. 5.4. Section 5.5 gives a tutorial on the process of hybrid traffic
flow prediction. In Sect. 5.6, we provide our conclusions on the chapter.

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 117

5.2 Traffic Flow Prediction and Modeling Methods

Road traffic modeling and prediction are important issues that face both individuals
and governments because of increases in traffic congestion, accidents, and air pol-
lution [33]. Because of their importance, many researchers have published several
methods for traffic flow prediction. In general, and from the academic literature,
we can categorize the existing methods into two types: long-term prediction and
short-term prediction. Long-term prediction accuracy is affected by external factors
such as weather conditions, road construction, and changes in road infrastructure.
For these reasons, long-term prediction is not widely used. Conversely, short-term
prediction has been widely used for road traffic prediction. Many methods have
been proposed for short-term traffic prediction. As shown in Fig. 5.1, short-term
prediction can be categorized into three types: statistically based methods, machine
learning methods, and hybrid methods.

5.2.1 Statistical Methods

In this section, we discuss Kalman filtering (KF) and ARIMA methods.

Fig. 5.1 Classification of traffic flow prediction methods

118 B. Alsolami et al.

Kalman Filtering

Kalman filtering is a statistical method involving an algorithm that uses a set of
measurements observed over time, which contain noise, and predicted outputs of
unknown variables. In a KF approach, the estimated future state is based only on
the estimated state of the previous time step [34]. Wang et al. [35] carried out
research on the possibility of using KF for traffic flow prediction. Jinxing et al. [36]
used a KF method to remove errors and redundancy from data sets. They concluded
that filtering can increase the accuracy of the prediction model. Ahmad et al. [37]
used social network traffic data (Twitter data) with a KF method for arrival time
prediction. The results showed that the KF model has the ability to forecast vehicle
arrival time with reasonable accuracy.

Autoregressive Integrated Moving Average

An ARIMA model is a tool for predicting the future values of time series [38].
Since it can represent traffic flow by a time series, we can fit an ARIMA model to
predict future traffic flow. ARIMA (p, d, q) has been used for prediction by many
researchers in many sectors, such as economics and transportation. In an ARIMA
model the training data preprocessing to exclude the error data. After that, the data
are classified into multiple data sets based on multiple time periods, and predictions
are made through extraction of the correlation between sequences [39]. An ARIMA
model is based on linear analysis [40]. Wang et al. [40] used ARIMA for short-term
traffic flow prediction (see Sect. 5.2.4), and their ARIMA model provided good
accuracy. Because the pattern of traffic flow appears as a seasonal pattern according
to peak and off-peak traffic conditions, seasonal ARIMA (SARIMA) models are
very suitable for modeling traffic flow behavior [41]. Kumar et al. [41] used 3 days
of data to forecast the flow for the next day. The advantage of this type of model is
the limited data set used for prediction.

5.2.2 Machine Learning Methods

Artificial Neural Networks

Artificial neural networks (ANNs) are the most widely used type of algorithm for
traffic flow prediction. ANNs are a set of statistical learning algorithms. They have
the ability to deal with complex problems and with missing and noisy data [42,
43]. ANNs contain multiple layers; the most widely used model is a multilayer
perceptron (MLP). Changqing et al. [43] presented a classification and prediction
framework for taxi hailing. They used K-means clustering to divide the data set
into several clusters and used a neural network based on the clustering result
to generate the prediction result. Florido et al. [44] used an NN algorithm for

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 119

congestion prediction in road networks. Achieving an accurate prediction result
with a minimum value of square error (MSE) is the objective of an ANN. To
achieve this aim, many researchers have developed a number of algorithms, such
as the back propagation neural networks (BPNNs) proposed by Park and Rilett
[45]. Pamuła [46] conducted research on analysis of traffic flow data using BPNNs.
The traffic flow was represented by four classes of time series. The results showed
the capability of neural networks to be used in intelligent transportation systems
(ITSs). In ANNs, there are different processing elements called neurons; each of
them takes multiple inputs and, on the basis of an internal weighting, only one
output is produced. The neurons are organized into layers [39]. Ban et al. [47]
used new neural networks named extreme learning machines (ELMs) to predict
traffic states. The algorithm provided good performance in comparison with other
prediction algorithms. However, time is the cost of this algorithm. ANNs need
parallel architecture to process large data volumes in small amounts of time, and
the cost of using ANNs is the large number of training data sets, which need large
amounts of storage.

Support Vector Machines

An SVM comes under the statistical learning algorithm category and is used in
many studies for traffic flow prediction. The SVM process involves getting the
optimal separating hyperplane. It can work with any number of dimensions [48].
Deshpande et al. [48], in their research, presented the potential use of SVM for
traffic flow prediction. Zhou et al. [49] conducted research on traffic flow analysis
based on GPS data on floating cars using a least squares (LS)–SVM method. Li
et al. [50] employed SVM for bus arrival time prediction based on GPS data. Their
results indicated that SVM was robust, adaptive, and able to provide good prediction
accuracy.

5.2.3 Limitations of Using a Single Prediction Method

Our review reveals that several methods have been used for traffic flow predic-
tion and modeling. These methods are classified into three categories: statistical,
machine learning, and hybrid methods. The statistical methods work well only with
linear traffic flow, while the machine learning methods have the ability to work
with nonlinear traffic flow. Each of the above methods works well under specific
conditions; when the conditions change, the performance of the predictive method
is affected and the accuracy decreases.

KF exhibits high prediction accuracy, but it is a linear prediction model and it is
not suitable for nonlinear traffic flow. Furthermore, it is not adaptive for dynamic
traffic conditions. The KF method has limited accuracy when it deals with noisy
traffic data [51].

120 B. Alsolami et al.

ARIMA is a popular and widely used statistical method for traffic flow predic-
tion. However, it has the disadvantage of being unable to capture rapid changes in
traffic data. In addition, a SARIMA model requires a lot of time for estimation of
parameters. ARIMA provides good performance only with static traffic conditions
and does not reflect the dynamics.

Many kinds of neural networks have been used for traffic flow prediction, such as
fuzzy neural models (FNMs), genetic algorithms (GAs), and multilayer perceptrons
(MLPs). Large volumes of historical data and many computational resources are
needed. Neutral networks are suitable for nonlinear features. Neural networks
constantly demonstrate high accuracy but take more time for training and require
large storage space. They are based on training using part of the historical data to
find the relationship between the input and the output. Moreover, ANNs are not able
to find an optimal solution for nonconvex problems.

SVMs can overcome the limitations of ANNs because they are able to map
nonlinear problems in a low dimension to linear problems in a high dimension.
However, they fail to give high prediction accuracy when the data contain noise.

5.2.4 Hybrid Traffic Flow Analysis and Prediction Methods

The hybrid prediction model combines the advantages of both statistical and
machine learning methods. In previous studies, hybrid models have outperformed
both statistical and machine learning models. However, the costs of using a hybrid
model are computational complexity and large storage needs. Most of the existing
hybrid models are performed using stand-alone platforms. Some existing hybrid
models have been performed using a distributed platform such as Hadoop; however,
the current state of work on hybrid models in distributed environments is very basic.
Apache Spark has recently emerged as another big data platform with much better
performance than Hadoop [52].

Wang et al. [40] conducted research on the potential use of a combination of
ARIMA and SVM for traffic flow prediction. They found the characteristics of the
data by using feature analysis and, on the basis of the analysis results, they used
hybrid ARIMA and SVM methods. The results showed that the hybrid methods did
improve the prediction accuracy.

Meng et al. [53] carried out research on the potential use of a hybrid K-nearest
neighbor (K-NN) method with a balanced binary (AVL) tree for short-term traffic
flow prediction to increase the accuracy of the prediction result. The results showed
that the hybrid K-NN method with AVL increased the speed of the search and the
accuracy outperformed both K-NN and AVL.

Xie et al. [54] proposed a novel hybrid prediction model combining the advan-
tages of an ARIMA model and a periodical moving average (PMA) model. The
model was evaluated using real-time data as well as historical data. The results
showed that the forecasting performance was improved by use of the hybrid
prediction model.

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 121

Li et al. [55] applied both ARIMA and a radial basis function ANN (RBF-ANN)
for traffic flow prediction. The results indicated that the hybrid model had better
performance than use of a single ARIMA or RBF-ANN.

5.3 Transportation Data Sources

Because of the rapid increase in the population and the numbers of vehicles, several
problems have emerged in transportation systems, such as traffic congestion and
traffic accidents. More recently, many types of transportation data have emerged
and can be used for studying traffic status and solving transportation-related issues.
Governments, city planners, and researchers have used these data for various
purposes such as predicting traffic flow and identifying traffic congestion and
traffic accidents. To find out the available traffic-related data, we widely review
technologies used for collection and acquisition of traffic data.

On the basis of the work done by Dabiri and Heaslip [30], we can classify traffic
data sources into six categories (Fig. 5.2). These are explained in Sects. 5.3.1–5.3.6.

5.3.1 Traffic Flow Sensors

Traffic flow sensors are devices for capturing the passage of vehicles over a
particular road so as to capture traffic parameters. They are classified into two
categories: the first category is sensors that are attached to the road pavement or road
surface, such as inductive loop and magnetometers sensors; the second category
is sensors that are placed above the road surface, such as infrared sensors, video
image processors, and microwave radar. Both ultrasonic sensors and passive infrared
sensors are widely used to collect unprocessed data, which is used by most of the
existing prediction models. Prathilothamai et al. [56] proposed a system for road
traffic prediction; they used traffic data collected by ultrasonic as well as passive
infrared sensors, and they suggested the use of traffic video in future studies.

Fig. 5.2 Classification of traffic data sources

122 B. Alsolami et al.

5.3.2 Video Image Processors

A video image processor (VIP) is a camera mounted on poles on the road pavement
or traffic signal for taking images or video of passing vehicles. Microprocessors
store and process these images and videos to apply computer vision algorithms for
extracting traffic parameters that are used in traffic management operations.

5.3.3 Probe Vehicles and People Data

Traffic sensors and VIPs capture traffic data only in a limited area and location,
which leads to data collection that is unrepresentative of the network as a whole. To
overcome this limitation, individuals’ vehicles equipped with GPS devices can be
used for collecting representative traffic data. Also, smartphones can used to capture
spatial data and can be used for tracking vehicles and people’s trajectories.

Floating car data (FCD) is an important source of traffic data in smart cities and
the transportation sector. It is a set of GPS entries containing information about
driving status. By using FCD, traffic congestion can be identified, travel time can be
computed, and traffic flow can be predicted. Castro et al. [57] proposed a method to
predict future traffic conditions. They evaluated their method by using large-scale
taxi GPS data obtained from around 5000 taxis in Hangzhou, China, over a period
of a month (February 2010). Wang et al. [58] proposed a three-phase framework to
explore the congestion correlation between road segments from three data sources:
GPS trajectories of taxis, road network data, and point of interest (POI) data.

5.3.4 Social Network Data

Today, millions of people share data and communicate using social networks such
as Twitter, Facebook, and Instagram. People share their images, locations, and video
on social media networks. These data contain hidden knowledge and can be used in
transportation systems. In social media, traffic data acquisition is performed using
an application programming interface (API) by using queries to access historical
and real-time information. Petalas et al. [29] proposed big data architecture for
road traffic prediction using multiple sources of data. The data they used for traffic
prediction were urban data and social media data. They utilized data from multiple
heterogeneous sources. The results showed that the performance of the prediction
model depends on the type of traffic data used.

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 123

5.3.5 Smart Card Data

Smart cards are one traffic data source, using technology for capturing transit data
and passenger behavior. There are two types of smart cards: automated passenger
counter (APC) cards and automated fare collection (AFC) cards. They are designed
for controlling passenger movement in and out of buses and subways.

5.3.6 Environmental Data

Traffic exhibits sudden shifts due to various factors such as weather status. Meteoro-
logical data—including temperature, wind speed, and precipitation—must be taken
into consideration when analyzing traffic flow. There are numerous public websites
that provide metrological data, such as the [US] National Weather Service (NWS;
https://www.weather.gov) and the [US] National Climatic Data Center (NCDC;
https://www.ncdc.noaa.gov).

5.4 Big Data Analysis and Processing Tools

5.4.1 Hadoop

Hadoop is a powerful open-source framework (developed by Apache) used by
many organizations and companies for storing, analyzing, and processing big data.
Hadoop provides good availability and scalability of data [59]. Also, Hadoop is
considered reliable and able to detect bugs. It is a distributed tool comprising two
components: MapReduce and the Hadoop distributed file system (HDFS). Large
data sets are divided into small pieces and stored in blocks of 64 MB in size;
each block is called a DataNode. Those DataNodes are indexed by NameNode in
HDFS [60]. MapReduce is a big data processing tool for distributed computing,
which was developed by Google. MapReduce works on a divide-and-conquer
principle, dividing big data problems into small problems and processing them in
parallel. Hadoop also contains a data warehousing application called Hive. Hive
uses structured query language (SQL) and HiveQL as query languages.

Hadoop_GIS Tool

The main components of a traditional geographic information system (GIS) are a
database for storage and an analyzing model. The data are represented in a relational
database or geodatabase. The data are transported to the ArcGIS environment for
analysis, and the ArcGIS toolbox uses spatial analysis jobs. The traditional GIS is

https://www.weather.gov
https://www.ncdc.noaa.gov

124 B. Alsolami et al.

single threaded, which means there is only one module to process and analyze the
data stream. For this reason, the traditional GIS is not suitable for processing large
data sets; the cost of processing a large data set is very high and it takes a lot of time
[60]. To overcome the limitations of the traditional GIS, the Hadoop_GIS tool was
proposed by Deng and Bai [60]. The Hadoop_GIS tool is a package containing
a spatial framework and geoprocessing tools. The spatial framework consists of
functions such as ST_Geometry. The Hadoop_GIS tool adds geometry functions
and a geoprocessing toolbox for Hadoop. Hadoop_GIS is considered more efficient
than the traditional GIS for processing large data sets; however, it is just a processing
model with no visualization feature.

5.4.2 Apache Spark

Apache Spark is an open-source framework designed for cluster computing. It
is designed to be fast and general purpose and to overcome the limitations of
MapReduce. Since time is a very important factor in big data processing, Spark
supports in-memory processing, which is faster than disk-based processing [61].
This feature make it faster to query big data than in a traditional disk-based engine
such as Hadoop. Spark can run multiple applications in the same engine. Also,
Spark has the ability to process different types of workloads that need separate
systems, including queries, iterative algorithms, and streaming. This feature leads to
a reduced management cost of multiple big data tools. Furthermore, the accessibility
of Spark is considered very high because it provides easy application programming
interfaces (APIs) in Java, Python, Scala, and SQL. Spark can be integrated with
any big data tools such as Hadoop. Moreover, Spark supports additional machine
learning tools such as M-Lib, a tool for graph processing (named GraphX), a tool
for streaming processing (named Spark Streaming), and Spark SQL for processing
structured data. All Spark components and supported tools are shown in Fig. 5.3.
When one compares Spark with other big data tools such as Hadoop, Spark is faster
and has greater ability to process and write data than Hadoop [61].

Fig. 5.3 Apache Spark
components

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 125

Apache Spark features Apache Spark is considered one of the high-performance
frameworks that are designed for cluster computing and real-time streaming pro-
cessing [56]. It is distinguishable from all other available tools because:

• It is a general purpose framework.
• It is easy to install and configure.
• It is simple to use because it support APIs with several programming languages

(such as Java, Scala, and SQL).
• It is faster than Hadoop because it supports in-memory computing.
• It supports Java and Scala, which are powerful languages for object-oriented

programming.
• It has the ability to aggregate multiple data sets from different sources.
• It has the ability to join and work with other big data tools such as Hadoop.

5.5 Process of Hybrid Prediction

Hybrid methods for road traffic prediction and analysis combine both statistical and
machine learning analysis. Researchers have proposed many hybrid methods with
different combinations of prediction methods for several kinds of traffic data. In
this section we introduce a tutorial for combining statistical analysis and machine
learning analysis. Furthermore, we propose the methodology of a hybrid prediction
model combining a widely used ARIMA model from the statistical category with
SVM from the machine learning category.

5.5.1 Statistical Analysis

In this section, we discuss the ARIMA model as an example of a time series–
forecasting method.

Autoregressive Integrated Moving Average

ARIMA was proposed by Box and Jenkins (1976) and is also called the Box–
Jenkins model [55]. It is widely used in predicting stationary time series. If the series
is not stationary, then it is transformed into a stationary series by differencing. The
order of differencing is denoted by the parameter d. The steps for predicting traffic
flow by using an ARIMA model are shown in Fig. 5.4, and an ARIMA flow chart is
shown in Fig. 5.5.

1. Data visualization: The goal of this step is to explore any trend in the data and
to decide what type of ARIMA we should use. If there is a seasonal trend in the
data, we should use a seasonal ARIMA model; if there is no seasonal trend, we
can use a normal ARIMA model.

126 B. Alsolami et al.

Fig. 5.4 Autoregressive integrated moving average (ARIMA) framework

Fig. 5.5 Autoregressive
integrated moving average
(ARIMA) flow chart

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 127

2. Stationarity test: Series stationary means that the mean and the variance of the
series should not be a function of time. The mean of the series should not
increase over time. The series is considered not stationary if there is a varying
spread of the data over time. Also, the covariance of the series should not be a
function of time. The covariance should be constant with time; if the spread of the
data becomes closer as the time increases, then the series violates the stationary
property.

3. Model recognition: The parameters p, d, and q are determined on the basis of the
Akaike information criterion (AIC) minimum criterion, autocorrelation function
(ACF), or partial autocorrelation function (PACF).

4. Parameter estimation and model diagnosis: The fourth step in building an
ARIMA model is checking the accuracy of the model by a diagnostic test such
as the Q statistic [62]. Then, we see if the chosen model and its parameters fit the
data reasonably or not. If not, the parameters and the model must be re-estimated.

5. Making the prediction: The chosen model is used with suitable parameters to
predict traffic flow.

5.5.2 Machine Leaning Analysis

Support Vector Machine

This is an advanced machine learning method and is widely used for short-term
prediction such as travel time prediction and traffic flow prediction [40]. The SVM
method has an algorithm called support vector regression (SVR), which is used to
solve classification and regression problems [51]. SVM has the ability to predict
unknown data on the basis of the given pattern. It is superior to ANN in terms of
generalization and learning ability [63].

Suppose we have the training data set: {(x1, y1), . . . (xn, yn)}. SVR can find
the function that represents the relationship of x and y; also, the function gives the
forecasted value of the new x. The SVR function can be represented as:

f (x) = w. φ (xi) + b (5.1)

where w and b are the final study variables of SVR, and φ (xi) is nonlinear mapping
to high-dimensional space.

5.5.3 Hybrid Autoregressive Integrated Moving
Average–Support Vector Machine Methodology

As we know, most real-world time series contain linear and nonlinear correlation
structures. Moreover, neither ARIMA nor SVM can capture all characteristics of
traffic flow patterns and provide reasonable prediction accuracy. Thus, we need to

128 B. Alsolami et al.

combine ARIMA and SVM to improve the prediction accuracy. Traffic flow data
contain nonlinear time series with white noise and linear time series, which can
represented as:

Yt = Lt + Nt (5.2)

where Lt and Nt denote the linear and nonlinear parts, respectively. Thus, we can
represent the hybrid prediction model as follows:

1. Step 1: Fit the ARIMA model to the linear time series, and the corresponding
predicted Ĺt at time t is obtained.

2. Step 2: Compute the residual et from the ARIMA model as follows:

et = Yt − Ĺt (5.3)

3. Step 3: Model the residual Èt by using the SVM model. Thus, the nonlinear traffic
flow time series can be captured. Ńt is the result of the prediction of the SVM
model.

4. Step 4: Finally, the overall prediction value of the traffic flow time series can
estimated as:

Ýt = Ĺt + Ńt (5.4)

A flow diagram of the hybrid model is shown in Fig. 5.6.

5.5.4 Model Evaluation

To measure the model performance and the accuracy of the prediction results in
order to compare the proposed model with other models, the following performance
indexes can be used:

1. Mean absolute error (MAE):

MAE = 1

N

N∑

i=1

∣
∣y(t) − y′(t)

∣
∣ (5.5)

2. Mean square error (MSE):

MSE = 1

N

√
√
√
√

N∑

i=1

(y(t) − y′(t)) 2 (5.6)

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 129

Fig. 5.6 Hybrid autoregressive integrated moving average (ARIMA)–support vector machine
(SVM) model

3. Mean relative error (MRE):

MRE = 1

N

(
N∑

i=1

∣
∣y(t) − y′(t)

∣
∣

y(t)

)

× 100% (5.7)

5.6 Conclusions

In this work, we have reviewed the widely used traffic flow prediction methods along
with the limitations of each method. The traffic data sources have been classified
into six categories and discussed. We have also reviewed high-performance big data

130 B. Alsolami et al.

analysis tools with their advantages and disadvantages. Finally, we have introduced
a tutorial on the process of hybrid modeling for traffic flow prediction. The hybrid
model combines both statistical and machine learning methods. In the proposed
hybrid model, we combine ARIMA for linear time series and SVM for nonlinear
components. The accuracy of the hybrid model can be measured using the discussed
performance metrics, and this is our future work.

Acknowledgements The work carried out in this chapter is supported by the High Performance
Computing (HPC) Center at the King Abdulaziz University, Jeddah.

References

1. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: some socio-technical challenges and opportunities. In:
Communications Infrastructure. Systems and Applications in Europe, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST 16. pp. 140–152 (2009)

2. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. In: Procedia Computer Science. pp. 1122–1127
(2017)

3. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies
and Applications (SCITA 2017): Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp. 111–122.
Springer, Cham (2018)

4. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 98–110. Springer, Cham (2018)

5. Ayres, G., Mehmood, R., Mitchell, K., Race, N.J.P.: Localization to enhance security and
services in Wi-Fi networks under privacy constraints. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 16. pp. 175–188. Springer (2009)

6. Ayres, G., Mehmood, R.: LocPriS: a security and privacy preserving location based services
development framework. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, Volume 6279, Part
4. pp. 566–575. Springer (2010)

7. Elmirghani, J.M.H., Badic, B., Li, Y., Liu, R., Mehmood, R., Wang, C., Xing, W., Garcia
Zuazola, I.J., Jones, S.: IRIS: an intelligent radio-fibre telematics system. In: Proceedings of
the 13th ITS World Congress, London, 8–12 October (2006)

8. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality simula-
tions. In: 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
pp. 411–416 (2009)

9. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793–1799. ITS America, Beijing
(2007)

10. Mehmood, R., Nekovee, M.: Vehicular ad hoc and grid networks: discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555–
1562. ITS America, Beijing (2007)

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 131

11. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad hoc
networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 59–74 (2013)

12. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: a two-pronged
approach. In: 7th IEEE International Symposium on Communication Systems, Networks and
Digital Signal Processing, CSNDSP 2010. pp. 401–405 (2010)

13. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems—enabler for smart cities, personalized medicine, participation and industry
Grid/Industry 4.0. In: Intelligent Transportation Systems—Problems and Perspectives, Volume
32 of the series Studies in Systems, Decision and Control. pp. 3–35. Springer (2016)

14. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50–62 (2015)

15. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013, pp. 201–210.
Springer, Ingolstadt (2014)

16. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 155–168. Springer, Cham (2018)

17. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: 2011 11th International Conference on
ITS Telecommunications, ITST 2011. pp. 361–368. IEEE (2011)

18. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: an
intelligent cloud based disaster management system for vehicular networks. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, Volume 7266. pp. 40–56. Springer, Vilnius (2012)

19. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM International Workshop
on Wireless and Mobile Technologies for Smart Cities—WiMobCity ’14. pp. 1–10. ACM, New
York (2014)

20. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673–678 (2014)

21. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: Transportation evacuation strategies
based on VANET disaster management system. Procedia Econ. Financ. 18, 352–360 (2014)

22. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 139–154 (2018)

23. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

24. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

25. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
In: Procedia Computer Science. pp. 1107–1114 (2015)

26. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on Apache Spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp.
323–336. Springer, Cham (2018)

132 B. Alsolami et al.

27. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Computer
Science 109: 1128–1133 (2017)

28. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. eds: Smart Societies, Infrastructure,
Technologies and Applications, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (LNICST), Volume 224. Springer, Cham
(2018)

29. Petalas, Y.G., Ammari, A., Georgakis, P., Nwagboso, C.: A big data architecture for traffic
forecasting using multi-source information. Presented at the (2017)

30. Via, C.E., Hall, P., Tech, V., States, U., Author, C.: Transport-domain applications of widely
used data sources in the smart transportation: a survey Sina Dabiri. 1–52 (2018)

31. Hadi Hosseini, S., Hadi Hosseini, S., Rahimi-kian, A.: Traffic flow prediction using MI
algorithm and considering noisy and data loss conditions: an application to Minnesota traffic
flow prediction. 26, 393–403 (2014)

32. Gandewar, R., Phakatkar, A.: Classification approach for big data driven traffic flow prediction
using apache spark. Int. Res. J. Eng. Technol. 4(9), 2395–2356 (2017)

33. Zhang, R., Shu, Y., Yang, Z., Cheng, P., Chen, J.: Hybrid traffic speed modeling and prediction
using real-world data. In: 2015 IEEE International Congress on Big Data (BigData Congress),
New York, pp. 230–237 (2015)

34. C.P.IJ. van Hinsbergen, J.W.C. van Lint, F.M.S.: Short term traffic prediction models deliver-
able DIIF-1a

35. Coifman, B.: Vehicle level evaluation of loop detectors and the remote traffic microwave sensor.
J. Transp. Eng. 132, 213–226 (2006)

36. Hu, J.H.J., Cao, W.C.W., Luo, J.L.J., Yu, X.Y.X.: Dynamic modeling of urban population travel
behavior based on data fusion of mobile phone positioning data and FCD. 2009 17th Int. Conf.
Geoinformatics. 1–5 (2009)

37. Abidin, A.F., Kolberg, M., Hussain, A.: Integrating Twitter traffic information with Kalman
filter models for public transportation vehicle arrival time prediction. In: Big-Data Analytics
and Cloud Computing. pp. 67–82. Springer, Cham (2015)

38. Yan, D., Zhou, J., Zhao, Y., Wu, B.: Short-term subway passenger flow prediction based on
ARIMA. Presented at the December (2018)

39. Gandewar, R.R., Phakatkar, A.G., Student, M.E.: Survey on classification and prediction
approaches in traffic flow. Int. J. Innov. Res. Comput. Commun. Eng. 5, (2017)

40. Wang, Y., Li, L., Xu, X.: A piecewise hybrid of ARIMA and SVMs for short-term traffic
flow prediction. In: International Conference on Neural Information Processing. pp. 493–502.
Springer, Cham (2017)

41. Vasantha Kumar, S., Vanajakshi, L.: Short-term traffic flow prediction using seasonal ARIMA
model with limited input data. Eur. Transp. Res. Rev. 21 (2015)

42. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic
speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 54,
187–197 (2015)

43. Yin, C., Lin, Y., Yang, C.: A classification and predication framework for taxi-hailing based
on big data. In: International Conference on Intelligent Computing ICIC 2017: Intelligent
Computing Methodologies. p. pp 747–758. Springer (2017)

44. Florido, E., Castaño, O., Troncoso, A., Martínez-Álvarez, F.: Data mining for predicting traffic
congestion and its application to Spanish data. In: 10th International Conference on Soft
Computing Models in Industrial and Environmental Applications. pp 341–351. Springer, Cham
(2015)

45. Park, D., Rilett, L.R.: Forecasting freeway link travel times with a multilayer feedforward
neural network. Comput. Civ. Infrastruct. Eng. 14, 357–367 (1999)

46. Pamuła, T.: CCIS 329—Traffic flow analysis based on the real data using neural networks. In:
CCIS. pp. 364–371. Springer, Berlin (2012)

5 Hybrid Statistical and Machine Learning Methods for Road Traffic. . . 133

47. Ban, X., Guo, C., Li, G., Ban, X., Guo, C, Guo, C., Li, G.: Application of extreme learning
machine on large scale traffic congestion prediction high-speed. In: Proceedings in Adaptation,
Learning and Optimization. pp. 293–305. Springer, Cham (2016)

48. Deshpande, M., Bajaj, P.R.: Performance analysis of support vector machine for traffic
flow prediction. In: 2016 International Conference on Global Trends in Signal Processing,
Information Computing and Communication (ICGTSPICC). pp. 126–129. IEEE (2016)

49. Zhou, X., Wang, W., Yu, L., Zhou, X., Yu, Á.L., Wang, W., Lu, W.: Traffic flow analysis and
prediction based on GPS data of floating cars. In: Lecture Notes in Electrical Engineering. pp.
497–508. Springer, Berlin (2012)

50. Li, Y., Huang, C., Jiang, J.: Research of bus arrival prediction model based on GPS and SVM.
In: 2018 Chinese Control And Decision Conference (CCDC). pp. 575–579. IEEE (2018)

51. Hu, W., Yan, L., Liu, K., Wang, H.: A short-term traffic flow forecasting method based on the
hybrid PSO-SVR. Neural. Process. Lett. 43, 155–172 (2016)

52. Shoro, A.G., Soomro, T.R.: Big data analysis: Ap spark perspective. Glob. J. Comput. Sci.
Technol. 15, 7–14 (2015)

53. Meng, M., Shao, C.-F., Wong, Y.-D., Wang, B.-B., Li, H.-X.: A two-stage short-term traffic
flow prediction method based on AVL and AKNN techniques. J. Cent. South Univ. 22, 779–
786 (2015)

54. Xie, J., Choi, Y.-K.: Hybrid traffic prediction scheme for intelligent transportation systems
based on historical and real-time data. Int. J. Distrib. Sens. Networks. 13, 1–11 (2017)

55. Li, K.-L., Zhai, C.-J., Xu, J.-M.: Short-term traffic flow prediction using a methodology based
on ARIMA and RBF-ANN. In: 2017 Chinese Automation Congress (CAC). pp. 2804–2807.
IEEE (2017)

56. Prathilothamai, M., Sree Lakshmi, A.M., Viswanthan, D.: Cost effective road
traffic prediction model using apache spark. Indian J. Sci. Technol. 9, (2016).
https://doi.org/10.17485/ijst/2016/v9i17/87334

57. Castro, P.S.., Zhang, D.., Li, S: Urban traffic modelling and prediction using large scale
taxi GPS traces. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 57–72. Springer, Berlin
(2012)

58. Wang, Y., Cao, J., Li, W., Gu, T., Shi, W.: Exploring traffic congestion correlation from multiple
data sources. Pervasive Mob. Comput. 41, 470–483 (2017)

59. Usama, M., Liu, M., Chen, M.: Job schedulers for big data processing in Hadoop environment:
testing real-life schedule with benchmark programs. Digit. Commun. Networks. 3(4), 260–273
(2017)

60. Deng, Z., Bai, Y.: Floating car data processing model based on Hadoop-GIS tools. In: 2016
Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics). pp. 1–4. IEEE
(2016)

61. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning spark: lightning-fast big data
analysis. (2015)

62. Zeng, D., Xu, J., Gu, J., Liu, L., Xu, G.: Short term traffic flow prediction using hybrid ARIMA
and ANN models. In: 2008 Workshop on Power Electronics and Intelligent Transportation
System. pp. 621–625. IEEE (2008)

63. Yang, Y., Lu, H.: Short-term traffic flow combined forecasting model based on SVM. In: 2010
International Conference on Computational and Information Sciences. pp. 262–265. IEEE
(2010)

http://dx.doi.org/10.17485/ijst/2016/v9i17/87334

Chapter 6
Comparison of Decision Trees and Deep
Learning for Object Classification
in Autonomous Driving

Furqan Alam, Rashid Mehmood, and Iyad Katib

6.1 Introduction

Road transportation is among the grand global challenges affecting human lives,
health, society, and economy, caused due to road accidents, traffic congestion,
and other transport deficiencies. Many approaches have been proposed to address
transportation challenges and develop smart transportation infrastructures, see e.g.,
autonomic transport systems [1–3], vehicular ad hoc network (VANETs) [4–
6], vehicular systems [6, 7], disaster management [8–12], simulations [13, 14],
logistics and operations research [15–19], big data [20–23], and social media based
approaches [24, 25]. Autonomous vehicles are the latest among the solutions to
radically address transportation challenges.

An autonomous vehicle (AV) is one that can accelerate, increase and decrease
speeds, put and release brakes and steer, itself avoiding any sort of accidents. Such
technology has long been part of Hollywood sci-fi quixotic vision of the future. This
is due to the fact that AVs will free drivers from the boring side of driving during
travel and reduce accident rates by providing breathtaking control over vehicles.
In the past, many attempts have been made but subjected to the limitation of
available technologies. However, in recent years with technological advancements,

F. Alam (�) · I. Katib
Department of Computer Science, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia
e-mail: fmohammed0026@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_6&domain=pdf
mailto:fmohammed0026@stu.kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_6

136 F. Alam et al.

the dream of AVs comes very close to reality. Now we are able to manufacture them
nevertheless they are in their testing phase. AVs have the potential to change how
we look at our surroundings.

The Autonomous Driving (AD) is getting lots of attention and popularity due
to its various benefits [26] and assumed to be an on-road reality soon. Most of the
major industry titans which include Google, Tesla, Ford, Volvo, BMW, Microsoft,
Apple, and others are making huge investments in developing technologies which
will enable AD. A new forecast by Intel and Strategy Analytics research firm
estimated that AVs will be a 7$ trillion market by 2050 [27]. The competition of
which company will bring its AVs first on the road to common public getting so
tough, resulted in various perk luring practices to get skilled engineers from the
rival companies and stealing AVs technologies from the competitors [28–30]. The
core of these developments revolves around the critical question, how to perceive
the driving environment with higher certainties.

The key technology on which success of AVs depends is how accurately they
are able to perceive the driving environment. The initial step in this quest is to
recognize the static and dynamic objects around the vehicles with higher accuracies.
In a driving environment, this object recognition problem is more complex due to
the fact that it is multi-class problem and given the dynamic nature of the driving
environment which add further complexities to it. AVs consist of several onboard
and off-board sensors such as cameras, LIDAR, Radar, and GPS as illustrated in
Fig. 6.1.

The aim of any object recognition system is to predict with the highest degree of
certainty for the given task. The result evaluation of different classification schemes
can be different in terms of classification accuracies. One classifier tends to produce
better predictions for a particular class, though its overall accuracy can be lower
as compared to the other. The sets of patterns of rightly classified or misclassified
data instances by the distinct classifiers would not certainly coincide, thus this
forms the basis to acquire better classification accuracies through decision fusion
of predictions from various classifiers.

Supervised machine learning algorithms learn using a training dataset which
contains independent variables and their response variables. They keep on learning
until the minimum possible classification error achieved. In our previous work [31],

Fig. 6.1 General view of the autonomous driving environment

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 137

we developed a methodology to integrate supervised learning and decision fusion
to enhance object classification accuracy in a driving environment, which could
enable an auto-pilot to take better driving decisions. This problem equates to pixel
classification. Our study revealed that the C5.0 decision tree classifier performs
similar to deep learning. This paper extends and investigates the topic further
and compares in depth the performance of deep learning and C5.0 decision tree
classifier for object classification accuracy in driving environments. The terms “deep
learning” and “feed-forward deep neural networks classifier” are interchangeably
used in this paper.

The contributions of this paper are:

• We manually label 100 images from a subset of KITTI road dataset [32] by using
free-form selection (polygon) rather than a box or rectangular selection. This
means, highly accurate pixel labeling is achieved by carefully selecting only the
area of interest to enhance the training of the algorithm.

• We compare the C5.0 decision tree classifier with feed-forward deep neural
networks classifier and critically analyze both classifiers based on various
performance evaluation parameters including accuracy and prediction speed.

• We investigate in detail whether there is a competitive alternative to deep learning
classifiers for pixel classification problems.

The paper is divided into eight sections. Section 6.2, contains a literature review
and in Sect. 6.3 we explained the dataset and data preparation for this work. Further
in Sect. 6.4, the classifiers are discussed which are used in this work, whereas in
Sect. 6.5, the proposed method has been explained in detail. We represent the results
of the proposed method in Sect. 6.6 and the comparison results in Sect. 6.7. Finally,
conclusions are drawn in Sect. 6.8.

6.2 Literature Review

Machine learning is a mighty artificial intelligence (AI) tool which helps us to
understand the complicated world around us by learning. Nowadays machine
learning is applied in almost every field such as biomedical, education, busi-
ness, security, robotics, weather forecasting, networking, and much more [33–37].
Machine learning which eventually uses to develop AI for autonomous vehicles
(AVs), ranges from infotainment systems to advanced driver assistance systems
(ADAS) and further to complete self-driving auto-pilots. With machine learning, AI
systems continuously learn from experience by their ability to foresee and identify
the happenings in their surroundings, which is promising to be highly constructive
when integrated into a software architecture of AVs. Search engine giant Google
and Tesla have been doing considerable research and development for developing
the AI capabilities for their autonomous cars, albeit in a more vocal manner than
their counterparts. Perceiving driving environment is the key problem for facilitating
safe and smooth autonomous driving. The problem starts with recognizing static

138 F. Alam et al.

objects (road, speed breakers, traffic light, buildings) and dynamic objects (cars,
cycles, trucks) around AVs. All the different objects must be classified by an object
recognition system which is a multi-class problem for AVs and has been well studied
in [38–40].

Identifying, tracking, and avoiding human beings is a pivotal capability of AVs.
Pedestrian recognition must guarantee the safety of humans walking on footpaths
and crossing the roads while auto-pilots are driving AVs which is studied in [41–
43]. At Google, research scientist, Anelia Angelova introduced a novel pedestrian
detection system that only requires video images [44]. Similarly to [44] in [45],
the deep learning based video-only pedestrian detection system is presented which
is under development at the University of California, San Diego. Works like [44,
45] could make human detection systems for AVs to pinpoint humans using low-
cost sensors like cameras alone without using expensive Lidar units which can
reduce the cost of AVs considerably with high reliability. The developments in [44,
45] also support the arguments of Tesla CEO Elon Musk against using expensive
Lidar technology for self-driving cars. A realistic situation can arise when AVs will
have a sudden encounter with a pedestrian, to save lives and avoid collision with
a pedestrian is a crucial and complex problem. In paper [46], the author studies
the problem of detecting sudden pedestrian encounters to aid drivers to avert any
sort of accident. Road detection is a crucial problem for AVs as it decides how
much space is available for driving and turning to ensure safe and smooth driving.
In recent years, a lot of development has been seen in this area [47–49]. For this
purpose in [50], the authors proposed a road detection technique using SVM which
automatically updates the training data to minimize classification error. Similarly,
in [51], linear SVM is used for Segment-Based Fractal Texture Analysis (SFTA)
and compared with the multi-layer convolutional neural network (CNN). Both
linear SVM and CNN produced very high classification accuracies. However, CNN
showed slightly better specificity.

Another way to perceive the driving environment is to combine multiple
decisions or multiple sensor data for deducing the driving environment. This can
also be defined as data fusion which is well studied from various perspectives in
one of the latest and comprehensive surveys [52]. The paper review mathematical
methods for data fusion, specific sensor environments. Further authors discussed
the emerging trends which would be benefited from data fusion [52]. For example,
combining GPS and camera images to predict safe driving distance to another
vehicle on the road. Combining the multiple inputs or features into a single output is
a complex problem but the outcome tends to show more certainty than single sensor
data analytics as achieved in proceeding literature. For example in [53] authors
fuse cameras images and LIDAR for deducing driving environment by labeling
segments of images, whereas in [54] object grid maps are created by combining
camera images and laser. In literature such as [41, 42], the single feature set is used
to identify humans. Solving the same problem, though using multi-sensor data, a
smoothing-based depth up-sampling method for human detection is proposed in
[55] which fuses camera images and LIDAR data. Furthermore in [56], authors use
knowledge of object classes to recognize humans, car obstacles, and bicyclists. A

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 139

multi-layer perceptron (MLP) classifier is used in [57] to recognize, interpret, and
track autonomous moving objects. Blend of stereo vision, LIDAR, and stereo vision
data is used and supplied to MLP in [57] as input. Hane et al. use images from
cameras with wheel odometry for drawing out static obstacles [58], whereas in [59]
Dempster Shafer theory of evidence is used to integrate sensors data to classify the
obstacles.

Combining the results of multiple classifiers tends to produce better results,
this is a well-proven concept. This sort of combination is known as Decision
Fusion (DF). However, it is important to select a combination of right classifiers
in order to take benefits from DF. In one of such work [60], authors critically
examine the use of the ρ-correlation as a way to quantify the classifier diversity
for selecting classifiers for fusion. DF methods are used successfully for image
classification problems. A scheme to aggregate the results of different classifiers
is proposed in [61]. Situations, where the classifiers disagree with each other [34],
are solved by computing the pointwise accuracy and finding the global reliability
[62]. Traditional methods for hyperspectral image classification typically use raw
spectral signatures without considering spatial characteristics. In work [63], a
classification algorithm based on Gabor features and decision fusion is proposed.
First, the adjacent and high correlated spectral bands are intelligently grouped
by coefficient correlation matrix. Following that, Gabor features in each group
are extracted in PCA-projected subspaces to quantify local orientation and scale
characteristics. Afterward, locality preserving non-negative matrix factorization is
incorporated to reduce the dimensionalities of these feature subspaces. Finally,
the classification results from Gaussian-mixture-model classifiers are merged by
a decision fusion rule. Experimental results show that the proposed algorithms
substantially outperform the traditional and state-of-the-art methods. Majority of
AVs researches are based on binary classification problems and less attention has
been given to challenging multi-class problems.

In this paper, we considered the binary classification problem of road detection.
One of the primary tasks of AVs is to drive within the drivable area available to them.
Driving surface identification is an important and critical task in the overall success
of AVs in the future [64]. Several methods in the past have been proposed to solve
this problem [65–67]. To the best of our knowledge, no literature exists with respect
to autonomous driving that takes leverage from connecting vehicles paradigm and
information fusion for better driving scene understanding.

Road detection for the AD is an important problem. In recent years, a lot of
development has been seen particularly focused on road/lane detection methods
[47–49]. The paper [47] proposed an algorithm for AVs for road shape identification
with the help of LIDAR by identifying geometric features. Data is fused from
multiple LIDAR for identifying geometric features like berms and curbs as well
as obstacles. Road shape is represented using Taylor series expansion used in [68]
as:

y(x) = y0 + tan (∅) x + C0
x2

2
+ C1

x3

6
(6.1)

140 F. Alam et al.

where lateral offset between road and AV, curvature and curvature rate of the road,
and angle of the road relative to the AV are represented by (y0, C0, C1, φ). Each
cell in obstacle map Mij ∈ {unseen, empty, small, medium, lethal}. For road tracking,
several observation models are possible. For [47], authors selected the model based
on exponential density as:

p (x|y) ∝ e−C(x,z) (6.2)

where C(x, z) is the weighted sum of possible objectives. The model provides
smooth turning. Using the algorithm, AV drives through roadways successfully
without the need of different parameter settings for different driving environments.
Urban scenes may present additional challenges such as intersections, multi-lane
scenarios, or clutter due to heavy traffic.

In [48], the authors present an integrative lane detection approach which can
work in real time with a significant amount of adaptability based on urban and rural
driving environments. It is assumed in [48] a colored forward facing camera is fixed
at the center of the windshield. The lane width is given as L = DL + DR, where
horizontal distance in meters from the left lane is DL and DR which is the distance in
the meter from the right lane border. Images are converted to illuminant-invariants as
to remove shadows. For the purpose of lane identification, the algorithm uses ridge
which is low-level image feature that measure of crease-ness and road geometry
estimation is done by Random Sample Consensus (RANSAC) algorithm, which
is fed up with detected ridges. Simulations are done on both pre-scan and KITTI
datasets [69]. Quantitative evaluation has been done by using pixel-wise measures,
which are precision (P), recall (R), and effectiveness (F) given as:

P =
∑

GIr
∑

Ir

(6.3)

R =
∑

GIr
∑

G (6.4)

F = 2PR

P + R
(6.5)

For given color images, ground-truth mask is G and Ir is the segmentation results.
In paper [49], authors present an approach that produces reliable results exploiting a
robust polyline matching technique. The proposed solution has been designed from
the ground up so that only very limited hardware resources are required: just one
camera is used and the processing is fast enough to be compatible with mainstream
DSP units. These works focused particularly on the lane marking in urban areas
where the roads infrastructure is well developed. However in underdeveloped rural
areas where marking lanes is not easy due to the poor road infrastructure, few ML
and deep learning (DL) based methods are proposed for road detection [70–73].

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 141

An increasing safety and reducing road accidents, thereby saving lives are one of
great interest in the context of Advanced Driver Assistance Systems. Apparently,
among the complex and challenging tasks of future road vehicles is road lane
detection or road boundaries detection. It is based on lane detection (which includes
the localization of the road, the determination of the relative position between
vehicle and road, and the analysis of the vehicle’s heading direction). One of the
principal approaches is to detect road boundaries and lanes using the vision system
on the vehicle. However, lane detection is a difficult problem because of the varying
road conditions that one can encounter while driving. In paper [74], a vision-based
lane detection approach capable of reaching real-time operation with robustness to
lighting change and shadows is presented. The system acquires the front view using
a camera mounted on the vehicle then applying few processes in order to detect the
lanes. Using a pair of hyperbolas which are fitting to the edges of the lane, those
lanes are extracted using a Hough transform. The proposed lane detection system
can be applied to both painted and unpainted road as well as curved and straight
road in different weather conditions. This approach was tested and the experimental
results show that the proposed scheme was robust and fast enough for real-time
requirements. Eventually, a critical overview of the methods was discussed, and
their potential for future deployment was assisted [74].

6.3 Dataset and Data Preparation

We used KITTI datasets [32] in our work [31], where we have used two feature sets
which are (R,G,B) values of the pixels and spatial values of each pixel in the image
frames of dimension 1242 x 375 as depicted in Fig. 6.2. We create a dataset which
has four attributes, namely r, g, b, x, y, class. We used Raster package [75] in R, to
compute pixel values and location of each pixel in the image frame.

Further, we manually labeled the images from a subset of KITTI city dataset [32]
by using free-form selection (polygon) rather than a box or rectangular selection
which is further depicted in Fig. 6.3. This means highly accurate pixel labeling is
achieved by carefully selecting only the area of interest to enhance the training of
the machine learning algorithm. After selecting pixels of a particular object, we
manually labeled every object pixel and spatial values to make the final dataset.

Fig. 6.2 Data preparation process

142 F. Alam et al.

Fig. 6.3 Object labeling process. The image is taken from the KITTI dataset [32]

Our dataset in [31] contains 380,000 rows and six attributes and we divided the
datasets into two parts which are training 60% and 40% testing. Further, we used
the SMOTE algorithm on training data to overcome the class imbalance problem
which is discussed in the proceeding section.

In this paper, we are using a bigger dataset to perform a comparative analysis
between C5.0 decision tree classifier and feed-forward deep neural networks
classifiers from KITTI road dataset [32]. We are using 100 video frames of the
same size as used in [31]. This dataset contains 46,575,000 rows with four attributes,
namely (RGB) pixels values and class labels (road, background). In this work, we
are addressing the binary classification problem of predicting drivable surface (road)
and non-drivable surface (background).

6.4 Algorithms

In this paper, we performed comparative analysis in which we used several super-
vised machine learning algorithms based on their prediction accuracy, execution
time and scalability for classification and decision fusion through majority voting.
In this paper, our focus is primarily on C5.0 decision tree classifier and Feed-forward
deep neural networks classifiers.

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 143

6.4.1 Decision Tree

C5.0 classifier is a supervised learning algorithm which builds a decision tree using
the concept of information entropy proposed by Ross Quinlan [76]. It can handle
both continuous and discrete attributes. In this work we used C5.0 decision tree
classifier, which is an extension of C4.5 and is also commercially sold by Ross
Quinlan. The reason to use the C5.0 decision tree classifier for this work lies in the
fact that it is extremely fast, several folds faster than its predecessor C4.5. It can
take benefits of multi-core and multiple CPU [77]. Further, it has better memory
management, which is needed because a significant amount of data processing is
required particularly in RGB image classification. It can give similar or better results
to C4.5 and forms significantly smaller decision trees. In Fig. 6.4, we depicted
sample decision rules of C5.0 decision tree classifier for pixel classification.

C5.0 decision tree classifier is widely used in satellite image classification.
Various variants of decision trees including C5.0 decision tree classifier are used
in the land cover classification of satellite imagery in [78], crop classification in
China’s North Xinjiang area in [79] and for improving classification of land cover
by pixel integration and decision trees in [80]. Further, an optimized version of the
C5.0 decision tree classifier which uses Bayesian theory is proposed in [81]. C5.0
decision tree classifier is a very good choice if the dataset contains few features like
in the case of the pixel, only three (RGB) values need to classify. However, C5.0
decision tree classifier learns slowly if datasets have too many features.

Fig. 6.4 C5.0 decision tree classifier sample rules for pixel classifications

144 F. Alam et al.

6.4.2 Support Vector Machine

Support vector machine (SVM) is one of the most accurate classifiers and have a
sound theoretical foundation. SVM constructs hyperplane or a set of hyperplanes for
performing classification and regression [82]. It can compete with far more complex
modern-day classifiers in terms of accuracies and it is considered one of the best
classifiers which are listed among the top 10 machine learning algorithm [77]. SVM
is used widely for image classification problems such as image segmentation of
colored images [83, 84], image classification through remote sensing [85, 86], and
face recognition [87, 88]. SVM based classifications are very accurate, particularly
for binary classification problems. However, they are not fast enough if compared
to deep learning algorithms.

6.4.3 Deep Learning

Deep learning (DL) mimics a neural system of humans for performing learning
task. It belongs to the family of artificial neural networks. It digs deep into the
data and finds out the complex relationships among data elements. Deep learning
algorithms are now widely used in image recognition [89, 90], natural language
processing [91–93], speech recognition [94, 95], weather forecasting [96, 97], and
bioinformatics [98, 99] due to its quality of producing highly accurate predictions,
though DL is computationally expensive. To develop a further understanding of
various deep learning architectures, models, and their mathematical formulations in
a more comprehensive manner, work such as [100–103] can be investigated further.
In Fig. 6.5, we depicted classical deep learning architecture.

Fig. 6.5 Classical
architecture of deep neural
networks

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 145

6.5 Proposed Method

In this paper, our prime focus is to critically compare C5.0 decision tree classifier
with feed-forward deep neural networks classifier. Whereas in work [31], our prime
focus is to identify data instances which are most difficult to classify for the given
supervised machine learning algorithm, prior to classifying them and to reclassify
the predicted misclassified data. We divide our main method [31] into two phases.
In the first phase, we carefully train our models and generate data for the training of
proceeding stage because, from stage-2 onwards, machine learning algorithms need
to be trained with the data specific to that stage. In the second phase, we test our
whole method to predict its accuracy.

All the experimentations are performed on the R statistical machine learning
platform, and H2O [104], C5.0 decision tree classifier [105], and Caret [106]
libraries are used. All the simulations are carried out on the Aziz supercomputer.
The Aziz supercomputer is Fujitsu made and is able to deliver peak performance of
230 teraflops. It has a total of 11,904 cores in 496 nodes. Aziz was ranked number
360 in the June 2015 Top500 competition (http://www.top500.org/); currently, it is
at number 491 (November 2015).

6.5.1 Training

Formally we can define our training process as, for the given training set
(Xi, Yi), we want to generate a classifier function f to predict Yi labels for new
Xi = (ri1, gi2, bi3, xi4, yi5). In work [31], the training process is very critical and
the core of the work. It serves two purposes. Firstly, identify accurate machine
learning models and secondly, generate dataset for next stage. For method depicted
in Fig. 6.6, as input we used data1 to train C5.0 decision tree classifier and to make
data for training of the next stage. We predicted class labels using data2.

Misclassified data instances in [31] are only 2.71% of the whole data. Training
C5.0 decision tree classifier for predicting misclassified (miss) and rightly classified
(hit) data labels produced results with high accuracy. However, the prediction
accuracy of misclassified data instances is below 50%. This is due to the imbalance
dataset problem. To counter this, we used the SMOTE algorithm [107], to generate
balanced and massive data of 1.5 million rows for training C5.0 decision tree
classifier for predicting miss and hit and update data2 accordingly. Then we
separated miss and hit data. Further miss dataset

(
Dmiss1

)
is used to train classifiers

for majority voting in [31]. Same steps are repeated to train classifiers n number of
times. Class labels which are predicted at different stages are combined together in
Pfinal based on row indexes of original input data.

Whereas in this paper, we are using a far bigger dataset which contains
46,575,000 rows. For training, we used 60% data that is 27,945,000 rows with class
labels and for testing, we used the remaining 40% data that is 18,630,000 rows of
unlabeled data.

http://www.top500.org/

146 F. Alam et al.

Fig. 6.6 Training method

6.5.2 Testing

The testing process is explained in Fig. 6.7, which is self-explanatory in nature. We
used the classier function f obtained from the training process, to predict Yi label for
new Xi = (ri1, gi2, bi3, xi4, yi5). All trained classifiers are used in the testing phase.
In Fig. 6.7, from stage-2 all the steps are repeated n number of times. In this work,
we used n = 2; however, it can be more but will reduce the prediction speed.

6.5.3 Comparison

Our previous work [31] strongly pointed out that the C5.0 decision tree classifier
performed very close to feed-forward deep neural networks classifier. Therefore
to have more convincing evidence for this, in this paper, we compared the above-
mentioned classifiers. While testing D2TFRS [31], we used a small dataset as
explained in Sect. 6.3. However, for this work, we used a bigger dataset which
contains more than 40.5 million rows. To speed up C5.0 decision tree classifier
prediction, we process it in parallel using a thick node of Aziz supercomputer which
has 24 cores and 256 GB memory [108]. First, we trained the C5.0 decision tree
classifier, then the dataset is broken down into 24 sub-datasets. Each core of Aziz
process trained C5.0 decision tree classifier to predict each sub-dataset and 24 cores
predict together in parallel. This is done to match-up the prediction time with feed-
forward deep neural networks. In Fig. 6.8, we depicted the parallel execution model
for the C5.0 decision tree classifier.

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 147

Fig. 6.7 Block diagram of proposed D2TFRS

Fig. 6.8 Block diagram of C5.0 decision tree classifier execution in parallel

We constructed feed-forward deep neural networks classifier, to find the best
parameters for obtaining best results we performed hyper-parameter tuning through
grid search using Aziz [108]. We achieved best accuracy of 93.89269% for feed-
forward deep neural networks model with epochs (1000), hidden (64,64,64), activa-
tion (rectifier), L1 (0), L2 (0), rate (0.005), adaptive_rate (False), rate_annealing

148 F. Alam et al.

Fig. 6.9 AUC curve training vs validation for deep learning

(1e-06), input_dropout_ratio (0.1), and stopping_metric (AUC). The area under
curve (AUC) plot training vs validation of feed-forward deep neural networks
classifier is given in Fig. 6.9.

6.6 Results and Analysis

To evaluate our results, we compared D2TFRS method to C5.0 decision tree and
AdaBoost classifiers. We used confusion matrix, sensitivity, and specificity as the
benchmarks for results evaluation.

6.6.1 Confusion Matrix

A confusion matrix (CM) is a table which shows actual versus predicted data labels.
The sum of diagonal (SoD) of CM represents the correctly classified data label, thus
it can be used to compute classifier accuracy too which can be given as:

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 149

Fig. 6.10 Confusion matrix
of C5.0, AdaBoost, and
D2TFRS

Accuracy% = (SoD/Sum of all cells of CM) × 100 (6.6)

In Fig. 6.10, we visualize the CM of the D2TFRS method, C5.0 decision
tree, and AdaBoost classifiers. SoD which is the green color cells in Fig. 6.6,
for each classifier represent rightly classified data labels. D2TFRS outperformed
the AdaBoost classifier by getting 6.48% better classification accuracy. D2TFRS
performed better than C5.0 decision tree classifier which produces a classification
accuracy of 97.29%, which is 1.33% less than the classification accuracy of
D2TFRS.

6.6.2 Sensitivity and Specificity

Sensitivity can be defined as the proportion of actual class labels which are correctly
predicted by the classifier, whereas specificity is the ability of the classifier to
identify negative results. Important terms used to calculate sensitivity and specificity

150 F. Alam et al.

Fig. 6.11 Sensitivities measurement of C5.0, AdaBoost, and D2TFRS

are a number of true positive (TP), number of true negatives (TN), number of false
positive (FP), and number of false negatives (FN), respectively.

Mathematically, these can be expressed as:

Sensitivity = TP/ (TP + FN) (6.7)

Specificity = TN/ (TN + FP) (6.8)

In terms of sensitivity and specificity, D2TFRS performed better than C5.0
decision tree and AdaBoost classifiers for all classes as depicted in Figs. 6.11
and 6.12. AdaBoost performed worst among the three, whereas C5.0 decision
tree classifier performed better than AdaBoost but lacks slightly behind proposed
D2TFRS. Further, a graphical comparison of sensitivities and specificities are given
in Figs. 6.11 and 6.12.

6.6.3 Kappa and Speed

Kappa (κ) is an index that considers an observed agreement with respect to a
baseline agreement [109]. κ is a statistical benchmark to measure classification.
There are no universal acceptability criteria on how to interpret κ . However first
of its kind guidelines are given by Landis and Koch. Value of κ nearer to 1 means
substantial or almost perfect agreement, whereas the value of κ farther from 1 means
no agreement or slight agreement. For more detail, characterization of κ can be
found in [110].

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 151

Fig. 6.12 Specificity measurement of C5.0, AdaBoost, and D2TFRS

Table 6.1 Hyper-parameter Tuning

Parameters Values

Epochs 100, 400, 800, 1000, 2000
Hidden (32,32), (64,64), (128,128), (256,256), (32,32,32), (64, 64, 64), (128,

128, 128), (256, 256, 256)
L1 0, 1e-3, 1e-5
L2 0, 1e-3, 1e-5
Activation Tanh, TanhWithDropout, Maxout, Rectifier, RectifierWithDropout,

MaxoutWithDropout
Input dropout ratio 0, 0.1, 0.05
Rate 0.01, 0.02, 0.005
Rate annealing 1e-8, 1e-7, 1e-6
Adaptive rate True, False
Stopping metric AUC, RMSE

Mathematically, κ can be expressed as:

κ = (po − pe) / (1 − pe) (6.9)

where an observed agreement is given as po and expected agreement is given as pe.
The value of κ is always ≤1. Values of κ are given in Table 6.1. Proposed method,
D2TFRS, has an almost perfect agreement which is nearest to 1 as compared to C5.0
decision tree and AdaBoost classifiers.

In terms of speed, C5.0 decision tree classifier took 5.11 s which is almost five
times faster than D2TFRS which took 24.09 s and AdaBoost took 125 s with 20
iterations for which boosting is run. We strongly believe parallelization can increase
the speed of D2TFRS by several magnitudes, as in this work D2TFRS implemented
sequentially not in parallel. Further details of accuracy, Kappa, and speeds can be
found in Table 6.2.

152 F. Alam et al.

Table 6.2 Classification
statistics

Accuracy (%) Kappa Speed (s)

C5.0 97.29 0.9658 5.11
AdaBoost 92.14 0.9012 125
D2TFRS 98.62 0.9825 24.9

6.7 A Detailed Comparison of C5.0 and Deep Learning
Results

For comparative analysis, we used confusion matrix, sensitivity, specificity, kappa,
prediction accuracy, and time taken to predict as performance evaluation parameters
which is explained in Sect. 6.6 in detail. In terms of prediction accuracy, both
classifiers performed very close. The prediction accuracy of the C5.0 decision tree
classifier is 93.9367%, whereas feed-forward deep neural networks are 93.8926%.
In terms of sensitivity, C5.0 decision tree classifier performed slightly better than
feed-forward deep neural networks classifier; however, in terms of specificity feed-
forward deep neural networks classifier performed vice versa.

We implemented the C5.0 decision tree classifier in parallel so to match-up the
prediction speed with feed-forward deep neural networks classifier. Despite parallel
implementation, C5.0 decision tree classifier took 69 seconds whereas feed-forward
deep neural networks classifier took 105 seconds. This clearly shows that feed-
forward deep neural networks classifier outperformed C5.0. Further, Figs. 6.13 and
6.14 can be referred for detailed results in this respect.

6.8 Conclusion

Autonomous vehicles (AVs) are not anymore a future imagination of vehicles which
can drive itself without any sort of human assistance. AVs are nowhere though
they are in the final phase of testing before public use. In this paper, we compared
the C5.0 decision tree classifier with feed-forward deep neural networks classifier.
To maximize the speed of C5.0 decision tree classifier by several magnitudes,
we implemented it in parallel. We are able to minimize prediction speed of C5.0
decision tree classifier considerably using a combination of parallel programming
and high performance computing through Aziz supercomputer.

This comparative analysis is specifically for pixel-based classification problems.
In this paper, we focused on AVs. We clearly see that the C5.0 decision tree
classifier performs at par with feed-forward deep neural networks classifier in terms
of classification accuracy. However, in terms of prediction speed, feed-forward
deep neural networks classifier outperforms C5.0 decision tree classifier even after
parallelization. Our work in this paper shows that for pixel classification problems
C5.0 decision tree classifier can be a good choice and an alternative to resource
exhausting deep learning algorithms if prediction speed does not matter much.
However, for near real-time and real-time predictions, deep learning algorithms hold
the edge.

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 153

Fig. 6.13 Simulation results of the comparative analysis

Fig. 6.14 Graphical comparisons of results

Acknowledgments The authors acknowledge with thanks the technical and financial support from
the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi
Arabia, under the grant number G-673-793-38. The work carried out in this paper is supported by
the HPC Center at KAU.

154 F. Alam et al.

References

1. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing Sustainability
of Road Transport in European Cities and Metropolitan Areas by Facilitating Autonomic
Road Transport Systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable
Automotive Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013,
pp. 201–210. Springer International Publishing, Ingolstadt, Germany (2014)

2. Schlingensiepen, J., Nemtanu, F.: Autonomic Transport Management Systems—Enabler
for Smart Cities, Personalized Medicine, Participation and Industry Grid/Industry 4.0. In:
Sladkowski, A., Pamula, W. (eds.) Intelligent Transportation Systems – Problems and
Perspectives, pp. 3–35. Springer International Publishing, London (2016)

3. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50–62 (2015)

4. Mehmood, R., Nekovee, M.: Vehicular AD HOC and grid networks: Discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555–
1562 (2007)

5. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A Survey on Security in Vehicular Ad
Hoc Networks. (2013)

6. Alvi, A., Nabi, Z., Greaves, D.J., Mehmood, R.: Intra-vehicular verification and control: a
two-pronged approach. Int. J. Veh. Inf. Commun. Syst. 2, 248–268 (2011)

7. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). LNCS. 6596, 216–223 (2011)

8. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: Vinel, A., Berbineau, M., Manohara,
P.M.M., Koucheryavy, Y., Gusikhin, O., Prokhorov, D., Rodrigues, J., Zhang, Y. (eds.) 2011
11th International Conference on ITS Telecommunications, ITST 2011, pp. 361–368. IEEE,
St. Petersburg, Russia (2011)

9. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An
intelligent cloud based disaster management system for vehicular networks. (2012)

10. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A Smart Disaster
Management System for Future Cities. WiMobCity’14. Int. Work. Wirel. Mob. Technol.
Smart Cities. 1–10 (2014)

11. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by
forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST. pp.
139–154. Springer, Cham (2018)

12. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673–678 (2014)

13. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality
simulations. In: 11th International Conference on Computer Modelling and Simulation,
UKSim 2009. pp. 411–416 (2009)

14. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793–1799 (2007)

15. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

16. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., San-
giorgi, D.: Intelligent mobility systems: Some socio-technical challenges and opportunities.
(2009)

17. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 155

18. Mehmood, R., Graham, G.: Big Data Logistics: A health-care Transport Capacity Sharing
Model. Procedia Comput. Sci. 64, 1107–1114 (2015)

19. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics
prototyping: a technical viewpoint. Supply Chain Manag. 20, 341–352 (2015)

20. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST. pp. 323–336.
Springer, Cham (2018)

21. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling Smarter Societies through Mobile Big Data Fogs and Clouds. In: Procedia Computer
Science (2017)

22. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling Next Generation
Logistics and Planning for Smarter Societies. In: Procedia Computer Science (2017)

23. Usman, S., Mehmood, R., Katib, I.: Big Data and HPC Convergence: The Cutting Edge and
Outlook. Presented at the November 27 (2018)

24. Suma, S., Mehmood, R., Albeshri, A.: Automatic Event Detection in Smart Cities Using Big
Data Analytics. In: International Conference on Smart Cities, Infrastructure, Technologies
and Applications SCITA 2017: Smart Societies, Infrastructure, Technologies and Applica-
tions. pp. 111–122. Springer, Cham (2018)

25. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST. pp. 98–110. Springer, Cham (2018)

26. Litman, T.: Autonomous Vehicle Implementation Predictions Implications for Transport
Planning. Transp. Res. Board Annu. Meet. 42, 36–42 (2015)

27. Morris, D.Z.: Driverless Cars Will Be Part of a $7 Trillion Market by 2050, http://fortune.com/
2017/06/03/autonomous-vehicles-market/, (2017)

28. McGoogan, C.: Uber fires driverless car boss accused of stealing Google’s trade secrets,
http://www.telegraph.co.uk/technology/2017/05/31/uber-fires-driverless-car-boss-failing-
assist-google-lawsuit/, (2017)

29. Kharpal, A.: Apple has reportedly hired ex-NASA and Tesla staffers to boost its self-driving
car effort, https://www.cnbc.com/2017/04/25/apple-driverless-cars-hires-nasa-tesla.html

30. Feris, R.: Tesla sues former Autopilot director for allegedly stealing secrets, poaching
coworkers, https://www.cnbc.com/2017/01/26/tesla-sues-former-exec-for-allegedly-stealing-
secrets-poaching-workers.html

31. Alam, F., Mehmood, R., Katib, I.: D2TFRS: An Object Recognition method for Autonomous
Vehicles based on RGB and Spatial Values of Pixels. Mehmood R., Bhaduri B., Katib I.,
Chlamtac I. Smart Soc. Infrastructure, Technol. Appl. SCITA 2017. Lect. Notes Inst. Comput.
Sci. Soc. Informatics Telecommun. Eng. Springer. 224, 155–168 (2017)

32. Geiger, A., Lenz, P.: Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. (2013)
33. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn:

A Personalised Ubiquitous Teaching and Learning System for Smart Societies. IEEE Access.
3536, 1–22 (2017)

34. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of Eight Data Mining Algorithms for
Smarter Internet of Things (IoT). Int. Work. Data Min. IoT Syst. (DaMIS 2016). 98, 437–442
(2016)

35. Alam, F., Thayananthan, V., Katib, I.: Analysis of Round-robin Load-balancing Algorithm
with Adaptive and Predictive Approaches. 11th Int. Conf. Control. (2016)

36. Raissi, M.: Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential
Equations. Cornell Univ, Libr (2018)

37. Alam, F., Mehmood, R.: Tutorial: Data Analytics for Internet of Things. High Perform.
Comput. Conf, Saudi Arab (2018)

38. Andriluka, M., Roth, S., Schiele, B.: People-Tracking-by-Detection and People-Detection-
by-Tracking. IEEE Conf. Comput. Vis. Pattern Recognition. 2008, (2008)

http://fortune.com/2017/06/03/autonomous-vehicles-market/
http://www.telegraph.co.uk/technology/2017/05/31/uber-fires-driverless-car-boss-failing-assist-google-lawsuit/
https://www.cnbc.com/2017/04/25/apple-driverless-cars-hires-nasa-tesla.html
https://www.cnbc.com/2017/01/26/tesla-sues-former-exec-for-allegedly-stealing-secrets-poaching-workers.html

156 F. Alam et al.

39. Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban
driving. Auton. Robots. 123–139 (2009)

40. Wu, B.O., Nevatia, R.A.M.: Detection and Tracking of Multiple. Partially Occluded Humans
by Bayesian Combination of Edgelet based Part Detectors. Int. J. Comput. Vis. 75, 247–266
(2007)

41. Tsukada, A., Background, A.: Road structure based scene understanding for Intelligent
Vehicle Systems. 2010 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 5557–5562 (2010)

42. Hu, Q., Wang, P., Shen, C., Porikli, F.: Pushing the Limits of Deep CNNs for Pedestrian
Detection. Comput. Vis. Pattern Recognit. (2016)

43. Navarro, P.J., Fernández, C., Borraz, R., Alonso, D.: A Machine Learning Approach to
Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.
Sensors. (2017)

44. Harris, M.: New Pedestrian Detector from Google Could Make Self-Driving Cars
Cheaper, http://spectrum.ieee.org/cars-that-think/transportation/self-driving/new-pedestrian-
detector-from-google-could-make-selfdriving-cars-cheaper

45. Hsu, J.: Deep learning makes driverless cars better at spotting pedestrians. IEEE Spectr.
(2016)

46. Xu, Y., Xu, D., Lin, S., Han, T.X.: Detection of Sudden Pedestrian Crossings for Driving
Assistance Systems. IEEE Trans. Syst. Man, Cybern. Syst. 42, 729–739 (2012)

47. Peterson, K., Ziglar, J., Rybski, P.E.: Fast feature detection and stochastic parameter
estimation of road shape using multiple LIDAR. IEEE/RSJ Int. Conf. Intell. Robot. Syst.
22–26 (2008)

48. Beyeler, M., Mirus, F., Verl, A.: Vision-based robust road lane detection in urban environ-
ments. 2014 IEEE Int. Conf. Robot. Autom. 4920–4925 (2014)

49. Felisa, M., Zani, P., Dipartimento, V.: Robust monocular lane detection in urban environ-
ments. 2010 IEEE Intell. Veh. Symp. 591–596 (2010)

50. Zhou, S., Gong, J., Xiong, G., Chen, H., Iagnemma, K.: Road Detection using support vector
machine based on online learning and evaluation. 2010 IEEE Intell. Veh. Symp. 256–261
(2010)

51. Nair, V., Parthasarathy, N.: Supervised Learning Methods for Vision Based Road Detection.
Stanford Univ. (2012)

52. Alam, F., Mehmood, R., Member, S., Katib, I., Nasser, N.: Data Fusion and IoT for Smart
Ubiquitous Environments: A Survey. IEEE Access. 3536, 1–24 (2017)

53. Xu, P., Davoine, F., Zhao, H., Denœux, T.: Multimodal information fusion for urban scene
understanding. Mach. Vis. Appl. (2014)

54. Nuss, D., Thom, M., Danzer, A., Dietmayer, K.: Fusion of Laser and Monocular Camera Data
in Object Grid Maps for Vehicle Environment Perception. 2014 17th Int. Conf. Inf. Fusion.
(2014)

55. Premebida, C., Batista, J., Nunes, U.: Pedestrian Detection Combining RGB and Dense
LIDAR Data. 2014 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2014). (2014)

56. Cho, H., Seo, Y., Kumar, B.V.K.V., Rajkumar, R.R.: A multi-sensor fusion system for moving
object detection and tracking in urban driving environments. 2014 IEEE Int. Conf. Robot.
Autom. 1836–1843 (2014)

57. Chumerin, N., Hulle, M.M. Van: Cue and Sensor Fusion for Independent Moving Objects
Detection and Description in Driving Scenes. Signal Process. Tech. Knowl. Extr. Inf. Fusion.
161–180 (2008)

58. Häne, C., Sattler, T., Pollefeys, M.: Obstacle detection for self-driving cars using only
monocular cameras and wheel odometry. 2015 IEEE/RSJ Int. Conf. on Intelligent Robot.
Syst. (2015)

59. Zhao, Y., Li, J., Li, L., Zhang, M., Guo, L.: Environmental Perception and Sensor Data Fusion
for Unmanned Ground Vehicle. Math. Probl. Eng. 2013, (2013)

60. Goebel, K., Yan, W.: Choosing classifiers for decision fusion. GE Glob. Res.
61. Fauvel, M., Member, S., Chanussot, J., Member, S.: Decision fusion for the classification of

urban remote sensing images. 44, 2828–2838 (2006)

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/new-pedestrian-detector-from-google-could-make-selfdriving-cars-cheaper

6 Comparison of Decision Trees and Deep Learning for Object Classification. . . 157

62. Yager, R.R.: A general approach to the fusion of imprecise information. Wiley (1997)
63. Ye, Z., Bai, L., Tan, L.: Hyperspectral image classifcation based on gabor features and

decision fusion. 2017 2nd Interational Conf. Image, Vis. Comput. 478–482 (2017)
64. Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: A

survey. Mach. Vis. Appl. 25, 727–745 (2014)
65. Tsai, L.-W., Hsieh, J.-W., Chuang, C.-H., Fan, K.-C.: Lane detection using directional random

walks. Intell. Veh. Symp. 2008 IEEE. (2008)
66. Li, Q., Zheng, N., Cheng, H.: Springrobot: a prototype autonomous vehicle and its algorithms

for lane detection. IEEE Trans. Intell. Transp. Syst. 5, (2004)
67. Shu, Y., Tan, Z.: Vision based lane detection in autonomous vehicle. Fifth World Congr. Intell.

Control Autom. (2004)
68. Southall, B., Taylor, C.J.: Stochastic road shape estimation. Proc. Eighth IEEE Int. Conf.

Comput. Vision. ICCV 2001. 1, 205–212 (2001)
69. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving ? The KITTI Vision

Benchmark Suite. Conf. Comput. Vis. Pattern Recognit. 3354–3361 (2012)
70. Lieb, D., Lookingbill, A., Thrun, S.: Adaptive road following using self-supervised learning

and reverse optical flow. Proc. Robot. Sci. Syst. (2005)
71. Zhou, S., Iagnemma, K.: Self-supervised learning method for unstructured road detection

using fuzzy support vector machines. 2010 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 1183–
1189 (2010)

72. Wang, J., Ji, Z., Su, Y.: Unstructure road detection using hybrid features. Proc. 8th Int. Conf.
Mach. Learn. Cybern. 12–15 (2009)

73. Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka, M.,
Rajpurkar, P., Migimatsu, T., Cheng-yue, R., Mujica, F., Coates, A., Ng, A.Y.: An empirical
evaluation of deep learning on highway driving. Comput. Vis. Pattern Recognit. 1–7 (2015)

74. Assidiq, A.A., Khalifa, O.O., Islam, M.R., Khan, S.: Real time lane detection for autonomous
vehicles. 2008 Int. Conf. Comput. Commun. Eng. 82–88 (2008)

75. Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A., Bevan, A., Shortridge, A., Hijmans,
M.R.J.: Raster: Geographic Data Analysis and Modeling. CRAN. (2016)

76. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco (1993)

77. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., Mclachlan, G.J., Ng,
A., Liu, B., Yu, P.S., Michael, Z.Z., David, S., Dan, J.H.: Top 10 algorithms in data mining.
Knowl. Inf. Syst. 1–37 (2008)

78. R.SDeFries, Cheung-WaiChan, J.: Multiple criteria for evaluating machine learning algo-
rithms for land cover classification from satellite data. Remote Sens. Environ. 74, (2000)

79. Hao, P., Wang, L., Niu, Z.: Comparison of Hybrid Classifiers for Crop Classification Using
Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North
Xinjiang, China. PLoS One. 10, (2015)

80. Yang, C., Wu, G., Ding, K., Shi, T., Li, Q., Wang, J.: Improving Land Use/Land Cover
Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sens. 9,
(2017)

81. Mehta, S., Shukla, D.: Optimization of C5.0 classifier using Bayesian theory. 2015 Int. Conf.
Comput. Commun. Control. (2015)

82. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1999)
83. Barui, S., Latha, S., Samiappan, D., Muthu, P.: SVM Pixel Classification on Colour Image

Segmentation. J. Phys. Conf. Ser. 1000, (2018)
84. Wang, X.-Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector

machine classification. Pattern Recogn. 44, 777–787 (2011)
85. Varma, M.K.S., Rao, N.K.K., Raju, K.K.: Pixel-Based Classification Using Support Vector

Machine Classifier. 2016 IEEE 6th Int. Conf. Adv. Comput. (2016)
86. Liu, D., Chen, J., Wu, G., Duan, H.: SVM-based remote sensing image classification and

monitoring of Lijiang Chenghai. 2012 2nd Int. Conf. Remote Sensing, Environ. Transp. Eng.
(2012)

158 F. Alam et al.

87. Li, J., Zhao, B., Zhang, H., Jiao, J.: Face recognition system using SVM classifier and feature
extraction by PCA and LDA combination. 2009 Int. Conf. Comput. Intell. Softw. Eng. (2009)

88. Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machines: global versus
component-based approach. Proc. Eighth IEEE Int. Conf. Comput. Vision. ICCV 2001.
(2001)

89. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Laak, M.G.J.A.W.M. va. der,
Ginneken, B., I.Sánchez, C.: A survey on deep learning in medical image analysis. Med.
Image Anal. 42, (2017)

90. Chen, C., Li, O., Barnett, A., Su, J., Rudin, C.: This Looks Like that: Deep Learning for
Interpretable Image Recognition. Cornell Univ. Libr. (2018)

91. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent Trends in Deep Learning Based
Natural Language Processing. Cornell Univ. Libr. (2017)

92. Wang, L., Sng, D.: Deep Learning Algorithms with Applications to Video Analytics for A
Smart City: A Survey. arXiv1512.03131 [cs]. 1–8 (2015)

93. Xie, Y., Le, L., Zhou, Y., V.Raghavan, V.: Deep Learning for Natural Language Processing.
Handb. Stat. (2018)

94. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech
recognition and related applications: an overview. 2013 IEEE Int. Conf. Acoust. Speech
Signal Process. (2013)

95. Graves, A., Hinton, A.M.G.: Speech recognition with deep recurrent neural networks. 2013
IEEE Int. Conf. Acoust. Speech Signal Process. (2013)

96. Salman, A.G., Kanigoro, B., Heryadi, Y.: Weather forecasting using deep learning techniques.
2015 Int. Conf. Adv. Comput. Sci. Inf. Syst. (2015)

97. Jones, N.: How machine learning could help to improve climate forecasts. Nature. 548, 379–
380 (2017)

98. Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou, Y., Bo, X., Xie, Z.: Deep Learning
and Its Applications in Biomedicine. Genomics Proteomics Bioinformatics. 16, 17–32 (2018)

99. S, M., B, L., S., Y.: Deep learning in bioinformatics. Br. Bioinform. 18, 851–869 (2017)
100. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521, 436–444 (2015)
101. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning.

APSIPA Trans. Signal Inf. Process. 3, e2 (2014)
102. Bengio, Y.: Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2, 1–127

(2009)
103. Wiseman, E.: Strategic Technical Insights: Deep learning for human decision support. (2017)
104. Candel, A., Lanford, J., LeDell, E., Parmar, V., Arora, A.: Deep learning with H2O deep

learning with H2O. Presented at the (2015)
105. Kuhn, M., Weston, S., Coulter, N., Culp, M.: C5.0 Decision trees and rule-based models.

CRAN. (2015)
106. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer,

Z., Brenton Kenkel, the R Core Team, Michael Benesty, R.L., Andrew Ziem, Luca Scrucca,
Yuan Tang, Can Candan, and T.H.: Classification and Regression Training. CRAN. (2017)

107. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority
Over-sampling Technique. J. Artif. Intell. Res. 16, 321–357 (2002)

108. Top 500 Supercomputers
109. Smeeton, N.C.: Early History of the Kappa Statistic. Biometrics. 41, (1985)
110. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.

Biometrics. 33, 159–174 (1977)

Chapter 7
A Smart Disaster Management System
for Future Cities Using Deep Learning,
GPUs, and In-Memory Computing

Muhammad Aqib, Rashid Mehmood, Ahmed Alzahrani, and Iyad Katib

7.1 Introduction

Smart cities appear as “the next stage of urbanization, subsequent to the knowledge-
based economy, digital economy, and intelligent economy” [1, 2]. Smart cities aim
to “not only exploit physical and digital infrastructure for urban development but
also the intellectual and social capital as its core ingredient for urbanization”[1, 2].
Smart cities are driven by, or involve, integration of multiple city systems, such as
transport, healthcare, and operations, and hence are considered a major driver for
the transformation of many industries [2, 3]. Smart society is an extension of the
smart cities concept, “a digitally-enabled, knowledge-based society, aware of and
working towards social, environmental and economic sustainability” [2]. A recent
book has covered a number of topics related to smart cities and societies [4].

Smart cities rely on dynamic monitoring and management of city assets and
systems and this generates data [5, 6] of diverse characteristics, known as big
data. Formally, big data refers to the “emerging technologies that are designed to
extract value from data having four Vs characteristics; volume, variety, velocity
and veracity” [7]. Big data leverages distributed and high performance computing
(HPC) technologies to manage and analyze data. These two technologies (big data
and HPC) are converging to address their individual limitations and exploit their
synergies [8].

M. Aqib · A. Alzahrani · I. Katib
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: mpervez@stu.kau.edu.sa; asalzahrani@kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood (�)
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_7

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_7&domain=pdf
mailto:mpervez@stu.kau.edu.sa
mailto:asalzahrani@kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_7

160 M. Aqib et al.

Smart cities must be equipped with disaster and emergency management systems
to manage manmade and natural calamities such as floods, hurricanes, earthquakes,
fires, and terrorist attacks. Disasters not only result in loss of human lives but
could also damage the economy. For example, the June/July 2018 floods in Japan
left around 200 people dead and many injured. Millions of people were ordered
to evacuate the affected areas, and thousands were transferred to temporary shel-
ters [9, 10]. Rescue teams comprised of workers from civil defense and many other
organizations. They worked round-the-clock to overcome the disastrous situation
in the affected areas. The cost of flood rebuilding was estimated to be $2bn [11].
The Barcelona terrorist attack of August 2017 resulted in 24 deaths and 152 injured
people. Earlier, the cost of 2011 Japan earthquake and tsunami disaster alone was in
excess of 200 billion USD in addition to the irrecoverable loss of over 18 thousand
lives [12].

The advent of many new technologies has improved our ability to manage
disaster situations. Many governments around the world are applying these new
techniques and technologies to minimize the effects of these disasters. Plans are
made to respond not only during the disaster situation, but also after the disaster,
and more importantly, how to prevent or minimize the effects of disasters before its
occurrence.

Mobility plays a key role in effectively managing disaster situations [13]. Smart
mobility requires smart transportation infrastructures [14, 15]. Many approaches
have been developed to improve transportation. These include, for example, social
media based approaches [16–18], big data based techniques [15, 19, 20], HPC based
techniques [15, 19, 21, 22], vehicular networks (VANETs) and systems [23–26],
modeling and simulations [27, 28], methods to improve urban logistics [15, 19,
21, 29, 30], and solutions based on autonomous vehicles and autonomic mobility
systems [31–34].

Smart mobility allows smooth evacuation of people from the affected areas by
dynamically monitoring the disaster-affected areas as well as the other adjacent
areas to avoid road congestion, blockages, and chaos. Traffic data is collected
from various static and mobile sensors including those deployed under and over
the road networks. These could include inductive sensors, motorway incident
detection and automatic signaling (MIDAS) loops, GPS sensors, VANETs, cameras,
image processing systems, and many more. The collected data is analyzed to
monitor traffic flow and other metrics, and is used to devise navigation strategies
to provide emergency services and smooth evacuation from the affected areas,
avoiding congestion, minimizing risks to public safety, and economic losses.

Our research focuses on using emerging technologies to develop cutting edge
solutions for disaster management. We have proposed a cloud computing based
disaster management system along with its implementation in [13]. The work
was extended in [35] leveraging VANETs to sense traffic related information
and propagate navigation instructions. These works were based on macroscopic
modeling. Further improvements to the disaster management system were proposed
in [12] where microscopic modeling was used to improve and validate the earlier
results. Moreover, different evacuation strategies were used to investigate the

7 A Smart Disaster Management System for Cities using Deep Learning 161

performance of evacuation operations on the proposed disaster management system.
Further extensions of the proposed system were reported in [36, 37] using various
evacuation strategies.

The availability of various data related to smart environments, generated, for
instance, by the internet of things (IoT), and the advancements in artificial intel-
ligence (AI) has provided new opportunities for data-driven studies (see, e.g., [2,
3, 38]). Deep learning has emerged as a promising AI technology with reportedly
higher prediction accuracy, albeit higher computational costs [39]. In [22], we
extended our work by using deep learning to predict traffic plans for evacuation in
disaster situations. We had used in-memory computations and graphics processing
units (GPUs) to address intensive and timely computational demands in disaster
situations.

This paper extends our earlier work and provides extended analysis and results of
the proposed system. A system architecture based on the in-memory big data man-
agement and GPU-based deep learning computations is proposed. The background
technologies have been elaborated. An extended literature review is provided. We
have used road traffic data made publicly available by the UK Department for
Transport (DfT). The results show the effectiveness of the deep learning approach
in predicting traffic behavior in disaster and city evacuation situations. To the best
of our knowledge, this is the first proposal where deep learning, in-memory data-
driven computations, and GPUs are brought together for timely, compute intensive,
predictions of road traffic in disaster situations.

The rest of the paper is organized as follows: Sect. 7.2 provides background
material introducing the tools and technologies used in our work. The related work
is discussed in Sect. 7.3. Our proposed framework is introduced in Sect. 7.4. In order
to find suitable city data, we have examined a number of datasets and their details are
given in Sect. 7.5. These could be useful for the researchers working in related areas.
Performance evaluation and analysis of the proposed system is given in Sect. 7.6.
Finally, in Sect. 7.7, we conclude the paper with directions for the future work.

7.2 Background Material

In this section, we will give a brief introduction to the tools and technologies used
in our model in specific and some tools and simulators that are used for traffic
modeling in general.

7.2.1 Graphical Processing Units

In this section, we will give an overview of the GPU architecture. A GPU chip
contains multiple multi-processors (MPs) and each MP contains many stream-
processors (SPs). Instructions are executed in SP like ALU in CPU. Different tasks

162 M. Aqib et al.

are performed on MPs and they are mutually independent to each other, whereas
the SPs in an MP execute the same operations on different data items. To store data,
each SP has its own register to store variables and temporal data. An SP cannot
access the registers of other SPs in an MP. For this purpose, there is a shared on-
chip memory that is accessible to each SP in that MP. In addition to this, an off-chip
shared memory, called global memory is also available and it can be accessed by all
the SPs in all the MPs. This global memory is connected externally to the GPU chip
and it is much larger in size but the access to this memory is much more expensive
than that of the on-chip shared memory inside the MPs.

Programs in GPU are executed with the help of compute unified device architec-
ture (CUDA) toolkit offered by Nvidia and detailed execution flow of a CUDA, the
logical structure of kernel threads, and logical to physical mapping in GPU are also
part of the discussion.

7.2.2 In-Memory Computing

For computation purposes, data is normally stored on disks that provide the facility
to store a large amount of data. In addition to disks, other memory storage
components are also used for this purpose that include registers, cache, and main
memory. These storage components differ in size and also in performance. Registers
are the smallest ones in terms of capacity to store data but these are the most efficient
in terms of speed. Then there are caches and main memory in this hierarchy, which
are much smaller than disks but provide higher speed to access data. In recent
years, the main memory size has also been increased and its cost is also decreasing
that make it possible to use large amount of main memory to perform compute
intensive tasks. Due to increased size, it is capable to hold a large amount of data
as well, thus making it easy for the programs to access that data on low I/O costs.
In-memory computing also supports the technique to store the data required for
processing on the main memory instead of storing it on the disks. This idea was
introduced a long ago but high price and availability of low storage capacities were
the constraints in using in-memory technique to deal with large amount of data. Now
using in-memory, a large amount of data could be stored into the main memory for
processing. In case of big data, where data size is large enough so that it could not
be stored in main memory of a single computer, it is normally distributed among
multiple nodes in a cluster of compute nodes and each node is assigned a block
of data according to its capacity. Many frameworks exist that distribute the data to
all the nodes in the cluster to be stored on the main memory and then processed.
The results generated by the individual nodes are then combined to generate unique
output.

Due to increase in cost of energy and increase in its demand as compared to
the production rate, researchers are now finding the ways to optimize the existing
systems or methods to develop the new energy efficient systems. The authors in
[40] have studied the role of database software in order to improve the efficiency

7 A Smart Disaster Management System for Cities using Deep Learning 163

of a server. According to them, among the nodes in a scale-out architecture, the
highest performing one is considered as the most energy efficient configuration.
Also the power consumed by different operators like joins, sorts, etc., varies and
also the CPU power consumption and its utilization are not linearly related to
each other. In a survey of the energy efficiency techniques [41] have focused on
the characteristics of the two main power management technologies: static power
management (SPM) systems and dynamic power management systems (DPM). The
article presents a brief discussion on the techniques proposed by researchers to
reduce the power consumption in cluster computing systems. The pros and cons
of both the methodologies have been discussed in detail. Non-volatile memory has
great importance in main memory data management systems. But it has many issues
as well and energy consumption is one of them. A technique has been proposed
in [42] that deals with the high energy consumption rate during write operations
in phase change memory (PCM). A solution based on out of position PCM write
operations has been proposed that reduces power consumption, however, degrades
the system performance. PDRAM [43] is another approach for in-memory data
management systems based on the phase change random access memory (PRAM)
and DRAM. The authors have proposed an approach that deals with the low read
and standby power and DRAM has low write power by providing a hybrid hardware
software solution. Some other techniques that do not suggest the storage of whole
data in main memory also propose a mechanism to store the data needed for
computation in main memory. Such a technique [44] proposes the bulk copy and
initialization completely in the DRAM, which in return reduces the data transfer
over the memory channels and thus saves energy. The proposed technique is named
as RowClone and it copies the complete row of data from source to a row buffer and
then from the buffer to the destination. As part of semi-structured data processing,
SAP HANA provides the facility to process graphs data.

7.2.3 Deep Learning

A branch of computer science that gives the computers the ability to learn them-
selves like human beings is known as machine learning. Machine learning does not
require programmers to program something explicitly to tell computers to perform
a specific task. Instead, machine learning algorithms train computers using different
algorithms to predict the output when a specific input is given. Techniques that
enable computers to learn something without explicit programming are divided into
two main categories in machine learning. These are known as supervised learning
and unsupervised learning techniques. Artificial neural network, clustering, genetic
algorithms, and deep learning are some examples of machine learning techniques.
In this section, we will focus on the deep learning techniques and work done in this
domain.

Deep learning approaches have been classified into different categories based
upon the nature and training and testing strategies. These include convolutional

164 M. Aqib et al.

neural networks (CNNs), restricted Boltzmann machines (RBMs), autoencoders,
and sparse coding techniques [45]. In this work, we are using CNNs for training and
testing purposes. So, we will discuss them in detail in the following paragraph.

Convolutional Neural Networks (CNNs) In the CNNs, multiple layers including
convolutional, pooling, and connected layers are used for training purpose in a
robust manner. The authors in [45] have defined a general architecture of CNN for
image classifications. The whole process is divided into two main phases: forward
phase that includes convolutional and pooling layers and backward phase where
fully connected layers are used to produce the output.

Convolutional neural networks are the hierarchical neural networks and their
convolutional layers alternate with subsampling layers like simple and complex
cells in the primary visual cortex. CNNs vary in how convolutional and subsampling
layers are realized and how the nets are trained [46].

7.2.4 Microscopic Models and Tools

In this section, we will discuss the microscopic model that is used in traffic
management works. Although, instead of using these models or any other related
simulation tools, we are using deep learning to forecast traffic plans in disaster
situations but here we are giving a brief introduction about other techniques to give
an overview of these models to the readers.

Lighthill–Whitham–Richards (LWR) model [47, 48] is a macroscopic model that
could be used to analyze the traffic behavior in roads. It uses some traffic data
characteristics like speed, flow, and density. This model could be derived from the
following equation:

∂ρ

∂t
+ ∂ρu

∂x
= 0 (7.1)

Here ρ is the traffic density, x is the distance, t is the time, and u is the speed
to travel x distance in t time. Now using the Greenshields’ model [49], the relation
between the density (ρ) and speed (u) could be defined as follows:

u(ρ) = umax =
(

1 − ρ

ρmax

)

(7.2)

Here umax is the maximum speed, and ρmax is the maximum density. So, by
using this model, the relationship between flow, density, and speed could be given
as

flow = density × speed (7.3)

7 A Smart Disaster Management System for Cities using Deep Learning 165

To model these microscopic models, a number of simulators are available for this
purpose. In the following paragraphs, we will discuss about two of them which are
used by researchers to carry out their research work. MITSIM [50] is a microscopic
traffic simulator that uses the information related to road network, surveillance
system, traffic signs and signals, etc. It classifies the lanes according to its speed
limit, regulations, and also simulates loop detectors, lane use signals, etc. As an
input, an origin–destination table, traffic control, and route guidance logic are used.
Here vehicles are considered to move between their origin and destination and
it collects the sensor readings that include traffic count, occupancy, and speed of
vehicles at given intervals of time. To simulate the vehicle movement in a network,
two models are used that are: acceleration model and lane changing model [51].

Simulation of urban mobility (SUMO) [52] is another microscopic and contin-
uous road traffic simulation package that deals with the large road networks. It
provides the users the facility to define their own network through the use of data
configuration files. Normally input data is given in the form of XML files where
different nodes having different parameter values define different configuration
values. It also provides the facility to generate real world scenario by selecting the
area on a map in a browser by running a program included in package.

7.3 Related Work

In this section, we are presenting the work that deals with the traffic management
plans during emergency conditions in smart cities. Some people focus mainly on
traffic management in smart cities using any approach and some have focused on
the approach, i.e., deep learning with smart city scenario on low priority. As we
are combining traffic management in smart cities with the deep learning approach,
both are useful for us and therefore we are presenting some approaches for better
understanding of the work done in this area.

A deep learning approach to predict traffic flow for short intervals on road
networks is proposed in [53]. A traffic prediction method based on long short-
term memory (LSTM) has been used by the authors for prediction purpose. An
origin–destination correlation (ODC) matrix has been used as input to the training
algorithm. Dataset used for this process is collected from the Beijing Traffic
Management Bureau and it is collected from more than 500 observation stations
or sensors containing around 26 million records. A 5-min interval data from Jan 1,
2015, to June 30, 2015, has been collected where the data for the first 5 months
has been used for training and the rest of the data is used for testing purposes.
For evaluation of proposed model, mean absolute error (MAE), mean square error
(MSE), and mean relative error (MRE) have been calculated. Input data has been
used to predict the flow in 15, 30, 45, and 60 min time intervals. The authors in
this work have selected three observation points with high, medium, and low flow
rates to compare the actual flow and predicted flow values on those observation
points. MRE values for a 15-min interval flow prediction reported in this work are

166 M. Aqib et al.

6.41, 6.05, and 6.21%. They have compared the result with the other approaches
including RNN, ARIMA, SVM, RBF, etc., and concluded that for time interval less
than 15 min, RNN is relatively accurate, but with big time intervals, error increases,
but overall it performs better than other old machine learning models. Therefore, it
is concluded that LSTM is an appropriate choice for long time intervals.

Yu et al. in [54] also have proposed an approach that uses deep learning for
vehicles’ speed prediction on highways in peak hours and post-accident conditions.
In this work, the authors have used the long short-term memory (LSTM) recurrent
neural networks for prediction purposes. In addition to LSTM, they also have used
autoencoders whose output is also used in their deep LSTM model. This model is
named as “mixture deep LSTM”. For this purpose, they have used the data from
the 2018 loop detectors (sensors) in Los Angeles County during the period starting
from May 19, 2012, to June 30, 2012. This provides data collected from around
5400 miles long highways cumulatively. Also, as they are predicting the speed
after accidents as well, so accidents data, for this purpose, has been collected from
various sources including California Highway Patrol, California Transportation
Agencies, etc. Normalized data including 5 min aggregated speed values, day time,
and weekdays has been used in this work. To deal with the missing values, data
collected from the sensors with more than 20% missing values is excluded from the
datasets. Also, no criteria is defined to deal with the missing values and the estimated
speed values for missing input values have been excluded from the predicted output
datasets and have not been considered for evaluation. For analysis purposes, mean
absolute percentage error (MAPE) has been used. Performance of the proposed is
compared with other methods like ARIMA, random walk, and historical average,
etc. Speed in peak hours has been predicted using four different time intervals of
5, 15, 30, and 60 min. The results show that the highest accuracy is achieved for
small time interval, i.e., 5 min. It is around 6 in peak hours and around 5.5 in off-
peak hours. Error rate increases with the increase in time interval but in all the four
intervals, deep LSTM performs much better than other techniques.

In another work, Jia et al. have used a deep learning approach called deep belief
networks (DBN) to predict the vehicles’ speed on a road network in [55]. In this
work, they have used restricted Boltzmann machines (RBMs) for unsupervised
learning and then have used the labeled data for fine tuning. Dataset used in this
purpose is obtained from Beijing Traffic Management Bureau (BTMB). Three
months data (June–August 2013) has been used that provided 2-min interval data
collected from the detectors installed on a specified segment of road in Beijing,
China. Around 11-week data is used for training purpose, whereas the remaining last
week’s data is used for testing purpose. This provides 2-min interval speed, flow, and
occupancy values and by using this 2-min interval data, the authors have predicted
speed for intervals of 2, 10, and 30 min. Furthermore, for performance analysis,
three performance metrics have been used: mean absolute percentage error (MAPE),
root mean squared error (RMSE), and normalized root mean squared error (RMSN).
No mechanism is mentioned by authors to deal with the erroneous or missing data
values and also no big data technology is used for data management. Also, no
specific information about data, e.g., number of detectors, etc., is given to know

7 A Smart Disaster Management System for Cities using Deep Learning 167

about the size of data. For deep model configurations, they have executed the model
with different configuration and based on the MAPE values, best configurations
have been selected. With best selected configurations, MAPE value for 2-min
interval is 5.81, 7.33 for 10 min, and its value is 8.48 for 30-min interval. This
shows that it performs better for short time intervals and cannot cope with the
stochastic fluctuations in long time intervals. Although results are quite good for
speed prediction, but it still need to investigate how it behaves when some other
information are included, e.g., we do not know whether data from multiple detectors
has been used or separate data for each detector is used because in the former case
we get more fluctuations in data as compared to the latter case. Also, the size of data
could also change the results.

The authors in [56] have proposed an adaptive traffic management plan to ensure
the provision of secure and efficient emergency services in case of disaster in
a smart cities. In this work, a framework has been proposed, which introduces
some components of traffic management system like traffic management con-
trollers (TMC), local traffic controllers (LTC), adaptive traffic light controllers,
environmental sensor controllers, etc. The goal of this framework is to collect
information from communication and other devices about the severity of the disaster
that has been divided into three categories in this work: low, medium, and high,
and then act accordingly by using these controllers. For example, in case of high
emergency condition, traffic signals could be controlled to ensure the timely arrival
of emergency vehicles, e.g., ambulance and fire brigade and to reroute the non-
emergency traffic. SUMO [52] has been used to simulate this process. In this work,
focus is mainly on the provision of emergency services and their security and the
plan has been simulated but no practical scenario or data has been used to handle
the traffic and it also lacks the plan to manage the general traffic in case of disaster.

Smart cities are characterized by advanced and integrated ICT systems, such as
smart logistics solutions [16] and autonomic transportation [31]. Internet of things
(IoT) could be considered as the back bone of future smart cities [38]. Mehmood
et al. [2] propose a ubiquitous learning system for smart societies. This approach
can be used to educate and prepare citizens for disasters. In particular to vehicles,
internet of vehicles (IoV) includes all the devices that could be used to monitor the
vehicles and for inter-vehicle communication as well. Data from different types of
sensors placed on road networks, vehicles, and other smart devices [1] is collected
for traffic management. There are many studies that use IoT and IoV to propose a
traffic management plan as in [57, 58]. In addition to this, a lot of work has been done
in the area of autonomic transport management in smart cities [33]. The work in
[30] also shows the importance of fog and other cloud technologies in dealing with
emergency situations in smart cities. In [59] a parallel transportation management
and control system for smart cities has been presented that not only uses the artificial
intelligence technologies but also uses massive traffic data and big data technologies
or frameworks like MapReduce. This shows the importance of these technologies in
traffic management in smart cities.

A traffic flow prediction approach has been proposed in [60]. The authors have
used the deep learning approaches for prediction purpose using a large amount of

168 M. Aqib et al.

data. They have proposed a model that uses autoencoders for training and testing
purpose to make predictions. The model is named as stacked autoencoder (SAE)
model. To predict traffic flow at time t, traffic flow data at previous time intervals
has been used. The proposed model has been used to predict 15, 30, 45, and
60 min traffic flow. Data for this purpose was collected from Caltrans Performance
Measurement System (PeMS) [61]. Three months data collected every 30 s was used
for training and testing purposes. In this data, vehicle flow was collected where two
directions of the same freeway were treated as different freeway. Support vector
machines (SVM) have been used for comparison purpose.

The authors in [62] have proposed a deep learning based approach for traffic flow
prediction and they have used unsupervised learning approach using deep belief
networks. They have categorized the traffic prediction approaches into three main
categories that include time-series approaches, probabilistic approaches, and non-
parametric approaches such as neural network based approaches, etc. The authors
in this work have used restricted Boltzmann machines (RBMs) for training purpose
which are stacked one on other. For training and testing purposes, inductive loop
dataset is obtained from the PeMS [61]. In addition to this, the authors have used
data from highway system of China (EESH) as well. A data of 12 months has
been collected and the first 10 months data is used for training, whereas the data
of remaining 2 months has been used for validation purpose. Prediction results have
been compared with other four methods for top 50 roads having high flow rates. The
results show that deep learning based architecture is more appropriate and robust in
prediction and could be used for practical prediction system.

A deep learning based approach has been used in [63] to model the traffic flow. In
this work, the authors have developed deep learning predictors to predict the traffic
flow data from the road sensors. Real-time traffic data has been used and by using
the proposed model, they have predicted the traffic flow during a Chicago Bears
football game and a snowstorm. They have used the number of locations on the
loop detectors and traffic flow at a time (say t). They first have developed a linear
vector autoregressive model for predictors selection. These predictors are later used
to build a deep learning model. Stochastic gradient descent (SGC) method is used to
know the structure and weights of parameters. They also have applied three filtering
techniques (exponential smoothing, median filter, and loess filter) on traffic data to
filter noisy data from the sensors. Data for this purpose is collected from 21 loop
detectors on 5-min interval basis. This data includes speed, flow, and occupancy.
They have built a statistical model to capture the sudden changes from free flow
(70 mph) to congestion (20 mph). In case of bottlenecks, they predict that how fast
it will propagate on the network, i.e., loop detectors. For predictor selection, deep
learning model estimates an input–output map with the assumption that they need
the recent. So, they collect the last 12 readings from each sensor. The performance
of DL model has been compared with sparse linear vector autoregressive (VAR).
Both accurately predict morning rush hours on normal day but VAR miss-predicts
congestion during evening rush hour. On the other hand, DL predicts breakdown
accurately but miss-estimates the recovery time.

7 A Smart Disaster Management System for Cities using Deep Learning 169

The authors in [64] also have used deep learning approach to predict the traffic
congestion. They have used recurrent neural networks by using restricted Boltzmann
machine (RNN-RBM). For comparison purposes, the authors have used support
vector machines (SVMs) and found that prediction accuracy was increased by at
least 17%.

7.4 Disaster Management System

In this section, we will discuss the proposed deep learning based disaster manage-
ment system in detail. Figure 7.1 depicts the architecture of our proposed system.
The proposed framework consists of three main layers: input layer, data processing
layer, and prediction layer. A general framework was given in our previous work
[22] as shown in Fig. 7.2. In this work, we have presented the complete architecture
that gives details about each layer and the components in each layer. In the following
sub-sections, we will discuss these layers in detail.

7.4.1 Input Layer

Input layer manages the traffic data that is used for training and testing of deep
learning model in the data processing layer. The input data could be either offline,
i.e., historical data, or it could be real-time or streaming data. The role of input layer
is to collect data from the source and to forward it to processing layer. In case of

Fig. 7.1 System architecture for prediction of traffic plan using deep learning

170 M. Aqib et al.

Fig. 7.2 The proposed disaster management framework

offline or historical data, the data is collected from the source and then stored on a
disk drive so that it could be forwarded for processing layer. The role of input layer
becomes more important especially when we are dealing with the real-time data.
In this case, it takes the data from the source, by using the APIs provided by the
data generating source or web services, and forwarded it to the processing layer in
real-time for further data formatting.

7.4.2 Data Processing Layer

This layer is responsible to process the input data for making predictions in case of
disaster. Our prediction model uses deep learning approach for this purpose. By
using a deep regression model, we train a dataset which is further tested using
another input dataset or a subset of the same dataset. Data processing layer takes
the data from the input layer and then processes it to convert the input data into
the format required by the deep learning algorithm. For example, if date attribute
is included in the input dataset, it could be processed in this layer to get day,
month, year, hour, etc. The division of one attribute into multiple attributes could

7 A Smart Disaster Management System for Cities using Deep Learning 171

be useful in training process, e.g., we can get peak hours, and can separate the
data based on weekends, etc. Different big data related issues like dealing with
data veracity are also resolved in this layer. Because the data collected from the
sensors or other devices is not guaranteed to be free of veracity issues. For example,
due to malfunctioning in recording device, the recorded values may be incorrect,
or missing, etc. So in this layer, we have a mechanism to deal with the erroneous
data. For this purpose, well-known techniques are applied to ensure the correctness
of data. Furthermore, we may need to normalize the input data for our regression
model. So, data normalization is also performed in this layer.

7.4.3 Deep Learning Layer

We have used deep regression model to estimate the vehicle flow value by using
multiple input features. Initially we have trained our neural network by adding two
hidden layers to the network. First layer is our input layer and the final one is the
output layer and the two hidden layers are in between the input and output layers.
Forward propagation scheme has been used for computation of weights and finally
loss is calculated on the overall output.

Figure 7.3 shows a neural network including one input, two hidden, and one
output layer. In our case, we are using 9 input parameters, and output layer gives

Fig. 7.3 Our deep neural network with two hidden layers

172 M. Aqib et al.

one output value because we are applying regression to get one vehicle flow value.
We have used ReLU activation functions and AdamOptimizer has been used
to optimize the generated results. We ran the training process for 1000 times by
selecting a data size of 500 features at one time.

7.5 Datasets

In this work, we are mainly working on the UK traffic data. So, we have explored a
variety of traffic data available through multiple sources in the UK that could be used
for different purposes to work on traffic management plans. Some data sources of
same kind outside the UK are also included in the list. In our deep learning model,
we have used the data from data.gov.uk. that provides the vehicles flow data for
minor cities. This includes the average vehicle count or roads for different vehicle
types. In Table 7.1, we have given some data sources that provide traffic data. Short
data description and URLs to access the data are also given.

7.6 Analysis and Comparison

This section defines our deep model configurations and the performance metrics
used for analysis purpose which is used for performance analysis of our model.

7.6.1 Deep Model Setup

In this work, we have used vehicles flow data on minor roads in a city in the UK. It
includes six different vehicle categories ranging from cars or small personal vehicles
to big trucks used for transportation of goods. Data used as input contains 70,470
data flow values for all six vehicle categories for the years from 2000 to 2015 and
the road names along with the road categories are also given.

We are using a deep regression model to predict the vehicle flow values. We
have implemented this model using Keras deep learning library [65] which uses
TensorFlow library [66] at the backend. Our regressing model has four layers
including one input, two hidden, and one output layer. We have used the annual
average flow data to predict the traffic flow in a city. Input dataset is divided in the
ratio of 7, 2, and 1 for training, testing, and prediction purposes, respectively. Batch
size was set to 10 and number of epoch was set to 1000.

7 A Smart Disaster Management System for Cities using Deep Learning 173

Table 7.1 The UK traffic data sources

S.No Data source Description

1 Transport for London
(TFL)

Data could be accessed by using the provided API. Real-time data
and status information of different sources of transportation could
be accessed by using API. https://tfl.gov.uk/info-for/open-data-
users/

2 London Datastore Public data sharing portal that provides data related to different
department of London government. Data from 1997 to 2015 is also
available that provides number of vehicles on different roads in
London. https://data.london.gov.uk/

3 Data.gov.uk Data provided by different UK government agencies could be
accessed from this portal. Its transport data section provides many
options to explore traffic data. https://data.gov.uk/dataset/gb-road-
traffic-counts

4 Data from Local
Government
Association UK

This is a research project and its purpose is to make data useful for
LGA. http://www.local.gov.uk/web/guest/research/-/journal_
content/56/10180/7783953/ARTICLE

5 Transit Feeds It provides web feeds for transport data and provides updated
information related to transport department of a city or state, etc.
http://transitfeeds.com/

6 Department for
Transport UK

It provides data for all the A class roads at city level. Data collected
from data collection points on roads that fall in the selected city
could be accessed from this source. http://data.dft.gov.uk/

7 Transport
Infrastructure Ireland
(TII)

This site also provides traffic data for main roads (highways). It
could be useful while dealing with the intercity traffic data. Do not
provide enough data to deal with the traffic on minor roads in a
city. https://www.nratrafficdata.ie

8 Tyne and Wear
region data

We can access the live traffic data by using the API provided by the
“Open Data Service” authority. http://www.gateshead.gov.uk/
Parking-roads-and-travel/planning/TADU.aspx

9 The WisTransPortal
System

Hourly traffic data index page could be accessed to get a list of
counties in the Wisconsin State, USA or county could be selected
from the map as well. By selecting the county, it displays all the
data available for different roads in that county by their names.
https://transportal.cee.wisc.edu/products/hourly-traffic-data/

10 Wisconsin
Department of
Transport

Provides traffic flow data on weekly and/or annual basis on
selected roads (say highways). http://wisconsindot.gov/Pages/
projects/data-plan/traf-counts/default.aspx

11 North East Combined
Authority

Provides data for selected areas. It provides data related to special
events, roadworks, incidents, journey times for key roads, car
parks, and CCTV images. https://www.netraveldata.co.uk/

12 Highways England Provides three types of data: monthly summary data, journey time
data, and traffic flow data. HE also provides a conversion table that
gives description of traffic data measurement sites. http://tris.
highwaysengland.co.uk/

13 Website
Developer.here.com

Provides API to get traffic flow and incidents data. https://
developer.here.com/

https://tfl.gov.uk/info-for/open-data-users/
https://tfl.gov.uk/info-for/open-data-users/
https://data.london.gov.uk/
https://data.gov.uk/dataset/gb-road-traffic-counts
https://data.gov.uk/dataset/gb-road-traffic-counts
http://www.local.gov.uk/web/guest/research/-/journal_content/56/10180/7783953/ARTICLE
http://www.local.gov.uk/web/guest/research/-/journal_content/56/10180/7783953/ARTICLE
http://transitfeeds.com/
http://data.dft.gov.uk/
https://www.nratrafficdata.ie
http://www.gateshead.gov.uk/Parking-roads-and-travel/planning/TADU.aspx
http://www.gateshead.gov.uk/Parking-roads-and-travel/planning/TADU.aspx
https://transportal.cee.wisc.edu/products/hourly-traffic-data/
http://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx
http://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx
https://www.netraveldata.co.uk/
http://tris.highwaysengland.co.uk/
http://tris.highwaysengland.co.uk/
https://developer.here.com/
https://developer.here.com/

174 M. Aqib et al.

Table 7.2 Schema of dataset used as input in our deep learning model

S.No Attribute name Description

1 Road Gives character code names assigned to a road in the city

2 Road name Name of the road

3 RCat Roads have been divided into different categories. RCat gives
character codes to define its category in city road network

4 iDir Traffic direction on a road, e.g., heading east or west

5 Year Year for which AAFD was collected

6 dCount Day of the year when data was collected. It is in the format
dd-mm-yy h:mm

7 Hour Hour of the day

8 CAR, BUS, LGV,
HGVR2, . . .

A set of different types of vehicles to provide their flow values. For
example, car gives the annual average flow value for cars. Similarly,
bus provides the annual average flow value for buses and so on

7.6.2 Input Dataset Schema

Dataset we have used in this work contains annual average flow data for different
types of vehicles. It also provides road names, road category, and other information.
In Table 7.2, we have given the schema of input dataset that provides brief
description of some important input attributes in this dataset.

7.6.3 Performance Metrics

For performance analysis, we have used mean absolute error (MAE) and mean
absolute percentage error (MAPE). MAE is used to show the closeness between the
actual and the predicted values and MAPE shows the relative difference between
the actual and the predicted values. MAPE is not suitable to calculate error rate if
the input data or actual values contain zeros because in this case it suffers from the
division by zero error. MAE and MAPE values are calculated by using Eqs. (7.4)
and (7.5), respectively.

MAE = 1

N

N∑

i=1

|Vi − Pi | (7.4)

MAPE = 1

N

N∑

i=1

|Vi − Pi |
Vi

(7.5)

Here N is the size (number of values predicted by the model) of dataset used for
prediction purpose, V is the set of actual values used as labels, and P is the set of
values predicted by our deep learning model.

7 A Smart Disaster Management System for Cities using Deep Learning 175

7.6.4 Performance Analysis

In this paper, our focus is mainly on providing details of the deep learning based
traffic prediction approach. Details of the overall evacuation method can be found
in our earlier work [12, 13, 22, 35]. We have executed our deep model with
different configurations and with different input dataset sizes. Furthermore, we have
divided the analysis process in different phases where we have used different model
configurations and different dataset distribution sizes to compare the results for
analysis purpose.

In the first phase of analysis process, we divided the dataset into three parts where
70% data was used for training, 20% data for testing purpose, and the rest 10% data
is used for prediction purposes. We have reserved the data for prediction purpose,
because, after running the model for training and purpose, we saved the model and
the specified amount of data was used as input to the saved model to predict the
output. This enabled us to compare the results produced by analyzing the testing
dataset and the results calculated by us by analyzing the values produced by the
saved model by using the prediction dataset. In addition to this, our deep learning
model with one configuration setup was executed for 20 times to get results for
analysis purpose. Furthermore, for all the 20 models with the same configurations,
the batch size for training purpose was 10 and the training procedure was repeated
for 2000 times in each execution.

We have used annual average vehicle flow data on different roads in a city to
predict flow values on minor roads in a city in the UK. We have evaluated the results
of all 20 executions of our model to see the variation in the accuracy and error
rate. This gives a better idea about the performance of deep learning model and we
calculate the average accuracy rate.

In Fig. 7.4, we have shown the results obtained by executing our deep model 20
times. In this graph, x-axis shows the number of model and it ranges from 1 to 20,
and y-axis shows the MAE values calculated by using the given equation. Graph

Fig. 7.4 Mean absolute error

176 M. Aqib et al.

Fig. 7.5 Mean absolute percentage error

shows that error rate was very low because the maximum error value calculated was
for model 5 and it was 3.58, and in some cases, it was as low as zero. Here zero
does not mean that prediction was exactly the same, but it shows that the values
were very close and there was not a big difference between the original and the
predicted values.

In Fig. 7.5, we have shown the results calculated by using the mean absolute
percentage error. Same as MAE, we have calculated MAPE for all 20 executions
and prediction results of our deep learning model. Maximum MAPE value is 0.105
for 5th execution of our model with the same configurations. MAPE is considered
a best measure to the data where there are no extremes and our data also contains
a relatively balanced set of flow values. Therefore, our MAPE values describe that
the predicted results have very low error rate and predicted values are very close to
the original flow values.

In addition to the graphs showing error rates using MAE and MAPE, we have
plotted the actual and predicted flow values to show the difference between patterns
as well. Our MAE and MAPE values show that the actual and predicted values are
very close. If this is true, then the graphs of both plotted values should show the
similar trends. In Fig. 7.6, we have plotted the first 100 actual and the predicted flow
values. In this graph, y-axis shows the flow values. As both, actual and predicted
values are very close, graph is drawn by doubling the predicted values to avoid the
overlapping of both curves. Both the curves show that these are not same but follow
a similar trend. This shows that the predicted values are following the same trend
that was followed by the input flow data with slight differences.

Similarly, to analyze the pattern in depth, we have selected a range of actual
flow values from 1 to 500, i.e., we have selected only those results where actual
flow values are in the range of 1–500. The purpose of selecting this range is to see
the trends when flow values were uniform and thus input data values were very
close. This is shown in Fig. 7.7. Again, the predicted values are doubled to avoid
overlapping of both curves representing the flow values. This graph also shows

7 A Smart Disaster Management System for Cities using Deep Learning 177

Fig. 7.6 Comparison of first 100 actual and predicted flow values

Fig. 7.7 Comparison of actual and predicted values when flow is less than 500

similar graph for both, actual and predicted flow values with not big differences.
In this graph, we have selected values within a range; therefore, it is expected for
good prediction results that the output values should also be in a specific range as
shown in this graph. So, we can say that predicted values have followed the trend
that was present in the input dataset. Therefore, the accuracy rate is high and low
MSE and MAPE rates are reported.

To show the accuracy of our predict results, we also have compared the actual and
predicted values. We have calculated the maximum difference between the actual
and the predicted values. The main purpose to calculate the maximum difference
between the actual and the predicted values in each model execution is that it clearly

178 M. Aqib et al.

Fig. 7.8 Maximum difference between the actual and predicted vehicles flow values (phase 1)

shows whether the predicted values predict the number of vehicles that match the
ground reality or it is far away from the actual values. Maximum difference between
the actual and predicted vehicles flow values in each model execution is shown in
Fig. 7.8.

In this figure, we have compared the available predicted values for the 16
executions of same deep model on the same input dataset. From this graph, it is
clear that the minimum value for the maximum difference is 2, which shows that
results obtained in this model execution were very close to the original values and
we can say that it can be used to represent the actual data. On the other hand, the
maximum value while calculating the maximum difference is 63, which can be used
to represent the actual values if the actual vehicles flow value was very big, e.g., say
1000, but if in actual, there were only 100 vehicles on the road, then the difference of
63 between the actual and the predicted values represents the inaccuracy of predicted
results that cannot be used to represent the actual values.

In this phase the distribution of the dataset for training and testing processes
was changed to 60% and 30%, respectively, whereas the rest 10% was used for
prediction purpose. Batch size in training process was also same, i.e., 10 but now
number of iterations to repeat the training process was reduced from 2000 to 1000.

As the same procedure was repeated with different dataset sizes and iterations
in training process, we have measured the same attributes for comparison purpose
as we have done before. To compare the results with the previously used model
configurations and the dataset distribution for training, testing, and prediction, we
are again comparing the maximum difference between the actual and the predicted
flow values as shown in Fig. 7.9.

From Fig. 7.9, we can see that the minimum maximum difference value is 0, and
the maximum value for maximum difference between the predicted and the actual
value is 38. To see whether there is overall improvement in the prediction or not,
we have calculated the average maximum difference in both the cases. For first
phase (Fig. 7.8), the average difference value is approximately 15, whereas it is 11.5
in phase 2 (Fig. 7.9). So, we can say that in phase 2, the accuracy as compared
to the model configurations in phase 1 has improved. In addition to maximum

7 A Smart Disaster Management System for Cities using Deep Learning 179

Fig. 7.9 Maximum difference between the actual and predicted vehicles flow values (phase 2)

Fig. 7.10 Loss values when predicting vehicles flow in phase 2

Fig. 7.11 Comparison of testing and prediction accuracy in phase 2

difference values, we have calculated system generated loss values which are shown
in Fig. 7.10.

As we are using the different data for testing and prediction dataset, we
have calculated the accuracy for both, testing and prediction processes for all
20 executions of our model in phase 2. Testing accuracy in this case has been
generated by the system but the prediction accuracy has been calculated manually
by comparing the actual and the predicted vehicles flow values. This shows that
our model produced accurate results for both, testing and prediction data subsets.
Comparison of testing and prediction accuracy values in phase 2 is shown in
Fig. 7.11. In this figure, model accuracy represents the accuracy values obtained
during the testing process using testing data subset.

180 M. Aqib et al.

7.7 Conclusion and Future Work

In this work we have used deep learning approach to manage traffic flow in smart
cities for disaster management. Deep learning requires a large amount of data for
training purpose that could easily be accessed from the traffic departments in smart
cities. In this work we have used historic traffic data to predict the traffic flow and its
behavior in disaster. The results show very high accuracy rate because of the high
correlation between the input data and the output values. The results may differ
when same deep learning model is applied on a different type of data. We have
plotted MAE and MAPE results for all 20 executions of our model with the same
specification. The results show that a specific accuracy rate was maintained in all 20
executions of our model and thus we can say that its output is consistent to a certain
extent. In addition to error rates, we have plotted the original and predicted flow
values to visualize the difference between the graph trends followed by actual and
predicted values graphs. Graphs also show similar trends and prove that there are not
big differences between the actual and the predicted values. As mentioned earlier,
we mainly have focused in this paper on providing details of the deep learning based
traffic prediction approach. Details of the overall evacuation method can be found
in our earlier work [12, 13, 22, 35].

Although we have shown excellent results in this work, but this is not guaranteed
while working with other traffic data with same or other deep learning models. This
could be the result of high uniformity in input data that was used for training and
testing purposes, and therefore, the same performance of deep model could not be
guaranteed for other datasets. Therefore, we aim to work on different data with many
other features including incidents data, etc., to see its impact. This may also help us
in predicting the people and other stakeholders behavior in emergency situations
and we may model them collectively to present a model to not only manage traffic
by flow values but also by including other important factors in that environment as
well. We can also use real-time traffic and other data to present an effective traffic
management plan in the affected areas and can also use big data technologies to deal
with real-time data.

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-673-793-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for
future cities: characterizing the impact of gps signal strength on power consumption. IEEE
Access 4, 858–868 (2016)

2. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

7 A Smart Disaster Management System for Cities using Deep Learning 181

3. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–
32285 (2018)

4. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.): Smart Societies, Infrastructure,
Technologies and Applications, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (LNICST). Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 224.
Springer, Cham (2018)

5. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-
Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies.
IEEE Commun. Surv. Tutorials 19(4), 2456–2501 (2017)

6. Su, K., Li, J., Fu, H.: Smart city and the applications. In: 2011 International Conference on
Electronics, Communications and Control (ICECC), pp. 1028–1031. IEEE, Piscataway (2011)

7. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.): Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531–558. IGI Global, Hershey (2015)

8. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge
and outlook. In: International Conference on Smart Cities, Infrastructure, Technologies and
Applications (SCITA 2017); Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, vol. 224, pp. 11–26. Springer,
Cham (Nov 2018)

9. BBC: Japan Flood: At Least 179 Dead After Worst Weather in Decades (2018)
10. CNN: Japan Floods: Death Toll Rises to 195 as Abe Visits Affected Areas (2018)
11. Nikkei Asian Review: Japan Faces $2bn Price Tag for Flood Rebuilding. https://asia.nikkei.

com/Politics/Japan-faces-2bn-price-tag-for-flood-rebuilding (2018). Accessed 20 Nov 2018
12. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster

management system for future cities. In: Proceedings of the 2014 ACM International Workshop
on Wireless and Mobile Technologies for Smart Cities, pp. 1–10. ACM, New York (2014)

13. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: 2011 11th International Conference on
ITS Telecommunications (ITST), pp. 361–368. IEEE, Piscataway (2011)

14. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: some socio-technical challenges and opportunities. In:
International Conference on Communications Infrastructure. Systems and Applications in
Europe, pp. 140–152. Springer, Berlin (2009)

15. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1),
75–104 (2017)

16. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Proc. Comput. Sci. 109, 1122–1127 (2017)

17. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies and
Applications, pp. 111–122. Springer, Berlin (2017)

18. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, vol. 224, pp. 98–110. Springer, Cham (Nov 2018)

19. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
In: Procedia Computer Science, vol. 64, pp. 1107–1114. Elsevier, Amsterdam (2015)

20. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: International Conference on Smart Cities,
Infrastructure, Technologies and Applications, pp. 323–336. Springer, Berlin (2017)

21. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22(6), 804–817 (2011)

https://asia.nikkei.com/Politics/Japan-faces-2bn-price-tag-for-flood-rebuilding
https://asia.nikkei.com/Politics/Japan-faces-2bn-price-tag-for-flood-rebuilding

182 M. Aqib et al.

22. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by
forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.): International Conference on Smart Cities, Infrastructure, Technologies and
Applications (SCITA 2017): Smart Societies, Infrastructure, Technologies and Applications,
pp. 139–154. Springer, Cham (2018)

23. Mehmood, R., Nekovee, M.: Vehicular Ad hoc and grid networks: discussion, design and
evaluation. In: Proceedings of The 14th World Congress On Intelligent Transport Systems
(ITS), Beijing, October 2007. ITS America, Washington (2007)

24. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular Ad hoc
networks. In: International Workshop on Communication Technologies for Vehicles, pp. 59–
74. Springer, Berlin (2013)

25. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: a two-pronged
approach. In: 2010 7th International Symposium on Communication Systems, Networks &
Digital Signal Processing (CSNDSP 2010), pp. 401–405. IEEE, Piscataway (2010)

26. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: International
Workshop on Communication Technologies for Vehicles, pp. 216–223. Springer, Berlin (2011)

27. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality
simulations. In: 11th International Conference on Computer Modelling and Simulation, 2009.
UKSIM’09, pp. 411–416. IEEE, Piscataway (2009)

28. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: Proceedings of
The 14th World Congress On Intelligent Transport Systems (ITS), Beijing, October 2007. ITS
America, Washington (2007)

29. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics
prototyping: a technical viewpoint. Supply Chain Manag. An Int. J. 20(3), 341–352 (2015)

30. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

31. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems-enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems–Problems and Perspectives, pp. 3–35.
Springer, Berlin (2016)

32. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.): Sustainable Automotive
Technologies 2013, pp. 201–210. Springer, Ingolstadt (2014)

33. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15(5), 50–62 (2015)

34. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
vol. 224, pp. 155–168. Springer, Cham (Nov 2018)

35. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: an
intelligent cloud based disaster management system for vehicular networks. In: International
Workshop on Communication Technologies for Vehicles, pp. 40–56. Springer, Berlin (2012)

36. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks & Digital Signal Processing (CSNDSP), pp. 673–678. IEEE, Piscataway
(2014)

37. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: Transportation evacuation strategies
based on VANET disaster management system. Procedia Econ. Financ. 18, 352–360 (Jan 2014)

38. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)

39. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for
smarter internet of things (IoT). Procedia Comput. Sci. 98, 437–442 (2016)

7 A Smart Disaster Management System for Cities using Deep Learning 183

40. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of a database
server. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pp. 231–242. ACM, New York (2010)

41. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Zhang, L.,
Wang, L., Ghani, N., Kolodziej, J., et al.: An overview of energy efficiency techniques in cluster
computing systems. Clust. Comput. 16(1), 3–15 (2013)

42. Chen, J., Chiang, R.C., Huang, H.H., Venkataramani, G.: Energy-aware writes to non-volatile
main memory. In: Proceedings of the 4th Workshop on Power-Aware Computing and Systems,
p. 6. ACM, New York (2011)

43. Dhiman, G., Ayoub, R., Rosing, T.: PDRAM: a hybrid pram and dram main memory system.
In: DAC’09. 46th ACM/IEEE Design Automation Conference, 2009, pp. 664–669. IEEE,
Piscataway (2009)

44. Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G., Luo, Y.,
Mutlu, O., Gibbons, P.B., Kozuch, M.A., et al.: RowClone: fast and energy-efficient in-dram
bulk data copy and initialization. In: Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 185–197. ACM, New York (2013)

45. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual
understanding: a review. Neurocomputing 187, 27–48 (2016)

46. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high
performance convolutional neural networks for image classification. In: IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol. 22, p. 1237, Barcelona, Spain.
AAAI Press, Palo Alto (2011)

47. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long
crowded roads. Proc. R. Soc. Lond. A 229(1178), 317–345 (1955)

48. Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)
49. Greenshields, B., Channing, W., Miller, H., et al.: A study of traffic capacity. In: Highway

Research Board Proceedings, vol. 1935. National Research Council (USA), Highway Research
Board (1935)

50. Yang, Q., Koutsopoulos, H.N.: A microscopic traffic simulator for evaluation of dynamic traffic
management systems. Trans. Res. C Emerg. Technol. 4(3), 113–130 (1996)

51. Ahmed, K.I.: Modeling Drivers’ Acceleration and Lane Changing Behavior. PhD thesis,
Massachusetts Institute of Technology, Massachusetts (1999)

52. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of
SUMO—Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (December
2012)

53. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for
short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

54. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach
for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International
Conference on Data Mining, pp. 777–785. SIAM, Philadelphia (2017)

55. Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep learning method. In: 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1217–1222.
IEEE, Piscataway (2016)

56. Djahel, S., Salehie, M., Tal, I., Jamshidi, P.: Adaptive traffic management for secure and
efficient emergency services in smart cities. In: 2013 IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 340–343.
IEEE, Piscataway (2013)

57. Dandala, T.T., Krishnamurthy, V., Alwan, R.: Internet of vehicles (IoV) for traffic management.
In: International Conference on Computer, Communication and Signal Processing (ICCCSP),
2017, pp. 1–4. IEEE, Piscataway (2017)

58. Rizwan, P., Suresh, K., Babu, M.R.: Real-time smart traffic management system for smart
cities by using internet of things and big data. In: International Conference on Emerging
Technological Trends (ICETT), pp. 1–7. IEEE, Piscataway (2016)

184 M. Aqib et al.

59. Zhu, F., Li, Z., Chen, S., Xiong, G.: Parallel transportation management and control system
and its applications in building smart cities. IEEE Trans. Intell. Transp. Syst. 17(6), 1576–1585
(2016)

60. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep
learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

61. Berkeley, U.: Caltrans (2005) freeway performance measurement system (PeMS) 5.4.
pems.eecs.berkeley.edu/Public, Accessed 30 June 2005

62. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res.
C Emerg. Technol. 79, 1–17 (2017)

63. Polson, N., Sokolov, V.: Deep learning predictors for traffic flows. arXiv preprint
arXiv:1604.04527 (2016)

64. Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-scale transportation network congestion evolution
prediction using deep learning theory. PloS One 10(3), e0119044 (2015)

65. Chollet, F., et al.: Keras (2015). https://keras.io
66. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015) Software available from https://www.tensorflow.org/

https://keras.io
https://www.tensorflow.org/

Chapter 8
Parallel Shortest Path Big Data Graph
Computations of US Road Network Using
Apache Spark: Survey, Architecture,
and Evaluation

Yasir Arfat, Sugimiyanto Suma, Rashid Mehmood, and Aiiad Albeshri

8.1 Introduction

Smart applications and infrastructures are increasingly relying on graph computa-
tions. We are witnessing a continuous increase in the use of graphs to model real-
world problems [1]. The emergence of many graph-based software, programming
languages, graph databases, and benchmarks—such as ArangoDB, Neo4j, Sparksee,
Gremlin, and Graph 500—provide the evidence for the increasing popularity of
graph-based computing. Graph analytics plays an important role in information
discovery and problem solving. A graph can be any real-life application that can
be used to find a relation, route, or a path. Graphs have many applications such as
image analysis [2], social network analysis [3, 4], smart cities [5–7], communication
networks [8–14], scientific and high performance computing [15–20], transportation
systems [21], Web analyses [22], healthcare [23–25], and biological analyses [26].
In these applications, a large amount of data is being generated every second,
commonly referred to as big data.

Big Data refers to the “emerging technologies that are designed to extract value
from data having four V’s characteristics; volume, variety, velocity and veracity”
[27, 28]. Volume defines the generation and collection of the vast amount of data.

Y. Arfat · A. Albeshri
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: yqasim@stu.kau.edu.sa; aaalbeshri@kau.edu.sa

S. Suma
Division of Data, Department of Engineering, Kumparan, Jakarta Selatan, Indonesia
e-mail: sugimiyanto.sugimiyanto@kumparan.com

R. Mehmood (�)
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_8&domain=pdf
mailto:yqasim@stu.kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
mailto:sugimiyanto.sugimiyanto@kumparan.com
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_8

186 Y. Arfat et al.

Variety defines the type of the data stored or generated. Types include structured,
semi-structured, and unstructured data. Velocity describes the timeline related to
the generation and processing of big data. Veracity refers to the challenges related
to the uncertainty in data. Big Data V’s and Graphs have a close relationship. For
example, volume could represent the number of edges and nodes, and velocity could
be considered as the graph’s streaming edges. A graph could be uncertain (veracity)
and has the variety characteristics because data sources could vary.

The processing of graphs in a distributed environment is a great challenge due to
the size of the graph. Typically, a large graph is partitioned for processing. A graph
can be partitioned to balance the load on the various machines in a cluster. These
partitions are processed in a parallel distributed environment. For the computation
of the graph data on the distributed platform, there is a need for scalability and
efficiency. These are the two key elements to achieve good performance. We also
need to move our data closer to computation to minimize the overhead of data
transfer among the nodes in the cluster. Load balancing and data locality plays a
major role in achieving this purpose. It can utilize the whole resource of the system
during processing. Moreover, as mentioned earlier, big data cannot be processed by
traditional tools and technologies. There are many platforms for graph processing,
but these platforms have performance issues. Parallel computation of large graphs
is a common problem. Therefore, in this scenario parallel distributed platforms are
suitable for processing large graphs. In this work, we have used the GraphX [29–
31] for parallel distributed graph processing which is a widely used framework for
the graph processing. The big data platform that we have used for distributed graph
computing of shortest paths is Apache Spark [32].

This chapter extends our earlier work on single source shortest path computations
of big data road network graphs using Apache Spark. In our earlier work [33], we
had used the US road network data, modelled as graphs, and calculated shortest
paths between two vertices over a varying number of up to 368 compute cores. The
experiments were performed on the Aziz supercomputer (a former Top500 machine
[34]). We had analyzed Spark’s parallelization behavior by solving problems of
varying graph sizes, i.e., various states of the USA with up to over 23 million
vertices and 58 million edges.

We focus in this chapter on computing a set of large varying number of shortest
path queries on a (source, destination) vertex pair. The number of queries used
are 10, 100, 1 K, 10 K, 100 K, and 1 M queries executed over up to 230 CPU
cores. We achieve good performance, and as expected, the speedup is dependent
on both the size of the data and the number of parallel nodes. In addition to the
extended results, this chapter provides a detailed literature on shortest path graph
computations. The system architecture for graph computing in Spark is explained
with additional details using the architecture depiction and elaborated algorithms.
We call our system, the Big Data Shortest Path Graph Computing (BDSPG) system.

The rest of the chapter is organized as follows. Section 8.2 gives background
and literature review. Section 8.3 describes the design and methodology of the
BDSPG system. Section 8.4 presents the analysis of result. The conclusions and
future directions are given in Sect. 8.5.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 187

8.2 Literature Review

Smart urban infrastructure greatly replies on smart mobility designs. Many
approaches have been proposed to address smart mobility-related challenges
[35]. These include, among many others, modelling and simulation-based
approaches [36, 37], location-based services [38], telematics [39], social media-
based approaches [40–42], approaches based on vehicular networks (VANETs)
and systems [43–45], autonomic mobility management [46, 47], autonomous
driving [48], mobility in emergency situations [49–54], approaches to improve
urban logistics [40, 55], and big data-based approaches [40–42, 56]. A recent
book discusses several smart society proposals on infrastructure and applications
including smart mobility [7]. Many mobility problems naturally map to graph-
based computations; shortest path computations are one of them and are of great
significance in smart mobility infrastructure designs. In this section, we discuss
state-of-the-art work from the literature on graph-based road network shortest path
computations.

Quddus and Washington developed an algorithm to find the shortest path between
two points called weight-based shortest path and vehicle trajectory aided map-
matching (stMM) [57]. It improves the map-matching of low-frequency positioning
data on a roadmap. They exploit a well-known A* search algorithm. They tested the
performance of proposed approach with collected data from rural, suburban, and
urban areas in Nottingham and Birmingham, UK. Szucs designed and implemented
a model and an algorithm for route planning in road network [58]. They proposed
a solution that also aims to find the equilibrium in the path optimization problem.
The proposed approach takes the uncertainty of state information of roads, their
uncertainty and influencing factors into account. The system is based on the
Dempster-Shafer theory, which helps to model the uncertainty and Dijkstra’s
algorithm which allows finding the best route. Feng et al. proposed an improvement
of alternative route calculation, based on alternatives figures [59]. They exploit a
bidirectional Dijkstra algorithm to explore the route. They introduced three quotas
to measure the quality of an Alternative Figures (AG). They introduce the concept
of pheromones into the Plateau method and enhance the ability of Plateau method
to find a meaningful alternative road.

Zeng and Church demonstrated the relative value of A* algorithm to solve simple
point-to-point shortest path problems on real road networks [60]. It is applied to road
networks from two counties of California, USA. They state that Dijkstra algorithm
can be improved by taking advantage of network properties associated with GIS-
source data. Whereupon, Dijkstra does not take advantage of the spatial attributes
which are available in a GIS setting, while A* can take the advantage of spatial
coordinates in trimming the search to find the shortest path. Malewicz et al. proposed
Pregel, a framework for large-scale graph processing [61]. The framework is similar
in concept to MapReduce. It provides users with a natural API for programming
graph algorithms while managing the details of distribution invisibly, including
messaging and fault tolerance. It contributes providing a suitable system for large-

188 Y. Arfat et al.

scale graph computing. They deployed dozens of Pregel applications. The users
report that the API is intuitive, easy to use, and flexible. The experiment shows
that the performance, scalability, and fault tolerance of proposed framework are
satisfactory for computing graph jobs with billions of vertices.

Yan et al. proposed a framework called Graphine for graph-parallel computation
in multicore clusters [62]. It addresses the problem of existing distributed graph-
parallel frameworks which cannot scale well with the increasing number of cores per
node. They implemented the proposed framework and evaluated it. The experiment
result shows that their proposed framework achieves sublinear scalability with the
number of nodes, a number of cores per node, and graph size up to one billion
vertices, as well as achieves 2∼15 times faster than the state-of-the-art Power Graph
on a cluster with 16 multicore nodes. Selim and Zhan proposed an algorithm and
data reduction technique based on data nodes in large networks dataset [63]. It is
done by computing similarity computation, maximum similarity clique (MSC), and
then finding the shortest path due to the data reduction in the graph. The technique
aims to reduce the network that will have a significant impact regarding performance
(shortest time and faster analysis) on calculating the shortest path. The proposed
technique takes into account shortest path problem between two nodes in a large
undirected network graph. The result shows that their proposed technique beats up
Dijkstra’s shortest path algorithm with large datasets with respect to execution time.
Zhou et al. presented a new graph processing framework based on Google’s Pregel
called P++ [64]. The proposed framework aims to reduce the system overhead for
algorithms that require many iterations in Pregel. It extends Pregel by some new
terms such as introducing a new data structure, internal compute, super-vertex, and
new API. Their proposed approach has been evaluated by using real datasets with
cases Shortest Path and PageRank. The result shows that their proposed technique
demonstrate its superior performance.

Cao et al. proposed an approach for solving the stochastic shortest path problem
in vehicle routing [65]. It aims to find the optimal path that maximizes the
probability of arriving at specified destination before the given deadline. Their
approach is data-driven which explores big data generated in traffic. They evaluated
the performance using a real traffic data extracted from real GPS trajectories of
vehicles in road network of Munich city, which consists of 170 nodes and 277 edges.
The experiment result shows that the proposed approach outperforms traditional
methods. Hou U et al. developed a framework to solve online shortest path problem
called live traffic index (LTI) [66]. The proposed framework aims for computing the
shortest path according to live traffic conditions. It enables drivers to effectively
and quickly get the live traffic information on the broadcasting channel. There
is no existing efficient solution that can offer affordable costs for online shortest
path computation at both client and server sides. The conventional architecture
scales poorly with the number of clients. Their approach is that the server collects
live traffic information and distributes it over radio or wireless network. They
evaluated their approach with four different road maps, including New York City,
San Francisco bay area road map, San Joaquin road map, and Oldenburg road map.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 189

The result shows that their proposed method reach optimal solution in terms of four
performance factors for online path computation.

Strehler et al. developed a model called fully polynomial-time approximation
scheme (FPTAS) for finding shortest energy-efficient routes for electric and hybrid
vehicles [67]. It aims to resolve the problem of electric and hybrid vehicles regarding
the shortest path problem and planning of the trip, whereupon recharging an electric
car takes longer than refilling fossil fuels car. Their contribution is introducing a
general model for the routing of hybrid and electric vehicles with intermediate stops
at charging station and convertible resources. They are using Matlab to represent
and test their model. The used dataset are engine model, topographical information,
and road data of German. They are in improvement phase that the running time
of the proposed algorithms may not be suitable for practical purposes, particularly,
when it is running on a mobile phone or on an in-car device. Hong et al. developed
a multicore computing approach to find shortest route from single source and single
destination while avoiding obstacles [68]. Whereupon, the existing approaches
have limited ability in dealing with real-time analysis in big data environments.
They use multicore computing to speed up the computation and analysis using
Python’s official Multiprocessing library. Thus, the parallelization is core based.
The approach itself exploits the notion of a convex hull for evaluating obstacles
and constructing pathways iteratively. The experiment result shows their proposed
approach for parallel processing has significant improvements over sequential
computing for wayfinding and navigation tasks with a large number of obstacles
in complex urban area. Mozes et al. developed an algorithm by combining two
techniques for computing shortest paths in directed planar graphs [69]. The two
combined techniques are STOC’94 and FOCS’01. It aims to remove the log n
dependency of the shortest path algorithm in the running time, in order to have
better and optimal performance. The theoretical proving shows that their proposed
technique obtains a speedup over previous algorithms for solving shortest-path
problem.

In this work, Abraham et al. [70] have worked on the point to point the shortest
path computations on the road network data. They modelled the road network as
a graph having highways with low dimension. The algorithm they named Hub
labels for computation of shortest path. The authors claim that it works faster for
all types of queries. However, they have not used the parallel implementation of an
algorithm. The performance this might suffer from significant data computation of
this algorithm. In this chapter, they have not used the US road network dataset. It
uses a general algorithm for the computation of road network graph data. Sanders
et al. [71] have presented the real-world road network processing algorithms. They
claim that algorithm takes less as compared to the Dijkstra. In this work, they
have not used the parallel implementation of the algorithm. They also did not
use the big data computation. Peng et al. [72] has presented a framework for
the computation of the road network distance using a single source-target pair. In
presented algorithms, they mapped the distance into a distributed structure of hash.
For the implementation, they used the Apache Spark and in memory computation
for the distance of road network computation. They experimented their algorithm

190 Y. Arfat et al.

using US and NYC road network dataset. Zhu et al. [73] have proposed an index
structure called Arterial Hierarchy (AH) for the shortest and distance queries in
a road network. They argue that existing work concentrates on the practical or
asymptotic performance. The problem with state of the art was worst regarding
space and time. The primary objective of this chapter was to minimize the gap
between theory and practice for shortest path queries on road network. For the
evaluation, they have used the 20 million nodes. The proposed technique performs
better than existing approaches for road network dataset. Moreover, in this work,
they have not used the weighted road network graph data.

Zheng et al. [74] have presented all pair shortest path algorithm. The proposed
algorithm was an alternative to the Floyd-Warshall. They implemented their algo-
rithm using Apache Spark and analyzed the performance of their algorithm. They
argue that the performance of Floyd-Warshall algorithm suffered using Apache
Spark due to a large number of global updates. To solve this issue, they have used
the fewer global update steps based on computation that has been done on each
iteration. As a result, they showed that their algorithm performs better than Floyd-
Warshall algorithm. However, their work is different as compared to our work. We
are parallelizing the shortest path between two vertices source and target. Djidjev
et al. [75] have presented all pair shortest path algorithm using GPU cluster. They
have used both centralized and decentralized computation for the all pair shortest
path algorithm. They have presented the two algorithms that use the Floyd-Warshall
method. For implementation, they have used the multi-GPU cluster. They have also
used the California state road network dataset that consists of 1.9 million vertices
and five million edges. Aridhi et al. [76] have presented the shortest path algorithm
on the base of MapReduce. To solve the shortest path problem in an efficient
way, they have partitioned the graph into subgraphs then they process it parallel.
The algorithm they have proposed is an iterative whose performance will suffer
when these are large of input data due to its iterative nature. For an experiment,
they have used the French road network dataset from the OpenStreetMap. For the
computation, they have used the Hadoop and MapReduce. Faro et al. [77] have
presented a shortest path all pair algorithm with and without traffic congestions on
the road network. The main objective of this chapter was to find the fastest shortest
path on road network. They implemented the proposed all pair shortest algorithm
parallel. First, they tried to find the shortest path then tried to find the alternate
shortest path in case of traffic congestion. They implemented their algorithm using
the GPU. They have not used any road network dataset, neither Spark nor Hadoop.

Kajdanowicz et al. [78] used the Bulk Synchronous Parallel (BSP), map-side
join, and MapReduce for the graph computation. They applied these approaches
for the single source shortest path (SSSP) and relational influence propagation
(RIP) for collective classification of graph vertices. They stated that using BSP
iterative graph processing perform better as compared to MapReduce. Liu et al.
[79] have proposed a framework for parallel processing of large graph to solve the
issue of communication between partitions, unbalanced partition, and replication of
vertices. This framework uses three different greedy graph partitioning algorithms.
They run these algorithms using the various dataset and observed that whether

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 191

these algorithms can solve the issues of graph partitioning based on the specific
needs. The major objective of this framework was to balance the load and reduce
the bandwidth. Wang et al. [80] proposed a technique for k-plex enumeration and
maximal clique approach. Using the binary graph partitioning approach, find the
dense subgraph from the graph. It parallel process each partition of the graph by
dividing the graph. MapReduce was used for implementation. Braun et al. [81]
presented a new approach for social network analysis for knowledge-based systems.
The major objective of this technique is to mine the interests of social network
and represent as graph. The directed graph has been used for relationship analysis
and undirected graph has been used to capture mutual friends. They have used the
Facebook and Twitter dataset to analyze the performance of the proposed approach.

Laboshin et al. [82] proposed a new framework based on MapReduce to analyze
the web traffic. The major objective of proposed framework was to scale the storage
and computing resources for the extensive network. Liu et al. [83] proposed a
clustering algorithm for the distributed density. This algorithm solves the issues in
distance-based algorithms. This algorithm calculates the distance among all pairs
of vertices. The authors claim that using this algorithm computational cost will
be reduced. They implemented their algorithm using Apache GraphX [29, 30].
Aridhi et al. [84] investigated different frameworks for mining of big graph. The
major focus was to use the mining algorithm for pattern mining that consists of
the discovering useful information from the huge graph dataset. They analyzed
comprehensively different mining techniques for the large graphs. Drosou et al. [85]
proposed an enhanced Graph Analytical Platform (GAP) framework for processing
of large graph dataset. This framework uses the top-down approach for mining of
huge graph dataset. It provides the strength to features like HR clustering. It is an
effective framework for the big data getting useful insights.

Zhao et al. [86] evaluated various graph computation platforms. They did
comparison between graph- and data-parallel platform for processing of large
dataset. They found out that graph-parallel platforms perform better for resource
utilization and graph computation as compared to data-parallel platforms. However,
data-parallel platform for graph processing is superior in performance regarding
size. Mohan [87] et al. compared the graph computation platforms for large data
processing using the key features and performance. Miller et al. [88] investigated
the graph analytics from perspective of query processing. There are issues in finding
the interesting information from the graph whether it’s a shortest path or pattern
matching from the graph. They also introduced algorithms which show that vertex
centric and graph centric algorithms are easily parallelizable. They stated that
MapReduce is not an ideal platform for the iterative algorithm.

Chakaravarthy et al. [89] proposed an algorithm that is derived from the Delta-
stepping and Bellman-Ford algorithms. The primary objective was to categorize
the edges, minimize the traffic of inner vertices, and optimize the directions. They
applied the single source shortest path (SSSP) to get the shortest path between
the vertices. Yinglong et al. [90] stated that big data analytics are essential for
the entities that can be represented as graph. It is the main challenge for the
computation of graph bases patterns. They presented a new architecture that allow

192 Y. Arfat et al.

users to organize the data for parallel computation. This architecture has three
components: graph storage, analytics, and visualization. They evaluated the data
locality for the processing and effects on the performance of cache memory on
a processor. Zhang et al. [91] presented an algorithm for the fast graph search.
This algorithm converts the completed graphs into vectorial representations on
the basis of prototype in the database. So, it accelerates the query efficiency in a
Euclidean space by using locality-sensitive hashing. They examined their proposed
approach using real dataset that gets higher performance regarding accuracy and
efficiency. Pollard et al. [92] proposed a new technique for the parallel graph
processing platforms analysis based on the performance and scalability. They used
the breadth first search, page rank, and single source shortest for the analysis
of power consumption and performance with packages of graph processing with
various datasets.

Table 8.1 provides a comparison of various shortest path graph computation
approaches. The table includes information for each work regarding aim and
objectives, the approach used, the dataset sources, the type of datasets, the platforms
used, research gap, and comments. We would have preferred to include the names
of authors of the respective works in a separate column in the table but these were
omitted to save space and fit the table in as few pages as possible.

8.3 Methodology and Design

This section details the methodology and design of our Big Data Shortest Path Graph
Computing (BDSPG) System.

Figure 8.1 shows the architecture for shortest path computations. First, it will
take the graph data as input for the computation of shortest path. This data can
be directed or undirected graph data but in our work, we are using undirected graph
dataset. Once we have data we have uploaded any distributed file system, so nodes in
the cluster can easily access this data. There can be any distributed file system such
as FEFS, NEFS, and HDFS. But in our work, we are using HDFS. After keeping
input graph data, we build the graph and perform the one pair shortest path (OPSP)
using GraphX [31]. After computation of OPSP, we shall get the shortest path having
total distance and vertices in the source and target vertex.

Fig. 8.1 The Big Data Shortest Path Graph Computing (BDSPG) System Architecture

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 193

Ta
bl

e
8.

1
C

om
pa

ri
so

n
of

va
ri

ou
s

sh
or

te
st

pa
th

gr
ap

h
co

m
pu

ta
tio

n
ap

pr
oa

ch
es

A
im

an
d

ob
je

ct
iv

es
R

es
ea

rc
h

ga
p

[S
ou

rc
e]

A
pp

ro
ac

h
D

at
as

et
D

at
as

et
ty

pe
Pl

at
fo

rm
s

ga
p/

co
m

m
en

t

Sh
or

te
st

pa
th

be
tw

ee
n

tw
o

po
in

ts
[5

7]

Fi
nd

th
e

sh
or

te
st

pa
th

be
tw

ee
n

tw
o

po
in

ts
ca

lle
d

w
ei

gh
t-

ba
se

d
sh

or
te

st
pa

th

C
ol

le
ct

ed
da

ta
fr

om
ru

ra
l,

su
bu

rb
an

,a
nd

ur
ba

n
ar

ea
s

in
N

ot
tin

gh
am

an
d

B
ir

m
in

gh
am

,U
K

R
oa

d
ne

tw
or

k
N

ot
cl

ea
r

B
ig

da
ta

pl
at

fo
rm

,
e.

g.
,a

pa
ch

e
sp

ar
k

no
tu

se
d

Fi
nd

th
e

eq
ui

lib
ri

um
in

th
e

pa
th

op
tim

iz
at

io
n

pr
ob

le
m

[5
8]

A
n

al
go

ri
th

m
fo

r
ro

ut
e

pl
an

ni
ng

in
ro

ad
ne

tw
or

k

T
ra

ns
po

rt
ne

tw
or

k

V
er

tic
es

:4
11

1

E
dg

es
:5

44
3

R
oa

d
ne

tw
or

k
C

pr
og

ra
m

m
in

g
la

ng
ua

ge
Sp

ar
k

no
tu

se
d

E
nh

an
ce

th
e

ab
ili

ty
of

pl
at

ea
u

m
et

ho
d

to
fin

d
a

m
ea

ni
ng

fu
l

al
te

rn
at

iv
e

ro
ad

[5
9]

B
id

ir
ec

tio
na

l
D

ijk
st

ra
al

go
ri

th
m

to
ex

pl
or

e
th

e
ro

ut
e

B
ei

jin
g

C
hi

na

V
er

tic
es

:1
53

27
5

E
dg

es
:4

33
71

9

R
oa

d
ne

tw
or

k
Ja

va
N

ot
di

st
ri

bu
te

d,
on

ly
on

e
no

de
us

ed

Po
in

t-
to

-p
oi

nt
sh

or
te

st
pa

th
[6

0]
A

*
al

go
ri

th
m

to
so

lv
e

si
m

pl
e

po
in

t-
to

-p
oi

nt
sh

or
te

st
pa

th
pr

ob
le

m
s

on
re

al
ro

ad
ne

tw
or

ks

R
oa

d
ne

tw
or

k
da

ta
fr

om
tw

o
co

un
tie

s
in

C
al

if
or

ni
a.

Sa
nt

a
B

ar
ba

ra
:V

er
tic

es
33

,0
74

,
ed

ge
s:

78
14

4,
L

os
A

ng
el

es
:

V
er

tic
es

:1
95

23
3,

ed
ge

s:
53

21
78

R
oa

d
ne

tw
or

k
C

pr
og

ra
m

m
in

g
w

ith
vi

su
al

st
ud

io
A

pa
ch

e
sp

ar
k

is
no

t
us

ed

L
ar

ge
SS

SP
gr

ap
h

pr
oc

es
si

ng
[6

1]
A

na
tu

ra
lA

PI
fo

r
pr

og
ra

m
m

in
g

gr
ap

h
al

go
ri

th
m

s
w

hi
le

m
an

ag
in

g
th

e
de

ta
ils

of
di

st
ri

bu
tio

n
in

vi
si

bl
y

C
la

im
s

to
us

e
a

fr
am

ew
or

k
fo

r
bi

lli
on

s
of

ed
ge

s
an

d
ve

rt
ic

es
A

ny
ty

pe
of

gr
ap

h
da

ta
C

++

(c
on

tin
ue

d)

194 Y. Arfat et al.

Ta
bl

e
8.

1
(c

on
tin

ue
d)

A
im

an
d

ob
je

ct
iv

es
R

es
ea

rc
h

ga
p

[S
ou

rc
e]

A
pp

ro
ac

h
D

at
as

et
D

at
as

et
ty

pe
Pl

at
fo

rm
s

ga
p/

co
m

m
en

t

To
so

lv
e

pr
ob

le
m

of
ex

is
tin

g
di

st
ri

bu
te

d
gr

ap
h-

pa
ra

lle
l

fr
am

ew
or

ks
w

hi
ch

ca
nn

ot
sc

al
e

w
el

l
w

ith
th

e
in

cr
ea

si
ng

nu
m

be
r

of
co

re
s

pe
r

no
de

[6
2]

G
ra

ph
in

e
fo

r
gr

ap
h-

pa
ra

lle
l

co
m

pu
ta

tio
n

in
m

ul
tic

or
e

cl
us

te
rs

L
iv

eJ
ou

rn
al

:(
5,

36
3,

26
0

ve
rt

ic
es

,
an

d
79

,0
23

,1
42

ed
ge

s)
H

ol
ly

w
oo

d
(2

,1
80

,7
59

ve
rt

ic
es

an
d

22
8,

98
5,

63
2

ed
ge

s)

A
ra

bi
c:

(2
2,

74
4,

08
0

ve
rt

ic
es

,a
nd

63
9,

99
9,

45
8

ed
ge

s)

Tw
itt

er
:(

41
,6

52
,2

30
ve

rt
ic

es
,a

nd
1,

46
8,

36
5,

18
2

ed
ge

s.
SK

:
50

,6
36

,1
54

ve
rt

ic
es

,a
nd

1,
94

9,
41

2,
60

1
ed

ge
s.

U
K

:1
05

,8
96

,5
55

ve
rt

ic
es

,a
nd

3,
73

8,
73

3,
64

8
ed

ge
s

So
ci

al
m

ed
ia

,w
eb

,
jo

ur
na

l
A

pa
ch

e
sp

ar
k,

O
pe

nM
PI

,C
D

o
no

tu
se

ro
ad

ne
tw

or
k

da
ta

se
t

R
ed

uc
e

th
e

ne
tw

or
k

th
at

w
ill

ha
ve

a
si

gn
ifi

ca
nt

im
pa

ct
on

pe
rf

or
m

an
ce

(s
ho

rt
es

tt
im

e
an

d
fa

st
er

an
al

ys
is

)
on

ca
lc

ul
at

in
g

th
e

sh
or

te
st

pa
th

[6
3]

C
om

pu
tin

g
si

m
ila

ri
ty

co
m

pu
ta

tio
n,

m
ax

im
um

si
m

ila
ri

ty
cl

iq
ue

(M
SC

),
an

d
th

en
fin

di
ng

th
e

sh
or

te
st

pa
th

du
e

to
th

e
da

ta
re

du
ct

io
n

in
th

e
gr

ap
h

X
M

L
-b

as
ed

ne
tw

or
k

gr
ap

h
da

ta
se

t
N

et
w

or
k

gr
ap

h
D

o
no

tu
se

ro
ad

ne
tw

or
k

da
ta

se
t

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 195

A
im

s
to

re
du

ce
th

e
sy

st
em

ov
er

he
ad

fo
r

al
go

ri
th

m
s

th
at

re
qu

ir
e

m
an

y
ite

ra
tio

ns
in

Pr
eg

el
[6

4]

A
ne

w
gr

ap
h

pr
oc

es
si

ng
fr

am
ew

or
k

ba
se

d
on

G
oo

gl
e’

s
Pr

eg
el

ca
lle

d
P+

+.
It

ex
te

nd
s

Pr
eg

el
by

so
m

e
ne

w
te

rm
s

su
ch

as
in

tr
od

uc
in

g
a

ne
w

da
ta

st
ru

ct
ur

e,
in

te
rn

al
co

m
pu

te
,

su
pe

r-
ve

rt
ex

,a
nd

ne
w

A
PI

.

So
ci

al
ne

tw
or

k
da

ta
se

tt
w

itt
er

(4
0

m
ill

io
n

ve
rt

ic
es

,>
1

bi
lli

on
ed

ge
s)

,a
nd

sy
nt

he
tic

da
ta

se
tb

y
us

in
g

fir
st

K
ve

rt
ic

es
an

d
th

ei
r

ed
ge

s
to

ev
al

ua
te

th
e

sc
al

ab
ili

ty
of

th
ei

r
pr

op
os

ed
fr

am
ew

or
k

D
at

as
et

:S
oc

ia
l

ne
tw

or
k

da
ta

se
t

P+
+

fr
am

ew
or

k
T

he
y

ha
ve

us
ed

th
e

un
w

ei
gh

te
d

gr
ap

h
da

ta
se

t

Fi
nd

th
e

op
tim

al
pa

th
th

at
m

ax
im

iz
es

th
e

pr
ob

ab
ili

ty
of

ar
ri

vi
ng

at
a

sp
ec

ifi
ed

de
st

in
at

io
n

be
fo

re
th

e
gi

ve
n

de
ad

lin
e

[6
5]

So
lv

in
g

th
e

st
oc

ha
st

ic
sh

or
te

st
pa

th
pr

ob
le

m
in

ve
hi

cl
e

ro
ut

in
g

R
oa

d
ne

tw
or

k
of

M
un

ic
h

ci
ty

,
w

hi
ch

co
ns

is
ts

of
17

0
no

de
s

an
d

27
7

ed
ge

s.
A

nd
al

so
w

ei
gh

te
d

gr
ap

h
of

tr
av

el
tim

e,
ex

tr
ac

te
d

fr
om

re
al

G
PS

tr
aj

ec
to

ri
es

of
B

M
W

ve
hi

cl
es

Sy
nt

he
tic

an
d

ro
ad

ne
tw

or
k

da
ta

se
t

M
ac

hi
ne

le
ar

ni
ng

Sm
al

ld
at

as
et

,o
nl

y
on

si
ng

le
no

de
,n

ot
pa

ra
lle

l

C
om

pu
te

th
e

sh
or

te
st

pa
th

ac
co

rd
in

g
to

th
e

liv
e

tr
af

fic
co

nd
iti

on
s

[6
6]

A
fr

am
ew

or
k

to
so

lv
e

on
lin

e
sh

or
te

st
pa

th
pr

ob
le

m
ca

lle
d

liv
e

tr
af

fic
in

de
x

(L
T

I)

N
ew

Y
or

k
C

ity
(N

Y
C

)
(2

64
k

no
de

s,
73

3
k

ed
ge

s)
,S

an
Fr

an
ci

sc
o

ba
y

ar
ea

ro
ad

m
ap

(S
F)

(1
74

k
no

de
s,

44
3

k
ed

ge
s)

,S
an

Jo
aq

ui
n

ro
ad

m
ap

(S
J)

(1
8

k
no

de
s,

48
k

ed
ge

s)
,a

nd
O

ld
en

bu
rg

ro
ad

m
ap

(O
B

)
(6

k
no

de
s,

14
k

ed
ge

s)

R
oa

d
ne

tw
or

k
Ja

va
Sm

al
ld

at
as

et
,n

ot
di

st
ri

bu
te

d,
si

ng
le

no
de

on
ly

(c
on

tin
ue

d)

196 Y. Arfat et al.

Ta
bl

e
8.

1
(c

on
tin

ue
d)

A
im

an
d

ob
je

ct
iv

es
R

es
ea

rc
h

ga
p

[S
ou

rc
e]

A
pp

ro
ac

h
D

at
as

et
D

at
as

et
ty

pe
Pl

at
fo

rm
s

ga
p/

co
m

m
en

t

R
es

ol
ve

th
e

pr
ob

le
m

of
el

ec
tr

ic
an

d
hy

br
id

ve
hi

cl
es

re
ga

rd
in

g
th

e
sh

or
te

st
pa

th
pr

ob
le

m
an

d
pl

an
ni

ng
of

th
e

tr
ip

[6
7]

D
ev

el
op

ed
a

m
od

el
ca

lle
d

fu
lly

po
ly

no
m

ia
l-

tim
e

ap
pr

ox
im

at
io

n
sc

he
m

e
(F

PT
A

S)
fo

r
fin

di
ng

sh
or

te
st

en
er

gy
-e

ffi
ci

en
t

ro
ut

es
fo

r
el

ec
tr

ic
an

d
hy

br
id

ve
hi

cl
es

Sy
nt

he
tic

fo
r

si
m

pl
e

ev
al

ua
tio

n.
R

ea
ld

at
as

et
to

po
gr

ap
hi

ca
l

in
fo

rm
at

io
n,

an
d

ro
ad

da
ta

fr
om

G
er

m
an

y.

D
at

a
si

ze
no

tc
le

ar

Sy
nt

he
tic

an
d

ro
ad

ne
tw

or
k

da
ta

se
t.

T
he

y
us

ed
M

at
la

b
to

re
pr

es
en

ta
nd

te
st

th
ei

r
m

od
el

N
o

di
st

ri
bu

te
d

im
pl

em
en

ta
tio

n,
si

ng
le

no
de

on
ly

R
em

ov
e

lim
ita

tio
ns

of
ex

is
tin

g
ap

pr
oa

ch
es

an
d

lim
ite

d
ab

ili
ty

in
de

al
in

g
w

ith
re

al
-t

im
e

an
al

ys
is

in
bi

g
da

ta
en

vi
ro

nm
en

ts
[6

8]

D
ev

el
op

ed
a

m
ul

tic
or

e
co

m
pu

tin
g

ap
pr

oa
ch

to
fin

d
sh

or
te

st
ro

ut
e

fr
om

si
ng

le
so

ur
ce

an
d

si
ng

le
de

st
in

at
io

n
w

hi
le

av
oi

di
ng

ob
st

ac
le

s

T
he

in
iti

al
ar

ea
of

fo
cu

s
is

th
e

A
ri

zo
na

St
at

e
U

ni
ve

rs
ity

ca
m

pu
s

in
Te

m
pe

,A
ri

zo
na

.T
he

ca
m

pu
s

ha
s

17
9

bu
ild

in
gs

th
at

re
pr

es
en

t
ob

st
ac

le
s

to
di

re
ct

tr
av

el
be

tw
ee

n
an

or
ig

in
an

d
de

st
in

at
io

n.
W

ith
to

ta
l2

68
8

pa
ir

s
of

or
ig

in
-d

es
tin

at
io

n

N
ot

cl
ea

r
Se

qu
en

tia
la

nd
pa

ra
lle

lp
ro

ce
ss

in
Py

th
on

R
oa

d
ne

tw
or

k
da

ta
se

tn
ot

us
ed

,
sm

al
ld

at
as

et
,a

pa
ch

e
sp

ar
k

no
tu

se
d

R
em

ov
e

th
e

lo
g

n
de

pe
nd

en
cy

of
th

e
sh

or
te

st
-p

at
h

al
go

ri
th

m
in

th
e

ru
nn

in
g

tim
e,

in
or

de
r

to
ha

ve
be

tte
r

an
d

op
tim

al
pe

rf
or

m
an

ce
[6

9]

A
n

al
go

ri
th

m
by

co
m

bi
ni

ng
tw

o
te

ch
ni

qu
es

fo
r

co
m

pu
tin

g
sh

or
te

st
pa

th
s

in
di

re
ct

ed
pl

an
ar

gr
ap

hs

T
he

or
et

ic
al

pr
oo

f,
no

da
ta

se
t

N
/A

N
/A

N
ot

di
st

ri
bu

te
d,

on
ly

on
e

no
de

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 197

E
xa

ct
po

in
t-

to
-p

oi
nt

sh
or

te
st

pa
th

s
in

ro
ad

ne
tw

or
ks

[7
0]

H
ub

la
be

ls
(H

L
),

a
la

be
lin

g
al

go
ri

th
m

to
co

m
pu

te
sh

or
te

st
pa

th

D
IM

A
C

S

R
oa

d
ne

tw
or

k
da

ta
se

t(
U

SA
ro

ad
ne

tw
or

k
an

d
E

ur
op

e
ro

ad
ne

tw
or

k)

R
oa

d
ne

tw
or

k
C

++
an

d
M

ic
ro

so
ft

vi
su

al
C

++
N

ot
pa

ra
lle

l

Fi
nd

sh
or

te
st

pa
th

[7
1]

Pr
es

en
te

d
a

ne
w

sp
ee

du
p

te
ch

ni
qu

e
fo

r
ro

ut
e

pl
an

ni
ng

th
at

ex
pl

oi
ts

th
e

hi
er

ar
ch

y
in

he
re

nt
in

re
al

-w
or

ld
ro

ad
ne

tw
or

ks

D
IM

A
C

S

R
oa

d
ne

tw
or

k
(U

SA
,E

ur
op

e,
G

er
m

an
y)

R
oa

d
ne

tw
or

k
C

++
N

o
pa

ra
lle

lo
r

bi
g

da
ta

im
pl

em
en

ta
tio

n

Sp
ee

d
up

co
m

pl
ex

sp
at

ia
l

an
al

yt
ic

al
qu

er
ie

s
an

d
ev

al
ua

te
a

la
rg

e
nu

m
be

r
of

ne
tw

or
k

di
st

an
ce

qu
er

ie
s

w
hi

ch
ar

e
po

se
d

as
a

la
rg

e
se

tc
on

ta
in

in
g

N
so

ur
ce

-t
ar

ge
tp

ai
rs

[7
2]

Pr
es

en
te

d
a

fr
am

ew
or

k
fo

r
th

e
co

m
pu

ta
tio

n
of

th
e

ro
ad

ne
tw

or
k

di
st

an
ce

us
in

g
a

si
ng

le
so

ur
ce

-t
ar

ge
tp

ai
r

U
S

(V
:2

3
M

,E
:5

8
M

),
B

ay
A

re
a

(V
:7

58
,1

04
,E

:1
M

)
an

d
N

Y
C

(V
:

26
4,

34
6,

E
:7

33
,8

46
)

ro
ad

ne
tw

or
k

da
ta

se
t

R
oa

d
ne

tw
or

k
A

pa
ch

e
sp

ar
k

M
in

im
iz

e
th

e
ga

p
be

tw
ee

n
th

eo
ry

an
d

pr
ac

tic
e

fo
r

sh
or

te
st

pa
th

qu
er

ie
s

on
ro

ad
ne

tw
or

k
[7

3]

Pr
op

os
ed

an
in

de
x

st
ru

ct
ur

e
ca

lle
d

ar
te

ri
al

hi
er

ar
ch

y
(A

H
)

fo
r

th
e

sh
or

te
st

an
d

di
st

an
ce

qu
er

ie
s

in
a

ro
ad

ne
tw

or
k

D
el

aw
ar

e
(4

8,
81

2
V

12
0,

48
9E

)
N

ew
H

am
ps

hi
re

(1
15

,0
55

V
,

26
42

18
E

)
M

ai
ne

(1
87

,3
15

V
,

42
29

98
E

)
C

ol
or

ad
o

(4
35

,6
66

V
,

10
57

06
6E

)
Fl

or
id

a
(1

,0
70

,3
76

V
,2

71
27

98
E

)
C

al
if

or
ni

a
an

d
N

ev
ad

a
(1

,8
90

,8
15

V
,4

65
77

42
E

)
E

as
te

rn
U

S
35

98
62

3
V

,8
77

81
14

E
)

W
es

te
rn

U
S

(6
,2

62
,1

04
V

,
15

24
81

46
)

C
en

tr
al

U
S

(1
4,

08
1,

81
6

V
,3

42
92

49
6E

)
U

ni
te

d
St

at
es

(2
3

M
,5

8E
)

R
oa

d
ne

tw
or

k
C

++

(c
on

tin
ue

d)

198 Y. Arfat et al.

Ta
bl

e
8.

1
(c

on
tin

ue
d)

A
im

an
d

ob
je

ct
iv

es
R

es
ea

rc
h

ga
p

[S
ou

rc
e]

A
pp

ro
ac

h
D

at
as

et
D

at
as

et
ty

pe
Pl

at
fo

rm
s

ga
p/

co
m

m
en

t

Im
pr

ov
e

th
e

pe
rf

or
m

an
ce

A
PS

P
us

in
g

A
pa

ch
e

Sp
ar

k
[7

4]
A

ll-
pa

ir
s-

sh
or

te
st

-p
at

hs
(A

PS
P)

Sy
nt

he
tic

di
st

an
ce

m
at

ri
ce

s
Sy

nt
he

tic
da

ta
se

t
A

pa
ch

e
sp

ar
k

N
o

re
al

da
ta

se
t

To
us

e
bo

th
ce

nt
ra

liz
ed

an
d

de
ce

nt
ra

liz
ed

co
m

pu
ta

tio
n

fo
r

th
e

al
lp

ai
r

sh
or

te
st

pa
th

al
go

ri
th

m
[7

5]

A
ll

pa
ir

sh
or

te
st

pa
th

al
go

ri
th

m
us

in
g

G
PU

cl
us

te
r

G
ra

ph
da

ta
se

t1
.9

M
ve

rt
ic

es
,

5
M

ed
ge

s
R

oa
d

ne
tw

or
k

G
PU

cl
us

te
r

So
lv

e
th

e
sh

or
te

st
pa

th
pr

ob
le

m
in

an
ef

fic
ie

nt
w

ay
,p

ar
tit

io
ne

d
th

e
gr

ap
h

in
to

su
bg

ra
ph

s
th

en
pr

oc
es

s
it

pa
ra

lle
l[

76
]

Pr
es

en
te

d
th

e
sh

or
te

st
pa

th
al

go
ri

th
m

us
in

g
M

ap
R

ed
uc

e

Fr
en

ch
ro

ad
ne

tw
or

k
da

ta
se

t
fr

om
th

e
O

pe
nS

tr
ee

tM
ap

R
oa

d
ne

tw
or

k
H

ad
oo

p
an

d
M

ap
R

ed
uc

e
M

ap
R

ed
uc

e
ca

nn
ot

gi
ve

go
od

pe
rf

or
m

an
ce

un
de

r
ite

ra
tiv

e
en

vi
ro

nm
en

t
Fi

nd
th

e
fa

st
es

ts
ho

rt
es

tp
at

h
on

ro
ad

ne
tw

or
k

[7
7]

Pr
es

en
te

d
a

sh
or

te
st

pa
th

al
lp

ai
r

al
go

ri
th

m
w

ith
an

d
w

ith
ou

tt
ra

ffi
c

co
ng

es
tio

ns
on

th
e

ro
ad

ne
tw

or
k

N
/A

N
/A

G
PU

N
o

ro
ad

ne
tw

or
k

da
ta

se
t,

no
ts

pa
rk

or
H

ad
oo

p

U
se

B
SP

ite
ra

tiv
e

gr
ap

h
pr

oc
es

si
ng

fo
r

be
tte

r
pe

rf
or

m
an

ce
[7

8]

T
he

bu
lk

sy
nc

hr
on

ou
s

pa
ra

lle
l(

B
SP

),
m

ap
-s

id
e

jo
in

an
d

M
ap

R
ed

uc
e

fo
r

th
e

gr
ap

h
co

m
pu

ta
tio

n

Tw
itt

er
,Y

ou
T

ub
e,

an
d

te
le

w
ith

m
ill

io
ns

of
ed

ge
s

So
ci

al
m

ed
ia

M
ap

R
ed

uc
e

M
ap

R
ed

uc
e

us
ed

So
lv

e
th

e
is

su
es

of
co

m
m

un
ic

at
io

n
be

tw
ee

n
pa

rt
iti

on
s,

un
ba

la
nc

ed
pa

rt
iti

on
,

an
d

re
pl

ic
at

io
n

of
ve

rt
ic

es
[7

9]

Pr
op

os
ed

a
fr

am
ew

or
k

fo
r

pa
ra

lle
lp

ro
ce

ss
in

g
of

la
rg

e
gr

ap
hs

T
he

re
ar

e
se

ve
ra

ld
at

as
et

s
bu

t
la

rg
es

to
ne

is
Fa

ce
bo

ok
:

10
00

00
1

V
,2

37
28

29
8

E
:L

iv
e

jo
ur

na
l:

39
97

96
2

V
,

34
68

11
89

E
.(

Fa
ce

bo
ok

,
tw

itt
er

,l
iv

e
m

ed
ia

)

R
ea

ld
at

as
et

,
sy

nt
he

tic
da

ta
se

t,
us

ed
th

e
SN

A
P

da
ta

se
t

M
ap

R
ed

uc
e

M
ap

R
ed

uc
e

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 199

E
ff

ec
tiv

e
lo

ad
ba

la
nc

in
g

an
d

ef
fic

ie
nt

pa
ra

lle
l

pe
rf

or
m

an
ce

[8
0]

Pr
op

os
ed

a
te

ch
ni

qu
e

fo
r

k-
pl

ex
en

um
er

at
io

n
an

d
m

ax
im

al
cl

iq
ue

ap
pr

oa
ch

So
ci

al
ne

tw
or

ks
,w

ik
iv

ot
e,

ep
in

io
ns

,S
la

sh
do

t0
90

2,
G

ow
al

la
_e

dg
es

,y
ou

tu
be

Po
ke

c,
W

ik
iT

al
k,

w
eb

gr
ap

hs
,u

k2
00

5
it2

00
4,

B
er

kS
ta

n,
W

eb
G

oo
gl

e,
W

ik
iC

om
m

,w
ik

ip
ed

ia
20

09
,

m
is

ce
lla

ne
ou

s,
ne

tw
or

ks
,H

ep
Ph

,
E

uA
ll,

db
lp

20
12

sk
itt

er

T
he

la
rg

es
td

at
as

et
th

ey
ha

ve
us

ed
is

:
Po

ke
c

(1
,6

32
,8

03
V

,
22

,3
01

,9
64

E
)

M
ap

R
ed

uc
e

N
o

ro
ad

ne
tw

or
k

da
ta

se
t

M
in

e
th

e
in

te
re

st
s

of
so

ci
al

ne
tw

or
k

an
d

re
pr

es
en

ta
s

gr
ap

h
[8

1]

Pr
es

en
te

d
a

ne
w

ap
pr

oa
ch

fo
r

so
ci

al
ne

tw
or

k
an

al
ys

is
fo

r
kn

ow
le

dg
e-

ba
se

d
sy

st
em

s

E
go

-F
ac

eb
oo

k
(4

03
9

V
,a

nd
88

,2
34

E
)

E
go

-T
w

itt
er

(8
1,

30
6

V
,

1,
76

8,
14

9E
)

So
ci

al
m

ed
ia

A
pa

ch
e

H
ad

oo
p

0.
20

.0
T

he
y

ha
ve

no
tu

se
d

w
ei

gh
te

d
gr

ap
h

Sc
al

e
th

e
st

or
ag

e
an

d
co

m
pu

tin
g

re
so

ur
ce

s
fo

r
th

e
ex

te
ns

iv
e

ne
tw

or
k

[8
2]

A
ne

w
fr

am
ew

or
k

ba
se

d
on

M
ap

R
ed

uc
e

to
an

al
yz

e
th

e
w

eb
tr

af
fic

N
/A

N
/A

N
/A

A
fr

am
ew

or
k

to
pr

oc
es

s
la

rg
e

da
ta

se
t

So
lv

e
th

e
is

su
es

in
di

st
an

ce
-b

as
ed

al
go

ri
th

m
s

[8
3]

Pr
op

os
ed

a
cl

us
te

ri
ng

al
go

ri
th

m
fo

r
di

st
ri

bu
te

d
de

ns
ity

N
ew

s
da

ta
se

tc
on

ta
in

s
10

to
pi

cs
,

an
d

47
,9

56
te

xt
s

N
ew

s
da

ta
se

t
A

pa
ch

e
Sp

ar
k

an
d

G
ra

ph
X

[9
3]

N
o

ro
ad

ne
tw

or
k

da
ta

se
t

U
se

m
in

in
g

al
go

ri
th

m
fo

r
pa

tte
rn

m
in

in
g

fo
r

di
sc

ov
er

in
g

us
ef

ul
in

fo
rm

at
io

n
fr

om
a

hu
ge

gr
ap

h
da

ta
se

t[
84

]

In
ve

st
ig

at
ed

di
ff

er
en

t
fr

am
ew

or
ks

fo
r

m
in

in
g

of
bi

g
gr

ap
h

N
/A

N
/A

N
/A

It
is

a
re

vi
ew

of
di

ff
er

en
tg

ra
ph

m
in

in
g

fr
am

ew
or

ks

(c
on

tin
ue

d)

200 Y. Arfat et al.

Ta
bl

e
8.

1
(c

on
tin

ue
d)

A
im

an
d

ob
je

ct
iv

es
R

es
ea

rc
h

ga
p

[S
ou

rc
e]

A
pp

ro
ac

h
D

at
as

et
D

at
as

et
ty

pe
Pl

at
fo

rm
s

ga
p/

co
m

m
en

t

It
pr

ov
id

es
th

e
st

re
ng

th
to

fe
at

ur
es

lik
e

H
R

cl
us

te
ri

ng
[8

5]

Pr
op

os
ed

an
en

ha
nc

ed
gr

ap
h

an
al

yt
ic

al
pl

at
fo

rm
(G

A
P)

fr
am

ew
or

k
fo

r
pr

oc
es

si
ng

of
la

rg
e

gr
ap

h
da

ta
se

t

Tw
itt

er
da

ta
se

ta
nd

sy
nt

he
tic

da
ta

m
ob

ile
-b

as
ed

da
ta

se
t.

Si
ze

of
th

is
da

ta
se

ti
s

no
t

gi
ve

n

So
ci

al
m

ed
ia

an
d

sy
nt

he
tic

N
ot

cl
ea

r
Pa

th
gr

ap
h

an
al

ys
is

no
tu

se
d,

no
cl

ea
r

m
en

tio
n

of
an

yt
hi

ng
ab

ou
tg

ra
ph

pr
oc

es
si

ng
pl

at
fo

rm
s

C
om

pa
ri

so
n

be
tw

ee
n

gr
ap

h
an

d
da

ta
pa

ra
lle

l
pl

at
fo

rm
fo

r
pr

oc
es

si
ng

of
la

rg
e

da
ta

se
t[

86
]

E
va

lu
at

io
ns

of
va

ri
ou

s
gr

ap
h

co
m

pu
ta

tio
n

pl
at

fo
rm

s

Fa
ce

bo
ok

(6
1,

87
6,

61
5

V
,

33
6,

77
6,

26
9E

).
L

iv
eJ

ou
rn

al
(4

,8
47

,5
71

V
,6

8,
99

3,
77

3E
)

an
d

D
B

L
P

(3
17

,0
80

V
,

1,
04

9,
86

6E
)

So
ci

al
ne

tw
or

ki
ng

da
ta

se
t

Sp
ar

k-
0.

9.
0

Po
w

er
G

ra
ph

-2
.2

G
ir

ap
h

1.
0.

0

G
PS

-0
.0

.1

N
o

ro
ad

ne
tw

or
k

da
ta

se
t

C
om

pa
ri

so
n

us
in

g
th

e
ke

y
fe

at
ur

es
an

d
pe

rf
or

m
an

ce
[8

7]

C
om

pa
re

d
th

e
gr

ap
h

co
m

pu
ta

tio
n

pl
at

fo
rm

s
fo

r
la

rg
e

da
ta

pr
oc

es
si

ng

C
ol

la
bo

ra
tio

n
(3

17
,0

80
V

,
1,

04
9,

86
6

E
)

C
om

m
un

ic
at

io
n

(3
6,

69
2

V
,

18
38

31
E

)

C
A

ro
ad

ne
tw

or
k

(1
,9

65
,2

06
V

,2
,7

66
,6

07
E

)

R
ea

lg
ra

ph
da

ta
se

t
an

d
sy

nt
he

tic
s

H
ad

oo
p,

G
ir

ap
h,

M
ap

R
ed

uc
e,

an
d

B
SP

N
ot

di
re

ct
ly

re
la

te
d

to
ou

r
w

or
k.

H
ow

ev
er

,i
ts

ho
w

s
ho

w
to

pr
oc

es
s

la
rg

e
gr

ap
hs

us
in

g
B

SP
.

T
he

y
us

ed
ro

ad
un

w
ei

gh
te

d
gr

ap
h

da
ta

se
t

Fi
nd

in
g

in
te

re
st

in
g

in
fo

rm
at

io
n

fr
om

th
e

gr
ap

h
w

he
th

er
it’

s
a

sh
or

te
st

pa
th

or
pa

tte
rn

m
at

ch
in

g
fr

om
th

e
gr

ap
h

[8
8]

In
ve

st
ig

at
ed

gr
ap

h
an

al
yt

ic
s

fr
om

th
e

pe
rs

pe
ct

iv
e

of
qu

er
y

pr
oc

es
si

ng

N
/A

N
/A

T
he

or
et

ic
al

ev
al

ua
tio

ns
T

hi
s

w
or

k
is

re
la

te
d

to
fu

tu
re

tr
en

ds
an

d
di

re
ct

io
n

of
gr

ap
h

an
al

yt
ic

s

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 201

C
at

eg
or

ie
s

th
e

ed
ge

s,
m

in
im

iz
e

th
e

tr
af

fic
of

in
ne

r
ve

rt
ic

es
an

d
op

tim
iz

e
th

e
di

re
ct

io
n

[8
9]

Pr
op

os
ed

an
al

go
ri

th
m

th
at

is
de

ri
ve

d
fr

om
th

e
de

lta
-s

te
pp

in
g

an
d

be
llm

an
-f

or
d

al
go

ri
th

m
s

R
-M

A
T

gr
ap

h
w

ith
238

ve
rt

ic
es

an
d

242
ed

ge
s

on
32

,7
68

bl
ue

ge
ne

/Q
no

de
s.

U
SA

ro
ad

ne
tw

or
k

w
ith

2.
7

M
ve

rt
ic

es
an

d
6.

8
M

ed
ge

s.

Fr
ie

nd
st

er
63

M
ve

rt
ic

es
an

d
1.

8
B

ed
ge

s.
Tw

itt
er

41
M

ve
rt

ic
es

an
d

1.
4B

ed
ge

s

Sy
nt

he
tic

R
-M

A
T

an
d

re
al

-w
or

ld
gr

ap
hs

G
PU

an
d

N
U

M
A

m
ul

tic
or

es
U

se
s

SS
SP

pa
th

C
om

pu
ta

tio
n

of
gr

ap
h-

ba
se

d
pa

tte
rn

s
[9

0]
Pr

es
en

te
d

a
ne

w
ar

ch
ite

ct
ur

e
th

at
al

lo
w

s
us

er
s

to
or

ga
ni

ze
th

e
da

ta
fo

r
pa

ra
lle

lc
om

pu
ta

tio
n

10
bi

lli
on

ve
rt

ic
es

an
d

20
0

bi
lli

on
ed

ge
s

N
ot

cl
ea

r
PE

R
C

H
(P

O
W

E
R

7+
cl

us
te

r)
U

se
s

SS
SP

M
ai

n
ai

m
w

as
to

ac
ce

le
ra

te
th

e
qu

er
y

ef
fic

ie
nc

y
in

a
E

uc
lid

ea
n

sp
ac

e
by

us
in

g
lo

ca
lit

y
se

ns
iti

ve
ha

sh
in

g
[9

1]

Pr
es

en
te

d
an

al
go

ri
th

m
fo

r
fa

st
gr

ap
h

se
ar

ch

N
C

I1
an

d
N

C
I1

09
,

m
ut

ag
en

ic
ity

da
ta

se
t

T
he

da
ta

se
t

pr
ov

id
ed

re
la

te
d

to
ca

nc
er

an
d

ch
em

ic
al

s

E
m

pi
ri

ca
l

ev
al

ua
tio

ns

A
na

ly
si

s
of

pe
rf

or
m

an
ce

an
d

sc
al

ab
ili

ty
[9

2]
Pr

op
os

ed
a

ne
w

te
ch

ni
qu

e
fo

r
pa

ra
lle

l
gr

ap
h

pr
oc

es
si

ng
pl

at
fo

rm
s

C
it-

pa
te

nt
s

(3
,7

74
,7

68
ve

rt
ic

es
an

d
16

,5
18

,9
48

ed
ge

s)

D
ot

a-
le

ag
ue

Sy
nt

he
tic

an
d

re
al

-w
or

ld
da

ta
se

ts

G
ra

ph
-m

at
,t

he
G

ra
ph

50
0,

th
e

gr
ap

h
al

go
ri

th
m

pl
at

fo
rm

be
nc

hm
ar

k
su

ite
,

G
ra

ph
B

IG
,a

nd
Po

w
er

G
ra

ph
an

d
C

N
o

w
ei

gh
te

d
gr

ap
h

ne
tw

or
k

da
ta

se
t,

ha
ve

us
ed

sh
or

te
st

pa
th

co
m

pu
ta

tio
ns

202 Y. Arfat et al.

We propose an approach for the parallel shortest path computation with multiple
queries of a pair of vertices using Apache Spark. In this approach, we have two
functions: The One Pair Shortest Path (OPSP) algorithm to find the best route
between a pair of vertices, and the main driver program which builds the graph,
constructs and parallelizes the queries, and invokes OPSP function. Algorithm 1
(Fig. 8.2) shows the OPSP algorithm. In this algorithm, we employ the concept
of the well-known Dijkstra algorithm to find the optimal route between source
and destination in a graph problem. This algorithm first explores the neighbor
vertices of the current vertex from distPaths[0] (the path of minimum distance
from src to dest), inserts the neighbor’s vertex id to a set of explored vertices
exp[], if the neighbor vertices have not been explored in advance, keeps track
of explored paths from source to the neighbors (the list of vertices to reach the
neighbors) and its distance (neboursPath.concat(distPathRest)), picks the path with
minimum distance to be explored further (sortByDist() ascending), and calls the
OPSP function itself (recursive) until the path with minimum distance meets the
destination, then will return the minimum distance and the paths to reach the
destination (dist, paths.reverse()).

Algorithm 2 (Fig. 8.3) shows the main driver program. It builds the graph, the
queries, and executes the queries with OPSP algorithm. First, the program builds a
graph from the given input of vertices and edges G(V,E). Then, constructs queries
q from the given input of list of queries(src,dst), which contains multiple pairs of
src and dest. Furthermore, q is partitioned with np size and becomes Q(src,dst).
Afterwards, Q(src,dst), G(V,E), and initialization variable exp[] as a set of explored
vertices, and distPaths(list(k,v[])) as an initial step of 0 distance and source vertex
are passed to OPSP function in Algorithm 1. Multiple queries of Q(src,dst) are
executed in parallel by multiple executors in cluster nodes of Spark. Thus, each
executor computes different multiple queries at the same time t.

8.3.1 Dataset

We have used the DIMACS [94] dataset. The DIMACS is a collection of various
datasets. It also has road network dataset containing more than 50 states of the USA
and various districts. It is an undirected weighted graph that consists of millions of
edges and nodes. We considered in our experiments the entire US dataset. We have
also investigated in this chapter results for five different states of the USA. These
are District of Columbia (DC), Rhode Island (RI), Colorado (CO), Florida (FL),
and California (CA). Each node has node id, latitude, and longitude. Every edge
also has source node id, target node id, travel time, distance, and category of road.
Table 8.2 shows the number of edges and vertices in different states as well as for
the complete US road network. Figure 8.4 graphically displays degree of vertices
for selected states and whole US road network.

We also have visualized road network dataset using Gephi [95]. We have only
visualized the DC and RI state data set as shown in Figs. 8.5 and 8.6, respectively.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 203

Fig. 8.2 The One Pair Shortest Path (OPSP) Algorithm

We could not visualize the other states data due to the large size which cannot be
handled on a single PC. We have only visualized two states to perceive the structure
of road network datasets. We will look into visualizing larger datasets using Spark
in the future.

204 Y. Arfat et al.

Fig. 8.3 The Master Algorithm

Table 8.2 USA road network dataset

Name of Road Network Vertices Edges Type

District of Columbia (DC) 9559 14,909 Undirected
Rhode Island (RI) 53,658 69,213 Undirected
Colorado (CO) 435,666 1,057,066 Undirected
Florida (FL) 1,070,376 2,712,798 Undirected
California (CA) 1,890,815 4,657,742 Undirected
USA (whole country) 23,947,347 58,333,344 Undirected

8.4 Results and Discussion

For experimental setup, we have built a Spark cluster setup on the Aziz supercom-
puter [34]. In this configuration, we have used different number of nodes, varying
from one to sixteen. We have used Apache Hadoop HDFS to store input and output
data. Apache Spark has been used for the data processing. The Master and Salve
Spark nodes used on the Aziz supercomputer have the following configuration.

• Linux CentOS, JDK 1.7, Dual Socket Intel Xeon E5-2695v2 12-core processor,
2.4 GHz, Total 24 cores, 96GB RAM, Apache Spark 2.0.1, GraphX Apache
Hadoop HDFS.

8.4.1 Single Shortest Path Query Results

In our earlier work [33], we had presented results for a single shortest path query
on up to 16 nodes (368 cores) for the USA states DC, RI, CO, FL, CA, and the
whole US road network with up to over 23 million vertices and 58 million edges
(see Table 8.2). See [33] for the detailed results and analysis.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 205

Fig. 8.4 Visualization of (a) District of Columbia road network (b) Florida road network (c)
Colorado road network (d) Whole US road network

Fig. 8.5 District of
Columbia road network

206 Y. Arfat et al.

Fig. 8.6 Rhode Island road
network

Fig. 8.7 Parallel execution time of varying number of cores

8.4.2 Multiple Shortest Path Query Results

The aim here is to investigate and achieve high performance in finding the shortest
path of multiple queries with our proposed parallel-shortest path algorithm between
the source and the target. Using Spark, we run in parallel a varying number of
queries, each computing shortest path between a (source, destination) pair; see Sect.
8.3 for details. In these experiments, we use Rhode Island (RI) road network, USA,
which consists of 53,658 vertices and 69,213 edges.

The results in Fig. 8.7 show that parallelization does not have a significant impact
when executing a small number of queries. This is because the job is too small
compared to the number of cores. It has an ineffective job distribution and takes a
long time for I/O overhead among the cores which are distributed among up to 10

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 207

nodes (with 24 cores each). Three different queries are used in the figure: 10, 100,
and 1000 queries. The horizontal axis shows results for varying number of cores:
23, 46, up to 230. Each Aziz node contains 24 cores. However, we keep one core
for the operating system to perform its job. Thus, we utilize 23 cores for each node.
The vertical axis gives the total runtime to compute the whole sets of queries.

A larger number of queries (10 K, 100 K, and 1 M) show a clear reduction and
advantage in execution time while parallelizing the whole sets of queries as shown
in Figs. 8.8 and 8.9. As usual the letter K denotes a thousand and M indicates a
million.

Fig. 8.8 Parallel execution time of varying number of nodes

Fig. 8.9 Parallel execution time of varying number of nodes

208 Y. Arfat et al.

8.4.3 Speedup

According to the experimental results in Sect. 8.4.2, we have calculated the achieved
speedup. Figure 8.10 depicts that the achieved speedup is increasing with the
increasing number of cores: 46 to 230. The figure depicts the speedups for six
different query set sizes: 10, 100, 1 K, 10 K, 100 K, and 1 M. Note that the speedups
for smaller computations get saturated for a smaller number of nodes compared to,
for example, for larger query set of 1 M. The speedup is measured by using the
following well-known formula.

Sp = Ts

Tp

Sp denotes the achieved speedup, while Ts denotes the execution time of the
sequential computation, and Tp denotes the execution time of parallel computation.

8.4.4 Relative Speedup

To further elaborate the speedup saturation for increasing query set sizes and the
number of cores, we now investigate relative speedup, the core-based speedup. The
gained relative speedup is quite stable for large number of queries (1 M), and it is
fluctuating for 100 K queries, as shown in Fig. 8.11. Whereas, for small queries
less than 10 K, the relative speedup is decreasing. The following formula is used to
calculate the relative speedup.

Relative speedup = Sp

NC

Sp and NC indicate the achieved speedup and the number of used cores, respectively.

Fig. 8.10 Achieved speedup with different number of cores

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 209

Fig. 8.11 Achieved relative speedup with different number of Aziz nodes

8.5 Conclusion

Smart applications and infrastructures are increasingly relying on graph computa-
tions to model real-life problems and process big data. The emergence of many
graph-based software, programming languages, graph databases, and benchmarks,
and their use in application domains provide the evidence for the increasing
popularity of graph-based computing. In this chapter, we have our earlier work
on single source shortest path computations of big data road network graphs using
Apache Spark. In our earlier work [33], we had used the US road network data
modelled as graphs and calculated shortest paths between two vertices over a
varying number of up to 368 compute cores. The experiments were performed on
the Aziz supercomputer (a former Top500 machine [34]). We had analyzed Spark’s
parallelization behavior by solving problems of varying graph sizes, i.e., various
states of the USA with up to over 23 million vertices and 58 million edges. We call
our system the Big Data Shortest Path Graph Computing (BDSPG) system.

In this chapter, we have focused on computing a set of large varying number of
shortest path queries on a (source, destination) vertex pair. The number of queries
used were 10, 100, 1 K, 10 K, 100 K, and 1 M, executed over up to 230 CPU cores.
We achieved good performance, and as expected, the speedup is dependent on both
the size of the data and the number of parallel nodes. In addition to the extended
results, we have provided a detailed literature on shortest path graph computations.
The system architecture for graph computing in Spark was explained with additional
details using the architecture depiction and elaborated algorithms.

Future work will look into improving algorithms for sequential shortest path
algorithm and its parallelization including data locality. There is a need for further
performance analysis of our proposed system. We wish to apply the BDSPG system
to the smart city case studies developed in [5, 6, 55].

210 Y. Arfat et al.

Acknowledgments The authors acknowledge with thanks the technical and financial support from
the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi
Arabia, under the grant number G-651-611-38. The experiments reported in this chapter were
performed on the Aziz supercomputer at King Abdulaziz University.

References

1. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing systems. Proc.
VLDB Endow. 8, 281–292 (2014)

2. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based
representations and techniques for image processing and image analysis. Pattern Recogn. 35,
639–650 (2002)

3. Ding, Y., Yan, S., Zhang, Y., Dai, W., Dong, L.: Predicting the attributes of social network users
using a graph-based machine learning method. Comput. Commun. 73, 3–11 (2016)

4. Khan, A., Uddin, S., Srinivasan, U.: Adapting graph theory and social network measures on
healthcare data. In: Proceedings of the Australasian Computer Science Week Multiconference
on - ACSW ‘16. pp. 1–7. ACM Press, New York, New York, USA (2016)

5. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

6. Mehmood, R., Graham, G.: Big Data Logistics: A health-care Transport Capacity Sharing
Model. In: Procedia Computer Science. pp. 1107–1114 (2015)

7. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.): Smart Societies, Infrastructure,
Technologies and Applications, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (LNICST), Volume 224. Springer Interna-
tional Publishing, Cham (2018)

8. El-Gorashi, T.E.H., Pranggono, B., Mehmood, R., Elmirghani, J.M.H.: A data mirroring
technique for SANs in a metro WDM sectioned ring. In: ONDM 2008 - 12th Conference on
Optical Network Design and Modelling (2008)

9. Ayres, G., Mehmood, R., Mitchell, K., Race, N.J.P.: Localization to enhance security and
services in Wi-Fi networks under privacy constraints. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 16. pp. 175–188. Springer (2009)

10. El-Gorashi, T.E.H., Pranggono, B., Mehmood, R., Elmirghani, J.M.H.: A mirroring strategy
for SANs in a metro WDM sectioned ring architecture under different traffic scenarios. J. Opt.
Commun. 29, 89–97 (2008)

11. Mehmood, R., Pranggono, B., El-Gorashi, T., Elmirghani, J.: Performance evaluation of a
metro WDM slotted ring network with san extension. In: Proceedings of the 7th IASTED
International Conferences on Wireless and Optical Communications, WOC 2007. pp. 231–236
(2007)

12. Mehmood, R., Alturki, R., Faisal, M.: A Scalable Provisioning and Routing Scheme for
Multimedia QoS over Ad Hoc Networks. (2009)

13. Mehmood, R., Alturki, R.: Video QoS analysis over wi-fi networks. Adv. Video Commun. over
Wirel. Networks. 439–480 (2013)

14. Alturki, R., Mehmood, R.: Cross-Layer Multimedia QoS Provisioning over Ad Hoc Networks.
Using Cross-Layer Tech. Commun. Syst. Tech. Appl. IGI Glob. Hershey, PA. 460–499 (2012)

15. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel
Comput. 26, 1519–1534 (2000)

16. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. Technical Report Number UCAM-CL-TR-650, Computer Laboratory, University of
Cambridge, Cambridge, UK (2005)

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 211

17. Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of
symbolic probabilistic model checking. In: DeGroot, D., Harrison, P. (eds.) Proceedings - IEEE
Computer Society’s Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, MASCOTS, pp. 123–130. IEEE, Volendam,
The Netherlands (2004)

18. Mehmood, R.: Disk-based Techniques for Efficient Solution of Large Markov Chains, PhD
Thesis, School of Computer Science, University of Birmingham, (2004)

19. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Technical report CSR-03-13, School of Computer Science,
University of Birmingham, Birmingham, UK (2013)

20. Eleliemy, A., Fayze, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on Parallel
Heterogeneous Architectures: Spin-image Algorithm on CPU and MIC. In: EUROSIM 2016,
The 9th Eurosim Congress on Modelling and Simulation. p. 6. Oulu, Finland (2016)

21. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability
of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013, pp. 201–210.
Springer International Publishing, Ingolstadt, Germany (2014)

22. Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analysis of big
graph data: current systems and open challenges. In: handbook of big data technologies. Pp.
457–505. Springer international publishing, Champions (2017)

23. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. In: ISMS 2010 - UKSim/AMSS 1st International Conference on
Intelligent Systems, Modelling and Simulation. pp. 431–436 (2010)

24. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud
computing for healthcare applications. In: 2016 IEEE Global Communications Conference,
GLOBECOM 2016 - Proceedings (2016)

25. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258–
32285 (2018)

26. Oh, S., Ha, J., Lee, K., Oh, S.: DegoViz: an interactive visualization tool for a differentially
expressed genes Heatmap and gene ontology graph. Appl. Sci. 7, 543 (2017)

27. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

28. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through Mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

29. Xin, R.S., Gonzalez, J.E., Franklin, M.J.: GraphX: A Resilient Distributed Graph System on
Spark

30. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: Graph
Processing in a Distributed Dataflow Framework

31. Apache Spark GraphX, https://spark.apache.org/graphx/
32. Apache Spark, https://spark.apache.org/
33. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United

States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp.
323–336. Springer, Cham (2018)

34. Aziz Supercomputer, Top500, https://www.top500.org/site/50585
35. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,

D.: Intelligent mobility systems: Some socio-technical challenges and opportunities. In:
Communications Infrastructure. Systems and Applications in Europe, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST 16. pp. 140–152 (2009)

https://spark.apache.org/graphx/
https://spark.apache.org/
https://www.top500.org/site/50585

212 Y. Arfat et al.

36. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality simula-
tions. In: 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
pp. 411–416 (2009)

37. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793–1799. ITS America, Beijing
(2007)

38. Ayres, G., Mehmood, R.: LocPriS: A security and privacy preserving location based services
development framework. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, Volume 6279, Part
4. pp. 566–575. Springer (2010)

39. Elmirghani, J.M.H., Badic, B., Li, Y., Liu, R., Mehmood, R., Wang, C., Xing, W., Garcia
Zuazola, I.J., Jones, S.: IRIS: An inteligent radio-fibre telematics system. In: Proceedings of
the 13th ITS World Congress, London, 8–12 October (2006)

40. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

41. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies
and Applications (SCITA 2017): Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp. 111–122.
Springer, Cham (2018)

42. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 98–110. Springer, Cham (2018)

43. Mehmood, R., Nekovee, M.: Vehicular Ad hoc and grid networks: Discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555–
1562. ITS America, Beijing (2007)

44. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad
hoc networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 59–74 (2013)

45. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: A two-pronged
approach. In: 7th IEEE International Symposium on Communication Systems, Networks and
Digital Signal Processing, CSNDSP 2010. pp. 401–405 (2010)

46. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0. In: Intelligent Transportation Systems – Problems and Perspectives,
Volume 32 of the series Studies in Systems, Decision and Control. pp. 3–35. Springer
International Publishing (2016)

47. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50–62 (2015)

48. Alam, F., Mehmood, R., Katib, I.: D2TFRS: An object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 155–168. Springer, Cham (2018)

49. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: 2011 11th International Conference on
ITS Telecommunications, ITST 2011. pp. 361–368. IEEE (2011)

50. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An
intelligent cloud based disaster management system for vehicular networks. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, Volume 7266. pp. 40–56. Springer, Vilnius, Lithuania (2012)

51. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM international workshop
on Wireless and mobile technologies for smart cities - WiMobCity ‘14. pp. 1–10. ACM Press,
New York, New York, USA (2014)

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 213

52. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673–678 (2014)

53. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: Transportation evacuation strategies
based on VANET disaster management system. Procedia Econ. Financ. 18, 352–360 (2014)

54. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 139–154 (2018)

55. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

56. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling Smarter Societies through Mobile Big Data Fogs and Clouds. In: Procedia Computer
Science (2017), 109, 1128

57. Quddus, M., Washington, S.: Shortest path and vehicle trajectory aided map-matching for low
frequency GPS data. Transp. Res. Part C Emerg. Technol. 55, 328–339 (2015)

58. Szucs, G.: Decision support for route search and optimum finding in transport networks under
uncertainty. J. Appl. Res. Technol. 13, 125–134 (2015)

59. Feng, L., Lv, Z., Guo, G., Song, H.: Pheromone based alternative route planning. Digit.
Commun. Networks. 2, 151–158 (2016)

60. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for a *. Int. J.
Geogr. Inf. Sci. 8816, (2017)

61. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A System for Large-Scale Graph Processing. Proc. 2010 ACM SIGMOD Int. Conf.
Manag. data. 135–145 (2010)

62. Yan, J., Tan, G., Mo, Z., Sun, N.: Graphine: programming graph-parallel computation of large
natural graphs for multicore clusters. IEEE Trans. Parallel Distrib. Syst. 27, 1647–1659 (2016)

63. Selim, H., Zhan, J.: Towards shortest path identification on large networks. J. Big Data. 3,
(2016)

64. Zhou, X., Chang, P., Chen, G.: An Efficient Graph Processing System. Asia-Pacific Web Conf.
LNCS. 401–412 (2014)

65. Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path in stochastic
vehicle routing: a cardinality minimization approach. IEEE Trans. Intell. Transp. Syst. 17,
1688–1702 (2016)

66. Hou U, L., Zhao, H.J., Yiu, M.L., Li, Y., Gong, Z.: Towards online shortest path computation.
IEEE Trans. Knowl. Data Eng. 26, 1012–1025 (2014)

67. Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid
vehicles. Transp. Res. Part B Methodol. 103, 111–135 (2017)

68. Hong, I., Murray, A.T., Rey, S.: Obstacle-avoiding shortest path derivation in a multicore
computing environment. Comput. Environ. Urban. Syst. 55, 1–10 (2016)

69. Mozes, S., Nussbaum, Y., Weimann, O.: Faster shortest paths in dense distance graphs, with
applications. Theor. Comput. Sci. 1, 1–25 (2014)

70. Abraham, I., Goldberg, A. V, Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest
Paths in Road Networks. Springer-Verlag Berlin Heidelb. 2011. 230–241 (2011)

71. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. Algorithms–
Esa 2005. 568–579 (2005)

72. Peng, S., Sankaranarayanan, J., Samet, H.: SPDO: High-throughput road distance computa-
tions on Spark using Distance Oracles. 2016 IEEE 32nd Int. Conf. Data Eng. ICDE 2016.
1239–1250 (2016)

73. Zhu, A.D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest Path and Distance Queries
on Road Networks: Towards Bridging Theory and Practice. 857–868 (2013)

74. Zheng, C.Y., Wang, J.: All-Pairs Shortest Paths in Spark

214 Y. Arfat et al.

75. Djidjev, H., Chapuis, G., Andonov, R., Thulasidasan, S., Lavenier, D.: All-pairs shortest path
algorithms for planar graph for GPU-accelerated clusters. J. Parallel Distrib. Comput. 85, 91–
103 (2015)

76. Aridhi, S., Lacomme, P., Ren, L., Vincent, B.: A MapReduce-based approach for shortest path
problem in large-scale networks. Eng. Appl. Artif. Intell. 41, 151–165 (2015)

77. Faro, A., Giordano, D.: Algorithms to find shortest and alternative paths in free flow and
congested traffic regimes. Transp. Res. Part C Emerg. Technol. 73, 24–28 (2016)

78. Kajdanowicz, T., Kazienko, P., Indyk, W.: Parallel processing of large graphs. Futur. Gener.
Comput. Syst. 32, 324–337 (2014)

79. Liu, X., Zhou, Y., Guan, X., Sun, X.: A feasible graph partition framework for random walks
implemented by parallel computing in big graph. Chinese Control Conf. CCC. 2015–Septe,
4986–4991 (2015)

80. Wang, Z., Chen, Q., Hou, B., Suo, B., Li, Z., Pan, W., Ives, Z.G.: Parallelizing maximal clique
and k-plex enumeration over graph data. J. Parallel Distrib. Comput. 106, 79–91 (2017)

81. Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M., Tran, K.: Knowledge discovery from
social graph data. Procedia Comput. Sci. 96, 682–691 (2016)

82. Laboshin, L.U., Lukashin, A.A., Zaborovsky, V.S.: The big data approach to collecting and
analyzing traffic data in large scale networks. Procedia Comput. Sci. 103, 536–542 (2017)

83. Liu, R., Li, X., Du, L., Zhi, S., Wei, M.: Parallel implementation of density peaks clustering
algorithm based on spark. Procedia Comput. Sci. 107, 442–447 (2017)

84. Aridhi, S., Mephu Nguifo, E.: Big graph mining: frameworks and techniques. Big Data Res. 6,
1–10 (2016)

85. Drosou, A., Kalamaras, I., Papadopoulos, S., Tzovaras, D.: An enhanced graph analytics
platform (GAP) providing insight in big network data. J. Innov. Digit. Ecosyst. 3, 83–97 (2016)

86. Zhao, Y., Yoshigoe, K., Xie, M., Zhou, S., Seker, R., Bian, J.: Evaluation and analysis of
distributed graph-parallel processing frameworks. J. Cyber Secur. Mobil. 3, 289–316 (2014)

87. Mohan, A., G, R.: A Review on Large Scale Graph Processing Using Big Data Based Parallel
Programming Models. Int. J. Intell. Syst. Appl. 9, 49–57 (2017)

88. Miller, J.A., Ramaswamy, L., Kochut, K.J., Fard, A.: Research Directions for Big Data Graph
Analytics. Proc. - 2015 IEEE Int. Congr. Big Data, BigData Congr. 2015. 785–794 (2015)

89. Chakaravarthy, V.T., Checconi, F., Petrini, F., Sabharwal, Y.: Scalable single source shortest
path algorithms for massively parallel systems. Proc. Int. Parallel Distrib. Process. Symp.
IPDPS. 28, 889–901 (2014)

90. Xia, Y., Tanase, I.G., Nai, L., Tan, W., Liu, Y., Crawford, J., Lin, C.: Explore Efficient Data
Organization for Large Scale Graph Analytics and Storage. Proc. 2014 IEEE BigData Conf.
942–951 (2014)

91. Zhang, M., Shen, F., Zhang, H., Xie, N., Yang, W.: Fast Graph Similarity Search via Locality
Sensitive Hashing. Adv. Multimed. Inf. Process. PCM 2015. 9315, 447–455 (2015)

92. Pollard, S., Norris, B.: A Comparison of Parallel Graph Processing Benchmarks. (2017)
93. GraphX | Apache Spark
94. DIMACS Implementation Challenge, http://www.dis.uniroma1.it/challenge9/download.shtml
95. Gephi - The Open Graph Viz Platform, https://gephi.org/

http://www.dis.uniroma1.it/challenge9/download.shtml
https://gephi.org/

Part II
Smart Healthcare

Chapter 9
A Survey of Methods and Tools for
Large-Scale DNA Mixture Profiling

Emad Alamoudi, Rashid Mehmood, Aiiad Albeshri, and Takashi Gojobori

9.1 Introduction

According to The American Heritage Medical Dictionary, DNA profiling is “the
identification and documentation of the structure of certain regions of a given DNA
molecule, used to determine the source of a DNA sample, to determine a child’s
paternity, to diagnose genetic disorders, or to incriminate or exonerate suspects of a
crime [1].” DNA profiling (also named DNA typing, DNA fingerprinting, or DNA
testing) which was first introduced in 1985 by Alec Jeffreys has changed the area
of forensic science significantly [2]. Dr. Jeffreys has found that there are several
regions in the human DNA that contain repeated DNA sequence. He found that these
DNA sequence areas may differ from one person to another. Dr. Jeffreys was able
to measure the variation in these DNA sequences by developing a unique identity
test called Restriction Fragment Length Polymorphism (RFLP). The repeated DNA
areas are called Variable Number of Tandem Repeats (VNTRs).

E. Alamoudi (�) · A. Albeshri
Department of Computer Science, Faculty of Computing and Information Technology (FCIT),
King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: ealamoodi0004@stu.kau.edu.sa; aaalbeshri@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

T. Gojobori
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
e-mail: Takashi.Gojobori@kaust.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_9

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_9&domain=pdf
mailto:ealamoodi0004@stu.kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
mailto:RMehmood@kau.edu.sa
mailto:Takashi.Gojobori@kaust.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_9

218 E. Alamoudi et al.

Fig. 9.1 DNA profile interpretation can have multiple usages, such as determine child’s father and
find a criminal among suspects

Today, DNA profiling is helping in many cases to identify an innocent from
guilty. Human Identity test can also be used in contexts such as missing people
investigation, parentage test, ancestry test, and disaster victim identification (see
Fig. 9.1).

The DNA typing is considered today to be the most useful tool in the hand of
law enforcement. Moreover, computer databases which contain DNA information
of criminals which was taken from crime scenes had helped to associate a crime to
an offender. Due to having a specific set of Short Tandem Repeat (STR) loci in these
massive databases, it is unlikely to see a new set of DNA markers to be introduced
shortly [2].

In order for a DNA sample to be processed, several steps should be consid-
ered [2]. First, obtaining the DNA from a biological source. Second, assessing
the amount of DNA recovered. Third, isolate the DNA from its cells by using
Polymerase Chain Reaction (PCR), which is a technique for copying specific DNA
areas. Finally, the STR alleles which have been generated from the previous step
will be examined. Figure 9.2 shows the steps used in DNA sample processing.

However, many difficulties may occur during the procedure of producing a
DNA profile that affects the analysis of the sample. One of these problems is
the stochastic effects, which arise during DNA extraction. Other challenges are
allele drop-out, PCR process, allele sharing, and PCR amplification artifacts. Such
difficulties hardened the accurate interpretation of the DNA profile [3].

The result of the DNA sample processing will be compared to other sample or
databases to check the similarity. If there is a match or “inclusion,” this indicates

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 219

1:

2:

3:

4:

Extraction of DNA from
biological samples

Amplification of DNA by
PCR using specific primers

Separation of DNA fragments
by size in a denaturing gel

Analysis of data by comparisons of
stained DNA bands of individuals
and probability calculation

Fig. 9.2 The needed steps for DNA sample processing

that both samples were taken from the same source. On the other hand, if there is no
match, the result would consider as “exclusion,” which means there is no biological
relation between the two samples [2]. A case report will be made by a forensic
specialist explaining the result and containing random match probability answering
the similarity question.

The Scientific Working Group on DNA Analysis Methods (SWGDAM) advise
forensic report to contain a prediction of the number of contributors to the mixture
that is under examination [3]. Usually, the number of contributors of a sample that
taken from a crime scene is unknown. Therefore, an analyst should estimate it
according to the electropherogram obtained. This assumption affects the final weight
of DNA evidence [3].

220 E. Alamoudi et al.

In this chapter, we provide an extended review of DNA profiling methods and
tools with a particular focus on their computational performance and accuracy. This
is an extended version of our earlier work [4]. We have added further elaborations on
the DNA profiling methods including DNA biology and genetics. Also, we discuss
different HPC systems, namely, cloud, clusters, GPUs, and FPGAs. A background
on parallel computing, MPI, OpenMP, and Java multithreading has been added.
Additional DNA profiling tools have been reviewed and further explanation on the
existing tools is provided. To the best of our knowledge, this is the first review work
on DNA profiling tools.

Faster interpretations of DNA mixtures with a large number of unknowns and
higher accuracies are expected to open up new frontiers for DNA profiling in
the smart societies era. In the coming years, the complete genome sequencing
technologies in a single or only a few cells will be easily available. These
technologies may change the situation of DNA profiling completely. In this case,
it is obvious to prepare appropriate statistical methods for that. It will be, therefore,
important to prepare the mathematical and statistical algorithms for complete-
genome-sequencing-based DNA profile. Emerging computational and big data
developments [5], along with Internet of Things (IoT) [6] and smart society
environments [7], will provide opportunities for new services related to DNA
profiling.

The rest of the chapter is organized as follows. Section 9.2 describes background
concepts related to this chapter including a background on DNA concepts, DNA
profiling, parallel and High-Performance Computing (HPC). Section 9.3 discusses
several methods for evaluating the DNA mixture statistically. Section 9.4 describes
a number of approaches that rely upon the calculation of likelihood ratio to interpret
DNA profile. We further discuss the importance of the Number of Contributors
(NoC) in profiling a DNA mixture in Sect. 9.5. Some implementations that estimate
the NoC was mentioned in the same section. Section 9.6 then illustrates notable
DNA profiling tools. We conclude and give an outlook for the future of DNA
profiling in Sect. 9.7.

9.2 Background Material

We now give a brief background of the various concepts and methods related to
DNA profiling. The list of topics covered are DNA biology and genetics, forensic
science, DNA mixture and its technologies, genetic markers, factors that increase the
complexity of DNA profiling, likelihood estimator, the use of HPC in bioinformatics
field, and HPC system and parallel frameworks.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 221

9.2.1 DNA Biology and Genetics

The basic unit of living species is the cell, which produces energy and raw materials.
To keep a cell operating, thousands of proteins are required. An individual body
usually contains 100 trillion cells [2]. All these cells come from a single cell called
zygote, which is formed from the merging of the mother’s egg and the father’s
sperm. All cells share the same genetic sequences. Inside the nucleus of the cell is
a chemical substance called DNA, which encodes protein construction data and cell
replication information.

DNA, or Deoxyribonucleic Acid, is acting like a blueprint for our bodies since
it contains all the required information for passing down genetic attributes to next
generations. The entire DNA of a cell is called a genome.

DNA serves two essential purposes: first, makes replication of itself; second,
handles information about protein producing instructions. Its alphabet contains only
four letters: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G) [2]. These
letters are known as nucleotides or bases. Different combination of these bases can
make the difference between humans and other species. The human body contains
around three billion nucleotides. Each nucleotide is linked to its complementary
base through hydrogen bonds that link the bases. The complementary base for
adenine is thymine, and it cannot pair up with either cytosine or guanine. On
the other hand, cytosine can only pair up with guanine. Moreover, there are three
hydrogen bonds that connect cytosine and guanine, and two bonds linking thymine
and adenine. Therefore, the C-G base pair is a bit stronger than the A-T ones [2].

DNA is composed of two twisted strands, or double helix, each of which comes
from both parent. The DNA is divided into chromosomes; each chromosome acts
like a container for the DNA molecule in a thread-like structure. A human genome
is made up of 46 chromosomes or 23 pairs of chromosomes. Out of these 23
pairs, 22 pairs are autosomal chromosomes and one pair of the chromosome is for
sex determination. Males will have X and Y chromosomes, whereas females will
have two X chromosomes. Autosomal chromosomes are frequently used in human
identity test [2], while the sex determination chromosome is usually used for sex
determination tests.

A cell is called haploid if it contains only one set of chromosomes, like gamete
cell (sperm and egg) However, if two sets of chromosomes do exist, a cell then
is called diploid [2]. Triploid and tetraploid refer to having three or four sets of
chromosomes, respectively.

A chromosome will have coding and noncoding areas: coding areas, or gene, are
the regions that have the essential information for protein construction for cells. A
gene size range between a few thousand and tens of thousands of base pairs [2]. A
one-to-one comparison between biological and printed terms is presented in Fig. 9.3.

222 E. Alamoudi et al.

A
Apple

Apple is a sweet,
edible fruit produced
by an apple tree.

AA
Letter

pp
Word

Paragraph

Page

Chapter

Book

Library

nucleotide

Short DNA
sequence

Gene

Chromosome

Nucleus

Cell

Body

Fig. 9.3 Comparison between printed and genetic terms

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 223

9.2.2 Forensic Science

Forensic DNA tests had a major influence on the evolution of the criminal justice
system. Yet, the advancement of new technologies is enabling forensic labs to
expand its capabilities and improved the sensitivity of the DNA interpretation.

Butler [8] thinks that this area would develop in the future in three main
areas; DNA technologies will become faster, the sensitivity of extracting relative
information will increase, and higher volume of data will be expected due to that
sensitive nature. He argued that STR will remain the dominant genetic marker.

According to Butler [8], key challenges in the forensic science field are the
subjectivity, inconsistency of the complex DNA mixture interpretations between
different laboratories and analysts, and the need for training forensic analyst to
enhance interpretation of DNA profiles.

9.2.3 DNA Mixture

A sample is called a DNA mixture when two or more individuals contribute
to it. Under some circumstances, the interpretation of a mixture could be more
challenging. Allele sharing is one of the factors that increase the difficulty of
interpreting a profile [2]. If we have a two-person mixture, then we expected to
observe only four alleles per locus. However, this rule may change if we have
alleles overlapping or if we have heterozygous individuals. If we have more than
four alleles per locus, then we might deal more than two people mixture [9].

DNA mixtures interpretation is a very demanding task [10]. Perez et al. define
the DNA mixtures as when two or more people contribute to the same sample.
They added that contributors include victims, perpetrators, or other people who
interact with the crime scene. Yet, the mixture can be complex when it became a
subject of allele drop-in or/and allele drop-out [11]. A detailed introduction to the
DNA analysis on the forensic science domain was given by [2, 12]. Butler gives
a historical overview explaining the evolution of the area. He also explains the
structure of the DNA and its fundamental component.

9.2.4 Technologies for DNA Profiling

The topic of DNA profiling was improved by the new advances in the technology.
Weedn and Foran [12] gave a general overview of the latest updates and challenges
in the forensic science domain related to DNA profiling. STR followed by PCR
amplification is one of the most used methods that regularly used in forensic
labs [12]. Other markers such as Single Nucleotide Polymorphisms (SNP), Y
chromosome STRs, and mitochondrial DNA are also considered. Weedn and Foran

224 E. Alamoudi et al.

argued that the forensic DNA typing is the most dominant method in the forensic
science laboratory. They mentioned that the forensic test usually performed with
taking into consideration the court challenges. Therefore, the forensic science
only uses a well-validated procedure, and all the laboratory processes should be
documented. The protocols should be ready to be defended against legal attacks.

New technologies had not only increased the quality of profiling the DNA
mixture, but also amplified artifacts such as stutter, variabilities, and baseline noise.
Monich et al. [13] had introduced a quantitative signal model which forms the
variability in a stutter, baseline noise, and allele peak height. They had also applied
the chi-squared and Kolmogorov-Smirnov (KS) tests on the true peak heights and
noise to test the fitness of various probability distribution classes. They argued that
the interpretation of signal measured from a DNA sample used to be accomplished
by using thresholding. Nonetheless, using thresholds during DNA analysis might
lead to losing valuable information. For that reason, new methods that don’t rely on
threshold were developed.

9.2.5 Genetic Markers

Many genetic markers are used for mixture analysis such as restriction fragment
length polymorphism (RFLP), STR, SNP, Y chromosomes, and mitochondrial DNA
(mtDNA). The number of contributors in a mixture can be identified by counting
the number of Y-STR alleles [14]. mtDNA can be used to determine the number of
contributors and also it can be used with degraded specimens.

RFLP The restriction fragment length polymorphism (RFLP) was a popular DNA
analysis during the 1980s [12]. RFLP was introduced by Dr. Edwin Southern in
1975. It involves too much work, yet it reveals only a little. Therefore, it was
replaced by other techniques which were more robust, sensitive, and affordable.

STR STR marker has been used for DNA mixture analysis for many years.
Available commercial tools offer limited STR markers, which give limited statistical
support for the inclusion of mixtures. Therefore, Y chromosome STR analysis has
been introduced to give extra means for the analysis of mixtures in forensic cases.

SNP SNP is a genetic variation among individuals. It appears throughout a person’s
DNA. In a diploid human genome, which consists of around six billion base
pairs, there are almost 15 million SNP sites [12]. However, this method has many
problems. For example, it cannot be used when the suspect is unknown. Moreover,
SNP is not compatible with STR databases, and establishing SNP database would
require extra work [14].

mtDNA Mitochondrial DNA analysis is used in cases when tissues are lacking a
nucleus. Since it is present at a high copy number in each cell, it has been used with
highly degraded specimens. In forensic labs, mtDNA is wildly used to analyze shed
hair that lack roots [12]. In addition, it can be used with fingernails and keratotic

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 225

Table 9.1 A comparison between DNA typing methods in forensic labs

DNA interpretation method PCR-based Date of introducing Usefulness

RFLP ✗ 1980s Regular caseworks
STR � 1980s Regular caseworks
SNP � 2000s Extremely degraded sample
Y-chromosome � 2000s Vaginal swabs in rape cases
mtDNA � 1990s Degraded sample and hairs

It was inspired by [12]

skin. However, forensic labs do not highly adopt mtDNA because it depends on
DNA sequencing, which is labor-intensive, slow, and expensive process [12].

The Spanish and Portuguese Working Group of the International Society for
Forensic Genetics (GEP-ISFG) made a considerable effort toward standardizing and
improving the accuracy of the mtDNA analysis.

Table 9.1 shows a comparison between some DAN profiling methods. The first
column describes the genetic marker. Column 2 specifies whether or not the genetic
maker is PCR-based. Column 3 states when the genetic marker starts to be active.
The last column shows how the genetic marker can be used.

9.2.6 Factors Increasing the Complexity of DNA Profiles

Different phenomena affect the complexity of interpreting a DNA profile. These
factors include: the number of contributors, peak heights, stutter, a major peak
masking, a stutter peak masking, population, drop-out probability, drop-in probabil-
ity, and analytical threshold. No software had yet considered all these factors in its
calculation [15]. Therefore, it is part of the challenges that face people who develop
DNA mixture analysis tools to select which factor to model in their implementation.

9.2.7 Likelihood Estimator

Likelihood ratio (LR) is the probability comparison between evidence under two
propositions [2]. One is called the prosecution hypothesis, which assumes that the
DNA collected from a crime scene goes to the suspect, whereas the other is the
defendant hypothesis, which assumes that the matches between the suspect and the
questioned sample happened coincidentally. The two considered propositions are
mutually exclusive.

The likelihood ratio is calculated by putting the prosecution hypothesis as a
numerator while putting the defendant hypothesis as a denominator [2]. The LR
equation is:

226 E. Alamoudi et al.

Table 9.2 The strength of
evidence according to LR
result [2]

Likelihood ratio Corresponding evidence

1 to 10 Limited support
10 to 100 Moderate support
100 to 1000 Moderate strong support
1000 to 10,000 Strong support
10,000 or greater Very strong support

LR = Hp/Hd (9.1)

If we assume that the suspect commits the crime (100% probability), which is
the prosecution hypothesis, then Hp = 1. Additionally, if the STR typing result
is heterozygous, the probability of the defendant hypothesis would be Hd = 2pq,
where p and q are the occurrences of the allele one and two for a locus in a relevant
population [2]. If we have a homozygous STR typing, then the probability of the
defendant hypothesis would be Hd = p2. Therefore, the equation would become:

LR = Hp/Hd = 1/2pq (9.2)

Butler [2] said that if the final result was greater than one, then this result would
support the prosecution side. While if it is less than one, then the defendant theory
would be in favor.

Typically, the LR will have a higher ratio if the STR genotype is rear because of
the reciprocal relationship. LR is the inverse of the locus estimated frequency [2].
Note that the likelihood ratio can be more complex depending on the mixture of the
evidence.

The strength of the result of the likelihood ratio in terms of the prosecution’s case
can be interpreted numerically as presented in Table 9.2. Column 1 represents the
LR value, while Column 2 is showing the corresponding strength of evidence.

9.2.8 HPC Systems

In this section, we will explain four different types of HPC systems: FPGAs, clouds,
GPUs, and clusters. Generally, FPGAs and GPU give better performance when
algorithms are well designed, but they are extremely resource-constrained.

Cloud Usually, cloud NGS tools are built on the basis of the MapReduce frame-
work [16]. Hadoop framework typically comes with MapReduce, and it distributes
the work among compute cloud. MapReduce approach guarantees fault tolerance,
load balancing, and redundancy. An example of a genome assembler that uses
MapReduce framework is [17]. Nevertheless, privacy is still an issue when talking
about cloud solutions.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 227

Clusters Cluster HPC implementation usually combines Message Passing Inter-
face (MPI) with another paradigm. MPI is used to distribute the task to other nodes
(inter-node). On the other hand, the other paradigm usually takes care of the shared
memory parallelism (intra-node). MPI + OpenMP is a common hybrid solution to
perform fine- and coarse-grained optimization.

Optimize HPC implementation are much better than Hadoop solutions because
fine-grained optimization is harder to achieve on Hadoop [16]. Consequently,
Apache Spark was introduced to avoid Hadoop drawbacks. Still, well-tuned HPC
implementation typically one order of magnitude faster than Apache Spark [16].
Apache Spark has the advantage of well-handling node failure and data replication.

A good future solution would combine HPC approaches and big data for
processing NGS data. Such an approach has been successfully applied in domains
such as machine learning [16].

GPU At its best performance, GPUs can give one order of magnitude better per-
formance than CPUs [16]. CUDA is a programming language for general purpose
applications runs at GPUs. Several NGS applications were successfully developed
such as genome assembly [18], error correction [19], and k-mer counting [20].

However, developing an application to run on GPUs using CUDA requires a steep
learning curve. It needs a deep understanding of GPUs architecture. As a result,
very few tools have been targeting GPUs. Nevertheless, the new effort to develop
highly optimized libraries such as NVBIO (https://developer.nvidia.com/nvbio) and
the availability of languages like OpenACC might boost the GPUs effort in life
science domain [16].

FPGAs FPGAs are chips that are able to be programmed that includes memory
blocks and logic gates that can be configured manually. The configuration process
usually is done through Verilog or VHDL programming languages [16]. FPGAs
offer a highly scalable solution for NGS data. Example of FPGA-based tools
includes FAssem assembler [21] and FADE tool for error correction [22]. Major
drawbacks of using FPGAs-based are the long development cycle, and they are
often not compatible to run on different FPGA generations. Yet, the new progress
on higher level programming languages like OpenCL has smooth the way for the
development of FPGAs-based solutions.

9.2.9 Parallel Frameworks

Parallel technologies are interesting on how to get the maximum benefit of the
multicore/many-core processors and networked computing resources.

Many architectures have been proposed to enhance the resource utilization,
namely, symmetric multiprocessor architecture (SMP), non-uniform memory access
architecture (NUMA), simultaneous multithreading architecture (SMT), single
instruction multiple data architecture (SIMD), and graphics processing unit (GPU).

https://developer.nvidia.com/nvbio

228 E. Alamoudi et al.

In addition, multiple parallel programming frameworks have been suggested such
as OpenMP, MPI, and MapReduce.

Various memory architectures exist, namely, shared memory, distributed mem-
ory, and hybrid memory architecture [23]. Shared memory systems enable all
processes within the system to share memory as global memory space. In distributed
memory systems, each processor has its own memory that cannot be reached by
others, and no global address is available. They communicate, and send and receive
data, through the network. Finally, hybrid memory systems combine both shared and
distributed memory architectures. In clusters of multi-core or many-core processors,
all processors within the machine shared their memory within each other; however,
different machines can communicate over the network.

MPI Message Passing Interface (MPI) is a library specification for message
passing model for distributed memory systems. It has multiple implementations
such as OpenMPI, MPICH, and GridMPI [23]. Each processor, when using MPI,
will have its own memory; moreover, it still can access other processors’ memory
using network communication. MPI offers point-to-point, from one processor to
another, and collective communication, from one or many processors to one or
many processors. MPI can send and receive message between processes in different
modes, such as block and non-block communication. The message size can be in
gigabytes [23]. MPI can run on many platforms like Windows, OS X, Linux, and
Solaris. Programs written with the help of MPI can run on a single machine or a
cluster of machines.

OpenMP OpenMP is an interface (API) for shared memory parallelism. It facili-
tates the programming process since it provides a set of directives for synchroniza-
tion, parallelization, and managing the shared memory among threads.

When compiling a software written using OpenMP, multithreaded programs will
be generated. Then, threads will share the memory address which will smooth the
communication among threads.

OpenMP helps software developers to build parallel programs without in-
depth knowledge of multithreading mechanism. Fine-Grained parallelism can be
maintained over the OpenMP directives. Multiple languages support OpenMP such
as C, C++, Fortran, Java, and it can run on multiple platforms like UNIX, LINUX,
and Windows.

Java Multithreading Java supports multithreading shared memory parallel pro-
gram language, which enables developing parallel software [24]. Multithreading
feature in Java allows the execution of more than one part of a program concurrently
to achieve better utilization of the computer resources. This can be achieved in Java
through two ways: (1) extend the thread class, (2) by using the runnable interface
[24]. One process can have multiple threads that share the same address space.
Thus, a synchronization mechanism is vital to ensure data protection. Java implicitly
maintains synchronization by using a lock for each object [24].

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 229

Java also provides a parallelization through distributed memory system by using
API called MPJ, MPI equivalent for Java. MPJ allows developing a parallel software
to run on a cluster system [25].

9.2.10 High-Performance Computing in Bioinformatics

Bioinformatics is a field that deals with massive data. Such data may require an
extended time frame to be processed. Therefore, high-performance computing can
help in shortening the time needed to finish the data processing. Perez et al. [10]
discuss how HPC can help in solving bioinformatics problems. Authors had agreed
that using advanced technologies had enabled remarkable discoveries in the medical
field. They discussed different HPC systems which are used in bioinformatics area
such as GPU computing. Graphics Processing Units (GPUs) are used to increase
the computational capabilities of a group of PCs at a lower price. Moreover,
they mentioned some HPC implementations in the bioinformatics field. These
applications include Virtual Screening, Parallel Processing of Microarray Data,
and Big Data Analytics and Network Models. In the end, authors had mentioned
some drawbacks in the current HPC domain such as the energy consumption which
can be overcome by using the virtualization concept, which enable sharing system
hardware among different users. Other problems are the total cost of ownership
and the high learning curve in upcoming programming models to influence their
computational power.

Memeti et al. [26] had analyzed a DNA sequence on a heterogeneous platform
that works with the Intel Xeon Phi coprocessor. These heterogeneous platforms
usually come with one or more Xeon Phi devices and one or two general purpose
CPUs. Researchers had introduced a parallel algorithm which can assign the
workload of DNA sequence analysis to the different Xeon devices and host general
purpose CPUs. This parallel implementation was aiming to reduce the overall
analysis time. They also introduced a machine learning method that can predict
the performance of the proposed algorithm on both the host and device. Finally,
they evaluated the performance of their proposed method using human and animals’
DNA on a platform that consists of an Intel Xeon Phi 7120p device with 61 core and
two 12-core Intel Xeon E5 CPUs.

Bell and Gray [27] had given an overview of the history of supercomputer
since the 1960s. Moreover, they tried to predict the future and how the next
trend would be. They illustrated 50 years of evaluation in the high-performance
computing domain. Authors argued that in 2001, there existed two major types of
architectures: clusters of scalar multiprocessors and clusters of Cray-style vector
supercomputers. They said that in the 1960s, Seymour Cray had proposed a parallel
instruction implementation using parallel and pipelined function units. In 1982,
Cray’s research had reached to the multiprocessor (XMP) structure which helped
to introduce the current supercomputer architecture. This architecture was sharing
10% of the market in 2001. However, a single node had reached its limit. So, to

230 E. Alamoudi et al.

go beyond that, a cluster architecture was proposed. In the 1980s, a cluster by
CMOS-based killer micros had overcome the single node by better performance,
scalability, and lower price. In 1993, NASA was looking for a supercomputer that
satisfies its need which was 1 Gflops workstation. To achieve that, a Beowulf project
was established which cost $40,000. In 2001, 28 Beowulfs were among the Top500
fastest supercomputers. In the end, authors had expected that there would be two
possible paths for supercomputers to evolve in the future. One is an application-
centric vector supercomputer. While the other concentrate on peta-scale datasets
where users can get access to data.

Diegoli et al. [28] had estimated the recombination rate among 15 X STR markers
by using data of genotype from 158 families and following earlier suggested a
likelihood-based method which allows for single-step mutation. The computational
challenges from the previous study were overcome by introducing a multi-core
parallelization on the HPC system. Authors had argued that X STR is useful in
forensic science due to a number of features such as their ease of haplotype inference
because of the male hemizygosity and their particular mode of inheritance. They
also added that few studies had systematically estimated the recombination rate
among X STRs. Nonetheless, none of these studies had been comprehensive as their
study.

To write an algorithm that can utilize an HPC system, a person should be
able to deal with parallel programming languages. However, when writing an
algorithm, different bugs may occur. Laguna et al. [29] had described the latest
updates in designing a saleable debugging tool. They argue that debugging a parallel
program is more difficult than debugging a serial one. Authors had focused on
three dynamic debugging methods in both parallel programs and MPI instructions.
The first dynamic approach is discovering scaling bugs, which helps to find bugs
that are latent at a small scale while manifesting themselves at a larger scale.
Vrisha is an example of this technique. Second, behavior-based debugging, this
technique is based on observing the behavior of the processor. This helps to reduce
the huge number of parallel processors into a small number of behavioral groups.
AutomaDeD framework is a simple model of task behavior that saves information
related to patterns and timing in each task’s control flow. The information allows the
developer to detect performance problems. Finally, software defects in MPI, MPI
library implementations have suffered from software bugs, especially when ported
to new machines. Many of these bugs are hard to find by average programmers.
FlowChecker is an example of software that can detect MPI bugs. In the end, authors
had focused their attention on three main problems that are still open in the domain
which are programmability challenges, performance bugs, and detecting silent data
corruptions.

In DNA profiling, the use of HPC has been limited. MPI has not been used. Most
of the parallel tools have been developed using Java threads (e.g., LRmix Studio,
CeesIt, and NOCIt), OpenMP (e.g., LikeLTD), and Snow parallel package in R (e.g.,
Kongoh and Euroformix). A distributed memory implementations of DNA profiling
methods have not been reported to date.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 231

9.3 DNA Profiling: General Methods

Several methods had been proposed to evaluate a DNA mixture statistically.
Likelihood ratio, the combined probability of inclusion/exclusion (CPI/CPE), and
a modified random match probability (mRMP) are some examples of these methods
[30]. In February 2000, the FBI’s DNA Advisory Board had strongly recommended
the first two methods to be used [2]. Moreover, in 2006, the International Society
of Forensic Genetics (ISFG) had emphasis on the value of likelihood ratio [30].
There are six steps to interpreting a DNA mixture which was first described by
Tim Clayton in 1998 [2]. First, we need to identify the existence of a mixture.
Second, the allele peaks should be selected. Third, we need to determine the possible
number of contributors. Fourth, compute an approximation of the ratio of the people
who contribute to the sample. Fifth, we need to calculate all potential genotype
combinations. Finally, a reference sample comparison should be made.

In the CPI approach, an equal weight is given to all possible genotype combina-
tions. Therefore, a lot of information is being wasted when using this approach
which makes it inefficient when working with distinct genotypes [30]. This
approach does not require prior knowledge of the number of contributors because it
is evaluating all genotypes’ combination based on the evidence profile [30].

The Random Match Probability (RMP), on the other hand, is usually used with
single-source samples; therefore, a modified random match probability (mRMP)
was proposed to deal with more single-source samples [30]. Unlike CPI, this
approach requires prior knowledge of the number of contributors in the mixture and
will not work well with low-level profiles. An example of two- and three-person
mixtures calculations using mRMP was described in [31].

According to Bille et al., LR is the most dominant method of evaluating a DNA
mixture. However, both mRMP and LR make use of the available information in the
sample where CPI does not tend to do so.

More detailed analysis of the three methods and their advantages and weaknesses
can be seen in Butler’s book “Advanced Topics in Forensic DNA Typing: Interpre-
tation” [30].

9.4 DNA Profiling Using Likelihood Ratio

LR is considered as the most appropriate and powerful approach for calculating
the weight of DNA evidence. There are three methods using LR that are widely
described in the literature. The first method is the binary model, which is the sim-
plest yet it cannot handle complex mixture [32]. Second, the semi-continuous, which
is the most used by scientists since it is easy to understand and explain, but it still
neglects relevant information [33]. Finally, the continuous which overcomes most
of the previous models’ shortcomings. It utilizes most of the available information
provided by the sample, yet it is harder to be accepted and explained in a courtroom

http://www.sciencedirect.com/science/book/9780124052130

232 E. Alamoudi et al.

[32]. These models may involve a human or computerized process depending on the
complexity of the approach. Kelly et al. [33] had made a comparison between these
three approaches which are suggested by the DNA Commission of the ISFG.

Many frameworks that interpret complex DNA profiles rely on the likelihood
ratios approach such as [11]. Gill et al. had mentioned a set of guidelines which
can help to evaluate any complex mixture. In addition, they provide some features
for any model that might deal with complex interpretation such as the ability to
incorporate several contributors. They emphasize the fact that the calculation must
be provided in a fast manner.

Most of the likelihood ratio-based analysis require the number of contributors
to be given before the analysis start. For instance, [34–39] rely on the number of
contributors on their analysis.

However, others had tried to avoid using it in their interpretation, such as [40,
41]. Russell et al. had developed a semi-continuous method that can calculate
the likelihood ratios without previous knowledge about the contributor’s number.
Their simple model has the abilities to calculate the statistical weight to inclusions.
They had also provided a limit test which will guarantee the absence of any false
inclusion by chance. To test the proposed unconstructed likelihood ratio (UCLR)
model, researchers had collected a set of DNA mixtures with known contributors
in different ratios. The result shows good performance on three people mixture.
However, the performance becomes worse as the number of contributors increased.

9.5 Estimating Number of Contributors for DNA Profiling

Today, most applications that interpreted the DNA profile do require the number of
contributors to be available as input [40]. Different methods have been developed
to conclude the number of contributors in a DNA mixture. One of these methods
is called Maximum Allele Count (MAC). This approach calculates the minimum
number of contributors who might contribute to a sample by counting the observed
alleles at each locus. Nevertheless, this method may not be valid to work in a
complex mixture because of the complexity of allele sharing [42]. New methods
that were proposed do not only rely on the number of observed alleles, but also on
the frequencies of observing the allele in the population. Biedermann et al. [43] had
developed a probabilistic method that performs a Bayesian network to conclude the
number of contributors in DNA mixture. The new approach performs better than
MAC with a degraded DNA sample and a higher number of contributors. Maximum
Likelihood Estimator (MLE) is another method used to estimate the number of
contributors. It tries to maximize the likelihood value of the DNA profile [44].

Haned et al. [45] had compared MAC and MLE. The efficiency of both methods
had been analyzed and compared for identifying two to five-person mixtures. Three
different situations were used to test both methods. First, when all contributors
belong to the same population and when allele occurrences are known. Second,
when allele occurrences are not known, which may occur in population subdivision.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 233

Finally, a condition of partial profiles and how it could affect the estimation
accuracy. MAC method is used to set the lower bound that can clarify the number
of alleles in a mixture. Haned et al. believe that MAC is unreliable since there is
a chance for allele sharing between people which called the masking effect. The
result of the comparison supports the use of MLE when a mixture contains more
than three contributors. However, when three or two people contribute to a mixture,
MAC would perform better.

However, as the number of contributors increased the risk would increase. Haned
et al. [46] had analyzed the risk of dealing with three-, four-, and five-person
mixture. They have done that by comparing the gold standard LR to the casework
LR. The gold standard LR is when the number of contributors and genotypes are
known which means the availability of all required information to compute LR per
contributor. Authors showed the result and the implied thoughts of analyzing high
order mixture in the forensic domain. Haned et al. argued that the low template DNA
mixture of three-, four-, and five-person are common in forensic casework, yet it is
hard to interpret.

Many methods are used today to evaluate the number of contributors in a sample
such as [3, 9, 10, 47]. Perez et al. had created a strategy that could find out the
number of contributors from two to four-person mixtures for both low template
and high template DNA amounts. The proposed strategy helped to provide a useful
tool to differentiate between high and low template two-, three-, and four-person
mixtures. The four-person mixtures show some difficulties due to the allele sharing
phenomena.

Egeland et al. focus on calculating the number of contributors in a mixture by
maximizing the likelihood. The proposed approach is based on single SNP. The
method tried to answer two questions: Is it a mixture? And if yes, then how many
markers are required and how they should be selected. One of the recommendations
that was driven from the result was regarding the number of markers needed to
calculate the number of contributors which is 100 markers.

A typical algorithm for finding the best allele pair in a locus to interpret a
mixture is presented in Algorithm 9.1. Such a process is essential when calculating
the number of contributors in a DNA profile. Moreover, it is considered as a
performance bottleneck.

On the other hand, Marciano and Adelman [48] proposed a machine learning
approach that can estimate the number of contributors in a mixture. Their approach
can handle mixtures with up to four contributors. The testing phase of this method
shows a good result. The model first will be trained on a set of data, then it will
be able to guess the number of contributors in DNA sample correctly. According
to Marciano and Adelman, such a problem perfectly fits the domain of machine
learning. The abundance of human mixture data can help to train the model well.

Yet, the machine learning approach suffers from several drawbacks. First, the
quality of the result depends on the trained data. Uncorrected data may harm the
system and lead to faulty results. Second, a training phase is always required before
using the system. Such a phase is time-consuming and it might need to be redone
many times. Third, the accuracy of the system starts to shape up after working

234 E. Alamoudi et al.

Algorithm 9.1 A typical algorithm for calculating locus’s best allele pair that gives the best
interpretation which helps in finding the number of unknowns in a DNA mixture (algorithm
inspired by NOCIT tool [3])

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 235

large data of human DNA mixtures. Such data may not be easily available. Finally,
as the maximum number of contributors increase, the accuracy of the prediction
will be declined. Authors said that they didn’t go up to five contributors because
misclassification of five contributors may occur on four contributors mixture [48].

9.6 Software Tools for DNA Profiling

A number of tools are available that implement various DNA profiling methods.
These include DNA MIX [49], Euroformix [34], LRmix [36], LRmix Studio [32,
50], TrueAllele [35], LikeLTD [38], Lab Retriever [15], CeesIt [37], NOCIt [3],
DNAMixture [51], Forensim [52], MixtureCalc, Mixture Analysis [53], FamLink
kinship [54], DNA Mixture Separator [55], and STRmix [56]. We will review the
most notable tools in this section. At the end of this section, we will provide a
comparison between the selected tools.

9.6.1 DNA Mix

There are three versions of this software, and all of them are open sources. The third
version is the most notable and powerful one among the three, and is based on [49].
This version is written in Java and is appropriate for complex mixtures as well as
single-contributor stains. The software will ask for the database, stains, genotype,
and hypothesis to be inputted.

On the latest version, dependency of all alleles was carried by contributors to the
DNA mixture. All contributors will be assumed to belong to the same population,
which will increase the effect that is being considered. Authors of DNA MIX did
ignore the probability of null alleles. Thus, only homozygous contributors contribute
a single allele to a profile. A simple GUI has been developed in this version
(Fig. 9.4).

9.6.2 LRmix Studio

LRmix Studio is a software designed to interpret complex DNA profiles. It was built
on its previous version, which called LRmix; however, LRmix Studio is much faster
and more flexible. It can measure the probative value of any (autosomal STR-based)
DNA profile [50]. It can handle uncertainty in the DNA mixture from the allelic
drop-out and drop-in. Moreover, it is written in Java, and it is open source under the
GPLv3 license (Fig. 9.5).

http://people.math.aau.dk/~tvede/dna/mixsep.php

236 E. Alamoudi et al.

Fig. 9.4 The user interface for DNAMIX v3.2

Fig. 9.5 The user interface for LRmix Studio v2.1.3

This software is following the semi-continuous model of interpreting DNA
profiles. Both the prosecution and the defense hypotheses assume that contributors
are unrelated. Yet, under the defense hypothesis, contributors can be related to an
unknown contributor.

If there are missing data in the reference profiles, LRmix Studio tool will be
unable to work properly. Moreover, it cannot deconvolute DNA profile because it
does not explicitly include the information of the peak height.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 237

9.6.3 TrueAllele

TrueAllele is a software that computes DNA interpretation automatically. It can
infer genetic profiles from all sorts of DNA samples. The software applies the
continuous model; however, no open source version of the code is available. It was
written in Matlab. Analysis followed by a comparison of TrueAllele is presented on
[35] using real information that has been taken from actual cases.

TrueAllele can separate complex DNA profiles into its component genotypes. For
each locus for a given contributor, the genotype and the uncertainty of that genotype
are labeled using the probability distribution over the potentials of the allele pair.

TrueAllele applies the MCMC (Markov Chain Monte Carlo) statistical search to
sample from the joint posterior probability distribution. For each locus in every
contributor, the posterior probability for the genotype is going to be calculated.
Thus, to remove the examination bias, the genotype will be inferred exclusively
from the evidence data [57].

9.6.4 Lab Retriever

Lab Retriever [15] is a free software developed to estimate the likelihood ratios
that combine a probability of drop-out. It was built on the top of another software
called LikeLTD which was written in R language. The front end of the software was
developed using CSS, JavaScript, Python, and HTML. On the back end, authors
rewrote the code using C++ to acquire more speed. The software uses the semi-
continuous model. It computes likelihood ratios for up to four unknown contributors
to a DNA sample.

Lab Retriever uses dynamic programming to speed up the computation, which
will avoid iterating over all genotypes. This tool estimates the likelihood ratio and
compares the evidence under various hypotheses, while still allow for drop-out of
alleles.

In order for the system to work, the user must specify as an input the following:
The detected alleles in the evidence profile, the suspect genotype, the genotype of
other contributors, the considered hypotheses, and the database of allele frequency.

Moreover, several parameters should be specified such as the probability of drop-
in and drop-out and the co-ancestry adjustment value (Figs. 9.6 and 9.7).

9.6.5 CeesIt

CeesIt (CEES: computational evaluation of evidentiary signal) [37] is a method
that integrates two features of the continuous approach to calculate the LR and
its distribution which are conditioned on the defense hypothesis and the linked

238 E. Alamoudi et al.

Fig. 9.6 The user interface for Lab Retriever v2.2.1

Fig. 9.7 Lab Retrievers v2.2.1 interface in action

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 239

Table 9.3 The running time
of CeesIt under different
number of contributors

Number of contributors Average time (minutes)

1 7
2 50
3 140

p-value. It combines stutter, drop-out, and noise in its calculation. For calibration
information, it uses a single-source sample with known genotypes. It calculates the
LR for a selected Person of Interest (POI) on a questioned sample, together with the
p-value and LR distribution.

To assess the performance of CeesIt, it was tested using 303 sample files ranging
between one and three contributors, and the mass of the sample was ranging
between 0.016 and 1 ng. The analysis results show a dependency on the number of
contributors. Therefore, a good estimation for the number is critical for an accurate
result.

The running time of the tool depends on the number of contributors. As the
number increased, the time complexity will increase too. See Table 9.3 for more
details on CeesIt running time.

Multithreaded is already implemented on CeesIt to increase resource utilization
to acquire more speedup.

The software was written in Java and is available as a (.jar) file. An in-depth
analysis of the software was presented on [37].

9.6.6 LikeLTD

LikeLTD is a software that is used for computing the likelihood of DNA profile
evidence, including complex mixtures. It has been written in R. However, since the
fifth version, the computation-intensive areas in code have been rewritten in C to be
executed in parallel. This software applies the continuous model of calculating the
Likelihood ratio. These areas include the computation of genotype combinations for
unknown contributors, computing allele doses for each genotype combination, dose
adjustments for relatedness, heterozygosity, drop-out, and power.

The runtime of the peak height model is much slower than the runtime of
the discrete model, yet it yields a higher evidence weight (see Table 9.4). The
time complexity of the peak height model scales up with the number of unknown
contributors, the number of observed peaks, and the number of replicates in the

240 E. Alamoudi et al.

Table 9.4 The runtime of
calculating the Weight of
Evidence (WoE) using the
two different models for the
laboratory case [38]

Hypothesis Model WOE Runtime (Minutes)

Q/X + K1 + U1 Discrete 2.3 14
Peak height 8.2 23

Q/X + U1 + U2 Discrete 0.5 38
Peak height 7.8 200

profile. Other parameters that increase the runtime are the modeling double-stutter
or over-stutter. Parallelism was achieved on the C++ code by using a shared
memory parallelism (OpenMP).

The runtime of the algorithms was recorded using a node with eight Intel Core I7
processors (3.1 Hgz per core) and with 15 Gb of RAM. The result is presented
in Table 9.4. The first column describes the hypothesis that was applied. Two
hypotheses were used. Q is a contributor to the crime scene profile under the Hp
while X is the unknown individual under Hd that assumes to contribute to the profile
instead of Q. The hypotheses may specify the number of K which represent the
known contributors whereas U is the unknown contributors. The second column
indicates the used model whether it uses discrete or peak height. The last two
columns are showing the weight of evidence and the corresponding running time.

9.6.7 DNAMixture

DNAMixture is a statistical model that calculates and analyzes DNA sample for
one or more contributors [51]. It uses Bayesian network representation to speed
up the computation and allow analysis of mixtures which contain several unknown
contributors. Alleles observing process is objective, and it does not depend on a
subjective preprocessing of the DNA profile [58]. Such a preprocessing can lead
to more errors. The model has been tested on some real case and the results were
sensible and robust [58].

This software has been written in R and follows the “fully continuous” statistical
model. Its authors claim to develop all methodology within a framework for
consistent analysis and transparency. The application does not have a graphical
user interface, which requires a basic experience in R. DNAMixture relies on
an R package called “Hugin.” Hugin is used to compute the Bayesian network.
DNAMixture is not parallelized, yet the Hugin package is.

The computational complexity of the model depends on several factors. The
running time of DNAMixture when there are five unknown contributors took 3 h
on a regular desktop machine [58]. Authors claim that they perform analysis on
several cases which takes 35 min; when they analyze the same cases using another
tool called TrueAllele [57], the runtime goes to 36 h [58].

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 241

9.6.8 Kongoh

Kongoh [59] is an open-source application based on the continuous model for
interpreting DNA sample. This model deals with artifacts and allelic drop-out ratio
on its calculation, but it doesn’t consider allele drop-in probability. It performs
a Monte Carlo simulation based on the probability distributions of the given
parameters. Next, gamma distributions will be used to approximate the peak heights
that were generated by the simulation.

The number of contributors is not required to be given as an input. Kongoh can
determine the number of contributors when it ranges from one to four. However, the
accuracy will be affected when the number of contributors increases to reach 33%
when the number of contributors becomes four. Kongoh can handle sample with a
small amount of DNA, and also with degraded DNA samples. The software has a
graphical user interface. R language was used to write Kongoh and its source code
is available online.

On a standard desktop computer, one mixture might take around 10 h when
hypothesizing 1–4 contributors. However, when hypothesizing 1–3 contributors,
the runtime will decrease remarkably to a few minutes [59]. Its performance was
compared to EuroForMix (version 1.7) and LRmix Studio (version 2.1.3) in [59]. In
the future, authors of Kongoh are looking to use newer STR typing kits with higher
sensitivity.

9.6.9 EuroForMix

EuroForMix is a software based on the fully continuous approach to estimate STR
DNA profiles from a complex DNA sample of contributors with artifacts. It is
available as an open source. EuroForMix was written in R language. Nonetheless,
the likelihood function was written in C++ to speed up the computation. The
software introduces a parallel implementation, since the v0.5.0, using snow R
package. The parallel implementation will only be considered when a number of
unknowns are at least 3 (not performed yet for database searching or non-contributor
simulation). A number of processes will be similar to the number of random start
points required in the optimization.

Euroformix requires a significant amount of computational time when the
number of unknown contributors is four or more. Table 9.5 gives an approximation
time complexity for each number of unknown contributors. From the table, it is
clear that the time consumed when we have four unknown contributors was too
much. Column 1 describes the number of contributors while Column 2 gives the
corresponding time taken.

242 E. Alamoudi et al.

Table 9.5 An approximate
overview of the time taken to
calculate the LR depend on
the number of unknown
contributors [60]

Number of unknown contributors Runtime

1 1 s
2 1 min
3 30 min
4 24 h

Table 9.6 The runtime using
a different maximum number
of contributors [3]

Number of contributors Time range (Mode)
1 <1 min (0.2 min)
2 15–30 min (17 min)
3 30 min–1.5 h (1 h)
4 1–5 h (4 h)
5 5–20 h (14 h)

9.6.10 NOCIt

NOCIt [3] analyzes the DNA sample to calculate the number of contributors in a
mixture. Java programming language was used to write the software. It determines
the number of contributors (from 1 to 5). NOCIt can only interpret an autosomal
STRs data which are independent of each other. Moreover, the software is not
developed to deal with a stutter.

The execution time of [3] depends on the maximum number of contributors, the
number of loci/alleles considered and the processing speed of the computer. It is also
dependent on whether multiple runs of NOCIt are occurring at the same time, i.e.,
two NOCIt interfaces are open at once and running two separate samples. Table 9.6
provides the runtime of NOCIt. The first column gives the number of contributors,
whereas the second column describes the range of time taken to analyze that number.
The result was collected from a dual-core laptop with Intel

®
CoreTM i5-3380 CPU

@ 2.9 GHz (Fig. 9.8).

9.6.11 STRmix

STRmix is a probabilistic genotyping application which performs the continuous
model of interpreting the DNA profile. The DNA profile interpretation is based
on a Markov Chain Monte Carlo (MCMC) sampling model [39]. It calculates the
likelihood ratio which is the probability of the DNA evidence under two hypotheses,
defense and prosecution hypotheses.

It was built to interpret single and mixed DNA profiles. Moreover, it follows
the SWGDAM recommendations. It utilizes information that extracts from a DNA
sample, such as peak height, to calculate the probability of a DNA profile for all
possible genotype combinations. The software considers aspects such as allele drop-
in, allele drop-out, and stutter. The software has been written in Java, and it’s only
available for purchase.

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 243

Fig. 9.8 The user interface
for NOCIt v15

Moretti et al. [39] had tested STRmix and they argued that it can be used to
interpret single-source profiles and mixtures of two, three, four, and five persons.

9.6.12 A Comparison of the DNA Profiling Tools

A general comparison between the selected tools is presented in Table 9.7. The
first column gives the names of the software. Columns 2–8 provide information
about various features of the software. Column 2 gives information on whether
the software has a GUI or not. Column 3 and 4 are illustrating if the selected
software considers the phenomena of drop-in and stutter on its interpretation.
Column 5 describes the model that used to calculate LR. The sixth column describes
the programming language that used to build the selected software. Column 7
indicates the availability of source code. The last column describes the used parallel
framework. Note that the table is missing some information due to either the lack
of resource for some software or because of the inability to access the software’s
source code.

A timeline that shows the history of introduction of the compared tools is
presented in Fig. 9.9.

9.7 Conclusion

Interpreting DNA mixture is a common practice in forensic science domain. It is a
complicated process that requires an extended period of time. We gave an overview
of the DNA profiling field. A historical background, along with its application

244 E. Alamoudi et al.

Table 9.7 A general comparison between the review softwares

GUI Drop-in Stutter
Calculation
model Language

Source
Code Parallelism

LRmix studio [15,
32, 50]

Yes Yes – Semi-
continuous

Java Yes Java
multithreading

TrueAllele [34, 35] Yes Yes Yes Continuous Matlab No –
DNAMIX V.3 [49] Yes – – – Java Yes No
Euroformix [34] Yes Yes Yes Continuous R, C++ Yes Snow package
CeesIt [37] Yes Yes Yes Continuous Java No Java

multithreading
NOCIt [3] Yes Yes Yes Continuous Java No Java

multithreading
DNAMixtures [51] No Yes Yes Continuous R Yes No
Kongoh [59, 61] Yes No Yes Continuous R Yes Snow package
LikeLTD [38] No Yes Yes Continuous R, C Yes OpenMP
Lab Retriever [15] Yes Yes – Semi-

continuous
C++ Yes No

STRmix [39, 56] Yes Yes Yes Continuous Java No –

STRmix
 LikeLTD

2012

NOCIt
LabRetriever
Euroformix

 2015

CeesIt
2016

TrueAllele
1999

DNAMIX
2004

DNAMixtures
2014

Kongoh
2017

LRmix studio
2013

Fig. 9.9 DNA mixture analysis tools introduced over the time. This timeline describes the year of
introduction of each tool

was mentioned. We, then, discuss the needed steps to sample a DNA mixture and
what are the required technologies. After that, we reviewed the literature based
on their classification into describing DNA profiling in general. We focus later on
approaches that follow the Likelihood Ratio model. We also reviewed the various
tools and compared their performance and accuracy. This is an extended version of
our earlier work [4].

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 245

In the end, we would suggest the use of Euroformix and LikeLTD for DNA
profiling since they are already performing parallelism. They both utilize most of the
available information in the DNA sample because they follow the continuous model
for calculating the LR value. The source code for the two software is available for
assessment and modification. However, Euroformix provides a GUI which gives it
a slight advantage over LikeLTD for users who have no technological expertise.

A frequent necessity to apply these tests might raise the need to speed up
the runtime of such analysis. The computational complexity has been the major
deterring factor holding the area advancements and applications. An improvement
would give a chance to interpret mixtures with a larger number of unknowns and
within a shorter time frame. The investigation of the relevant literature reveals
that the current approaches for parallelization of DNA profiling rely on shared
memory parallelization. A distributed implementation is needed to speed up the
computations allowing for the use of a large number of cores and processors.
This is our ongoing research, which will be reported in the near future. Faster
interpretations of DNA mixtures with a large number of unknowns and higher
accuracies are expected to open up new frontiers for DNA profiling in the smart
societies era.

In the coming years, the complete genome sequencing technologies in a single
or only a few cells will be easily available. These technologies may change
the situation of DNA profiling completely. In this case, it is obvious to prepare
appropriate statistical methods for that. It will be, therefore, important to prepare
the mathematical and statistical algorithms for complete-genome-sequencing-based
DNA profile. High-performance computing will play a key role in speeding up DNA
profiling methods, particularly those HPC techniques which exploit domain-specific
data and algorithmic patterns [62], system heterogeneity (e.g., disks for space,
and accelerators for speed) for its advantage [63], and virtual organization models
(similar to grids [64]) for information sharing across organizational boundaries.
Hierarchical system structures will be needed to localize and optimize data and
computations [65]. Internet of Things (IoT) would be integrated in smart city
systems to create innovative services [7] and deal with big data-related challenges
[6]. Mobile, fog, and cloud computing [5, 66–68] will enable dynamic system
environments, seamlessly connecting users and systems.

Acknowledgments The work carried out in this chapter is supported by the HPC Center at the
King Abdulaziz University.

References

1. The American Heritage medical dictionary. Houghton Mifflin Co., Boston (2007)
2. Butler, J.M.: Fundamentals of Forensic DNA Typing. Academic Press/Elsevier (2010)
3. Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S.: NOCIt: a computational method to

infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci.
Int. Genet. 16, 172–180 (2015)

246 E. Alamoudi et al.

4. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST. pp. 216–231. Springer, Cham (2018)

5. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through Mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

6. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

7. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

8. Butler, J.M.: The future of forensic DNA analysis. Philos. Trans. R. Soc. Lond. Ser. B Biol.
Sci. 370, 577–579 (2015)

9. Paoletti, D.R., Krane, D.E., Raymer, M.L., Doom, T.E.: Inferring the number of contributors
to mixed DNA profiles. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 113–122 (2012)

10. Perez, J., Mitchell, A.A., Ducasse, N., Tamariz, J., Caragine, T.: Estimating the number of
contributors to two-, three-, and four-person mixtures containing DNA in high template and
low template amounts. Croat. Med. J. 52, 314–326 (2011)

11. Gill, P., Haned, H.: A new methodological framework to interpret complex DNA profiles using
likelihood ratios. Forensic Sci. Int. Genet. 7, 251–263 (2013)

12. Weedn, V.W., Foran, D.R.: Forensic DNA typing. In: Molecular pathology in clinical practice.
pp. 793–810. Springer International Publishing, Champions (2016)

13. Monich, U.J., Grgicak, C., Cadambe, V., Wu, J.Y., Wellner, G., Duffy, K., Medard, M.: A signal
model for forensic DNA mixtures. In: 2014 48th Asilomar Conference on Signals, Systems and
Computers. pp. 429–433. IEEE (2014)

14. Tao, R., Wang, S., Zhang, J., Zhang, J., Yang, Z., Sheng, X., Hou, Y., Zhang, S., Li,
C.: Separation/extraction, detection, and interpretation of DNA mixtures in forensic science
(review)

15. Inman, K., Rudin, N., Cheng, K., Robinson, C., Kirschner, A., Inman-Semerau, L., Lohmueller,
K.E.: Lab retriever: a software tool for calculating likelihood ratios incorporating a probability
of drop-out for forensic DNA profiles. BMC Bioinformatics. 16, 298 (2015)

16. Schmidt, B., Hildebrandt, A.: Next-generation sequencing: big data meets high performance
computing. Drug Discov. Today. 22, 712–717 (2017)

17. Chang, Y.-J., Chen, C.-C., Chen, C.-L., Ho, J.-M.: A de novo next generation genomic
sequence assembler based on string graph and MapReduce cloud computing framework. BMC
Genomics. 13 Suppl 7, S28 (2012)

18. Li, D., Liu, C.-M., Luo, R., Sadakane, K., Lam, T.-W.: MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
Bioinformatics. 31, 1674–1676 (2015)

19. Liu, Y., Schmidt, B., Maskell, D.L.: DecGPU: distributed error correction on massively parallel
graphics processing units using CUDA and MPI. BMC Bioinformatics. 12, 85 (2011)

20. Erbert, M., Rechner, S., Müller-Hannemann, M.: Gerbil: a fast and memory-efficient k-mer
counter with GPU-support. Algorithms Mol. Biol. 12, 9 (2017)

21. Varma, B.S.C., Paul, K., Balakrishnan, M., Lavenier, D.: FAssem: FPGA Based Acceleration
of De Novo Genome Assembly. In: 2013 IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines. pp. 173–176. IEEE (2013)

22. Ramachandran, A., Heo, Y., Hwu, W.M., Ma, J., Chen, D.: FPGA accelerated
DNA error correction, https://iwe.pure.elsevier.com/en/publications/fpga-accelerated-dna-
error-correction, (2015)

23. Kang, S.J., Lee, S.Y., Lee, K.M.: Performance comparison of OpenMP, MPI, and MapReduce
in practical problems. Adv. Multimed. 2015, 1–9 (2015)

24. Hamidi, B., Hamidi, L.: Synchronization Possibilities and Features in Java, vol. 1, p. 75 (2015)
25. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like message passing for

Java. Concurr. Pract. Exp. 12, 1019–1038 (2000)

https://iwe.pure.elsevier.com/en/publications/fpga-accelerated-dna-error-correction

9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 247

26. Memeti, S., Pllana, S.: A machine learning approach for accelerating DNA sequence analysis.
Int. J. High Perform. Comput. Appl. 1–17

27. Bell, G., Gray, J.: What’ S Next in Computing ? 45, 91–95 (2002)
28. Diegoli, T.M., Rohde, H., Borowski, S., Krawczak, M., Coble, M.D., Nothnagel, M.: Genetic

mapping of 15 human X chromosomal forensic short tandem repeat (STR) loci by means of
multi-core parallelization. Forensic Sci. Int. Genet. 25, 39 (2016)

29. Laguna, I., Ahn, D.H., De Supinski, B.R., Gamblin, T., Lee, G.L., Schulz, M., Bagchi,
S., Kulkarni, M., Zhou, B., Chen, Z., Qin, F.: Debugging high-performance computing
applications at massive scales. Commun. ACM. 58, 72–81 (2015)

30. Butler, J.M.: Advanced topics in forensic DNA typing: interpretation
31. Bille, T., Bright, J.-A., Buckleton, J.: Application of random match probability calculations to

mixed STR profiles. J. Forensic Sci. 58, 474–485 (2013)
32. Garofano, P., Caneparo, D., D’Amico, G., Vincenti, M., Alladio, E.: An alternative application

of the consensus method to DNA typing interpretation for low template-DNA mixtures.
Forensic Sci. Int. Genet. Suppl. Ser. 5, e422–e424 (2015)

33. Kelly, H., Bright, J.-A., Buckleton, J.S., Curran, J.M.: A comparison of statistical models for
the analysis of complex forensic DNA profiles. Sci. Justice. 54, 66–70 (2014)

34. Bleka, Ø., Storvik, G., Gill, P.: EuroForMix: an open source software based on a continuous
model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic
Sci. Int. Genet. 21, 35 (2016)

35. Perlin, M.W., Dormer, K., Hornyak, J., Schiermeier-Wood, L., Greenspoon, S.: TrueAllele
casework on Virginia DNA mixture evidence: computer and manual interpretation in 72
reported criminal cases. PLoS One. 9, e92837 (2014)

36. Gill, P., Haned, H., Eduardoff, M., Santos, C., Phillips, C., Parson, W.: The Open-source
software LRmix can be used to analyse SNP mixtures. Forensic Sci. Int. Genet. Suppl. Ser.
5, e50 (2015)

37. Swaminathan, H., Garg, A., Grgicak, C.M., Medard, M., Lun, D.S.: CEESIt: a computational
tool for the interpretation of STR mixtures. Forensic Sci. Int. Genet. 22, 149–160 (2016)

38. Balding, D.J., Steele, C.: The likeLTD software: an illustrative analysis, explanation of the
model, results of performance tests and version history. UCL Genet. Inst. 1, 1–49 (2014)

39. Moretti, T.R., Just, R.S., Kehl, S.C., Willis, L.E., Buckleton, J.S., Bright, J.-A., Taylor, D.A.,
Onorato, A.J.: Internal validation of STRmix™ for the interpretation of single source and
mixed DNA profiles. Forensic Sci. Int. Genet. 29, 126–144 (2017)

40. Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evidence without
specifying the number of contributors. Forensic Sci. Int. Genet. 13, 269–280 (2014)

41. Russell, D., Christensen, W., Lindsey, T.: A simple unconstrained semi-continuous model for
calculating likelihood ratios for complex DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser.
5, e37–e38 (2015)

42. Paoletti, D.R., Doom, T.E., Krane, C.M., Raymer, M.L., Krane, D.E.: Empirical analysis of the
STR profiles resulting from conceptual mixtures. J. Forensic Sci. 50, JFS2004475–JFS2004476
(2005)

43. Biedermann, A., Bozza, S., Konis, K., Taroni, F.: Inference about the number of contributors
to a DNA mixture: comparative analyses of a Bayesian network approach and the maximum
allele count method. Forensic Sci. Int. Genet. 6, 689–696 (2012)

44. Haned, H., Pène, L., Sauvage, F., Pontier, D.: The predictive value of the maximum likelihood
estimator of the number of contributors to a DNA mixture. Forensic Sci. Int. Genet. 5, 281–284
(2011)

45. Haned, H., Pène, L., Lobry, J.R., Dufour, A.B., Pontier, D.: Estimating the number of contribu-
tors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele
count? J. Forensic Sci. 56, 23–28 (2011)

46. Haned, H., Benschop, C.C.G., Gill, P.D., Sijen, T.: Complex DNA mixture analysis in a
forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci.
Int. Genet. 16, 17–25 (2015)

248 E. Alamoudi et al.

47. Egeland, T., Dalen, I., Mostad, P.F.: Estimating the number of contributors to a DNA profile.
Int. J. Legal Med. 117, 271–275 (2003)

48. Marciano, M.A., Adelman, J.D.: PACE: probabilistic assessment for contributor estimation—
a machine learning-based assessment of the number of contributors in DNA mixtures. Forensic
Sci. Int. Genet. 27, 82–91 (2017)

49. Curran, J.M., Triggs, C.M., Buckleton, J., Weir, B.S.: Interpreting DNA mixtures in structured
populations. J. Forensic Sci. 44, 987–995 (1999)

50. Haned, H., De Jong, J.: LRmix Studio 2.1 user manual. (2016)
51. Graversen, T.: Statistical and Computational Methodology for the Analysis of Forensic

DNA Mixtures with Artefacts, https://ora.ox.ac.uk/objects/uuid:4c3bfc88-25e7-4c5b-968f-
10a35f5b82b0, (2014)

52. Forensim: An open-source initiative for the evaluation of statistical methods in forensic
genetics. Forensic Sci. Int. Genet. 5, 265–268 (2011)

53. Gill, P., Sparkes, R., Pinchin, R., Clayton, T., Whitaker, J., Buckleton, J.: Interpreting simple
STR mixtures using allele peak areas. Forensic Sci. Int. 91, 41–53 (1998)

54. Kling, D., Egeland, T., Tillmar, A.O.: FamLink – a user friendly software for linkage
calculations in family genetics. Forensic Sci. Int. Genet. 6, 616–620 (2012)

55. Tvedebrink, T., Eriksen, P.S., Mogensen, H.S., Morling, N.: Evaluating the weight of evidence
by using quantitative short tandem repeat data in DNA mixtures. J. R. Stat. Soc. Ser. C Applied
Stat. 59, 855–874 (2010)

56. Developmental validation of STRmix™, expert software for the interpretation of forensic DNA
profiles. Forensic Sci. Int. Genet. 23, 226–239 (2016)

57. Perlin, M.W., Hornyak, J.M., Sugimoto, G., Miller, K.W.: TrueAllele genotype identification
on DNA mixtures containing up to five unknown contributors*, vol. 60, p. 857 (2015)

58. Cowell, R.G., Graversen, T., Lauritzen, S.L., Mortera, J.: Analysis of forensic DNA mixtures
with artefacts. J. R. Stat. Soc. Ser. C Applied Stat., 64. 1–48 (2015)

59. Manabe, S., Morimoto, C., Hamano, Y., Fujimoto, S., Tamaki, K.: Development and validation
of open-source software for DNA mixture interpretation based on a quantitative continuous
model. PLoS One. 12, e0188183 (2017)

60. Bleka, Ø.: An introduction to EuroForMix (v1.8). 2016, 1–59 (2016)
61. Manabe, S.: Kongoh version 1.0.1 User Manual. 1–12 (2017)
62. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation

systems. Comput. Lab. Univ. 22 (2005)
63. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Validation of

Stochastic Systems. pp. 230–255. Springer, Berlin, (2004)
64. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance in

healthcare organisations. In: 2010 International Conference on Intelligent Systems, Modelling
and Simulation. pp. 431–436. IEEE (2010)

65. Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive
debugging. In: The 6th IEEE/ACM International Workshop on Grid Computing, 2005. p. 8
pp. IEEE (2005)

66. Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and
big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)

67. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-Based Mobile Cloud
Computing for Healthcare Applications. In: 2016 IEEE Global Communications Conference
(GLOBECOM). pp. 1–6. IEEE (2016)

68. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: A personalized ubiq-
uitous cloud and edge-enabled networked healthcare system for smart cities, https://
ieeexplore.ieee.org/document/8382164/, (2018)

https://ora.ox.ac.uk/objects/uuid:4c3bfc88-25e7-4c5b-968f-10a35f5b82b0
https://ieeexplore.ieee.org/document/8382164/

Chapter 10
An Architecture to Improve the Security
of Cloud Computing in the Healthcare
Sector

Saleh M. Altowaijri

10.1 Introduction

Cloud technology is a widely adopted technology in the present era. This technology
has given new life to all business organizations. It is also used in the healthcare
sector and is increasing business flexibility in medical organizations. Flexibility,
pay-as-you-go, cost effectiveness, greater efficiency, and agility are some of the
benefits of this technology. While there are many advantages, there are also some
risks, particularly with regard to the security of data in the cloud, which is the most
challenging issue at all times. In cloud computing this has became more problematic
because the actual data are stored in another location. So, provision of security for
the data in the cloud is a tedious task for cloud computing organizations. We are
talking here only about the healthcare cloud.

At present the healthcare sector requires creation of an environment that reduces
time-consuming efforts and other costly operations to obtain a patient’s complete
medical records and uniformly integrate this heterogeneous collection of medical
data to deliver them to the healthcare system. Electronic health records (EHRs)
have been widely adopted to enable healthcare providers and patients to create,
manage, and access healthcare information from any place and at any time. Cloud
services provide the necessary infrastructure at lower cost and better quality.
Cloud computing, when used in the healthcare sector, reduces the cost of storing,
processing, and updating, with improved efficiency and quality. But the security
of data in the cloud is not satisfactory today. The EHR consists of images of the
patient’s records, which are highly confidential. EHRs in healthcare include scan

S. M. Altowaijri (�)
Faculty of Computing and Information Technology, Northern Border University,
Rafha, Kingdom of Saudi Arabia
e-mail: Saltowaijri@nbu.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_10

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_10&domain=pdf
mailto:Saltowaijri@nbu.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_10

250 S. M. Altowaijri

images, DNA reports, x-rays, etc., which are considered the patient’s private data.
Provision of security for a large volume of data with high efficiency is required. Data
in the healthcare cloud are in an encrypted form. These data are very important and
an attractive target for cybercriminals. Many researchers have proposed architecture
to secure the healthcare cloud, and many techniques for securing the data in the
cloud have been investigated. These researchers are both industry experts and
academicians. Here, we present some of the researchers’ previous work.

Kim et al. have presented a trusted model for efficient reconfiguration and
allocation of computing resources, depending upon the user’s request [1]. Trust
calculations are made to achieve reliability. A collaborative trust model of firewall-
through based on cloud computing has been proposed by Yang et al. [2]. A protocol
to establish trust and confidentiality while accessing data has been proposed by
Ahmed et al. [3]. Brodkin [4] has recognized seven security risks that are essential
to consider before enterprises make decisions regarding transformation into a cloud
computing model. Cloud computing as an approach introduces new risks, influences
others, and magnifies some, according to Chen and Zhao [5]. These risks and their
effect on security risks and vulnerabilities have been explained by Grobauer [6].

In earlier work, Mehmood and colleagues looked at the use of grid and cloud
computing in healthcare [7, 8], transport [9–11], and distance learning [12]. In this
chapter, we discuss security issues in the healthcare cloud and propose architecture
to secure data in the healthcare cloud.

Section 10.2 of the chapter gives an overview of cloud computing, cloud
architecture, and the advantages of cloud computing. Section 10.3 discusses the
great benefits that the use of cloud computing can bring to healthcare organizations.
Sections 10.4, 10.5, and 10.6 discuss cloud computing security, methods of cloud
security, and security threats in the healthcare cloud, respectively. Section 10.7
describes the background to secure healthcare cloud architecture and reviews the
relevant literature. Section 10.8 introduces the proposed secured architecture for the
healthcare cloud and the results of using it. Section 10.9 concludes the chapter.

10.2 Cloud Computing: An Overview

Cloud computing is the spread of computing services such as servers, storage,
databases, networking, software, machines and more devices over the internet,
which is known as “the cloud.” Those organizations who offer these services are
called cloud providers and normally request money for cloud computing services on
the basis of their usage, similarly to how electricity or water are paid for at home.
Figure 10.1 illustrates a typical cloud, which is accessed through various devices
and infrastructure.

10 An Architecture to Improve the Security of Cloud Computing in the. . . 251

Fig. 10.1 Cloud architecture

10.2.1 Types of Cloud Services: IaaS, PaaS, and SaaS

Cloud computing services are divided into three categories: infrastructure-as-
a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS).
These are like a computing stack, because they are created on top of one another
and look like a stack. The following is a brief introduction to each type. Figure 10.2
depicts these three service categories.

(a) Infrastructure-as-a-service (IaaS): This is the most basic category of cloud
computing. By IaaS, we mean the information technology (IT) infrastructure
such as servers, virtual machines (VMs), storage, networks, operating systems,
etc., from a cloud service provider on a pay-as-you-go basis [13].

(b) Platform-as-a-service (PaaS): This refers to cloud computing services that
provide an on-demand environment for developing, testing, delivering, and
managing software built applications. PaaS is considered to make it easier
for developers to rapidly develop web or mobile apps, without thinking about
managing the original infrastructure of servers, storage, networks, and VMs
needed for development.

(c) Software-as-a-service (SaaS): This is a technique for providing software appli-
cations over the internet, on demand and typically on a pay-as-you-go basis. In
using SaaS, cloud providers host the infrastructure and platform by using the
internet, which can be connected to by using web browsers.

252 S. M. Altowaijri

Fig. 10.2 Cloud computing overview

10.2.2 Advantages of Cloud Computing

The healthcare sector is switching to cloud computing instead of traditional
IT solutions. Its main reasons are to manage dynamic needs for computational
resources, scalability of human resources, high infrastructure management costs,
and increases in demands for collaboration, multitenancy, and ubiquitous access.
To overcome all of these issues, cloud computing offers the simplest and best
solutions with cost effectiveness. These solutions are on-demand services, broad
network access, resource pooling, measured service, and elasticity. These services
are favorable, and their costs and maintenance requirements are easy for both clients
and organizations to bear [14, 15].

Hence, cloud computing is a big move to uplift anyone’s business. Let us think
about IT resources when there was no cloud computing, so we can easily understand
benefits of cloud computing. Why is cloud computing so popular?

Here, we give some common answers to these questions, by which we can easily
understand why organizations are turning to cloud computing services. The reasons
are:

1. Cost effectiveness: Cloud computing reduces the principal costs of buying
hardware and software, and the costs of managing and running an on-site data
center, i.e., a clusters of servers, round-the-clock electricity for light and cooling,
IT personnel for setting up the infrastructure, and many more costs.

10 An Architecture to Improve the Security of Cloud Computing in the. . . 253

2. Velocity: Most cloud computing services provide personal service on demand, so
that even large volumes of data can be provisioned in seconds, generally in just
a few clicks, giving businesses a lot of ease and taking the stress off capability
planning [13].

3. Global scaling (regions): The advantages of cloud computing services include
the ability to scale elastically. In the cloud, that means providing the required IT
resources such as servers, computing control database, storage and networking
when they are needed and from the right regional location.

4. Enhanced productivity: On-site data centers typically require a lot of “racking
and stack” hardware setup, software patching, and other sustained IT manage-
ment tasks. Cloud computing removes the requirement for many of these odd
jobs so that IT teams can use their time to achieve more significant business
objectives [13].

5. Better performance: The biggest cloud computing services run on a universal
network of protected data centers, which are frequently upgraded to the latest
generation of fast and well-organized computing hardware. This offer several
advantages over a single business data center, including compact network latency
for application and greater economy of scale.

10.3 Cloud Computing and Healthcare

Trends in healthcare organizations have major impacts on health IT systems. There
is a huge escalation in demand for healthcare services because of population
increases and the increasing prevalence rates of chronic diseases. Moreover, there
are capital pressures stemming from the requirement to do extra work and good-
quality work with lesser and more costly resources and also reduced income.
Expectations for improved results, good-quality treatment, and more value from
the healthcare services that are provided raise the requirements for point-of-care
access to medical data, and parallel evolution and adoption of mobile devices,
by both medical staff and patients, are increasing the need for IT systems to
become customized. Also, the major increase in digitization of health records—
including greater acceptance of electronic medical records (EMRs), electronic
health records (EHRs), and personal health records (PHRs), and the growing
frequency of digital outputs from scanning and monitoring machines, such as
magnetic resonance imaging (MRI) scanners and bedside monitors and infusers—
provide more capacious and mixed digital data to take advantage of the possible
advantages of cloud solutions. Healthcare provider systems deploying cloud-based
computing and cloud services reap various benefits in contrast to those using
domestic client–server systems, including financial, and functional advantages. The
financial profit of cloud computing can be major, since cloud computing offers
cost flexibility and the possibility of cost savings. Heavy asset expenses can be
avoided because IT assets are acquired on demand as needed and paid for as
operating expenditure. Also, the cost of the workforce required to organize and

254 S. M. Altowaijri

maintain IT assets is built into the cost of cloud computing, so the need for further
healthcare supplier–trained IT staff and the associated costs may be decreased
when cloud services are used for IaaS and PaaS platforms, and even more so
for SaaS solutions, where the cloud service provider takes on the major share of
the work. From an operational viewpoint, cloud services offer elasticity and the
ability to adjust to demand quickly. Cloud services can propose better security and
privacy for health data and health systems. Cloud service provider data centers are
normally very safe and well secured against stranger and insider threats by use of
administrative, physical, and technical methods implemented and maintained by
expert professional staff. Cloud services can offer sophisticated security controls,
including data encryption and fine-grained access controls and access logging.
Medical systems created by using cloud services can give web access to information,
avoiding the necessity to save information on consumer devices. The requirement
for limited IT security skills within the healthcare sector is also minimized. Cloud
service providers normally function on such a level that they have all of the required
IT skills, with the range of those skills being spread across many customers.
Healthcare functionality can be improved by cloud-based healthcare IT systems
that propose the possibility of broad interoperability and integration. Healthcare
cloud services are internet based and usually use normal protocols; thus, connecting
them to other systems and applications is typically simple, although EHR/EMR
vendor contractual and scientific impediments continue to present a challenge. The
key to sharing information simply and securely is complex potential, and cloud
services are good enablers for this. Cloud services also maintain fast progress and
improvements, particularly for mobile and internet of things (IoT) devices, thus
meeting the demands imposed on healthcare IT systems by these new and rapidly
advancing technologies. Cloud services can enable remote ways into applications
and data via the internet through use of wired and wireless systems to enable
access at any time from anywhere that internet connectivity can be established.
Also, cloud services present the right to use to a much enhanced ecosystem of
healthcare suppliers, financiers, life science entities, and IT solution buddies, all
of which raise the potential for a wide variety of services to healthcare provider
industries. The main difference between traditional IT and cloud services is the way
of sharing responsibilities. In traditional IT, the IT organization is responsible for
almost everything. With cloud services, responsibility is shared between the cloud
service provider and the healthcare organization as the cloud service customer [16].
Perhaps the greatest functional advantage of healthcare cloud services is the wide
range of new capabilities that they are able to propose. These services offer the
chance to extend the capability on hand to health organization employees, in order
to apply better ways of working and to offer new services to patients. Complicated
analytical capability can be brought to bear to achieve better patient-specific and
population-based appraisal and organization [17].

10 An Architecture to Improve the Security of Cloud Computing in the. . . 255

10.4 Cloud Computing Security

Nowadays, people are very conscious about their health; this is also the biggest
business in the world. People can pay a lot of money to doctors and hospitals to
save their lives. From the business point of view, this is a business whose demise
will never occur. Before the availability of technology, the hospital was the only
medium for provision of healthcare, but nowadays the scene has changed. Most
people have adopted these services as a business, and healthcare is now provided
online. This has become possible only because of cloud computing. With the help
of cloud computing, companies are changing their ways of providing services, e.g.,
by offering online consultations with doctors or online clinics and pharmacies, with
impacts on the quality of service delivery and the cost of these services. To manage
these changes, two forces are applied: the first is to fulfill the business imperative to
cut costs, and the second is to improve the quality of healthcare services. In the past
10 years, a large number of hospital IT departments have started to use good backup
and disaster recovery (DR) tools to keep their systems and data safe and recoverable
in the event of a system failure. Hospital users have always been assured that their
IT staff can promise a system uptime of 99.9%. However, with the increasing use
of cloud services for data protection purposes, IT must adjust to the new reality of
cloud-based DR options. For this, they use DRaaS (disaster-recovery-as-a-service)
[13].

The appearance of cloud computing technology with major advantages is one of
the present key challenges. This is a new prototyping technology based on “pay-on-
demand” for the use of information and communications technology (ICT) [18]. The
National Institute of Standards and Technology (NIST) in the USA has focused on
three models of cloud computing: SaaS, PaaS, and IaaS [19]. In healthcare cloud
computing for internal communications, an extensive number of computers and
servers are dedicated to meeting the requirements of the medical care business.
Healthcare services can be delivered to users (patients or physicians) through an
internet connection [20].

First, there is SaaS, where the cloud service provider provides access to particular
software functions, such as table processing or email. The cloud service provider
also manages any software upgrades and fixes protection problems. In PaaS,
clients may have remotely accessible computing control and can run their personal
applications. However, maintenance is the responsibility of the cloud providers.
Finally, IaaS is a latent option. In this scenario, customers may have remotely
accessible computing control, are able to run some of their own applications, and are
charged for resolution of any maintenance problems. There are many advantages to
using the healthcare cloud, such as allowing enclosed entities to store information
off-site. Moreover, if employees need to work remotely or move from one location
to another, healthcare cloud options provide them with the liberty to do so while still
being able to access important and critical information [21, 22].

256 S. M. Altowaijri

Additionally, this can assist organizations to reduce their operating or storage
costs, update services, and devote more resources to maintenance of software,
platforms, or infrastructure.

Also, it is important to note that the [US] Health Insurance Portability and
Accountability Act (HIPAA) compilation rule requires patient data to be well
protected, regardless of where it is stored. Organizations that are working as
contractor firm and do not necessarily analyze the data on a normal basis must
adhere to HIPAA rules. This particular system records every access attempt by the
username and include the date, time, relationship to the patient, etc. Still, more
research work is required in this field to increase the security of patient data and
users’ trust levels [16, 23].

Cloud computing has some major security issues. Because they have only limited
cybersecurity resources, many healthcare service providers have become vulnerable
to various attacks and have attracted cybercriminals [24]. Cloud computing has a
similar name to internet computing. How safe are our data? Data security is the
biggest concern in cloud computing. Reliability, authentication, availability, and
integrity are different aspects of data security. Reliability is related to trust in
computing. How we can trust cloud computing when we are not there? A person
should not share his or her data over the cloud if he or she is not comfortable
with the internet. Besides reliability there are many other security concerns in
cloud computing, such as authenticity, data locality, licensing security, and physical
damage. In the next section we discuss some of these security issues with their
previously proposed solutions. Here, we define the major security concerns for any
type of computing [25].

1. Authentication: Authentication is the process of confirming the truth about an
entity or a piece of data. Authenticity is a phenomenon that allows users to use
particular services.

2. Confidentiality: Confidentiality means a set of rules that restrict access to some
information to certain individuals.

3. Integrity: Integrity in terms of cloud security is the assurance that only authorized
or authenticated users can access or modify the data.

4. Availability: Availability, in the context of a computer system, means the ability
to access data, information, or resources in an appropriate format. It must be
ensured by the storage, which may be local or at an off-site facility.

5. Nonrepudiation: This means that neither the sender nor the receiver can deny the
validity of the data or information.

The above are the major security concerns in any type of computing. All issues
related to cloud computing refer to one of the above security concerns. In cloud
computing there are three components: SaaS, PaaS, and IaaS.

10 An Architecture to Improve the Security of Cloud Computing in the. . . 257

10.5 Methods of Cloud Security

On one side, the job of cybercriminals is to steal confidential data. On the other
side, researchers and security experts propose the architecture needed to make data
secure in the cloud.

Multitenant Platform This healthcare cloud platform has been published in a
paper by Oh et al. [13]. This healthcare SaaS platform (HSP) provides an easy-
to-use, cloud-based, modular EHR system. In this architecture, the functional
and software analysis of an HSP has been designed in a layered architecture.
Exterior systems can interface with the HSP by using the Simple Object Access
Protocol (SOAP) and Representational State Transfer/JavaScript Object Notation
(REST/JSON). The multitenancy model of the HSP is designed as a shared database,
with a different schema for each tenant through a single application, although
healthcare data can be physically located in the cloud or at a hospital, depending
on regulations. The Consumer Directed Services (CDS) services are categorized
into rule-based services for medications, alert registration services, and knowledge
services. The above process of multitenant architecture is depicted in Fig. 10.3.

How to protect the data Protection of critical patient information and medical
records is one of the most basic duties of the healthcare industry and one of the most
firmly regulated. To defend data as they move in and out of the cloud requires data

Fig. 10.3 Multitenant storage model

258 S. M. Altowaijri

encryption, which makes the data unusable if they are compromised. It also demands
safe communication connections, which limit browser access and encrypt content as
it is moved over the network and throughout the cloud. However, data encryption
based on the Advanced Encryption Standard (AES) algorithm is very compute
intensive. This type of software-based encryption relies on compute-intensive
algorithms that can impact the performance of the computing network, particularly
when used pervasively to protect the massive volumes of information that pass to
and from the cloud. Traditional encryption solutions can create computing logjams
due to high performance overheads, making them less than optimal for protecting
cloud data traffic. Intel has worked to mitigate these performance penalties [26].

How to provide security against unauthorized access Realizing cloud com-
puting advantages while meeting stringent requirements for data security and
compliance requires hardening of the underlying platform, including the hardware,
software, and process methodologies. Better securing of both server and client
platforms helps safeguard cloud infrastructures, and better management of identities
and access control points at the network edges helps ensure that only authorized
users can enter the cloud. With malware attacks now moving beyond software to
target the platform, organizations face new risks from rootkit and other low-level
exploits that can infect system components such as hypervisors and the BIOS to
quickly spread throughout the cloud environment.

Protection of identity in the cloud Protection of identity on a cloud platform
begins with managing who has access to it. Identity protection devices (such as
Intel

®
IPT) provide a simple way for healthcare organizations to validate that

legitimate employees or approved users are allowed in from a trusted device. IPT
offers token generation incorporated into the hardware, which gets rid of the need
for (and cost of) a different physical token. It also confirm transactions and protects
against malware [27]. Figure 10.4 explains the extra security layer in the healthcare
cloud. Any user who wants to access a cloud application first needs to enter his or
her credentials (username and password) on the identity protection system and then
receives a one-time password (OTP) on his or her registered cell phone or email
address. Only if both are correct will the identity protection system allow that user
to access the cloud.

Protection of API keys Application programming interfaces (APIs) are the fun-
damental method used for exposing cloud applications to third parties and mobile
services. A hacker tries to break these API keys for unauthorized access. Many
researchers and scientists have suggested algorithms to protect API keys [28].

10.6 Security Threats in the Healthcare Cloud

Healthcare organizations have always struggled with information security. Because
the healthcare industry stores massive volumes of critical data and is subject to
strict compliance rules, it must make security its primary concern. Therefore, the

10 An Architecture to Improve the Security of Cloud Computing in the. . . 259

Fig. 10.4 Identify protection
in the cloud

industry has long been doubtful about new technologies that could put data at risk,
including cloud technologies. Cloud computing poses many risks to data security,
data confidentiality, and overheads because of the huge volumes of data involved.
Data processed in the cloud are highly confidential, such as business records,
patient records, military records, etc. Therefore, proper encryption standards and
architecture must be applied to secure sensitive data against tampering [29].

However, everything changes, and the healthcare industry is changing as well.
In January 2018, an important decision was made: the National Health Service
(NHS)—the largest healthcare provider in the UK—officially approved the use of
US-based cloud providers to store patient data. According to the 2018 Netwrix
Cloud Security In-Depth Report, 84% of healthcare organizations already store data
in the cloud, but the NHS is the first state healthcare organization to give the go
ahead [4, 22, 29].

Here, we discuss some of the major security risks in the healthcare cloud.

Malware and viruses Malware and viruses are being developed continuously, and
ransomware (a type of malware that, once it has taken over the computer, threatens
harm) is one of the most frequent sources of attack. According to one report, a
company is targeted by ransomware every 40 seconds. Malware—such as NotPetya,
WannaCry, and Locky, in particular—has spread among healthcare providers. Even
the NHS itself has been targeted by WannaCry: the attack resulted in disruptions
at 37% of NHS organizations and cancellation of many appointments and surgeries.
Although the NHS did not pay the ransom, it did incur extra costs to cover cancelled
appointments, hire IT consultants, and restore data and systems after the attack,
besides incurring damage to its reputation. Unsurprisingly, nearly 61% of healthcare
organizations are reportedly worried about malware and the threat of unauthorized
access [30].

260 S. M. Altowaijri

Identity protection and access management Unauthorized access is the biggest
challenge in all types of cloud computing. This is a major security issue throughout
the world and a huge challenge in healthcare cloud computing. Many researchers
and IT industry developers are working to resolve this issue. According to a
Netwrix survey in January 2018, 68% of unauthorized access security concerns
are related to the healthcare cloud. This is the biggest security issue. Existing
organizational identification and authentication frameworks may not expand into
the cloud, and if these are based on unique username–password combinations for
individual applications, they can be a weak link in the security chain. In the cloud,
identity management helps to preserve security, visibility, and management, and
centralization of IT control of identities and access is useful.

Data encryption Data saved in the cloud usually reside in a multitenant
environment—a distribution virtualized server space—with data from other clients
of the cloud provider. Healthcare entities that move critical and synchronized
data into the cloud must make sure the data are encrypted at rest and in transit.
One of the main risks of multitenancy and shared computing resources within
cloud infrastructures is possible failure of the separation instrument that provides
separation of memory, storage, and routing between tenants.

Data compliance regulations Security laws and regulations vary at national,
regional, and local levels, making fulfillment a potentially complex issue for cloud
computing. For example, some countries in the European Union (EU) stipulate that
some health data must never cross those countries’ own borders. Other authorities
have detailed data compliance regulations that stipulate special handling of certain
kinds of health information (medical treatment of minors, disease history, etc.),
controlling transmission across local or state borders. To comply with these strict
data privacy laws, cloud infrastructures must be auditable for such features as
encryption, security controls, and geometric location.

Illegal activities of IT staff Although it seems strange, employees have been
identified as a security threat. Only 21% of healthcare industries have a complete
perception of what their IT staff members are doing in the cloud, and visibility of
the actions of business users is even rarer. Actually, the overall visibility of inner
actors is the lowest among all organizations surveyed. IT people are aware of this
difference, but the majority of them do not get essential support from the C-level to
address it. Only 50% of respondents say that they get top management support to
implement cloud security projects; this is the lowest outcome across all businesses
surveyed.

Human error This is also one of the biggest security threats; with just one small
mistake, the industry can lose billions of dollars within a second. According to
Verizon’s 2016 Breach Investigations Report, healthcare data breaches in 2015
were most likely to be caused by human error or unintentional error in the form
of stolen or lost assets, insider and privilege misuse, and miscellaneous errors, such
as improper device disposal or mishandling.

10 An Architecture to Improve the Security of Cloud Computing in the. . . 261

Detailed above are some of the common threats that are spreading in the
healthcare cloud. The healthcare cloud also contains massive volumes of data.
Thus, the healthcare industry is worried about protecting these data. The HIPAA
and public health authorities (PHAs) have issued regulations to secure data in the
healthcare cloud. In the next section we describe some methods by which the
healthcare industry can save its data in the cloud.

10.7 Secure Healthcare Cloud Architecture

From past studies it has become clear that a large number of cybercriminals are
targeting the healthcare cloud. The reason behind this is that it is the most crucial
cloud and can generate a terabyte of data in a single day. Also, people are less
vigilant about security of health information than about the security of banking
or other organizations’ information, so this cloud is the easiest target for hackers.
However, in recent years, researchers have worked to ensure that data in the
healthcare cloud are censured and have proposed some architecture. Some of these
architectures are explained in this chapter.

The architecture proposed by Chondamrongkul and Chondamrongkul is very
similar to our method. This supports a healthcare system that allow patients to
be checked by mobile applications. A personal record application helps gather
health data from secure mobile cloud architecture for linked wearable devices and
cell phones, before saving them in the cloud. After that, a monitoring application
retrieves these data to enable doctors and other relevant medical staff to supervise
the patient’s condition [31].

Zhang and Liu have presented a paper in which they discuss EHR sharing and
integration in healthcare and analyze arising security and privacy issues in access to
and management of EHRs [14].

In 2013, Khan and Wan proposed an architecture to make data secure in the
healthcare cloud. In this work they introduced a trusted authority between the cloud
and the user. When any user want to access the healthcare cloud, it must be passed
by the trusted authority, which is usually linked to the private key store. They gave
a review of the wireless body area network (WBAN). They provided an outlook on
this promising field and discussed a cloud-enabled WBAN architecture for pervasive
healthcare systems. This system can be accessed by smart phones with an enabled
Wi-Fi connection or something similar [20].

10.8 Our Architecture

We have obtained help from big data to solve this issue. In our architecture to store
the data, there are some slave nodes and a master node. A slave node is responsible
for storing data, while a master node stores metadata. If anyone wants to store or

262 S. M. Altowaijri

process the data, than he or she must submit a request to the master node. The master
processes that request and sends it to the appropriate node. All customer information
can be accessed by the sensors, meaning that the system is very easy to use and it
is easy to generate quasistructured data. All of these data must be in an encrypted
form. This design security scheme is based on public key infrastructure (PKI) and
the RSA [Rivest–Shamir–Adleman] algorithm, ensuring that only authorized users
can access a particular patient’s data at a certain time. There are two types of data
storage in the cloud: master storage and slave storage. The master storage holds
metadata, and the slave storage holds electronic patient records (EPRs) and consists
of medical and health data. The master storage can be accessed through the data
access service (DAS) containing the REST service for the application client. The
master storage holds the EPR, which is encrypted with the patient’s public key so
that only the personal record application on the patient’s device can decrypt it with
the patient’s own private key. The proxy storage holds the EPR as it is requested by
the monitoring application. The EPR’s metadata in the master storage are encrypted
with the public key of those who request and have permission to access it, then it
is signed by the patient‘s private key for integrity and authenticity checks. Once a
doctor or medical staff member retrieves the EPR using the monitoring application,
he or she verifies the EPR using the patient’s public key to prove its authenticity,
before decrypting it with his or her own private key [2]. Figure 10.5 illustrates our
proposed architecture. All requests will go on the master where the metadata will
be located. After that, the master system will send the request to the slave and the
slave will respond to the master again. One master can easily manage many slaves.

Fig. 10.5 Secured
architecture for the healthcare
cloud

10 An Architecture to Improve the Security of Cloud Computing in the. . . 263

10.8.1 Results

The messaging between users and the cloud’s server occurs on the Secure Sockets
Layer (SSL), which ensures the privacy and integrity of message sending and
receiving between two parties. But the public server is consider nonliable as it is
operated and preserved by the cloud provider company. The cloud provider has no
legal right to access information belonging to the user. There is, however, a potential
risk that a cloud-based server could be attacked by a malicious program, which
could cause unauthorized data access. The security scheme offers fine-grained
access management of encrypted data in the cloud. Furthermore, it also ensures
the integrity and authenticity of messages transferred through the cloud between the
patient and the doctor. Throughout this chapter we use � (a, b) → c to denote the
operation of running an algorithm � with inputs a, b, . . . and output c [27].

The key manager generates key pairs and keeps and provides public keys for
different users involved in the application system. The access control contains
policies that enable personal record applications to validate who can access which
patient’s data at what level (e.g., pulmonology doctor has read-write access to data
on patients with lungs disease, while nurses have only read access). The patient can
supervise the access policy on his or her records to take full access control of his
or her own data. In a critical situation, that control policy can be overridden other
medical staff for a short time. The hospital information system (HIS) is integrated
into our organization to provide patients’ health records. The key manager, access
control, and HIS are hosted by the hospital infrastructure to minimize safety risks.
The messaging service on the cloud support sends a notification when access to the
EPR is requested or when the latest updated data are available in proxy storage [28].

The EPR has two parts:

1. Health data, which are quasistructured data and come from sensors.
2. Medical data, which come from the medical staff’s personal information, such

as their ID, name, etc. When we need to use the record application, a new patient
is registered on this system. We can understand what happens in the background
during registration, as follows:

(a) The key manager executes KeyGen() → (Private[P], Public[P]) to generate
a key pair for the patient, using the RSA algorithm. Here, P stands for
“patient.”

(b) Private [P] is securely stored on the patient’s system using the AES algorithm
to protect authentication.

(c) The EPR is loaded from the HIS and encrypted with Encrypt(KEY, Pub-
lic[P], Tn) → KEYPublict[P], where T represents the data attribute of a vital
sign and n is the number of attributes to be encrypted.

(d) KEYPubP is saved in the master storage through the DAS.
(e) Finally, the master processes these data, normalizes them, classify them, and

sends them to the slave for storage.

264 S. M. Altowaijri

For retrieving the data, our proposed architecture will request the credentials by
using the visualizing application. The visualizing application supports direct access
application (DAA) for an authorized person by which he or she can retrieve the EPR.
This DAA is used to decrypt the information, using the public key. If the permission
is verified, the following steps will be executed:

1. Decrypt (KEYPublic[P], Private[P], Tn) → KEY to decrypt the EPR retrieved
from the master storage. Then the master will search for these data in the slave
to get the data.

2. Encrypt (KEY, Public[R], Sn) → KEYPublic[R] to encrypt with the requester’s
public key. Here, R stands for the user who is using this application.

3. Sign (Private[P], T) → TPrivate[P] to sign a generated hash key denoted by T
with the patient’s private key to ensure the authenticity of the EPR before sending
it together with KEYPublic[R] to the slave storage.

10.9 Conclusion

From the discussion in this chapter, one can easily understand healthcare security
issues, healthcare responsibility, and how we can secure our information in the
healthcare cloud. With time, we can modify our architecture to make data more
secure in the healthcare cloud. Therefore, use of cloud computing in healthcare
systems makes health services more affordable, as well as helping nations to achieve
health equity. In this chapter, cloud computing and the healthcare cloud have
been introduced. Furthermore, cloud computing security issues, particularly in the
context of the healthcare cloud, have been presented. This chapter has also proposed
and discussed some methods to improve cloud security for healthcare along with our
proposed architecture.

References

1. Kim, H., Lee, H., Kim, W., Kim, Y.: A trust evaluation model for QoS guarantee in cloud
systems. Int. J. Grid Distrib. Comput. 3, 125 (2010)

2. Yang, Z., et al.: A collaborative trust model of firewall-through based on cloud computing. 14th
International Conference on Computer Supported Cooperative Work in Design, 2010, China

3. Ahmed, M.: Above the trust and security in cloud computing: a notion towards innovation.
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 2010, Aus-
tralia

4. Brodkin, J.: Gartner: Seven cloud-computing security risks, InfoWorld, 2008. https://
www.infoworld.com/article/2652198/security/gartner%2D%2Dseven-cloud-computing-
security-risks.html. Accessed 15 July 2018

5. Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. Int. Conf.
on Comput. Sci. Elect. Eng. 1, 647–651 (2012)

6. Grobauer, B., Walloschek, T., Stocker, E.: Understanding Cloud Computing Vulnerabilities.
IEEE Secur. Priv. Mag. 9(2), 50–57 (2011)

https://www.infoworld.com/article/2652198/security/gartner%2D%2Dseven-cloud-computing-security-risks.html

10 An Architecture to Improve the Security of Cloud Computing in the. . . 265

7. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. Int. Conf. on Intellig. Syst. Model. Simulat. Liverpool, United
Kingdom, pp. 431–436 (2010)

8. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review
and case study. Handbook of research on redesigning the future of internet architectures, pp.
531–558, (2015)

9. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. Proceedings of the 2014 ACM international workshop
on Wireless and mobile technologies for smart cities - WiMobCity’14, Philadelphia, Pennsyl-
vania, USA, 2014, pp. 1–10

10. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An
Intelligent Cloud Based Disaster Management System for Vehicular Networks. In: Vinel, A.,
Mehmood, R., Berbineau, M., Garcia, C.R., Huang, C.-M., Chilamkurti, N. (eds.) Communi-
cation Technologies for Vehicles, vol. 7266, pp. 40–56. Springer, Berlin, Heidelberg (2012)

11. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In 2011 11th International Conference on
ITS Telecommunications, St. Petersburg, Russia, pp. 361–368 (2011)

12. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
A Personalised Ubiquitous Teaching and Learning System for Smart Societies. IEEE Access.
5, 2615–2635 (2017)

13. Oh, S., et al.: Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-
Based Clinical Decision Support Service. Healthc. Inform. Res. 21(2), 102 (2015)

14. Zhang, R., Liu, L.: Security models and requirements for healthcare application clouds. 2010
IEEE 3rd International Conference on Cloud Computing, Miami, FL, USA, pp. 268–275
(2010)

15. Wan, J., Zou, C., Ullah, S., Lai, C.-F., Zhou, M., Wang, X.: Cloud-enabled wireless body area
networks for pervasive healthcare. IEEE Netw. 27(5), 56–61 (2013)

16. Barton, J., et al.: Impact of cloud computing on healthcare V2.0| Object Management Group.
https://www.omg.org/cloud/deliverables/impact-of-cloud-computing-on-healthcare.htm.
Accessed 29 June 2018

17. Ahmed, M., Xiang, Y., Ali, S.: Above the trust and security in cloud computing: a notion
towards innovation. In 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Hong Kong, China, pp. 723–730 (2010)

18. Bildosola, I., Río-Belver, R., Cilleruelo, E., Garechana, G.: Design and Implementation of
a Cloud Computing Adoption Decision Tool: Generating a Cloud Road. PLoS One. 10(7),
e0134563 (2015)

19. Balasubramaniam, S., Kavitha, V.: Geometric Data Perturbation-Based Personal Health Record
Transactions in Cloud Computing. Sci. World J. 2015, 1–9 (2015)

20. Elizabeth, S.: HealthITSecurity, data security considerations in healthcare interoper-
ability. HealthITSecurity. https://healthitsecurity.com/features/data-security-considerations-in-
healthcare-interoperability. Accessed 24 June 2018

21. Saurabh: Security issues in cloud Computing. http://serl.iiit.ac.in/cs6600/saurabh.ppt. (2009).
Accessed 17 June 2018

22. Sherry, D.: Cloud computing: security risks and compliance implications. http://media.
techtarget.com/searchFinancialSecurity/downloads/FISD09_Breakout_Session5_ CloudCom-
puting_Sherry.pdf, Brown University (2009). Accessed 14 June 2018

23. Ryoo, J., Rizvi, S., Aiken, W., Kissell, J.: Cloud Security Auditing: Challenges and Emerging
Approaches. IEEE Secur. Priv. 12(6), 68–74 (2014)

24. Kwon, J., Johnson, M.E.: Protecting patient data-the economic perspective of healthcare
security. IEEE Secur. Priv. 13(5), 90–95 (2015)

25. Schoo, P., et al.: Challenges for cloud networking security. In Mobile Networks and Manage-
ment, 2011, pp. 298–313

26. Yang, Z., Qiao, L., Liu, C., Yang, C., Wan, G.: A collaborative trust model of firewall-through
based on Cloud Computing. The 2010 14th International Conference on Computer Supported
Cooperative Work in Design, Shanghai, China, pp. 329–334 (2010)

https://www.omg.org/cloud/deliverables/impact-of-cloud-computing-on-healthcare.htm
https://healthitsecurity.com/features/data-security-considerations-in-healthcare-interoperability
http://serl.iiit.ac.in/cs6600/saurabh.ppt
http://media.techtarget.com/searchFinancialSecurity/downloads/FISD09_Breakout_Session5_CloudComputing_Sherry.pdf

266 S. M. Altowaijri

27. Goyal, S.: 5 reasons why you should choose multi-tenant architecture for your SaaS
application. Insights—Web and Mobile Development Services and Solutions, https://
www.netsolutions.com/insights/5-reasons-why-you-should-choose-multi-tenant-architecture-
for-your-saas-application/. Accessed 11 July 2018

28. Shaikh, R., Sasikumar, M.: Security Issues in Cloud Computing: A survey. Int. J. Comput.
Appl. 44(19), 4–10 (2012)

29. Rathi, G., Abinaya, M., Deepika, M., Kavyasri, T.: Healthcare data security in cloud comput-
ing. IJIRCCE, 3(3), (2015). ISSN(Online): 2320-9801 ISSN (Print): 2320-9798

30. Almond, C.: A practical guide to cloud computing security, (2009). http://www.avanade.com/
Documents/Research%20anad%20Insights/practicalguidetocloudcomputingsecurity574834.
pdf. Accessed 11 July 2018

31. Chondamrongkul, N., Chondamrongkul, P.: Secure mobile cloud architecture for healthcare
application. Int. J. Fut. Comput. Commun. 6(3), 77–86 (2017)

https://www.netsolutions.com/insights/5-reasons-why-you-should-choose-multi-tenant-architecture-for-your-saas-application/
http://www.avanade.com/Documents/Research%20anad%20Insights/practicalguidetocloudcomputingsecurity574834.pdf

Chapter 11
The Role of Big Data and Twitter Data
Analytics in Healthcare Supply Chain
Management

Shoayee Alotaibi, Rashid Mehmood, and Iyad Katib

11.1 Introduction

The healthcare sector is considered one of the main economic pillars worldwide,
to which significant proportions of countries’ budgets are allocated. It is estimated
that healthcare spending in the world’s major regions will increase from 2.4 to 7.5%
of GDP between 2015 and 2020 [1]. Despite this massive expenditure, healthcare
organizations are required to deliver high-quality medical services at lower costs
to their patients. However, spending hundreds of millions does not alone guarantee
high-quality services. Hence, most of healthcare organizations nowadays are faced
with incremental challenges, including limited budget, daily increases in patient
numbers and increasing costs of medical equipment and pharmaceuticals [2]. As
much as 45 percent of a hospital’s typical total operating expense is committed to
its supply chain, including suppliers, drugs, and consumables.

The healthcare supply chain is an essential area that should be considered and
improved. It would be incorrect to understand it as only relating to purchasing and
managing contracts, as it is a very complex concept, and could free up huge revenues
within healthcare sectors once managed properly [3]. Consequently, healthcare
organizations will likely increasingly need to employ recent technological devel-
opments to deliver efficient services at lower costs and high quality. Moreover, such
improvements are required to reduce the waste and loss that threaten sustainability.

S. Alotaibi (�) · I. Katib
Department of Computer Science, Faculty of Computing and Information Technology,
King Abdulaziz Univeristy, Jeddah, Saudi Arabia
e-mail: salotaibi0372@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_11

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_11&domain=pdf
mailto:salotaibi0372@stu.kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_11

268 S. Alotaibi et al.

In the current era of increasingly advanced technologies in medical devices and
medical equipment, the size of data generated by their use is growing exponentially.
The immense growth in the volume of electronic medical records (EMRs) stored by
healthcare organizations is also significant and undeniable. Exploring the possibility
of investing this big data in improving services has become attractive to researchers
and practitioners. A lot of fruitful business applications and network search engines
have been developed using Business Intelligence (BI) for extracting knowledge
from big data [4]. Some researchers have been investigating how to transfer and
where to store this amount of data, while others have been focusing on big data
utilization. Big data utilization involves analysing it to seek a solution for existing
issues, exploring trends, and supporting decision-making.

A plethora of literature has been produced that explores to what extent big data
can be beneficial in the healthcare industry. Malik and his colleagues [5] noted that
big data analytics seems to have been frequently used for the diagnosis, prognosis or
planning of treatment, for example, disease management for oncology to anticipate
heart attacks and identify and classify at-risk people. However, a very limited work
has been done in applying big data to healthcare supply chains. Existing published
survey papers focus on reviewing the significant applications of big data to supply
chains in manufacturing generally.

In this paper, our aim is to review research on the use of big data in the healthcare
supply chains. We will investigate the opportunities, challenges and future directions
of big data in this field. This is an extended version of our earlier work [6].

The chapter is organized as follows: Section 11.2 gives brief definitions for the
basic concepts that are mentioned in this paper. The next section highlights the
published works in big data analytics and Twitter data analytics. Big data analytics
in supply chain and healthcare opportunities and challenges are discussed in Sect.
11.4. Section 11.5 concludes the work and suggests possible future directions.

11.2 Background

This section introduces the work by defining the basic terminologies that are
mentioned in this paper. Supply chain, big data and big data analytics are illustrated
based on the reviewed references.

11.2.1 Supply Chain

Malik et al. define the supply chain process as “having the right item in the right
quantity at the right time at the right place for the right price in the right condition
to the right customer” [7]. In the meantime, supply chain managers can legitimately
claim to have played a major role in spreading the information technology revolu-
tion. E-SCM (e-supply chain management) was a great transformation as supply

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 269

chain activities were integrated with the Internet [8]. Smarter supply chains [9]
and smart factories [10] are further examples of intelligent systems developments.
Sustainability (triple bottom line, TBL) has become a crucial consideration in
business, government and academia. Therefore, the concept and practice of green
or sustainable supply chains have become a vital part of industrial and government
operations, see e.g [11, 12].

11.2.2 Supply Chain Activities in Healthcare

Based on the above section, supply chain management in healthcare is not limited
only for pharmaceutical products or physical stuff, it is also involving the life time of
the service that is delivered to the patients. In this context, supply chain management
in healthcare is a very complex and interrelated process. It’s mainly targeted to
deliver adequate and efficient heath care to the patient. In order to that, several
activities are performed including medical equipment and pharmaceutical products
requests from the manufacturers and service delivery procedure inside the health
organization. Hence, a number of independent stakeholders are involved in these
activities such as manufacturers, insurance companies, hospitals staff and several
regulatory agencies (Fig. 11.1).

Fig. 11.1 Supply chain management activities in healthcare

270 S. Alotaibi et al.

Fig. 11.2 Big data 4Vs

11.2.3 Big Data

According to [4], big data refers to “the datasets that could not be perceived,
acquired, managed, and processed by traditional IT and software/hardware tools
within a tolerable time”. However, researchers and scientists have defined the term
“big data” according to several different aspects. Apache Hadoop in 2010 defined
big data as “datasets which could not be captured, managed, and processed by
general computers within an acceptable scope”.

In 2011, an IDC report characterized big data as “large information innovations
depict another era of advancements and structures, intended to financially extricate
an incentive from substantial volumes of a wide assortment of information, by
empowering the high-speed catch, disclosure, as well as examination”. Big data
technologies have also been defined as “the emerging technologies that are designed
to extract value from data having four Vs characteristics; volume, variety, velocity
and veracity” [13]. Accordingly, the key attributes of big data can be outlined as
the “four Vs”, i.e. Volume (extraordinary volume), Variety (different modalities),
Velocity (quick era), and Value, as shown in Fig. 11.2.

11.2.4 Big Data Analytics

Big data analytics has become a key buzzword these days. It is not just a buzzword
but is making a fundamental impact on all spheres of our life, transport [14],

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 271

planning and operations [15, 16], smart cities [17], teaching and learning [18], to
name but a few. According to Feki and Wamba [19] and Hogarth and Soyer [20], the
term “analytic” can be defined as transforming big data into meaningful intelligent
information. This transformation of big data is usually done using two main
steps: data management, then data analytics using specific techniques [21]. Data
management implies “processes and supporting technologies to acquire and store
data and to prepare and retrieve it for analysis” while analytics means “techniques
used to analyse and acquire intelligence from big data” [19].

11.2.5 Twitter Data

Twitter is one of the most popular social media networking that attracted many
users around the world. Recently, the number of Twitter users is relatively increasing
with the growth of smart phones technology. Accordingly, Twitter attracted many
researchers in different industries to investigate the efficiency of such pool of open
data in enhancing services or reducing service expenses. That’s due to availability
of API tools that enable researchers to collect tweets using specific keywords.

The most common steps in Twitter data analytics research can be summarized as
follows:

1. Tweet Collection Tweets can be collected using one of the available API tools.
The collection can be for historical tweets or live streaming for the tweets.

2. Pre-processing Tweets This step is very important to remove the irrelevant and
meaningless tweets. In case of sentiment analysis, some additional steps such as
tokenization are also added.

3. Data Analysis This is the core step where the resulting tweets can be analysed.
Different type of analysis can be applied such as descriptive analysis (DA),
content analysis (CA) and network analysis (NA).

4. Reporting Results This is the last step where the results of analysis are reported.
Therefore, the researchers can get answers for their research questions based on
the analysis results (Fig. 11.3).

Fig. 11.3 Twitter data analysis steps

272 S. Alotaibi et al.

11.3 Big Data and Twitter Data in Healthcare or Supply
Chain Management

In this section, some examples of how big data has been used in healthcare or supply
chain, individually, are provided. Moreover, some contributions on using Twitter
data in healthcare and supply chain practices are highlighted.

11.3.1 Big Data in Supply Chain Management

Big data has been widely used in supply chain management in many industries.
According to Waller & Fawcett [22], despite the operational influence of big data in
supply chains, traditional approaches and standard activities are affected, too. They
identified the potential opportunities that big data could offer in enhancing supply
chain processes.

Carriers, manufacturers and retailers, the main users of logistics, are also the
main beneficiary of big data. They could obtain actionable information about
many of their daily activities, such as inventory, transport and human resources
management. DHL and UPS are two leading companies who are pioneer investors
in big data initiatives to enhance their services and increase their profits [23].

Further attempts on investigating the big data practices in supply chain manage-
ment could be found in [14, 24–29].

11.3.2 Big Data in Healthcare

In healthcare industry, there are many sources for the big data as shown in Fig.
11.2. The use of big data is not limited to industrial fields. It is playing a key role
in enhancing critical service sectors such as healthcare. Healthcare systems and
applications have long been considered computationally intensive [30]. However,
the focus on data—i.e. big data—has only began in the last few years. It As
noted in [13], “the cost of healthcare, according to World Health Organization is
mostly due to system and operational inefficiencies, and missed disease-prevention
opportunities. Big data analytics can minimize these efficiencies and improve the
clinical processes resulting in better, preventive, personalized healthcare; estimated
to save billions in the healthcare sector alone with virtually unquantifiable impact”.

Collaborations between big data platform providers and scientific research
centres have generated remarkable and noticeable successes. In Australia, two inno-
vative applications for big data have been developed by Srinivasan and Arunasalam
[31]. They have utilized the massive data extracted from hospital discharge reports
and insurance claims to detect fraud, abuse, waste and errors in insurance claims.

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 273

Fig. 11.4 Examples of big
data sources in healthcare

Similarly, in 2014, Raghupathi1and Raghupathi [32] reported that in healthcare
more than $300 billion could be saved annually through big data analytics uti-
lization, as estimated by McKinsey. Big data utilization could be applied in two
vital areas: Clinical Operations and Research & Development [33]. A practical
example of using big data analytics has been undertaken by developers [34] in
US healthcare sector. They built predictive systems based on big data that could
help in early identification of six critical cases: high cost patients, readmissions,
triage, decompensating (once a patient’s situations get worse), adverse events, and
treatment optimization for diseases affecting multiple organ systems.

Several works exist that use big data to improve healthcare ICT systems
efficiencies. For example, the use of cloudlets and big data to improve mobile
healthcare systems response and experience is proposed in [35, 36]. A capacity
sharing model for healthcare using big data is proposed in [37]. The use of big
data to improve the performance of networked (integrated) healthcare systems is
proposed in [13]. A smart pain management system using big data computing is
proposed in [38]. DNA profiling is an emerging application of big data [39] (Fig.
11.4).

11.3.3 Twitter Data Analytics in Supply Chain Management

Social media platforms such as Twitter are considered as main sources of big data
where a large number of users share their daily life. A large and growing body of
literature has investigated the usefulness of Twitter in public health. The majority
of the contributions in this field is either surveillance or prediction tools for certain
disease or discovering disease pattern in specific community.

274 S. Alotaibi et al.

To the best of our knowledge, only one published work we found which focused
on utilizing Twitter data in supply chain management industry. The only published
contribution has been conducted by Chae in [40]. In his research, he proposed
a framework to investigate the potential role of using Twitter for supply chain
practices. Three different analysis methodologies have been applied on the collected
tweets from #supplychain hashtag. The findings show the possibility of harvesting
Twitter data in demand shaping, cost reducing or improving the service quality in
supply chain activities. This research can encourage researchers to investigate the
possible ways to take full advantages of Twitter data in supply chain in particular.

In 2013, Alex and his colleagues [41] enhance the tracking of flue infection
by providing deeper content analysis for the tweets. They distinguished between
the awareness and infection related tweets to provide more accurate counts for the
flue infection cases. Similarly, Armaki et al. in [42] enhanced the performance of
a surveillance tool by developing a support vector machine (SVM) classifier that
is able to catch the flue infection through tweets. Moreover, the Social Network
Enabled Flu Trends (SNEFT), a constant data collection framework have been
affirmed to indicate the influenza dispersal through recording flu relevant tweets
[43].

Much attention has been paid to influenza in particular as it was reported as one
of death causes in United States recently. In this context, a global real-time tool
that is able to anticipate the flue infection in specific area has been built based on
the extracted information from Twitter as well [44]. Another opportunity is using the
number of retrieving medical related articles as indicator to seasonal infections [45].

11.4 Big Data in Healthcare Supply Chains

In this section, we demonstrate the possible opportunities of using big data as a
solution in healthcare supply chains. The opportunities are summarized based on
the previous works that have been published. Unfortunately, very limited work has
been found. However, the application of big data in this regard is unlimited and
further investigations are required. In the last subsection, the challenges that might
be considered are listed.

11.4.1 Opportunities

Nowadays, big data has in many ways become a solution looking for a problem
to solve. Rozados and Tjahjono saw that “Major business players who embrace
big data as a new paradigm are seemingly offered endless promises of business
transformation and operational efficiency improvements” [29]. This has attracted
researchers and practitioners in many industries to explore the possibilities of using
big data. Abundant research has been done in both healthcare and in supply chain

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 275

management generally. The healthcare industry is considered as an essential and
critical sector within services, but there is a lack of information about the current
state of research into healthcare operations management (OM) and supply chain
management (SCM) [46]. At the time of writing this paper, only three peer reviewed
papers have been found in this area, and we can summarize the opportunities of
using big data in healthcare supply chains as follows.

Strategic Planning Big data represented by Twitter data can be harvested in
several ways. Open access source of pool data could help in shaping supply chain
management activities. At early stages, public health screening for specific nations
within certain geographical area be gained by analysing Twitter data appropriately.
Identifying list of health concerns leads to determine the type and location of
delivered health services. Moreover, real-time data analytics for Twitter data can
support some statistics of disease infections.

Disaster and Risk Management In disaster management activities, monitoring
public discussions on Twitter hashtags during some occasions would support
statistics about health cases. That’s would help the organizations and health service
providers to ensure their readiness to urgent cases containment. They could estimate
their needs and eliminate the over/understocking.

Demand Forecasting At management level in many industries, demand forecast-
ing is widely used in order to decision-making reinforcement and to promote other
management tasks. In China, historical recorded data from transaction datasets has
been successfully used to build a predictive model based on data mining algorithms
[47]. This model is supposed to work as a prediction tool to estimate future needs
within the healthcare supply chain process in China. They used real datasets from
2014 to build the prediction tool, to predict the next year’s needs. Since the nature
of the collected data set is heterogeneous, and in order to empower the prediction
tool, they combined a classification decision tree and regression algorithm in CRT
modelling. The efficiency of their model was proven and gained better results than
other traditional statistical approaches.

Improving Safety and Quality Assurance in the Pharmaceutical Supply Chain
In the pharmaceutical industry, counterfeiting and illegal export and import of
medicines is a major issue. Moreover, transferring medicines and medical equip-
ment in inappropriate environmental conditions, such as at high temperature and
humidity, can affect quality. Thus, the challenge is to guarantee the delivery of
shipped medicines safely. Further, medical care providers (hospitals, clinics, etc.)
need to verify that they have obtained the right medicine from the right source.
In Germany XQ in [2] made use of the data stored by their RFID-based system
about tracked and traced shipments, such as ID, location, temperature, and humidity.
Tracking and tracing are widely known terms in the supply chain management
context, which may offer opportunities to ensure quality of medicines and prevent
counterfeiting.

276 S. Alotaibi et al.

Indoor Monitoring For healthcare organizations, the benefits of track and trace
systems are not limited to ensuring medicines’ quality. Data generated from these
systems can also offer an opportunity to improve the safety of special needs
patients and new-born babies. A healthcare unit’s administrators can retrieve real-
time locations and other necessary information, such as vital signs for Alzheimer’s
patients, at any moment, to ensure that they are safe. Intelligent applications can
offer monitoring without restricting patients’ movements. Also, new-born babies
can be saved from kidnapping and theft. A real application for this opportunity was
delivered by Sultanow and Chircu [2] when they launched the track and trace system
and reported its significant benefits.

11.4.2 Challenges

While big data could offer a wide range of opportunities, it has characteristics that
could be considered as important challenges, both generally as well as in the case of
healthcare, specifically. The criticality of the healthcare industry and its standards
of confidentiality might create difficulties too. The key challenges of applying big
data in the healthcare supply chain can be summarized as follows.

Data Related Issues Due to big data’s characteristics, such as data volume, variety,
and heterogeneity, some issues may arise. According to Tan et al., the variations
of data require finding special techniques for handling and storing, as claimed by
Burghin et al. [48]. Moreover, the traditional data mining techniques may not be
longer sufficient for such kinds of data [49]. Alongside (and sometimes as a result
of) the variety and volume, incompleteness, incorrectness, and uselessness are also
commonly reported difficulties.

Healthcare Related Issues The main resources of big data in the healthcare
industry are electronic medical records (EMRs) [32]. Practitioners use EMRs
to record patient’s medication histories every time the patient visits the clinic.
According to [6], data ownership, governance and standardization are the main
challenges that should be considered in this area.

Knowledge Related Issues Deep knowledge is needed in order to understand the
variety of data forms and analyse the relationship between different kinds of data
[31]. Moreover, the topic is complexly multidisciplinary, since sufficient knowledge
of big data analytics techniques, healthcare data and supply chain processes are
required, too.

Data Analytics Tools Related Issues Despite the ease of access to big data, the
constraints associated with the available analytics tools could limit the big data
investments. Constraints on data collections, expense of storage and the inaccuracy
of analysis tools are some of expected issues that analysts might face. More
development for the existing data analytics tools is necessary in order to take the
full advantages of big data.

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 277

11.5 Conclusion and Future Research Directions

In conclusion, healthcare supply chains are an essential area that should be
considered and improved. Healthcare organizations will likely need to employ
recent developments in technology to deliver efficient services at reasonable cost
and high quality. Improved data analysis is also required to reduce the waste and
loss that threaten sustainability. Big data analytics is a powerful tool that is usually
concerned with large-scale data and high-performance computing environments; it
has emerged as a revolution that is able to contribute in different ways to many field,
such as through data analysis, knowledge extraction and advanced decision-making.
We recommend some future directions for the use of big data in healthcare supply
chains in the following.

1. Data driven inventory can enhance prediction tools through several optimization
methods. This includes studying how to get benefits from “data patterns” that are
extracted at the analysis step, and how to use them to support decision-making.

2. Further reviews of how big data is used in manufacturing, unrelated to patients,
is another possible direction, informing how we might use patient-centric data
in estimating hospitals’ needs or logistic operations such as scheduling, staff
scheduling, resources allocation, and hospital design layout.

3. Using social media in addition to EMRs can assist in determining the best
locations for future clinics and services.

An important step to enable optimized supply chains in healthcare sector would
be the networking and integration of healthcare and other smart world systems
[35]. Such integration would give rise to a plethora of useful data where the
systems integration would allow automatic collection, storage, and analyses of data.
Moreover, the integration would also enable optimized decisions to be taken and
enforced automatically leading to optimized supply chains in the healthcare sector.

Acknowledgments The work carried out in this paper is supported by the HPC Center at the King
Abdulaziz University.

References

1. Deloitte: 2017 Global Health Care Sector Outlook. 2015 (2017)
2. Sultanow, E., Chircu, A.M.: Improving healthcare with data-driven track-and-trace systems.

65–82
3. Kwon, I.W.G., Kim, S.H., Martin, D.G.: Healthcare supply chain management; strategic areas

for quality and financial improvement. Technol. Forecast. Soc. Change. 113, 422–428 (2016)
4. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Networks Appl. 19, 171–209 (2014)
5. Malik, M.M., Abdallah, S., Ala’raj, M.: Data mining and predictive analytics applications for

the delivery of healthcare services: a systematic literature review. Ann. Oper. Res. 1–26 (2016)
6. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-

tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart

278 S. Alotaibi et al.

Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
207–215. Springer, Cham (2018)

7. Naoui, F.: Customer service in supply chain management: a case study. J. Enterp. Inf. Manag.
27, 786–801 (2014)

8. Akyuz, G.A., Rehan, M.: Requirements for forming an “e-supply chain”. Int. J. Prod. Res. 47,
3265–3287 (2009)

9. Butner, K.: The smarter supply chain of the future. Strateg. Leadersh. 38, 22–31 (2010)
10. Hessman, T.: The Dawn of the Smart Factory. IndustryWeek. 14–19 (2013)
11. Ahmad, N., Mehmood, R.: Enterprise systems: are we ready for future sustainable cities.

Supply Chain Manag. An Int. J. 20, 264–283 (2015)
12. Ahmad, N., Mehmood, R.: Enterprise systems and performance of future city logistics. 27,

500–513 (2016). doi:https://doi.org/10.1080/09537287.2016.1147098
13. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future Networked Healthcare Systems: A Review

and Case Study. In: I. Management Association (ed.) Big Data: Concepts, Methodologies,
Tools, and Applications. pp. 2429–2457. IGI Global (2016)

14. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

15. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling Next Generation
Logistics and Planning for Smarter Societies. Procedia - Procedia Comput. Sci. 1–6 (2017)

16. Enabling Smarter Societies through Mobile Big Data Fogs and Clouds, http://
www.sciencedirect.com/science/article/pii/S1877050917311213

17. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

18. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

19. Feki, M., Wamba, S.F.: Big Data Analytics-enabled Supply Chain Transformation: A Literature
Review. 49th Hawaii Int. Conf. Syst. Sci. 1123–1132 (2016)

20. Hogarth, R.M., Soyer, E.: Using simulated experience to make sense of big data. MIT Sloan
Manag. Rev. 56, 49–54 (2015)

21. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J.
Inf. Manag. 35, 137–144 (2015)

22. Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that
will transform supply chain design and management. J. Busienss Logist. 34, 77–84 (2013)

23. Zhong, R.Y., Newman, S.T., Huang, G.Q., Lan, S.: Big data for supply chain management
in the service and manufacturing sectors: challenges, opportunities, and future perspectives.
Comput. Ind. Eng. 101, 572–591 (2016)

24. Samuels, K.: Practitioners understanding of big data and its applications in supply chain
management. Electron. Libr. 35, 616–617 (2017)

25. Lamba, K., Singh, S.P.: Big data in operations and supply chain management: current trends
and future perspectives. Prod. Plan. Control. 28, 877–890 (2017)

26. Brinch, M., Stentoft, J.: Big data and its applications in supply chain management: findings
from a Delphi Study. 1351–1360 (2017)

27. Schoenherr, T., Speier-Pero, C.: Data science, predictive analytics, and big data in supply chain
management: current state and future potential. J. Bus. Logist. 36, 120–132 (2015)

28. Benabdellah, A.C., Benghabrit, A., Bouhaddou, I., Zemmouri, E.M.: Big Data for Supply
Chain Management: Opportunities and Challenges. 7, 20–26 (2016)

29. Varela, I.R., Tjahjono, B.: Big data analytics in supply chain management: trends and related
research. 6th Int. Conf. Oper. Supply Chain Manag. 1, 2013–2014 (2014)

30. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. In: ISMS 2010 - UKSim/AMSS 1st International Conference on
Intelligent Systems, Modelling and Simulation. pp. 431–436 (2010)

http://dx.doi.org/10.1080/09537287.2016.1147098
http://www.sciencedirect.com/science/article/pii/S1877050917311213

11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply. . . 279

31. Srinivasan, U., Arunasalam, B.: Leveraging big data analytics to reduce healthcare costs. IT
Prof. 15, 21–28 (2013)

32. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Heal.
Inf. Sci. Syst. 2, 3 (2014)

33. Feldman, B., Martin, E.M., Skotnes, T.: Big Data in healthcare - hype and hope, http://
www.riss.kr/link?id=A99883549, (2012)

34. Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G.: Big data in health care: using
analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 1123–1131
(2014)

35. Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and
big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)

36. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-Based Mobile Cloud
Computing for Healthcare Applications. In: 2016 IEEE Global Communications Conference
(GLOBECOM). pp. 1–6. IEEE (2016)

37. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

38. Al Shehri, W., Mehmood, R., Alayyaf, H.: A smart pain management system using big
data computing. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering. pp. 232–246
(2018)

39. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
A review. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST. pp. 216–231. Springer, Cham (2018)

40. Chae, B.: Insights from hashtag #supplychain and twitter analytics: considering twitter and
twitter data for supply chain practice and research. Int. J. Prod. Econ. 165, 247–259 (2015)

41. Lamb, A., Paul, M.J., Dredze, M.: Separating fact from fear: Tracking flu infections on Twitter.
Proc. NAACL-HLT 2013. 789–795 (2013)

42. Aramaki, E.: Twitter catches the flu: detecting influenza epidemics using twitter the University
of Tokyo the University of Tokyo National Institute of. Comput. Linguist. 2011, 1568–1576
(2011)

43. Achrekar, H., Gandhe, A., Lazarus, R., Yu, S., Liu, B.: Twitter improves seasonal influenza
prediction. Proceding Heal. Informatics. 61–70 (2012)

44. Broniatowski, D.A., Paul, M.J., Dredze, M.: National and local influenza surveillance through
twitter: an analysis of the 2012-2013 influenza epidemic. PLoS One. 8, e83672 (2013)

45. Parker, J., Wei, Y., Yates, A., Frieder, O., Goharian, N.: A framework for detecting public
health trends with Twitter. Proc. 2013 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min. -
ASONAM ’13. 556–563 (2013)

46. Dobrzykowski, D., Saboori Deilami, V., Hong, P., Kim, S.C.: A structured analysis of
operations and supply chain management research in healthcare (1982-2011). Int. J. Prod.
Econ. 147, 514–530 (2014)

47. Xu, S., Tan, K.H.: Data-driven inventory management in the healthcare supply chain. (2016)
48. Bughin, J., Chui, M., Manyika, J.: Clouds, big data, and smart assets: Ten tech-enabled business

trends to watch. McKinsey Q. 75–86 (2010)
49. Tan, K.H., Zhan, Y.Z., Ji, G., Ye, F., Chang, C.: Harvesting big data to enhance supply chain

innovation capabilities: an analytic infrastructure based on deduction graph. Int. J. Prod. Econ.
165, 223–233 (2015)

http://www.riss.kr/link?id=A99883549

Part III
Miscellaneous Applications

Chapter 12
A Mobile Cloud Framework for
Context-Aware and Portable
Recommender System for Smart Markets

Aftab Khan, Aakash Ahmad, Anis Ur Rahman, and Adel Alkhalil

12.1 Introduction

Smart city systems are an emerging trend that utilize information and commu-
nication technologies (ICTs) to offer improved urban services to individuals and
collectively refining the lifestyle of societies [11]. In recent years, research and
practices have intended to transform the traditional cities and societies into tech-
nology and knowledge-driven twenty-first century metropolis [4, 10]. In the context
of smart city systems, mobile computing has emerged as a pervasive technology that
has empowered its users—with mobility and context-awareness—to accomplish a
range of tasks including portable computation as well as location-aware commu-
nication [31, 33]. Mobile computing provides the users with mobility-driven and
context-aware interfaces to select and utilize the available services including but not
limited to smart health, transportation, business, and socialization offered by smart
city systems [37].

A. Khan
School of Electrical Engineering and Computer Science, National University of Sciences and
Technology, Islamabad, Pakistan
e-mail: 13mscsmaftab@seecs.edu.pk

A. Ahmad (�) · A. Alkhalil
College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia
e-mail: a.abbasi@uoh.edu.sa; a.alkalel@uoh.edu.sa

A. U. Rahman
School of Electrical Engineering and Computer Science, National University of Sciences and
Technology, Islamabad, Pakistan

Department of Information System, Faculty of Computer Science and Information Technology,
University of Malaya, Malaysia
e-mail: anis.rahman@seecs.edu.pk

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_12

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_12&domain=pdf
mailto:13mscsmaftab@seecs.edu.pk
mailto:a.abbasi@uoh.edu.sa
mailto:a.alkalel@uoh.edu.sa
mailto:anis.rahman@seecs.edu.pk
https://doi.org/10.1007/978-3-030-13705-2_12

284 A. Khan et al.

Mobility or portability is regarded as one of the central features of mobile
computing that also provides the foundation for context-aware computing [37].
However, mobility also enforces resource constraints such as limited hardware that
affects computation, storage, and energy-related tasks on mobile devices. There
is a need for solutions that maintain the balance between mobility and resource
availability in the context of mobile computing and smart city systems [2]. In
contrast to mobile computing, cloud computing model exploits the “pay-per-use”
services model to provide virtually unlimited processing and storage resources [24].
Cloud computing offers the entities or organizations to off-load or deploy their (on-
premise) software systems, computations, or storage resources to remote servers by
means of cloud-based services [17]. For example, the research in [22] highlights
an approach known as cyber-foraging that off loads the computation/storage
intensive tasks from a mobile device to (cloud-based) servers in order to enhance
computation and energy efficiency of mobile devices. In the context of resource-
constrained mobile computing, resource-sufficient cloud computing can be viewed
as an opportunistic model that allows mobile devices to compensate their resource
poverty by offloading mobile data and computation to cloud servers [34]. Therefore,
the unification of mobile and cloud computing can benefit from the mobility and
context-awareness of mobile computing, and the computation/storage services of
cloud computing to provide systems that are portable and resource sufficient [21].

Research Context In the past, electronic commerce (e-commerce) systems have
proven to be useful by digitally offering products and services to international
marketplaces. In the current era, business systems/entities heavily rely on reaching
their potential customers by recommending them highly customized products and
offers. Now with mobile commerce (m-commerce), the use of context information
such as age, gender, preferences, and location to offer customer recommendations
has gained a significant attention [39]. For example, based on the users’ contextual
information, any software that provides recommendations such as socialization
activities, product and service offerings, and dining options enables human decision
support and gives rise to smart systems. Considering a wide-spread adoption of
the mobile and cloud computing, there is still a lack of solutions that facilitate
its users with a recommendation of their preferences primarily based on their
localized context. One of the main challenges for managing and exploiting context-
aware recommendations is to identify the contextual factors (such as location and
preferences) that influence decisions and actions of people in smart city context [5].

Recommender systems represent a class of software systems that generate
meaningful recommendations of interests for their users and empower the users with
decision support [28, 32]. Context-aware recommender systems provide dynamic
adaptive recommendations to users based on contextual information such as the
location, gender, and other preferences of the user [36]. In a smart city context, smart
markets refer to electronic (virtualized) marketplaces that exploit ICT technologies
and infrastructure to enable or enhance digitized commerce. Recommendations and
matchmaking between potential customers and business entities are enabled by the
relevancy of contextual information that gives rise to the concept of smart markets.
Such markets offer personalized offers, products, services, and delivery by business

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 285

entities to potential customers while minimizing the irrelevant mass publicity. For
instance, by calculating user’s location, age, and other relevant information, a
mobile recommender system acts as a context-sensing and portable computer that
can notify the user on the go about his/her events or places of interests. Recently,
much research and development is being carried out to support context-aware
recommender systems. However, existing mobile recommender systems fall short
of context-aware recommendations in smart city systems to support the activities of
smart markets [27, 32, 43].

Solution Overview We overview the proposed recommender system based on the
illustrations in Fig. 12.1 that also highlights the activities of smart markets. The
proposed framework has two layers, namely: (1) front-end mobile computing layer
and (2) back-end cloud computing layer. By acting as the front-end layer of the
framework, a mobile device plays two distinct roles that include (1) sensing the
user’s context (i.e., location, age, and preferences) and (2) providing an interface
to display context-aware recommendations. Cloud computing acts as the back-end
layer to compensate for limited resources of a mobile device by providing storage

Fig. 12.1 An overview of the
proposed mobile cloud
recommender system

286 A. Khan et al.

and computation resources to produce recommendations that are communicated
to the mobile device. The proposed solution1 allows markets, businesses, and
transaction-driven entities to communicate with their potential customers in a smart
way, i.e., to provide recommendations to the customers based on their localized
context of location and preferences. The primary challenge to generate context-
aware recommendations lies with the identification of contextual elements such as
user’s location and preferences from different sources. Another research challenge
for recommendation systems is to yield recommendations in real-time fashion for a
given user from large and diverse dataset(s) of persons’ past preferences. In doing
so, there is a need to efficiently utilize the resource-constrained mobile devices that
can execute the computation and energy-intensive tasks efficiently.

Proposed Contributions A recent survey on the existing mobile recommender
systems highlights that current solutions fall short of context-aware recommenda-
tions in a smart market domain [32]. The proposed solution introduces a system
architecture, algorithms, enabling technologies, and a prototype for mobile-cloud-
based context-aware recommender system. We outline the primary contributions of
the proposed solution as:

– Unification of the mobile and cloud computing technologies to provide a
framework that supports users’ decision support in smart city systems. The
framework empowers its users with mobility and context-awareness while
processing complex recommendations accurately and efficiently.

– Algorithms and prototype that support automation and user-based customization
to provide portable and context-aware matchmaking between potential customers
and business entities in smart markets.

– Exploiting mobile cloud computing as state-of-the-art mobile computing tech-
nology to alleviate the resource poverty of mobile devices by means of cloud-
based resources. The solution supports a class of recommender systems that are
context-aware, portable, accurate, and resource efficient.

Section 12.2 presents background details and the related research. Section 12.3
presents the proposed framework and its architecture. Section 12.4 presents the
algorithms and tools to implement the framework. Section 12.5 presents the
framework evaluation. Section 12.6 presents conclusions and future research.

12.2 Background and Related Research

First, we present the background details about the different types of recommender
systems in Sect. 12.2.1. We then discuss the existing research on context-aware
recommender systems in Sect. 12.2.2, e-type software recommender systems in

1Please note that we use the terms proposed solution, proposed system, and proposed framework
interchangeably, all referring to the same concept.

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 287

Sect. 12.2.3, and cloud-based recommender systems in Sect. 12.2.4. A discussion
of the different types of recommender systems and their state-of-the-art research
helps us to justify the scope and needs for the proposed recommender system. The
concepts and terminologies used in this section are utilized throughout the paper.

12.2.1 Types of Recommender Systems

The recommender systems can generally be categorized into five distinct types as
illustrated in Fig. 12.2 that includes:

1. Content-based recommender systems recommend items to user according to
user’ preferences and past history [12].

2. Collaborative filtering recommender systems recommend the items to user
based on the collaborative preferences that are gathered from a diverse set of
users [44].

3. Demographic recommender systems recommend items to users on the basis of
user’s personal profile of demography [3].

4. Knowledge-based recommender systems recommend items according to either
inferences regarding users’ taste or particular domain knowledge. These types

Fig. 12.2 An overview of the
types of recommender
systems

288 A. Khan et al.

of recommender systems exploit past knowledge about how items of potential
recommendation fit better according to preferences of the user [8].

5. Hybrid recommender systems are based on the intersection of the above
mentioned approaches to provide recommendations [38].

In addition to the types of recommender systems mentioned above, we also
discuss four major categories or the real world domains where different types of
recommender systems have been applied [32]. We discuss the recommender systems
in the context of mobile and e-type systems detailed below.

12.2.2 Context-Aware Recommender Systems

Context-aware recommender systems present items to the user(s) according to
his/her taste and preferences as well as considering the contextual factors such as
location, mood, weather, and day or time.

– Mobile Recommender Systems for Places of Interest: In recent years, there
have been many efforts to develop recommender systems that can operate in
different domains such as tourism, leisure, e-commerce, and mobile-commerce
recommendations. For example, Braunhofer et al. [6] have developed a context-
aware mobile application STS that suggests user’s places of interests by using
their mood, weather conditions, and personality traits. They used five factor
model [15] along with user past rating to discover user personality traits. One
of the primary challenge in developing multi-user mobile information systems
lies with the scalability of the solution. By keeping scalability issues in mind,
Roberts et al. [29] have designed a high-performance mobile recommender
system (Magitti) which is scalable to many users operating at the same time.
The system proposes a technique for recommending leisure time activities based
on what time of week it is and venues nearby to the users’ location by combining
multiple recommendation patterns using predefined rules. A three-tier client–
server architecture approach has been used to implement 3D based context-aware
system [27]. These three tiers are the mobile client application, the GIS server,
and the recommender server. The mobile client application is responsible to
download and render 3D maps over cellular network. It also keeps track of user’s
location and speed via GPS/compass and communication is achieved through
binary request–response protocol.

– Knowledge-Based Recommender System for Movies: Currently, recommender
systems are making use of semantic web technologies to address the challenges
of data sources diversity and information overload. For example, a recommen-
dation system named as RecomMetz that recommends movie show times is
presented in [8]. In RecomMetz, three different types of contextual factors are
studied: (a) location, (b) crowd, and (c) time to produce recommendations.
The proposed architecture of RecomMetz is based on modules, such as user
interface, user check-in subsystem, data repository, context-aware subsystem,
and recommendation engine.

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 289

Security and Privacy of Recommender Systems Typically, context-aware recom-
mender systems have some privacy issues, such as the right(s) of users to know how,
when, and under which circumstances their location as well as identity and other
personal information can be accessible to other users or services. To support the
privacy preserving mobile recommender systems, a solution named PRECISE [40]
has been developed using cloud architecture. The PRECISE allows users to define
privacy preserving policies while availing-off recommendation services.

12.2.3 Recommender Systems for E-Type Software

The e-type software refers to the systems such as e-health and e-commerce that
exploit the ICT technologies to automate the manual and laborious tasks efficiently.
Current recommendation techniques cannot be fully applied to e-type systems. To
address this issue, Yang et al. [43] proposed a location-aware recommender system
named PR (personal recommender) that fulfills customers’ shopping demands with
location-based seller offers and publicities. In this solution, on client side there
are two components (a) web browser and (b) location manager. Customer requests
include its GPS location, while the server side system maintains database for
customer history and database having customer profile. With the help of customer
past history which is stored in the form of customer preferences, similarity is
estimated with any new web page by the vendor.

– Recommendation System for E-Health: Services related to health technology can
be easily run over web due to current technological advancement in the field of
cloud computing and strong infrastructure of wireless communication and sensor
networks. Multiple organizations have provided online information regarding
medical services available for public use. People make use of this information
for personal health care management or patient-specific decision making [42].

The information pertinent to the patients is generally distributed across a huge
number of different web sites, so it is hard for patients to explore authentic
health care information from large volume of data. It has been found that
young people preferred to use mobile devices to download or browse health
information [16]. Moreover, Wang et al. [41] have proposed a framework to
develop a recommendation service that facilitates users to get relevant health
information on mobile devices [35].

12.2.4 Cloud-Based Recommender Systems

Due to the limited battery and computational resources of mobile devices, cloud
services provide a great alternative to software services that are configured and
executed on the mobile. By taking into consideration the cloud computing based

290 A. Khan et al.

Table 12.1 A comparison of the relevant existing solutions of mobile recommender systems

Application
domain

Type of rec-
ommender

Context
information

Mobile
computing

Cloud
computing

Mobile
cloud
computing

Solution
reference

E-commerce Content
based

Location � × × [43]

Leisure
activities
(music)

Content
based,
collaborative
filtering

Weather,
location,
companion

� × × [14]

Leisure
activities
(media
items)

Knowledge
based,
collaborative
filtering

Location,
time, day

� � � [26]

Leisure
activities
(movies)

Knowledge
based,
collaborative
filtering

Location,
crowd, time

� × × [8]

Tourism Collaborative
filtering

Location,
time

� � � [20]

E-health Collaborative
filtering

User
preferences,
physiologi-
cal
data

� � � [41]

Tourism Knowledge
based,
collaborative
filtering

Location � × × [25]

solutions, Otebolaku and Andrade [26] have proposed a context-aware recom-
mendation system to recommend relevant cloud-based media particulars to mobile
users. The context recognition service hosted inside the cloud is responsible for
monitoring, learning, and predicting users’ context. To retrieve user context, WiFi,
GPS, accelerometer, rotation as well as orientation vector sensors have been
used. In this solution, the nearest neighbor (KNN) algorithm has been used to
predict the location and activity of the users. Moreover, a web-based recommender
system named REJA is developed to address drawbacks of mobile recommender
systems [25]. The current approaches detailed above do not provide an optimal
solution for the problem of group recommendations as well as cold start and
data sparseness problems. To overcome these issues, Khalid et al. [20] have
implemented a cloud-based solution named OmniSuggest for the problem of venue
recommendation in the domain of social networks for a single user and/or a group of
friends. OmniSuggest uses the mixture of ant colony algorithms with social filtering
technique to retrieve the most favorable location recommendations based on real-
time context such as traffic and weather conditions.

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 291

Comparative Summary of Existing Solutions In Table 12.1, we present a
comparison-based summary of the existing solutions. For an objective comparison
and interpretation of the results, we compare the existing solutions based on
six distinct criteria presented in Table 12.1. For example, to interpret the data
in Table 12.1, we can summarize that [43] presents a solution that exploits the
context-based recommender techniques and uses location as a context to support
mobile recommender system for e-commerce activities. We conclude that the
solutions for mobile recommender systems have progressed and matured over time.
However, there is a need for innovative solutions that address mobile commerce
in general and smart markets in particular. In addition, the emerging solutions
need to exploit mobile cloud computing as state-of-the-art for mobile computing
technology. Mobile cloud computing supports context-aware and mobility-
driven recommendations while also maintaining the scalability and elasticity of
computational resources.

12.3 Architecture of the Recommendation Framework

In this section, we present the architecture of the proposed framework and its
underlying layers that represents a higher-level view and blueprint of the overall
system. Based on the presented architecture, we discuss the implementation specific
details for the framework later in the paper.

12.3.1 Architecture and Patterns for the Framework

As per the ISO/IEC/IEEE 42010 standard,2 architecture of a software intensive
systems represents a high-level view of the systems in terms of system components
(e.g., computational elements and data stores) and connectors that enable compo-
nent communication. We follow software architecture-based development of the
proposed framework for two reasons detailed below.

1. System abstraction and quality: Software architecture abstracts the complex
and implementation specific details of the system with higher-level software
components and connectors. Software components and connectors help with
designing and reasoning about the system functionality and quality prior to its
implementation [23].

2. Reusability of design: Software architecture patterns can be exploited as
proven best practices that support reusability of components and structures in
architecture-based development and enhance the quality of the software [7].

2ISO/IEC/IEEE 42010 Systems and software engineering—Architecture description is an interna-
tional standard for architecture descriptions of systems and software.

292 A. Khan et al.

Fig. 12.3 Pattern-based software architecture for recommender system

We present the architecture of the proposed framework in Fig. 12.3. Specifically,
we present the software architecture view in terms of two architectural patterns,
namely: layered architecture pattern, and publish–subscribe pattern as illustrated in
Fig. 12.3. The layered architecture pattern has helped us to maintain the separation
of concerns in terms of mobile and cloud computing layers to engineer and
develop the recommender system[18]. In addition, we have also applied the publish–
subscribe pattern that helps to maintain the relationship between potential customers
and business entities as the requesters and the providers of the product specific
contextual information [13]. Based on the illustration in Fig. 12.3, we detail the
application of the layered pattern to the proposed software architecture as below.

12.3.2 Context-Aware Mobile Computing Layer

The mobile computing layer as the front-end of the system exploits portable and
context-aware mobile devices that provides an interactive interface to the potential
customers and the market entities to communicate with the system [2, 5]. Using the
mobile computing layer the potential customers can specify their preferences such
as interest in available discounts, consumer products, and services to enable the
matchmaking between potential customers and the market. In addition to the user
input and decision support, the mobile device dynamically calculates the contextual
information such as user’s geographical location along with market offerings to
recommend the products/services of the customers’ interest.

Mobility of mobile computing inherits a few challenges such as resource poverty
that includes limited processor, memory, and available energy to perform complex

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 293

and computationally intensive tasks. This restriction poses the challenge to the
mobile recommender system that must perform complex analytics—as real-time
computations—to offer accurate recommendations. There is a need to extend the
computation and storage resources of the mobile devices to enable efficient and
scalable recommender system.

12.3.3 Computation-Based Cloud Computing Layer

Cloud computing layer as the back-end of the system provides virtually unlimited
(pay-per-use) hardware and software resources [24]. Specifically, the cloud layer
offers infrastructure, platform, and software as a service to its users. Therefore, in
order to compensate for the resource poverty of the context-aware mobile device,
we use the software as a service offered by cloud servers that integrates the mobile
and cloud computing technologies to generate the recommendations.

Once the mobile device captures user preferences and contextual information,
the details are stored on the cloud-based server. The cloud server based on the input
from the mobile computing layer computes the most relevant recommendations and
communicates them back to the mobile device. The integration and operations of
the mobile and cloud computing technologies are enabled by means of continuous
availability of the network that enables the inter-layers communication. By using
the layered architecture pattern, we distinguish between the two distinct concerns
of user interaction and system processing with a systematic implementation of the
recommendation system.

As in Fig. 12.3, the publish–subscribe patterns help to manage an effective
coordination between the user level inputs and the system level processing. By
applying this pattern, the market entities (such as outlets and restaurants) can publish
their offerings of products/services to a central repository (such as cloud-based data
storage) for their broadcasting. In contrast, the potential customers can subscribe
to the published offerings that enable the matchmaking between both parties. The
publish–subscribe patterns provide a systematic mediation between markets and
potential customers to enable the digital matchmaking.

12.4 Algorithms and Technologies for Framework
Implementation

After presenting the software architecture, we now present the details of the
architecture-based implementation of the recommender framework. We present the
algorithms that represent the data, modularization, and parameterized customization
of the proposed framework in Sect. 12.4.1. We discuss the tools and technologies
that implement the algorithms to provide the automation and proof-of-the-concept
for the recommender system in Sect. 12.4.2.

294 A. Khan et al.

Fig. 12.4 An overview of the context-aware recommendation algorithms

12.4.1 Algorithms for Recommender System

We present the algorithms for the recommender system guided by the illustrations
in Fig. 12.4. First the recommend-products algorithm is executed to collect the
details of the nearby products (as per users’ location and proximity details).
The recommend-products algorithm is referred to as the online processing as it
dynamically calculates the relevant products and offers based on users’ location and
preferences each time the recommender system is executed. The next two algorithms
similar-users-product-ratings and similar-product-ratings support complementary
functionality to find similar products and users. These two algorithms are precom-
puted, normally as part of the off-line processing. The technical details of these
algorithms as in Fig. 12.4 are provided below (Table 12.2).

In the context of the existing recommendation systems (cf. Sect. 12.2, Fig. 12.2)
We have adopted the hybrid recommendation system approach. This approach uti-

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 295

Table 12.2 Utility methods of algorithms to generate context-aware recommendations

Method (parameter) Returns Description

FIND-SIMILAR-USERS (id) List Get products recommended to similar users
having high scores corresponding to active user

FIND-SIMILAR-PRODUCTS

(user id)
List List products from similar-products table having

high scores corresponding to active user

GET-LOCAL-PRODUCTS

(user location)
List List all available products near to active user’s

current location

GET-PRODUCT-PREFERENCES

(user id)
List List all available products based on active user’s

preferences

GET-TOP-PRODUCTS

(similar product list)
List Get list of top k products from similar-products

table rated highly corresponding to active user

GET-TOP-USERS-PRODUCTS

(similar user list)
List Get list of top k products from similar-users table

rated highly corresponding to active user

Table 12.3 Parameters of algorithms to generate context-aware recommendation

Parameter Description

Plocal List of products located in the vicinity of the active user’s current location

Ppref erences List of products falling in similar category of active user’s preferences

Psimilar List of products from similar products list rated highly by the active user

Psimilar−user List of products from similar-users table rated highly for the active user

Pdetailed Combined product list of three lists that includes “content product list,”

“alike product list,” and “alike user-product list”

Precommended Contains common products in both detailed and nearby product lists

lizes the context information along with content filtering technique and collaborative
filtering algorithm to generate best possible recommendations. The utility function
of the implemented system is as follows:

Context × User × Product → Recommendation

All the algorithmic execution and data storage take place at the back-end cloud
server. Mobile devices only act as portable and context-aware user interfaces to
provide some input (user location and preferences) and output (context-aware
recommendations) as in Fig. 12.4. The unification of the mobile and cloud com-
puting helps with a portable, context-aware recommender system with necessary
computation and storage resources.

Table 12.3 presents a list of variables that support the parameterization of
algorithms for online recommendation’s generation. Also, Table 12.2 highlights
all the utility methods that are used during the process of online recommendation
generation.

296 A. Khan et al.

Algorithm 1: Recommend-Products

– Input: Active user’s id (uid), geolocation of the user (loc), and preferences of
the user (preferences).

– Process: Based on the active user’s location all locally available products and
offerings are selected and compiled as a list (Plocal—Line 2, Algorithm 1).
This list is used to retrieve a detailed product list as per the user prefer-
ences (Pdetailed—Line 4). A procedure runs to find similar products using
preferences of similar users. Once all duplicated data is removed, a recommen-
dation is returned based on top k items that rated highly for the active user
(Precommended—Line 5) in Algorithm 1. The tables comprising similar users and
products are precomputed using off-line algorithms described later.

– Output: A list of recommended products Precommended .

Algorithm 1 Recommend-products algorithm
Require: current user: uid, geolocation: loc, user preferences: Ppref erence

1: Plocal ← GET-LOCAL-PRODUCTS(loc)

2: Ppref erence ← GET-PRODUCT-PREFERENCES(uid)

3: Psimilar ← FIND-SIMILAR-PRODUCTS(uid)

4: Pdetailed ← Plocal ∩ (Ppref erence ∪ Psimilar)

5: Precommended ← GET-TOP-PRODUCTS(P)

Ensure: Precommended a list of recommended products

Algorithm 2: Similar-Users-Product-Ratings

– Input: User-product rating matrix (Users).
– Process: The process illustrated in Algorithm 2 picks all products that are not

rated by the current user (ρ—Line 3, Algorithm 2). In the next step, a locality-
based criterion based on the user location is used to find all neighboring users
with available product ratings (Psimilar−user—Line 4). Only users within the
same demographic category are considered while compiling the neighboring
users’ set. In the end, ratings for the target product are calculated based on
a weighted average of neighboring users’ rating (Ppredicted—Line 5). The
resulting ratings are updated to the user-product rating matrix.

– Output: A list of predicted product ratings Ppredicted .

Algorithm 3: Similar-Product-Ratings Algorithm

– Input: Product rating matrix (Products).
– Process: First all similar users who have not rated a target product are selected

(Usimilar—Line 1, Algorithm 3). In the next step, all other products rated by
those users are searched. Cosine similarity is used to calculate product similarity

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 297

Algorithm 2 Similar-users-product-ratings algorithm
Require: user-product rating matrix: (Users)
1: Initialize V (s) = 0, for all s ∈ S+
for each: u ∈ Users

2: Puser ← GET-PRODUCTS(u)

3: Usimilar ← GET-SIMILAR-USERS(Puser)

4: ρ ← PEARSON(u, Usimilar)

5: Psimilar−user ← GET-SIMILAR-PRODUCTS(ρ)

6: Ppredicted ← PREDICT-PRODUCTS(Psimilar−user , u)

Ensure: Ppredicted a list of predicted product ratings

of the target product to other products (ρ—Line 3). This results in a subset of
most similar products (Psimilar—Line 4). Subsequently, a rating for the target
product is predicted using the ratings of the similar products. The predicted
rating is updated against the target product in the user-product rating matrix
(Ppredicted—Line 4).

– Output: A list of predicted product ratings Ppredicted .

Algorithm 3 Similar-product-ratings algorithm
Require: user-product rating-matrix
for each: p ∈ Products

1: Usimilar ← GET-SIMILAR-USERS(p)

2: Psimilar ← GET-SIMILAR-PRODUCTS(U, p)

3: ρ ← COSINE(p, P)

4: Psimilar ← GET-SIMILAR-PRODUCTS(ρ)

5: Ppredicted ← PREDICT-RATING(Psimilar)

Ensure: Ppredicted a list of predicted product ratings

12.4.2 Tools and Technologies for Framework Implementation

After presenting the algorithms, we now discuss the tools and technologies used to
implement the framework. The framework implementation represents a prototype
based proof-of-the-concept for the proposed solution. We have used the architecture
from Fig. 12.3 to implement the framework. An overview of the integrated tools
and technologies to implement the mobile computing and cloud computing layers
is provided in Fig. 12.5.

We have exploited the Amazon cloud services for storage and computing
efficiency. From a technical perspective, we have deployed a virtual server on
Amazon cloud called Amazon EC2 instance3 and set up Red Hat Linux operating
system over that instance. We have developed server side application using Node.js4

3Amazon EC2: https://aws.amazon.com/ec2/.
4Node.js: https://nodejs.org/en/.

https://aws.amazon.com/ec2/
https://nodejs.org/en/

298 A. Khan et al.

Fig. 12.5 Overview of the tools and technologies to implement framework

and set up Node.js web server on Amazon EC2 Instance. For the sake of efficient
data retrieval we have used Mongo DB.5 We installed MongoDB on Amazon
EC2 Instance. Recommendation related data is managed by Amazon S3 storage
services.6

The recommendation engine is written in python language7 installed over
Amazon EC2. It is the main component of the framework. The task of recommen-
dation engine is to retrieve data from MongoDB collections, run recommendation
algorithms and techniques, and save the result set back to MongoDB for user’s
recommendations. The algorithmic details have already been discussed in the
previous section.

12.4.3 Implementing Context-Aware Mobile Computing Layer

From an implementation point of view, at the mobile computing layers (i.e.,
context-aware user interface) we have exploited HTML58 technologies to support
multiple mobile platforms. Moreover, the reason to choose a platform independent
technology for the mobile layer is that the framework carries out all performance
intensive tasks over cloud layer. The core responsibility of the mobile layer is
to retrieve the current location of the user and calculate users’ preferences to (1)

5MongoDB: https://www.mongodb.com/.
6Amazon S3: https://aws.amazon.com/s3/.
7Python: https://www.python.org/.
8HTML 5—World Wide Web Consortium: https://www.w3.org/TR/html5/.

https://www.mongodb.com/
https://aws.amazon.com/s3/
https://www.python.org/
https://www.w3.org/TR/html5/

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 299

send them to cloud end of the system, and (2) display the recommended products
to the end user. To find the current location of the user we have used HTML5
Geolocation API. Restful Architecture has been utilized to perform communication
between mobile and cloud end of the system. The user of the framework needs to
be registered to system to get any recommendations. User information is stored into
user table/collection in MongoDB installed over Amazon EC2. After the user gets
logged into the system, user’s current location is retrieved. The current location of
the active user and preferences are sent to Node JS server via Restful API.

12.4.4 Implementing Processing Based Cloud Computing
Layer

This section describes the methodological details to implement cloud end of the
recommender system. It is vital to mention that all computational and storage work
for recommendation generation is performed over cloud layer using node JS server
and MongoDB that are deployed on Amazon EC2 instance. Another benefit gained
by cloud layer is off-line processing performed by python based recommendation
engine. The purpose of off-line processing is to overcome the problems of scalability
and performance.

To implement off-line processing we have used collaborative filtering algo-
rithm [8, 25, 44]. We have utilized the table user-product rating matrix to apply
above mentioned techniques and generate precomputed tables of similar users as
well as similar products (cf. Algorithms 2 and 3). Python based recommendation
engine runs these algorithms to refresh precomputed tables on daily basis based on
the time when there is a minimalistic use of the framework. In order to compute item
based similarities we have utilized cosine-based similarity (cf. Algorithm 3—Line
3) and for the sake of user based similarities’ computation, we have utilized Pearson
correlation method (cf. Algorithm 2—Line 3). We have unified the items based
collaborative filtering technique with user based collaborative filtering technique
during off-line processing.

Figure 12.6 presents an overview of the context-based recommendation of the
products’ list to the users. As highlighted in Fig. 12.6, there are two types of users,
namely: (1) new users and (2) existing users that lead to two scenarios for the
recommendations that are detailed below.

– Cold Start Scenario represents the situation when a new user utilizes the
framework for context-aware recommendations as illustrated in Fig. 12.6a. Since
the framework has no prior information about the user’s context, any compu-
tations and recommendations by the framework are cold start. In the cold start
scenario, the framework gathers user’s location and preferences to generate the
recommendations.

– Warm Start Scenario represents the situation when an existing user utilizes
the framework to get the recommendations as illustrated in Fig. 12.6b. In this

300 A. Khan et al.

Fig. 12.6 Overview of the product recommendations sample implementation logic

situation, the framework has prior contextual information about the user that
helps the framework’s accuracy of recommendations as a warm start. In the warm
start scenario, the framework gathers user’s location, preferences as well as user’s
historical data (e.g., past preferences, items/points of interests, and time/date) to
generate the context-aware recommendations. These recommendations ensure a
digital matchmaking in a virtualized context of smart markets involving potential
customers and business entities.

We also highlight the sample code that executes at the mobile and cloud
computing layers of the framework to generate the context-aware recommendations
in Fig. 12.6. Figure 12.6c presents the partial view of the code to display the
recommender product list to the users. For the display of the recommendation list,
we have used ionic framework to support a platform independent code/technology.
Figure 12.6d presents the back-end logic that gathers the user’s contextual informa-

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 301

tion to generate the recommendation list. The logic is executed at the cloud-based
server. We have used the Angular JS to compute the contextual information.

12.5 Qualitative Evaluation of the Framework

We now present the results for the framework evaluation. Specifically, we discuss
the dataset(s) used in Sect. 12.5.1 to evaluate the accuracy and efficiency of the
framework presented in Sect. 12.5.2. Finally, we also present some threats to the
validity of the evaluation results detailed in Sect. 12.5.3.

12.5.1 Platform, Metrics, and Dataset for Evaluation

– Platform and Tools Used for Evaluation: All evaluations were performed using
Huawei P8 Lite smart-phone on the client side (i.e., mobile computing layer). On
the other hand, on the server side, a Red Hat Enterprise Linux OS system with
Node.js, MongoDB, and Python installed was used (i.e., cloud computing layer).
The proposed recommender framework is evaluated based on two main criteria:
(1) accuracy of the recommendations that are generated by the cloud server and
(2) efficiency of the resource utilization by the mobile device in terms of CPU
and power consumption. Memory consumption issues are not considered due to
the fact that all the data storage takes place at the cloud-based server.

– Metrics Used for Evaluation: To evaluate software quality features of the
developed recommender system, we have used ISO/IEC 9126-1 software quality
standard [19] introduced by the International Organization for Standardization
(ISO).9 The standardized model investigates six quality features that are catego-
rized into 27 sub-categories. Using an established model to evaluate the quality of
the framework can help us to avoid any bias and guides feature based evaluation
of the framework. To evaluate the proposed recommender framework, we only
considered two quality features: accuracy, efficiency, and their sub-features.

– Dataset Used for Framework Evaluation: We used the dataset of superstore
sales to evaluate the proposed recommender system. The dataset contains real
items of product offerings and is publicly available at [30]. The selected dataset
provides us with realistic data and scenarios to avoid any bias or limitations of
the evaluation. We slightly modified the dataset to accommodate geographic
locations (regions/provinces) corresponding to our needs that provides the
foundation to evaluate the framework in a real context, as per the needs of the

9It is noteworthy that ISO/IEC 9126–1 was first published in 1991; and later on from the year
2001 to the year 2004 ISO published an international standard (ISO/IEC 9126–1) as well as three
technical reports (ISO/IEC 9126–2 to ISO/IEC 9126–4).

302 A. Khan et al.

local users and markets. For framework evaluation, we consider attributes of
customer name, product name, product category and sub-category, price, and
geographic location to propose a recommender system.

12.5.2 Results for Framework Evaluation

The result shows higher precision rates for the proposed system corresponding to
good recommendations. Moreover, the proposed system demonstrated an efficient
CPU consumption and memory usage.

Accuracy of Framework’s Recommendations

In order to quantify and measure the accuracy of the framework’s recommendations,
we have used two metrics, namely: (a) recommendation precision as a measure of
the accuracy of the recommendations made, and (b) recommendation recall mea-
sures the proportion of correct recommendations out of the total recommendations
made by the framework. Mathematically, the metrics are defined as

precision = T P

T P + FP
; recall = T P

T P + FN

where
⎧
⎪⎪⎨

⎪⎪⎩

T P : true positives
FP : false positives
T N : true negatives
FN : false negatives

We present the results of measuring the framework’s accuracy based on the data
in Table 12.4. Moreover, we provide an illustrative comparison of the evaluations
and trials on the framework to measure its accuracy in Fig. 12.7. As highlighted in
Table 12.4 and Fig. 12.7, there are two scenarios, namely: cold start and warm start
recommendations that have been detailed earlier.

We performed the trials with 5 distinct user groups (UG), where each group
had on average 10 people with varying age and gender groups along with distinct
preferences to reduce any bias in the recommendation trials. The users’ groups were
asked to specify their preferences and let the framework provide them with context-
aware recommendations. Based on the data in Table 12.4 and its visualization in
Fig. 12.7, we observed that average precision and recall of the proposed system
were 80.4% and 64.8%, respectively, in case of newly registered users (cold start
scenarios). On the other hand, average precision and recall of the system were 82.6%
and 72.6%, respectively, in case of already existing users (warm start scenarios).

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 303

Table 12.4 Precision and recall for newly registered users and existing user

Specific

User group category total Recommended Relevant Precision Recall

Cold start scenario UG1 81 63 45 71% 55%

UG2 96 72 60 83% 62%

UG3 98 98 84 85% 85%

UG4 90 60 50 83% 55%

UG5 91 65 52 80% 57%

Avg. 91.2 71.6 58.2 80.4% 64.8%

Warm start scenario UG1 84 96 72 75% 85%

UG2 99 77 66 85% 66%

UG3 72 63 54 85% 75%

UG4 88 66 55 83% 62%

UG5 80 70 60 85% 75%

Avg. 84.6 74.4 61.4 82.6% 72.6%

Note: Column “specific category total” shows the total number of records related to a particular topic
in the database. Column “recommended” represents the count of retrieved records, while column
“relevant” represents the number of records relevant to user preferences. The last row in both tables
describes the average for each column

Fig. 12.7 Overview of the results for evaluating framework’s accuracy for recommendation

A recommendation list was generated based on the location of the user as in
Fig. 12.6. The recommendation list was also used to record and evaluate the
precision and recall of recommendations provided by the system. The results have
been shown in Table 12.4 for newly registered users and existing users, respectively.

304 A. Khan et al.

Efficiency of the Framework

We now measure the computational and energy efficiency of the proposed recom-
mender system. The data is offloaded to cloud-based server, therefore, evaluating the
memory or storage efficiency of the mobile computing layer is out of the scope here.
To assess and evaluate the efficiency of the recommender framework, we monitored
its memory and CPU usage using CPU monitor [9]. An overview of the framework’s
processing and power efficiency monitoring is illustrated in Fig. 12.8. In Fig. 12.8, to
measure the efficiency, we need to consider two execution modes of the framework:

– Framework Execution as a Foreground App represents the scenario when the
framework is active and fully executional during the recommendations process.

– Framework Execution as a Background App represents the scenario when
the framework is only running in the background for context calculation but not
operational for the users’ recommendations.

We observed that the proposed application took approximately 3 s to fetch and
display a list of recommended items acquired from the node server to the end
user. In the former mode, CPU consumption did not exceed 4% and RAM used
was 157 MB. In the latter mode, maximum CPU usage remained 2% and RAM
usage was ∼146 MB. Furthermore, to measure battery consumption of the mobile
application, we used AccuBattery [1]. The usage was normal in both execution
modes, 0.2% and 0.4% in background and foreground modes, respectively.

12.5.3 Threats to the Validity of Framework

After presenting the framework evaluation, we also highlight some threats to the
validity of the proposed research and solution. The threats also highlight the possible
future work to optimize the proposed solution.

– Threat I—Availability of the Diverse Dataset: A possible threat to the validity
relates to the availability of a diverse set of data. Diversity of data refers
comprehensiveness of the user related information (i.e., gender, social and
national background, emotion, etc.) along with time, day, and other environ-
mental conditions to further evaluate the framework. The proposed algorithms
provide parameterized customization of the solution. However, the availability
of the diverse dataset can help us to further evaluate the accuracy and efficiency
of the proposed and developed framework.

– Threat II—Real Use-Cases from Smart Markets: Smart recommender sys-
tems in general and smart markets in particular are relatively innovative concepts
and lack any historical data. Unlike the more conventional recommender sys-
tems, the available usage scenarios for smart markets are limited. Moreover, the
unification of the mobile and cloud computing technologies requires historical
data and use-case for a more rigorous evaluation of the framework.

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 305

Fig. 12.8 Overview of the results for evaluating framework’s efficiency

306 A. Khan et al.

– Threat III—24 × 7 Connectivity for Framework: From a technical perspec-
tive, the solution exploits mobile devices as context-sensitive and portable
user interface. The resource poverty of the mobile devices is alleviated with
a continuous connectivity and processing at the cloud-based server. Therefore,
a fundamental requirement to the success of the framework is a continuous
network connection between a mobile device and the cloud-based server. In case
of poor connectivity, the accuracy and performance of the framework can be
affected.

12.6 Conclusions and Future Research

In this paper, we exploit the mobile cloud computing as state-of-the-art mobile
computing technology to develop a context-sensitive and portable recommender
system. The recommender system aims to support an efficient and context-driven
matchmaking between potential customers (based on their shopping preferences)
and relevant business entities (based on their products/service offerings). The
recommender system supports the activities of the smart markets, i.e., virtualized
and context-aware markets and/or shopping arena. Smart markets aim to facilitate
the customers with recommendations and supporting business entities to maximize
the outreach of their products and offerings. The proposed recommender system
advances the state-of-the-art for recommender systems by exploiting a layered
architecture that unifies the mobile computing and cloud computing technology
layers. The system supports smart city systems in general and focuses specifically
on smart markets.

Contributions and Outcomes The primary contributions of the solution lies
with the proposed architecture and its underlying algorithms to sense contextual
information from the users. The contextual information is matched with the best
market offerings to facilitate the users with decision support based on contextual
recommendations. We have used the publish–subscribe architectural pattern to reuse
knowledge and best practices and customized it to enable an effective matchmaking
and communication. The architectural model and pattern used have also helped
us to model and develop mobile computing layer (front-end context-sensitive user
interface) that relies on cloud computing layer (back-end data processor and storage)
to alleviate the resource poverty of the mobile devices. In short, the proposed
research presents an architecture, patterns, algorithms, enabling technologies, and
implementation platform to develop a recommender system for smart markets.

Evaluations and Limitations We have developed and evaluated the prototype
as a proof-of-the-concept for recommender system and its underlying algorithms.
The prototype supports automation, user intervention, and customization during the
recommendation process. We have used the ISO/IEC-9126-1 model to evaluate the
quality in terms of accuracy and efficiency of the recommender system. To support
a formal approach, we have utilized cosine-based similarity and Pearson correlation

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 307

for computation of context-aware recommendations. The evaluation results suggest
that the framework supports high accuracy for recommendations and facilitates
computation and energy efficient mobile computing. We have also highlighted some
threats to the validity of the research.

Future Work In future, we mainly focus on extending the types of recommenda-
tions and its application to other domains of the smart city systems such as crowd-
sensed recommendations. Also, the privacy of user’s context, their preferences, and
information are also of central importance as part of the future work. From the
functional perspective, we aim to explore other contextual factors, such as weather
conditions, a week of the day, etc., to further optimize and extend the types of
recommendations.

References

1. Accbattery(version-1.1.7). https://play.google.com/store/apps
2. Ali, M., Zain, J.M., Zolkipli M.F., Badshah, G.: Mobile cloud computing & mobile battery

augmentation techniques: a survey. In: 2014 IEEE Student Conference on Research and
Development (SCOReD), pp. 1–6. IEEE, Piscataway (2014)

3. Al-Shamri, M.Y.H.: User profiling approaches for demographic recommender systems.
Knowl.-Based Syst. 100, 175–187 (2016)

4. Bakıcı, T., Almirall, E., Wareham, J.: A smart city initiative: the case of Barcelona. J. Knowl.
Econ. 4(2), 135–148 (Jun 2013)

5. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in
mobile recommender systems. Pers. Ubiquit. Comput. 16(5), 507–526 (2012)

6. Braunhofer, M., Elahi, M., Ricci, F.: Sts: a context-aware mobile recommender system for
places of interest. In: UMAP Workshops. Citeseer, 2014.

7. Buschmann, F., Henney, K., Schimdt, D.: Pattern-Oriented Software Architecture: On Patterns
and Pattern Language, Vol. 5. John Wiley & Sons, Hoboken (2007)

8. Colombo-Mendoza, L.O., Valencia-Garcia, R., Rodriguez-Gonzalez, A., Alor-Hernandez, G.,
Samper-Zapater, J.J.: Recommetz: a context-aware knowledge-based mobile recommender
system for movie showtimes. Expert Syst. Appl. 42(3), 1202–1222 (2015)

9. Cpumonitor(version-6.54). https://play.google.com/store/apps
10. Dameri, R.P.: Smart City and Digital City Implementation: Two Best Practices in Europe,

pp. 109–154. Springer, Berlin (2017)
11. da Silva, W.M., Alvaro, A., Tomas, G.H.R.P., Afonso, R.A., Dias, K.L., Garcia, V.C.: Smart

cities software architectures: a survey. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pp. 1722–1727. ACM, New York (2013)

12. de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-
based recommender systems. In: Recommender Systems Handbook, pp. 119–159. Springer,
Boston (2015)

13. Demers, A., Gehrke, J., Hong, M., Riedewald, M., Walker, W.: Towards expressive publish/-
subscribe systems. In: EDBT, vol. 6, pp. 627–644. Springer, Berlin (2006)

14. Derwein, C., Beer, W., Hargassner, W., Herramhof, S.: General Framework for Context-Aware
Recommendation of Social Events. IARIA, Vienna (2013)

15. Gosling, S.D., Rentfrow, P.J., Swann, W.B.: A very brief measure of the big-five personality
domains. J. Res. Pers. 37(6), 504–528 (2003)

16. Hasman, L.: An introduction to consumer health apps for the iphone. J. Consum. Health
Internet 15(4), 322–329 (2011)

https://play.google.com/store/apps
https://play.google.com/store/apps

308 A. Khan et al.

17. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE Trans.
Cloud Comput. 1(2), 142–157 (2013)

18. Jones, N.C., Meter, R.V., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.:
Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012)

19. Jung, H.-W., Kim, S.-G., Chung, C.-S.: Measuring software product quality: a survey of
ISO/IEC 9126. IEEE Softw. 21(5), 88–92 (2004)

20. Khalid, O., Khan, M.U.S., Khan, S.U., Zomaya, A.Y.: OmniSuggest: a ubiquitous cloud-based
context-aware recommendation system for mobile social networks. IEEE Trans. Serv. Comput.
7(3), 401–414 (2014)

21. Kitanov, S., Janevski, T.: State of the art: mobile cloud computing. In: 2014 Sixth International
Conference on Computational Intelligence, Communication Systems and Networks (CICSyN),
pp. 153–158. IEEE, Piscataway (2014)

22. Lewis, G.A., Lago, P., Procaccianti, G.: Architecture strategies for cyber-foraging: preliminary
results from a systematic literature review. In: European Conference on Software Architecture,
pp. 154–169. Springer, Berlin (2014)

23. Medvidovic, N., Taylor, R.N.: Software architecture: foundations, theory, and practice. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol.
2, pp. 471–472. ACM, New York (2010)

24. Mell, P., Grance, T.: The NIST definition of cloud computing. Commun. ACM 53(6), 50 (2010)
25. Noguera, J.M., Barranco, M.J., Segura, R.J., MartíNez, L.: A mobile 3D-GIS hybrid recom-

mender system for tourism. Inf. Sci. 215, 37–52 (2012)
26. Otebolaku, A.M., Andrade, M.T.: Supporting context-aware cloud-based media recommenda-

tions for smartphones. In: 2014 2nd IEEE International Conference Mobile Cloud Computing,
Services, and Engineering (MobileCloud), pp. 109–116. IEEE, Piscataway (2014)

27. Postel, J.: RFC 793: transmission control protocol, September 1981. Status: Standard 88 (2003)
28. Rappaz, J., Vladarean, M.-L., McAuley, J., Catasta, M.: Bartering books to beers: a rec-

ommender system for exchange platforms. In: Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, WSDM ’17, pp. 505–514. ACM, New York
(2017)

29. Roberts, M., Ducheneaut, N., Begole, B., Partridge, K., Price, B., Bellotti, V., Walendowski,
A., Rasmussen, P.: Scalable architecture for context-aware activity-detecting mobile recom-
mendation systems. In: 2008 International Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2008. WoWMoM 2008, pp. 1–6. IEEE, Piscataway (2008)

30. Sample—superstore sales. https://community.tableau.com/docs/DOC-1236. Last modified by:
Micheal Martin

31. Sanchez, F., Barrilero, M., Uribe, S., Alvarez, F., Tena, A., Menendez, J.M.: Social and content
hybrid image recommender system for mobile social networks. Mob. Netw. Appl. 17(6), 782–
795 (2012)

32. Sassi, I.B., Mellouli, S., Yahia, S.B.: Context-aware recommender systems in mobile environ-
ment: on the road of future research. Inf. Syst. 72, 27–61 (2017)

33. Satyanarayanan, M.: Mobile computing: the next decade. In: Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond, p. 5. ACM,
New York (2010)

34. Stuedi, P., Mohomed, I., Terry, D.: WhereStore: location-based data storage for mobile devices
interacting with the cloud. In: Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, p. 1. ACM, New York (2010)

35. Su, J.-H., Wang, B.-W., Hsiao, C.-Y., Tseng, V.S.: Personalized rough-set-based recommenda-
tion by integrating multiple contents and collaborative information. Inf. Sci. 180(1), 113–131
(2010)

36. Szczerbak, M., Toutain, F., Bouabdallah, A., Bonnin, J.-M.: Collaborative context experience
in a phonebook. In: 2012 26th International Conference on Advanced Information Networking
and Applications Workshops (WAINA), pp. 1275–1281. IEEE, Piscataway (2012)

37. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H.: Mobile edge computing potential in
making cities smarter. IEEE Commun. Mag. 55(3), 38–43 (2017)

https://community.tableau.com/docs/DOC-1236

12 A Mobile Cloud Framework for Context-Aware and Portable. . . 309

38. Tarus, J.K., Niu, Z., Kalui, D.: A hybrid recommender system for e-learning based on context
awareness and sequential pattern mining. Soft. Comput. 1–13 (2017)

39. Turban, E., Whiteside, J., King, D., Outland, J.: Mobile Commerce and the Internet of Things,
pp. 167–199. Springer, Berlin (2017)

40. Wang, T., Liu, L.: Privacy-aware mobile services over road networks. Proc. VLDB Endowment
2(1), 1042–1053 (2009)

41. Wang, S.-L., Chen, Y.L., Kuo, A.M.-H., Chen, H.-M., Shiu, Y.S.: Design and evaluation of a
cloud-based mobile health information recommendation system on wireless sensor networks.
Comput. Electr. Eng. 49, 221–235 (2016)

42. Wiesner, M., Pfeifer, D.: Health recommender systems: concepts, requirements, technical
basics and challenges. Int. J. Environ. Res. Public Health 11(3), 2580–2607 (2014)

43. Yang, W.-S., Cheng, H.-C., Dia, J.-B.: A location-aware recommender system for mobile
shopping environments. Expert Syst. Appl. 34, 437–445 (2008)

44. Yang, B., Lei, Y., Liu, J., Li, W.: Social collaborative filtering by trust. IEEE Trans. Pattern
Anal. Mach. Intell. 39(8), 1633–1647 (2017)

Chapter 13
Association Rule Mining in Higher
Education: A Case Study of Computer
Science Students

Njoud Alangari and Raad Alturki

13.1 Introduction

The volumes of data that the world is producing every day are extremely huge. Data
can be produced by humans directly through our interactions with social networks
or by feeding of data into electronic systems. Also, they can be produced solely
by machines, such as those logging the activities of humans or machines. Data
production and storage have become the norm in every aspect of our lives. They are
used in healthcare, banking, education, and even in homes. With adaptation of new
technologies such as the internet of things (IoT) and advancements in technologies
to produce and store data, it is expected that the world will produce more and more
data.

Data can be stored in many forms and in different ways. They can be stored in
relational databases and spreadsheets, and are called structured data. Alternatively,
data can be stored in a nontraditional row–column database, such as text and mul-
timedia content (e.g., videos, photographs, and audio) and are called unstructured
data. Furthermore, data that contain semantic tags (such as e-mail messages, XML,
and HTML) and are not stored in relational databases are called semistructured data.
Because of this diversity, there have been many methods and techniques used to
mine each type. Data differ in the scope and the field that they belong to, and data-
mining (DM) experts deal with them differently. For instance, the objective used to
mine educational data can be different from the objective used to mine healthcare
data. It could be acceptable to build a model that predicts student performance with

N. Alangari · R. Alturki (�)
Department of Computer Science, Al-Imam Mohammad Ibn Saudi Islamic University,
Riyadh, Saudi Arabia
e-mail: naalanqari@sm.imamu.edu.sa; ralturki@imamu.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_13

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_13&domain=pdf
mailto:naalanqari@sm.imamu.edu.sa
mailto:ralturki@imamu.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_13

312 N. Alangari and R. Alturki

85% accuracy, whereas it is not acceptable to have accuracy of only 85% to predict
the success rate of drug treatment.

DM techniques can be predictive or descriptive. Predictive methods use variables
to predict unknown or future values of one or more variables. Examples of predictive
methods are classification, regression, and deviation detection [1]. Descriptive
methods such as clustering, association rule discovery, and sequential pattern
discovery find human-interpretable patterns that describe data [1].

Regression techniques aim to predict the value of a continuous attribute on the
basis of the values of other attributes [1]. The simplest form of regression is linear
regression, where the class is a linear combination of attributes with predetermined
weights. On the other hand, classification methods aim to predict the value of a
discrete attribute on the basis of the values of other attributes. Classification has
many approaches, including decision tree (DT), Bayesian classifier or network,
neural network (NN), support vector machine (SVM), and logistic regression
approaches. Logistic regression allows us to use regression for classification.

Clustering measures the similarity between data points or variables; in other
words, it groups similar data points on the basis of their attributes, and each
group is called a cluster [1]. Clustering methods are divided, in general, into two
groups: partitioning methods and hierarchical methods. Association rules produce
dependency rules based on strongly associated different attribute values [2]. There
are many association rule–mining algorithms such as Apriori, Equivalence Class
Transformation (Eclat), and frequent pattern growth (FPGrowth) [3].

Many researchers have used DM techniques such as regression, classification,
clustering, and association rule mining in the field of education. They have applied
these analyses in traditional education, web-based education (e-learning), and
learning management systems [4]. Their studies have been conducted to accomplish
many tasks related to students’ learning processes, including providing feedback,
predicting student performance, and detecting student behavior [4]. In traditional
education, there are hidden patterns in data that are difficult for instructors and
administrators to notice without the help of DM techniques. Such knowledge could
be useful to students’ learning processes in many ways. Processes such as students
registering in courses, and instructors making or changing major plans or advising
students, take time and effort during every semester. With the use of students’
historical data that universities collect over the years, DM can help to enhance these
processes. As a result, instructors and students can make better-informed decisions.

In this chapter, we report our work in finding an association between courses
in a Computer Science (CS) program on the basis of students’ grades. We report
our work in discovering interesting rules by using different parameters such as
support, confidence, lift, Kulczynski (Kulc), and the imbalance ratio (IR). We used
the Apriori algorithm to mine data on undergraduate students majoring in CS at our
university. The rest of this chapter is structured as follows: we review research in
DM and association mining in Sect. 13.2. In Sect. 13.3 we give a detailed description
of our experiments in using association rule mining to find interesting rules. We give
our conclusion in Sect. 13.4.

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 313

13.2 Related Work

In this section, we review some related work that has used DM in education. We
start by discussing previous work in terms of the classification methods used and the
challenges associated with them. Then, we give a brief background of association
rule mining and how we measure rules’ interestingness. After that, we review related
work that has used association rule mining in education.

13.2.1 Classification in Education

Classification is one of the most popular DM techniques that have been used in
research to analyze educational data. Several studies have been conducted to review
the literature in this area (e.g., a study by Shahiri et al. [5]) and to compare
classification methods that have been used [5, 6]. For instance, Hämäläinen and
Vinni [6] compared classification methods used on educational data on the basis of
eight general criteria.

Many attributes have been used to predict students’ performance, such as pre-
vious courses, standardized examination scores, or preuniversity scores. Different
studies have used different attributes in their analyses. Shahiri et al. [5] reviewed
important attributes used in prediction, such as the Cumulative Grade Point Average
(CGPA) [7, 8], internal assessment [8, 9], students’ demographic data [10, 11],
external assessment, and psychometric factors. According to Shahiri et al. [5], the
most popular task is classification, for which many algorithms have been used, such
as DT [7–10, 12], artificial neural networks (ANNs) [7, 8, 12], naïve Bayes [9, 10,
12], K-nearest neighbor [10, 11], and SVM. Shahiri et al. [5] mentioned that most
researchers have used CGPA and internal assessment as data attributes, and ANN
and DT as classification techniques.

Several studies [7–11, 13] have focused on predicting students’ performance by
using DM techniques alone. The prediction of overall performance or performance
in a specific course could be based on different attributes such as students’
preuniversity data [7, 10], average of course attendance [11], grades in courses [13],
marks in the course [8, 9], and behavioral features in an e-learning education system
[12]. Most of the related studies that we reviewed used classification algorithms for
prediction, including a nearest neighbor algorithm (IBk) [10], rule learners (OneR
and JRip) [9, 10], classification based on an association rules algorithm [13], linear
regression models [7], a classification and regression tree (C&RT), and chi-squared
automatic interaction detection (CHAID) [8]. To compare the models, the studies
used different evaluation measures such as accuracy (which was used by most of
the studies), precision, recall, and F-measures [12].

314 N. Alangari and R. Alturki

13.2.2 Background to Association Rule Mining

Association rule mining is a DM technique that discovers interesting relations
between attributes and then generates rules that represent these relations. These rules
do not imply a causal relationship; for example, rule (A ⇒ B) does not mean that
A causes B. However, the rules imply an association relationship between attributes
(that is, those attributes go together) [14]. As we have mentioned above, the popular
algorithms in association rule mining are Apriori, Eclat, and FPGrowth [3].

The Eclat algorithm uses a vertical data format method where each item is stored
together with its list of TIDs (that is, the IDs of transactions that contain this item) [3,
15]. It is used only at the Apriori join step to generate the candidate itemsets [15]. To
compute the support for an itemset, Eclat uses an intersection-based approach [15].
The intersection operation on TIDs is fast frequency counting, and it is advantageous
for the vertical format that Eclat uses [16]. However, it has a drawback when the
intermediate results of vertical TID lists become too large for the memory [16].

The FPGrowth algorithm was developed on the basis of a new data structure
called a frequent pattern tree (FP-tree) [17]. It stores the database in the main
memory using a combination of vertical and horizontal database layouts [17]; the
transactions are stored in a tree structure, and each item has a linked list going
through to all transactions that contain that item [17]. It avoids the cost of the
candidate generation that Apriori does, by focusing on frequent pattern growth [3].
However, with long pattern data sets, it consumes more memory and performs badly
[17, 18].

Apriori is a basic algorithm to find frequent item sets [3]; it is the one that
we used in this work. Sometimes, Apriori produces a huge number of rules,
making it difficult to use all of them. Because of that, and for other reasons
that will be mentioned later, we must use interestingness measures. The measures
of interestingness evaluate how interesting each rule is. This makes it easier to
distinguish between the rules.

Measures of Interestingness In Apriori, patterns can be represented in the form
of association rules. If the rule is (A ⇒ B), then, to measure its interestingness, we
have many measures such as support, confidence, lift, Kulczynski, and the IR. Such
measures are useful to distinguish between rules especially when there is a huge
number of resulting rules. In addition, we should distinguish between uninteresting
rules, which present an obvious fact, and new rules that could be interesting and
useful. It is common in association rule mining to get a large number of rules that
present facts we already know [19]. More details about the measures are as follows:

• The absolute support (also known as support count, count, or occurrence
frequency) for itemsets A and B is the number of transactions that contain the
itemset, and this is the probability: P(A∪B) [3]. The support for the rule (A ⇒ B)
(sometimes referred to as relative support) is the count of transactions containing
A and B to the number of transactions in the database [20].

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 315

Support (A ⇒ B) = count (A ∪ B)

n
(13.1)

• The confidence of a rule (A ⇒ B) is the number (or count) of transactions that
contain A and B to the number of transactions that contain A, and this is the
conditional probability: P(B|A) [3, 20]. The confidence value is calculated as
shown below [20]:

Confidence (A ⇒ B) = count (A ∪ B)

count(A)
(13.2)

• The lift of a rule measures how many more times A and B occur together in
transactions than would be expected if A and B were statistically independent (not
correlated). The lift value could be equal to 1, which would mean that A and B
are independent and there is no correlation between them; or it could be less
than 1, which would mean that the occurrence of A is negatively correlated with
the occurrence of B; or it could be greater than 1, which would mean that A and B
are positively correlated, and the occurrence of one implies the occurrence of the
other. For example, if the lift of rule (A ⇒ B) is greater than 1, then we could say
that A occurrence increases (or “lifts”) the likelihood of B occurrence by a factor
of the lift’s value [3]. The lift of a rule can be calculated as follows [20]:

Lift (A,B) = P (A ∪ B)

P (A)P (B)
, OR (13.3)

lift (A ⇒ B) = confidence (A ⇒ B)

support(B)
(13.4)

• The Kulczynski measure of A and B (abbreviated as Kulc) is an average of two
confidence measures where the two confidence measures mean the conditional
probabilities: the probability of itemset B given itemset A, and the probability of
itemset A given itemset B. Its range is from 0 to 1, and the higher the values are,
the closer the relationship between A and B is [3]. Kulc = 0.5 signifies neutral
or balanced skewness, whereas the further the value is from 0.5, the closer the
relationship is between the two item sets [21]. Kulc is defined by Eq. (13.3).

Kulc (A,B) = 1

2
(P (A|B) + P (B|A)) (13.5)

• The imbalance ratio (IR) assesses the imbalance of two item sets (A and B)
in rule implications [3]. Its range is from 0 to 1; IR = 0 means that the two
directional implications between A and B (A ⇒ B and B ⇒ A) are the same,
which means it is not an interesting rule, whereas IR = 1 means it is a highly
skewed or very interesting rule [21]. IR is calculated by Eq. (13.3):

316 N. Alangari and R. Alturki

IR (A,B) = |sup(A) − sup(B)|
sup(A) + sup(B) − sup (A ∪ B)

(13.6)

Mining of association rules is a two-step process: first, we must find all frequent
item sets that satisfy the minimum support threshold (Min_sup) specified by the
user. Second, from these item sets, we must generate association rules that satisfy
the minimum confidence threshold (Min_conf), and these rules are called strong [3].
However, when the items that we are interested in have support that is below (or far
below) a user-specified minimum support threshold, they are called infrequent (or
rare) items [22]. Rare items are caused by an imbalance in the data set where some
items have a very high frequency, count, or support, while other items have very low
support, and the resulting rules mostly cover only those items with high support [3,
22]. To mine the rare items, there are several methods that can be applied, such as
balancing techniques or rare association rule–mining algorithms [23]. Another way
is to set the minimum support threshold to a low value, which counts as the simplest
way to mine rare items [22].

If we choose to set the minimum support threshold at a low value, that will
produce a huge number of strong rules. When the resulting strong rules are huge in
number, then use of a lift will help to rank or filter these rules [20]. Another reason
to use a lift is to avoid misleading “strong” rules, because not all strong rules are
interesting [3]. However, the lift is influenced by a null transaction—a transaction
that does not contain any of the itemsets being examined. For example, a transaction
that does not contain item sets A and B is a null transaction. If the value of a measure
(of the interestingness of a rule) is not influenced by null transactions, it is called a
null-invariant measure.

Null invariance is an important property for measuring association patterns in
large transaction databases. So, a lift is not a null-invariant measure, whereas
Kulc and IR are null-invariant measures because they are not influenced by a null
transaction [3, 21]. Because of that, the lift has difficulty distinguishing interesting
pattern association relationships in comparison with Kulc and IR. As far as we know
(from reviewing the studies by Jiawei [3], Gupta and Arora [21], Wu et al. [24], and
Gopalakrishnan [25]), we could use the three measures lift, Kulc and IR together as
follows:

• If the Kulc value is close to 1, then the left-hand side (LHS) and the right-hand
side (RHS) are positively correlated [3, 24].

• If the Kulc value is close to 0, then the LHS and RHS are negatively correlated
[3, 24].

• If Kluc = 0.5 (that is, neutral) [3, 21, 24], then check the IR value.

– If IR = 0, then it is not an interesting rule [21].
– If the IR value is close to 1, then the rule might be worth looking at [21].

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 317

13.2.3 Association Rule Mining in Education

Association rule mining has been applied in education, mostly using the Apriori
algorithm. The relevant studies have used Apriori for several objectives. Some of
them have used it to predict students’ performance [14, 26, 27] and to provide
a good placement for a student by matching the organization’s requirement with
the student’s profile [26]. In a study by Kasih et al. [14], the prediction of the
students’ final results was based on their performance in eight courses in the first
four semesters, while in a study by Borkar and Rajeswari [27], the prediction
was achieved by finding the association between attributes such as attendance and
assignments. In a study by Ahmed et al. [28], the authors used students’ academic
and personal data to discover their impact on the students’ performance; they
extracted the association rules related to the impacts of sex, residence, retention,
etc.

Other studies have used students’ admission data [29, 30]. In a study by Mashat
et al. [29], the data represented applicant student information and their status
of being rejected or accepted for enrollment at the university. The researchers
applied Apriori to the whole data set and then to the accepted applicants and the
rejected applicants separately. The resulting rules were presented and interpreted
with respect to the admissions office perspective [29]. Abdullah et al. [30] applied
the SLPGrowth (Significant Least Pattern Growth) algorithm and two measures—
lift and critical relative support (CRS)—to a student admission data set.

Damaševičius [31] aimed to improve the content of an informatics course. He
used association rules and ranked course topics on the basis of their importance
to the final course marks. He also proposed a novel metric called “cumulative
interestingness” for assessing the strength of an association rule. Vranic et al. [19]
used data on an electrical engineering fundamentals course with general data to
predict the success of the next year’s students in this course.

Upendran et al. [32] proposed a course recommendation system that suggested
courses for new students. They used the Apriori algorithm to generate rules using
previous students’ marks in core courses and focused on rules with success as a
consequence. These rules were used to suggest courses for new students where they
had a high probability of success.

Some studies have associated courses with students’ grades; for example, Buldu
and Üçgün [33] were interested in the relation between courses in which students
failed. In the study by Ahmed et al. [28], the resulting association rules showed
that the grade in one course might depend on prerequisite courses. In the study
by Upendran et al. [32], marks in core subjects such as Mathematics, Physics,
Chemistry, Biology, Computer Science, and English were considered as attributes.
Table 13.1 summarizes some of the studies’ experimental settings and the Apriori
parameters that they applied.

318 N. Alangari and R. Alturki

Table 13.1 Summary of studies that have used the Apriori algorithm

Study
Number of
students/records Min_supp Confidence Other parameters

Number of
rules

Angeline [26] 21 students 0.33 0.75 Max rule
length = 4,
lift filtering = 1.1

127

Borkar and
Rajeswari [27]

60 students 0.01 0.9, 0.87, and
0.7

2, 2, and
11

Kasih et al. [14] 146 records 0.2 0.8 – 6
Mashat et al. [29] 83K records

(accepted and
rejected
applications)

0.4 0.75 4

38K records
(accepted
applications)

0.6 Not mentioned – 5

45K records
(rejected
applications)

0.6 Not mentioned – 3

Vranic et al. [19] 952 records 0.4 0.8 – >500

Min_supp minimum support threshold

13.3 Experimental Settings and Results

In this section, we present some of the experiments that we did to mine association
rules by using the Apriori algorithm to find associations between CS courses based
on the students’ grades. We present the settings of the experiments, including the
data preprocessing, and the results of these experiments.

13.3.1 Experimental Settings

In this subsection, we show how we preprocessed the data, then we show how we
selected the values of the Apriori parameters.

Data Preprocessing Our aim in this study was to find an association between CS
courses based on students’ grades. Therefore, the items in the data set should be in
the form (course = G) where course is the course code and G is the grade, G ∈ {A,
B, C, D, F}. For example, CS140 = A, CS140 = C, CS322 = A, and CS322 = F.

We started by translating the raw data set from Arabic into the English language,
and we selected CS students’ data only. Then we transformed the “date of birth”
attribute from “dd/mm/yyyy” to “yyyy”; the results are presented as a screenshot
(Fig. 13.1). Notice that a student is represented by multiple rows. For instance, if
a student studied 50 courses, then he or she would have 50 rows: one row for each
course.

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 319

Fig. 13.1 Data set after deletion of some attributes

Fig. 13.2 Data set after transformation of rows to columns

After that, the grades were merged into five categories (A, B, C, D, F): A+ was
merged with A, B+ was merged with B, etc. Any grades that did not belong to
any of the five categories were deleted. For instance, the grades in course CS480
(Practical Training) had two values—NP signified success without a degree and NF
signified failure without a degree—and most of the students got NP, so we deleted
them. We also deleted the attributes that did not seem useful, especially when they
had the same value for all students, such as major and residential area attributes.

Then, to represent each student by one row, we transformed rows into columns;
the results are presented as a screenshot (Fig. 13.2), where we present some of the
attributes. With this transformation, we kept only the first trail (which is the first
grade that a student got when he or she studied the course for the first time). To
handle missing data, we selected the graduated students, since their records had
fewer missing data/grades. We had 833 CS graduated students.

At the end, to prepare the data set for association rule mining, and to find
the association between courses, we selected only the attributes that represented
CS courses—general courses and computer specialized (mandatory and elective)
courses—which meant that we deleted the rest of the attributes. In the CS study
plan, we had 60 courses; for each course, student could get one of five grades (A, B,
C, D, F), which meant we had (60 × 5 = 300 items) in the form (course = G).

Setting of Apriori Parameters

After conducting many experiments and reading related works, we set the minimum
support at 0.01 and confidence at 0.8. This minimum support meant that approxi-
mately 94% of the items would be included in the mining process, while items that
had support of less than 0.01 would not be included. It also meant 1% of students,
which was either 8 students out of 833 students (1% × 833 = 8.33) or 4 students
out of 483 students [29].

320 N. Alangari and R. Alturki

Table 13.2 Kulczynski (Kulc) and imbalance ratio (IR) values and their meanings

Relationship between LHS and RHS Kulc/IR Value

Positive correlation Kulc close to 1 Kulc ≥ 0.7
Negative correlation Kulc close to 0 Kulc ≤ 0.3
Neutral Kulc close to 0.5 0.7 > Kulc > 0.3
Very imbalanced IR close to 1 IR ≥ 0.8
Imbalanced IR relatively close to 1 IR ≥ 0.6
Balanced IR close to 0 IR ≤ 0.3
Neutral Kulc and IR close to 0.5 0.6 < IR < 0.3 and 0.7

> kulc > 0.3

LHS left-hand side, RHS right-hand side

Besides using support and confidence to measure the rules’ interestingness, we
decided to use lift, Kulc, and IR for the reasons mentioned in Sect. 13.2. In addition,
on the basis of the relation between the three measures, we wrote the pseudocode
below to evaluate the rules. As in the studies by Bramer [20] and Angeline [26], we
used lift to rank or filter the rules, then we applied the pseudocode. Table 13.2 lists
the values that we chose for Kulc and IR.

The itemset number was set at (2, 3, 4, and 5) to specify the length of the rules.
This helped us to focus on each subset of the rules; for example, when we analyzed
2-itemset rules, we focused on the relationship between two courses only, so if the
relation was positive, then getting a high grade in one course would be associated
with getting a high grade in the other one, and vice versa.

Pseudocode Used for Rule Filtering
Sort according to lift and lift > 1
If Kulc close to 1 then

LHS and RHS are positively correlated
Else if Kulc close to 0 then

LHS and RHS are negatively correlated
Else if Kulc close to 0.5 then

// Neutral, use IR to help find the imbalance
If IR very close to 1 then
// Imbalanced
The rule might be worth looking at: very imbalanced case

Else if IR relatively close to 1 then
// Imbalanced

The rule might be worth looking at: imbalanced case
Else if IR close to 0 then
// Balanced

Not interesting rule
Else “neutral”
// Kulc close to 0.5 and IR between 0.3 and 0.6

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 321

13.3.2 Results of the Experiments

In the experiments, we used two data sets. In the first data set, the instances were
CS graduated students (833 students). In the second data set, we kept students who
failed at least one course (483 students or rows) and we kept items that contained
failing grades only (CS140 = F, CS322 = F, etc.). We present the two experiments
as follows:

• The first experiment focused on the association of courses based on success and
failure, and it used data set 1.

• The second experiment focused on association of courses based on failure, and it
used data set 2.

Also, for each experiment, we generated rules with itemset numbers from 2 to
5. Because of space limitations, we present and discuss the resulting rules only for
2- and 3-itemsets, presenting 2-itemset rules for the first experiment and 3-itemset
rules for the second experiment.

Association of Courses Based on Success and Failure In this experiment, we set
Apriori parameters as listed in Table 13.3.

The results of the 2-itemset were 1138 rules, and we were interested in rules
where the LHS and RHS were positively correlated (103 rules) or worth looking
at, especially in a very imbalanced case (453 rules). We first explore and present
the positive correlation rules, then those worth looking at. After that, we present the
rules that contained grade F.

Positive Correlation Rules In Table 13.4, we present the top five rules with the
highest lift values where LHS and RHS were positively correlated. As can be seen,
these rules had high confidence and the support values were relatively low to high,
being in the range of 0.3–0.8, which meant that 30–80% of the students achieved
these grades in these courses. The confidence values were in the range of 0.8–0.9,
indicating that these rules were found to be true 80–90% of the time; in other words,
in 80–90% of instances where a student achieved LHS, he or she would achieve RHS
too.

As an example of the rules presented in Table 13.4, rule (1043) {ARB104=A} ⇒
{IDE133=A} (sup = 0.384 and conf = 0.821) means that 38% of the students
achieved an A in both course ARB104 and course IDE133, and the rule was found

Table 13.3 Apriori
parameter values

Parameter Value

Min_supp 0.01
Confidence 0.8
Itemset number 2, 3, 4, and 5

Min_supp minimum support
threshold

322 N. Alangari and R. Alturki

Table 13.4 Top five 2-itemset rules where the left-hand side (LHS) and right-hand side (RHS) are
positively correlated

Rule no. Rules Support Confidence Lift Kulc IR
LHS and RHS
correlation

1043 {ARB104 = A} ⇒
{IDE133 = A}

0.384 0.821 1.312 0.717 0.222 Positive

1053 {ECO100 = A} ⇒
{QUR401 = A}

0.415 0.824 1.241 0.725 0.212 Positive

1062 {BUS100 = A} ⇒
{COM207 = A}

0.403 0.806 1.188 0.700 0.229 Positive

1063 {BUS100 = A} ⇒
{QUR451 = A}

0.419 0.837 1.186 0.715 0.261 Positive

1055 {ECO100 = A} ⇒
{QUR451 = A}

0.421 0.836 1.184 0.716 0.256 Positive

IR imbalance ratio, Kulc Kulczynski

Table 13.5 Number of
2-timeset rules containing
one of the Holy Quran (QUR)
courses

QUR on RHS Number of rules

{QUR101 = A} 139
{QUR201 = A} 127
{QUR251 = A} 105
{QUR351 = A} 103
{QUR301 = A} 89
{QUR151 = A} 79
{QUR451 = A} 75
{QUR401 = A} 41

RHS right-hand side

to be true for 82% of those students; in other words, in 82% of instances where a
student got an A in ARB104, he or she would get an A in IDE133 too.

In addition, we noted the following about the positive correlation rules:

• All rules that had a positive correlation associated getting grade A in LHS courses
with getting grade A in RHS courses.

• Examples of the courses that appeared in the rules are general courses and two
mandatory courses, CS492 and CS493 (Senior Project in Computer Science 1
and Senior Project in Computer Science 2). However, grade A was the only grade
that appeared.

• Most of these rules were in the form ({X = A} ⇒ {QURxxx = A}), where
“X” represented a course and “xxx” represented the code of the QUR (Holy
Quran) courses. Table 13.5 shows the number of rules (in this form) for each
QUR course.

The high support indicates that these item sets {course1 = A, course2 = A}
appeared frequently in the data set; most of the students got a grade of A in these
courses (the general courses and two mandatory courses (CS492 and CS493)). For
example, Fig. 13.3 shows the frequency or support of the QUR courses with grades

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 323

(A, B, C, D, F) and, as we said, (QURxxx = A) items were the most frequent. As
a conclusion, these rules may not be interesting, since getting an A in these courses
could count as an obvious fact, and any rule that supports an obvious fact is not an
interesting rule.

Rules Worth Looking At In Table 13.6 we present the top five rules that were worth
looking at (very imbalanced cases). These rules had high confidence values and low
to relatively low support values; the support values were in the range of 0.01–0.1,
meaning that 1–10% of the students achieved grades (A, B, C, D, F) in the LHS
courses and grade A in the RHS courses. The confidence values are in the range of
0.8–1, which indicates that these rules were found to be true 80–100% of the time;
in other words, 80–90% of instances where a student achieved in LHS courses, he

Fig. 13.3 Support of Holy Quran (QUR) courses with grades (A, B, C, D, and F)

Table 13.6 Top five “worth looking at” 2-itemset rules

LHS and RHS

Rule no. Rules Support Confidence Lift Kulc IR correlation

45 {CS439 = A} ⇒
{CS322 = A}

0.014 0.800 4.660 0.442 0.877 Very imbalanced
case

46 {CS439 = A} ⇒
{CS370 = A}

0.014 0.800 4.191 0.438 0.889 Very imbalanced
case

47 {CS439 = A} ⇒
{MATH227 = A}

0.014 0.800 3.471 0.431 0.908 Very imbalanced
case

106 {CS438 = A} ⇒
{CS391 = A}

0.025 0.955 2.432 0.509 0.930 Very imbalanced
case

49 {CS439 = A} ⇒
{ENG208 = A}

0.018 1.000 2.394 0.522 0.957 Very imbalanced
case

IR imbalance ratio, Kulc Kulczynski, LHS left-hand side, RHS right-hand side

324 N. Alangari and R. Alturki

or she would achieve in RHS courses too. A “worth looking at” rule may or may not
imply an interesting relationship.

We noticed the following about the “worth looking at” rules:

• All rules that had a positive correlation associated getting grade (A, B, C, D, F)
in LHS courses with getting grade A in RHS courses.

• As we saw in the (2-timeset rules with positive correlation), most of the rules
were in the form (X = G ⇒ {QURxxx = A}), where G represented one of
the grades (A, B, C, D, F), and we said that these rules were mostly not
interesting, since they could count as obvious facts because of the high support
of (QURxxx = A) items.

As an example of the rules presented in Table 13.6, rule (45) {CS439 = A} ⇒
{CS322 = A} implied that maybe there was an association between getting an A
in both course CS439 (Cloud Computing) and course CS322 (Operating Systems),
and we know from the CS study plan that one of the prerequisite courses to register
in CS439 (Cloud Computing) was success in CS322 (Operating Systems). So, an
association between getting an A in both courses is logical, since it confirms what
we already know. The same applies to rule (46) {CS439 = A} ⇒ {CS370 = A},
where there might an association between getting an A in both course CS439 (Cloud
Computing) and course CS370 (Introduction to Databases), and since the CS study
plan did not link these two courses, that could mean that this rule is a new rule and
therefore could be an interesting rule.

Table 13.7 shows some of the rules that contained CS courses on the LHS,
arranged by the support values from largest to smallest. For example, the first
three rules applied to approximately 5% of the students (5% of 833 students = 41
students), and they were true 90% or 80% of the time. They showed the association
between getting an A in CS401 (Computational Numerical Analysis) and getting
an A in CS493 (Senior Project in Computer Science 2), as in rule (262); getting

Table 13.7 “Worth looking at” 2-itemset rules where the left-hand side (LHS) items are Computer
Science courses

LHS and RHS

Rule no. Rules Support Confidence Lift Kulc IR correlation

262 {CS401 = A} ⇒
{CS493 = A}

0.059 0.907 2.026 0.519 0.844 Very imbalanced
case

258 {CS401 = A} ⇒
{CS391 = A}

0.058 0.889 2.264 0.518 0.820 Very imbalanced
case

264 {CS401 = A} ⇒
{CS492 = A}

0.058 0.889 1.903 0.506 0.848 Very imbalanced
case

235 {CS471 = A} ⇒
{CS492 = A}

0.052 0.878 1.879 0.494 0.861 Very imbalanced
case

201 {CS451 = A} ⇒
{CS492 = A}

0.036 0.857 1.835 0.467 0.898 Very imbalanced
case

IR imbalance ratio, Kulc Kulczynski, RHS right-hand side

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 325

an A in CS391 (Seminar), as in rule (258); and getting an A in CS392 (Senior
Project in Computer Science 1), as in rule (264).

“Worth Looking At” Rules Containing Failed Courses We present some of the 2-
timeset rules that contain grade F in Table 13.8; they are worth looking at (a very
imbalanced case) on the basis of both their Kulc value and their IR value. Note that
they have high confidence in the range of 0.8–1 and low support in the range of
0.011–0.067; that is, 1.1–6.7% of the students who got grade F in LHS courses and
got grade A in QUR courses (RHS). Also, these rules were found to be true 80–
100% of the time. As we know, a “worth looking at” rule may or may not imply an
interesting relationship. From our point of view, since most of the students got an A
in QUR courses, those students would get different grades (A, B, C, D, F) in the rest
of their courses. So, it is an obvious fact, which means these rules do not seem to
be interesting. For example, the support value for rule (13) is equal to the support
value for item (CS430 = F) on the LHS; the same students who got an F in CS430
(approximately 11 students) got an A in QUR courses.

Association of Courses Based on Failure In this experiment, to find the associa-
tion between failure and getting an F grade in courses, we used the second data set,
which contained CS graduated students who failed in at least one course (483 rows),
with 60 courses, and each course where a student got an F grade (so, 60 items in
form (course = F)). Table 13.9 presents the Apriori parameter values that we used.
We present the 3-itemset rules because there was no resulting 2-itemset rule.

Table 13.8 2-Itemset rules that contain an F grade on the left-hand side (LHS), on the right-hand
side (RHS), or both

LHS and RHS

Rule no. Rules Support Confidence Lift Kulc IR correlation

13 {CS430 = F} ⇒
{QUR251 = A}

0.014 1.000 1.312 0.509 0.981 Very imbalanced
case

11 {CS412 = F} ⇒
{QUR201 = A}

0.011 1.000 1.241 0.507 0.987 Very imbalanced
case

12 {CS430 = F} ⇒
{QUR151 = A}

0.013 0.917 1.228 0.467 0.979 Very imbalanced
case

20 {CS451 = F} ⇒
{QUR151 = A}

0.014 0.857 1.148 0.438 0.974 Very imbalanced
case

21 {CS451 = F} ⇒
{QUR351 = A}

0.014 0.857 1.121 0.438 0.975 Very imbalanced
case

IR imbalance ratio, Kulc Kulczynski

Table 13.9 Apriori
parameter values

Parameter Value

Min_supp 0.01
Confidence 0.8
Itemset number 2, 3, 4, and 5

Min_supp minimum support
threshold

326 N. Alangari and R. Alturki

Table 13.10 Top five “worth looking at” 3-itemset rules for the failure data set

LHS and RHS

Rule no. Rules Support Confidence Lift Kulc IR correlation

18 {CS340 = F,
CS471 = F} ⇒
{CS401 = F}

0.012 0.857 8.809 0.492 0.833 Very imbalanced
case

17 {CS403 = F,
CS471 = F} ⇒
{CS401 = F}

0.010 0.833 8.564 0.470 0.854 Very imbalanced
case

29 {CS215 = F,
CS370 = F} ⇒
{CS401 = F}

0.010 0.833 8.564 0.470 0.854 Very imbalanced
case

13 {QUR101 = F,
STA111 = F} ⇒
{MATH227 = F}

0.010 1.000 7.318 0.538 0.924 Very imbalanced
case

5 {MATH227 = F,
QUR101 = F} ⇒
{CS344 = F}

0.010 1.000 7.103 0.537 0.926 Very imbalanced
case

IR imbalance ratio, Kulc Kulczynski, LHS left-hand side, RHS right-hand side

The results of the 3-itemset were 43 rules; there was no rule where LHS and
RHS were positively correlated. Table 13.10 shows the top five “worth looking at”
rules (a very imbalanced case). These rules had high confidence values and low
support values. The support values were in the range of 0.01–0.024, which meant
that 1–2.4% of the students achieved grade F in these courses, while the confidence
values in the range of 0.8–1 indicated that these rules were found to be true 80–
100% of the time; in other words, 80–100% of the time that a student achieved
LHS, he or she would achieve RHS too. For example: rule (18) {CS340 = F,
CS471 = F} ⇒ {CS401 = F} indicates that 1.2% of the students got an F in
all three courses of CS340 (Artificial Intelligence), CS471 (Database Management
Systems), and CS401 (Computational Numerical Analysis), and 85% of the times
that a student failed in CS340 and CS471, he or she would fail in CS401 too.

13.4 Conclusion

In this chapter, we have reviewed some of the literature that has used data-mining
(DM) techniques (such as classification and association rule mining) in education
for exploring patterns and extracting knowledge. We conducted experiments to
extract and mine interesting rules from data on undergraduate Computer Science
(CS) students, using the Apriori algorithm, and we presented the settings of these
experiments and some of the results. We answered the questions of the research
and we used lift, Kulczynski (Kulc), and the imbalance ratio (IR) to measure the
interestingness of rules, along with their support and confidence. We explained how

13 Association Rule Mining in Higher Education: A Case Study of Computer. . . 327

we preprocessed the data and how we set the values for minimum support, minimum
confidence, Kulc, and IR. Our results showed correlation between some courses
when students obtained A and F grades. Other grades (B, C, and D) did not show
correlation between courses in the 2-itemset rules. In addition, they showed that
most of the interesting rules had support higher than 1% and confidence higher than
80%. Therefore, we cannot confirm or deny previous opinions that have associated
some courses with each other, such as associating success in mathematics with
success in programming. We also plan to apply classification algorithms to the
data set.

References

1. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison Wesley,
Boston (2005)

2. Frank, E., Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques, vol.
54, no. 2. Morgan Kaufman, San Francisco (2011)

3. Jiawei, H., Kamber, M., Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques.
Elsevier, New York (2012)

4. Romero, C., Ventura, S.: Educational data mining: a review of the state of the art. IEEE Trans.
Syst. Man Cybernet. Part C Appl. Rev. 40(6), 601–618 (2010)

5. Shahiri, A.M., Husain, W., Rashid, N.A.: A review on predicting student’s performance using
data mining techniques. Procedia Comput. Sci. 72, 414–422 (2015)

6. Hämäläinen, W., Vinni, M.: Classifiers for educational data mining. In: Handb. Educ. Data
Mining, Data Min. Knowl. Discov. Ser., pp. 57–71 (2010)

7. Ibrahim, Z., Rusli, D.: Predicting students’ academic performance: comparing artificial neural
network, decision tree and linear regression. In: 21st Annual SAS Malaysia Forum, 5th
September 2007

8. Ogor, E. N.: Student academic performance monitoring and evaluation using data mining
techniques. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007),
pp. 354–359 (2007)

9. Al-Barrak, M.A., Al-Razgan, M.S.: Predicting students’ performance through classification: a
case study. J. Theor. Appl. Inf. Technol. 75(2), 167–175 (2015)

10. Verma, K., Singh, A., Verma, P.: A review on predicting student performance using data mining
method. Int. J. Curr. Eng. Sci. Res. 3(1), 127–132 (2016)

11. Harwati, Alfiani, A.P., Wulandari, F.A.: Mapping student’s performance based on data mining
approach (a case study). Agric. Agric. Sci. Procedia. 3, 173–177 (2015)

12. Amrieh, E.A., Hamtini, T., Aljarah, I.: Mining educational data to predict student’s academic
performance using ensemble methods. Int. J. Database Theory Appl. 9(8), 119–136 (2016)

13. Badr, G., Algobail, A., Almutairi, H., Almutery, M.: Predicting students’ performance in
university courses: a case study and tool in KSU Mathematics Department. Procedia Comput.
Sci. 82, 80–89 (2016)

14. Kasih, J., Ayub, M., Susanto, S.: Predicting students’ final passing results using the Apriori
algorithm. World Trans. Eng. Technol. Educ. 11(4), 517–520 (2013)

15. Pramod, P.S., Vyas, O.P.: Survey on frequent itemset mining algorithms. Int. J. Comput. Appl.
1(15), 94–100 (2010)

16. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’03, p.
326 (2003)

328 N. Alangari and R. Alturki

17. Solanki, S., Soni, N.: A survey on frequent pattern mining methods Apriori, Eclat, FP growth.
Int. J. Comput. Tech. X(X), (2014)

18. Suman, M., Anuradha, K.T., Ramakrishna, A.: A frequent pattern mining algorithm based on
Fp-tree structure and Apriori algorithm. Technicaljournals.Org. 2(1), 114–116 (2012)

19. Vranic, M., Pintar, D., Skocir, Z.: The use of data mining in education environment. In: 2007
9th International Conference on Telecommunications, pp. 243–250 (2007)

20. Bramer, M.: Principles of Data Mining. Springer, New York (2016)
21. Gupta, D., Arora, H.: Market basket analysis using Apriori and correlation measures. Int. J.

Innov. Res. Sci. 6(6), 10282–10286 (2017)
22. Romero, C., Romero, J.: Mining rare association rules from e-learning data. In: 3rd Interna-

tional Conference on Educational Data Mining, pp. 171–180 (2010)
23. Koh, Y.S., Nathan, R.: Rare association rule mining: an overview. In: Rare Association Rule

Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection,
IGI Global, pp. 1–14 (2009)

24. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern mining: a
unified framework. Data Min. Knowl. Discov. 21(3), 371–397 (2010)

25. Gopalakrishnan, A.: A Multifaceted Data Mining Approach to Analyzing College Students’
Persistence and Graduation. San Francisco State University, San Francisco (2016)

26. Angeline, D.M.D.: Association rule generation for student performance analysis using Apriori
algorithm. SIJ Trans. Comput. Sci. Eng. Appl. 1(1), 12–16 (2013)

27. Borkar, S., Rajeswari, K.: Predicting students academic performance using education data
mining. Int. J. Comput. Sci. Mob. Comput. 2(7), 273–279 (2013)

28. Ahmed, S., Paul, R., Hoque, A.S.M.L.: Knowledge discovery from academic data using Asso-
ciation Rule Mining. In: 2014 17th International Conference on Computer and Information
Technology (ICCIT), pp. 314–319 (2014)

29. Mashat, A.F., Fouad, M.M., Yu, P.S., Gharib, T.F.: Discovery of association rules from
university admission system data. Int. J. Mod. Educ. Comput. Sci. 5(4), 1–7 (2013)

30. Abdullah, Z., Herawan, T., Deris, M.M.: Discovering interesting association rules from student
admission dataset. Lect. Notes Electr. Eng. 285, 135–142 (2014)

31. Damaševičius, R.: Analysis of academic results for informatics course improvement using
association rule mining. In: Information Systems Development: Towards a Service Provision
Society, pp. 357–363 (2009)

32. Upendran, D., Chatterjee, S., Sindhumol, S., Bijlani, K.: Application of predictive analytics in
intelligent course recommendation. Procedia Comput. Sci. 93, 917–923 (2016)

33. Buldu, A., Üçgün, K.: Data mining application on students’ data. Procedia. Soc. Behav. Sci.
2(2), 5251–5259 (2010)

Chapter 14
SelecWeb: A Software Tool for Automatic
Selection of Web Frameworks

Thaha Muhammed, Rashid Mehmood, Ehab Abozinadah, and Sanaa Sharaf

14.1 Introduction

The software applications revolution has helped the development of many new
distributed and collaborative urban systems [1–16], paving the way for integrated
systems, and hence smart cities and societies, see, e.g., [17] for background on smart
cities and societies.

Web applications and services are fundamental to designing smart infrastructure
and cities. Web frameworks have become an integral part in the development of web
applications and services. A software framework is a scaffold structure inside which
other applications can be developed. A framework comprises libraries, services,
scaffold programs, scaffold codes, interfaces, APIs (application programming inter-
faces), and other components required for application development. A framework
provides the basic building blocks required for the development of application.

A software framework that has been developed particularly for assisting web
application development is called a web application framework. It comprises
necessary components and services required for the construction of feature rich
applications by automating the common web development functions. Most of
the web application development frameworks implement the MVC (model–view–

T. Muhammed (�) · S. Sharaf
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: m.thaha.h@ieee.org; ssharaf@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: rmehmood@kau.edu.sa

E. Abozinadah
Department of Information Systems, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: eabozinadah@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_14

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_14&domain=pdf
mailto:m.thaha.h@ieee.org
mailto:ssharaf@kau.edu.sa
mailto:rmehmood@kau.edu.sa
mailto:eabozinadah@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_14

330 T. Muhammed et al.

controller) design pattern as shown in Fig. 14.1. It also incorporates various services
like versioning using git, svn, or other version management systems and searching.
This helps the application in leveraging the framework services for the production
of quality applications. Web frameworks also provide user interface elements and
powerful ORM (object-relational management).

Web application frameworks promote code reuse and reduce the resource
requirements such as time and effort to build and maintain applications. In recent
years, a plethora of frameworks have been developed with various features. There
is no single all-feature-encompassing framework. Each framework has its own
advantages and disadvantages. Suitability of various web frameworks to various
application domains varies. Programmers may choose from a variety of web
frameworks, and different languages that support them, each with its own strengths
and weaknesses. Organizations work in different application domains and have
diverse priorities and constraints with regard to the development of applications
and services.

In this paper, we propose an automatic tool for selecting a web framework
based on a set of criteria and developer preferences. The set of selection criteria
is developed by us and is a contribution of this paper. The tool is called SelecWeb.
It currently uses analytic hierarchy process (AHP) for comparison, analysis, and
decision-making. We provide a detailed description and analysis of the tool
including a case study for web framework selection.

The rest of the paper is organized as follows: Sect. 14.2 gives a review of
the literature. Section 14.3 introduces the web frameworks that we have been
used in this paper. These are Ruby on Rails, Spring, Django, and CodeIgniter.
Section 14.4 discusses the selection criteria including the developer and user criteria.
Section 14.5 explains the evaluation process and discusses evaluation of each of the
selected frameworks. Section 14.6 summarizes the weaknesses and strengths of each

Browser

Controller

View Model

HTTP Response HTTP Request

Result

Fig. 14.1 The MVC architecture for web frameworks

14 SelecWeb: Automatic Selection of Web Frameworks 331

framework. Section 14.7 provides a case study that uses AHP for selecting the best
framework satisfying requirements of a given application. Section 14.8 concludes
the paper along with some design ideas on future extension of the tool using machine
learning.

14.2 Literature Survey

Many researchers have evaluated single frameworks in isolation. Numerous works
evaluate primary technologies for web applications such as HTML5 [18]. Analysis
of web framework application development often evaluates a single web framework,
but do not compare it to competing ones. Bachle and Ritscher [19] analyzed
and benchmarked Rails. Arthur and Azadegan [20] assessed Spring, a Java-based
framework. The researchers evaluate the framework and do not compare it to other
competing frameworks. These works mainly list out the features and capabilities of
the framework. Matt [21] compares various Java-based frameworks such as Spring,
Wicket, Grails, Play, and JRuby. A comparison of Eucalyptus, Apache Hadoop,
and the Django–Python stack can also be found [22]. These comparisons deal with
frameworks based on the same language. Smutny [23] briefly compares selected
web-based mobile frameworks. However, he does not propose a set of criteria
for doing so. Henning et al. make a comparison of four mobile web frameworks
[24], where they compare HTML5, Sencha Touch, Google Web Toolkit, M-Project,
jQtouch, and jQuery. Here, the comparison is based on a set of criteria developed
by the researchers. We can reach a conclusion that most of the comparisons lack the
backing of scientific criteria.

14.3 Web Frameworks

This section examines the web application framework and introduces four frame-
works that will be analyzed in Sect. 14.5.

14.3.1 General

A web framework is a collection of packages and modules that helps web developers
to write web applications, web services, and dynamic websites without worrying
about low-level details [25]. Frameworks ease the overhead associated with com-
mon web development activities. Many frameworks provide libraries for database
access, provide support for a number of activities such as interpreting requests,
templating frameworks, producing responses, manage sessions, and they promote
code reuse often [26].

332 T. Muhammed et al.

Many of the major frameworks such as Rails, Django, and Spring are server-side
technologies but in the recent years due to advancements in client-side technology
such as node.js and CoffeeScript, browsers can be used as a full blown framework
stack.

World Wide Web in its infancy used static pages hand coded in HTML which
were hosted on web servers. Any alteration to the website required explicit changes
from the developers [25]. In earlier days, Common Gateway Interface [25] was used
to serve web pages to the web browser. In CGI, we had to program each and every
detail of the connection. Each request that arrives at CGI creates a new thread. As
the number of requests increases, the number of threads also increases, which might
crash the server. New languages for web development like PHP emerged around
same time.

Most of these web languages used a spaghetti styled coding where everything
starting from HTML views, database access, and other low-level details such as
protocols, thread management, and socket management had to be hand coded [26].
These required various libraries that usually did not come with the language and had
to be compiled by the developer.

Later on, came frameworks that constitute necessary components and services
required for the construction of feature affluent and erudite systems. For instance,
Ruby on Rails, Django, Symfony, Zend, CakePHP, CodeIgnitor, Spring, Grails, etc.,
are some web frameworks.

14.3.2 Ruby on Rails

Rails is a web framework written in Ruby by David Heinemeier Hansson [27]. He
derived it from Basecamp, formerly Signal37, a project management tool. Rails
increases the productivity of the developer by reducing the line of codes to achieve
the end result. It accomplishes more in the least number of lines as compared to other
languages such as PHP. Rails is based mainly on two principals: convention over
configuration and DRY (don’t repeat yourselves). It has an MVC (model–view–
controller) architecture. Rails presumes that there is a perfect way to code, and sets
these as conventions to be followed while coding in Rails. This results in higher
productivity as configuring each and every minute configuration of the application
is not required. The second principle called DRY (don’t repeat yourselves) states
every unique function should only have a single piece of code that accomplishes
the task. This results in a more maintainable and less buggy code. Rails is released
under the MIT License. It was released in the year 2003. Twitter and Github are the
two major websites created with Rails.

14 SelecWeb: Automatic Selection of Web Frameworks 333

14.3.3 Django

Django is a python based free open-source web application framework that was
created by Adrian Holovaty and Simon Willison. Currently, it is maintained by an
organization called Django Software Foundation. Django has many similarities to
Ruby on Rails. Django has an MVC architecture. A cardinal advantage of such a
concept is that components are loosely coupled which implies that a database archi-
tect’s work will not depend on the programmer’s or the designer’s work. All three
can work independently. Amazon.com, craigslist.org, and washingtonpost.com are
some of the major applications built with Django. Django is licensed under the BSD
License.

14.3.4 Spring

Spring is a web framework which is also called the father of frameworks, due
to the fact that it provides scaffold to other Java-based frameworks. Some of the
major frameworks that receive support from Spring are Hibernate, EJB, Struts,
JSF, etc. [28]. In 2003, Rod Johnson created Spring. Spring is a Java-based
framework helpful in creating Java Enterprise applications. Spring combines various
components. It is highly valuable when you might want to use different components
or various combinations of components in different environments with various con-
figurations. Spring is a framework based on a pattern called dependency injection,
which is issued to build highly decoupled systems [28, 29]. Spring consists of an
MVC framework, validation framework, and transactional control of databases. It
segregates service layer, business layer, and web layer. But what it really does best is
injection of objects. In dependency injection [30], the objects are designed such that
they receive instances of objects externally from other sources, instead of creating
them inside the actual code. This improves decoupling and simplifies testing.

14.3.5 CodeIgniter

CodeIgniter [28] is a web-based framework for building dynamic websites based
on PHP [28]. It was created by Rick Ellis in 2006, from ExpressionEngine, a CMS
(content management system) owned by Ellislab in 2006. In 2014, the ownership of
CodeIgniter was transferred to the British Columbia Institute of Technology, which
inculcated it in their core syllabus. CodeIgniter is a lightweight, fast framework
with a minimal footprint that helps in rapid application development. PHP’s creator
Rasmus Lerdorf, an outspoken critic of frameworks, praised CodeIgniter due to its
speed and light weightlessness. It’s loosely based on MVC architecture. It does not
enforce the MVC pattern upon the developers. Controllers are necessary for the

334 T. Muhammed et al.

Goal

Criterion 1

Alternative 1 Alternative 2

Criterion 2

Alternative 1 Alternative 3

Criterion 3

Alternative 2 Alternative 3

Fig. 14.2 Analytic hierarchy process

development, but models and views are optional, unlike other frameworks such as
Rails and Django that enforce MVC strictly. It is a lean MVC framework, with
enough capabilities to increase your productivity, at the same time providing third-
party modules for extra functionality. The source code of CI is available online at
Github [28]. Earlier, CI versions had an Apache-BSD open-source license. Later it
was switched to the MIT License.

14.4 Selection Criteria

Web framework selection is an optimization problem [24] because we need to
maximize the goals of the organization. We can measure complex requirement
criteria by dividing them into sub-criteria and can use functions such as analytic
hierarchy process [31] to evaluate final decision criteria as shown in Fig. 14.2.
If the decision process is broken down into smaller manageable components, it
results in an improved decision-making. Each of these criteria can be given a
weight, according to the goals of an organization. Evaluating frameworks based
on a single criterion is difficult and a vague measure. Hence, we need to develop a
set of criteria, for the purpose of evaluation of frameworks. The overall goal of the
decision criteria is to allow an organization to select an optimal framework based on
their requirements. Hence, we divide the criteria into two, first from a developers’
viewpoint, in terms of usability and second, from the users’ viewpoint. A users’
viewpoint and their experience with the application is of paramount importance.
From developers’ viewpoint, we consider the experience and decisions of the
developer, such as licensing and cost. Criteria can be classified in two categories:
qualitative and binary. Binary criteria are criteria that can be answered using either
using yes or no. It examines whether a feature is available in the framework.
Qualitative criteria deals with the quality of the framework. Qualitative criteria are
extremely useful for decision making. Hence this article will deal with qualitative
criteria.

14 SelecWeb: Automatic Selection of Web Frameworks 335

14.4.1 Developer Criteria

From the viewpoint of the developer we consider the following criteria.

License and Cost Various companies have different policies regarding the license
of the components and applications they use. Therefore, we need to consider the
cost of licensing an application based on the web frameworks. Open-source licenses
such as Apache [32] and MIT [33] can be considered as ideal cases, whereas
complications can arise from the use of Copyleft licenses [34] such as GNU [35].

Learning Effort Effort and time are required to learn and comprehend a new web
framework. This criterion examines the extent up to which the framework follows
the general conventions, the intuitiveness of the framework, resemblance to other
programming frameworks, and ease of learning. This also considers the effort and
time required to master the framework.

Developing Effort The development effort is proportional to the cost of the
development. Even though, requirement phase is independent of the framework
used, it does influence the implementation. Development effort comprises of time
required for the implementation of applications with the framework. Ease of reuse,
good tool support, and an IDE with a graphical user interface are good indicators
towards development effort.

Long-Term Viability Selection of a framework for development is a significant
investment as all the applications developed by the organization will be tied to
the framework. Due to rapidly changing technology the web frameworks require
frequent updating. A framework with a robust team of developers commercially
backed by organizations has greater potential to thrive. Popularity and frequent
updates are two other indicators that imply long-term feasibility.

Documentation and Support Good documentation and support increase the speed
of mastering the framework. A good quality documentation provides exceptional
tutorials and references. Textbooks can be the starting point for popular frame-
works. Forums and community provide extra assistance that helps the developer
tremendously.

Adaptability Due to the evolution of the technology it may be necessary to
modify the framework with extra functionality. This will be easier if the framework
provides a module plugin mechanism. This criterion also evaluates the efficacy and
availability.

Maintainability The code has to be maintainable. The source code has to be
comprehensible and reusable. Modularity and decoupling of the components in
framework increase the maintainability. These are the major indicators for main-
tainability.

336 T. Muhammed et al.

14.4.2 User Criteria

From the viewpoint of the user, we can consider the following criteria.

Inherent Look and Feel The acceptance of a web application by a user mainly
depends upon the look and feel of the application. Different frameworks provide
various themes and feel. A framework should be able to provide a platform-specific
theme. We see how the theme provided by the frameworks resembles the native look
and feel unless the framework provides means to modify its user interface elements.

Load Time The web application has to be fast and load even on unstable and slow
networks. The load time depends upon the complexity of the web framework. The
web frameworks can use asynchronous JavaScript or cache the commonly used
pages to increase the load speed. This criteria measures the load speed of a page
for web frameworks.

Runtime Performance The total runtime performance of the application after
loading is important. The dynamic page should respond quickly to user interaction.
The user interface elements should react without any lag. The animations have to
be smooth. These indicators create an impression on the user about the frameworks
performance.

14.5 Evaluation

In this section we present the results of our evaluation. We provide the result of each
framework in the following subsections, respectively. Table 14.1 gives the summary
of the evaluation.

Table 14.1 The evaluation summary of the web frameworks against criterion

Criterion Ruby on Rails Django Spring CodeIgniter

License and cost 1 1 1 1

Long-term viability 1 1 1 3

Documentation and support 1 1 1 4

Learning success 1 1 3 3

Development effort 2 2 4 3

Modifiability 3 2 2 3

Maintainability 2 2 2 3

User interface 5 5 2 4

Look and feel 4 5 5 5

Load-time performance 3 3 5 1

Run-time performance 2 3 4 1

14 SelecWeb: Automatic Selection of Web Frameworks 337

14.5.1 Evaluation Process

The evaluation process was divided into two phases. In the first phase data and
information were collected about the framework to get an initial impression. Online
documentations, manuals, and forums were utilized to achieve this. Criteria such
as cost and license were assessed in this manner. In the second phase a prototype
application, a To-do list, was developed using all the frameworks being tested. Based
on this experience, a reviewer rated the frameworks on a scale from 1, excellent, to 6,
inferior, for each criterion. In case where the framework selection needs to be done
automatically, this information can be automatically acquired and inferred through,
for example, crowd-sourcing process, or machine learning (training and prediction
or decision-making). The summary of the evaluation can be seen in Table 14.1. Web
framework selection is an optimization problem [24] because we need to maximize
the goals of the organization. We can measure complex requirement criteria by
dividing them into sub-criteria and can use functions such as analytic hierarchy
process [31] to evaluate final decision criteria. If the decision process is broken
down into smaller manageable components, it results in an improved decision-
making. Each of these criteria can be given a weight, according to the goals of
an organization. Evaluating frameworks based on a single criterion is difficult and
a vague measure. Hence, we need to develop a set of criteria, for the purpose of
evaluation of frameworks. The overall goal of the decision criteria is to allow an
organization to select an optimal framework based on their requirements. Hence, we
divide the criteria into two, first from a developers’ viewpoint, in terms of usability
and second, from the users’ viewpoint. A users’ viewpoint and their experience
with the application is of paramount importance. From developers’ viewpoint, we
consider the experience and decisions of the developer, such as licensing and cost.
Criteria can be classified in two categories: qualitative and binary. Binary criteria
are criteria that can be answered using either using yes or no. It examines whether
a feature is available in the framework. Qualitative criteria deals with the quality of
the framework. Qualitative criteria are extremely useful for decision-making. Hence
this article will deal with qualitative criteria.

14.5.2 Ruby on Rails

Ruby on Rails is released under MIT License, which backs both closed- and open-
source projects. It is currently hosted on Github. There is no cost for extra support
or other developmental tools. Hence, grade 1 for license and cost. Rails is still in
active development and releases new versions and updates frequently. RoR is used
by many notable firms such as Twitter, Shopify, and SoundCloud. Rails recently
released version 4.2. These positive trends predict a good performance in near future
in terms of long-term feasibility. Hence, rank 1.

338 T. Muhammed et al.

The documentation provides detailed instructions and tutorial about all available
features with detailed examples. Many popular textbooks, articles, and tutorials
exist. Forums and stack overflow provides support for Rails. Hence, documentation
and support is also evaluated to 1. RoR can easily be learned due to good quality of
documentation. It is a highly intuitive language with a highly intuitive syntax, which
is very near to the natural language. No extra concepts are required to learn Rails.
Hence, we can rank it 1.

Static and dynamic applications can be developed quite easily. Most of the
database side code is generated by the scaffold generator. MVC model makes it
easier to code. There are many third-party IDEs, even though one is not required.
One of the major IDEs is RubyMine from JetBrains. It provides various advanced
functionality such as internationalization. It speeds up the development of web
application rapidly. Hence, we can provide development effort a grade of very
good (2).

Rails is highly modular in nature. It uses third-party plugins called as gems.
Any functionality can be added to Rails using third-party gems. As these gems are
third party, they are not well documented and hence causes difficulty in extending
the software. Hence, extensibility is satisfactory (3). Rails is written using Ruby.
An application can be separated to various components in Rails. Since it is based
on conventions rather than configuration, Rails is easier to maintain. Therefore,
maintainability is very good (2).

Rails by itself does not provide any user interface elements, other than the one
supported by HTML, which is not visually appealing. You have to use third-party
themes such as Bootstrap or Foundation to provide themes to various UI interfaces.
Hence UI elements get a grade of not well fulfilled (5). Rails by default not provide
a native look and feel. It will not change from platform-to-platform. Hence it gets
a rating of satisfactory (4). The load time of the Rails application depends upon
the number of jQuery scripts and CSS classes being loaded. If the pages are highly
dynamic, then the performance slightly decreases. This can be alleviated by using
minified jQuery. It runs animation fluently once loaded. The performance after
loading is excellent. Hence, the load-time performance is satisfactory (3) and the
runtime performance is very good (2).

14.5.3 Django

Django uses the 3-clause BSD License also known as modified or revised BSD
License which supports both open-source and closed-source development (1).
Django is maintained and developed by a non-profit organization called Django
Software Foundation. Many major organizations such as Instagram, Mozilla, and
Bitbucket use Django for their web application. One of the major goals of the
organization is the long-term viability of Django framework. Django is actively
developed and frequently released with new updates and bug fixes due to which
the Django can be predicted to have a solid future (1).

14 SelecWeb: Automatic Selection of Web Frameworks 339

The Django website provides a good documentation on all of its features along
with a separate tutorials for beginners, intermediate, and advanced developers. It
provides a good elucidation on all of the APIs provided Django. Thus, Django has
an excellent documentation (1). Since Python is based on Python developers will
have to learn Python to code, to code in Django. But Python is a simple language to
master. But good documentation paves an easy path for learning (1). It has a good
code scaffold that does a lot of code scaffolding that reduces the number of lines
to be written. Database transactions are automatically handled by an ORM. But
the visual elements including CSS and JavaScript has to be coded separately. As a
result, the development effort is nearly minimal in Django (2). Django is modular in
structure. You can add python packages to Django to extend the functionality. These
packages are developed by third-party developers and is hosted at PyPi. Django
has pretty straightforward code due to the simplicity of python. Therefore, Django
has a very good extensibility (2). Due to modular design and comprehensible code,
Django is maintainable (2).

Django doesn’t come with any template engine or user interface elements. We
need to use third part party templates or custom CSS to provide it exceptional looks.
Hence, the look and feel of Django can be rated as poor (5). Moreover, it does
not support native look and feel, which would require higher customization using
CSS (5). Django is a big framework with a size of 7.5 MB. Applications built with
Django tend to be large in size. It provides an extra admin panel which provides a
complete control of your application. Django loaded pretty fast (2) and had a very
good runtime (2).

14.5.4 CodeIgniter

CodeIgniter is licensed under MIT License which supports both open- source
and closed-source software. Earlier it was licensed under Apache/BSD-style open-
source license. Due to GPL, incompatibility of the license was shifted to MIT
License (1). It is currently maintained and developed by students of the British
Columbia University. Hence licensing of CodeIgniter is excellent, but since it is
developed in an academic environment without any commercial support its future is
not very bright (3).

The documentation of CodeIgniter provides basic coverage of all features and a
small tutorial. Initial learning curve is small but later on it becomes quite difficult
to master complex development scenarios. The online help is not advanced. There
are third-party tutorials and books for mastering CodeIgniter. Hence for long-
term feasibility it is satisfactory (4) and documentation and support is average
(3). CodeIgniter is based on PHP. It is based on MVC framework. It is easy for
the beginners to get started. But mastering requires quite an effort (3). Various
integrated development environments are available for the development of PHP such
as Zend, NetBeans, and Eclipse. Development effort is low for a simple project, but
it becomes harder for complex projects, but it doesn’t require any configuration. It
is a zero configuration framework. Hence, the net development effort is average (3).

340 T. Muhammed et al.

When the project becomes large and complex it becomes difficult to maintain and
extend the application mainly due to the fact that PHP consists of spaghetti code.
But simple plugins can be added to most of the simple functionalities. Hence, the
extensibility is average (3). Maintainability of large and complex applications is
going to be a problem. Hence, the maintainability is average (3).

CodeIgniter doesn’t provide any user interface elements. It uses the normal
elements provided by HTML. Any further modification requires third-party themes
that are available as modules. We can use CSS to liven up the application but it
requires greater development effort (4). Moreover, it doesn’t provide native look
and feel. Its look and feel is independent of the platform (5). CodeIgniter is the
smallest framework of all the frameworks considered in this test. It just has a size of
2.5 MB. It has a minimal footprint and hence it has fastest loading time (1). Runtime
performance is excellent for CodeIgniter (1).

14.5.5 Spring

Spring is licensed under Apache 2.0. Apache 2.0 is a copyright license that is
compatible with both open source and closed source, so the license criterion has
been fulfilled (1). The Spring software is a huge framework made for enterprises and
is usually considered as an alternative for Java Bean. It is currently maintained by
Pivotal Software which is a large enterprise that creates software such as VMware.
Major release rolls out every year with new features and fixes. Since it is supported
by a large corporation, and the code is open source, it has a very strong solid future
with high potential (1).

Spring has very detailed and long documentation of all its features. Since it is
an enterprise based MVC framework, it has a lot of documentation that needs to
be learned. There are online resources and tutorials available. Hence, it provides
excellent documentation and support (1). Since it is an enterprise framework, the
learning curve for Spring framework is quite high. You will need to be familiar with
various APIs and its documentation. It introduces you to some new concepts that
are different from normal programming paradigm. We have to learn new concepts
such as dependency injection, Java servlets, and JSP, each of which is huge. Spring
framework itself consists of a number of modules. Hence, the learning effort is quite
high for Spring framework (5). The time taken to develop is also quite high. Spring
is not suitable for the development of a small scale application. The development
time will span up to more than a year using Spring framework. The number of lines
of code required to achieve a certain functionality is much more in Java. As a result,
the development time for Spring framework is higher than other frameworks (5).

Java code is divided into classes and packages. Since Spring uses Java it is mostly
extensible. You can easily add new classes to Spring framework. But the integration
to the framework is not quite easy (3). It is much more difficult to maintain a Spring
application due to the complexity involved. As a result, the maintainability of Spring
is satisfactory (4). Spring framework provides swing based user interface elements.
These elements do not provide native look and feel of the environment. Since Java

14 SelecWeb: Automatic Selection of Web Frameworks 341

is platform independent, the look and feel of the Spring framework is also platform
independent. Third-party themes can be used to enhance the visual impact of the
applications being developed, CSS and JavaScript. Hence the native look and feel is
also satisfactory in Spring framework (5).

Spring MVC has a whopping size of 16 MB, therefore, is a heavy and complex
framework with many components. This tends to reflect in its load time. As Java is
heavy, clunky, and slow, Spring inherits these qualities from Java and tends to be
slower than the other tested frameworks (5). The runtime performance of Spring is
also poor. Since Spring uses Java servlets to run and serve web pages, its run-time
performance is also slower (4).

14.6 Discussion

In this section, we summarize the weaknesses and strengths of each web framework.
We will discuss scenarios and the scenarios in which different frameworks are
suitable. Figure 14.3 illustrates the summary of our ranking for the analytical
hierarchal process.

Development Effort

Documentation and Support

Learning Success

License and Cost

Load Time Performance

Long−Term Viability

Look and Feel

Maintainability

Modifiability

Run Time Performance

User Interface

RoR Django Spring CodeIgniter

1 2 3 4 5

Fig. 14.3 Ranking of web frameworks against criterion on a scale of five

342 T. Muhammed et al.

Ruby on Rails is a framework that is suitable for rapid application development.
It is a popular software used by startup companies to develop web application due
to ease of use and rapid development. Rails concentrates more on the business
layer of application development. It provides advanced ORM functionalities. It
would have been better if the user interface for Rails was defaulted to bootstrap.
A Larger organization with huge applications will have to migrate if the total users
and connections increase.

Django could also get some touch up on the UI front. The difference between
ROR and Django boils down to the programming languages being used. Other than
that, it is almost equivalent. Familiarity with Python or Ruby would be the decider
in such scenarios.

CodeIgniter is written in PHP. PHP normally has an unsavory reputation of
being spaghetti in style. But they produce ultra-fast, highly minimal applications
with a minimal footprint. CodeIgniter can be used to develop applications that
require faster response as it has an excellent loading time. It is suitable for smaller
application. For larger application, it induces complexity and becomes an overhead.

Spring is an enterprise level framework that can handle data-intensive applica-
tion. It is not suitable for developing a small application. For smaller applications it
increases the development time and the complexity of the code, which degrades the
performance of the smaller application, whereas for the larger enterprise solution,
it is the best solution as it can handle data-intensive tasks and does handle heavy
traffic and sizable connections without crashing the web server.

We have summarized the plus point and negatives of various scenarios, where
the frameworks discussed can be used. We should have a weight for different
criteria depending upon the requirements of the applications. Table 14.2 is from
where you have to begin from where you can use additive principals to select an
appropriate framework. In summary, if the web application is small and needs to be

Table 14.2 Results of the WebSelec for the example scenario showing the maximum and
minimum for each criterion

Weight CodeIgniter Ruby on Rails Django Spring

Select framework 100.00 38.79 26.23 20.38 14.60

Load-time performance 26.69 18.46 3.58 3.58 1.08

Real-time performance 24.16 12.95 6.68 2.99 1.55

Development effort 7.75 0.77 3.05 3.05 0.87

Long-term viability 7.35 0.46 2.30 2.30 2.30

Look and feel 6.78 1.13 3.39 1.13 1.13

Maintainability 6.29 0.90 1.80 1.80 1.80

License and cost 5.76 1.44 1.44 1.44 1.44

Documentation and support 5.29 0.24 1.68 1.68 1.68

Learning success 4.34 0.54 1.63 1.63 0.54

Modifiability 3.41 1.15 0.54 0.64 1.08

User interface 2.17 0.74 0.15 0.15 1.13

14 SelecWeb: Automatic Selection of Web Frameworks 343

developed faster, then you have the option to select ROR or Django, depending
upon the preferred programming languages. If the application is required to be
fast, then CodeIgniter is a good option. If the application is being developed for
a large organization with large development time frame, then Spring is a suitable
framework.

14.7 Example Scenario

In this section, we discuss an example scenario wherein we use our SelecWeb
tool for the selection of the best web framework that satisfies the requirements
of an example application. The following were the selected requirements for the
application in decreasing order of priority:

1. Load-time performance of the web application
2. Real-time performance of the web application
3. Modifiability of the application
4. User interface of the web application

Requirements such as look and feel, development effort, maintenance, and docu-
mentation were deemed as negligible or of lower priority. With these requirements,
we use the SelecWeb tool to select the best format. The results of the SelecWeb tool
are given in Fig. 14.4 and Table 14.2.

Fig. 14.4 The results of the WebSelec for the example scenario

344 T. Muhammed et al.

In Fig. 14.4, Weight indicates the weight of each requirement that has contributed
in the selection of appropriate web framework. We observe that with the given
requirements AHP has given a higher score to CodeIgniter (38.8%), followed by
Ruby on Rails (38.8%), and Django (38.8%). Higher score indicates a higher
achievement of the provided requirements. Hence, with a higher score from our
analysis using WebSelec, it is much more feasible to develop the web application
using CodeIgniter for the achievement of the requirements. The bold, red values
in Table 14.2 indicate the requirements with higher score and bold, blue colored
values indicate the lowest score for a given requirement. Requirements such as load-
time performance, real-time performance, and modifiability have higher weights for
CodeIgniter (18.46% and 12.95%, respectively) as compared to other frameworks,
whereas the requirements we assigned least priority such as development effort,
long-term viability, maintainability, and documentation and support are lowest in
CodeIgniter.

This example clearly illustrates the feasibility and utility of the Analytic Hierar-
chal Process for selecting a web application framework with multiple requirements
or decision makers.

14.8 Conclusion

In this paper, we proposed SelecWeb, an automatic tool for selecting a web
framework based on a set of criteria and developer preferences. We presented an
analysis of web development framework. A set of criteria was derived, based on
application requirements. The set of criteria was used to test and evaluate the web
application frameworks. Ruby on Rails, Django, CodeIgniter, and Spring were the
web application frameworks that were tested. Each framework was tested by the
authors. The assessment and evaluation are valid for the near future but might
change as the quality of technology varies. Hence the accuracy of the information is
not guaranteed for longer time frame but the methodology and general information
provided will remain applicable. Using a case study, we demonstrated the use of the
SelecWeb tool to select the best web framework that satisfies the requirements of a
given application.

Future work will focus on the security evaluation and detailed performance
assessment of the web development frameworks. Moreover, the current develop-
ment of the tool is based on the AHP method. In the future, we plan to use
machine learning techniques to automatically predict the best web development
framework for developers and users. The rankings of the web frameworks, based
on the discussed criteria (license and cost, long-term viability, etc.), can be used
to train a machine learning based model. The trained model will be able to
automatically select the best framework based on the given preferences of the users
and developers.

14 SelecWeb: Automatic Selection of Web Frameworks 345

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-673-793-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–
32285 (2018)

2. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0., pp. 3–35. Springer, Cham (2016)

3. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing
model. Procedia Comput. Sci. 64, 1107–1114 (2015). Conference on ENTERprise Information
Systems/International Conference on Project MANagement/Conference on Health and Social
Care Information Systems and Technologies, CENTERIS/ProjMAN / HCist 2015 October 7–9,
2015

4. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1),
75–104 (2017)

5. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. Int. J. Manuf.
Technol. Manag. 22(6), 804–817 (2011)

6. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. Int. J. Manuf.
Technol. Manag. 22(6), 804–817 (2011)

7. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput.
Sci. 109, 1128–1133 (2017). 8th International Conference on Ambient Systems, Networks
and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy
Information Technology, SEIT 2017, 16–19 May 2017, Madeira, Portugal

8. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017).
8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017
and the 7th International Conference on Sustainable Energy Information Technology, SEIT
2017, 16–19 May 2017, Madeira, Portugal

9. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac,
I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 323–336. Springer,
Cham (2018)

10. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 155–
168. Springer, Cham (2018)

11. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 169–184. Springer, Cham (2018)

12. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 207–215. Springer, Cham (2018)

13. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac,
I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 247–257. Springer,
Cham (2018)

346 T. Muhammed et al.

14. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge
and outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 11–26. Springer, Cham (2018)

15. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 98–110. Springer, Cham (2018)

16. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 111–122. Springer, Cham (2018)

17. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

18. W3C: HTML5. http://www.w3.org/TR/html5/ (2015). Online; Accessed 20 May 2015
19. Bachle, M., Kirchberg, P.: Ruby on rails. IEEE Softw. 24(6), 105–108 (Nov 2007)
20. Arthur, J., Azadegan, S.: Spring framework for rapid open source J2EE web application

development: a case study. In: Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005 and First ACIS
International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005, pp. 90–
95. IEEE, Piscataway (May 2005)

21. Raible, M.: My comparing JVM web frameworks presentation from Devoxx 2010. https://
raibledesigns.com/rd/entry/video_of_comparing_jvm_web (2013). Online; Accessed 20 May
2015

22. Rodriguez-Martinez, M., Seguel, J., Greer, M.: Open source cloud computing tools: a case
study with a weather application. 2013 IEEE Sixth Int. Conf. Cloud Comput. 0, 443–449
(2010)

23. Smutny, P.: Mobile development tools and cross-platform solutions. In: 2012 13th International
Carpathian Control Conference (ICCC), pp. 653–656. IEEE, Piscataway (May 2012)

24. Heitkötter, H., Majchrzak, T., Ruland, B., Weber, T.: Comparison of mobile web frameworks.
In: Krempels, K.H., Stocker, A. (eds.) Web Information Systems and Technologies. Lecture
Notes in Business Information Processing, vol. 189, pp. 119–137. Springer, Berlin (2014)

25. Wikipedia: Web application framework — Wikipedia, the free encyclopedia (2015). Online;
Accessed 20 May 2015

26. Python Community: WebFrameworks - Python Wiki. https://wiki.python.org/moin/
WebFrameworks (2018). Online; Accessed 20 May 2018

27. Ruby, S., Thomas, D., Hansson, D.H.: Agile Web Development with Rails. Pragmatic
Bookshelf (2011). ISBN: 1934356549, 9781934356548

28. Wikipedia: CodeIgniter—Wikipedia, the free encyclopedia (2013). Online; Accessed 20 May
2015

29. Stack Overflow: What is dependency injection? http://stackoverflow.com/questions/130794/
what-is-dependency-injection (2008). Online; Accessed 20 May 2015

30. Programmers Stack Exchange: Spring introduction and research. http://programmers.
stackexchange.com/questions/92393/what-does-the-spring-framework-do-should-i-use-it-
why-or-why-not (2011). Online; Accessed 20 May 2015

31. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Manage. Sci. 32(7), 841–
855 (July 1986)

32. Apache: Apache license, version 2.0. http://www.apache.org/licenses/LICENSE-2.0 (2018).
Online; Accessed 20-May-2015

33. MIT: The MIT license (MIT)-Open Source Initiative. http://opensource.org/licenses/MIT
(2018). Online; Accessed 20 May 2015

34. Sen, R., Subramaniam, C., Nelson, M.L.: Open source software licenses: strong-copyleft, non-
copyleft, or somewhere in between? Decis. Support Syst. 52(1), 199–206 (December 2011)

35. GNU Foundation: Licenses - GNU project - Free Software Foundation. http://www.gnu.org/
licenses/ (2018). Online; Accessed 20 May 2015

http://www.w3.org/TR/html5/
https://raibledesigns.com/rd/entry/video_of_comparing_jvm_web
https://raibledesigns.com/rd/entry/video_of_comparing_jvm_web
https://wiki.python.org/moin/WebFrameworks
https://wiki.python.org/moin/WebFrameworks
http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://programmers.stackexchange.com/questions/92393/what-does-the-spring-framework-do-should-i-use-it-why-or-why-not
http://programmers.stackexchange.com/questions/92393/what-does-the-spring-framework-do-should-i-use-it-why-or-why-not
http://programmers.stackexchange.com/questions/92393/what-does-the-spring-framework-do-should-i-use-it-why-or-why-not
http://www.apache.org/licenses/LICENSE-2.0
http://opensource.org/licenses/MIT
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Part IV
Big Data and High Performance

Computing

Chapter 15
On Performance of Commodity Single
Board Computer-Based Clusters: A Big
Data Perspective

Basit Qureshi and Anis Koubaa

15.1 Introduction

Big data technologies are becoming ever more popular and are currently a focus
of both science and industry. The amount of data generated by scientific as well
as business applications has increased manifolds in the last few years. A key
framework for processing large datasets is the MapReduce framework which allows
data to be divided into fixed-size chunks that are processed in parallel on the cloud
infrastructure. Several open source MapReduce frameworks have been developed in
the last years with the most popular one being Hadoop. Hadoop has been deployed
on physical servers across data centers around the globe and continues to provide
the realization of on-demand resource availability, scalability with reliability for big
data analyses. Figure 15.1 shows the coupling of various technologies for big data
analysis in cloud computing infrastructure.

A leading motivation for cloud computing is the reduction of installation and
operational cost for small businesses and enterprises. On the other hand, it is
immensely important for students in universities to be exposed to real cloud
computing infrastructure. Indeed, universities and academic institutions need to
provide hands-on experience in this area, which means that universities need

B. Qureshi (�)
Prince Sultan University, Riyadh, Saudi Arabia
e-mail: qureshi@psu.edu.sa

A. Koubaa
Prince Sultan University, Riyadh, Saudi Arabia

Gaitech Robotics, Shanghai, China

CISTER, INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
e-mail: akoubaa@psu.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_15

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_15&domain=pdf
mailto:qureshi@psu.edu.sa
mailto:akoubaa@psu.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_15

350 B. Qureshi and A. Koubaa

Fig. 15.1 Role of cloud
infrastructure in big data
analysis [2]

to provide access to a suitable cloud computing infrastructure that can be used
for experimentation, research, and teaching. Setting up cloud infrastructure in
universities could be a very costly endeavor [24]. Although most universities do
not reveal the actual costs of setting up and running the infrastructure, the cost of
Ukko Cloud Computing Cluster with 240 Dell PowerEdge M610 nodes, each with
32 GB of RAM and 2 Intel Xeon E5540 2.53 GHz quad-core CPUs at University of
Helsinki Finland was reported to be over 1 million Euros [13]. Expedient, a private
cloud data center construction organization for small businesses, estimates the cost
of installation of a tier III data center with ten racks to be upwards of 1 million US
Dollars [12].

In order to build a low-cost effective cloud computing cluster with low energy
consumption requirements resulting in near-zero carbon footprint, researchers have
investigated the use of SBCs. Indeed, an SBC is a complete computer built on
a single circuit board that incorporates a microprocessor(s), memory, I/O as well
as multitude of other features required by a functional computer [3]. Typically, an
SBC is ideally priced at (35–80 US$), with power requirements set to be as low as
2.5 W and designed in small form factors comparable to a credit card or pocket
size. These computers are portable and are capable of running a wide range of
platforms including Linux distributions, Unix, Microsoft Windows, Android, etc.
A cluster of single board computers has very limited resources and cannot compete
with the performance of higher value systems. But despite these drawbacks, useful
application scenarios exist, where clusters of single board computers are a promising
option. This applies in particular to small- and medium-sized enterprises as well
as for academic purposes like student projects or research projects with limited
financial resources.

The Beowulf cluster created at Boise State University [7] was perhaps the earliest
attempt at creating a cluster consisting of multiple nodes of SBCs. This cluster
is composed of 32 Raspberry Pi Model B computers and offers an alternative in
case if the main cluster is unavailable. The Bolzano Raspberry Pi cloud cluster
experiment implemented a 300 node Pi cluster [8]. The main goal of this project was
to study the process and challenges of building a Pi cluster on such a large scale.

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 351

The Iridis-Pi project implemented a 64 node Raspberry Pi cluster [9]. Tso et al. [10]
built a small-scale data center consisting of 56 RPi Model B boards. The Glasgow
Raspberry Pi Cloud offers a cloud computing testbed including virtualization
management tools. Whitehorn [11] presented the first ever implementation of a
Hadoop cluster using five Raspberry Pi Model B nodes. In 2016, C. Baun in [14]
presented the design of a cluster geared towards academic research and student
scientific projects building an eight-node Raspberry Pi Model 2B cluster. All
of these works demonstrate constructing a cluster using SBCs at an affordable
cost to researchers and students. However, none of these works provide detailed
performance analysis of computing tasks, memory, storage utilization, and network
throughput. Indeed effective Hadoop deployment depends on efficient utilization of
resources available onboard cluster nodes as well as network traffic management.
The lack of performance evaluation of SBC-based cloud computing clusters as well
as energy efficiency provides motivation for this work.

In this chapter, we present a detailed study on design and deployment of two
SBC-based clusters using Raspberry Pi Model 2 B and HardKernel Odroid Model
Xu-4. The objectives of this study are in three folds: (1) To provide a detailed
analysis of the performance of Raspberry Pi and Odroid XU-4 SBCs in terms of
power consumption, processing/execution time for various tasks, storage read/write
as well as network throughput; (2) To study the viability and cost-effectiveness
of the deployment of SBC-based Hadoop clusters against virtual machine-based
Hadoop clusters deployed on personal computers and (3) To contrast the power
consumption and performance aspects of SBC-based Hadoop clusters for Big Data
Applications in academic research. To this end, three clusters were constructed and
deployed for extensively studying the performance of individual SBCs as well as
a cluster deployment to provide a detailed comparison. Furthermore, Hadoop was
deployed on these clusters to study the performance aspects of the environment
using popular and widely used performance benchmarks. Power consumption, task
execution time, I/O read/write latencies as well as network throughput were studied.
In addition to the above, we provide analysis of energy consumption in the clusters,
the energy efficiency, and cost of operating these clusters. Results from this study
show that it is possible to deploy a cost-effective Hadoop cluster with reasonable
performance for low yield workloads; however for larger workloads, the operation
cost would significantly increase.

The contribution of this chapter is as follows:

• Design and compact layout for two clusters using SBCs are presented in addition
to a PC-based cluster running in the virtual environment. Performance evaluation
of task execution time, storage utilization, network throughput as well as power
consumption are detailed.

• Popular Hadoop benchmark programs such as Pi Computation, Wordcount,
TestDFSIO, TeraGen, and TeraSort are executed on these clusters and results
are compared against a virtual machine-based cluster using workloads of various
sizes.

352 B. Qureshi and A. Koubaa

The remainder of this chapter is organized as follows. Section 15.2 presents
related works with details on the ARM-based computing platforms used in this
study as well as a review of recent applications of SBCs in high-performance
computing and Hadoop-based environments. Section 15.3 presents the design and
architecture of the RPi, Xu20, and HDM Clusters used in this study. Section 15.4
deals with a comprehensive performance evaluation study of these clusters based
on popular benchmarks. Section 15.5 provides details on the deployment of Hadoop
environment on these clusters with a detailed presentation of performance aspects of
Hadoop benchmarks for the clusters. Section 15.6 provides summary and discussion
followed by conclusions in Sect. 15.7.

15.2 The Single Board Computers

Advanced RISC Machine (ARM) is a family of Reduced Instruction Set Computing
(RISC) architectures for computer processors that are commonly used nowadays
in tablets, phones, game consoles, etc. [4]. The ARM is the most widely used
instruction set architecture in terms of quantity produced [6]. Since October 2011,
the ARM has started to support 64-bit address space and instruction set in the ARM
v8 architecture. Currently, ARM Cortex cores architecture is popular and widely
used in smartphones, single board computers, etc. An SBC is a complete computer
built on a single circuit board. An SBC incorporates a microprocessor(s), memory,
I/O as well as host of other features required by a functional computer. While
keeping the manufacturing costs to the lowest (25–80 US$), various companies have
developed SBCs in small form factors comparable to a credit card or pocket size.
These computers are capable of running a wide range of platforms including Linux
distributions, Unix, Microsoft Windows, Android, etc. In what follows, we briefly
describe the two popular SBCs using ARM-based CPUs and their features.

The Raspberry Pi Model 2B The Raspberry Pi Foundation [1] developed a
credit card-sized SBC called Raspberry Pi (RPi). This development was aimed at
creating a platform for teaching computer science and relevant technologies at the
school level. Raspberry Pi 2B version was released in February 2015 improving
the previous development platform by increased processor speed, larger onboard
memory size as well as newly added features. Figure 15.2 shows RPi Model 2B.
Table 15.1 summarizes the hardware specifications of RPi Model 2B. Although
the market price, as well as the cost of energy consumption of an RPi, is low,
the computer itself has many limitations in terms of shared compute and memory
resources. Raspberry Pi uses a 32-bit quad-core ARM Cortex A7 processor clocked
at 0.7 GHz with 256 KB L2 cache memory, which is shared with the GPU. While
it is possible to overclock the processor and tune the performance, the results may
reduce the overall lifespan of the computer. For data storage, RPi relies on solid
state flash memory. The SD memory reads and writes in 128 KB blocks of data, i.e.,
even for reading/writing one byte, the entire block of memory needs to be read from

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 353

Fig. 15.2 Raspberry Pi 2 B

Table 15.1 Features of Raspberry Pi Model 2B and HardKernel Odroid Xu-4

RPi Model 2B Odroid XU-4

Processor (CPU) 0.9 GHz quad core ARM
Cortex-A7

Samsung Exynos5 Octa ARM Cortex-A15
(@ 2.0 GHz) and Cortex-A7 (@1.3 GHz)
CPUs

GPU Broadcom Video Core IV
Multimedia Graphics
co-processor

Mali T628 Open GL 3.0

Onboard RAM 256 KB L2 cache
1 GB SDRAM at
400 MHz

2 GB LPDDR3 at 933 MHz

Ethernet/Network 10/100 MB Ethernet
RJ45 Jack

10/100/1000 MB Ethernet RJ45 Jack

Storage Micro SD Card Micro SD Card and eMMC 5.0 flash storage
Audio/Video 3.5 mm jack and HDMI HDMI (standard) supports 1080p video
Power
Consumption

3.2 W (idle)
3.8 W (under load)

2.5 W (idle)
4.5 W (under load)

USB Ports 4 USB 2.0 1x USB 2.0, 2× USB 3.0
Released February 2015 2015
Price (US$) 35$ 79 $

or written to. Furthermore, the lifespan of the SD card is reduced significantly with
very frequent write operations. In summary, the RPi is a very affordable platform
with low cost and low energy consumption [3, 4]. The major drawback is the
compute performance. Recent experiments in distributed computing have shown
that this can be rectified by building a cluster of many RPi computers. Further details
about configuration in the cluster would be provided in the next section.

The Hardkernel Odroid platform ODROID-XU-4 [5] is a newer generation of
single board computers offered by HardKernel. Offering open source support, the

354 B. Qureshi and A. Koubaa

Fig. 15.3 Hardkernel Odroid
XU-4

board can run various flavors of Linux, including Ubuntu 15.04, Ubuntu MATE,
Android 4.4 Kit Kat, and 5.0 Lollipop. XU-4 uses Samsung Exynos5 Quad-core
ARM Cortex™-A15 Quad 2 GHz and Cortex™-A7 Quad 1.3 GHz CPUs with
2 Gbyte LPDDR3 RAM at 933 MHz. The Mali-T628 MP6 GPU supports OpenGL
3.0 with 1080p resolution via standard HDMI connector. Two USB 3.0 ports, as well
as a USB 2.0 port, allows faster communication with attached devices. The power-
hungry processor demands 4.0 A power supply with power consumption of 2.5 W
(idle) and 4.5 W (under load). By implementing the eMMC 5.0, the ODROID C1
and XU-4 boast improved I/O transfer speeds over Class 10 SD card flash memories.
XU-4 comes with an onboard heat sink as well as a fan. With heavy computation
loads, the temperature can increase resulting in increased power consumption due
to cooling. We noticed that the temperature doubled under increased computation
stress resulting in the constant running of the fan creating excessive noise. Odroid
XU-4 priced at $79 is slightly expensive compared to Raspberry Pi 3B; nevertheless,
the improved processing power although demanding more power provides tradeoff
with improved performance, task execution time as well as better I/O read and write
operations. Table 15.1 shows a summary of Odroid XU-4 SBC (Fig. 15.3).

The low-cost aspect of an SBC makes it attractive for students as well as
researchers in academic environments. As pointed out in the literature, it is possible
to deploy a Hadoop cluster using SBCs such as Raspberry Pi computers. Although
the Raspberry Pi computers are cheap and widely available, the limitations in
terms of processing power, available onboard memory and reliance on SD cards
for external storage with slow I/O operations, yield performance with much to be
desired. Thanks to increased interest in SBCs, newer single board computers with
better design and faster operations speeds are becoming available. It remains to be
seen how the improved SBCs perform when deployed in Hadoop clusters. In this
chapter, we present a detailed study on design and deployment of Hadoop on two
SBC-based clusters using Raspberry Pi Model 2 B as well as HardKernel Odroid

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 355

Fig. 15.4 Network topology diagram for RPi, Xu20, and HDM clusters

Model Xu-4. The Odroid XU-4 is an SBC with the faster processor, larger onboard
memory, and faster I/O storage.

15.3 Design and Architecture of the DM-Clusters

This section presents the architecture and configuration of the clusters deployed in
this experimental study. For the purpose of benchmarking cluster performance as
well as comparatively analyzing their performance, we built three clusters.

The first cluster, called RPi Cluster, is composed of 20 Raspberry Pi Model 2B
Computers connected to a network. The second cluster, called Xu-20, is composed
of 20 Odroid XU-4 devices in the same network topology. The third cluster HDM
is composed of four regular PCs running Ubuntu in the virtual environment using
VMware Workstation [28]. To maintain similarity in network configuration, all the
clusters follow the same star topology with a 24-port Giga-bits-per-second smart
managed switch acting as the core of the network as can be seen in Fig. 15.4. Each
node (RPi, XU-4, or PC) connects a 16-port Ethernet switch that connects to the core
switch. Currently, five nodes connect to each switch allowing further scalability of
the cluster. The master node, as well as the uplink connection to the Internet through
a router, is connected to the core switch. The current design allows easy scalability
with up to 60 nodes connected in the cluster that can be extended up to 300 nodes.
Table 15.2 presents a summary of the cluster characteristics.

356 B. Qureshi and A. Koubaa

Table 15.2 Configuration of the DM-Clusters

RPi Cluster Xu20 Cluster HDM Cluster

Master Node Intel i7 at 3.00 GHZ
64Bit Win 10

Intel i7 at 3.00 GHZ
64Bit Win 10

Intel i7 at 3.00 GHZ
64Bit Win 10

Number of Data
Nodes

20 20 4

Slave Node Device Raspberry Pi Model 2
B

HardKernel Odroid
Xu-4

Intel i7 at 3.00 GHZ
64Bit Win 10

Data Node Clock
Speed

1000 MHz 2000 MHz 3000 MHz

OS Raspbian OS Ubuntu MATE 15 OS Ubuntu 14.4 LTE
Storage (GB) 16 GB 32 GB 40 GB
Storage Medium Class 10 SD Card eMMC 5.0 module Kingston Solid State

Disk (SSD)
RAM 856 MB (available) 1024 MB (available) 3 GB (available)
Virtual Machine Only Master Node runs

OS in VM
All nodes on VM

15.3.1 Components and the Design of the DM-Clusters

Each cluster is composed of a set of components including SBCs, power supplies,
network cables, storage modules, connectors, and cases. Each SBC is carefully
mounted with storage components. All the Raspberry Pi computers are equipped
with 16 GB Class-10 SD cards for primary bootable storage. The Odroid XU-4
devices are equipped with 32 GB eMMCv5.0 modules and can be seen in Fig. 15.3.
All the SBCs are housed in a compact layout racks using M2/M3 spacers, nuts,
and screws. The racks are designed to house 5 SBCs per rack for easy access and
management. Figure 15.5a shows the Raspberry Pi computers organized in racks
with 5 computers per rack, Fig. 15.5b shows the Odroid XU-4 computers organized
in racks with 5 computers per rack.

Currently, each Raspberry Pi computer is individually supplied by the 2.5 A
power supply; each Odroid XU-4 computer is supplied by a 4.0 A power supply that
provides ample power for running each node. All the power supplies are connected
to the Wattsup Pro .net power supply meter for measuring power consumption.
These power meters are then connected to a voltage regulator connected to the main
supply. The Wattsup Pro .net power meter can be seen in Fig. 15.6a.

Each SBC’s network interface is connected to a Cat6e Ethernet cable through the
RJ-45 Ethernet connector. All Ethernet cables connect to the 16-port Cisco switches
which connect to a Gigabit Core switch. An Internet router, as well as the Master
PC running Hadoop namenode, is connected to the network. Figure 15.6b shows the
network connectivity. The HDM Cluster is composed of four PCs all connected in
the same network topology as of the other clusters. Each PC is equipped with an
Intel i7 4th Gen Processor with 3.0 GHz Clock speed, 8 GB RAM, and 120 GB
Solid State Disk Drive for storage. Each PC is equipped with a 400 W power supply

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 357

Fig. 15.5 Hardware installation; (a) The RPi Cluster composed of 20 RPi Model 2B computers;
(b) The Xu20 Cluster composed of 20 Odroid XU-4 computers; (c) The HDM Cluster composed
of 4 Intel 7, 3.0 GHz PCs

Fig. 15.6 (a) Wattsup Pro .net power meter (b) Cisco Core switch, Cisco Internet Router, and
4 × 16 port switches

and connects to the Ethernet Switch. Figure 15.5c shows the HDM Cluster. The
purchase cost of all components of the RPi, Xu20, and HDM Clusters was $1300,
$2700, and $4200, respectively. The Network and Power reading equipment cost is
approximately $450.

358 B. Qureshi and A. Koubaa

15.3.2 Raspbian and Ubuntu MATE Image Installation

For the RPi Cluster, we built the RPi Image. The Raspbian OS image is based on
Debian that is specifically designed for ARM processors [29]. Using Raspbian OS
for RPi is easy with minimal configuration settings requirements. Each individual
RPi is equipped with a SanDisk Class 10, 16 GB SD card capable of up to 45 MB/s
read as well as up to 10 MB/s write speeds available at a cost of US$15. We created
our own image of the OS which was copied on the SD cards. Additionally, Hadoop
2.6.2 is installed on the Image with Java JDK 7 for ARM platform. When ready,
these SD cards are plugged into the RPi systems and mounted. The Master node is
installed on a regular PC running an Ubuntu 14.4 virtual machine on Windows 10
as the host operating system.

For the Xu20 Cluster, we built another image based on Ubuntu MATE 15.10.
Ubuntu MATE is an open source derivate of the Ubuntu Linux distribution with
MATE desktop. HardKernel provides Ubuntu MATE 15.10 pre-installed on the
Toshiba eMMCv5.0 memory module which is preconfigured for Odroid XU-4
single board computers at a price of US$43. The eMMCv5.0 is capable of reading
and write speeds of 140 MB/s and 40 MB/s, respectively. Apache Hadoop 2.6.2
along with Java JDK 7 for ARM platform was installed on the image. These modules
were inserted into eMMC socket on the Odroid XU-4 boards and connected to the
network. Similar to the RPi Cluster, the Hadoop master node was installed on a
regular PC running Ubuntu 14.4 VM.

The final cluster HDM is composed of four PCs all connected in the same
network topology as of the other clusters. A virtual machine in the VMware
workstation was built to run Hadoop 2.6.2 with Java JDK 7 for 64-bit architecture.
One of the VMs serves as the master node and runs Hadoop namenode only. The
rest of the VM run the data nodes of the cluster.

15.4 Performance Evaluation of DM-Clusters

In this section, we present a performance evaluation study of DM-Clusters in terms
of energy consumption, processing speed, storage read/write, and networking.

15.4.1 Energy Consumption Approximation

Energy consumption in data centers is a major concern for green cloud computing
research. The Greenpeace [26] in 2012 estimated the global energy consumption for
data centers to be over 31 GW. Recently, the NRDA [27] estimated in 2013, in the
USA alone, the data centers consumed 91 billion kiloWatts hours (kWh) of energy,
which is estimated to increase by 141 billion kWh every year until 2020, costing

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 359

Table 15.3 Power consumption of clusters in idle and stress modes with power cost per year

Idle mode Stress mode
Power
consumption (E)
(W)

Power cost
in USD

Power
consumption
(E) (W)

Power cost
in USD

RPi CLUSTER
(20 NODES)

34.1 $ 14.94 46.4 $ 20.33

XU20 CLUSTER
(20 NODES)

56.2 $ 24.63 78.7 $ 34.49

HDM CLUSTER
(4 NODES)

108.4 $ 47.51 197.7 $ 86.66

Table 15.4 CPU execution time (s) for individual nodes with n threads

CPU execution time with n threads
CPU cores Clock rate GHz 1 2 4 8 16

Raspberry Pi 2B 4 1.0 448.2 225.1 113.8 113.7 113.7
Odroid Xu-4 8 2.0 83.3 41.68 25.33 17.66 18.02
Intel i7 4th Gen 4 3.0 8.51 4.272 2.22 2.27 2.23

businesses $13 billion annually in electricity bills and emitting nearly 100 million
metric tons of carbon pollution per year. Resource over-provisioning and energy
non-proportional behavior of today’s servers [25] are two of the most important
reasons for high energy consumption of data centers. On the other hand, use of low-
end computers is increasingly becoming popular due to low cost and low energy
consumption. In this section, we analyze the power consumption of SBCs used in
this study.

The energy consumption for the DM-Clusters was measured using the Wattsup
Pro .net power meters. These meters provide consumption in terms of Watts for
24 h a day and log these values in local memory for accessibility. To estimate the
approximate power consumption over a year, we measured the power consumption
in two modes, Idle mode and stress mode for each DM-Cluster. In idle mode, the
clusters were deployed without any application/task running for a period of 24 h.
In stress mode, the clusters ran a host of computation intensive applications for a
period of 24 h. Observing the logs, the upper-bound wattage usage within a period
of 23 h was taken as power consumption in the idle mode as well as the stress mode.
Table 15.3 shows the power consumption for DM-Clusters in idle and stress modes.

The cost of energy for the cluster is a function of power consumption per year and
the cost of energy per kiloWatts hour [23]. An approximation of energy consumption
cost per year (Cy) can be given by Eq. (15.1) where E is the specific power
consumption for an event for 24 h a day and 365.25 days per year. The approximate
cost for all the clusters computed based on values given in Table 15.4, whereas the
cost per kilowatt-hour (P) is assumed to be 0.05 US$.

360 B. Qureshi and A. Koubaa

Cy = E × 24
hour

day
× 365.25

days

year
× P

kWh
(15.1)

The Bolzano Experiment [8] reports Raspberry Pi cluster built using Raspberry
Pi Model B (first generation) where each node is consuming 3 W in stress mode. In
RPi Cluster, the Raspberry Pi Model 2B consumes slightly less power with 2.4 W
in stress mode. We observe that this slight difference in power consumption is due
to the improved design of the second-generation Raspberry Pi. The Cardiff Cloud
testbed reported in [30] compared two Intel Xeon-based servers deployed in the data
center with each server consisting of 2 Xeon e5462 CPU (4 cores per processor),
32 GB of main memory, and 1 SATA disk of 2 TB of storage each. The researchers
in this study used similar equipment to measure power consumption as presented
in this study. Their work reports that each server on average consumes 115 W and
268 W power in idle and stress modes, respectively. The power consumption for the
RPi Cluster with 20 nodes is 5 times better compared to a typical server in a cluster.

In a scenario where the RPi Cluster runs an application in stress mode (i.e.,
46.4 W) for the whole year, the cost for power usage is approximately $20.33. For
Xu20 and HDM Clusters, the yearly cost would be $34.49 and $86.66, respectively.
It is clear that using low-cost low-power devices enable a greener computing
environment in terms of energy consumption.

15.4.2 CPU Performance

In this section, we analyze the performance of the DM-Clusters using various
benchmark. The objective of this study is to investigate and compare the processing
speed of the three platforms under consideration to understand their intrinsic
performance.

The benchmark suite Sysbench1 was used to measure the CPU performance.
Sysbench provides benchmarking capabilities for Linux and supports testing CPU,
memory, File I/O, mutex performance in clusters. We execute the Sysbench
benchmark2 testing each number up to value 10,000 if it is a prime number for
n number of threads [22]. Since each computer has a quad-core processor, we run
the sysbench CPU test for 1, 2, 4, 8, and 16 threads. We measure the performance
of this benchmark test for Raspberry Pi Model 2B, Odroid XU-4 as well as Intel i7
fourth-generation computers used in the three DM-Clusters. Table 15.4 shows the
average CPU execution time for nodes with n threads.

As can be seen from Fig. 15.7, all the tested devices had four cores, the CPU
execution times scale well with the increased number of threads. Sysbench test runs

1https://wiki.gentoo.org/wiki/Sysbench
2Using sysbench --test=cpu --cpu-max-prime=10000 --num-threads=n
run

https://wiki.gentoo.org/wiki/Sysbench

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 361

1

10

100

1000

1 2 4 8 16

Ex
ec

u�
on

 T
im

e
(S

ec
on

ds
) L

og
 Sc

al
e

Number of threads

Sysbench CPU -Max-Prime=10000

HDM XU20 RPI

Fig. 15.7 Sysbench CPU execution times for SBCs (logarithmic scale)

with n = 2 and n = 4 threads significantly improve the execution times performance
for all processors by 50%. With n = 8 and n = 16 threads, the test results yield
almost similar execution times with little improvement in performance. It can also
be noted from Fig. 15.7 that the execution times for Odroid XU-4 are 10 times better
as compared to Raspberry Pi Model 2B. The increased number of threads does not
provide gain in performance of Odroid XU-4 over Raspberry Pi; furthermore, the
execution time for Raspberry Pi is further extended with larger n. The HDM Cluster
nodes run 4.42 times faster compared to Odroid Xu-4. These results clearly illustrate
the handicap of SBC onboard processors when compared to a typical PC.

The Raspberry Pi Model 2B allows the user to overclock the CPU rate to
1200 MHz, in our experiments with the over-clocked CPU we did not observe
significant improvement using the sysbench benchmark.

15.4.3 Storage Performance

Poor storage read/write performance can be a bottleneck in clusters. Compared to
server machines, an SBC is handicapped in terms of availability of limited storage
options. SBCs are typically restricted to external storage connected through the USB
interface with bootable flash disks or SD cards are primary storage devices. In this
section, we compare the storage performance of the DM-Clusters nodes and analyze
the performance of three different mediums for storage.

The small scale of the SBCs of Odroid Xu-4, as well as Raspberry Pi Model
2B, provides few options for external storage. Both SBC is equipped with SD Card
Memory slots that come with bootable versions of Linux distributions. In addition

362 B. Qureshi and A. Koubaa

Table 15.5 Read and write throughput (KB/s) for individual devices in the clusters using FIOa

Read throughput (KB/s) Write throughput (KB/s)
Buffered Non-buffered Buffered Non-buffered

Raspberry Pi 2B with 16 GB Class 10
SanDisk SDCard

7135 4518 2701 2537

Odroid Xu-4 with 32 GB eMMCv5.0
Module

14,318 13,577 6421 5118

Intel i7 4th Gen with 120 GB SanDisk
Solid State Disk

164,521 93,608 96,987 62,039

aMeasured using fio –name = randread –ioengine = libaio –iodepth = 1 –bs = 4 k –size = 512 M –
runtime = 240

to the SD Card Memory slot, the Odroid XU-4 is also equipped with eMMCv5.0
connector. Apart from these, both devices are equipped with USB 2.0 interfaces
with Raspberry Pi having 4, XU-4 having only one. The XU-4 is also equipped
with two USB 3.0 ports for faster data transfer. Additional storage devices can be
mounted using these USB ports. The Raspberry Pi’s were equipped with 16 GB
SanDisk Class 10 SD cards, whereas the XU-4 devices were equipped with 32 GB
eMMC memory cards. Both of these memory cards were loaded with bootable
Linux distributions. For comparison purposes, we used 128 GB SanDisk Solid State
Disks on the HDM Cluster machines and used flexible IO (FIO) which is commonly
used to benchmark IO performance of storage in various Linux distributions.

FIO3 allows benchmarking of sequential read and write as well as random read
and write with various block sizes. NAND memory is typically organized in pages
and groups with sizes 4, 8, or 16 Kilobytes. Although it is possible for a controller to
overwrite pages, the data cannot be overwritten without having to erase it first. The
typical erase block on SD cards is typically 64 or 128 KB. In newer SD cards, the
small number of erase blocks are combined into larger allocation units or segments
with a size 4 MB. The controllers of the SD cards implement a translation layer
maintaining the mapping and translation of virtual and physical memory addresses.
As a result of these design features, the random read and write performance of
SD cards depends on the erase block, segment size, the number of segments, and
controller cache for address translations.

Table 15.5 shows the comparison of buffered and non-buffered random read and
write from all the three devices with block size 4 KB. FIO was used to measure the
random read and write throughput with eight threads each working with a file of
size 512 MB with a total 4 GB of data. These parameters were set specifically to
avoid buffering and caching in RAM issues which are managed by the underlying
operating systems that can distort the results, i.e., the data size (4 GB) selected
is larger than the onboard RAM available on these devices. As can be seen from
Table 15.5, the read throughput (buffered) of Odroid with eMMC memory is at least
twice as fast as the Class 10 SD card on the Raspberry Pi whereas the non-buffered

3https://www.openhub.net/p/fio

https://www.openhub.net/p/fio

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 363

read is more than three times better. Similarly, for buffered write operations, Odroid
XU-4 with eMMC module throughput is more than twice better when compared
to the Class 10 SD card in Raspberry Pi. Table 15.5 also shows the comparison
of the throughput of the SSD Storage on the PC in the HDM Cluster against the
throughput of these devices. The buffered read throughput for SSD storage is at least
10 times better compared to eMMC module in Odroid XU-4 computers whereas the
buffered write throughput of SSD storage is 15 times better. These experimental
observations clearly imply the benefit of using SSDs with higher throughput when
compared to Class 10 SD cards as well as eMMC v5.0 memory modules. When
deployed in a distributed environment such as Hadoop that requires frequent read
and write operations, the SD cards with slower read/write throughput can increase
the task completion rate. On the other hand, faster memories such as eMMC or SSD
Drives can have a pivotal role in improving performance for the applications.

15.4.4 Network Performance

When data are being processed in a cluster, servers need to transfer data with
a certain amount of network bandwidth for the data to be delivered quickly and
processed efficiently. If the network cannot allocate bandwidth properly, the speed
of delivering and processing data will suffer because of unnecessary network
congestion among many other reasons. Major factors that can have an impact on
data processing and task execution time includes not only the speed of CPU, size of
main memory, the speed of storage I/O, but also the allocation of network resources.
Figure 15.4 shows the network topology for various networking components in
the three clusters. In this section, we provide the comparative analysis of network
performance using network throughput and latency using various payload sizes of
data over the TCP protocol using Linux-based benchmark tools.

The network performance was measured using the popular Linux-based com-
mand line tool iperf v3.13 with the NetPIPE benchmark version 3.7.2. Through
various sets of runs, iperf states the network throughput to be 82–88 Mbits per sec-
ond for the RPi and XU20 Clusters. NetPIPE [15, 16], on the other hand, provides
more details considering performance aspects for network latency, throughput, etc.
over a range of messages with various payload size in bytes. For this study, we
executed the benchmark within the clusters for various payload sizes over the TCP
end-to-end protocol. The NPtcp, NetPIPE benchmark using TCP protocol, involves
running transmitter and receiver on two nodes in the cluster. In our experimentation,
we executed the receiver on the cluster namenode with 1000 KB as maximum
transmission buffer size for a period of 240 ms. The transmitter was executed on
the individual SBCs one by one.

As can be seen from Fig. 15.8, the network latency for all clusters with small
payload is almost similar. As the payload increases, we observe a slight increase in
network latency between the three clusters. On the other hand, we observe a spike

364 B. Qureshi and A. Koubaa

in throughput at message size 1000 bytes; this indicates that the smaller a message
is, the more is the transfer time dominated by the communication layer overhead.

For larger messages, the communication rate becomes bandwidth limited by a
component in the communication subsystem that may include the data rate at the
network link, utilization of the communication medium at the time, or the traffic
on the network switch. In the context of Hadoop installation in the cluster, the
namenode frequently communicates with data nodes using heartbeat messages with
smaller payloads, whereas the data blocks typically larger than the 128 MB need to
be copied from one data node to another. We present detailed network performance
using Hadoop benchmarks in the next section.

We also note that the throughput at the HDM Cluster is lowest compared to
the other clusters, this is mainly due to the proximity of the HDM Cluster. This
cluster is physically located in a farther area and requires an extra switch to connect
to the namenode of the clusters. The physical proximity and the longer distance
yields degradation in throughput performance for the HDM Cluster. Contrasting the
performance of XU-4 and RPi SBCs, we note the visible difference in throughput
between the two, this is due to the poor overall Ethernet performance of the
Raspberry Pi probably caused by design. On the Raspberry Pi, 10/100 Mbps
Ethernet controller is a component of the LAN9512 controller which contains the
USB 2.0 hub as well as the 10/100 Mbit Ethernet controller. On the other hand, the
Odroid XU-4 is equipped with an onboard Gigabit Ethernet controller which is part
of the RTL8153 controller. The coupling of faster Ethernet port with high-speed
USB 3.0 provides better network performance. Figure 15.8 shows comparatively
the throughput on the Xu20 Cluster is 1.52 times better when compared to the RPi
Cluster.

15.5 Performance of Hadoop Benchmark Tests on Clusters

Apache Hadoop is an open source framework that provides distributed processing
of large amounts of data in a data center. The Hadoop framework scales well for
thousands of machines allowing processing of petabytes of data. It offers high
availability options for detection and recovery from failures in software as well
as hardware thus making it a very reliable distributed ecosystem. Hadoop uses
the map/reduce programming model for big data processing over multiple nodes.
The map/reduce model is composed of two steps, the map step performs filtering
and sorting of data, the reduce step provides further processing of data from
map step usually summarizing the outcomes. Depending on the application, the
map/reduce tasks can be parallelized. Hadoop 2 introduced Yet Another Resource
Negotiator (YARN) as a new resource management layer allowing for better
resource management and monitoring.

On all three clusters, Hadoop version 2.6.2 was installed due to the availability
of YARN daemon which improves the performance of the map/reduce jobs in the
cluster. To optimize the performance of these clusters, yarn-site.xml and Mapred-

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 365

Fig. 15.8 NetPIPE
benchmark results for all
clusters considering latencies
and bandwidth with data size
in terms of bytes on the x-axis

2

Bytes

NetPIPE Latencies

se
co

nd
s

1

Tx Rpi Tx Xu2O Tx HDM

0
1

10
0

10
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

00
0

20

Bytes

NetPIPE B and width

T
hr

ou
gh

pu
t (

M
bp

s)

10

15

Tx Rpi Tx Xu2O Tx HDM

0

5

1
10

0
10

00
80

00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

00
0

10

Bytes

NetPIPE Latencies (Log-scale of y-axis)

se
co

nd
s

Tx Rpi Tx Xu2O Tx HDM

0.00001

0.0001

0.001

0.01

0.1

1

1
10

0
10

00
80

00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

00
0

100

Bytes

NetPIPE B and width (Log-scale of y-axis)

T
hr

ou
gh

pu
t (

M
bp

s)

Tx Rpi Tx Xu2O Tx HDM

0.01

0.1

1

10

1
10

0
10

00
80

00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

00
0

366 B. Qureshi and A. Koubaa

Table 15.6 Properties in
mapred-site.xml

Property Value

yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852
mapreduce.reduce.memory.mb 852
mapreduce.input.fileinputformat.split.minsize 8 MB

Table 15.7 Properties in
YARN-site.xml

Property Value

yarn.nodemanager.resource.memory-mb 1024
yarn.nodemanager.resource.cpu-vcores 1
yarn.scheduler.minimum-allocation-mb 256
yarn.scheduler.maximum-allocation-mb 852
yarn.scheduler.minimum-allocation-vcores 1
yarn.scheduler.maximum-allocation-vcores 1
yarn.nodemanager.vmem-pmem-ratio 2

Table 15.8 Properties in
hdfs-site.xml

Property Value

dfs.replication 2

site.xml were configured with 852 MB of resource size allocation. The primary
reason for this is the limitation in the RPi Model 2B which has 1 GB of onboard
RAM out of which 852 MB is available; the rest is used by the Operating System as
well as the CPU Memory Bus. The default container size on the Hadoop Distributed
File System (HDFS) is 128 MB. Each SBC node was assigned a static IPv4
address based on the configuration and all slave nodes were registered in the Master
node. YARN and HDFS containers and interfaces could be monitored using the
web interface provided by Hadoop. Tables 15.6, 15.7, and 15.8 provide details of
important configuration properties for the Hadoop environment. It must be noted
that maximum memory allocation per container is 852 MB; this is set on purpose so
that the performance of all clusters could be measured and contrasted. Additionally,
the replication factor for HDFS is 2 which means only two copies of each block
would be kept on the file system.

These clusters were tested extensively for performance using Hadoop bench-
marks for Quasi-Random Pi generation and word count applications.

15.5.1 The Pi Computation Benchmark

Hadoop provides its own benchmarks for performance evaluation over multiple
nodes. One of the simplest benchmarks is the computation of the value of π using
Quasi-Monte Carlo Method and map/reduce. We execute the compute Pi program

http://yarn.app.mapreduce.am

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 367

Table 15.9 CPU execution times for Pi computation benchmark on clusters

Average CPU execution times (s)
Map tasks Samples RPi Cluster Xu20 Cluster HDM Cluster

10 103 98.469 37.37 22.86
10 104 99.13 37.69 20.5
10 105 97.902 36.97 18.92
10 106 100.629 37.87 25.35
100 103 465.675 49.62 17.84
100 104 461.4 49.7 19.35
100 105 470.264 49.43 20.12
100 106 486.48 49.89 21.24

that computes exact m binary digits of the mathematical constant π using a quasi-
Monte Carlo method and MapReduce. The precision value m is provided at the
command prompt with values ranging from 1 × 103 to 1 × 106 increased at an
interval of 1 × 101. Each of these is run against a number of map tasks set at 10 and
100. We study the impact of the value of m versus the number of map tasks assigned
and compute the difference in time consumption (execution time) for completion
of these tasks. Each experiment is repeated at least 10 times for significance of
statistical analysis. In this experimentation, the Pi computation benchmark’s goal
is to observe the CPU bound workload of all the three clusters. Table 15.9 shows
average CPU execution times for various runs of the Pi computation program with
10 and 100 map tasks. Figure 15.9a, b show the box-whisker plot with upper and
lower quartiles for each sample set with 10 and 100 map tasks. With 10 maps,
the average execution time for RPi Cluster with 10 + E06 number of samples is
100.8 s, whereas for XU20 and HDM Cluster the average execution time is 38.2 and
25.1 s, respectively. As the number of maps increases to 100, we observe significant
degradation in performance of RPi Cluster with average execution time at 483.7 s
for 10 + E06 number of samples. Comparatively, the execution times for Xu20 and
HDM Clusters are 50.1 and 21.8 s, respectively. This clearly shows the significant
difference in the computation performance between the RPi Cluster and the Xu20
Cluster. Figure 15.9c shows the ratio of performance degradation of RPi and XU20
Clusters compared to HDM Cluster for Pi program CPU execution times with 10
and 100 maps.

15.5.2 The Wordcount Benchmark

The Wordcount program contained in the Hadoop distribution is a popular micro-
benchmark widely used in the community [15]. The Wordcount program is repre-
sentative of a large subset of real-world MapReduce jobs extracting a small amount
of interesting data from a large dataset. The Wordcount program reads text files and
counts how often words occur within the selected text files. Each mapper takes a line

368 B. Qureshi and A. Koubaa

Fig. 15.9 CPU execution time versus number of m samples for computation of Pi benchmark in
all clusters with (a) 10 maps (b) 100 maps (c) ratio of execution time for Rpi and Xu20 Cluster
against HDM Cluster

from a text file as input and breaks it into words. It then emits a key/value pair of the
word and a count value. Each reducer sums the count values for each word and emits
a single key/value pair containing the word itself and the sum that word appears in
the input files. For optimization, the reducer also imitates as a combiner on the map
outputs to reduce the amount of data sent across the network by combining each
word into a single record. In our experimentation, the Wordcount benchmark’s goal
is to observe the CPU bound workload of the three clusters.

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 369

Fig. 15.10 (a) CPU execution time for the Wordcount benchmark for all clusters against input
files sizes 3, 30, and 300 MB. (b) Average execution time for Wordcount on all clusters. (c) Ratio
of performance degradation against HDM Cluster

In our experimentation, we generated three large files of sizes 3, 30, and 300
Megabytes, respectively. The Wordcount program was executed in the Hadoop
environment for all the three clusters. Depending on the initial dataset size,
Wordcount generates mappers for every HDFS container associated with the input
files. For the datasets provided Wordcount generated a single mapper, four mappers,
and 36 mappers, respectively. Each experiment was run on the clusters separately at
least 10 times for statistical accuracy. Figure 15.10a shows the performance of CPU
execution time, for the Wordcount benchmark for all clusters against input files sizes
3, 30, and 300 MB, in seconds on a logarithmic scale. Again, RPi Cluster performs
four times worse (Fig. 15.10c) compared to Xu20 Cluster and 12.5 times worse
compared to HDM Cluster due to the relatively slower processor clock speeds,
slower memory read/write, and network latency. The effect of the slower clock speed

370 B. Qureshi and A. Koubaa

of the processor in the RPi nodes is clearly evident with smaller input file sizes of
3 MB. The average execution times of RPi and XU20 should be comparable since
Wordcount generates only one mapper for each run resulting in a single container
read by the mapper; however, the slower storage throughput with SD cards adds to
the overall latency. With input file size 30 MB, Wordcount generates four mappers
reading four containers from different nodes in the cluster, increasing the degree of
parallelization thus reducing the overall CPU execution time.

Finally, with 300 MB as input file size, we observe execution time performance
correlating with smaller datasets although the increased numbers of mappers should
have improved the overall execution time. This is due to the fact that Wordcount
generated 36 mappers for the job since there are only 19 nodes available (1 reserved
for reducing job) in the Xu20 and RPi Clusters, the rest of the mappers would queue
for the completion of previous mapper jobs resulting in increased overhead and
reduced performance. Figure 15.10b shows the average CPU execution times for
all three clusters with different input file sizes. Furthermore, we observe that the
Wordcount program executing on Xu20 is 2.8 times slower compared to HDM
Cluster for file size 3 MB. For larger file sizes, Xu20 is over five times slower
compared to HDM Cluster. RPi Cluster, on the other hand, performs worse from
12 to 30 times slower compared to the HDM Cluster.

15.6 Discussion

In this chapter, we conducted an extensive study with varying parameters on the
Hadoop cluster deployed using ARM-based single board computers. An overview
of popular ARM-based SBCs Raspberry Pi, as well as HardKernel Odroid XU-
4 SBCs, was presented. The work also detailed the capabilities of these devices
and tested them using popular benchmarking approaches. Details on requirements,
design, and architecture of clusters built using these SBCs were provided. Two SBC
clusters based on RPi and XU-4 devices were constructed in addition to a PC-based
cluster running in the virtual environment. Popular Hadoop benchmark programs
such as Wordcount, TestDFSIO, and TeraSort were tested on these clusters and their
performance results from the benchmarks were presented. This section presents a
discussion of our findings and main lessons learned.

• Deployment of Clusters: Using low-cost SBCs is an amicable way of deploying
a Hadoop cluster at a very affordable cost. The low-cost factor would encourage
students to build their own clusters and to learn about installation, configuration,
and operation of a cloud computing testbeds. The cluster also provides a platform
for developers to build applications, test, and deploy in public/private cloud
environments. The small size of the SBCs allows installation of up to 32 nodes in
a single module for a 1 U rack mounting form factor. Further to this, these small
clusters can be packaged for mobility and can be deployed in various emergency
and disaster recovery scenarios.

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 371

• Hadoop configuration optimization: Section 15.4(a) comparison of CPU execu-
tion times using sysbench for both SBCs considered in this chapter. XU-4 devices
in Xu20 Cluster perform better due to higher clock speeds and larger onboard
RAM. Using sysbench we observed that increasing the number of cores in the
CPU intensive benchmark, the execution time decreased. In Hadoop deployment
configuration, we noticed that increasing the number of cores resulted in RPi
Cluster to be irresponsive for heavier workloads. On the other hand, XU-4
boards performed well with an increased number of cores (up to 4). A possible
explanation for this behavior is the Hadoop deployment setting where each core
is assigned 852 MB of memory, additional cores running Hadoop tasks would
have to request virtual memory from the slower SD cards resulting in poor
performance leading to responsiveness. Although RPi devices are equipped with
quad-core processors, due to the poor performing SD cards, it is inadvisable to
use multiple cores for Hadoop deployment.

In Hadoop deployment, not all of the available RAM onboard SBCs was
utilized since we only allow one container to execute in YARN Daemon. The
size of the container was set to 852 MB which is the maximum available onboard
memory in a Raspberry Pi node. This was intentionally done in order to study
the performance correlation with the similar amount of resources in both kinds
of SBCs. In further experimentation, we notice that XU-4 devices are capable
of handling up to four containers in each core at a time, resulting in better
performance. We will further investigate the performance of all cores on the
SBCs using Hadoop deployment of larger replication factors and a large number
of YARN containers executing per node. On the HDM Cluster running Hadoop
environment in a virtual machine, we note that higher replication factors resulted
in a large number of errors due to replication overheads resulting in Hadoop
stuck in an unrecoverable state. The SD cards are slow and the storage provided
per node in the cluster is distributed over the network degrading the overall
performance of the cluster. Raspberry Pi with slower network port at speeds
10/100 Mbps also poses a considerable degradation in network performance.

On the other hand, Xu20 Cluster performed well comparatively with faster
eMMC memory modules onboard the XU-4 devices. The SSD storage used in
the HDM Cluster on the PCs provide the best performance in terms of storage
IO although the network configuration of this cluster was a hindrance. We will
consider using Network Attached Storage (NAS) attached to the master node
where every rack would have a dedicated volume managed by Logical Volume
Manager (LVM) that would be shared by all SBCs in the clusters.

• Power efficiency: A motivation for this study was to analyze the power con-
sumption of SBC-based clusters. Due to their small form factor, SBC devices
are inherently energy efficient, it is worth investigating if a cluster comprising of
SBCs as nodes provides a better performance ratio in terms of power consump-
tion and dollar cost. Although we did not measure the FLOPs per watt efficiency
of either of our clusters, we notice wide inconsistencies in energy consumption
results reported in the literature [17–22] for similar devices. This is due to the
power measurement instruments varying results and inconsistencies in the design

372 B. Qureshi and A. Koubaa

of power supplies. RPi, as well as XU-4 devices, has no standard power supply
and micro-USB-based power supply with unknown efficiency can be used. Since
the total power consumed in the cluster is small, the efficiency of power supplies
can make a big difference in overall power consumption. Nonetheless, WattsUp
meters were effectively used to observe and analyze the power utilization for
each task over the period of its execution in all experimentation.

It is difficult to monitor and normalize the energy consumption for every
test run over a period of time. It was observed that the MapReduce jobs, in
particular, tend to consume more energy initially while map tasks are created
and distributed across the cluster, while a reduction in power consumption is
observed towards the end of the job. For the computation of power consumption,
we assumed max power utilization (stress mode) for each job, during a test run
in the clusters. Based on the power consumption of each cluster and the dollar
cost of maintaining the clusters (given in Table 15.4), a summary of average
execution times, energy consumption, and cost of running various benchmark
tasks is presented in Table 15.10.

15.7 Conclusions and Future Work

In this chapter, we investigated the Hadoop deployment on low-cost low-power
ARM-based single board computers. We consider two kinds of popular platforms
Raspberry Pi 2B and Odroid XU-4 using ARM Cortex Processors connected in
a tree network topology. We perform various performance benchmarking tests on
these two platforms testing performance metrics for CPU task execution times,
removable memory modules, energy consumption, and network performance. We
present the power consumption and estimate cost of power per year. Further to
this, we configure and deploy Hadoop 2.6.2 on these clusters considering the
limited capabilities of the SBCs. Various CPU-intensive and IO-intensive Hadoop
benchmarks including computation of Pi using Monte Carlo method, Wordcount,
TestDFSIO, and TeraSort were executed and performance results obtained. We
carried out an in-depth analysis of energy consumption of these clusters and
correlate performance with low-cost low-energy capabilities of these clusters.

Results from these studies show that while SBC-based clusters are energy
efficient overall, the operation cost to performance ratio can vary based on the
workload. In terms of power efficiency, for smaller workloads, the Xu20 Cluster
outperforms the other clusters; however, with larger workloads, the Xu20 Cluster
performance is comparable to HDM with the exception of TeraGen and TeraSort
benchmarks. Similarly, in terms of dollar cost of operation for these clusters, the
results heavily depend on execution time. For low-intensity workloads, the Xu20
Cluster outperforms the HDM Cluster; however, the TeraGen and TeraSort heavy
workloads yield poor performance for Xu20 Cluster when compared to HDM

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 373

Ta
bl

e
15

.1
0

Su
m

m
ar

y
of

ex
ec

ut
io

n
tim

e,
en

er
gy

co
ns

um
pt

io
n,

an
d

co
st

of
ru

nn
in

g
pe

r
jo

b
fo

r
al

lb
en

ch
m

ar
ks

C
PU

ex
ec

ut
io

n
tim

e
(s

)
E

ne
rg

y
co

ns
um

pt
io

n
(W

)
pe

r
jo

b
C

os
t(

D
ol

la
rs

)
pe

r
jo

b
Te

st
pa

ra
m

et
er

s
R

Pi
C

lu
st

er
X

u2
0

C
lu

st
er

H
D

M
C

lu
st

er
R

Pi
C

lu
st

er
X

u2
0

C
lu

st
er

H
D

M
C

lu
st

er
R

Pi
C

lu
st

er
X

u2
0

C
lu

st
er

H
D

M
C

lu
st

er

10
m

ap
s1

03
sa

m
pl

es
98

.4
7

37
.3

7
22

.8
6

1.
27

E
+

0
8.

17
E

−
1

1.
26

E
+

0
6.

35
E

−
2

4.
08

E
−

5
6.

28
E

−
5

10
4

sa
m

pl
es

99
.1

3
37

.6
9

20
.5

0
1.

28
E

+
0

8.
24

E
−

1
1.

13
E

+
0

6.
39

E
−

2
4.

12
E

−
5

5.
63

E
−

5
10

5
sa

m
pl

es
97

.9
0

36
.9

7
18

.9
2

1.
26

E
+

0
8.

08
E

−
1

1.
04

E
+

0
6.

31
E

−
2

4.
04

E
−

5
5.

20
E

−
5

10
6

sa
m

pl
es

10
0.

63
37

.8
7

25
.3

5
1.

30
E

+
0

8.
28

E
−

1
1.

39
E

+
0

6.
48

E
−

2
4.

14
E

−
5

6.
96

E
−

5
10

0
m

ap
s1

03
sa

m
pl

es
46

5.
68

49
.6

2
17

.8
4

6.
00

E
+

0
1.

08
E

+
0

9.
80

E
−

1
3.

00
E

−
1

5.
42

E
−

5
4.

90
E

−
5

10
4

sa
m

pl
es

46
1.

40
49

.7
0

19
.3

5
5.

95
E

+
0

1.
09

E
+

0
1.

06
E

+
0

2.
97

E
−

1
5.

43
E

−
5

5.
31

E
−

5
10

5
sa

m
pl

es
47

0.
26

49
.4

3
20

.1
2

6.
06

E
+

0
1.

08
E

+
0

1.
10

E
+

0
3.

03
E

−
1

5.
40

E
−

5
5.

52
E

−
5

10
6

sa
m

pl
es

48
6.

48
49

.8
9

21
.2

4
6.

27
E

+
0

1.
09

E
+

0
1.

17
E

+
0

3.
14

E
−

4
5.

45
E

−
5

5.
83

E
−

5
Fi

le
si

ze
=

3
M

B
41

.1
2

9.
25

3.
29

5.
30

E
–

1
2.

02
E

−
1

1.
81

E
−

1
2.

65
E

−
5

1.
01

E
−

5
9.

03
E

−
6

30
M

B
31

8.
75

59
.7

5
11

.2
2

4.
11

E
+

0
1.

31
E

+
0

6.
16

E
−

1
2.

05
E

−
4

6.
53

E
−

5
3.

08
E

−
5

30
0

M
B

31
31

.6
0

58
8.

45
10

1.
38

4.
04

E
+

1
1.

29
E

+
1

5.
57

E
+

0
2.

02
E

−
3

6.
43

E
−

4
2.

78
E

−
4

374 B. Qureshi and A. Koubaa

Cluster. The RPi Cluster consistently was outperformed by the other two clusters
regardless of the variation in workloads.

For heavier workload application, such as big data applications, due to the
inefficient performance of these devices, the SBC-based clusters may not be an
appropriate choice. The overall cost of operation can be expensive mainly due to
the inefficient onboard SBC resources resulting in larger execution times for job
completion effectively ensuing increased operation costs. It is, however, possible to
tweak Hadoop configuration parameters to adjust with given resources to improve
the overall performance. At the moment, we intend to use these clusters for
academic research and teaching. In the future, we will consider the use of NAS for
RPi Cluster to improve the storage performance since the currently installed SD card
storage provides a bottleneck. We will also study the effect of replication factor and
containers per node in the Xu20 Cluster to tweak the performance on that cluster.
Further, we intend to study newer SBC boards deployed in similar configurations
with reliable power measurement and energy consumption analysis.

Acknowledgements This work is supported by the Robotics and Internet of Things Unit at the
Research and Innovations Center at Prince Sultan University.

References

1. The Raspberry Foundation. https://www.raspberrypi.org (2015). Accessed online 20 Nov 2015
2. Chaari, R., Ellouze, F., Koubaa, A., Qureshi, B., Pereira, N., Youssef, H., Tovar, E.: Cyber-

physical systems clouds: a survey. Comput. Netw. 18, 260–278 (2016)
3. Gómez, A., Cuiñas, D., Catalá, P., Xin, L., Li, W., Conway, S., Lack, D.: Use of single board

computers as smart sensors in the manufacturing industry. Proc. Eng. 132, 153–159 (2015)
4. Grigoriev, S.N., Martinov, G.M.: An ARM-based multi-channel CNC solution for multi-

tasking turning and milling machines. Proc. CIRP. 46, 525–528 (2016)
5. Fernandes, S.L., Bala, G.J.: ODROID XU4 based implementation of decision level fusion

approach for matching computer-generated sketches. J. Comput. Sci. 16, 217–224 (2016)
6. Grisenthwaite, R.: ARMv8-A Technology Preview. Online. Accessed 31 Oct 2011
7. Kiepert, J.: Creating a Raspberry Pi-Based Beowulf Cluster. Boise State Univer-

sity, pp. 1–17 (2013). http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-
Based.Beowulf.Cluster_v2.pdf

8. Abrahamsson, P., Helmer, S., Phaphoom, N., Nicolodi, L., Preda, N., Miori, L., Angriman,
M., Rikkila, J., Wang, X., Hamily, K., Bugoloni, S.: Affordable and energy-efficient cloud
computing clusters: the Bolzano raspberry pi cloud cluster experiment. In: 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science (CloudCom), vol. 2,
pp. 170–175 (2013)

9. Cox, S.J., Cox, J.T., Boardman, R.P., Johnston, S.J., Scott, M., O’Brien, N.S.: Iridis-pi: a low-
cost, compact demonstration cluster. Clust. Comput. 17(2), 349–358 (2014)

10. Tso, F.P., White, D.R., Jouet, S., Singer, J., Pezaros, D.P.: The Glasgow raspberry pi cloud: a
scale model for cloud computing infrastructures. In: 2013 IEEE 33rd International Conference
on Distributed Computing Systems Workshops (ICDCSW), pp. 108–112. IEEE, Philadelphia,
PA (2013)

11. Whitehorn, J.: Raspberry flavored Hadoop. On-Line access: http://www.idatasci.com/uploads/
1/4/6/6/14661274/jamiewhitehorn_raspberryflavouredhadoop_annotated.pdf

https://www.raspberrypi.org
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf
http://www.idatasci.com/uploads/1/4/6/6/14661274/jamiewhitehorn_raspberryflavouredhadoop_annotated.pdf

15 On Performance of Commodity Single Board Computer-Based Clusters:. . . 375

12. Expedient Data Center Cost Estimator. https://www.expedient.com/data-center-build-vs-buy-
calculator/

13. Toor, S., Osmani, L., Eerola, P., Kraemer, O., Lindén, T., Tarkoma, S., White, J.: A scalable
infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system. J.
Phys. Conf. Ser. 513, 062047 (2014). https://doi.org/10.1088/1742-6596/513/6/062047

14. Baun, C.: Mobile clusters of single board computers: an option for providing resources to
student projects and researchers. SpringerPlus. 5, 360 (2016). PMC. Web. 16 Aug 2016

15. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characteriza-
tion of the MapReduce-based data analysis. In: International Conference on Data Engineering
Workshops (ICDEW), March 2010

16. Ivanov, T., Niemann, R., Izberovic, S., Rosselli, M., Tolle, K., Zicari, R.V.: Performance
evaluation of enterprise big data platforms with HiBench. In: IEEE Trustcom/BigDataSE/ISPA,
Helsinki (2015)

17. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.W.: PowerPack: energy profiling
and analysis of high-performance systems and applications. IEEE Trans. Parallel Distrib. Syst.
21(5), 658–671 (2010)

18. Cloutier, M.F., Paradis, C., Weaver, V.M.: Design and analysis of a 32-bit embedded high-
performance cluster optimized for energy and performance. In: Hardware-Software Co-Design
for High-Performance Computing (Co-HPC), 2014, New Orleans, LA (2014)

19. Psaroudakis, I., Kissinger, T., Porobic, D., Ilsche, T., Liarou, E., Tözün, P., Ailamaki, A.,
Lehner, W.: Dynamic fine-grained scheduling for energy-efficient main-memory queries. In:
The Tenth International Workshop on Data Management on New Hardware (DaMoN’14)
(2014)

20. Schöne, R., Treibig, J., Dolz, M.F., et al.: Tools and methods for measuring and tuning the
energy efficiency of HPC systems. J. Sci. Program. 22(4), 273–283 (2014)

21. Piga, L., Bergamaschi, R.A., Breternitz, M., Rigo, S.: Adaptive global power optimization for
Web servers. J. Supercomput. 68, 1088 (2014)

22. Ilsche, T., Hackenberg, D., Graul, S., Schöne, R., Schuchart, J.: Power measurements for
compute nodes: improving sampling rates, granularity and accuracy. In: Sixth International
Green Computing Conference and Sustainable Computing Conference (IGSC), Las Vegas, NV
(2015)

23. Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.E.: Power
measurement techniques on standard compute nodes: a quantitative comparison. In: 2013
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
Austin, TX, pp. 194–204 (2013)

24. Divakaran, D., Le, T., Gurusamy, M.: An online integrated resource allocator for guaranteed
performance in data centers. IEEE Trans. Parallel Distrib. Syst. 25(6), 1382–1392 (2014)

25. Dalvandi, A., Gurusamy, M., Chua, K.C.: Time-Aware VMFlow Placement, Routing, and
Migration for Power Efficiency in Data Centers. IEEE Trans. Netw. Serv. Manag. 12(3), 349–
362 (2015)

26. Cook, G.: How clean is your cloud? Catalysing an energy revolution. Greenpeace International,
Amsterdam (2012)

27. Data Center Efficiency Assessment: Scaling up energy efficiency across the data center
industry. Natural Resources Defense Council, August 2014. https://www.nrdc.org/sites/default/
files/data-center-efficiency-assessment-IP.pdf

28. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud
computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)

29. Qureshi, B., Koubaa, A.: Power efficiency of a SBC based Hadoop cluster. In: Proceedings
of EAI Smart Societies, Infrastructure, Technologies and Applications (SCITA 2017), Jeddah,
Saudi Arabia, pp. 52–60, 27–29 Nov 2017

30. Conejero, J., Rana, O., Burnap, P., Morgan, J., Caminero, B., Carrión, C.: Analyzing Hadoop
power consumption and impact on application QoS. Futur. Gener. Comput. Syst. 55, 213–223
(2016)

https://www.expedient.com/data-center-build-vs-buy-calculator/
http://dx.doi.org/10.1088/1742-6596/513/6/062047
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf

Chapter 16
Parallel Iterative Solution of Large
Sparse Linear Equation Systems
on the Intel MIC Architecture

Hana Alyahya, Rashid Mehmood, and Iyad Katib

16.1 Introduction

Finding a solution to sparse linear equation systems is at the core of scientific
computing. Numerous scientific, engineering, and smart city applications require
the solution of sparse linear systems [1–5].

The general form of the sparse linear system is Ax = b, where A is a sparse matrix,
x is the solution vector, and b is a dense vector. There are two well-known categories
of the numerical methods for solving linear equations of the form Ax = b, namely
direct and iterative methods. Direct methods are robust but more expensive in terms
of memory usage because the data structures used to store the matrix in this method
need to be updated frequently while the algorithm is executed [6]. On the other hand,
iterative methods start with an initial guess and modify the approximation solution
on each iteration until it converges. Although iterative methods do not guarantee
convergence, they have better performance than direct methods in terms of speed.
The iterative methods can be further classified into stationary iterative methods such

H. Alyahya (�)
Information Technology Section, Institute of Public Administration in Makkah Al-Mukaramah
Region Women Branch, Jeddah, Saudi Arabia
e-mail: alyahyah@ipa.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

I. Katib
Computer Science Department, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia
e-mail: iakatib@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_16

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_16&domain=pdf
mailto:alyahyah@ipa.edu.sa
mailto:RMehmood@kau.edu.sa
mailto:iakatib@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_16

378 H. Alyahya et al.

as Jacobi and Gauss-Seidel (GS) [7, 8] and non-stationary iterative methods such as
the Conjugate Gradient (CG).

The Sparse Matrix-Vector multiplication (SpMV) operation is an important
part of many iterative solvers of linear equation systems, both stationary (e.g. the
Jacobi method) and non-stationary (e.g. the Conjugate Gradient (CG) method) [9].
The Jacobi iterative method consists of many iterations of the SpMV operation.
However, SpMV is considered a bottleneck due to its intensive computational and
storage needs. There is a huge volume of literature available on iterative solvers.
For example, see [10–14]. A survey on the existing iterative methods used to solve
linear equation systems is presented in [15].

Sparse matrices that arise from real-life problems are typically large, but consist
of a relatively small number of non-zero elements. Efficient storage formats are
required to store only the non-zero elements, such that the memory usage is
minimised, while providing flexible and fast access to the matrix non-zero elements.
Many sparse storage formats have been proposed over the years, the best known of
these include the Coordinate format (COO), the Compressed Sparse Row (CSR)
format, the Modified Sparse Row (MSR), the Blocked Compact MSR format, and
the Diagonal format among others [16–19].

16.1.1 Motivation and Problem Statement

The designs of the current computing systems bring new challenges and oppor-
tunities. Compared to the earlier systems, the contemporary systems show that
computing performance gets better with the increasing number of cores [20].
The multi-core and many core devices, and increasing storage capabilities allow
developers to optimise their algorithms and benefit from those technologies. The
Intel Many Integrated Core (MIC) architectures consist of a highly parallel engine
and efficient processor architecture that achieves a high performance through the
utilisation of a large number of cores, like vector register and high bandwidth on
package memory. The first generation of the Intel MIC architectures was Intel
Knights Corner (KNC). The second generation of Intel Xeon Phi was based on
the Intel Knights Landing (KNL) chip [21]; and these devices could be used as a
stand-alone processor as well as a coprocessor. Knights Hill (cancelled in 2017)
and Knights Mill were announced subsequently with increasing focus on machine
learning and deep learning applications. Many applications are being ported to the
MIC devices because of the compatibility of the MIC architectures with CPUs and
their programming simplicity (see e.g. [22]).

Many researches have focused on designing an efficient solver for sparse
linear systems of equations because of its importance and its usage in a large
number of scientific and engineering applications. Although the method itself is
very important, a greater awareness in terms of hardware is needed to better
take advantage of some of the new features available in today’s systems to gain
improved computational performance. There is limited work on optimising the
current iterative solvers, or designing new algorithms and implementations that
will benefit from Intel Xeon Phi coprocessor capabilities. A number of issues

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 379

need to be considered when implementing iterative methods on modern many
core architectures including the Intel MIC architecture. As large sparse matrices
with diverse sparsity patterns must be dealt with, the storage format used to store
the sparse matrix can affect the performance. In addition to the storage scheme,
iterative solvers should also take the advantage of Single Instruction Multiple Data
(SIMD) registers and the many cores available on Intel MIC for good performance.
Therefore, these issues require selecting the best storage scheme for a given sparse
matrix and efficiently implementing the Jacobi iterative method on Intel MIC
architecture.

In this chapter, we investigate the performance of parallel implementations of
the Jacobi method on the Knights Corner (KNC) architecture. We implement Jacobi
with two storage formats, Compressed Sparse Row (CSR) and Modified Sparse
Row (MSR), and measure their performance in terms of execution time, offloading
time, and speedup. We report results of sparse matrices with over 28 million rows
and 640 million non-zero elements acquired from 13 diverse application domains.
The experimental results show that our Jacobi parallel implementation on MIC
achieves speedups of up to 27.75× compared to the sequential implementation. It
also delivers a speedup of up to 3.81× compared to a powerful node comprising 24
cores in two Intel Xeon E5-2695v2 processors.

This is an extended version of our earlier work [23]. The earlier work reported
results of parallel implementation of SpMV on MIC while in this chapter we report
the results of implementing parallel Jacobi method on both multi-cores and many
core architectures.

The rest of the chapter is organised as follows: Sect. 16.2 presents the background
material on the solution of large sparse linear systems, sparse matrix storage
formats, and sparse matrix-vector multiplication. A basic background on Intel
MIC architecture is also provided. Section 16.3 reviews the literature on iterative
methods, sparse storage formats, and SpMV on Intel MIC architecture. A discussion
on the challenges in MIC implementation of iterative methods, SpMV and sparse
matrix storage formats is provided. The gaps in the current literature have been iden-
tified. Section 16.4 discusses our methodology to efficiently implement Jacobi on
Intel MIC and the algorithms that have been proposed to improve the performance.
In Sect. 16.5, we analyse and compare the performance of our implementations with
the sequential implementation and with the performance of Multi-Cores. Section
16.6 concludes the chapter and provides future research directions.

16.2 Background

16.2.1 Solving Large Sparse Linear Equation Systems

There are two classes of solvers for solving sparse linear systems of the form
Ax = b, namely direct solvers and iterative solvers. Direct solvers have a finite set of

380 H. Alyahya et al.

procedures that give an exact solution. They are robust but difficult to parallelise and
consume memory. In contrast, iterative solvers have a sequence of approximation
solutions, starting with an initial guess and improving the solution until it converges
to something very close to an exact solution. Although iterative methods do not
guarantee convergence, they are scalable, amenable to parallelism, and do not
consume memory. In this section, the most common direct and iterative solvers used
to solve sparse linear systems are presented.

Direct Methods

Direct methods as stated above have a finite set of procedures to achieve an exact
solution. They are also robust and predictable. However, as the size of the matrix
increases, they become insufficient due to fill-in during the factorisation phase. In
the next sections, two of the well-known direct methods, the Gaussian Elimination
and LU Factorisation, will be briefly described.

Gaussian Elimination

Gaussian elimination is an efficient direct method used to solve linear equation
systems. The augmented matrix for the system is first written and then reduced
to echelon form using elementary row operations. Finally, the matrix is solved
using back substitution. Since Gaussian elimination alters the matrix however, it
is difficult to use for solving large sparse linear systems.

LU Factorisation/Decomposition

LU Factorisation is one of the direct methods for solving linear equation systems. It
forms an important part of many computer algorithms. LU decomposition is based
on factorising the coefficient matrix A into the multiplication of lower and upper
triangular matrices. The coefficient matrix A becomes:

A = LU (16.1)

where L is the lower triangular of the coefficient matrix A and U is the upper
triangular. After the factorisation process, one back substitution and one forward
substitution is performed in order to solve the system Ax = b.

Iterative Methods

As discussed earlier, iterative methods generate a sequence of approximation
solutions starting with an initial solution and improving this solution in each

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 381

iteration until it converges to the exact solution. Iterative methods can be classified
into stationary iterative methods such as Jacobi, Gauss-Seidel, and Successive
Over-Relaxation (SOR) and non-stationary iterative methods like Krylov Subspace
methods. The next sections provide more details about these four iterative methods.

Jacobi Method

The Jacobi method is one of the simplest stationary iterative methods for deter-
mining the solution of the system of linear equations. Jacobi starts with an initial
guess for the unknowns x and obtains new results in each iteration until the values
of x approach the exact solution. For each iteration, the essential computation of the
Jacobi method is as follows:

x
(k)
i = a−1

ii

(
bi −

∑

j
=i
aij x

(k−1)
j

)
(16.2)

for 0 ≤ i < n, where aij represents the values in row i and column j of matrix A,
aii denotes the diagonal elements assuming that none of them is zero, xk

i is the i-
th element in the k-th iteration. When implementing Jacobi, we need two vectors.
One to store the previous value of x and the other to store the new value of x. In
each iteration, the new x vector is updated with the previous x. This makes Jacobi
amenable to parallelism. However, it may take a long time to converge.

Gauss-Seidel Method

The Gauss-Seidel method is an improved method of the Jacobi iterative solver [24].
The Gauss-Seidel method uses the most recent value of approximation of solution x
which is superior to Jacobi because it converges quickly. In addition, Gauss-Seidel
does not require much storage because there is a single iteration vector updated in
each iteration. However, the Gauss-Seidel method is completely non-parallelisable
due to its use of the most recent approximation solution.

Successive Over-Relaxation (SOR) Method

Successive Over-Relaxation (SOR) is an iterative method for solving linear equation
systems. It is based on the Gauss-Seidel method but it moves more quickly towards
a solution. By introducing a new parameter, namely relaxation factor ω, the SOR
iteration becomes:

382 H. Alyahya et al.

x
(k+1)
i = x

(k)
i + ω

1

aii

⎛

⎝bi −
i−1∑

j=1

aij x
(k+1)
j −

n∑

j=i

aij x
(k)
j

⎞

⎠ , i = 1, 2, . . . , n.

(16.3)

The good choices of the relaxation factor ω are between [0, 2]. If the relaxation
factor is greater than 0 and less than 1, it is termed under-relaxed and if it is greater
than 1, it is termed over-relaxed and if it is equal to 1, then it is reduced to Gauss-
Seidel. SOR is used to improve any iterative methods that are slow to converge but
it depends on the choice of the optimal relaxation factor.

Krylov Subspace Methods

Krylov Subspace Methods is one of the non-stationary iterative method for solving
systems of linear equations [25]. They are usually used with large matrices to find
a suitable approximation in a shorter amount of time. The computation in Krylov
Subspace Methods is based on the matrix vector multiplication and the independent
updated vector. Krylov Subspace Methods converge faster than stationary methods,
but they are difficult to apply in some matrices that require multiple iteration vectors
[9]. The common Krylov Subspace Methods are the Conjugate Gradient (CG) for
symmetric and positive definite matrices and the Generalised Minimal Residual
Method (GMRES) for general matrices.

16.2.2 Test of Convergence for Iterative Methods

For iterative methods, it is necessary to test the convergence of the method in each
iteration. The iterative methods should be stopped when the stopping criteria is met.
The most common stopping criteria is:

∥
∥
∥xk+1 − xk

∥
∥
∥ ≤ ε (16.4)

where ε is a predetermined threshold. The convergence of the Jacobi iterative
method depends on the properties of the sparse matrix A and sometimes the choice
of the initial guess may reduce the number of iterations to converge.

16.2.3 Sparse Matrix Storage Formats

Sparse matrix storage formats are used to store only the non-zero elements and
their locations, which results in saving memory and improving performance.

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 383

Several sparse storage formats have been proposed over the years. In this section,
the common storage formats are reviewed: the Coordinate format (COO), the
Compressed Sparse Row (CSR) format, the Modified Sparse Row (MSR), the
ELLPACK (ELL) format, and the Diagonal format (DIA).

Coordinate Storage (COO)

The coordinate storage format (COO) is one of the simplest formats, using three
arrays to store the sparse matrix. The first, namely val, stores the non-zero elements
of the sparse matrix arbitrarily. The other two arrays store the column and row
indices of the non-zero elements [26].

Compressed Sparse Row (CSR)

The compressed row storage format CSR is a solution for efficiently storing the
sparse matrices and reducing the memory overhead. CSR stores the sparse matrices
as follows: it has three arrays, val[nnz] array of size nnz, where nnz is the number
of non-zero in matrix A. The val[nnz] array is used to store the value of the non-zero
elements. Col_in[nnz] is an array of size nnz and it stores the column indices of
the non-zero elements. Row_ptr[m + 1] is an array of size m + 1 and it stores the
non-zero elements in each row [27].

Modified Sparse Row (MSR)

The Modified Sparse Row storage format (MSR) is a modified version of CSR.
It works in a similar way to CSR, except that the diagonal elements are stored in
a separate array. MSR does not need to store the column indices of the diagonal
elements and this makes it more efficient than CSR [19]. Iterative methods such as
Jacobi can store the diagonal entries as 1 upon the diagonal elements to reduce the
amount of computations by replacing division with multiplication.

The ELLPACK (ELL) Format

The ELLPACK format has two arrays, val and col_in of size n × k, where k is the
maximum number of non-zero entries in each row [26]. The val array stores the
non-zero elements and col_in stores the column indices of the non-zero entries. The
val array is padded with zero if the rows contain less than k non-zero elements. The
ELLPACK format becomes insufficient however if all the rows have low entries,
except one row that has large non-zero entries.

384 H. Alyahya et al.

Diagonal Storage (DIA)

Diagonal Storage (DIA) is a special format for storing diagonally structured sparse
matrices. It is similar to the ELLPACK format but it is more restricted and compact.
DIA stores values according to their diagonal and ignores the column indices which
reduce the memory bandwidth. However, storing the zeros of the diagonal can waste
memory.

16.2.4 Sparse Matrix-Vector Multiplication (SpMV)

The sparse matrix-vector multiplication kernel is shown in Eq. (16.5), where A is a
square sparse matrix N × N, and x and y are vectors of length N. The matrix A is
multiplied by vector x and added to vector y

y = y + Ax (16.5)

Due to the irregular pattern of the non-zero values in the sparse matrix A,
SpMV is considered to be one of the most time-consuming kernels. As a result,
its performance is poor.

16.2.5 Intel MIC Architecture

The Intel Many Integrated Core Architecture was developed by Intel. The key
feature of this architecture is that there are many Intel

®
processor cores in one

chip. Another advantage is that it supports many programming languages such as
standard C, Fortran, and C++. The flexibility of compiling and running code in any
of the Intel

®
Xeon

®
processors is also an important feature. In addition, it supports

the most widely used parallel programming models such as OpenMP and MPI [28].
The Intel Xeon Phi coprocessor is based on Intel MIC architecture. It supports up
to 61 small x86 cores that work together. It has 8 memory controllers and supports
up to 16 GDDR channels. It has a transfer speed of 5.5GT/s (in theory) and a level
2 cache memory. The instruction level cache has a size of 32 KB and the data cache
has a size of 32 KB [29]. Xeon Phi has two execution modes: offload execution and
native (coprocessor) execution [30]. In the offload mode, the host send part of the
code to Xeon Phi and the output data is sent back from the coprocessor to Xeon.
Whereas, in the native mode, the code is run natively in the coprocessor. Figures
16.1 and 16.2 shows the two modes.

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 385

Fig. 16.1 Offloading mode in Xeon Phi

Fig. 16.2 Native mode in
Xeon Phi

16.3 Related Work

This section presents a survey of the work related to this chapter. The parallel
techniques used for solving linear equation systems on modern architectures are
reviewed. The main focus will be on Intel Many Integrated Core (MIC) architecture,
which is a highly parallel engine and an efficient processor architecture that achieves
a high performance through the utilisation of a large of number of cores, like the
vector register and a high bandwidth on package memory.

386 H. Alyahya et al.

16.3.1 Parallel Methods for Solving Linear Equation Systems

In this section, the main methods used for solving linear equation systems are
reviewed. This includes only the parallel techniques as the serial ones are not in
the scope of this chapter. The focus will be the methods employed, the architecture
used for implementation, the data structure used for storing the matrices, the size,
and properties of the matrices and the results.

Mehmood and Crowcroft [19] focus on the steady-state analysis of Continuous
Time Markov Chains (CTMCs), which is used for performance analysis in many
computer and communication applications. They used a blocked version of the
Compact MSR scheme [9, 31] to store the CTMCs matrices and the parallel Jacobi
iterative method for steady-state solutions for large CTMCs. They used a 24-node
processor bank, three CTMCs case studies, the PRISM tool for generating the model
of the case studies and C language, with MPICH implementation. They report
the solution of sparse systems with over a billion states and 18 billion non-zero
elements.

Tang et al. [32] implemented the Preconditioned Conjugate Gradient (PCG) on
Intel MIC architecture. They used the compressed sparse row (CSR) format to store
the sparse matrices. Some matrices from the University of Florida’s Sparse Matrix
Collection (UFSPARSE) were used for testing. The experimental results showed
that while the number of non-zero elements increases the speedup, the execution
time decreases.

Li et al. [33] evaluated the Conjugant Gradient (CG) iterative solver used
for solving sparse linear systems. They considered large-scale power systems
applications. They implemented a serial version of Conjugant Gradient Normal
Residual (CGNR) and CGNR with Jacobi preconditioning; and a parallel version
of CGNR with Jacobi preconditioning and CG with Jacobi preconditioning. The
implementation was based on multi-core CPUs and many core GPUs. The results
show that implementing CG on a GPU gives a better performance than a CPU,
considering that the matrices are large and well- conditioned.

Yan et al. [34] implemented a serial and parallel iterative Jacobi method for
solving sparse linear systems on a CPU and a GPU. They used the CSR format
to store the sparse matrix. The parallel version was implemented on a hybrid multi-
core system containing a general CPU and GPU. They improved the performance of
Jacobi in terms of data storage and the access mode of CUDA. The results showed
that the parallel version of Jacobi implemented on a GPU has a better performance
than a CPU and proved that the optimisation scheme was effective and feasible.

16.3.2 Sparse Matrix-Vector Multiplication

Numerous studies have been conducted on the SpMV computation, as it is used in
many scientific and engineering applications. Ye et al. [35] reported an implemen-

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 387

tation of SpMV computations on Intel MIC architecture using OpenMP, MPI, and
hybrid MPI/OpenMP models. Their study showed that the hybrid model performed
well on Intel MIC architecture.

Maeda and Takahashi [30] implemented SpMV on CPU, MIC, and GPU
clusters and evaluated the performance of each cluster. They showed that MIC
outperformed other accelerators using a small number of MPI processes. However,
the performance decreased when the number of MPI process increased, due to
communication overhead. Saule et al. [36] studied the performance of the Intel Xeon
Phi coprocessor for SpMV and focused on the memory bandwidth. Their results
showed that Xeon Phi could not reach its peak performance due to the memory
latency and not the bandwidth.

Maeda and Takahashi [37] evaluated the performance of parallel Sparse Matrix-
Vector Multiplication (SpMV) on different architectures such as CPU, Intel MIC,
and GPU clusters. They used the CSR storage format to store the sparse matrices.
The results showed that the performance of parallel SpMV using a CPU cluster
increased by 42.57 in comparison to the single process. In some matrices, the
performance was low due to load imbalance and communication overheads. The
performance of parallel SpMV on the accelerators was higher on the CPU clusters
in the matrices with a large amount of non-zero, or when using a small number
of MPI processes. However, when the number of MPI processes became large,
the performance of the parallel SpMV on MIC was low, due to communication
overhead. To overcome this, Maeda and Takahashi proposed to apply the Segmented
Scan (SS) method to the MIC cluster to improve the parallel SpMV. As a result, the
performance of the imbalanced matrices with 64 MPI processes was increased.

Ahamed and Magoules [38] analysed and evaluated the performance of Sparse
Matrix-Vector Multiplication (SpMV) and Krylov methods on GPUs. They con-
sidered different methods for solving sparse linear systems with symmetric and
non-symmetric matrices. They applied different storage formats and showed their
impact on the performance of the iterative solvers.

16.3.3 Studies Related to the Intel Xeon Phi Coprocessor

This section focuses on studies of the performance of the Intel Xeon Phi copro-
cessor. The Intel Xeon Phi coprocessor has many cores that can handle many
threads with large vector units. It is a great choice for developing high performance
applications that have a computation of more than a trillion times. Many research
papers have studied the behaviour of Intel Xeon Phi in terms of its software and
hardware.

Some of the work focuses on implementing existing methods on coprocessors.
For example, Cramer et al. [28] used OpenMP style programming to test the
efficiency of Intel Xeon Phi when running standard applications. They analysed the
performance of Intel Xeon Phi by using simple benchmarks and by implementing
sparse CG kernels. Cramer et al. used Native Execution and Language Extensions

388 H. Alyahya et al.

for Offload (LEO) to program the coprocessor and investigated the Intel MIC
architecture suitability using the Roofline model. They showed the performance of
Intel Xeon Phi compared to the performance of a large SMP production system.

Estebanez et al. [39] performed several experiments to test the performance of
Thread-Level speculation (TLS) on the Intel Xeon Phi coprocessor. The authors
used three real applications as a benchmark against a synthetic one. The results
of their experiments showed that the scalability of the Intel Xeon Phi coprocessor
achieved up to 240 GB/s whereas the AMD Opteron 6376 achieved up to 51.2 GB/s.
However, it required higher execution times compared to the traditional shared
memory because the applications have an irregular nature when used for performing
TLS techniques.

Other research focused on improving the performance of Intel Xeon Phi.
Dongarra et al. [40] improved LAPCK algorithms to make them work efficiently
on Intel Xeon Phi. They designed API that allows the developer to access the low
level of the coprocessor’s architecture through abstract means. They tried to achieve
maximum parallelism when using Intel Xeon Phi coprocessors by defining a new
method which split the algorithms into several tasks and scheduled them using
the directed acyclic graph (DAG). To test their suggested methods, they used Intel
Xeon Phi represented as a group of servers and workstations. As a comparison,
they used a multi-core system with two sockets and 8 core Intel Xeon E5-2670
(Sandy Bridge) processors. They implemented three of the linear algebra solvers:
QR, Cholesky, and LU factorisation. The results showed that their implementation
had a better performance than implementing the MKL libraries on the CPU. The
final study is by Chen et al. [41], in which the authors used the OpenACC standard
to automatically translate the source code to the Intel offload code. They used
two well-known kernels, namely the matrix multiplication and the Jacobi iterative
method for testing. They were implemented on CPUs, Intel MIC, and GPUs.
Two optimisation techniques were used, namely communication and SIMD. The
performance evaluation showed that the two kernels implemented on Intel MIC had
a better speedup than the GPUs and CPUs.

16.4 Methodology

This section discusses the implementation of SpMV on MIC as it forms an important
part of the Jacobi method. Several versions of the Jacobi iterative method will
also be proposed and implemented to efficiently utilise the features of Intel MIC
architecture. Sparse matrices were collected from the University of Florida online
matrix collection [42]. Only square matrices were collected and other matrices
ignored. SpMV is based on off-diagonal matrices only while Jacobi is based on both
the off- and on-diagonal non-zero elements. It should be noted that in the Jacobi
method, only matrices that had non-zero elements in the main diagonal were taken.

The sparse matrices are from different application domains including the follow-
ing: optimisation problem, directed graph, undirected random graph, circuit simu-

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 389

Table 16.1 Applications
name and abbreviation

Application name Abbreviation

Optimisation problem OP
Directed graph DG
Undirected random graph URG
2D/3D problem 2D/3D P
Circuit simulation problem CSP
Undirected graph UG
Directed weighted graph DWG
Undirected multigraph UMG
Computational fluid dynamics problem CFDP
Structural problem SP
Electromagnetics problem EMP
Model reduction problem MRP

lation problem, undirected graph, directed weighted graph, undirected multigraph,
computational fluid dynamics problems, structural problem, and electromagnetics
problem. Table 16.1 shows the applications and their abbreviations. For simplicity,
the abbreviations will be used for the remainder of the chapter.

There are total of 39 real sparse matrices in the Matrix Market format. The
details of the matrices are given in Table 16.2 including the dimensions, the non-
zero elements, the non-zero elements per row, and the application domain. Figures
16.3, 16.4, 16.5, and 16.6 plot the sparsity structures of some matrices from the
collection.

The matrices were converted to CSR and MSR before applying SpMV and
Jacobi computations. The parallelisation process works as follows. The instruction
is divided among the threads. Each thread will complete the calculation and bring
the results back. This process will continue until the loop is finished. The numbers of
threads used are: 1, 4, 16, 32, 64, 128, 236, and 240. The following sections discuss
the implementation of SpMV and Jacobi on Intel MIC in more detail.

16.4.1 SpMV

SpMV is essential to the Jacobi iterative method for solving linear equation systems.
For this reason, SpMV is first implemented on MIC before Jacobi to see how the
parallelisation works. Figure 16.7 shows the pseudocode of the parallel SpMV. In
line 2, an OpenMP pragma is added to the outer loop, so each thread will carry
out the computation separately until they reach the end of the loop. The outer loop
will begin with zero until it reaches the size of Matrix A, which is n in this case.
The inner loop will start from the first row and end at the last row that contains
non-zero elements. Line 6 shows the main operation. Each row will be multiplied
by the values of vector x and will then be added to vector y. When the outer loop
finishes, the result will be returned and sent back to the CPU. Figure 16.8 shows

390 H. Alyahya et al.

Table 16.2 Sparse matrices properties

Name Size nnz nnz/row Application domain

nlpkkt240 28.0M 401.2M 14.33 OP
arabic-2005 22.7M 640.0M 28.14 DG
rgg_n_2_24_s0 16.8M 132.6M 7.90 URG
delaunay_n24 16.8M 50.3M 3.00 UG
nlpkkt200 16.2M 232.2M 14.30 OP
wb-edu 9.8M 57.2M 5.81 DG
nlpkkt160 8.3M 118.9M 14.25 OP
indochina-2004 7.4M 194.1M 26.18 DG
circuit5M 5.6M 59.5M 10.71 CSP
ljournal-2008 5.4M 79.0M 14.73 DG
cage15 5.2M 99.2M 19.24 DWG
soc-LiveJournal1 4.8M 69.0M 14.23 DG
channel-500x100x100-b050 4.8M 42.7M 8.89 UG
kron_g500-logn21 2.1M 91.0M 43.41 UMG
HV15R 2.0M 283.1M 140.33 CFDP
wikipedia-20051105 1.6M 19.8M 12.08 DG
G3_circuit 1.6M 4.6M 2.92 CSP
Flan_1565 1.6M 59.5M 38.01 SP
af_shell10 1.5M 27.1M 17.96 SP
cage14 1.5M 27.1M 18.02 DWG
Hook_1498 1.5M 31.2M 20.83 SP
Atmosmodl 1.5M 10.3M 6.93 CFDP
StocF-1465 1.5M 11.2M 7.67 CFDP
Geo_1438 1.4M 32.3M 22.46 SP
Serena 1.4M 33.0M 23.69 SP
in-2004 1.4M 16.9M 12.23 DG
Atmosmodd 1.3M 8.8M 6.94 CFDP
dielFilterV2real 1.2M 24.8M 21.47 EMP
hollywood-2009 1.1M 57.5M 50.46 UG
dielFilterV3real 1.1M 45.2M 40.99 EMP
bone010 986.7K 36.3M 36.82 MRP
Ldoor 952.2K 23.7M 24.93 SP
audikw_1 943.7K 39.3M 41.64 SP
Emilia_923 923.1K 21.0M 22.71 SP
Fault_639 638.8K 14.6M 22.9 SP
inline_1 503.7K 18.7M 37.05 SP
RM07R 381.7K 37.5M 98.16 CFDP
Pwtk 217.9K 5.9M 27.19 SP
nd24k 72.0K 14.4M 199.91 2D/3D P

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 391

Fig. 16.3 Sparsity of matrix
cage15

Fig. 16.4 Sparsity of matrix
g3_circuit

392 H. Alyahya et al.

Fig. 16.5 Sparsity of matrix
af_shell10

Fig. 16.6 Sparsity of matrix
flan_1565

the parallelisation process of SpMV computation, where y1, y2, and yn represent
the y vector, coloured boxes represent the sparse matrix non-zero elements, x1, x2,
and xn represent the x vector and thread0, thread1, and threadn represent the thread
numbers. As shown in the figure, each thread multiplies a row with the whole vector
x. At the end, the summation of the y vector is performed.

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 393

Fig. 16.7 Parallel sparse matrix-vector multiplication with CSR, y = y + Ax

Fig. 16.8 SpMV parallelisation

16.4.2 Jacobi

After implementing SpMV on MIC, the Jacobi method is considered. Four versions
of the Jacobi iterative method were implemented in addition to the standard method.
They were first implemented on a CPU and then offloaded onto MIC. Three steps
were followed. Firstly, the sparse matrix was read in CSR and MSR format, since
the downloaded matrices are in the Matrix Market (MM) format. This is done using
CPU as it has a large memory compared to MIC. Secondly, when the matrix and
vector were ready, the part of the code that has the Jacobi computation was offloaded
to MIC. Then, OpenMP pragmas were used to parallelise the “for” loops. Finally,
the results were sent from the coprocessor to the host; and the host prints the results
and the execution time in seconds.

394 H. Alyahya et al.

Figure 16.9 shows the serial version of Jacobi, with single storage for full matrix
CSR. As discussed earlier, the CSR has three vectors val, col_in, and row_ptr. In
order to implement Jacobi, in addition to these vectors, the following are needed: the
size of the matrix (n), (b) vector, two vectors (x) and (x_new) to hold the values of the
approximation solutions and two variables (a_ii) to save the non-zero elements in
the main diagonal and (sum) to save the summation of SpMV. The method continues
with the “while” loop until the conditions are satisfied. There are two conditions.
The first is the Distance, which is when the approximation solutions converge to the
actual solution. The second condition is when the iteration reaches the maximum
iteration defined by user. Inside the “while” loop, there are two nested “for” loops
that contain the main operations of the Jacobi method. The outer loop will begin
with zero until it reaches the size of Matrix A, which is n in this case. The inner loop
will start from the first row and end at the last row that contains non-zero elements.
In the inner loop, we have an “if” condition to check if the non-zero elements are
in the diagonal or the off-diagonal. In the case of the off-diagonal, the non-zero
values will be multiplied with the whole vector x and the results will be added to
the variable “sum”. If they are in the diagonal, then they are assigned to the “a_ii”
variable. The “if” condition is followed by the next operation, which is dividing the
subtraction of vector b with sum by the diagonal values. Finally, the value of x is
updated by the new value in line 18.

Figure 16.10 shows the parallel Jacobi iterative method with single storage
for full matrix (CSR). In this algorithm, the first modification is made, namely
parallelising the “for” loops. It is the same process as before, except that in line
4 and 18, an openMP pragma is added to both the outer loop and the “for” loop for
updating the value of x.

Fig. 16.9 Serial Jacobi iterative method with single storage for full matrix (CSR)

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 395

Fig. 16.10 Parallel Jacobi iterative method (CSR: Single Matrix Storage)

Fig. 16.11 Parallel Jacobi iterative method (MSR: Separate Diagonal Storage)

Figure 16.11 shows the code for the second modification which stores the sparse
matrix using separate diagonal storage MSR. In this algorithm, the “if” condition is
removed as the diagonal values are stored in a separate array, therefore there is no

396 H. Alyahya et al.

Fig. 16.12 Parallel Jacobi iterative method (Version 3)

need to check if the non-zero elements are in the main diagonal or otherwise. The
main diagonal entries are stored in an array called (diagonal) and the off-diagonal
entries stored in another array called (OffDiagonal). In line 8, the off-diagonal non-
zero elements are multiplied by vector x and added to the variable sum. Then in line
10, the same was done as in the previous algorithms, the division of subtracting b
vector with sum by the diagonal elements is stored in the new vector of x. Finally,
the value of x is updated with x_new.

Figure 16.12 shows the code after storing the diagonal values as 1 upon diagonal
in order to avoid division in Jacobi. In line 10, dividing the subtraction of vector b
from the sum variable is replaced by multiplication. The remaining parts remain the
same as in the previous algorithms.

Finally, Fig. 16.13 shows the last modification, which is parallelising the distance
function using openMP pragma. An openMP pragma is added to the Distance
function to parallelise the “for” loop. The remaining parts of the algorithm are not
different to the previous algorithms.

16.5 Performance Evaluation

This section presents the experimental results of implementing four versions of
Jacobi iterative methods on Multi-Cores and Intel MIC. The system configuration
and setup are first described in Sect. 16.5.1. In Sect. 16.5.2, the experimental results
for Multi-Cores using different versions of Jacobi are shown. The experimental
results for implementing different versions of Jacobi on Intel MIC are shown in

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 397

Fig. 16.13 Parallel Jacobi iterative method with parallel distance function

Table 16.3 Experimental environments

Multi-Cores Intel MIC

Model name Two Intel(R) Xeon(R) CPU E5-2695 v2
(Ivy Bridge EP)

Intel Phi 5110P Coprocessor
(Knights Corner)

Clock speed 2.40 GHz 1.05 GHz
No. of cores 12 cores each (up to 24 threads) 60 (up to 240 threads)
Cache 30 MB SmartCache 30 MB L2
Memory DDR3 64 GB GDDR5 8 GB

Sect. 16.5.3. Finally, a comparison between the performance of Multi-Cores and
Intel MIC is presented in Sect. 16.5.4.

16.5.1 Experimental Setup

In order to evaluate the effectiveness and efficiency of the algorithms, several numer-
ical experiments were conducted on real large sparse linear equation systems taken
from the University of Florida Sparse Matrix Collection. The Aziz supercomputer
was used for the experiments. It is a high performance computer located in King
Abdulaziz University, Jeddah. It is one of the top 500 supercomputers in the world
and one of the top 10 supercomputers in the Kingdom of Saudi Arabia [43]. The
offloading mode was used for executing Jacobi because the native mode is not
supported on Aziz. Multi-Cores and Intel MIC were used to implement the Jacobi
versions. Table 16.3 shows the experimental environments.

398 H. Alyahya et al.

Fig. 16.14 Calculating execution time and offloading time

The focus was in the performance of the Jacobi method on both systems in terms
of execution time in seconds, offloading time in seconds and speedup. The execution
time and offloading time were calculated using different numbers of threads: 1, 4,
16, 32, 64, 128, and 236. It should be noted that the execution time is the time taken
to execute Jacobi in seconds and the offloading time is the time taken to offload
Jacobi to MIC in seconds and this includes the execution time. Figure 16.14 shows
how the execution time and the offloading time are calculated.

The speedup can be calculated as:

sP = Ts

Tp
(16.6)

where Ts is the execution time of sequential implementation and Tp is the execution
time of parallel implementation. The code is run 5 times and the average execution
time taken, excluding the first run (warm-up). It is assumed that the right-hand side
vector (b) is equal to zero if the matrix does not have the right-hand side vector. The
approximation solution vector (x) was first set to be 1 upon n.

16.5.2 Experimental Results of Jacobi on Multi-Core Nodes

In this section, the performance evaluation of the Jacobi iterative method on Multi-
Cores is described. Four versions of Jacobi were implemented in addition to the
standard method. The average execution time per iteration was calculated in seconds
for all versions and the best execution time for each version was plotted. Figure
16.15 shows a comparison between the best execution times on all four versions.
Note that all the four versions appear to have similar performance with some
variations. We have done a more detailed analysis of the four versions for both
SpMV and Jacobi iterative method on MIC and multi-core and have found Version
4 to have overall better performance. We have therefore used Version 4 in all the
experiments reported hereon. Figure 16.16 shows the average execution time per

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 399

Fig. 16.15 Comparison between different versions of Jacobi on multi-cores

Fig. 16.16 Execution time against number of threads on the multi-core node (v4)

400 H. Alyahya et al.

Fig. 16.17 Execution time against number of threads on MIC

iteration for version 4. For all matrices, the best execution time per iteration is found
when the number of threads is 16.

16.5.3 Experimental Results of Jacobi on Intel MIC

In this section, the performance evaluation of the Jacobi iterative method is
described. As discussed earlier, there are four versions of Jacobi, excluding the
standard method. The average execution time and offloading time per iteration was
calculated in seconds for all versions. The best execution time in each version was
taken and compared. The results of the last version, Version 4, are shown in Fig.
16.17. For all matrices, the best execution time per iteration is found when the
number of threads is 236. It has better performance than third version by up to
2.32.

Figure 16.18 shows the best average execution time per iteration using different
versions of Jacobi according to the non-zero elements per row from smallest to
largest. It can clearly be seen that all versions have the same behaviour when the
number of non-zero per row increases.

Figure 16.19 shows the offloading time against the number of threads for Version
4. The matrices are arranged according to size from smallest to largest. It is observed

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 401

Fig. 16.18 Best average execution time per iteration on MIC

from Fig. 16.19 that for all the matrices, the best offloading time occurs when the
number of threads is equal to 236.

16.5.4 Comparison Between a Multi-Core Node and Intel MIC

In this section, a comparison between the performance of Multi-Cores and Intel
MIC is shown in terms of execution time and speedup. Figure 16.20 shows the best
average execution time per iteration on Intel MIC and Multi-Cores using Version
4. The matrices are arranged according to size, from smallest to largest. The results
show that Intel MIC has a better execution time than Multi-Cores. Figure 16.21
shows the maximum speedup achieved by implementing Version 4 of Jacobi on
Multi-Cores and Intel MIC compared to the sequential execution using matrices of
different sizes. The maximum speedup achieved by Intel MIC is 27.5 while in Multi-

402 H. Alyahya et al.

Fig. 16.19 Offloading time per iteration against number of threads on MIC

Cores it is 16.45 compared to the sequential execution. Both maximum speedups are
found in the matrix of size 1.1 million. The performance of Jacobi in Intel MIC is
3.81× faster than the performance of Jacobi in Multi-Cores.

16.5.5 Sparse Matrix-Vector Multiplication (SpMV) Results

We have mentioned earlier in Sect. 16.1 that the Sparse Matrix-Vector multiplication
(SpMV) operation is an important part of many iterative solvers of linear equation
systems including the Jacobi iterative method. To implement SpMV efficiently on
Intel MIC architecture, we have followed three steps. Firstly, we read the sparse
matrix in CSR format since the downloaded matrices are in the Matrix Market (MM)
format. This is done using the CPU as it is having large memory compared to MIC.
Secondly, when the matrix and vector is ready, we offloaded the part of the code
that has the SpMV computation to MIC. After the SpMV offloaded to MIC, we use
OpenMP pragmas to parallelise the “for” loops. Finally, the results are sent from
the coprocessor to the host and the host prints the results and the execution time.
We calculate the execution time and offloading time using different number of MIC
cores (or threads) 1, 4, 8, 16, 32, 64, 128, and 240. In addition, we calculate amount
of memory used by each matrix. Note that the execution time is the time taken to
execute the SpMV computation and offloading time is the time taken to offload the

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 403

Fig. 16.20 Best average execution time per iteration multi-cores vs Intel MIC

SpMV computation to MIC and that includes the execution time. For simplicity, we
divided the matrices into four groups according to their sizes, Groups 1, 2, 3, and 4,
each group has eight matrices. The details of these matrices have been given earlier
in Sect. 16.4 (see Table 16.2).

Figure 16.22 shows the execution time against the number of threads for the eight
(largest) matrices in Group 1. It can be seen that using 240 threads gives the best
execution time compared to the other number of cores. On average, the execution
time of parallel implementation with 240 threads is 4.59× faster than the serial one.
Further details about the SpMV performance can be found in our earlier work [23],
where the main focus was on the SpMV computations.

404 H. Alyahya et al.

Fig. 16.21 Intel MIC vs multi-cores speedups

Fig. 16.22 Execution time on MIC against the number of MIC Cores

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 405

16.6 Conclusion and Future Work

The main focus of this chapter was to efficiently implement the Jacobi method
on Intel MIC architecture. A performance analysis and evaluation were provided
of the parallel Jacobi iterative method on the first generation of Intel Xeon Phi
coprocessor and Intel MIC, named Knights Corner (KNC). Four versions of
Jacobi were implemented in addition to the sequential implementation. Jacobi
was implemented with two storage formats: Compressed Sparse Row (CSR) and
Modified Sparse Row (MSR). The offload programming model was used to offload
the Jacobi computations. OpenMP was used to do the parallel implementation
on Intel MIC. The performance was measured in terms of the execution time,
offloading time, and speedup. Results of the sparse systems were reported with
over 28 million equations and 640 million non-zero elements. The experimental
results show that the performance of this implementation achieves speedups of up
to 27.75× compared to sequential implementation. MIC has a speedup of up to
3.81× compared to the Multi-Cores.

Future work will look into further analysis of the parallel Jacobi method for
sparse linear equations systems of larger sizes from diverse application domains
with the aim to further improve the performance. The implementation of the Jacobi
iterative method would be attempted using a new scheme to efficiently store the
sparse matrices.

Acknowledgments The experiments reported in this chapter were performed on the Aziz
supercomputer at King Abdulaziz University, Jeddah, Saudi Arabia.

References

1. Mehmood, R., Alturki, R., Zeadally, S.: Multimedia applications over metropolitan area
networks (MANs). J. Netw. Comput. Appl. 34, 1518–1529 (2011)

2. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

3. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Proc. Comput. Sci. 64, 1107–1114 (2015)

4. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

5. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. In: 2010 Int. Conf. Intell. Syst. Model. Simul., pp. 431–436 (2010)

6. Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics (2003)

7. Golub, G.H., Van Loan, C.F.: Matrix Computations (2013)
8. Ford, W.: Chapter 20: Basic iterative methods. In: Ford, W. (ed.) Numerical Linear Algebra

with Applications, pp. 469–490. Academic, Boston (2015)
9. Mehmood, R.: Disk-based techniques for efficient solution of large Markov chains. PhD

Thesis, School of Computer Science, University of Birmingham (2004)

406 H. Alyahya et al.

10. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution
method for Markov models. Electron. Notes Theor. Comput. Sci. 68, 589–604 (2002)

11. Kwiatkowska, M., Parker, D., Yi Zhang, Y., Mehmood, R.: Dual-processor parallelisation
of symbolic probabilistic model checking. In: The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems, 2004. (MASCOTS 2004). Proceedings, pp. 123–130. IEEE (2004)

12. Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-
state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis, and
Simulation, pp. 293–302. IEEE (2006)

13. Mehmood, R.: A survey of out-of-core analysis techniques in stochastic modelling. Technical
Report CSR-03-7, School of Computer Science, University of Birmingham, Birningham
(2003)

14. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient symbolic out-of-core solution
method for markov models. Technical Report CSR-03-08, School of Computer Science,
University of Birmingham, Birmingham (2003)

15. Saad, Y., Van Der Vost, H.A.: Iterative solution of linear systems in the 20th century. J. Comput.
Appl. Math. 123, 1–33 (2000)

16. Banu, S., Vaideeswaran, D.: Performance Analysis on Parallel Sparse Matrix Vector Multipli-
cation Micro-Benchmark Using Dynamic Instrumentation Pintool. Presented at the 2013, pp.
129–136 (2013)

17. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations
arising from Stochastic modelling. In: Hermanns, H., Segala, R. (eds.) Process Algebra and
Probabilistic Methods: Performance Modeling and Verification. PAPM-PROBMIV, pp. 135–
151. Springer, Berlin, Heidelberg (2002)

18. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort,
B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems: A Guide
to Current Research, pp. 230–255. Springer, Berlin, Heidelberg (2004)

19. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. Technical Report Number UCAM-CL-TR-650, Computer Laboratory, University of
Cambridge, Cambridge (2005)

20. Giles, M.B., Reguly, I.: Trends in high-performance computing for engineering calculations.
Philos. Trans. R. Soc. A. 372, 20130319 (2014)

21. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S.,
Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon Phi Product. IEEE
Micro. 36, 34–46 (2016)

22. Eleliemy, A., Fayze, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on parallel
heterogeneous architectures: spin-image algorithm on CPU and MIC. In: EUROSIM 2016,
The 9th Eurosim Congress on Modelling and Simulation. p. 6. Oulu (2016)

23. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on intel
MIC: performance analysis. In: Smart Societies, Infrastructure, Technologies and Applications,
SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, vol. 224, pp. 306–322. Springer, Cham (2018)

24. Björck, Å.: Numerical Methods in Matrix Computations. Springer International Publishing,
Cham (2015)

25. Gander, W., Gander, M.J., Kwok, F.: Scientific Computing - An Introduction Using Maple and
MATLAB. Springer Publishing Company, Incorporated (2014)

26. Koza, Z., Matyka, M., Mirosław, Ł., Poła, J.: Sparse matrix-vector product. In: Kindratenko,
V. (ed.) Numerical Computations with GPUs, pp. 103–121. Springer International Publishing,
Cham (2014)

27. Akhunov, R.R., Kuksenko, S.P., Salov, V.K., Gazizov, T.R.: Sparse matrix storage formats and
acceleration of iterative solution of linear algebraic systems with dense matrices. J. Math. Sci.
(United States). 191, 10–18 (2013)

28. Cramer, T., Schmidl, D., Klemm, M., Mey, D.: OpenMP Programming on Intel Xeon Phi
Coprocessors: An Early Performance Comparison, pp. 38–44. Marc@Rwth (2012)

16 Parallel Iterative Solution of Large Sparse Linear Equation Systems. . . 407

29. Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: High-Performance
Computing on the Intel® Xeon Phi™. Springer International Publishing, Cham (2014)

30. Maeda, H., Takahashi, D.: Performance evaluation of sparse matrix-vector multiplication using
GPU/MIC cluster. In: 2015 Third International Symposium on Computing and Networking. pp.
396–399 (2015)

31. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Technical Report CSR-03-13, School of Computer Science,
University of Birmingham, Birmingham (2013)

32. Tang, Z., Huang, H., Jiang, H., Li, B.: MIC-based preconditioned conjugate gradient method
for solving large sparse linear equations. In: Hung, J., Yen, N., Li, K.C. (eds.) Frontier
Computing. Lecture Notes in Electrical Engineering, vol. 375. Springer, Singapore (2016)

33. Li, Z., Donde, V.D., Tournier, J.-C., Yang, F.: On limitations of traditional multi-core and
potential of many-core processing architectures for sparse linear solvers used in large-scale
power system applications. In: 2011 IEEE Power and Energy Society General Meeting, pp.
1–8. IEEE (2011)

34. Yan, D., Cao, H., Dong, X., Zhang, B., Zhang, X.: Optimizing algorithm of sparse linear
systems on GPU. In: 2011 Sixth Annu. Chinagrid Conf. pp. 174–179 (2011)

35. Ye, F., Calvin, C., Petiton, S.G.: A study of SpMV implementation using MPI and OpenMP on
Intel many-Core architecture. In: High Performance Computing for Computational Science—
VECPAR 2014: 11th International Conference, Eugene, OR, USA, June 30–July 3, 2014,
Revised Selected Papers, pp. 43–56. Springer International Publishing, Cham (2015)

36. Saule, E., Kaya, K., Catalyurek, U.V.: Performance evaluation of sparse matrix multiplication
kernels on Intel Xeon Phi, ArXiv, Tech. Rep. arXiv:1302.1078, Feb (2013)

37. Maeda, H., Takahashi, D.: Parallel sparse matrix-vector multiplication using accelerators. In:
Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan,
B.O., Stankova, E., Wang, S. (eds.) Computational Science and Its Applications—ICCSA
2016: 16th International Conference, Beijing, China, July 4–7, 2016, Proceedings, Part II, pp.
3–18. Springer International Publishing, Cham (2016)

38. Ahamed, A.-K.C., Magoules, F.: Iterative methods for sparse linear systems on graphics
processing unit. In: 2012 IEEE 14th Int. Conf. High Perform. Comput. Commun. 2012 IEEE
9th Int. Conf. Embed. Softw. Syst. pp. 836–842 (2012)

39. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: Using the Xeon Phi platform to run
speculatively-parallelized codes. Int. J. Parallel Prog. 45, 225–241 (2017)

40. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.: HPC
programming on Intel many-integrated-Core hardware with MAGMA port to Xeon phi. Sci.
Program. 2015, 1–11 (2015)

41. Chen, C., Yang, C., Tang, T., Wu, Q., Zhang, P.: OpenACC to intel offload: automatic
translation and optimization. In: Communications in Computer and Information Science. pp.
111–120 (2013)

42. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. 38(1), 1–1:25 (2011)

43. Aziz Supercomputer, Top500. https://www.top500.org/site/50585

https://www.top500.org/site/50585

Chapter 17
Performance Characteristics for Sparse
Matrix-Vector Multiplication on GPUs

Sarah AlAhmadi, Thaha Muhammed, Rashid Mehmood, and Aiiad Albeshri

17.1 Introduction

High-performance computing techniques can effectively enhance the performance
of sparse linear equation systems, which have Sparse Matrix-Vector multiplication
(SpMV) as the most important scientific computation unit [1]. Numerous important
scientific, engineering and smart city applications require computations of sparse
matrix-vector multiplication (SpMV) [2–6]. SpMV is a core computing part of
many scientific and engineering applications such as finite element methods,
signal processing, magneto-hydrodynamics, graphics processing, electrical power
systems, data mining, graph analytics, and information retrieval [1, 7–11]. The
widespread importance of sparse matrix computation has become research hotspots
and brought about significant research endeavors into implementations based on
modern-day parallel processors, mainly GPUs [1, 7, 10, 12, 13]. However, there are
many challenges in computing SpMV such as the differences in sparsity patterns,
that make such computations difficult.

The irregularities of sparse patterns result in a number of matrix representation
issues [10]. Thus, there exists diverse sparse matrix storage layouts intended to
exploit various sparsity designs and distinctive techniques for getting and manip-
ulating matrix entries especially on GPUs. Direct or indirect improvements in data
layout and data access pattern are solutions to obtain high throughput or indirect
improvements. Furthermore, the SpMV performance is affected by the parallel

S. AlAhmadi (�) · T. Muhammed · A. Albeshri
Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: salahmadi0084@stu.kau.edu.sa; m.thaha.h@ieee.org; aaalbeshri@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_17

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_17&domain=pdf
mailto:salahmadi0084@stu.kau.edu.sa
mailto:m.thaha.h@ieee.org
mailto:aaalbeshri@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_17

410 S. AlAhmadi et al.

computing device platform being used [10]. SpMV algorithm that achieved good
performance in one parallel device platform may not be as efficient as on other
platforms due to the difference of the architecture and capabilities between the
platforms.

This research will explore the SpMV and Jacobi iterative methods on GPUs
with the aim to understand the performance bottlenecks and possibly address the
limitations of the existing approaches. In Sect. 17.2, an overview of SpMV and
Jacobi iterative techniques are provided. Section 17.3 explores the GPU architecture
and performance characteristics of applications on GPU along with techniques
to optimize the performance of SpMV. In Sect. 17.4, we explore the important
storage formats for SpMV computations on GPU architecture. Finally, in Sect. 17.5
we analyze and discuss the performance of the notable storage formats using the
identified performance characteristics and criterions.

17.2 SpMV and Iterative Methods

Sparse Matrix-Vector product (SpMV) is the most important process in scientific
computing and engineering applications [1, 7, 8, 12, 14–17]. The performance of
SpMV can be improved using parallel computing [1, 15, 16]. Sparse matrix is
a matrix that have mostly zeros and very few non-zero elements [12, 17]. The
processing of such matrices involves removal of the zeros elements to deal with
just the non-zero (nnz) elements. The challenges involved in computing SpMV
are numerous. Some of the major challenges are irregularity of the matrices, data
transfer between host and device, load imbalance among the threads, memory
access, and memory management (storage formats) [1, 7–9, 12, 14–17].

Iterative methods consist of a sequence of computations performed iteratively
to produce approximate solutions that gradually reaches the accurate solution.
They are, furthermore, partitioned into stationary methods (i.e., Jacobi) and non-
stationary methods (i.e., conjugate gradient) like [17, 18]. In this work our attention
will be on the stationary methods specifically the Jacobi iterative methods. Jacobi is
an excellent candidate to be implemented on GPU although it is slower than other
iterative methods, since it’s inherently parallel.

Linear systems which have formula Ax = b can be solved using Jacobi method
as follows in each iteration compute Ax = b as matrix-vector product, then test for
convergence, and repeat until convergence. It involves partitioning of the matrix A
into three parts: diagonal, upper-triangular, and lower-triangular portions [9, 19].
Thus, in matrix terms, the Jacobi method can be expressed as in Eq. (17.1):

xk = D−1 (L + U) xk−1 + D−1b (17.1)

where k denotes the number of iterations, D is the diagonal entries, L is the lower-
triangular matrix, and U is the upper-triangular matrix. Figure 17.1 depicts the
Jacobi iterative technique and the SpMV involved. Many researchers have attempted

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 411

Fig. 17.1 Algorithm for
Jacobi iterative method
depicting the SpMV
operations involved

to improve the performance of iterative methods for sparse linear equation systems
and SpMV computations [2, 17, 18, 20–27].

17.3 GPU: An Overview

In this section, we provide a brief overview of the general GPU architecture. We
further discuss the GPU characteristics that affect the computational performance
of the GPU and discuss various optimizations that enhance the performance.

17.3.1 Architecture

In the recent decade, GPUs are considered as a general-purpose processing unit
instead of a mere graphics processing unit [7, 12, 28, 29]. GPU has attracted
HPC researchers and has become popular in scientific computing due to its
high computation capabilities, massive performance, effective usage of memory
bandwidth, and the ability to accelerate existing large systems which have been
implemented on other processors like CPU [7–9, 14, 30, 31].

Thus, GPUs become an important platform to implement sparse matrix compu-
tation to accelerate the performance of SpMV multiplication by processing them
parallelly [8, 14, 15, 32]. Hence, many researchers have developed and optimized
the existing algorithms to get best utilization out of these devices. Their speed
can reach to Teraflops for single-precision calculations and half of this value for
double-precision processing [9, 12]. Understanding GPU architecture is important
for efficient utilization of the resources. However, the architectures are different
for different GPU generations such as Kepler, Fermi, GeForce, PASCAL, and
VOLTA. Different GPU families have been designed for different purposes such as

412 S. AlAhmadi et al.

GeForce for graphics computation [33] and Tesla P100 for datacenters acceleration
[34]. They differ largely on the parallel computing capabilities they have, thus
the throughput performance delivered vary. Pascal, for example, is currently the
most powerful architecture design for GPU. It turns a normal computer into a
supercomputer and provides remarkable performance [33]. Tesla P100 belongs to
the PASCAL family and it delivers a double-precision floating point about 5.3
TFLOPS, while Tesla V100 which belongs to the VOLTA architecture reaches to
7 TFLOPS [35, 36]. For all Nvidia versions among the last two decades along with
its purposes, see [37]. A discussion on the Tesla P100 architecture can be seen in
[34] and for Kepler architecture refer [33]. In addition to the architecture of the
device, the selection of the best storage format for a given input matrix is a key
issue [9, 12, 15].

Working with GPUs involves working with a heterogenous platform consisting
hierarchies of computational units and memories. Figure 17.2 shows the different
types of memories on such platforms and Fig. 17.3 shows the hierarchy of memory
and computations on GPU. In general, GPU consists of an array of Streaming
Multiprocessors (SM) that contains processing cores, and many types of memories
such as registers and cache. The programming model for the GPU is single
instruction multiple data (SIMD) applied into groups of 32 threads called warps.
In subsequent sections, we further discuss about warps and its effects on the
performance of SpMV.

Compute Unified Device Architecture (CUDA) is an API dedicated to GPU
programming [38]. It depends on the C language and presents new possibilities for
accelerating GPU kernels. Further, CUDA is developed to simplify and improve
GPU programming and accelerating high-performance parallel computations [1, 7,

thread

Per-thread

Per-blockThread
block All threads

Kernel 1

Local
memory

Shared
memory

Global
memory

Kernel 2

CPUHOST Memory

Fig. 17.2 Types of memory on heterogeneous platform

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 413

Local

Shared

Global

Thread

Thread block

Kernel

MemoryComputations

Fig. 17.3 Memory and computation hierarchies on GPU

38, 39]. CUDA views GPU as a grid of blocks where each block has a set of threads.
The grid of blocks can be organized either as one-, two-, or three-dimensional
computing units. A 2D grid example can be seen in [33].

17.3.2 Performance Characteristics: Discussion

The features that affect the performance of computations on GPUs can be broadly
classified into three: (1) Execution configuration, (2) Memory throughput, and (3)
Instruction throughput. In the following subsections, we discuss these performance
characteristics in detail.

Execution Configuration These are the parameters that need to be configured at
execution to improve the performance of GPU computations. The major execution
configurations are:

1. Active warps (Resource usage): Registers and shared memory are critical
components and need attention because it affects the number of active warps
which in turn affects the GPU utilization. When the number of active warps is
maximum, the GPU utilization is at maximum. The number of active warps can
be maximized by good management of compute resources, registers, and shared
memory. Reducing the number of registers utilized by a kernel results in higher
warps being processed simultaneously. And when a thread block consumes more
shared memory, fewer thread blocks are processed simultaneously by an SM. If
the amount of shared memory used by each thread block is reduced, then more
thread blocks can be processed simultaneously.

2. Occupancy: Occupancy is having enough warps to keep the device completely
occupied. It is the ratio between active warps and maximum number of warps.
We can compute occupancy by dividing the maximum number of threads per
SM by 32. We can check it using CUDA occupancy calculator or the nvprof
profiler. “To enhance the occupancy, the thread block configuration needs to be

414 S. AlAhmadi et al.

resized or the resource usage needs to be readjusted to permit more active warps
simultaneously and improve utilization of compute resources.”

3. Memory operations: Load and store operations on the data should be measured
to find the efficiency of the operation.

Memory Throughput Efficient utilization of the theoretical memory bandwidth of
the GPUs improves the computational performance. The bandwidth utilization can
be improved by considering the following factors:

1. Data Transfer between Host and Device: For the best performance of kernels,
data transfers should be minimized between the host and device whenever
possible and should be optimized by various techniques [40]. Moving more
code from host to device is an efficient way to optimize the transfer process. In
addition, every data transfer has an associated overhead, hence grouping many
small transfers into single transfer reduces the overhead associated with each
transfer and produces an overall better performance.

2. Memory Access: Memory access is an important factor that affects the overall
performance of GPU applications. GPU has many types of memory as shown in
Fig. 17.3. Scattered addresses in global memory need to be avoided; coalesced
and aligned access can overcome throughput reduction. Thus, to increase global
memory throughput, it is important to make the memory access transactions both
aligned and coalesced. Coalesced access occurs within a warp scope when all the
32 threads in a warp use one memory transaction; more precisely, they access
a contiguous chunk of memory [35]. Aligned access is to make sure the first
address of a device memory transaction is a multiple of the transaction size,
which usually has either 32, 64, or 128 bytes depending on the target device
characteristics [35, 40]. Figure 17.4 shows the different memory access patterns.

Fig. 17.4 Memory Access Patterns

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 415

The best access pattern is the coalesced access while the worse is the random
access. As a rule, the more memory transactions required by a warp, the lower
the memory throughput which leads to lower performance.

Instruction Throughput This describes the instruction optimizations that lead to
the best performance. It can be summarized into three main perspectives as the
following:

• Arithmetic instructions: Avoiding instructions that cost many operations per
clock cycle such as mod operator. Avoid non-required conversions between
datatypes.

• Control Flow Instructions and Warp Divergence: Control flow instructions (if,
do, for, switch, while) can significantly impact the performance as it may cause
warp divergence problem which degrades the instruction throughput [40]. Warp
divergence occurs when the threads inside a warp have different execution paths.
This conflicts with the fact that the GPU is a single instruction multiple data
(SIMD) processor which would require all threads in a warp to execute one
instruction. More precisely, threads on GPUs are organized as warps and each
warp executes one instruction at a time for all threads inside that warp, each with
its private data (SIMD). When control flow constructs are assigned to a warp,
different branches might occur (e.g., some threads execute an if block when the
condition is correct while others execute else block when the condition is wrong),
which results in executing multiple instructions per warp. As a result, this process
will be serially executed which results in idle threads in a warp as only one
instruction will be executed at a time while next instruction will be loaded after
the current instruction is finished [35, 41]. In other words, the instructions will be
executed sequentially, thus the total number of instructions per warp increases.
So, for best performance we should avoid different execution paths within a warp.

• Synchronization: It impacts the performance because of two reasons [35]. The
first is the cost of the number of operations it requires (differs according
to compute capability of the target device) while the second is forcing the
multiprocessor to be idle while it is not required.

17.3.3 Performance Optimization Strategies

Performance optimization strategies according to [38] can be classified into three
main categories, parallelism optimization, optimization of memory throughput, and
optimization of instruction throughput. Each of these dimensions can be quantified
using several metrics which can be measured using tools such as NVIDIA visual
profiler, nvprof as command-line profiler tool, or by comparing the achieved
throughput of a kernel to the corresponding peak theoretical throughput of the
device to show how much improvement has been achieved by the kernel. The
dimensions with their metrics have been explained in Table 17.1. For example, we
can observe the memory operations in Nsight profiler using memory statistics menu.

416 S. AlAhmadi et al.

Table 17.1 Performance dimensions of GPU Kernels

Performance dimension Performance angles Helping metrics

Memory optimization • Aligned access – gld_efficiency
• Coalesced access – gst_efficiency
• Data transfer between host
and device

– gld_transactions

– gst_transactions
– gld_throughput
– gst_throughput

Instruction throughput • Instruction throughput – branch_efficiency
• Warp divergence – inst_per_warp

– warp_execution_efficiency
Execution configuration
optimization

• Occupancy – achieved_occupancy

• Tune grid blocks size

Also, memory transaction metrics (e.g., gld_transactions and gst_transactions)
can act as indirect indicators to measure the coalesced accesses. Higher memory
transactions indicate a high probability of uncoalesced access. List of CUDA
performance metrics collected by the nvprof can be found on [40].

17.3.4 Performance Optimization: Discussion

Looking for best kernel performance requires tuning multiple performance factors.
It can be likened as a puzzle board that needs to compose many pieces to get
a complete picture. We should look at different angles using multiple metrics to
build better combination of performance aspects and get the best performance.
However, there are possibilities of conflicts between these performance aspects that
may degrade the overall performance even if we achieve high scores for individual
factors. For example, getting more occupancy does not ensure the best performance,
we can find that in some cases, low occupancy also has provided higher performance
because there are other factors affecting the overall performance, for example,
memory operations. In the same manner, getting high memory throughput does not
equate to the best performance due to low efficiency these operations might have.
As a matter of fact, memory efficiency is very important aspect to consider. It can
be improved by changing the thread/block configuration. In general, there are some
good tips for better configuration, keeping the block size always a multiple of the
warp size (i.e., 32) and launching more blocks by setting the second dimension
(block.y) to 1 to reduce the block size and obtain more blocks to launch. This will
enhance the inter-block parallelism [35].

Therefore, enhancing the performance of GPU kernels can be done on multiple
levels. One level might be focusing on exposing more parallelism by managing the

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 417

used resources such as registers and shared memory, or by controlling the occupancy
(higher level of active warps at any given time) or any other aspects on this level
as explained on previous section. Memory access management is another level to
looking for. Optimization memory access to ensure coalesced and aligned access
can immensely enhance the performance. The last level that we can work on is
enhancement of instruction throughput by avoiding warp divergence or avoiding
costly arithmetic operations such as mod operator. All these are examples and each
level represents a separate field of optimizations. We can optimize on one level or
more to find a good balance to get the better performance. Thus, looking for best
GPU performance is a complicated process and requires checking the kernel from
many angles and it does not depend on just a single metric.

17.4 SpMV Storage Formats and Computation Techniques

Data structures are a core aspect when dealing specially with SpMV and GPUs
[8]. They have a strong impact on the performance of the algorithms that are
used to solve SpMV [7–9, 15]. It represents the storage pattern of the input
matrices in the memory and is responsible in providing the best data access [9,
14]. Numerous efforts have been made to improve storage formats specifically for
SpMV on GPU and other architectures for iterative linear solvers on GPUs since
sparse matrices show up in many applications which involve diverse computational
patterns [16]. Accordingly, various storage formats have been proposed to facilitate
the productivity and recovery of important information from the input matrix. The
most prominent formats are the CSR, Coordinate format (COO), DIA, and ELL
[39, 42]. In addition, some adaptation have been made to these basic formats such
as CSR5 [43] and CSRNS [7], along with other hybrid Schemes [1, 8–10, 31, 42,
44]. CSR scheme is preferred always among comparable formats and it has been
chosen because it is widely adopted, general-purpose storage format, and gives
minimum memory accesses [7–9, 15, 16]. Furthermore, all prior storage formats
are considered explicit while there are other storage schemes such as MTBDDs [45]
which are considered implicit formats [17].

In this research, we have included our performance analysis on CSR, COO, ELL,
DIA, HYB, and CSR5 schemes. The descriptions of these formats along with their
analysis are explained in the next section.

17.5 Performance Analysis of Notable Sparse Storage
and Computation Techniques

In this section, we explore several research efforts for SpMV optimization on GPU
over the last years. We first describe how each scheme store the data and then
we have defined the issues and limitations of each scheme. We have classified the

418 S. AlAhmadi et al.

techniques according to the basic SpMV formats they are derived from. The basics
storage formats are COO, CSR, ELL, DIA, and HYB.

17.5.1 Sparse Storage and SpMV Kernels: Qualitative Analysis

In the following subsection, we discuss some of the notable sparse formats and
associated SpMV techniques [39, 44]:

• The Coordinate (COO) format is the most basic data structure to store a sparse
matrix. It is made of three arrays: Row, Col, and Data to store the row indices,
the columns indices, and the values of non-zero components, respectively.

• The Compressed Sparse Row (CSR) format is the most well-known format
for sparse matrix storage. It comprises three arrays: RowPtr, Col, and Data to
store row pointers to the offset of each row, indices of non-zero components, and
values of non-zero components, respectively.

• The ELLPACK (ELL) structure stores a sparse matrix in two arrays: Data and
Col. The array Data stores the values of non-zero components while Col array
stores the columns indices of each non-zero component.

• The Hybrid ELL/COO (HYB) structure stores the greater part of non-zero
components in ELL format and the rest of the non-zero components in COO. All
non-zero components at the columns on the left of a threshold value are stocked
in the ELL and the rest non-zero components are represented as COO format.

• CSR5 proposed by [43] is an optimization of CSR format and it combines
segmented sum technique for better load balance and compressed row data for
better load/store operation efficiency. It is insensitive to sparsity structure of
the input matrix. The matrix is partitioned into groups of 2D tails. These tails
require extra information indicating their start index and columns indices, named
as tail_ptr and tail_descriptor arrays, respectively. In addition, it has the CSR
arrays val, col., and ptr. Thus, we have totally row_ptr, col_idx, val, tile_ptr, and
tile_desc, where tile_desc further includes four arrays. tile_ptr works as row_ptr
on CSR and it stores the row index of the first entry in each tile. Tail_desc has four
different data structures, namely bit_flag, y_offset, seg_offset, and empty_offset
arrays. These four arrays denote the start of each row inside the tiles, the address
of the partial sum for each column, accelerating the segmented sum, and help the
partial sums to find correct locations in y if the tile includes any empty rows. The
illustrations of these schemes are shown in (Figs. 17.5, 17.6, 17.7, 17.8, 17.9 and
17.10).

Fig. 17.5 Original matrix 1 0 3 0
0 4 1 0

2 0 7 5
0

A =

6 0 8

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 419

Fig. 17.6 CSR scheme 1 3 4 1 2 7 5 6 8Var_Arl =
0 2 1 2 0 2 3 1 3Col_Arr =
0 2 4 7 9Ptr_Arr =

Fig. 17.7 ELL scheme 1
4
2
6

3
1
7
8

*
*
5

*

Val_Arr =

0
1
0
1

2
2
2
3

*
*
3

*

Col_Arr =

Fig. 17.8 DIA scheme * 1 * 3

* 4 1 *
2 7 5 *
6 8 * *

Val_Arr = –2 0 1 2offset_Arr =

Fig. 17.9 HYB scheme: ELL
and COO

1
4
2
6

3
1
7
8

5Val_Arr =

Val_Arr =

0
1
0
1

2
2
2
3

Col_Arr =

3Col_Arr =

2Row_Arr =

COO

ELL

3
0
0
2

9
0

0
4
0
5

5
1

2
6
0
3

7
0

1
0
0
0

6
8

0
0
0
0

7
0

5
0
0
7

0
2

3
2
1

5
4
6

2
5
3

A =

val =

7
1
8

2
9
5

7
6
7

val =

m × n = 6 × 6 nnz = 18 no of tails = (18/2) = 9ω = 3 σ = 3

0
2
3

5
1
2

0
1
2

col_index =

col_index =

Tail_0

Tail_1
5
1
3

5
0
1

2
3
4

Fig. 17.10 CSR5 scheme

The main issues that should be taken into consideration regarding these basic
formats are memory footprint in COO, coalesced access and thread mapping in
CSR, and zero padding in ELL. Further, we shall illustrate the limitations of
the selected techniques and analyze it with the performance evaluation criterion
for SpMV and compare it with the performance characteristics of GPU. This
comparison will show us the limitations of the existing techniques and how they are
restricted to a few perspectives from a pool of GPU’s performance considerations.

If we look at the performance criteria in each research, we can observe that
the performance aspects covered on each technique is incomplete. Most of them
focus on the speed of the technique while a few study the memory issues of their
algorithms and seldom take into consideration the utilization rate of the GPU such
as the occupancy rate of the device and the benefits from the massive parallelism
provided by the target GPU. Table 17.2 illustrates the detailed performance data

420 S. AlAhmadi et al.

for all the schemes discussed in this article and discusses the performance aspect
considered in each research.

CSR and CSR Optimizations The main drawback of the scaler CSR (one thread
per row) is the uncoalesced access of the data and indices arrays [1]. To rectify this
issue, a vector CSR version is proposed (a warp per row) [1]. In addition, CSR is
widely used for various types of sparse matrices, this flexibility introduces thread
divergence problem especially for those sparse matrices with a variable number of
non-zeros per row [1, 16]. This likely will cause many threads within a warp to be
idle while waiting for the thread with the longest data to process. These drawbacks
have been overcome by CSR vector version, but the performance of this version is
strongly sensitive to the row size of the target matrix such that it is inefficient when
rows have few non-zeros.

ELL and ELL Optimizations ELL accomplishes high performance on regular
matrix structures (i.e., with an equivalent number of non-zeros on each row) [39,
46]. However, on irregular matrices unavoidably it leads to memory footprint
inefficiency and misuse of computation (i.e., short rows make their thread inactive
for most of the time) results in load imbalance. The granularity of ELL SpMV on
GPU is one thread per row. Nevertheless, it implicates potential space wastage
with the way that all rows are zero-padded to length Nmax. Subsequently, this
configuration is most productive when the variance of non-zeros among rows is
small [10].

AdELL+ SpMV kernel proposed by [46] is an improvement of ELL format and
it is also kind of hybrid format that combines ELL and CSR. It outperforms the
comparable kernels in terms of speed of execution measured on GFLOPS for both
regular and irregular matrices. They have discussed memory bandwidth but without
comparison with others, so we cannot decide about amount of improvements done
on this point. They also have measured memory footprints compared with CSR
structure and it has achieved less footprints than CSR.

HYB Single storage configuration only provides the best performance only in
limited situations which gave birth to the idea of hybrid formats. HYB format, for
example, is the first hybrid format consisting of COO and ELL formats to overcome
the sensitivity to the sparsity structures in both ELL and COO. It successfully
achieved good performance and is considered as one of the best formats especially
on the unstructured matrices. However, it has higher costs including high level
of data organization, has complicated program logic, and costs time in terms of
memory transfer [12].

SHEC [10] is another segmented hybrid format that consists of ELL and CSR
(vector version). They combine the advantage of ELL granularity (i.e., one thread
per row) and CSR granularity (i.e., one warp per row). SHEC is intended for further
improvements on the throughput of SpMV and specially to lessen the memory
footprint on GPUs.

Another hybrid scheme has been proposed in [13] which combines DIA with
the ELLPACK structure. This combination isolates the diagonal elements of the

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 421

sparse matrix using the DIA scheme while the residual elements are stored in
ELLPACK format. This is immensely beneficial for iterative methods, specifically
Jacobi iteration because it uses the diagonal values in its calculation, so the isolation
on the proposed format will give faster access to the diagonal elements. However,
the performance is limited compared to ELLPACK and it is highly efficient for those
matrices having a relatively dense diagonal band [13].

CSR5 [43] have been introduced as a storage format that is based on segmented
CSR. The authors considered computation intensity factor to measure their perfor-
mance compared with others. It significantly improves the load imbalance problem
that CSR suffer from. CSR5 is a complex storage format and requires several arrays.
These arrays involve more memory access operations (many load operations) and
large memory space to load this information which may affects the total memory
efficiency. Poor resource management lead to less GPU utilization since it effects
number of blocks and warps working concurrently which subsequently affects rate
of the device occupancy. Furthermore, the memory bandwidth measurements are
not provided and the technique is not space efficient due to the large number of
arrays used. In addition to its complexity, CSR5 has significant overheads due to the
preprocessing process such as the matrix transpose operations and transformation
from CSR val and col arrays into CSR5 arrays

17.5.2 Performance Comparison

Table 17.2 compares the six considered SpMV kernels which are CSR (scalar
vector), COO, DIA, ELL, HYB, and CSR5. The comparison is in terms of the
used GPU device, peak theoretical values of performance and memory bandwidth,
and the achieved performance and memory throughput. In addition, we provide
the name of the matrix benchmark suites used in the experiments. Some have
used wide variety of real application matrices derived from finite element method-
based modeling, linear programming, circuit simulation, and connectivity graphs
from partial web crawls. It should be noted that the notable CSR version is CSR
scalar which has granularity of one thread per row. The comparison includes several
experiments from different studies of the selected structures. In this article, we
have considered experiments of double-precision computations and unstructured
matrices excluding single-precision and structured matrices except for DIA and ELL
schemes. We have considered the structured matrices for DIA and ELL because
they are dedicated for such matrices. GFLOPS refers to performance throughput.
The calculation for single-precision and double-precision flops are different. The
formula to calculate the peak value of double precisions is given in Eq. (17.2).

2 × [multiply add
]× [#of multiprocessors/8

]× [processor clock/1000
]

(17.2)

422 S. AlAhmadi et al.

Table 17.2 Comparison of SpMV Kernels

GFLOPS Memory bandwidth

Tech. name Device
Peak
GFLOPS

Obtained
GFLOPS
(MAX)

Peak memory
bandwidth

Effective
bandwidth
(MAX)

(COO 1990) [37] GTX 280 [35] 77.76 4 141.7 58
GTX 285 [38] 88.56 5 159.0 –

(CSR Scalar 1990)
[37]

GTX 280 [35] 77.76 4 141.7 55

GTX 285 [38] 88.56 4.2 159.0 –
GTX 980 [39] 144.1 18 141.7 –

(ELL 1985) [37] GTX 280 [35] 77.76 13.5 141.7 140
GTX 285 [38] 88.56 15 159.0 –

(DIA 1989) [37] GTX 280 [35] 77.76 16.7 141.7 141
GTX 285 [38] 88.56 18.2 159.0 –

(HYB 2008) [35] GTX 280 [35] 77.76 14 141.7 141
GTX 285 [38] 88.56 15.7 159.0 –
GTX 980 [39] 144.1 15 –

(CSR5 2015) [39] GTX 980 [39] 144.1 27 224 –

The peak GFLOPS discussed in this article is either calculated using Eq. (17.2) or
from the device specifications given on the website, or is mostly reported in various
researches. The obtained performance throughput measures the number of floating
point operations per second, and it is calculated by dividing the required arithmetic
operations by the average execution time [42]. Peak memory bandwidth is clearly
defined on the device specifications, otherwise it can be calculated using Eq. (17.3).

(Memory clock × Bus Width/8) × GDDR type multiplier (17.3)

GDDR multiplier values vary according to memory type. For GDDR3, GDDR5,
and GDDR5X, it is 2, 4, and 8, respectively. Division by 8 is to change from bit to
byte. Effective bandwidth is defined as the total number of bytes written/read by all
threads divided by the average execution time [42].

In [39], they have implemented the basics formats for structured and unstructured
matrices with single and double-precision computations. In addition, they have
considered experiments with and without cache. They have considered the GPU
performance measured in GFLOPS as well as memory bandwidth measured in GB/s
as performance aspects. They have evaluated the performance results using single
and double-precision floating points and measured the performance enhancement.
However, they do not consider peak performance and peak memory bandwidth
to measure the achievable performance compared with device capabilities. If we
compare the achieved results with the peak values, we observe they have lower
performance compared to the device capabilities as stated in Table 17.2.

In [39, 42], they have the same experiments on different devices with slight
enhancements as compared to [42]. SpMV is a memory-bounded computation and

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 423

hence they did not achieve the peak performance of the used devices [10, 39, 46–48].
More precisely, if we study the performance characteristics that have been discussed
in Sect. 17.3 for the selected kernels we can observe many limitations. Coalesced
memory access, for example, is a difficult issue on sparse matrix computations
because different storage schemes require many pointers that point to the address
of the first element of the blocks, slices, and individual rows. However, the need
for these addresses mean the need for more arrays (at least one beside the data
array) which would result in loading more arrays into the device global memory.
This would increase the memory transactions which may degrade the performance
if the accessing pattern is not coalesced. Furthermore, instead of a single array,
all the arrays should have a coalesced access to ensure better performance. COO,
DIA, ELL, and HYB formats are fully coalesced [1]. On the other hand, CSR does
not provide a coalesced access either for the data array nor to the other arrays.
CSR5 supports memory coalesced access by accessing the data and column arrays
in column-major order instead of row-major order as seen in the classic CSR.

Warp divergence is another performance characteristic and likely to occur on
CSR. It results in load imbalance between threads; however, it is significantly less
in CSR5 by dividing the elements into fixed-size tails. Moreover, other performance
aspects such as instruction throughput, occupancy, block-thread heuristics, number
of resources used, and other performance aspects are not considered. For the best
performance and device utilization we should include a combination of perfor-
mance characteristics to evaluate the performance which most researches lack of.
Furthermore, the properties of GPU architecture included in the experiments have
significant impact on the achieved performance as we have seen in our comparison.
However, even with different GPU devices, the achieved SPMV performance is low
as compared to the high throughput each device can provide.

17.6 Conclusion

In this chapter, we discussed the performance of SpMV on GPU architectures.
We provided an architectural overview of GPU devices and defined the per-
formance dimensions of GPU computations. We explored the performance of
a few major existing sparse matrix storage formats. We concluded that there
is lack of performance aspects considered during the evaluation of the existing
SpMV algorithms, specifically to measure the memory throughput achieved by the
SpMV computations. Since SpMV computations are memory-bound, the achieved
performance should be compared to the peak theoretical bandwidth of the GPUs. We
conclude that to achieve better performance analysis a combination of performance
aspects/criterion should be noted. In addition, the performance of SpMV on different
GPU device architecture varies. Hence, a comprehensive and standard set of
performance characteristics need to be used by the researchers while comparing
and analyzing SpMV on GPUs.

424 S. AlAhmadi et al.

References

1. Yang, W., Li, K., Li, K.: A hybrid computing method of SpMV on CPU–GPU heterogeneous
computing systems. J. Parallel Distrib. Comput. 104, 49–60 (2017)

2. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

3. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75–104 (2017)

4. Mehmood, R., Alturki, R., Zeadally, S.: Multimedia applications over metropolitan area
networks (MANs). J. Netw. Comput. Appl. 34, 1518–1529 (2011)

5. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Proc. Comput. Sci. 64, 1107–1114 (2015)

6. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. ISMS 2010—UKSim/AMSS 1st International Conference on
Intelligent Systems. Model. Simul. 431–436 (2010)

7. Huan, G., Qian, Z.: A new method of sparse matrix-vector multiplication on GPU. In:
International Conference on Computer Science and Network Technology, pp. 954–958 (2012)

8. Hassani, R., Fazely, A., Choudhury, R.-U.-A., Luksch, P.: Analysis of sparse matrix-vector
multiplication using iterative method in CUDA. In: 2013 IEEE Eighth International Conference
on Networking, Architecture and Storage, pp. 262–266 (2013)

9. Cheik Ahamed, A.-K., Magoulès, F.: Efficient implementation of Jacobi iterative method for
large sparse linear systems on graphic processing units. J. Supercomput. 73, 3411–3432 (2017)

10. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurr.
Comput. Pract. Exp. 22, 685–701 (2010). http://hpctoolkit.org

11. Brahme, D., Mishra, B.R., Barve, A.: Parallel sparse matrix vector multiplication using greedy
extraction of boxes. In: 2010 International Conference on High Performance Computing, pp.
1–10 (2010)

12. Ahamed, A.-K.C., Magoules, F.: Fast sparse matrix-vector multiplication on graphics process-
ing unit for finite element analysis. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems, pp. 1307–1314 (2012)

13. Guo, P., Wang, L., Chen, P.: A performance modeling and optimization analysis tool for
sparse matrix-vector multiplication on GPUs. IEEE Trans. Parallel Distrib. Syst. 25, 1112–
1123 (2014)

14. Guo, P., Wang, L.: Auto-tuning CUDA parameters for sparse matrix-vector multiplication on
GPUs. In: Proceedings—2010 International Conference on Computational and Information
Sciences, ICCIS 2010, pp. 1154–1157 (2010)

15. Merrill, D., Garland, M.: Merge-based parallel sparse matrix-vector multiplication. In: Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, SC
16, pp. 678–689 (2016)

16. Hou, K., Feng, W.C., Che, S.: Auto-tuning strategies for parallelizing sparse matrix-vector
(SpMV) multiplication on multi- and many-core processors. In: Proceedings—2017 IEEE 31st
International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2017, pp.
713–722 (2017)

17. Mehmood, R., Crowcroft, J.: Parallel Iterative Solution Method for Large Sparse Linear Equa-
tion Systems. UCAM-CL-TR-650. University of Cambridge, Computer Laboratory (2005)

18. Mehmood, R.: Disk-Based Techniques for Efficient Solution of Large Markov Chains.
Computer Science, University of Birmingham (2004)

19. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. Society for Industrial and Applied Mathematics, Philadelphia (1994)

http://hpctoolkit.org

17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs 425

20. Eleliemy, A., Fayez, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on parallel
heterogeneous architectures: spin-image algorithm on CPU and MIC. In: 9th EUROSIM
Congress on Modelling and Simulation. EUROSIM (2016)

21. Kwiatkowska, M., Mehmood, R.: Out-of-Core solution of large linear Systems of Equations
Arising from stochastic modelling. In: Process Algebra and Probabilistic Methods: Perfor-
mance Modeling and Verification, pp. 135–151. Springer, Berlin (2002)

22. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution
method for Markov models. Electr. Notes Theor. Comput. Sci. 68, 589–604 (2002)

23. Mehmood, R.: A Survey of Out-of-Core Analysis Techniques in Stochastic Modelling.
University of Birmingham, UK (2003)

24. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort,
B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems: A Guide
to Current Research, pp. 230–255. Springer, Berlin (2004)

25. Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-
state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis, and
Simulation, pp. 293–302 (2006)

26. Mehmood, R., Parker, D., Kwiatkowska, M.: An Efficient BDD-Based Implementation of
Gauss-Seidel for CTMC Analysis. University of Birmingham, UK (2003)

27. Mehmood, R., Parker, D., Kwiatkowska, M.: An Efficient Symbolic Out-of-Core Solution
Method for Markov Models., University of Birmingham, UK (2003)

28. Magoulès, F., Ahamed, A.-K.C.: Alinea: an advanced linear algebra library for massively
parallel computations on graphics processing units. Int. J. High Perform. Comput. Appl. 29,
284–310 (2015)

29. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258–
32285 (2018)

30. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing.
Proc. IEEE. 879–899 (2008)

31. Fevgas, A., Daloukas, K., Tsompanopoulou, P., Bozanis, P.: Efficient solution of large sparse
linear systems in modern hardware. In: 2015 6th International Conference on Information,
Intelligence, Systems and Applications (IISA), pp. 1–6 (2015)

32. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-on
Approach (2013)

33. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming. Wiley, New
York (2014)

34. NVIDIA: Pascal GPU Architecture | NVIDIA. https://www.nvidia.com/en-us/data-center/
pascal-gpu-architecture

35. NVIDIA: NVIDIA Tesla P100 Whitepaper (2016)
36. NVIDIA: NVIDIA Tesla V100. https://www.nvidia.com/en-us/data-center/tesla-v100/

?ncid=van-tesla-v100
37. NVIDIA: History of NVIDIA – From Graphics Cards to Mobile Processors. http://

www.nvidia.co.uk/object/corporate-timeline-uk.html
38. Nvidia: Nvidia CUDA C Programming Guide Version 4.2 (2012)
39. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA (2008)
40. Nvidia: Profiler User’s Guide
41. Saad, Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations Version 2 (1994)
42. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-

oriented processors. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis—SC ’09, p. 1 (2009)

43. Liu, W., Vinter, B.: CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-
Vector Multiplication. Arxiv, Ithaca, NY (2015)

44. Guo, P., Lee, C.W.: A performance prediction and analysis integrated framework for SpMV on
GPUs. In: Procedia Computer Science, pp. 178–189. The Author(s), (2016)

https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture
https://www.nvidia.com/en-us/data-center/tesla-v100/?ncid=van-tesla-v100
http://www.nvidia.co.uk/object/corporate-timeline-uk.html

426 S. AlAhmadi et al.

45. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams: an efficient
data structure for matrix representation. Formal Meth. Syst. Design. 10, 149–169 (1997)

46. Maggioni, M., Berger-Wolf, T.: Optimization techniques for sparse matrix-vector multiplica-
tion on GPUs. J. Parallel Distrib. Comput. 93-94, 66–86 (2016)

47. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector multiplication
on GPGPUs. ACM Trans. Math. Softw. 43, 1–49 (2017)

48. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization of sparse
matrix-vector multiplication on emerging multicore platforms—long version. Parallel Comput.
35, 178–194 (2009)

Chapter 18
HPC-Smart Infrastructures: A Review
and Outlook on Performance Analysis
Methods and Tools

Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri, and Fawaz Alsolami

18.1 Introduction

High-performance computing (HPC) plays a vital role in driving transformations
across various smart-city infrastructures such as healthcare, agriculture, environ-
ment, and other infrastructures [94]. It is a vital cog in autonomous adaption of urban
infrastructure to various events and stimuli (e.g., severe hurricane, high traffic due to
accidents). HPC is a major component in developing phenomenal computationally
intensive models for various smart-city infrastructures.

Driving high efficiency from shared-memory and distributed-memory HPC
systems have always been challenging. Big data and HPC convergence, system
heterogeneity, cloud computing, and many other developments have increased the
complexities of HPC systems [36, 51, 77, 108, 124]. There are increasing pressures
on energy efficiency for developing exascale computers and therefore development
of highly efficient HPC applications and systems has become essential.

Various performance analysis tools exist that help in improving the performance
and efficiency of HPC scientific applications and increase their potential. Per-
formance analysis is a crucial part in the development of the HPC applications.
Performance optimization is not just identifying the bottlenecks in the code but
also identifying the causes of bottlenecks and the required changes that need to
be made to the parallel applications [99]. This requires more advanced tools such
as hardware performance counters. Diagnosing the problems manually requires

T. Muhammed (�) · A. Albeshri · F. Alsolami
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: m.thaha.h@ieee.org; aaalbeshri@kau.edu.sa; falsolami1@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: rmehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_18

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_18&domain=pdf
mailto:m.thaha.h@ieee.org
mailto:aaalbeshri@kau.edu.sa
mailto:falsolami1@kau.edu.sa
mailto:rmehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_18

428 T. Muhammed et al.

deep knowledge about the architecture, hardware of the system, and the compiler.
Performance analysis is important to determine the different optimization strategies
for the same application on different HPC platforms such as GPU, MIC, cloud, and
MPI-based grids.

Corresponding to debugging and testing, performance analysis and optimization
of HPC applications are vital stages in the development cycle. It is a crucial
condition for assuring efficient use of costly and limited resources. The performance
analysis phase evaluates the actual performance (speed of computation, throughput,
and resource consumption) on a given platform with regard to memory, storage,
network, and runtime. Moreover, it has to identify improvements and reduction in
the usage of resources.

This paper reviews the performance analysis tools and techniques for HPC
applications and systems. The contributions of this article can be summarized
below.

1. A review of the tools for the performance analysis of HPC applications. The
works on the HPC performance analysis are numerous and we do not claim to be
exhaustive in this paper.

2. A discussion on the performance of various HPC applications on a number of
HPC platforms.

3. A discussion on the common HPC applications used by the researchers and HPC
benchmarking suites for analysis.

4. A qualitative comparison of various tools used for the performance analysis of
HPC applications is provided.

5. A discussion on the future research directions and issues.

The rest of the paper is organized as follows. Section 18.2 describes various
Benchmark toolkits and various HPC applications that are used for the performance
analysis. Section 18.3 presents existing work by various researchers in analyzing
the performance of various HPC applications. Section 18.4 provides a qualitative
comparison of various tools used for HPC application performance analysis. Future
research issues and directions are provided in Sect. 18.5. Finally, Sect. 18.6
concludes the paper.

18.2 HPC Applications and Benchmarking Suites

In this section, we discuss various HPC-based applications from various domains
which are prone to performance problems. Table 18.1 summarizes various HPC
applications that are used in various application domains. We shall discuss some
major domains in which HPC is a necessity and is used abundantly.

– Automobile and Aeronautics: This field has a lot of simulation and modeling,
model prediction and verification including probabilistic modeling, computer
aided drawing, graphic designing, design automation, the design of structures,

18 HPC-Smart Infrastructures: A Review and Outlook 429

Table 18.1 A summary and comparison of commonly used HPC applications

Application Domain Language Developers OS Open

BigDFT Chemistry F90 Genovese et al. [42] Li/Un Yes

Bifrost Atmosphere F90 Gudiksen et al. [46] Li/Un No

ChaNGa Cosmology Charm++ Jetley et al. [55] Li/Un Yes

COSMO Weather C++ CINECA Li/Un Yes

CORSIKA Astrophysics F77/F90 Heck et al. [50] Li/Un No

ECHAM/MESSy Environment F77/F90 Jöckel et al. [57] Li/Un No

EUTERPE Fusion C++/C Saez et al. [110] Li/Un No

Gamess Material Science F77 Schmidt et al. [45, 112] Li/Un No

IBM WATSON Graph Analysis C++ IBM Li/Un No

IMPACT-T Math. modeling F90 Qinag et al. [107] Li/Un Yes

Jacobi2D Math. modeling Charm++ – Li/Un Yes

LIBMESH Math. modeling C/C++ Kirk et al. [64] Li/Un Yes

MAESTRO Astrophysics F90 Nonaka et al.[100] Li/Un Yes

MILC Quantum Theory C/C++ Bailey et al. [20] Li/Un Yes

MP2C Particle collision F90 Freche et al. [39] Li/Un No

NAMD Chemistry Charm++ Bhatele et al. [23] Li/Un Yes

NQueens Backtracking C/C++ – Li/Un Yes

OpenFOAM Fluid dynamics C++ Jacobsen et al. [54] Li/Un Yes

Paratec Quantum theory C/C++ Pfrommer et al. [104] Li/Un No

PEPC Gravitation F2003 Gibbon [44] Li/Un Yes

ProFASI Protein structure C++ Irbäck et al. [52] Li/Un No

PRISM Probab. modeling Java/C Kwiatkowska et al. [72] Li/Win Yes

Quantum expresso Molecular structure F90 Giannozzi et al. [43] Li/Win Yes

SIMONA Nano science C++ Strunk et al. [116] Li/Un No

SMMP Protein structure F90 Meinke et al. [90] Li/Un Yes

SPECFEM3D Wave propagation F90/C Dimitri et al. [67] Li/Un Yes

Sweep3D Material science F77 Wylie et al.. [128] Li/Un Yes

YALES2 Combustion C++/F90 Moureau et al. [91] Li/Un No

WIEN2K Chemistry F90 Schwarz et al. [113] Li/Un No

Li Linux, Un Unix, Win Windows

automated plan building, analysis of design, and concrete modeling [66, 73, 98,
130].

– Astrophysics and quantum physics: A lot of applications based on physics,
especially on quantum physics and astrophysics, has very large computations as
they receive a large input data. Load balancing of spin-image algorithm on CPU
and MIC has been studied in [22, 34].

– Biosciences: Biosciences including bioinformatics have a large number of
programs that require computation including the mathematical modeling of
diseases. It also has issues with memory management. See, for example, [7].

– Earth sciences: A large number of earth related activities such as earthquake
prediction, monitoring, weather prediction, and prediction of climate change due

430 T. Muhammed et al.

to global warming needs high computation [61, 109]. These applications are
highly data intensive and take days to run on serial machines.

– Electronics: The design and analysis of electronic components have a high
computation due to the simulation and modeling before the actual produc-
tion [117, 129]. Other things include the static timing analysis and lithography.

– Material sciences: Material science includes modeling of nanoscale particle,
the modeling behavior of nanoscale particle, and modeling of molecules and
chemical reactions [2, 74]. These require a lot of computation and memory.

– Computational fluid dynamics (CFD): CFD is used to model the flow of fluid
around and within an object by solving mathematical equations governing the
flow with the help of numerical methods. It is an inter-disciplinary domain
and has applications in multiple domains. Complex flow phenomenon can be
simulated with CFD. However, it requires massively parallel supercomputers to
run the simulations efficiently and effectively [41, 105].

– Graph computations: Graphs are extensively used combinatorial tools in
computing. They are used for representing sparse matrices, assist load balancing
in computations [16], model molecular structures, traffic networks [16], and
social media networks [8, 119], and distribution networks. It is also used in
bioinformatics, business-analytics, and city planning. As graphs grow larger in
size, we require powerful computational techniques for effective processing.

– Computational and artificial intelligence (AI): AI has become a fundamental
technique for developing smarter algorithms and solutions in all scientific
computations domains. Training deep learning and machine learning-based
models require large computing power. For example, AI in healthcare networked
systems [95] and educational systems [88] provides a better quality of service
(QoS) and experience to the users. Deep learning has also been used to forecast
traffic conditions for smart cities [14], and there are numerous other applications
of AI, machine and deep learning. Probabilistic methods have also been used for
computational intelligence, see, e.g., [71, 80] and the references therein. Solution
of sparse linear equation system is an important part of such computational
intelligence techniques. Solving sparse linear equation system mainly consists of
sparse matrix vector multiplication which requires efficient utilization of parallel
devices and this is discussed next.

– Linear algebra and matrix computations: A large number of scientific
domains require linear algebra and matrix computations, such as dense or sparse
matrix matrix multiplications (MMM), dense matrix vector products (MVPs),
and sparse matrix vector products (SpMV) [3]. Application of HPC for dense
linear algebra (MVP/MMM) can be seen in [17, 122, 123]. Work on efficiently
utilizing parallel devices for SpMV can be seen in [11, 12, 69, 70, 79–82, 85, 86].

– Big data: Big data refers to “the emerging technologies that are designed to
extract value from data having four vs characteristics; volume, variety, velocity
and veracity” [87]. Big data technologies are being used in many application
areas that require HPC to address big data challenges, see, e.g., [5, 83, 88, 95,
118, 119]. There are many ongoing efforts on the convergence of HPC and big
data [36, 108, 124].

18 HPC-Smart Infrastructures: A Review and Outlook 431

Table 18.2 A summary and comparison of benchmarking suites for HPC applications

Name Developers Benchmark type Supports Language

DEISA EUS Real apps Cloud+MPI C

HPC challenge bench-
mark

DARPA Micro MPI+OpenMP C

Iometer Intel I/O All network environ-
ments

C++

LINPACK Dongarra et. al. Kernel MPI+OpenMP Fortran

NAS parallel bench-
mark (NPB)

NASA Kernel MPI C/C++

NPB multi-zone(NPB-
MZ)

NASA Kernel MPI+OpenMP C/C++

PARSEC Princeton Univ. Kernel Multi-threaded SMA C/C++

PerfKitBenchmarker Google Kernel Cloud environment Python

PMaC HPC SciDac PERC Micro MPI+OpenMP C++

Rodinia Kevin Skadron Real apps CUDA/OpenMP C/C++

STREAM UOV Kernel MPI C++/F90

VMmark VMware Virtual machine Virtual machines &
cloud

C/C++

– Smart Cities, societies, and infrastructure: Smart cities are driven by the
rapid advancements in ICT technologies. These ICT developments have given
rise to the integration and convergence of digital and physical systems such
as computing, communications, big data, transport, healthcare, and city opera-
tions [6, 8, 10, 15, 16, 63, 83, 84, 89, 94, 95, 111, 118, 119, 124]. See, e.g., [88]
for background on smart cities and societies.

Researchers have used applications from the discussed domains to study the
performance of these applications in high-performance environments. Several works
analyze the performance of applications from discussed domains using various
known benchmarks. Table 18.1 lists some of the important applications that use
HPC and Table 18.2 provides some of the major benchmarks used. Performance
analysis tools have been used to analyze the applications to detect the bottlenecks
in the code. We shall discuss these tools in later sections along with the review of
earlier research.

18.3 Performance Analysis of HPC Applications: Literature
Review

18.3.1 Performance Analysis Metrics (Theoretical)

Carrington et al. [27] analyze the metrics used for evaluating the performance
of HPC applications. They mainly evaluate a simple synthetic metric, a linear

432 T. Muhammed et al.

combination of various single metric with weights. They also test a metrics derived
by convolving an application transfer function with the system performance data
obtained using any one single simple metric which is also known as predictive
metrics. The authors evaluate the performance of ten Department of Defense high-
performance computing modernization applications (HPCMP) [31]. Of the ten
selected application, five of the applications are workload dependent and the other
five are workload independent. Each of these ten applications was run on ten target
systems with a distinct architecture. The simple benchmarks such as LINPACK [31],
STREAM [78], and HPC challenge [76] have a weak correlation to performance
and hence the authors additionally use synthetic benchmarks in combination with
prediction and performance modeling framework [48]. A transfer function is applied
to the test result by the prediction model that enables the representation of multiple
categories using one single metric. In the simple metric scheme, the metric from a
single benchmark is used, whereas in predictive benchmark they use a set of single
benchmark metrics along with a real-time trace of the application. Simple metrics is
modeled as follows:

T ′(A,B) = L(A)

L(Ao)
· T (Ao, B) (18.1)

where T ′(A,B) is the predicted clock time for application B on system A, L(A) is
the result for a specific single benchmark for system L, Ao denotes the base system
benchmark, and T (A,B) is the measured wall clock time for A on B. The errors
reported are calculated as

% Error = T ′(A,B) − T (Ao, B)

T (A,B)
(18.2)

For predictive metrics, the authors use a tracer such as MetaSim tracer [28] for
dynamic tracing of the base station and synthetic probes are used for measuring
the rates for each operation on a target system. The MetaSim convolver [114]
divides the execution operation count by operation rate to achieve execution type
for current basic block per operation. After experimentation, the authors conclude
that the correlation between the metric and real-time performance is higher than
simple metrics.

18.3.2 HPC on the Clouds

Gupta et al. [47] provide an evaluation and comparison between the performance
of HPC applications on the cloud and on traditional HPC systems such as super-
computers and clusters. They also answer questions such as which HPC application
is suitable for cloud, when is it suitable to choose cloud to run HPC application,
and what application can be run on the cloud. The authors grade the performance

18 HPC-Smart Infrastructures: A Review and Outlook 433

of a number of selected applications on a number of the platform including
supercomputer, a different type of clouds and clusters. The authors recognize
various bottlenecks and the correlation between the characteristics and performance
of the HPC application. The authors use three different benchmarks to analyze the
performance of the HPC application. These are NAS parallel benchmark [97], a
benchmark based on MPI [75], and a benchmark based on Charm++ [60]. The
following systems were used to test the applications:

– Ranger supercomputer
– Taub (an HPC optimized cluster)
– Open Cirrus (physical nodes with commodity Interconnect)
– Private cloud
– Public cloud
– Amazon EC2-CC cloud

They ran the following HPC applications on the above machines:

– Jacobi2D
– NAMD [23]
– ChaNGa [55]
– Sweep3D [128]
– NQueens

The authors made three observations based on running the above HPC application
on all the machines discussed above:

1. Some application scaled really well on all platform

(a) Applications such as Jacobi-2D and NQueens scaled well on all the cores.

2. Scaling only till 32 cores on private cloud

(a) NAMD and ChaNGa show this behavior. This is the effect of virtualization
of the network.

3. Variable runtime for HPC applications on different execution in clouds

(a) The variability was seen to increase when increasing the scaling.

The authors used various MPE, Jumpshot [131], and Projection tools to trace the
HPC applications communication characteristics. On analyzing the communication,
the authors have come to a conclusion that communication performance is a major
bottleneck. They also conclude that virtualization decreases the performance of
an HPC application. This is due to the presence of high latency and reduction in
bandwidth. It was also observed that there are random idle times which the authors
attribute to interference by other systems. The authors also reach a conclusion on
the variability of the running time of HPC application. They say that it is due to the
coupling of heterogeneous components in hardware and due to sharing of the virtual
machines by external users.

434 T. Muhammed et al.

Jackson et al. [53] discuss the performance analysis of HPC applications on the
cloud. They compare conventional high-performance computing platforms such as
supercomputers to Amazon EC2 cloud using HPC applications. The authors use the
NERSC benchmarking framework [29, 32, 49, 75, 96, 101–103, 125] to evaluate
the performance of HPC applications on Amazon EC2. In addition to NERSC, they
also use integrated performance monitoring (IPM) framework. This framework will
provide us with details on the time spent by the application on computation and on
networking. They use four machines for this evaluation. The first of such machine is
called Carver, which is a four hundred node cluster, which belongs to Lawrence
Berkeley National Laboratory. It uses a quad-core Intel Nehalem processor @
2.67 GHz. Each node has twenty-four GB of RAM. The second machine to be
tested is Franklin which is a CrayXT4 supercomputer consisting of 9660 nodes.
It has a single AMD Budapest processor @ 2.3GHz. The third system to be tested is
Lawrencium which is a Linux cluster that has 198 nodes and the third system is the
Amazon EC2 cloud. For testing purposes, they used four compute units of Amazon
where one compute unit is equal to 1.2 GHz of Xeon 2007 processors. Normally all
of the traditional HPC has a shared parallel file system that between the master nodes
and the slave nodes. This is recreated in the cloud environment using virtual clusters
[38, 40, 62]. A number of python scripts were used to configure the master node and
the slave nodes. The master node would submit the jobs to the slave nodes using
MPI and the file system will be shared between the nodes. The shared file system
is implemented with the help of elastic block store [13] device which is attached
to the virtual machine. The ext3 file system was used in this disk. Eight different
HPC applications were evaluated by the authors from the benchmarking suite. These
applications are (1) the community atmosphere model, (2) the general atomic and
molecular electronic structure system, (3) GTC, (4) IMPACT-T, (5) MAESTRO, (6)
MILC, (7) PARATEC, and (8) HPCC. Sustained system performance [68] for each
of these applications was computed based on the NERSC benchmark as follows:

SSP = N

(
M∏

i=1

Pi

)(1/M)

(18.3)

where Pi is the performance figure in gigaflops per second per core, N is the
number of computational cores. Basically, SSP is the geometric mean of Pi overM
applications multiplied by N . It was observed that Lawrencium and Amazon EC2
were the worst performers in terms of computation. Moreover, the network latency
is very poor in both of these systems. It was observed that EC2 was 20 times worst
performer than the penultimate worst performer. The memory access in the EC2
platform is 10 times slower than the next worst performer Lawrencium. Totally the
results indicate that the network has a very high impact on the performance of HPC
applications on the cloud.

Roberto et al. [35] analyze the performance of HPC applications on the cloud.
They analyze major performance bottlenecks in cloud platform using Amazon
EC2 cluster [33] computing environment. Amazon provides two cluster computing

18 HPC-Smart Infrastructures: A Review and Outlook 435

instances named CC1 and CC2. CC1 consists of two quad-core processors whereas
CC2 consists of two octa-core processors. They are made keeping in mind the
requirement of HPC applications and high network using applications [25]. The
authors evaluate 64 instances of CC1 and 32 instances of CC2, which sums up to
a total of 512 cores. NAS parallel benchmark suite [19] and NPB multi-zone suite
[56] are used for evaluation. Both of these cluster instances use Xen hypervisor for
virtualization. The input–output is managed by paravirtual drivers that improve the
performance as compared to normal clouds. OpenMPI [92] and MPICH2 [93] are
used as the messaging middleware for codes using C/C++. Whereas, for Java-based
code they use FastMPJ [120]. Initially, they performed a micro-benchmarking of
data transfer from one point to another. They analyzed data transfer between both the
inter-cluster and intra-cluster. Micro-benchmarking was conducted using Intel MPI
benchmarks suite [126]. Then they analyzed the performance of the HPC kernels
especially the effects on scalability due to paravirtualization. This was performed
using NAS parallel benchmarks. Then they analyze the suitability of the amazon-
based cloud networks for HPC application execution. The metrics they consider
are millions of operation per second (MOPS). From the inter-VM communication
analysis, it was found that OpenMPI and FastMPJ had lower start-up latency than
MPICH2 but still as compared to an application running on barebones hardware
these values are not enough. The results in the octa-core cloud were better than
the performance of quad-core cloud. Still the major bottleneck is the delay in
networking due to the para-virtualized access of the virtual machines of the cloud.
In the Intra-VM data transfer, we only use the shared memory and does not use the
network infrastructure and hence it was observed that it was better than Inter-VM
performance. In this case, the latency was as low as 0.3 and 0.45 μs on both CC1 and
CC2. In CC2, it is slightly higher due to the higher clock frequency of CC2. It was
observed that cache hierarchy influences the performance of shared memory in both
the cluster instances. HPC kernel analysis was performed using Fourier transform,
integer sort, and conjugate gradient applications from the NPB kernels. It was
observed that the scalability is higher if shared memory was used for data transfer
but the moment the application was run on Inter-VM the performance dropped. The
analysis reveals that the para-virtualized access of the network interface card by
the cloud results in higher start-up latency which limits the scalability of the HPC
applications that use intensive communication. The authors conclude that the major
bottleneck in running HPC applications in cloud is the communication bottleneck
of the cloud due to para-virtualized access of the network interface card by the
cloud platform. It has also concluded that CC1 has better scalability than CC2 even
though CC2 has higher computational power. If the performance to cost ratio is
compared, then CC1 is better than using CC2. The scalability can be increased
by running a single process per VM so that shared memory is used instead of
network infrastructure. Multiple levels of parallelism have been shown to increase
the scalability and performance such as multi-threading with message passing.

Waseem et al. [4] propose a framework for porting scientific applications to
between heterogeneous clouds.

436 T. Muhammed et al.

18.3.3 Performance Analysis Tools

Burtscher et al. [26] propose a tool for analyzing the performance of HPC
applications. It consists of an advanced engine behind a highly usable GUI for
bottleneck analysis. In an application, for each procedure, class, and loop it can
analyze core, socket, and other bottlenecks. It then provides a brief evaluation
and the steps required to remove that specific bottleneck including strategies to
optimize the performance of the code. PerfExpert removes the need to have in-
depth knowledge about computer architecture to optimize the HPC code. They
also present a new metric for measuring the performance called as LCPI, which
stands for local cycles per instruction. It is a combination of measurements from
performance counters and architectural parameters. Since the local values for each
loop are computed, procedure, and class they call it local CPI. For each procedure,
loop, and class it calculates the CPI. It also returns the contribution of the following
operations to the CPI: (1) memory access data, (2) memory access by instruction,
(3) data TLB access, (4) instruction TLB access, (5) FP operations, and (6) branches
in loops. It has fifteen performance counters to measure the overall LCPI and the
LCPI associated with the six operations discussed above. It also calculates the upper
bound of the latency caused due to the six operations discussed above. Some of the
major performance counters provided by PerfExpert are L1 and L2 cache access by
both data and instruction, total cycles and instruction in the HPC code, L2 cache
miss by both data and instruction, instruction and data TLB miss, branch prediction
and operations such as floating point addition, subtraction, and multiplication. These
LCPI parameters are combined with various system parameters to find important
bottlenecks. This can be used to restrict the conceivable causes of bottlenecks. For
example, the contribution of a branch statement to the LCPI is given by

(BR_NS ∗ BR_latency + BR_MSP ∗ BR_misslat)/T OT _INS (18.4)

where BRINS is the total branch instruction, BRMSP indicates the branches
missed, and T OT INS is the total instructions in the HPC code. BRmisslat is
the miss prediction latency by the CPU and BRlatency is the latency of branch.
PerfExpert runs HPCToolkit [30] under its hood. The HPC code is run by the
PerfExpert multiple times over the HPCToolkit. It saves the data from various
performance counters to a file. The data is then accessed by PerfExpert to find
out the bottlenecks in the code. On the basis of the analysis, it will then provide
optimization suggestions for the code.

Knupfer et al. [65] discuss a toolset for evaluating the performance of HPC
applications called the Vampir toolset. The Vampir toolset mainly consists of three
components. They are (1) VampireTrace, (2) a set of visualization tools named
Vampir, and (3) Vampir server. VampireTrace is an application tracer for HPC
applications. Tracing an HPC application requires Instrumentation which is the
modification of the application being traced to detect various events occurring.
VampireTrace provides four different kinds of instrumentation, namely compiler

18 HPC-Smart Infrastructures: A Review and Outlook 437

instrumentation, source to source instrumentation, library instrumentation, and
manual instrumentation. These modifications are performed at the build time of
application. Special flags are provided for the compiler to generate calls for
instrumentation. It supports a number of compilers such as GCC, Intel compiler
suite, IBM compiler suite, Sun compilers, and NEC compilers. The major disad-
vantage associated with this technique is the large size of the trace file that is
generated. Source to source instrumentation is used by Vampir to instrument the
MPI application. Library instrumentation replaces the existing libraries of the HPC
application with the libraries required for instrumentation. The major advantage of
this technique is that without compiling and link frequently. The disadvantage of
this technique is that it requires that all the APIs be replaced by the new libraries.
Manual instrumentation is used to get more powerful control on what events need
to be traced and which events not. The Vampir toolkit can record the following
events.

1. Hardware performance counters: Can find out various performance parameters
such as statistics on cache performance, statistics on branch predictions, and
statistics on floating point operations.

2. Memory usage of the application: It can trace the memory usage of the HPC
application dynamically [59]. It replaces the normal memory functions such as
malloc, realloc, and free with special wrappers from the GCC compiler library.

3. Input and output activity tracking: Each and every input and output activity
performed by the HPC application can be traced by the VampireTrace by
intercepting the I/O calls made by the application.

4. Performance counters defined by the users: The users can define a number of
performance counters such as loop counts, results, or other scalar quantities.

Tracing can cause an overhead in the system which results in the performance
degradation of the HPC application and might alter the original characteristics of the
application. The overhead is introduced mainly at four places in the system, namely
the initialization phase, during event handling, during storage of tracing information
to disk, and during finalization. Vampir server is a client–server framework that
uses distributed systems for the evaluation of HPC application evaluation. We use
a parallel production environment as the server and the clients can be desktop
computers connected remotely for envisaging the performance graphically. The
graphical client enhances the understandability of the system by showing graphical
results of the evaluation. It provides various graphical timelines of the application
execution. The timelines consist of a global timeline that shows the timeline of all
process and threads, a summary timeline that provides the process that is involved
with various activity over a period of time. The other two timelines provided are the
counter timeline and the process timeline. The counter timeline shows the state of
counters with respect to time. Other than timeline display it also provides various
statistical displays such as the summary chart, activity chart, message statistics, and
input–output statistics. The authors conclude that it is a robust tool that provides a
good analysis of HPC applications.

438 T. Muhammed et al.

Wolf et al. [127] discuss SCALSCA toolset that has been specially designed
to analyze the performance of high-performance parallel applications. It provides
a complete runtime summaries and provides insight into the application behavior
through various techniques such as tracing and measuring various parameters. It
has been designed to be used with large end HPC systems such as IBM blue gene.
SCALASCA can identify uneven workloads and evaluate it. It can also detect wait
states that occur due to the above-mentioned phenomenon. SCALASCA can be
used for applications using OpenMP, MPI, and other hybrid applications written
in C/C++ and FORTRAN. It can be run on a wide range of platforms. SALASCA
is accessed using the command scales with various flags. Initially, before we start
the analysis the code to be analyzed has to be instrumented. By instrumentation,
it means that the code has to be modified to record and evaluate various events
related to the performance of the system. This process is automated in some
platforms whereas in some other platforms it has to be done manually. After this,
the instrumented code is run. After the run, there is the option to get the trace of
individual runtime events from which a GUI-based timeline representation can be
created. Alternatively, a profile that aggregates the performance of various events
and a summary report from it can be created. The second option provides an overall
summary whereas the trace provides a detailed information. The trace produces a
trace file that is used loaded into the memory for evaluation. During the evaluation,
it detects various events of significance. It performs a pattern analysis and provides
a report about this analysis. Both the pattern report and summary produced contain
various performance metrics that is useful for the user. The result of tracing can
also be analyzed by other third party tools. Some of the disadvantages of this are
that the trace analysis for OpenMP is done serially and the summary produced
has only metrics for OpenMP. The authors are improving it by incorporating more
functionalities. They are trying to come up with a workaround for the restrictions
imposed by the CUBE file format. The bottlenecks or the performance degradation
might occur at a later time than the time at which the actual event took place. They
are also trying to find a workaround for this issue.

18.3.4 Performance Analysis of Exascale Systems

Abraham et al. [1] discuss the possible performance evaluation of HPC applications
on exascale systems. Of all the HPC applications present, only a few HPC
applications are capable of exploiting even the petaflop systems [18]. The traditional
measurement-based evaluation on exascale system cannot be done because an
exascale system does not yet exist. The authors identify the challenges and provide
solutions for various problems that are faced when running an HPC application
on the exascale system including optimization of the code, formal modeling, and
static and runtime analysis. They also propose a conceptual framework for HPC
application performance analysis to run it on an exascale system. They try to
adapt the HPC application code to achieve good utilization of resources abstractly.

18 HPC-Smart Infrastructures: A Review and Outlook 439

For this, they get the resource usage footprint of various modules at various
granularity. An abstract behavioral specification language to describe both the task
and deployment model can be used [58]. Also, the language should have big
parallel operators over big resource footprint [106]. A resource footprint can be
specified using the standard model in model driven development when the code
is developed from scratch. The authors also apply formal methods to the code,
unlike others who monitor the code and report various statistics regarding the
performance. They also provide the challenges faced at runtime analysis such as
the absence of a good tool to measure energy metrics with accuracy and given
time [9, 24]. Current runtime analysis includes runtime measurement like profiling
and tracing data [25]. This has many disadvantages such as manual changing of
code and ineffective improvement in performance. They also provide a conceptual
framework for designing HPC applications for exascale. The major components in
this framework can be summarized as follows:

– Use of domain specific exascale language (DSEL): This is useful for expressing
the non-functional aspects of execution.

– Scalable model-based analyzer (SMA): They are responsible for monitoring and
evaluating resource consumption.

– Exascale runtime data collector (ERDC): It performs functionalities such as data
mining, filtering, and data analysis.

– Autonomous feedback loop (AFL): AFL gets the feedback from the runtime that
is fed back into the model to tune the model.

Energy-Efficient Systems (Embedded Systems Nodes)

One of the major roadblocks for the adoption of exascale systems for HPC
computations is the energy consumption of exascale systems. A supercomputer
is not supposed to exceed 20 MW. We would require an efficiency of almost
fifty gigaflops (GFLOPS) per watt to build an exascale system below 20 MW.
To break through this barrier, we need to increase the efficiency of the current
systems by a factor of twenty-five, whereas in the embedded systems the energy
is of great importance. Therefore, one way to do this is to use the components used
in the embedded systems as analyzed by Stanisic et al. [115]. Stanisic et al. [115]
developed HPC clusters with the help of low-power embedded components and they
evaluate various existing HPC applications on this embedded platform. They study
the scalability of the existing HPC applications to the low-power embedded system-
based HPC clusters. They used eleven HPC applications to run on the low-power
HPC clusters. SPECFEM3D and BigDFT are the two major HPC applications used
by them. The authors have developed a board called snowboard which is a fully
embedded computer by itself. It uses a powerful ARM dual cortex A9 running at
1GHz. It has 8 GB of e-MMC memory. It has a full HD supported HDMI port
along with Mali 400 GPU. The power consumption of this board is just 2.5 W. This
board is compared with an Intel Xeon running at quad-core CPU at 2.6 GHz and has

440 T. Muhammed et al.

a power consumption of 95 W. Three benchmarks are used to compare these two
systems: (1)LINPACK, (2) CoreMark, and (3) StockFish. It was found that it takes
the same amount of energy on both platforms to run LINPACK but benchmarking
SPECFEM3D using CoreMark requires only less than 5 times of energy required
by Xeon. It was found out that the applications scale well for more than 90%
on the embedded low-power platform. The scalability is almost ideal when using
SPECFEM3D whereas BigDFT showed a lesser scalability. They further investigate
the performance of HPC application by analyzing the memory. For this, they run a
heavy memory rigorous kernel as shown in [121]. In this technique they measure
the time it takes to access the elements of a fixed size array inside a loop using
fixed steps. The memory bandwidth is calculated after running the above kernel.
It is the ratio of the total number of access that was required to access to the time
it took to execute the kernel. The memory structure of ARM is dissimilar to the
Intel architecture. Hence, different behaviors were observed. A large number of
cache miss was observed because for an array of size 32 KB the page allocation
was not consecutive. Moreover, the memory had to be frequently cleaned. The use
of real-time schedulers also resulted in the degradation of the HPC applications
performance which is caused by wrong decisions taken by the OS scheduler. A
variety of code optimization was done to HPC applications including changing
element size, unrolling of loop, etc. Increasing the size of variables as well as loop
rolling had optimistic results. There was quite an improvement in the performance
due to the doubling of the bandwidth. The authors conclude that more HPC code
optimization has to be performed to run HPC applications on low-power HPC
platforms.

18.4 Discussion and Analysis

In this section we shall provide a qualitative analysis and discuss the performance
analysis tools. Table 18.3 summarizes some of the major performance analysis tools
that have been reviewed in this paper.

Most of the researchers have run the HPC applications on the cloud to study
the feasibility of HPC applications on the cloud. References [21, 35, 47, 53, 120]
ran various HPC applications on the cloud. One of the major findings of all these
studies was that cloud as a platform does not scale well for HPC applications. One
of the major reasons for this non-scalability after a certain extent was due to the
network communication between the virtual machines. It scaled really well if the
application was run using a single VM. The reason for this is due to the virtualization
of the network interface card leads to degradation in the speed of the network.
Shared memory can be used to reduce the network communication to increase
the performance of the cloud-based application. The performance to cost ratio of
the clouds is also that enticing even though some packages offered do provide
the good cost to performance ratio as compared to other HPC platforms such as
grids, clusters, and supercomputers. From the discussion of various researchers, we

18 HPC-Smart Infrastructures: A Review and Outlook 441

Table 18.3 A summary and comparison of various performance analysis tools for HPC applica-
tions

Features Vampir Suite PerfExpert Scalasca Periscope Kojak HPCToolkit

Auto-instrumentation Yes Yes Yes Yes Yes Yes

Bottlenecks Yes Yes Yes Yes Yes Yes

Data visualization Yes No Yes No No Yes

GUI Yes No Yes Yes No Yes

Language C++ C++/C C++/C C++/C C/F90 C++

Open source No Yes No No No Yes

Profiling Yes Yes Yes No No Yes

Restructure No Yes Yes No No No

Tracing Yes Yes Yes Yes Yes Yes

Timeline Yes No Yes No No No

conclude that the scalability of HPC applications on the cloud depends on a number
of factors such as network communication especially between the virtual and real
components. Combining message passing with multi-threading also increases the
scalability of the HPC applications on the cloud platform. HPC applications with
less communication and less interference sensitivity are suitable for the cloud. The
HPC applications have to be modified to make it cloud-aware.

Moreover, we need to consider the future wherein we have to efficiently use
the exascale systems. A major roadblock for this is the power consumption
and hence we found that HPC applications can also be executed on low cost
embedded hardware [115]. The MONT-BLANC project deals with analyzing the
performance of HPC applications on low-power embedded systems. It was observed
that it performs really well on embedded platform but had issues with real-time
scheduling and physical page application. A framework for exascale systems has
been developed by Ábrahám et al. [1]. This will be useful for modifying the HPC
application accordingly and in increasing their performance. Graphical processing
units (GPUs) are also among the highest power-efficient devices. A large number
of supercomputers in the Top500 list1 use GPUs. The Green5002 lists the top 500
supercomputers in the world by energy efficiency. Supercomputers with the highest
Flops/Watts ratio are ranked first in this list. GPUs are the accelerating unit for seven
supercomputers in the top ten in Green500.3

A number of performance analysis tools exist that help in analyzing the per-
formance of the HPC applications. A brief summary and comparison are provided
in Table 18.3. All of the tools provide profiling and tracing features. Profiling is the
feature where it would provide various global performance metrics. Tracing consists
of following the code in runtime and tracing the code. These actually require the

1https://www.top500.org/.
2https://www.top500.org/green500/.
3https://www.top500.org/green500/lists/2018/06/.

https://www.top500.org/
https://www.top500.org/green500/
https://www.top500.org/green500/lists/2018/06/

442 T. Muhammed et al.

modification of the code. This process of modification is called instrumentation.
All of them also provide instrumentation support at various levels. They help in
detecting the bottlenecks, but all of them do not give suggestion and where to change
the code and what code needs to be changed. An example of this is PerfExpert that
provides the complete details on code creating the bottleneck and the restructuring
required. But PerfExpert does not provide GUI support whereas others provide a
complete statistical information using charts, graphs, and timelines in which you
can zoom through various scales of timescale. The Vampir toolkit provides separate
timelines for the summary, counter, and various process. It also provides statistical
charts for various activities, message statistics, and I/O activities. SCALSCA is also
very similar to PerfExpert, but PerfExpert is open source whereas SCALASCA is
proprietary software.

18.5 Future Research and Issues

There are a lot of issues associated with analyzing the performance of HPC
application. We list some of the major issues and the direction of the required future
work.

– Most of the tools available are for the Linux platform. Hence, we need to port
various performance analysis tools to Windows platform

– There are a lot of redundancies when the application performs a trace. Eliminat-
ing redundancy in trace has to be done.

– Pattern detection in large datasets using complete call graphs [37].
– Applications that use single instruction multiple data (SIMD) consists of redun-

dancies in execution. It is required to replace these redundant behaviors with a
single instance which will result in higher performance and lesser memory.

– More case studies with more applications on more platforms are required.
– Expand current capabilities of the performance analysis tools by using counters

that are not based on performance.
– The performance analysis tools should automatically not only suggest solutions

for the bottlenecks but also automatically implement these into the code for all
kinds of bottlenecks.

– The performance analysis tools should also provide a higher level of input–output
optimization.

– The variability and the reduction of speed in clouds were attributed to the network
communication in the cloud. This issue of network delay has to be mitigated.

– Further improvement in the scalability of the performance analysis tools is
required.

– The OpenMP analysis in SCALASCA performance analysis tool has to be
parallelized.

– There are no existing tools to analyze the input–output in MPI, currently this is
performed by serial tracer in SCALASCA.

18 HPC-Smart Infrastructures: A Review and Outlook 443

– The current file formats that are used for the performance analysis provide a lot of
restrictions such as storing and processing of metrics that cannot be aggregated.
An efficient file system has to be developed.

– The bottlenecks that appear in the application might appear at a later time than
when the event that caused it occurs. The performance analysis tools should be
able to figure out the events that caused the issue in such occurrence.

– HPC applications have to be modified so that it performs efficiently in exascale
and petascale.

18.6 Conclusions

In this chapter, we reviewed the works on analyzing HPC applications and discussed
several performance analysis tools for HPC applications. The researchers observed
the performance of the HPC applications on various platforms and identified various
bottlenecks and issues related to the performance of the HPC application on parallel
platforms. Some researchers have discussed the usage of performance tools for
binding and replacing the bottleneck in the HPC applications. We also studied and
qualitatively compared various tools for performance analysis of HPC applications.
We discussed the performance of various HPC applications on a number of HPC
platforms. Moreover, we discussed various HPC benchmarking suites and various
HPC applications being used for the performance analysis and thereafter, we also
discussed the future research directions and issues.

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-651-611-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. Ábrahám, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit,
A.: Preparing HPC applications for exascale: Challenges and recommendations (2015). CoRR
abs/1503.06974. http://arxiv.org/abs/1503.06974

2. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs:
high performance molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1-2, 19–25 (2015). http://www.sciencedirect.com/science/article/
pii/S2352711015000059

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek,
P., Tomov, S.: Numerical linear algebra on emerging architectures: the plasma and magma
projects. J. Phys. Conf. Ser. 180, 012037 (2009)

4. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A
framework for faster porting of scientific applications between heterogeneous clouds. In:
Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. pp. 27–43. Springer International Publishing, Cham (2018)

http://arxiv.org/abs/1503.06974
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059

444 T. Muhammed et al.

5. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for
smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)

6. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 155–
168. Springer International Publishing, Cham (2018)

7. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: Dna profiling methods and tools: a
review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infras-
tructure, Technologies and Applications, pp. 216–231. Springer International Publishing,
Cham (2018)

8. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. pp. 98–110. Springer International Publishing,
Cham (2018)

9. Alonso, P., Badia, R.M., Labarta, J., Barreda, M., Dolz, M.F., Mayo, R., Quintana-Orti, E.S.,
Reyes, R.: Tools for power-energy modelling and analysis of parallel scientific applications.
In: 2012 41st International Conference on Parallel Processing (ICPP), pp. 420–429. IEEE,
New York (2012)

10. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 207–215. Springer International
Publishing, Cham (2018)

11. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on Intel
MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 306–322. Springer International
Publishing, Cham (2018)

12. Alzahrani, S., Ikbal, M.R., Mehmood, R., Fayez, M., Katib, I.: Performance evaluation
of Jacobi iterative solution for sparse linear equation system on multicore and manycore
architectures. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 296–305. Springer International Publish-
ing, Cham (2018)

13. Amazon: AWS | Amazon Elastic Block Store (EBS) - Incremental Backup & Persistent
Storage. http://aws.amazon.com/ebs/

14. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications,
pp. 139–154. Springer International Publishing, Cham (2018)

15. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Proc. Comput. Sci. 109,
1128–1133 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917311213.
8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017
and the 7th International Conference on Sustainable Energy Information Technology, SEIT
2017, 16-19 May 2017, Madeira

16. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 323–
336. Springer International Publishing, Cham (2018)

17. Azad, A., Ballard, G., Buluç, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S., Williams,
S.: Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication. SIAM J.
Sci. Comput. 38(6), C624–C651 (2016). https://doi.org/10.1137/15M104253X

18. Bader, D.A.: Petascale Computing: Algorithms and Applications. CRC Press, Boca Raton
(2007)

19. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks.
Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

http://aws.amazon.com/ebs/
http://www.sciencedirect.com/science/article/pii/S1877050917311213
https://doi.org/10.1137/15M104253X

18 HPC-Smart Infrastructures: A Review and Outlook 445

20. Bailey, J.A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, D., El-Khadra, A.X.,
Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, S., Heller, U.M., Kim, J., Kronfeld, A.S., Laiho,
J., Levkova, L., Mackenzie, P.B., Meurice, Y., Neil, E.T., Oktay, M.B., Qiu, S.W., Simone,
J.N., Sugar, R., Toussaint, D., Van de Water, R.S., Zhou, R.: Refining new-physics searches
in b → dτν with lattice QCD. Phys. Rev. Lett. 109, 071802 (2012). https://link.aps.org/doi/
10.1103/PhysRevLett.109.071802

21. Benedict, S.: Performance issues and performance analysis tools for HPC cloud applications:
a survey. Computing 95(2), 89–108 (2013)

22. Berriman, G.B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The application of cloud
computing to astronomy: A study of cost and performance. In: 2010 Sixth IEEE International
Conference on e-Science Workshops, December, pp. 1–7 (2010)

23. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V.: Overcoming scaling
challenges in biomolecular simulations across multiple platforms. In: IEEE International
Symposium on Parallel and Distributed Processing, 2008 (IPDPS 2008), pp. 1–12. IEEE,
New York (2008)

24. Bohra, A.E.H., Chaudhary, V.: Vmeter: power modelling for virtualized clouds. In: 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum
(IPDPSW), pp. 1–8. IEEE, New York (2010)

25. BPG: Best Practice Guides. http://www.prace-ri.eu/best-practice-guides/
26. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: PerfExpert:

an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11. IEEE Computer Society, Washington (2010)

27. Carrington, L.C., Laurenzano, M., Snavely, A., Campbell Jr., R.L., Davis, L.P.: How well can
simple metrics represent the performance of HPC applications? In: Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference, pp. 48–48. IEEE, New York (2005)

28. Carrington, L., Snavely, A., Wolter, N.: A performance prediction framework for scientific
applications. Fut. Gener. Comput. Syst. 22(3), 336–346 (2006)

29. Carter, J., Oliker, L., Shalf, J.: Performance evaluation of scientific applications on modern
parallel vector systems. In: High Performance Computing for Computational Science-
VECPAR 2006, pp. 490–503. Springer, New York (2007)

30. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.: Exploring
application performance: a new tool for a static/dynamic approach. In: Proceedings of the 6th
LACSI Symposium (2005)

31. Dongarra, J.L.A.P.: The LINPACK benchmark: past, present and future. Concurr. Comput.
Pract. and Exp. 15, 1–18 (2003)

32. Dunigan Jr, T.H., Vetter, J.S., White III, J.B., Worley, P.H.: Performance evaluation of the
Cray x1 distributed shared-memory architecture. Micro, IEEE 25(1), 30–40 (2005)

33. ECC2. Elastic Compute Cloud (EC2) Cloud Server & Hosting – AWS. //aws.amazon.com/
ec2/

34. Eleliemy, A., Fayez, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on parallel
heterogeneous architectures: Spin-image algorithm on CPU and MIC. In: 9th EUROSIM
Congress on Modelling and Simulation. EUROSIM (2016). http://edoc.unibas.ch/53117/

35. ExpóSito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance analysis of
HPC applications in the cloud. Fut. Gener. Comput. Syst. 29(1), 218–229 (2013)

36. Farber, R.: The convergence of big data and extreme-scale HPC (2018). https://www.hpcwire.
com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/

37. Ferreira, G., Kästner, C., Pfeffer, J., Apel, S.: Characterizing complexity of highly-
configurable systems with variational call graphs: analyzing configuration options interac-
tions complexity in function calls. In: Proceedings of the 2015 Symposium and Bootcamp on
the Science of Security. p. 17. ACM, New York (2015)

38. Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual clusters
for grid communities. In: Sixth IEEE International Symposium on Cluster Computing and the
Grid, 2006 (CCGRID 06), vol. 1, pp. 513–520. IEEE, New York (2006)

https://link.aps.org/doi/10.1103/PhysRevLett.109.071802
https://link.aps.org/doi/10.1103/PhysRevLett.109.071802
http://www.prace-ri.eu/best-practice-guides/
//aws.amazon.com/ec2/
//aws.amazon.com/ec2/
http://edoc.unibas.ch/53117/
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/

446 T. Muhammed et al.

39. Freche, J., Frings, W., Sutmann, G.: High-throughput parallel-I/O using SIONlib for
mesoscopic particle dynamics simulations on massively parallel computers. In: Parallel
Computing: From Multicores and GPU’s to Petascale Advances in Parallel Computing,
vol. 19, pp. 371–378. IOS Press, Amsterdam (2010)

40. Freeman, T., Keahey, K., Sotomayor, B., Zhang, X., Foster, I., Scheftner, D.: Virtual clusters
for grid communities. Citeseer (2006)

41. Gel, A., Hu, J., Ould-Ahmed-Vall, E., Kalinkin, A.A.: Modernization and optimization of a
legacy open-source CFD code for high-performance computing architectures. Int. J. Comput.
Fluid Dynam. 31(2), 122–133 (2017). https://doi.org/10.1080/10618562.2017.1285398

42. Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S., Méhaut, J.F.: Daubechies
wavelets for high performance electronic structure calculations: The BigDFT project.
Comptes Rendus Mécanique 339(2), 149–164 (2011). http://www.sciencedirect.com/science/
article/pii/S1631072110002135. High Performance Computing

43. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-
source software project for quantum simulations of materials. J. Phys. Condens. matter
21(39), 395502 (2009)

44. Gibbon, P.: Pepc: pretty efficient parallel coulomb-solver. Sonstiger Interner Bericht ZAM-
IB-2003-05, ZAM, Jülich, Forschungszentrum (2003)

45. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade
later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applica-
tions of Computational Chemistry, chapter 41, pp. 1167–1189. Elsevier, Amsterdam (2005).
http://www.sciencedirect.com/science/article/pii/B9780444517197500846

46. Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora,
J.: The stellar atmosphere simulation code Bifrost - code description and validation. Astron.
Astrophys. 531, A154 (2011). https://doi.org/10.1051/0004-6361/201116520

47. Gupta, A., Faraboschi, P., Gioachin, F., Kale, L., Kaufmann, R., Lee, B.S., March, V.,
Milojicic, D., Suen, C.: Evaluating and improving the performance and scheduling of HPC
applications in cloud. IEEE Trans. Cloud Comput. 4(99), 1–1 (2014)

48. Gustafson, J.L., Todi, R.: Conventional benchmarks as a sample of the performance spectrum.
In: Proceedings of the Thirty-First Hawaii International Conference on System Sciences,
1998, vol. 7, pp. 514–523. IEEE, New York (1998)

49. Gygi, F., Yates, R.K., Lorenz, J., Draeger, E.W., Franchetti, F., Ueberhuber, C.W., Supinski,
B.R.D., Kral, S., Gunnels, J.A., Sexton, J.C.: Large-scale first-principles molecular dynamics
simulations on the Bluegene/l platform using the Qbox code. In: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, p. 24. IEEE Computer Society, Washington
(2005)

50. Heck, D., Pierog, T., Knapp, J.: CORSIKA: An Air Shower Simulation Program. Astro-
physics Source Code Library (2012)

51. Hwu, W.M., Chang, L.W., Kim, H.S., Dakkak, A., El Hajj, I.: Transitioning HPC software
to exascale heterogeneous computing. In: Computational Electromagnetics International
Workshop (CEM), July 2015, pp. 1–2 (2015)

52. Irbäck, A., Mohanty, S.: Profasi: A Monte Carlo simulation package for protein folding and
aggregation. J. Comput. Chem. 27(13), 1548–1555. https://onlinelibrary.wiley.com/doi/abs/
10.1002/jcc.20452

53. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman,
H.J., Wright, N.J.: Performance analysis of high performance computing applications on
the amazon web services cloud. In: 2010 IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 159–168. IEEE, New York (2010)

54. Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the open-
source CFD library: Openfoam®. Int. J. Numer. Methods Fluids 70(9), 1073–1088. https://
onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726

55. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.: Massively parallel cosmological
simulations with ChaNGa. In: International Symposium on Parallel and Distributed Process-
ing, 2008 (IPDPS 2008), pp. 1–12. IEEE, New York (2008)

https://doi.org/10.1080/10618562.2017.1285398
http://www.sciencedirect.com/science/article/pii/S1631072110002135
http://www.sciencedirect.com/science/article/pii/S1631072110002135
http://www.sciencedirect.com/science/article/pii/B9780444517197500846
https://doi.org/10.1051/0004-6361/201116520
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20452
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20452
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726

18 HPC-Smart Infrastructures: A Review and Outlook 447

56. Jin, H., Van der Wijngaart, R.F.: Performance characteristics of the multi-zone NAS parallel
benchmarks. In: Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 2004, p. 6. IEEE, New York (2004)

57. Jöckel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J.: Technical note: the modular earth
submodel system (MESSy) - a new approach towards earth system modeling. Atmos. Chem.
Phys. 5(2), 433–444 (2005). https://www.atmos-chem-phys.net/5/433/2005/

58. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for
abstract behavioral specification. In: Formal Methods for Components and Objects, pp. 142–
164. Springer, New York (2012)

59. Jurenz, M., Brendel, R., Knüpfer, A., Müller, M., Nagel, W.E.: Memory allocation tracing
with VampireTrace. In: Computational Science–ICCS 2007, pp. 839–846. Springer, New
York (2007)

60. Kale, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented System Based
on C++, vol. 28. ACM, New York (1993)

61. Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates,
S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D.,
Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M.:
The community earth system model (CESM) large ensemble project: a community resource
for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol.
Soc. 96(8), 1333–1349 (2015). https://doi.org/10.1175/BAMS-D-13-00255.1

62. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science clouds: early
experiences in cloud computing for scientific applications. Cloud Comput. Appl. 2008, 825–
830 (2008)

63. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational
intelligence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 247–
257. Springer International Publishing, Cham (2018)

64. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel
adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3), 237–254 (2006).
https://doi.org/10.1007/s00366-006-0049-3

65. Kn̈pfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel,
W.E.: The Vampir performance analysis tool-set. In: Tools for High Performance Computing,
pp. 139–155. Springer, New York (2008)

66. Kodiyalam, S., Yang, R., Gu, L., Tho, C.H.: Multidisciplinary design optimization of a vehicle
system in a scalable, high performance computing environment. Struct. Multidiscip. Optim.
26(3), 256–263 (2004). https://doi.org/10.1007/s00158-003-0343-2

67. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional
seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999). https://onlinelibrary.
wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x

68. Kramer, W., Shalf, J., Strohmaier, E.: The NERSC Sustained System Performance (SSP)
Metric. Lawrence Berkeley National Laboratory (2005)

69. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations
arising from stochastic modelling. In: Hermanns, H., Segala, R. (eds.) Process Algebra
and Probabilistic Methods: Performance Modeling and Verification, pp. 135–151. Springer,
Berlin/Heidelberg (2002)

70. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution
method for Markov models. Electron. Notes Theor. Comput. Sci. 68(4), 589–604 (2002).
http://www.sciencedirect.com/science/article/pii/S1571066105803949

71. Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of
symbolic probabilistic model checking. In: Proceedings of the IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS ’04, pp. 123–130. IEEE Computer Society,
Washington (2004). http://dl.acm.org/citation.cfm?id=1032659.1034195

https://www.atmos-chem-phys.net/5/433/2005/
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1007/s00366-006-0049-3
https://doi.org/10.1007/s00158-003-0343-2
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x
http://www.sciencedirect.com/science/article/pii/S1571066105803949
http://dl.acm.org/citation.cfm?id=1032659.1034195

448 T. Muhammed et al.

72. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science,
vol. 6806, pp. 585–591. Springer, New York (2011)

73. Letherwood, M.D., Gunter, D.D.: Ground vehicle modeling and simulation of military
vehicles using high performance computing. Parallel Comput. 27(1), 109–140 (2001).
http://www.sciencedirect.com/science/article/pii/S0167819100000910. New Trends in High
Performance Computing

74. Lingerfelt, E., Endeve, E., Hui, Y., Smith, C., Somnath, S., Grodowitz, N., Borreguero, J., Bao,
F., Niedziela, J., Bansal, D., Delaire, O., Archibald, R., Belianinov, A., Shankar, M., Jesse,
S.: BEAM: an HPC pipeline for nanoscale materials analysis and neutron data modeling. In:
APS March Meeting Abstracts, p. A7.002 (2017)

75. Lusk, E., Huss, S., Saphir, B., Snir, M.: MPI: a message-passing interface standard (2009)
76. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner, R.,

Takahashi, D.: The HPC challenge (HPCC) benchmark suite. In: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, p. 213. Citeseer (2006)

77. Mantripragada, K., Binotto, A., Tizzei, L., Netto, M.: A feasibility study of using HPC cloud
environment for seismic exploration. In: 77th EAGE Conference and Exhibition 2015 (2015)

78. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance
computers (1995)

79. Mehmood, R.: A survey of out-of-core analysis techniques in stochastic modelling. Report
CSR-03-7, University of Birmingham (2003). https://www.researchgate.net/publication/
326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling

80. Mehmood, R.: Disk-based Techniques for Efficient Solution of Large Markov Chains. Thesis
(2004)

81. Mehmood, R.: Serial Disk-Based Analysis of Large Stochastic Models, pp. 230–255.
Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_7

82. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. UCAM-CL-TR-650. Report UCAM-CL-TR-650, University of Cambridge, Com-
puter Laboratory (2005). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf

83. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Proc. Comput. Sci. 64, 1107–1114 (2015). http://www.sciencedirect.com/science/article/
pii/S1877050915027015. Conference on ENTERprise Information Systems/International
Conference on Project MANagement/Conference on Health and Social Care Information
Systems and Technologies, CENTERIS/ProjMAN/HCist 2015 October 7-9, 2015

84. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manage. 22(6), 804–817 (2011). https://doi.org/10.1108/17410381111149657

85. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Report CSR-03-13, University of Birmingham (2003).
http://www.prismmodelchecker.org/bibitem.php?key=MPK03b

86. Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-
state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis,
and Simulation, pp. 293–302 (2006)

87. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review
and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning
the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015). http://
services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022

88. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

89. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence
of big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manage.
37(1), 75–104 (2017). https://doi.org/10.1108/IJOPM-03-2015-0179

http://www.sciencedirect.com/science/article/pii/S0167819100000910
https://www.researchgate.net/publication/326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling
https://www.researchgate.net/publication/326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling
https://doi.org/10.1007/978-3-540-24611-4_7
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf
http://www.sciencedirect.com/science/article/pii/S1877050915027015
http://www.sciencedirect.com/science/article/pii/S1877050915027015
https://doi.org/10.1108/17410381111149657
http://www.prismmodelchecker.org/bibitem.php?key=MPK03b
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
https://doi.org/10.1108/IJOPM-03-2015-0179

18 HPC-Smart Infrastructures: A Review and Outlook 449

90. Meinke, J.H., Mohanty, S., Eisenmenger, F., Hansmann, U.H.E.: SMMP v. 3.0-simulating
proteins and protein interactions in Python and Fortran. Comput. Phys. Commun. 178, 459–
470 (2008)

91. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex
geometries. Comptes Rendus Mécanique 339(2), 141–148 (2011). http://www.sciencedirect.
com/science/article/pii/S1631072110002111. High Performance Computing

92. MPI: Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/
93. MPICH: MPICH | High-Performance Portable MPI. http://www.mpich.org/
94. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based

smart city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 169–184. Springer International
Publishing, Cham (2018)

95. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Ubehealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–
32285 (2018)

96. Nakajima, K.: Three-level hybrid vs. flat MPI on the earth simulator: parallel iterative solvers
for finite-element method. Appl. Numer. Math. 54(2), 237–255 (2005)

97. NAS: NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html
98. Nielsen, E.J., Diskin, B.: High-performance aerodynamic computations for aerospace appli-

cations. Parall. Comput. 64, 20–32 (2017). http://www.sciencedirect.com/science/article/pii/
S0167819117300182. High-End Computing for Next-Generation Scientific Discovery

99. Niethammer, C., Gracia, J., Knüpfer, A., Resch, M.M., Nagel, W.E.: Tools for High
Performance Computing 2014: Proceedings of the 8th International Workshop on Parallel
Tools for High Performance Computing, October 2014, HLRS, Stuttgart. Springer, New York
(2015)

100. Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.: Maestro:
an adaptive low Mach number hydrodynamics algorithm for Stellar flows 188(2), 358–383
(2010). http://dx.doi.org/10.1088/0067-0049/188/2/358

101. Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S.: Scientific computations on modern par-
allel vector systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
p. 10. IEEE Computer Society, Washington (2004)

102. Oliker, L., Carter, J., Wehner, M., Canning, A., Ethier, S., Mirin, A., Parks, D., Worley,
P., Kitawaki, S., Tsuda, Y.: Leading computational methods on scalar and vector HEC
platforms. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 62.
IEEE Computer Society, Washington (2005)

103. Oliker, L., Canning, A., Carter, J., Iancu, C., Lijewski, M., Kamil, S., Shalf, J., Shan, H.,
Strohmaier, E., Ethier, S., et al.: Scientific application performance on candidate petascale
platforms. In: IEEE International Parallel and Distributed Processing Symposium, 2007
(IPDPS 2007), pp. 1–12. IEEE, New York (2007)

104. Pfrommer, B., Raczkowski, D., Canning, A., Louie, S.: Paratec (parallel total energy code),
Lawrence Berkeley national laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon,
C. Pickard and P. Haynes). www.nersc.gov/projects/paratec

105. Pérez, F.E.H., Mukhadiyev, N., Xu, X., Sow, A., Lee, B.J., Sankaran, R., Im, H.G.: Direct
numerical simulations of reacting flows with detailed chemistry using many-core/GPU accel-
eration. Comput. Fluids 173, 73–79 (2018). http://www.sciencedirect.com/science/article/pii/
S0045793018301786

106. Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance
modeling and prediction of parallel and distributed computing systems. Int. J. Comput. Intel.
Res.(IJCIR) 4, 17–26 (2008)

107. Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional quasistatic model
for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9, 044204 (2006).
https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204

108. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68
(2015). http://doi.acm.org/10.1145/2699414

http://www.sciencedirect.com/science/article/pii/S1631072110002111
http://www.sciencedirect.com/science/article/pii/S1631072110002111
http://www.open-mpi.org/
http://www.mpich.org/
http://www.nas.nasa.gov/publications/npb.html
http://www.sciencedirect.com/science/article/pii/S0167819117300182
http://www.sciencedirect.com/science/article/pii/S0167819117300182
http://dx.doi.org/10.1088/0067-0049/188/2/358
www.nersc.gov/projects/paratec
http://www.sciencedirect.com/science/article/pii/S0045793018301786
http://www.sciencedirect.com/science/article/pii/S0045793018301786
https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204
http://doi.acm.org/10.1145/2699414

450 T. Muhammed et al.

109. Rudi, J., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ineichen, Y., Bekas,
C., Curioni, A., Ghattas, O.: An extreme-scale implicit solver for complex PDEs: highly
heterogeneous flow in earth’s mantle. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’15, pp. 5:1–5:12.
ACM, New York, (2015). http://doi.acm.org/10.1145/2807591.2807675

110. Sáez, X., Soba, A., Sánchez, E., Kleiber, R., Castejón, F., Cela, J.M.: Improvements of the
particle-in-cell code EUTERPE for petascaling machines. Comput. Phys. Commun. 182(9),
2047–2051 (2011). http://www.sciencedirect.com/science/article/pii/S001046551000531X.
Computer Physics Communications Special Edition for Conference on Computational
Physics Trondheim, June 23-26, 2010

111. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0, pp. 3–35. Springer International Publishing, Cham (2016)

112. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki,
S., Matsunaga, N., Nguyen, K.A., Su, S., et al.: General atomic and molecular electronic
structure system. J. Computat. Chem. 14(11), 1347–1363 (1993)

113. Schwarz, K., Blaha, P., Madsen, G.: Electronic structure calculations of solids using
the WIEN2K package for material sciences. Comput. Phys. Commun. 147(1), 71 – 76
(2002). http://www.sciencedirect.com/science/article/pii/S0010465502002060. Proceedings
of the Europhysics Conference on Computational Physics Computational Modeling and
Simulation of Complex Systems

114. Snavely, A., Gao, X., Lee, C., Carrington, L., Wolter, N., Labarta, J., Gimenez, J., Jones, P.:
Performance modeling of HPC applications. In: PARCO, vol. 13, pp. 777–784 (2003)

115. Stanisic, L., Videau, B., Cronsioe, J., Degomme, A., Marangozova-Martin, V., Legrand, A.,
Méhaut, J.F.: Performance analysis of HPC applications on low-power embedded platforms.
In: Proceedings of the Conference on Design, Automation and Test in Europe, March, pp.
475–480. EDA Consortium (2013)

116. Strunk, T., Wolf, M., Brieg, M., Klenin, K., Biewer, A., Tristram, F., Ernst, M., Kleine, P.J.,
Heilmann, N., Kondov, I., Wenzel, W.: Simona 1.0: An efficient and versatile framework for
stochastic simulations of molecular and nanoscale systems. J. Comput. Chem. 33(32), 2602–
2613. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23089

117. Subbiah, A., Wasynczuk, O.: Computationally efficient simulation of high-frequency tran-
sients in power electronic circuits. IEEE Trans. Power Electron. 31(9), 6351–6361 (2016)

118. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Proc. Comput. Sci. 109, 1122–1127 (2017). http://
www.sciencedirect.com/science/article/pii/S1877050917311225. 8th International Confer-
ence on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International
Conference on Sustainable Energy Information Technology, SEIT 2017, 16–19 May 2017,
Madeira

119. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using
big data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications, pp. 111–122. Springer International
Publishing, Cham (2018)

120. Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: scalable java message-passing communica-
tions on parallel systems. J. Supercomput. 60(1), 117–140 (2012)

121. Tikir, M.M., Carrington, L., Strohmaier, E., Snavely, A.: A genetic algorithms approach
to modeling the performance of memory-bound computations. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, p. 47. ACM, New York (2007)

122. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore
with GPU accelerators. In: 2010 IEEE International Symposium on Parallel Distributed
Processing, Workshops and PhD Forum (IPDPSW), April, pp. 1–8 (2010)

123. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accel-
erated manycore systems. Parall. Comput. 36(5), 232–240 (2010). http://www.sciencedirect.
com/science/article/pii/S0167819109001276. Parallel Matrix Algorithms and Applications

http://doi.acm.org/10.1145/2807591.2807675
http://www.sciencedirect.com/science/article/pii/S001046551000531X
http://www.sciencedirect.com/science/article/pii/S0010465502002060
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23089
http://www.sciencedirect.com/science/article/pii/S1877050917311225
http://www.sciencedirect.com/science/article/pii/S1877050917311225
http://www.sciencedirect.com/science/article/pii/S0167819109001276
http://www.sciencedirect.com/science/article/pii/S0167819109001276

18 HPC-Smart Infrastructures: A Review and Outlook 451

124. Usman, S., Mehmood, R., Katib, I.: Big data and hpc convergence: the cutting edge and
outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. pp. 11–26. Springer International Publishing,
Cham (2018)

125. Vetter, J.S., Alam, S.R., Dunigan, T.H., Fahey, M.R., Roth, P.C., Worley, P.H.: Early
evaluation of the Cray XT3. In: 20th International Parallel and Distributed Processing
Symposium, 2006 (IPDPS 2006), 10 pp. IEEE, New York (2006)

126. Voorsluys, W., Garg, S.K., Buyya, R.: Provisioning spot market cloud resources to create cost-
effective virtual clusters. In: Algorithms and Architectures for Parallel Processing, pp. 395–
408. Springer, Berlin (2011)

127. Wolf, F., Wylie, B.J., Abrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M.,
Hermanns, M.A., Mohr, B., Moore, S., et al.: Usage of the scalasca toolset for scalable
performance analysis of large-scale parallel applications. In: Tools for High Performance
Computing, pp. 157–167. Springer, New York (2008)

128. Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Large-scale
performance analysis of Sweep3D with the scalasca toolset. Parall. Process. Lett. 20(04),
397–414 (2010). https://doi.org/10.1142/S0129626410000314

129. Yan, S., Zhou, Z., Dinavahi, V.: Large-scale nonlinear device-level power electronic circuit
simulation on massively parallel graphics processing architectures. IEEE Trans. Power
Electron. 33(6), 4660–4678 (2018)

130. Yang, R., Gu, L., Tho, C., Sobieszczanski-Sobieski, J.: Multidisciplinary design optimization
of a full vehicle with high performance computing. In: Fluid Dynamics and Co-located
Conferences, June. American Institute of Aeronautics and Astronautics, Reston (2001).
https://doi.org/10.2514/6.2001-1273

131. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visualization with
Jumpshot. Int. J. High Perform. Comput. Appl. 13(3), 277–288 (1999)

https://doi.org/10.1142/S0129626410000314
https://doi.org/10.2514/6.2001-1273

Chapter 19
Big Data Tools, Technologies,
and Applications: A Survey

Yasir Arfat, Sardar Usman, Rashid Mehmood, and Iyad Katib

19.1 Introduction

In the digital world, data are generated on a massive scale and have been used
successfully for evolutionary breakthroughs in numerous fields. “Big data” is a
progressive term used to define huge volumes of structured, semistructured, and
unstructured data sets, which cannot be processed by traditional data management
tools and techniques. Big data refers to emerging technologies that are designed
to extract value from data, which have four “V” characteristics: volume, variety,
velocity, and veracity [1]. One can broadly categorize data sources as external
resources (social media, transactional data, emails, etc.) and internal resources
(machine-generated data, application logs, etc.). To deal with ever-growing volumes
of data, researchers have been involved in developing algorithms to accelerate
the extraction of key information from massive volumes of data [2]. Big data
technologies are being widely used in many application domains [3–8].

Big data is a wide area of research which co-relates different fields. Figure 19.1
shows an abstract classification of big data.

There are various challenges associated with data transportation where network
bandwidth is a bottleneck. Storing huge chunks of data so that one can retrieve it
efficiently for data analysis is also a challenging task. Data collected from heteroge-
neous resources need preprocessing to eliminate redundancy and anomalies and to
provide users with a uniform view of heterogeneous data. Keeping redundant data

Y. Arfat · S. Usman (�) · I. Katib
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: yqasim@stu.kau.edu.sa; susman@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_19

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_19&domain=pdf
mailto:yqasim@stu.kau.edu.sa
mailto:susman@stu.kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_19

454 Y. Arfat et al.

Data
Sources

Social
media

Sensor
data

Transaction

IoT

Data
Format

Structured

Semi-
structured

Unstructured

Data
Storage

Key-Value

Column
Oriented

Graph
Based

Document
Oriented

Data
Stagging

Cleaning

Normalization

Transformation

Data
Processing

Batch

Real
Time

Fig. 19.1 Classification of big data

increases storage resource needs and also affects transmission costs. Unstructured
data need to be transformed into a structured format for efficient data analysis.
Extracting meaningful information from huge chunks of data specifically in real
time is still a challenging task.

The realization of the importance of big data in terms of financial benefits, smart
business moves, competitive advantages, and educative decisions has shifted the
research focus, over the last decade or so, toward development of big data tools and
technologies. With heavy investments pouring in, numerous tools and technologies
have been developed to address big data challenges and issues. Most of these
solutions are customized to address some specific challenges, and it is very difficult
to choose which option among the plethora of tools and techniques is most suitable
for any particular situation. Some research efforts have been dedicated to providing
insights into these tools and techniques. For example, Yadranjiaghdam et al. [9]
have focused on tools and techniques most suitable for real-time or near-real-time
analytics of big data. Oussous et al. [10] have provided an abstract view of different
big data techniques and drawn comparisons on the basis of different system layers.
Chen et al. [11] have reviewed opportunities and challenges of big data in general
and have also addressed various tools and techniques to cope with these challenges.

Numerous tools and technologies have emerged over the years to deal with big
data challenges, e.g., MapReduce, Spark (in-memory computation), and MongoDB.
This chapter presents a summary of state-of-the-art tools and methodologies for the
processing of big data applications. This overview consists of a discussion about
the objectives, methodologies, and key approaches in existing techniques and their
critical analysis. We also highlight some of the key applications of big data and
provide a detailed review and taxonomy of research efforts within each application
domain.

19 Big Data Tools, Technologies, and Applications: A Survey 455

The rest of this chapter is organized as follows. Section 19.2 provides an
overview and taxonomy of numerous open-source tools and technologies, developed
over the years to deal with challenges associated with big data. Section 19.3 provides
a taxonomy and review of commercial tools and technologies for big data. Section
19.4 highlights some of the key applications of big data: healthcare and smart city
applications, genome sequence annotations, and graph-based applications. We also
provide a taxonomy of research efforts within each application domain. Section 19.5
concludes the chapter.

19.2 Open-Source Big Data Tools and Technologies

There are numerous open-source tools and technologies available in the market
for the processing of big data. Each tool or framework has its own characteristics,
limitations, and features.

19.2.1 Hadoop

Hadoop [12] is open-source software for processing big data and has certain char-
acteristics: scalability, reliability, fault tolerance, high availability, local processing
and storage, distributed and parallel computing, and cost effectiveness. It uses a
simple programming model for the processing of large data sets across computer
clusters. It was developed to scale up from a single server to thousands of machines
and provides colocation of storage and computation. Its library was designed in
such a way that it can self-identify failures and provide a recovery mechanism.
The Hadoop file system (HDFS) [12] is an important component of Hadoop and
has master–slave architecture. It consists of two components: NameNode and
DataNode. The distributed file system delivers high throughput. It can process
large data sets and was designed for a low-cost system. The main objective of
HDFS is to provide the following features: increased throughput by decreasing
network congestion, fault detection and isolation, access to large data sets, access
to streaming data, a simple coherency model, and portability between different
hardware and software.

19.2.2 MapReduce

MapReduce [13] an open-source framework for the processing of a huge amount of
data. MapReduce consists of two basic components: the map phase and the reduce
phase. The workload is divided into smaller workloads in the map phase, and the
output, in the form of a key–value pair list, is passed (shuffled) into the reduce

456 Y. Arfat et al.

phase, which analyzes and reduces the results to produce the final output. It splits
the data set into pieces, which will be processed in a parallel manner by the map
task. Mapper output is sorted by the framework and further sent to the reduce task.
Both output and input are stored in separate files. This framework also examines
task monitoring and scheduling that have failed during execution, and re-executes
them. MapReduce has been widely adopted because of its simplicity, scalability,
speed, recovery, and minimal data movement. It has various limitations: creation
of bottlenecks due to reading of the disk again and again, inefficiency for iterative
processes, and the fact that it is not primarily designed for iterative processes.

19.2.3 YARN

YARN [14, 15] is an open-source framework for job scheduling and cluster resource
management. It was initially designated by Apache as a reformatted resource
manager. For big data applications, YARN is nowadays categorized as a large-scale
distributed operating system. The essential theme of YARN is to divide the func-
tionalities of resource management and job scheduling and monitoring into distinct
daemons. The data computation framework is formed by the node manager and
resource manager. The fundamental authority that determines resources between all
applications in the system is a resource manager. The main responsibility of the node
manager is to monitor the usage of resources, such as the network, memory, central
processing unit (CPU), disk, etc. It has features such as multitenancy, compatibility,
scalability, and cluster utilization.

19.2.4 Apache Pig

Apache Pig [16] is an open-source platform for analyzing a large data set that has
high-level language (HLL) representation. The main characteristic of Apache Pig
is a structure that is flexible for substantial parallelization, which allows handling
of large data sets. Currently, the infrastructure layer of the Pig has a compiler
and a production sequence of map and reduce programs. The language layer of
the Pig consists of a textual language, called Pig Latin, which provides ease of
programming, optimization opportunities, and extensibility.

19.2.5 Apache Hive

Apache Hive [17] is open-source software that enables management of large data
sets and querying of data in a distributed storage environment. It provides facilities
such as ad hoc queries, analysis of enormous data sets, and summarization of the

19 Big Data Tools, Technologies, and Applications: A Survey 457

data store in Hadoop. It has a data warehouse infrastructure that builds on the
Hadoop and query data using an SQL-like language called HiveQL. When there
is difficulty in expressing the logic in HiveQL, it also enables the MapReduce
developer to customize the map and reduce phases. It provides a quick response
to extensive data sets, is scalable, and is very extensible. Data extraction, transfor-
mation, and loading (ETL) are easy, and queries are executed using MapReduce.

19.2.6 Apache Storm

Apache Storm [18] is an open-source distributed real-time computation system for
the processing of big data. It is straightforward; any programming environment
can use it, and it is beneficial to YARN for machine learning, ETL, continuous
monitoring of operations, distributed remote procedure call (RPC), and real-time
analytics. Its scalability, fault tolerance, reliability, speed, and ease of operation
make Storm ideal for real-time processing of data.

19.2.7 Spark

Spark [19, 20] AB is an open-source tool for processing large data sets. Spark
was introduced to overcome the disk I/O and performance issues of Hadoop. It
has several features (such as in-memory computation) that make it unique, and it
provides an in-memory data-caching facility. Spark supports several programming
languages (Python, Java, and Scala) for processing large volumes of data. It
performs processing on massive data sets very quickly. It processes data 100 times
faster than Hadoop and MapReduce. It has an execution engine—a direct acyclic
graph (DAG)—which manages acyclic data flow, and in-memory computing. It also
has the characteristic of speed to perform tasks very fast, ease of use, support for
several platforms, and generality, which means, for example, that SQL, GraphX, and
DataFrame can be combined in a single application. It also runs anywhere, meaning
we can access data from HBase, Hive, and Tachyon. One limitation of Spark is that
memory consumption issues are not easy to handle in a user-friendly way. It takes
more memory than other big data platforms.

19.2.8 Spark Streaming

Spark Streaming [21] is a component of Spark [22]. It is a core application
programming interface (API) of Spark, which makes streaming processing of data
more fault tolerant and scalable, and provides high throughput. It uses complex
algorithms to process data sources such as Twitter, Kafka, Kinesis, and TCP sockets

458 Y. Arfat et al.

for advanced methods such as Joins, MapReduce, etc. The processed data can also
be presented in the dashboard, database, and file system. Moreover, we can also
apply graph processing and a machine learning algorithm of Spark on the data
stream. It also provides fault tolerance, Spark integration, ease of use, support for
different programming languages (such as Java, Python, and Scala), and deployment
options, and it can read data from ZeroMQ, Twitter, HDFS, etc. In short, Spark
streaming enables the streaming application to be scalable, reliable, and fault
tolerant.

19.2.9 Blink DB

Blink DB [23] is used for processing of large-scale data for interactive SQL queries.
It enable clients to adjust the accuracy of a query for a quick response time and
allows collaborative queries of large data by executing the queries on the sample
data. There are two main features of Blink DB: first, it has an adaptive optimization
framework, which constructs and keeps multidimensional data samples from the
original data over time; second, it has a strategy for appropriate sample selection,
which is dynamic, on the basis of the query’s response time and accuracy needs.
The main goal of Blink DB is to support interactive queries, i.e., aggregate queries
on large volumes of data.

19.2.10 Berkeley Data Analytics Stack

Berkeley Data Analytics Stack (BDAS) [24] is an open-source software tool for
processing big data. It was developed by AMPLab, combining different components
of software for application of big data. It has five layers: resource virtualization
at the bottom, storage, a processing engine, access, and interfaces. On each layer
there are different components. For resource virtualization it has two components
(storage, open source): Mesos [25] and Hadoop YARN [26]. Mesos also provides
features such as scalability, fault tolerance, and scheduling of multiple resources
such as ports, memory, disk, and the CPU. The next layer is the storage layer, which
consists of Tachyon, HDFS, Succinct, S3, and Ceph. Tachyon [27] is a storage
system, which is memory centric, allowing the user to share data reliably on a
very high-speed cluster framework. It has higher performance than HDFS and has a
caching mechanism, which enables it to decrease memory access. On the processing
layer it contains the Spark core, which has great features such as speed, ease of use,
and generality. The components are BlikDB, SharkSQL, GraphX, MLBase, MLib,
SparkR, Sample Clean, Splash, MLpipelines, Velox, and Spark streaming. On this
top layer there are many wrappers of Spark such as Spark streaming (a large-scale,
real-time processing system), MLBase (a distributed machine learning library for
Spark) [28], MLib (a machine learning library) [29], SparkSQL (a module of Spark,

19 Big Data Tools, Technologies, and Applications: A Survey 459

which works on structured data) [30], SparkR (which contains a distributed data
frame implementation), GraphX (a resilient distributed graph system on Spark) [31,
32], and BlikDB (queries with bounded errors and bounded response times for large
volumes of data).

19.2.11 MongoDB

MongoDB [33] is an open-source tool for processing large volumes of data stored
in a database. It has key features such as automatic scaling, high performance,
and availability. In automatic scaling it has horizontal scaling, which is the main
fragment of core functionality. The data are distributed among clusters using
automatic sharing. The set of replicas delivers low latency and high throughput. It
has high availability as it contains replica sets that provide recovery upon failure
automatically. For high performance, it has indices, which make the querying
process very fast. Moreover, it minimizes I/O activity in the database by embedding
different models.

19.2.12 R

R [34] is an analytical tool for big data applications. It is used for statistical
analysis and graphical visualization. R offers a broad range of statistical analysis:
classification, classical data testing, clustering, analysis of time series, graphical
methods, nonlinear modeling, and linear modeling. It handles data in an effective
manner and provides robust data storage. It guarantees a smooth procedure for
matrices and vector data so that statistical calculations can be optimized. It has the R
package, which is a comprehensive R archive network (CRAN), so that the user can
get any required statistics. In the statistical field it can be promoted as open source.
It is very supportive of many platforms such as Mac OS, UNIX, and Windows.

19.2.13 Dryad

Dryad [35] enables developers and programmers to utilize computer resources
efficiently. It also allows users to use many machines with multiple cores. It is a
framework for parallel processing of data, establishing a path among the programs
in the form of a graph. Often, a programmer writes the function of a MapReduce and
use Dryad to create a graph that evaluates the conforming data. Dryad processes the
data in a DAG manner. This framework has sufficient function for processing big
data instead of using parallel data operations. There are some obstacles to using the

460 Y. Arfat et al.

system; inexperienced programmers and the efficiency of data mining and analysis
can be issues. Consequently, there is need to develop new techniques for efficient
processing of data.

19.2.14 High-Performance Computing Cluster

A high-performance computing cluster (HPCC) [36] is an open-source platform
for the processing of huge volumes of data sets. It enables the user to process
big data efficiently and effectively. It is more reliable than other platforms. This
platform provides scalability, high performance, and agility. It has a real-time data
delivery engine for data warehousing and query processing. It has a very powerful
programming language for the processing of large data sets. For big data queries
it has a platform based on standard web services. HPCC provides various features
that are necessary to overcome the challenges of big data. It can run commodity
hardware and also has a distributed build in the file system, fault tolerance, an
integrated development environment (IDE) for development, different modules such
as machine learning, and operation tools. It has three main components [37]:
the HPCC data refinery is an ETL engine that enables the user to integrate and
manipulate data; the second component is a data delivery engine, which provides
low latency, fast query response, and high throughput; and the third component is
an enterprise control language (ECL), which distributes the workload among nodes,
with a library for machine learning development and synchronization of algorithms.
HPCC has Thor and Roxie; on the other hand, Hadoop has MapReduce and HDFS
for processing.

19.2.15 Neo4j

Neo4j [38] is a graph-based database, which is an open-source database for
processing large volumes of data. It has its own query language and has two
important graph technologies: graph-based storage and a graph-based processing
engine. The graph-based processing engine provides native graph processing. Since
the nodes are physically connected to the graph, it provides an efficient means of
graph processing. On the other hand, it provides native processing and storage for
graph-based databases. It provides better scalability than other databases. It has the
following characteristics: vertical scaling, higher performance, and concurrency. It
also supports various platforms such as Java, Python, Ruby, Net, and PHP, which
make it more useful for developers. It also has some limitations; for example, there
is no support for sharing. Moreover, there are also limitations on node properties
and relationships.

19 Big Data Tools, Technologies, and Applications: A Survey 461

19.2.16 Pentaho

Pentaho [39] is a data integration and business analytics tool. It is an open-source
platform and is very popular for blending, analyzing, and visualizing big data. It
has wide capabilities for data mining and analysis. It is an alternative choice for
developers and offers a well-updated user interface. It provides native support for
Hadoop and any type of data source. Pentaho users do not need to write code
for integration. It also provides several other features for users, e.g., business
intelligence (BI), data integration, dashboarding, ETL capabilities, online analytical
processing (OLAP) services, and data mining. The limitations of Pentaho include
limited data visualization, lack of proper documentation, and limited analytical
tools, which require more improvement.

19.2.17 Talend

Talend [40] is an open-source platform for processing big data. The architecture
of Talend covers all user needs regarding integration and governance of data. It
has various features such as scalability, ease of use, and reliability; these features
makes it very suitable for developers. The tools in Talend consist of products for
development, data management, deployment, and integration of products. There
are many advantages of using Talend; with its ETL tool it can equalize burdens
across the server processing on the cluster. It also uses Jaspersoft BI software.
The interface of ETL provides support for importing metadata. Its configuration
and linking of various components enable developers to generate more productivity
than any existing programming language. However, it also has limitations such as
the need for Java Database Connectivity (JDBC) for source access. There is also
no product for metadata management and quality of data, and there are bottlenecks
in job automation, data partitioning and repartitioning, and allocation of resources
across the grid.

19.2.18 Oracle

Oracle [41] provides a wide range of tools for big data. It has its own platform for
big data: Oracle Exadata. It uses the R platform for advanced analytics, in-memory
computation, and data warehousing. Oracle provides numerous software products,
e.g., the Oracle NoSQL Database, Oracle Data Integrator and Loader for Hadoop,
and Oracle R Enterprise tool.

462 Y. Arfat et al.

19.3 Commercial Tools and Techniques for Big Data

19.3.1 Syncfusion

The Syncfusion [42] platform for big data is designed for Windows. There are
several challenges associated with big data processing and management. This
platform provides very useful features, including query processing for structured
and unstructured data, and it provides cost-effective storage. With linear scalability
we can store any type of data on the commodity hardware. Syncfusion has made
these dominant technologies available on Windows. Using this platform we can
access the Hadoop framework completely. There are many companies using this
framework: Adobe, Yahoo, Facebook, Hulu, Microsoft, and Amazon.

19.3.2 Cloudera

Cloudera [43] is a commercial platform for processing big data. It provides Impala,
which deals with real-time, massive big data processing for Hadoop. It provides a
very secure, simple, and fast platform for Hadoop. It helps the user to solve the most
challenging issues related to the business domain. Moreover, Cloudera also contains
the core components of Hadoop: MapReduce, YARN, and HDFS. It has several
features, such as flexibility, integration, security, scalability, high availability, and
compatibility [44]. It has distributed computing, a web-based interface, important
enterprise capabilities, and scalable storage.

19.3.3 Pivotal HD

Pivotal HD [45] is an important component of Apache Hadoop for analysis of
big data. It uses Hadoop’s native tools for processing big data. It supports more
flexible models such as various packages for commodity hardware. Because of
this flexibility, it addresses various enterprise concerns over security, performance,
regulatory aspects, control, cost, etc. Pivotal HD offers backup and recovery, data
protection, georedundancy, and robust availability in case of failure.

19.3.4 EC2

EC2 [46] is an interface for web service that provides the user with easy configura-
tion and obtains results with minimal friction. It allows the user to run the computing
environment of Amazon and to have complete control over the computing resources.

19 Big Data Tools, Technologies, and Applications: A Survey 463

It minimizes the required time for accessing the server and is compatible in terms
of computing requirements. It allow the user to pay only for the capacity that they
occupy. It provides fault tolerance and recovery in case of failure. It provides several
features, such as flexibility, security, scalability, and reliability. On the other hand,
it is very costly, and many users cannot afford it.

19.3.5 Tableau

The Tableau platform [47] provides analysis, reporting, and visualization of data.
The main goal of the Tableau framework is to provide fast and interactive reports.
It is a very popular and well-adopted BI tool among nontechnical and technical
users, for various reasons. Firstly, it provides self-service BI in which users of BI
and business analysis can create their reports. It also enables quick development and
has drag-and-drop features allowing any type of user to build their own dashboard.
Lastly, it has data visualization, which permits the user to perform effective analysis
and visualize trends. It supports various platforms such as Python, XML, API,
and JavaScript. Its features includes an excellent user interface, integration, mobile
support, customer services, a user forum, low cast, and ease of upgrading. On the
other hand, it has limitations in preparation of initial data, and statistical features are
avoided in this framework, including financial reporting.

19.3.6 IBM Info Sphere

IBM [48] is a vendor of big data. It provides various platforms for integration and
building of big data warehouses and has various products for users. It also has
BI, with capabilities for big data such as computing of streams, solutions of data
warehousing, and Enterprise Class Hadoop. The InfoSphere stream is integrated
with statistical packages and social sciences, including capabilities for dynamically
changing real-time data.

19.3.7 SAS

SAS [49] provides various techniques for analysis of big data, providing an
infrastructure for high-performance analytics and statistical software. It provides
features such as distributed processing, grid commuting, database analytics, and in-
memory computation. It can do deployment in the cloud and on-site. It also provides
solutions to complex problems and is an advanced analytical tool used in leading
industries.

464 Y. Arfat et al.

19.3.8 Teradata Aster

Teradata Aster [50] is a multidisciplinary advanced analytics platform with powerful
analytical solutions that provide useful data insights at scale and provide a variety
of advanced analytics techniques, e.g., data visualization and R packages.

19.4 Key Applications of Big Data

19.4.1 Healthcare and Smart City Applications of Big Data

Many governments are implementing smart city ideas to improve the living
standards of their people. The smart city uses various technologies to enhance
the performance of transportation, health, water services, education, and energy,
leading to higher levels of relief. Big data analytics is the latest technology because
of the large volumes of data that are digitized, as they are relevant to healthcare,
education, etc.

Nuaimi et al. [51] surveyed the various applications of big data for a smart
city. They compared the different definitions of big data for the smart city by
highlighting some of the core challenges and issues in big data, e.g., security and
privacy, the smart city population, cost, data quality, data and information sharing,
and data sources and characteristics. The “smart city” and “big data” concepts can
be integrated with each other for better reliance, quality of life, and efficiency of
management systems. Various authors have coined different requirements for big
data for smart cities and their applications, i.e., management of big data, a platform
for processing of big data, an infrastructure for the smart network, advanced
algorithms, and security and privacy.

The primary goals of healthcare are diagnosis and treatment of ailments, and
disease avoidance, through proper medication. Presently, healthcare is reaching a
higher level on which we can apply IT to health informatics. In the past, there
were lots of issues involved in managing large volumes of data; nowadays, big
data tools offer health informatics. The arrival of health informatics has been
a significant change in the area of healthcare. Traditionally, relational database
management systems (RDBMS) were used to find hidden values, but they have
several limitations related to lack of processing of unstructured data, fault tolerance,
and linear scalability. Hadoop gives better results for large volumes of data than
RDBMS. In many situations, RDBMS solutions fail as the volume increases.

Information and communications technology (ICT) has three primary compo-
nents: cloud computing, the internet of things (IoT), and big data. If we combine

19 Big Data Tools, Technologies, and Applications: A Survey 465

the features of these elements, it is possible to reshape the next generation of the
e-health system. Suciu et al. [52] attempted to analyze the current components
and techniques, securely integrating big data processing with a cloud machine-
to-machine system based on remote telemetry. They also described various issues
in state-of-the-art methods for developing health applications. To overcome these
problems, they proposed a machine-to-machine system-based decentralized cloud
architecture, with a general system and remote telemetry units (RTUs), for e-health
applications. They developed this system for big data and collected information
from sensors with huge volumes. They found that multiple sources can be imple-
mented seamlessly using real-time data from cross-domain applications and using
the inferred content scalability, and energy efficiency can be achieved. In the coming
years, big data will have a huge effect on the field of health. It is possible that more
data will be gathered and merged from different information sources with automated
evaluation. Moreover, possession of biomonitoring and lifestyle data will enable
health interventions to be tailored more to individuals. Suciu et al. [52] also argue
that big data has the potential to advance health economics as a discipline.

Collins [53] analyzed SWOT (strength, weakness, opportunities, and threads)
by using big data techniques, and noted that big data have more opportunities
and strengths for healthcare. Consumer behavior can be monitored from larger
data sets through accurate analysis. Collins [53] also described different strengths
of health economics that, with an availability of more data, could easily identify
which medicine is useful for particular individuals. Hence, this will increase reliable
decision making for health improvement. People from different backgrounds can
use open data for analysis. The weaknesses are that it is very costly to store the
data and to manipulate huge volumes of data. With big data, there are a lot of
opportunities in having a larger data set for communication with everyone and for
generation of better and more sophisticated analysis. One of the major threads is
privacy of data in that people feel that their data may be misused. On the other hand,
big data offers a lot of benefits for the individual, such as better health monitoring,
smart health solutions, and fewer mistakes. It has been concluded that there is a
need for analytical skills in big data. There should be more chances to make the
health system more useful in tailoring medicine and providing more knowledge for
individuals.

Raghupathi et al. [54] presented a comprehensive overview of big data analysis
for healthcare specialists and scientists. They described the various possibilities
and capabilities of big data for healthcare analytics. They stated that big data in
healthcare refers to an electronic data set that is complex and hard to manage even
with state-of-the-art software and hardware. Moreover, they also stated that the
benefits of big data in healthcare are early detection of disease symptoms, ability
to apply more effective treatments, and ability to detect healthcare fraud more
quickly. Big data can be helpful in individual sectors of healthcare, such as clinical
operations, research and development, public health, evidence-based medicine,
genomic analytics, and patient profile analytics. Raghupathi and Raghupathi [54]
proposed an architectural framework for healthcare, consisting of four components:

466 Y. Arfat et al.

big data sources, big data transformation, a big data platform and tools, and big
data analytics. The big data sources are both internal and external, with multiple
locations, applications, and formats. Big data transformation consists of ETL; in
this phase, data are transformed into unique formats. The big data platform and
tools are Hadoop, MapReduce, HBase, and Hive, and these can be used to process
the data. The big data analytics consists of queries, reports, OLAP, and data mining.
Raghupathi and Raghupathi [54] also presented different challenges that a big
data analytics platform in healthcare must resolve for processing the given data.
There should be criteria for evaluation of the platform; it must have ease of use,
availability, security and privacy, continuity, and quality assurance. They concluded
that applications of big data in healthcare are at an early stage of development, but
they believe that more advancement in big data tools and platforms can accelerate
their development process.

Mehmood and Graham [8] presented a model for healthcare transport capacity
sharing. Nowadays, the healthcare industry is concentrated on investigating reasons
for failure in the primary quality control process, customer needs, services, and
duplication logistics. Mehmood and Graham [8] explained the logistics as analysis
and modeling of transport and distribution systems through large data sets created by
Global Positioning System (GPS), combined with human-produced activity. They
also noted that logistics firms need more technical support regarding the three V’s
of big data. The main objective of this research was to provide more awareness about
capability sharing and optimization from a smart city perspective. There is a need to
develop new tools and methods to overcome the challenges of big data in the smart
city. The main goal was to contribute to improvements in transport capacity sharing
through big data. Mehmood and Graham [8] explained that there are many problems
in transportation, as there is poor coordination of transport, lack of vehicles, and
poor maintenance and repair. To overcome these issues, there is an enormous need
for a new approach to provision of carriage. The authors have therefore introduced
a new framework, combining concepts from the literature on the smart city, big
data logistics, and capacity sharing. They have also developed a Markov model
by matching the needs for transport of patients with healthcare transport service
provision. The fundamental purpose of this model is sharing of transport capacity in
a smart city to enhance efficiencies in meeting patient needs for the city healthcare
service. For analysis, the authors considered 13 different scenarios and found that
the likelihoods of system failure and performance variance tended to be highest in a
scenario of highest demand with zero sharing.

Huang et al. [55] reviewed different applications of big data in health sciences,
including various systems with sources of big data; these were recommendation
systems, epidemic surveillance based on the internet, food-based monitoring,
sensor-based health condition monitoring, inferring air quality using big data,
genome-wide association studies (GWAS), and expression quantitative trait loci
(eQTL). The main purpose of these systems is to collect data from various people
and make the analysis much faster than is possible through official channels. Huang

19 Big Data Tools, Technologies, and Applications: A Survey 467

et al. [55] also suggested that to start any big data project we have to follow some
steps; the first one is to choose the right problem. The second step is to find the
sources of the data, which can be collected via the internet, smart devices, hospitals,
social media, and omics profiling. In the third step, data collected in the previous
step are stored in NoSQL, GEO, and dbGaP. The next step is to create a report of
the analysis using vivid visualization. Data can also be analyzed using three different
systems—collaborative filtering, content-based filtering, and hybrid filtering—and
through deep learning and network analysis. For visualization of big data results,
there are various tools that can be used: R, Circus, Gephi, Tableau, etc. Each of
these has its pros and cons. Huang et al. [55] also described that before the era
of big data, people obtained information through television, newspapers, and the
internet, and it took years to create awareness about healthcare. However, in the big
data age, information is pushed directly to people via smart devices.

Barkhordari et al. [56] noted that nowadays there are huge volumes of data
being generated. Traditional management systems can support analysis in various
fields, including social networks, medical networks, scientific instruments, and
meteorology. How we retrieve, store, and capture data or information is a fun-
damental problem in traditional systems. To overcome these issues, there is need
for scalable and distributed solutions to these kinds of problems. To overcome
all of these problems, Barkhordari et al. [56] proposed a ScaDiPaSi—a scalable,
distributable technique for exploring patient similarity. In this method, they used
various data sources; unlike other researchers, they did not concentrate on structured
and semistructured data sources. For two patients, the same lines of evidence may
involve different items. All of these formats can be retrieved by data integration. It
is a dynamic method to store information about patients and efficiently distribute it
on the hardware node. For analysis of the proposed technique, the authors did an
evaluation based on the execution time and accuracy of the ScaDiPaSi method. By
using the ScaDiPaSi method, they found that they could quickly achieve the desired
results using a distributed and scalable structure. They also found accuracy of up to
63% in their proposed scheme.

Toga et al. [57] presented a framework establishing reasonable and practical
data-sharing policies that incorporated the sociological, financial, technical, and
scientific needs of a maintainable big data community. They also argued that
there are enormous challenges involved in sharing big data. Key features of big
data are the volume of the data, incompleteness of data, incompatibility of data,
incongruence of sampling, and heterogeneity of data. Sharing of big data requires
innovative policies and clear guidelines that can enhance cooperation instead of
causing other problems and complexities. To overcome the complexities, Toga
et al. [57] introduced a big data policy framework, which consists of various
suggestions for sharing big data depending upon the domain of application. These
proposals are (1) policies for storing and securing data and ensuring human subject
protections; (2) processes and policies for data sharing; (3) protection of data from
unauthorized access; (4) agreements for data usage; (5) data value, as sharing data

468 Y. Arfat et al.

that are incomplete will have less value; and (6) big data–sharing policies for
achieving cost efficiencies. Many healthcare and biomedical studies have large,
incongruent, and heterogeneous data sets. Thus, there are many important barriers—
technical, social, and regulatory—that need to be overcome to ensure the power
of big data. The authors concluded that there is a need for implementation of the
aforementioned policies for sharing of data and security of personal information,
which will have long-term impacts on big data analytics. In addition, there have
been numerous research studies focusing on smart infrastructure [2, 58], healthcare
[59–62], transport [6, 63–69], and other applications [70, 71].

19.4.2 Graph-Based Applications of Big Data

Jun et al. [72] noted that in data-intensive applications, there are great needs
for high-performance computation and massive resources. In many scientific and
engineering applications, people and researchers are interested in a subset of the
whole data set so they can access it frequently. These groups of data can be
processed by specific domain applications. As an assumption, if two pieces of data
have been processed at the same time, it is a strong possibility that these data will be
processed as a group in the future. For simplicity, Hadoop uses a random placement
method for load balance. In MapReduce and Hadoop, default random placement
does not count the semantics of data grouping. A cloud cluster is grouped into
many small groups, limiting the degree of parallelism for the data and resulting in a
performance bottleneck. Jun et al. [72] also argued that other methods proposed for
data locality are not effective, because of cost and overhead issues. Their observation
was that random data placement is affected by three factors. The first is that each
replica should have a data block on each rack, the second is that there should be a
maximum number of map tasks on every node, and the last is data grouping access
patterns. The authors presented a new “data group aware data placement scheme”
(DRAW). It takes runtime data group patterns and equally distributes the data. It
consists of three phases: firstly, there is data group information learning from the
log. A history data access graph (HDAG) is used to approach the files; it is based on
the history. In the Hadoop cluster rack, the NameNode maintains a log of the history
of each operation, including the accessed file. However, this scheme also has certain
issues. The first issue is that the log is huge, involving a traversal latency problem;
the second issue is that frequently accessed files are not similar. Therefore, to resolve
these issues, there is a need for a checkpoint to traverse the log of the NameNode.
Secondly, there is clustering of the data group matrix (DGM), which shows the
relationship between data blocks. It can be generated on the basis of the HDAG.
Thirdly, data group reorganization is based on the optimal data placement algorithm
(ODPA). The ODPA is based on the submatrix for the cluster data–grouping matrix.
The authors also proved that Hadoop random placement of data is not efficient. They

19 Big Data Tools, Technologies, and Applications: A Survey 469

did an experiment with real-world applications; it reduced the completion time of
the map phase and the execution time of MapReduce.

Lee et al. [73] noted that a graph is essential for discovering knowledge from a
given data set. They stated that there are two dimensions of graph analysis. One is
graph mining (GM); it has a central focus on automatic knowledge discovery. The
second is online graph analytical processing (OLGAP); its main concentration is
pattern matching on a subgraph. Both dimensions are complementary and concen-
trate on solving complex problems. It is difficult to process multiple graphs and send
the results to the system. The authors proposed enabling graph-mining abilities in
the Resource Description Framework (RDF) triple store. For achieving the desired
goal, they implemented six different graph-mining algorithms using SPARQL. For
evaluation of the proposed technique, they used various computing environments
and nine different data sets. Their assessment showed scalable performance for real-
world graph analysis.

Xia et al. [74] stated that big data analytics are necessary for entities that can
be easily represented in the form of a graph. For analytics of a large-scale graph,
there is the main problem of delivery of effective solutions with irregular data
access. It is the main challenge for the processing of computation of graph-based
patterns. The major challenges Malewicz et al. [75] that big data faces for graph
processing are performance, a large volume of data, and irregular data access. Big
data tools are not suitable for processing of a graph, for reasons such as scalability,
architecture awareness, and systematic optimization. To overcome these issues, Xia
et al. [74] proposed a system called G. It enables the user to organize the data for the
architecture of parallel computing. It also consists of visualization, graph storage,
and analytics. The authors also analyzed the data locality regarding graph processing
and its effects on the performance of the cache memory on a processor. They
also measured the traversal performance of the graph by both serial and parallel
execution. For the experiment, they analyzed the parallel system and the G system
that was proposed. They showed that the G system performed much better than
traditional systems.

Fang et al. [76] proposed a new technique called a bipartite request dependency
graph (BRDG) for investigation of the relationship between objects on the web.
They also leveraged the MapReduce programming model for construction of the
BRDG from the large network data. The nodes of the BRDG have two types of
objects: primary objects such as the URL in a web browser, and secondary objects
such as those that trigger the primary objects. It is challenging to derive the structural
features of the BRDG. To overcome this difficulty, Fang et al. [76] proposed a
coclustering algorithm; from the BRDG it extracts the coclustering coherence. In
coclustering of BRDG, each vertex signifies the strong connection to the bipartite
subgraph. A parallel tri-nonnegative matrix factor (tNMF) algorithm was designed
and implemented. The primary purpose of this algorithm was to provide efficient
large-scale graphics decomposition. For the experiment, the authors divided the
subgraph into four structural patterns: click star, embed star, single layer mesh, and

470 Y. Arfat et al.

multilayer mesh. They noted that the multilayer mesh is a very famous structural
pattern.

Xue et al. [77] proposed a new technique based on bipartite graph–oriented
locality scheduling (BLOS) for MapReduce frameworks. For improving the locality
of the scheduling approach effectively, it is necessary to have the tasks and related
data on the same node. Xue et al. [77] also argue that data locality refers to
a task that is obtained from the same local machine. A higher degree of local
localization can enhance the performance of the system. Because of the localization,
it minimizes the execution time of the job and reduces the communication time.
Moreover, they described that there are three different types of priority according
to proximity principles. The first priority will be given to the local task within the
node, the second priority will be given to the task within the rack, and the third
priority will be given to off-rack tasks. However, there is a problem regarding the
locality optimization; this approach creates another problem of global optimization
instead of local optimization. Xue et al. [77] found that recent studies were
not sufficient to tackle the data locality issues. To overcome these issues, they
proposed a new scheduling algorithm called Bipartite-Graph Oriented Locality-
Aware Scheduling (BOLAS) for MapReduce tasks. BOLAS can operate in any
environment whether it is homogeneous or heterogeneous. The main aim of BOLAS
is to enhance the data locality without affecting the efficiency of execution. BOLAS
starts solving the problem of scheduling of data locality by matching the bipartite
graph in it and trying to allocate the data close to the task. BOLAS uses a
global data placement method; through this, better performance can be achieved
without affecting the nodes. It also avoids network congestions without generating
local nodes. The design of the algorithm consists of two parts: one is resource
modeling and the second is computing node performance estimation. In resource
modeling, MapReduce has two essential resources: data blocks and NameNodes.
In performance estimation of the computing node, BOLAS dynamically dispatches
the blocks according to the performance of the particular node. BOLAS also builds
a bipartite graph in various cases by adding the virtual blocks and nodes if they
are needed. Then the KM algorithm is applied for an optimal matching result with
minimum weight. The benefit of BOLAS is that it has high data locality. It also
increases the throughput of the cluster system and minimizes the congestion of the
network. In their experiment, Xue et al. [77] evaluated the ratio of data locality,
execution time, and network bandwidth. The results showed that the data locality
was improved with the proposed technique by nearly 100% and the execution time
was reduced by up to 67%.

Orozco et al. [78] described various challenges in stencil application for com-
putations. The main limitation of these applications is off-chip memory access in
terms of the latency and the data. To overcome these problems, they proposed
locality optimization based on data dependency graphs for stencil applications.
For this purpose, first they presented a formal description of data that were not
generated from the source code. They proved this by using a mathematical method

19 Big Data Tools, Technologies, and Applications: A Survey 471

for the computation power and the bandwidth of the multicore architecture. For
the experiment, they used various approaches such as Naïve, overlapped, split, and
diamond tiling. They found that the diamond tiling technique was better than the
other approaches.

Nazarabadi et al. [79] presented a locality-aware skip graph to overcome the
issues of the name ID assignment method of the skip graph’s node. Skip graph
locality assigns name IDs to nodes such that closer the two nodes are to each
other, the more similar the prefix in their name IDs will be. Nazarabadi et al. [79]
also argued that state-of-the-art methods do not consider the skip graph’s node
locations. The main objective of the proposed technique was to minimize the latency
in the search query from end to end. The authors proposed a dynamic and fully
decentralized algorithm, DPAD. The results showed an 82% improvement in the
data locality and a 40% improvement in search query end-to-end latency.

Kandemir et al. [80] provided a solution for optimal memory layout detection.
The proposed approach has two basic elements: one is the construction of the
problem in a special graph structure, and the second is the use of a Integer Linear
Programming (ILP) solver to define the memory layout. It is the first approach that
allows dynamic changing of the layout cache locality. The authors also showed that
the proposed framework for the locality is persuasive, but there is a need for dynamic
layout modification for large applications.

Chernov et al. [81] described the problem of thread partitioning of sequential
programs. They proposed a new algorithm to overcome this issue. They also argued
that performance could be improved by considering the locality of the program.
Many programs have locality characteristics by nature, so they combined two
optimizations for the new algorithm. The first is that the nonloop region can be
parallelized. The second is that the partitioning is performed in such way that data
locality can be improved in a new thread. For the evaluation of their approach,
they generated a data dependency graph (DDG) and showed that their proposed
technique is feasible.

Zhang et al. [82] noted that k-nearest neighbor (k-NN) is a simplified approach
for various applications, especially machine learning and graph-based applications.
Besides its multiple characteristics, it has computational complexity. To solve this
problem, they proposed a new algorithm that divides the whole data set into
small groups, and it makes sure that each item in k-NN belongs to the group.
This leads to accuracy and fast speed. To make the proposed algorithm more
accurate, they divided the groups in such a way that similar items remain in the
same group. Secondly, they kept the group size small as possible. For the groups,
they also proposed locality-sensitive hashing (LSH), which guarantees rigorous
performance even for the worst-case performance. The proposed approach can
efficiently generate a graph with good accuracy.

Zhang et al. [83] noted that a widely explored area of graph databases is similarity
in graph processing. They also argued that graphs have an important role in various
applications such as pattern recognition and information retrieval. They identified

472 Y. Arfat et al.

two categories of the graph search: one is a subgraph search and the second is a
similarity search. In their paper, they explored the k-NN similarity search problem,
using locality sensitivity hashing. They proposed an algorithm for a fast graph
search that transforms complex graphs into vector representations based on the
prototype in the database. After this, it also accelerates the query efficiency in the
Euclidean space by employing LSH. The authors evaluated their approach against
real data sets, achieving high performance in terms of accuracy and efficiency.

Yuan et al. [84] pointed out that there are two main challenges in large-scale
graph processing: one is lack of efficient storage and the second is lack of locality
access. They also noted that there are various popular approaches for processing of
graphs and storing the data, such as the storage-centric, vertex-centric, and edge-
centric approaches. They listed common graph partitioning approaches such as
vertex cuts and edge cuts. A commonly used partitioning scheme for processing
of a graph is vertex-centric hashing. However, these approaches have issues of
poor locality and communication overheads. To solve these issues, Yuan et al.
[84] proposed a new path-centric approach for fast iterative graph computation
of extremely large graphs. It is a path-centric approach for both the storage and
processing tiers. It is an efficient approach for storage and structure design on the
storage tier. It also allows the fast inner edge and outer edge loading for gathering
and scattering the parallel computation of the graph. For the computation tier, its
processing is used in such a way that optimizes the locality of the large-scale graph.
It iterates the processing at the chunk level and partition-level computation. A work-
stealing approach was introduced to balance the workload among parallel threads.
For evaluation of their approach, the authors chose a real data set in which they
were able to demonstrate the performance of the proposed approach in terms of
better balance and speed-up.

Shao et al. [85] proposed a new approach of a partitioning aware graph
computation engine (PAGE). The benefits of this method are that it controls the
online graph partitioning statistics of the underlying results of a graph, it monitors
the parallel processing resources and enhances the computation resources, and it
is designed to support various graph partitioning qualities. In evaluation of the
chosen scheme, the authors showed that it performed well under various partitioning
approaches with different qualities.

Qin et al. [86] noted that mining of dense subgraphs from large graphs is a
fundamental mining task that can be applied to various application domains such
as network science, biology, graph databases, and web mining. They also argued
that existing schemes concentrate just on a dense subgraph or on identifying an
optimal clique. In these schemes, greedy approaches are implemented to find the
top k-dense graph. However, the identified subgraph cannot be represented as a
dense region, so the identified subgraph should be the highest-density region in
the graph. In their work, Qin et al. [86] introduced a local dense subgraph (LDS)
in the graph. It can be used to find the dense subregion from the subgraph and
can be applied to various applications. LDSs also have some useful properties such

19 Big Data Tools, Technologies, and Applications: A Survey 473

as being pairwise disjoint, locally dense, and compact/cohesive. The authors also
presented an elegant dense subgraph model and showed that the LDS problem could
be solved in polynomial time. They presented three optimization approaches to
enhance the algorithm. To evaluate the LDS, they analyzed their approach using four
different qualities of measures: density, relative density, edge density, and diameter.
They also experimented with a real web-scale graph with 118.14 million nodes
and 1.02 billion edges for demonstration of the efficiency and effectiveness of the
proposed algorithm.

Zamanian et al. [87] described extensive use of a horizontal partitioning approach
for the processing of a significant volume of structured data. But there is an issue in
using the horizontal partitioning approach, in that the cost of the network must be
minimized for the given workload and schema of the database. A popular approach
to minimize the cost of the network for parallel processing of the database is
copartitioning of the given tables on their join key to avoid expensive remote join
operations. However, these approaches have an issue in terms of replications and
copartitioning with sharing of the same join key. To resolve these issues, Zamanian
et al. [87] introduced a new approach: predicate-based reference partitioning
(PREF). It enables copartitioning of sets of tables on the basis of the given join
predicates. The main goal of PREF is to enhance the data locality and minimize
data redundancy. For this purpose, the authors also designed two new algorithms.
The first algorithm requires the schema as an input, whereas the second algorithm
takes the workload as an input. In their experiments, the authors showed that the
workload-driven design algorithm was more efficient for a complex schema with
large numbers of tables.

Chen et al. [88] noted that various existing techniques support the vertex-
oriented execution model. It also allows the user to create their own logic on the
vertices. There is an issue in terms of the network traffic overhead for vertex-
oriented computation; however, graph partitioning is useful for minimizing the
network traffic in the processing of a graph. The authors argued that very little
attention has been paid to how graph partitioning can be effectively integrated into
large graph processing in the cloud environment. Furthermore, they noted that the
Surfer is a master–slave system with one master server and numerous slave servers
(which are responsible for the graph partition and computation) and proposed a
new framework of graph partitioning to enhance the performance of the network
for graph partitioning itself, storage of the partitioned graph, and vertex-oriented
processing of the graph. In experiments, they developed a new prototype for Pregel
and enhanced it with their framework of graph partitioning. They also showed the
efficiency and effectiveness of their proposed technique for the processing of large
graphs.

Zeng et al. [89] pointed out that processing of distributed graphs is costly for
computation of a significant volume of data in the event of moving the data among

474 Y. Arfat et al.

various computers. They argued that state-of-art approaches have high computation
overheads and costly communication when applied in a distributed environment. To
overcome these issues, they proposed a new parallel multilevel stepwise partitioning
algorithm. They divided this algorithm into two phases: an aggregate phase and a
partition phase. In the first phase they used multilevel weighted label propagation for
aggregation of the large graph into the small graph. It reduced the RatioCut step by
step. In each step, sets of vertices were extracted by reducing part of the RatioCut,
and these vertices were removed from the graph. In this way, k-way balance
partitioning was obtained by use of this algorithm. In experiments, the authors
performed a comparison with various other existing partitioning approaches using
the data set of a graph. The algorithm performed well in comparison with state-
of-the-art approaches regarding scalability and performance, and could enhance the
efficiency of graph mining on a real distributed computing system.

Lee et al. [90] noted that the size and variety of information networks are growing
in scientific and engineering domains these days. Because of these needs, there
is another demand arising in cloud cluster computing for efficient processing of
large heterogeneous graphs. The authors stated that a heterogeneous large graph
has various characteristics regarding big data processing. The graph data are highly
correlated, and the topological structure of a big graph can be viewed as a correlation
of the vertices and edges. A graph that is heterogeneous adds an extra overhead, as
compared with homogeneous graphs, regarding processing and storage. Therefore,
the data generated by such random partition methods cause an extra overhead.
Moreover, these types of random partition methods also cause overheads for graph
patterns queries. There is another problem arising with this: how to partition graphs
that perform efficiently. To resolve this problem, the authors introduced vertex block
(VB) partitioning. It is a distributed model for data partitioning in large-scale graphs
in the cloud. It has three features. First, it has VBs and extended VBs (EVBs) as
building blocks for semantic large-scale graphs. Second, the VB partitioner uses a
VB grouping algorithm to place high correlation in the graph into the same partition.
Third, the VB partitioning speeds up parallel processing of graph pattern queries
by minimizing interpartition query processing. In their results, the authors showed
that the proposed approach has higher query latency and scalability over large-scale
graphs.

LeBeane et al. [91] noted that large-scale graph analytics are an essential issue in
current data centers. Large multinode processing is a critical computational problem
because of the popularity of big data and cloud computing. There are many state-of-
the-art frameworks available for processing of large graphs, such as PowerGraph,
Pregel, and Giraph. However, there is a problem in these frameworks in that when
any change is due to the cloud and big data, these frameworks cannot handle it.
These state-of-the-art frameworks cannot be scalable. The data come from various
sources for processing. The authors argued that the data center is trending toward
a large number of heterogeneous processing nodes. Moreover, they described how
a virtualized environment can create heterogeneity by partitioning the cluster of

19 Big Data Tools, Technologies, and Applications: A Survey 475

homogeneous machines into a variety of configurations. However, the frameworks
of the graph analytics are still working under assumptions. These assumptions lead
to an imbalance of the load and cause faster nodes to finish processing their chunks
of data earlier than slower nodes. Load balance and heterogeneous nodes become
more critical for graph processing. To resolve this issue, the authors used a popular
framework for heterogeneity-aware data strategies. For heterogeneous partitioning
of the data, they divided the input data into shards so that every node would receive
the data according to the metrics. They also defined the data-partitioning ratio
between the skew factors of the clusters. In this work, they described three different
types of skew factors: thread based, memory-based, and profiling-based factors.
There are many complex methods available for calculation of skew factors. These
can provide performance benefits for heterogeneity-aware partitioning algorithms.
The authors also illustrated a simple estimate of intranode throughput in which a
skew factor could drive huge performance using heterogeneity-aware partitioning
strategies, and they showed that their proposed strategies reduced the execution time
of the application by 64%.

Chen et al. [92] described issues and challenges in graph partitioning and
computation, especially in a natural graph with skewed distribution. They argued
that existing graph-processing systems have the problem of “one size fits all” with
impacts on performance, load imbalance, and contention for high-degree vertices.
Existing graph-processing systems also have high communication costs and high
memory consumption. To overcome these issues, they introduced a new graph
engine called PowerLyra. It is a hybrid and adaptive design that uses dynamic
partition and computation approaches for various vertices. It combines the edge
cut and vertex cut with heuristics using a hybrid algorithm of graph partitioning. It
also provides data locality–aware layout optimization to enhance the cache locality
during communication. The authors also experimented with using two different
clusters for the graph analytics and the machine learning and data mining algorithm.
The system performed much faster and consumed less memory.

Graph partitioning is a popular strategy nowadays to balance workload due to the
scale of graph data and increasing availability. Because of the cost of partitioning
of graphs, researchers have recently focused more on stream graph partitioning,
which is very fast, updated incrementally, and easy to parallelize. However, it
also has challenges such as an imbalanced workload due to access patterns during
the supersets. Xu et al. [93] proposed a log-based dynamic graph partitioning
method. This method uses recodes and reuses historical statistical information to
refine the partitioning result. It can be used as middleware and deployed on many
existing parallel graph-processing systems. It also uses historical partitioning results
for creation of a hypergraph, and it uses new hypergraph streaming strategies to
generate a better stream graph partitioning result. Moreover, it also dynamically
partitions huge graphs and uses the system to optimize the graph partitioning to
enhance the performance.

476 Y. Arfat et al.

Nowadays, searching and mining of large graphs is very critical in various
application domains. Processing of large scalable graphs needs careful partitioning
and distribution of graphs across clusters. Yang et al. [94] explored the issue
of managing large-scale clusters and various properties of local queries such as
random walk, SPARQL queries, and breadth-first search. They also proposed a
new approach called a self-evolving distributed graph management environment
(Sedge). It reduces communication during the processing of the graph query on
multiple machines. It has two levels of partitioning: primary partitioning and
dynamic secondary partitioning. These two types of partitions can adapt to any real
environment. The results showed that it enhanced the distributed graph processing
on the commodity clusters.

19.4.3 Genome Sequence Annotation Applications of Big Data

Genome sequencing is an emerging field of research in various domains such as
big data, biomedicine, and biology. The data are increasing with scientific research,
but the associated technologies depend on acceleration techniques. Enhancements
in genome sequencing lead to bottlenecks from the sequencing to the short-read
mapping problem. The short-read problem works well under the MapReduce
framework but can lead to degradation of the performance in terms of the response
time.

Wang et al. [95] proposed a new architecture for acceleration of reading and
MapReduce processing when it faces many requests from the field-programmable
gate array (FPGA). They introduced a MapReduce framework to manage the
specific tasks in the FPGA. The MapReduce algorithm is based on the restricted
master problem (RMP) sequencing algorithm. The authors noted that there are three
types of state-of-the-art acceleration techniques for short-read mapping, which are
graphics processing unit (GPU) based, FPGA based, or MapReduce based. They
evaluated the proposed techniques with respect to hardware utilization, sensitivity,
the error rate, and hardware speed-up.

Jaiswal et al. [96] introduced an enhanced framework for genomics using big
data computing. In this framework, they noted that genomics is all about the study
of a genetic organism. Genomics includes mapping, sequencing, and analyzing of
a broad range of codes of DNA, RNA, etc. The authors pointed out that with the
arrival of a genome sequence, a large number of nucleotide and amino acid data
sequences is formed. It is essential to verify and analyze these data effectively and
efficiently, but this depends on how accurately we interpret the huge volume of
high-dimensional data. There is another problem in that they increase suddenly with
exponential growth. The scalability of the data tools that are currently available do
not provide such analysis as is required. The authors noted that there are two types
of genomics computing: cloud computing and big data computing. Presently, the
main challenge is processing of data to maintain the infrastructure of growth of the
data. However, people are applying a MapReduce-based technique in the cloud, with

19 Big Data Tools, Technologies, and Applications: A Survey 477

advantages such as reducing the memory and execution time. But the cloud itself
also has problems such as data protection, availability, and recovery. Qin et al. [97]
described various state-of-the-art high-throughput and data collaborative techniques
for biomedical and biological methods. RNA (ribonucleic acid) is also the product
of DNA transcription. For the last few years, researchers have been working on
new technologies with high throughput such as next-generation sequencing (NGS)
and microarrays. Qin et al. [97] studied NGS, which is used to discover genetic
variations linked with diseases. At present, HPCCs handle and store the sequencing
data, requiring huge amounts of storage and high requirements for computation
speed. Thus, processing of the data is a challenging issue. Different tools have
been developed for interpretation and integration of various data types. Because
of technical flaws and noise, these are not up to the mark. The main objective
of biomedicine is to minimize noise and enhance the efficiency and accuracy of
computation of biological processes, mathematics, statistics, and IT science.

Davis et al. [98] noted that in metabolic genome modeling, maintaining genome
consistency is necessary for various computational tasks. A process is implemented
to enhance the consistency of annotation among all microbial genomes of the
protein. A solid cluster is fully automated because of the generation; it also provides
opposite methodologies to state-of-the-art approaches to genome annotations that
structure hierarchical annotations like seed subsystems. Davis et al. [98] compared
their seed genome annotation with other regularly used resources such as Integrated
Microbial Genomes (IMG) and RefSeq.

Yeo et al. [99] noted that big data management is typically required in healthcare
and data-intensive applications. They concentrated on an application of healthcare
for testing the scalability of commercial big data platforms with MapReduce.
Bowtie, Contrail-bio, and basic local alignment search tool (BLAST) genomics
workloads were selected and tested on a Hadoop cluster with HDFS as a file system.
The results showed that the cluster could handle the extensive variety of applications
of bioinformatics while providing suitable computational scalability and efficiency.
By compression of the intermediate data, the process was sped up by 20%.

Heinzlreiter et al. [100] focused on genome sequence implementations and
comparisons with the bioinformatics domain relying on the HBase tool running
on top of Hadoop for MapReduce computation. They developed an application
of the genome in Hadoop and also performed a comparison with an HBase table
and execution in MapReduce. The proposed a strategy that supports reuse of
intermediate data, generated before the processing step performed on a single
genome. Input data for the preprocessing steps performed by the MapReduce jobs
are compared with the gene. The results are stored in HBase tables, and the graph
is generated for scalable genome comparison. Frequent item set mining (FIM)
is an essential topic of the research because of its various applications such as
DNA sequence discovery, real-world applications, and pattern-mining behaviors
of humans. The FIM process is computation and memory intensive. Nowadays,
since data are increasing exponentially, challenges and issues such as scalability and
efficiency are becoming more severe. Liang et al. [101] proposed a distributed FIM
algorithm, named Sequence-Growth, for the MapReduce framework. The proposed

478 Y. Arfat et al.

algorithm constructs a tree in the lexicographical tree sequence, which permits
discovery of all frequent item sets without an exhaustive search of the transaction
database. The authors found that the proposed algorithm efficiently removes the
generation of a large volume of intermediary data and also executes the algorithm
in memory fitted in a better way. They found that their sequence growth could
be modified easily according to association rules, and mining algorithms could be
adapted on the MapReduce framework easily.

There have been many recent advances in technologies such as the NGS tool
to enhance the speed of DNA collection of samples, sequencing, preparation, and
collection. In a single run, one genetic sequence can generate a genetic sequence of
over 60 GB. But the problem of recognizing the system of the human sample can
take up to 45 days, which is a major bottleneck for sequence analysis and shipment
of samples to a sequencing center. Dodson et al. [102] proposed a new fast and
efficient method for genetic sequencing and analysis, called the dynamic distributed
dimensional data model (D4M). D4M is a novelty in computer programming, which
associates the characteristics of five processing technologies: an associative array,
sparse linear algebra, a triple-store database, linear algebra, and a distributed array.
In the base triple-store database, large volumes of data are handled. D4M provides
parallelism by using linear algebra on the interfaces of the triple store. There is
a huge challenge in identifying the gene sequence repetitively that occurs within
the DNA sequence. It is very simple conceptually, but computationally it is a huge
challenge. Moreover, there is also a big challenge for biological research in that
many regions within the sequence of genomics have not changed for many years.
Identifying these uncovered regions is a big challenge for researchers. The main
problem arises in analysis of a significant volume of data. It increases with each
genome that is sequenced. State-of-the-art approaches need pairwise sequences for
comparison of chromosomes, which consume a lot in execution. Phinney et al.
[103] designed a new algorithm that partitions the sequence of the genome on the
basis of the value and the repetitive sequence. It consists of a single aggregation
of global steps that recognize all matches among the sequence concurrently. The
scalability of this approach is its main characteristic. Additionally, using more nodes
for computation can increase the performance of the system.

Toh et al. [104] proposed a sequence search technique and alignment by using
a sequence search and alignment by hashing algorithm (SSAHA) for searching a
sequence from a database. In this approach, they divided each database into k-
tuples of k-contiguous bases and then processed the query base by base. They found
that if a query did not match on the first hit, there was a strong possibility that it
would not match in later hits. They argued that it is possible to apply BLAST on
the first stage of the SSAHA, so it can create overlapping words with consistent
length of a query that can increase the sensitivity. Therefore, they also proposed
a new technique called the basic sequence search by hash algorithm (BSSHA). It
divide the algorithms into two parts: a time hash for creating the hash table in the
database, and a time search for the processing of the query. Moreover, a database
table is created in the main memory; it resides in the memory so it will save the time

19 Big Data Tools, Technologies, and Applications: A Survey 479

of disk access. The authors also showed that the time complexity and processing
time for the BSSHA are less than those for existing techniques such as the SSAHA.

Meng et al. [105] noted that for processing of bioinformatics information,
sequence alignment is the basic method and information evaluation. They stated
that bioinformatics can be divided into two categories. In the first category there are
two types: one is pairwise sequence alignment and the second is multiple sequence
alignment. In the second category there are also two types: one is local alignment
based on the sequence range and the second is global alignment based on the whole
sequence alignment. A local sequence is much more useful than global alignment.
Currently, serial BLAST is very complex and not useful for a large volume of data.
It does not meet the needs of the current large volume of genetic data; implantation
on a GPU and heterogeneous computing is very complicated.

As there is exponential growth in the database of the genome, it is tough to
process these biological computations. O’Driscoll et al. [106] introduced a new
approach, Hadoop BLAST (HBlast). This scheme partitions the sequence of the
query by using virtual partitioning. The proposed method improves scalability
in comparison with other available solutions and also balances the computation
workload. BLAST is very commonly used for bioinformatics programs to search the
available sequence for similarities among DNA and proteins, using the technique of
sequence alignment. Sait et al. [107] evaluated the performance of serial and parallel
BLAST using the traditional state of a diskless HPCC. It enhanced the reliability and
minimized the cost of the communications as compared with the traditional diskfull
clusters.

Boratyn et al. [108] developed a tool called context-sensitive blast (CS-BLAST),
which combines information from recently searched queries derived from the
protein profile to achieve better homology detection than position-specific iterated
BLAST (PSI-BLAST), which constructs a position-specific matrix from scratch.
They also proposed a new method called domain enhancement lookup time
accelerated BLAST (DELTA-BLAST). It begins with a query from the conserved
domain database, then it makes multiple alignments of the conserved domains after
it computes the position-specific score matrix (PSSM); finally, it applies a sequence
search query to the database.

Table 19.1 provides a taxonomy of relevant research efforts in healthcare and
smart city applications, graph-based applications, and genome sequence annotation
applications. Table 19.2 provides a taxonomy of numerous tools and technologies,
along with their salient features and limitations.

19.5 Conclusion

In this chapter we have critically analyzed some of the core applications of big data
and their impacts in improving the quality of human life by primarily focusing on
healthcare and smart city applications, genome sequence annotation applications,
and graph-based applications. The volumes of structured, semistructured, and

480 Y. Arfat et al.

Table 19.1 Big data applications: taxonomy of research efforts

Applications of big data Research efforts

Healthcare and smart
city

Smart city, challenges and issues, data analytics (Nuaimi et al. [51]);
healthcare, healthcare tools, graph based; e-health, secure
integration, IoT ([45]); healthcare, strengths, weaknesses, threats,
and opportunities (Collins [53]); data analytics, healthcare,
architecture, tools of big data (Raghupathi and Raghupathi [54]);
smart city, transport, capability sharing, optimization (Mehmood and
Graham [8]); healthcare, analysis, steps for big data projects (Huang
et al. [55]); information retrieval, storage, and capture issues, patient
similarity (Barkhordari et al. [56]); big data challenges,
incompleteness, heterogeneity framework (Toga et al. [57])

Graph based Data placement, data locality, and DGM (Wang et al. [72]); graph
analytics, mining algorithms (Lee et al. [73]); data analytics, graph
processing, data locality (Xia et al. [74]); tNMF, BRDG (Fang et al.
[76]); graph based, scheduling, data locality, global optimization
(Xue et al. [77])

Genome sequence
annotation

NGS, FPGA, short-read problems (Wang et al. [95]); BLAST,
genomics computing issues (Jaiswal et al. [96]); biomedical and
biological methods, biomedicine, NGS (Qin et al. [97]); sequence
annotation, genome, hierarchical annotations (Davis et al. [98]);
Bowtie, Contrail-bio, BLAST, evaluation, Hadoop (Yeo et al. [99]);
NGS, genome (Heinzlreiter et al. [100]); FIM, exhaustive search,
tree-based algorithm (Liang et al. [101]); D4M, challenges and
issues of DNA sequence (Dodson et al. [102]); pairwise sequence,
overhead, partitioning scheme, HBase (Phinney et al. [103]);
SSAHA, BLAST, BSSHA (Toh et al. [104]); bioinformatics,
pairwise and multiple sequence alignment, local alignment (Meng et
al. [105]); HBlast (O’Driscoll et al. [106]); BLAST, serial and
parallel BLAST (Sait et al. [107]); DELTA-BLAST (Boratyn et al.
[108])

BLAST basic local alignment search tool, BRDG bipartite request dependency graph, BSSHA basic
sequence search by hash algorithm, D4M dynamic distributed dimensional data model,
DELTA domain enhancement lookup time accelerated, DGM data group matrix, FIM frequent item
set mining, FPGA field-programmable gate array, HBlast Hadoop BLAST, IoT internet of things,
NGS next-generation sequencing, SSAHA sequence search and alignment by hashing algorithm,
tNMF tri-nonnegative matrix factor

unstructured data generated from heterogeneous sources is increasing exponentially
and brings many challenges. Numerous tools and technologies have been developed
over the years to address these issues. This chapter has also presented a summary

19 Big Data Tools, Technologies, and Applications: A Survey 481

Ta
bl

e
19

.2
B

ig
da

ta
to

ol
s

an
d

te
ch

no
lo

gi
es

To
ol

Ty
pe

L
ay

er
s

Fe
at

ur
es

L
im

ita
tio

ns

H
ad

oo
p

[1
5]

O
pe

n-
so

ur
ce

pl
at

fo
rm

M
an

ag
em

en
t,

pr
oc

es
si

ng
,

st
or

ag
e

Sc
al

ab
ili

ty
,h

ig
h

av
ai

la
bi

lit
y,

fa
ul

tt
ol

er
an

ce
,

re
lia

bi
lit

y,
st

or
ag

e,
lo

w
-c

os
t,

di
st

ri
bu

te
d,

lo
ca

l
pr

oc
es

si
ng

,p
ar

al
le

lc
om

pu
tin

g,
co

st
ef

fe
ct

iv
e

In
-m

em
or

y
co

m
pu

ta
tio

n
fo

r
ite

ra
tiv

e
al

go
ri

th
m

s,
I/

O
di

sk
bo

ttl
en

ec
k,

po
or

re
so

ur
ce

ut
ili

za
tio

n,
no

t
op

tim
iz

ed
fo

r
ite

ra
tiv

e
an

d
in

te
ra

ct
iv

e
ap

pl
ic

at
io

ns
H

D
FS

[1
2]

O
pe

n-
so

ur
ce

pl
at

fo
rm

St
or

ag
e

Sc
al

ab
le

,r
el

ia
bl

e,
fa

ul
tt

ol
er

an
ce

,o
pe

ra
bi

lit
y,

hi
gh

av
ai

la
bi

lit
y,

re
du

ce
s

ne
tw

or
k

I/
O

,t
as

k
sc

he
du

lin
g

H
D

FS
is

im
m

ut
ab

le
,h

ig
h

co
st

du
e

to
re

pl
ic

at
io

ns
,s

ca
la

bi
lit

y
is

su
es

as
lo

ca
ld

at
a

in
cr

ea
se

Y
A

R
N

[2
6]

O
pe

n-
so

ur
ce

pl
at

fo
rm

M
an

ag
em

en
t

Jo
b

sc
he

du
lin

g,
cl

us
te

r
re

so
ur

ce
m

an
ag

em
en

t,
m

ul
tit

en
an

cy
,c

om
pa

tib
ili

ty
,s

ca
la

bi
lit

y,
cl

us
te

r
ut

ili
za

tio
n

D
oe

s
no

ts
up

po
rt

sh
or

ti
nt

er
ac

tiv
e

jo
bs

or
lo

ng
-r

un
ni

ng
se

rv
ic

es

M
ap

R
ed

uc
e

[1
3]

O
pe

n-
so

ur
ce

pl
at

fo
rm

Pr
oc

es
si

ng
Pa

ra
lle

lp
ro

ce
ss

in
g,

da
ta

-p
ar

tit
io

ni
ng

m
ap

,r
ed

uc
e,

fa
st

er
pr

oc
es

si
ng

Pe
rf

or
m

an
ce

is
su

es
,e

xt
en

si
on

s
of

pr
og

ra
m

m
in

g
m

od
el

s,
ne

ed
s

m
or

e
da

ta
-a

w
ar

e
op

tim
iz

at
io

ns
Pi

g
[1

6]
O

pe
n-

so
ur

ce
pl

at
fo

rm
Pr

oc
es

si
ng

,
an

al
ys

is
E

xt
en

si
bi

lit
y,

ea
se

of
pr

og
ra

m
m

in
g,

op
tim

iz
at

io
n

op
po

rt
un

iti
es

,s
el

f-
op

tim
iz

in
g,

pr
oc

es
si

ng
of

da
ta

ite
ra

tiv
el

y,
pi

pe
lin

e
of

E
T

L
da

ta

Im
pl

ic
it

da
ta

sc
he

m
a,

no
tm

at
ur

e,
la

ck
of

te
ch

ni
ca

ls
up

po
rt

H
iv

e
[1

7]
O

pe
n-

so
ur

ce
pl

at
fo

rm
M

an
ag

em
en

t
A

d
ho

c
qu

er
ie

s,
an

al
ys

is
of

hu
ge

da
ta

se
ts

,
su

m
m

ar
iz

at
io

n
of

st
or

ed
da

ta
,q

ui
ck

re
sp

on
se

ov
er

la
rg

e
da

ta
se

t

H
ig

h
la

te
nc

y,
pe

rf
or

m
an

ce
,c

om
pl

ex
ity

,
co

m
pl

ic
at

ed
da

ta
up

da
te

s,
no

ac
ce

ss
to

re
al

-t
im

e
da

ta
St

or
m

[1
8]

O
pe

n-
so

ur
ce

pl
at

fo
rm

Pr
oc

es
si

ng
R

el
ia

bl
e,

ea
sy

to
op

er
at

e,
re

al
-t

im
e

an
al

yt
ic

s,
sc

al
ab

le
,f

au
lt

to
le

ra
nt

,c
on

tin
uo

us
co

m
pu

ta
tio

n,
fa

st
pr

oc
es

si
ng

,d
is

tr
ib

ut
ed

R
PC

,E
T

L

R
eq

ui
re

s
m

or
e

ad
va

nc
ed

co
nfi

gu
ra

tio
ns

,c
an

no
t

in
te

gr
at

e
w

ith
st

or
ag

e
en

gi
ne

di
re

ct
ly

Sp
ar

k
[2

2]
O

pe
n-

so
ur

ce
pl

at
fo

rm
M

an
ag

em
en

t,
pr

oc
es

si
ng

,
st

or
ag

e,
an

al
ys

is

Sc
al

ab
ili

ty
,f

au
lt

to
le

ra
nc

e,
in

-m
em

or
y

co
m

pu
ta

tio
n,

pa
ra

lle
lc

om
pu

tin
g,

su
pp

or
tf

or
ge

no
m

e
se

qu
en

ce
s,

ea
se

of
us

e,
fa

st
pr

oc
es

si
ng

,
un

ifi
ed

en
gi

ne
,l

oc
al

pr
oc

es
si

ng
,s

up
po

rt
fo

r
m

ul
tip

le
la

ng
ua

ge
s,

ad
va

nc
ed

an
al

yt
ic

s,
R

D
D

,
si

m
pl

ic
ity

L
ar

ge
sy

st
em

re
so

ur
ce

s,
m

em
or

y
co

ns
um

pt
io

n
is

su
es

,h
ig

h
co

st
,n

ot
m

at
ur

e

(c
on

tin
ue

d)

482 Y. Arfat et al.

Ta
bl

e
19

.2
(c

on
tin

ue
d)

To
ol

Ty
pe

L
ay

er
s

Fe
at

ur
es

L
im

ita
tio

ns

Sp
ar

k
St

re
am

in
g

[2
2]

O
pe

n-
so

ur
ce

pl
at

fo
rm

Pr
oc

es
si

ng
Fa

ul
tt

ol
er

an
t,

sc
al

ab
le

,h
ig

h
th

ro
ug

hp
ut

,
hi

gh
-l

ev
el

fu
nc

tio
ns

,S
pa

rk
in

te
gr

at
io

n,
ea

se
of

us
e

w
ith

va
ri

ou
s

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

St
re

am
in

g
pr

oc
es

si
ng

ha
s

ad
di

tio
na

le
xt

ra
la

te
nc

y,
da

ta
lo

ss
ca

n
ha

pp
en

w
he

n
a

w
or

ki
ng

no
de

fa
ils

B
lin

kD
B

[2
3]

O
pe

n
so

ur
ce

Pr
oc

es
si

ng
In

te
ra

ct
iv

e,
fa

st
an

d
re

lia
bl

e
pr

oc
es

si
ng

,b
oo

ts
tr

ap
pe

rf
or

m
an

ce
di

ag
no

st
ic

s,
ac

cu
ra

cy
of

qu
er

y,
la

rg
e

qu
er

y
pr

oc
es

si
ng

It
ex

ec
ut

es
th

e
ne

w
ly

cr
ea

te
d

sa
m

pl
e

m
od

ul
e

of
fli

ne
,r

es
po

ns
e

tim
e

is
no

tg
oo

d,
al

so
ha

s
an

is
su

e
w

ith
ap

pr
ox

im
at

io
n

qu
er

y
pr

oc
es

si
ng

B
D

A
S

[2
4]

O
pe

n-
so

ur
ce

pl
at

fo
rm

Pr
oc

es
si

ng
,

an
al

ys
is

R
es

ou
rc

e
vi

rt
ua

liz
at

io
n

an
d

ut
ili

za
tio

n,
di

ff
er

en
t

la
ye

rs
su

ch
as

st
or

ag
e,

pr
oc

es
si

ng
en

gi
ne

,a
cc

es
s

an
d

in
te

rf
ac

es

D
ep

en
ds

he
av

ily
on

st
or

ag
e

of
da

ta
in

th
e

m
em

or
y,

m
ak

in
g

th
e

w
ho

le
st

ac
k

ha
rd

to
m

ai
nt

ai
n

an
d

in
te

gr
at

e
M

es
os

[2
5]

O
pe

n-
so

ur
ce

pl
at

fo
rm

M
an

ag
em

en
t

Sc
al

ab
ili

ty
,f

au
lt

to
le

ra
nc

e,
sc

he
du

lin
g

of
m

ul
tip

le
re

so
ur

ce
s

su
ch

as
po

rt
s,

m
em

or
y,

di
sk

,a
nd

C
PU

N
o

su
pp

or
tf

or
K

er
be

ro
s,

D
E

A
ha

s
no

da
ta

lo
ca

lit
y,

in
ef

fic
ie

nt
cl

us
te

r
ut

ili
za

tio
n,

lim
ita

tio
n

of
on

e
ex

ec
ut

or
pe

r
sl

av
e

M
on

go
D

B
[3

3]
O

pe
n-

so
ur

ce
pl

at
fo

rm
M

an
ag

em
en

t,
pr

oc
es

si
ng

,
st

or
ag

e,
an

al
ys

is

A
ut

om
at

ic
sc

al
in

g,
hi

gh
pe

rf
or

m
an

ce
,h

ig
h

av
ai

la
bi

lit
y,

sc
al

ab
ili

ty
,a

gg
re

ga
tio

n,
lo

ad
ba

la
nc

in
g,

na
tiv

e
re

pl
ic

at
io

n,
se

cu
ri

ty
,r

ic
h

qu
er

y
la

ng
ua

ge

N
o

jo
in

s
av

ai
la

bl
e

in
M

on
go

D
B

,p
ro

bl
em

in
th

e
ca

se
of

m
ul

tip
le

qu
er

ie
s

re
su

lti
ng

in
in

fle
xi

bi
lit

y;
it

co
ns

um
es

m
or

e
m

em
or

y
an

d
al

so
ha

s
so

m
e

co
nc

ur
re

nc
y

is
su

es
R

[3
4]

O
pe

n-
so

ur
ce

pl
at

fo
rm

A
na

ly
si

s
St

at
is

tic
al

an
al

ys
is

,p
ac

ka
ge

s,
gr

ap
hi

ca
l

vi
su

al
iz

at
io

n,
cl

as
si

fic
at

io
n,

cl
as

si
ca

ld
at

a
te

st
in

g,
cl

us
te

ri
ng

,a
na

ly
si

s
of

tim
e

se
ri

es
,g

ra
ph

ic
al

m
et

ho
ds

,n
on

lin
ea

r
an

d
lin

ea
r

m
od

el
in

g

Pa
ra

lle
liz

at
io

n
co

m
pl

ex
ity

,l
ac

k
of

gr
ap

hi
ca

lu
se

r
in

te
rf

ac
e

in
tim

id
at

in
g

fo
r

be
gi

nn
er

s

D
ra

ye
d

[3
5]

O
pe

n
so

ur
ce

Pr
oc

es
si

ng
Fl

ex
ib

le
,p

ar
al

le
lp

ro
ce

ss
in

g,
lo

ng
-t

er
m

pr
es

er
va

tio
n,

pr
om

ot
es

da
ta

vi
si

bi
lit

y,
ef

fic
ie

nt
ut

ili
za

tio
n

of
re

so
ur

ce
s

In
ex

pe
ri

en
ce

d
pr

og
ra

m
m

er
s,

la
ck

of
ef

fe
ct

iv
e

da
ta

an
al

ys
is

su
pp

or
t

Sy
nc

fu
si

on
[4

2]
C

om
m

er
ci

al
M

an
ag

em
en

t,
pr

oc
es

si
ng

,
st

or
ag

e,
an

al
ys

is

Q
ue

ry
pr

oc
es

si
ng

on
st

ru
ct

ur
ed

an
d

un
st

ru
ct

ur
ed

da
ta

,c
os

t-
ef

fe
ct

iv
e

st
or

ag
e,

lin
ea

r
sc

al
ab

ili
ty

Is
su

es
w

ith
la

yo
ut

pr
oc

es
s,

R
D

L
fo

rm
at

;a
ls

o
ha

s
un

su
pp

or
te

d
ex

pr
es

si
on

19 Big Data Tools, Technologies, and Applications: A Survey 483

C
lo

ud
er

a
[4

3]
C

om
m

er
ci

al
pl

at
fo

rm
Pr

oc
es

si
ng

Fl
ex

ib
ili

ty
,i

nt
eg

ra
tio

n,
se

cu
ri

ty
,s

ca
la

bi
lit

y,
hi

gh
av

ai
la

bi
lit

y
an

d
co

m
pa

tib
ili

ty
,p

ro
vi

de
s

Im
pa

la
,

re
lia

bl
e

m
od

el
,s

ec
ur

e,
si

m
pl

e,
di

st
ri

bu
te

d
co

m
pu

tin
g,

w
eb

-b
as

ed
in

te
rf

ac
e

w
ith

en
te

rp
ri

se
ca

pa
bi

lit
ie

s
an

d
sc

al
ab

le
st

or
ag

e

D
if

fic
ul

tie
s

w
ith

le
ar

ni
ng

an
d

co
nfi

gu
ra

tio
n

Pi
vo

ta
lH

D
[4

5]
C

om
m

er
ci

al
pl

at
fo

rm
A

na
ly

si
s

Fl
ex

ib
le

m
od

el
s,

ba
ck

up
an

d
re

co
ve

ry
,d

at
a

pr
ot

ec
tio

n,
ge

or
ed

un
da

nc
y,

ro
bu

st
av

ai
la

bi
lit

y
in

ca
se

of
fa

ilu
re

Pi
vo

tt
ab

le
cr

ea
tio

n
is

ve
ry

co
m

pl
ex

;i
ta

ls
o

ha
s

a
da

ta
co

nc
ur

re
nc

y
pr

ob
le

m
;p

er
fo

rm
an

ce
is

su
e

w
ith

la
rg

e
vo

lu
m

e
of

da
ta

;m
an

ua
lc

al
cu

la
tio

n
of

m
et

ri
cs

is
tim

e
co

ns
um

in
g

E
C

2
[4

6]
C

om
m

er
ci

al
pl

at
fo

rm
Pr

oc
es

si
ng

,
st

or
ag

e
Fl

ex
ib

ili
ty

,s
ec

ur
ity

,s
ca

la
bi

lit
y,

re
lia

bi
lit

y,
fa

ul
t

to
le

ra
nc

e
V

er
y

co
st

ly
,u

na
ff

or
da

bl
e

fo
r

co
m

m
on

us
er

s

N
eo

4j
[3

8]
O

pe
n

so
ur

ce
Pr

oc
es

si
ng

,
st

or
ag

e
G

ra
ph

-b
as

ed
st

or
ag

e,
gr

ap
h-

ba
se

d
pr

oc
es

si
ng

en
gi

ne
,q

ue
ry

pr
oc

es
si

ng
,s

ca
la

bi
lit

y,
ve

rt
ic

al
sc

al
in

g,
hi

gh
er

pe
rf

or
m

an
ce

an
d

co
nc

ur
re

nc
y,

su
pp

or
tf

or
va

ri
ou

s
la

ng
ua

ge
s

N
o

su
pp

or
tf

or
sh

ar
in

g;
lim

ita
tio

ns
on

no
de

pr
op

er
tie

s
an

d
re

la
tio

ns
hi

ps

Pe
nt

ah
o

[3
9]

O
pe

n
so

ur
ce

A
na

ly
si

s
E

T
L

,B
I,

da
ta

in
te

gr
at

io
n,

da
sh

bo
ar

di
ng

ca
pa

bi
lit

ie
s,

O
L

A
P

se
rv

ic
es

,d
at

a
m

in
in

g,
da

ta
an

al
yt

ic
s,

vi
su

al
iz

at
io

n,
no

co
di

ng
re

qu
ir

ed
fo

r
in

te
gr

at
io

n

D
at

a
vi

su
al

iz
at

io
n

an
d

an
al

yt
ic

s
to

ol
re

qu
ir

es
m

or
e

im
pr

ov
em

en
t;

it
is

in
co

ns
is

te
nt

an
d

in
co

nv
en

ie
nt

;t
he

la
ye

r
of

m
et

ad
at

a
is

ve
ry

ha
rd

to
us

e
an

d
un

de
rs

ta
nd

;m
or

eo
ve

r,
th

er
e

is
lit

tle
he

lp
fr

om
th

e
do

cu
m

en
ta

tio
n

Ta
le

nd
[4

0]
O

pe
n

so
ur

ce
Pr

oc
es

si
ng

,
m

an
ag

em
en

t
Sc

al
ab

ili
ty

,e
as

e
of

us
e,

re
lia

bi
lit

y,
in

te
gr

at
io

n,
E

T
L

,p
ro

du
ct

iv
ity

,d
at

a
m

an
ag

em
en

t
T

he
re

is
a

ne
ed

fo
r

JD
B

C
fo

r
re

so
ur

ce
ac

ce
ss

;n
o

pr
od

uc
tf

or
m

et
ad

at
a

m
an

ag
em

en
ta

nd
qu

al
ity

of
da

ta
;b

ot
tle

ne
ck

in
jo

bs
du

e
to

au
to

m
at

io
n

of
da

ta
pa

rt
iti

on
in

g
an

d
re

pa
rt

iti
on

in
g,

an
d

al
lo

ca
tio

n
of

re
so

ur
ce

s
ac

ro
ss

th
e

gr
id

(c
on

tin
ue

d)

484 Y. Arfat et al.

Ta
bl

e
19

.2
(c

on
tin

ue
d)

To
ol

Ty
pe

L
ay

er
s

Fe
at

ur
es

L
im

ita
tio

ns

Ta
bl

ea
u

[4
7]

C
om

m
er

ci
al

pl
at

fo
rm

A
na

ly
si

s
Fa

st
an

d
in

te
ra

ct
iv

e
re

po
rt

s,
ex

ce
lle

nt
us

er
in

te
rf

ac
e,

in
te

gr
at

io
n,

m
ob

ile
su

pp
or

t,
cu

st
om

er
se

rv
ic

es
,u

se
r

fo
ru

m
,l

ow
-c

os
t,

ea
sy

to
up

gr
ad

e
an

d
us

e

In
iti

al
da

ta
,s

ta
tis

tic
al

fe
at

ur
es

ar
e

av
oi

de
d

in
th

is
fr

am
ew

or
k

an
d

fin
an

ci
al

re
po

rt
in

g

IB
M

[4
8]

C
om

m
er

ci
al

pl
at

fo
rm

Pr
oc

es
si

ng
,

m
an

ag
em

en
t,

st
or

ag
e,

an
al

ys
is

D
at

a
m

in
in

g,
da

ta
in

te
gr

at
io

n,
B

I
co

m
pu

tin
g

of
st

re
am

,s
ol

ut
io

n
of

da
ta

w
ar

eh
ou

se
an

d
E

nt
er

pr
is

e
C

la
ss

H
ad

oo
p;

dy
na

m
ic

al
ly

ch
an

ge
s

re
al

-t
im

e
da

ta

Po
or

da
ta

an
al

yt
ic

s
an

d
la

ck
of

su
pp

or
tf

or
un

de
rs

ta
nd

in
g

th
e

qu
al

ity
of

da
ta

;a
bs

en
ce

of
bu

si
ne

ss
ca

se
s;

gr
an

ul
ar

ity
of

bi
g

da
ta

is
ov

er
lo

ok
ed

SA
S

[4
9]

C
om

m
er

ci
al

pl
at

fo
rm

A
na

ly
si

s
Pr

ov
id

es
hi

gh
-p

er
fo

rm
an

ce
an

al
yt

ic
s,

gr
id

co
m

m
ut

in
g,

da
ta

ba
se

an
al

yt
ic

s,
in

-m
em

or
y

co
m

pu
ta

tio
n;

so
lu

tio
n

of
co

m
pl

ex
pr

ob
le

m
s;

ad
va

nc
ed

an
al

yt
ic

al
to

ol

N
ee

d
to

un
de

rs
ta

nd
th

e
gr

ap
h

pa
ck

ag
e

fo
r

cu
st

om
iz

at
io

n
of

pl
ot

s;
it

is
ex

pe
ns

iv
e

an
d

no
t

at
ta

in
ab

le
fo

r
ev

er
y

pr
of

es
si

on
al

,s
o

it
is

ve
ry

di
ffi

cu
lt

to
ac

ce
ss

O
ra

cl
e

[4
1]

O
pe

n
so

ur
ce

St
or

ag
e,

pr
oc

es
si

ng
,

an
al

ys
is

A
dv

an
ce

d
an

al
yt

ic
s,

in
-m

em
or

y
co

m
pu

ta
tio

n,
sc

al
ab

ili
ty

,b
at

ch
fa

ci
lit

ie
s,

fa
st

er
de

ve
lo

pm
en

t,
da

ta
in

te
gr

at
or

,e
nv

ir
on

m
en

tf
or

st
at

is
tic

al
co

m
pu

tin
g

L
ac

k
of

su
pp

or
tt

o
ha

nd
le

la
rg

e
vo

lu
m

es
of

da
ta

Te
ra

da
ta

’s
A

st
er

[5
0]

C
om

m
er

ci
al

pl
at

fo
rm

A
na

ly
si

s
It

ha
s

ro
ug

h
m

et
ho

ds
to

de
al

w
ith

la
rg

e
vo

lu
m

es
of

da
ta

(i
.e

.,
fu

ll
sc

an
ni

ng
);

it
is

co
m

pu
ta

tio
na

lly
si

m
ila

r
to

H
ad

oo
p

Te
ra

da
ta

is
no

ta
m

at
ur

e
pr

od
uc

ta
nd

ha
s

lim
ite

d
sc

al
ab

ili
ty

B
D

A
S

B
er

ke
le

y
D

at
a

A
na

ly
tic

s
St

ac
k,

B
I

bu
si

ne
ss

in
te

lli
ge

nc
e,

C
P

U
ce

nt
ra

lp
ro

ce
ss

in
g

un
it,

D
E

A
dy

na
m

ic
ex

ec
ut

or
al

lo
ca

tio
n,

E
T

L
ex

tr
ac

tio
n,

tr
an

sf
or

m
at

io
n,

an
d

lo
ad

in
g,

H
D

F
S

H
ad

oo
p

Fi
le

Sy
st

em
,J

D
B

C
Ja

va
D

at
ab

as
e

C
on

ne
ct

iv
ity

,O
L

A
P

on
lin

e
an

al
yt

ic
al

pr
oc

es
si

ng
,R

D
D

re
si

lie
nt

di
st

ri
bu

te
d

da
ta

se
ts

,R
D

L
R

ep
or

t
D

efi
ni

tio
n

L
an

gu
ag

e,
R

P
C

re
m

ot
e

pr
oc

ed
ur

e
ca

ll

19 Big Data Tools, Technologies, and Applications: A Survey 485

of state-of-the-art tools and methodologies for processing of big data applications.
This overview has included a discussion about the objectives, methodologies, and
key approaches in the existing techniques. A taxonomy of the research efforts within
each application domain has also been presented.

The issues related to big data are immense and cover a variety of challenges in
different phases of big data classification, i.e., data acquisition, data transportation,
data storage, compression/decompression, preprocessing, data analysis, and data
visualization. These challenges demand collaborative efforts from multidisciplinary
domains to obtain insights into a wealth of information to make informative
decisions to improve the quality of human life.

Acknowledgements The authors acknowledge with thanks the technical and financial support
received from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU),
Jeddah, Saudi Arabia, under grant number G-651-611-38. The work carried out in this paper is
supported by the High Performance Computing (HPC) Center at the King Abdulaziz University.

References

1. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review
and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning
the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

2. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge
and outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 11–26.
Springer, Cham (2018)

3. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for
smart ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

4. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258–
32285 (2018)

5. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

6. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 111–122.
Springer, Cham (2018)

7. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

8. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

9. Yadranjiaghdam, B., Pool, N., Tabrizi, N.: A survey on real-time big data analytics:
applications and tools. In: 2016 International Conference on Computational Science and
Computational Intelligence (CSCI), pp. 404–409. IEEE, Piscataway (2016)

10. Oussous, A., Benjelloun, F.-Z., Ait Lahcen, A., Belfkih, S.: Big data technologies: a survey.
J. King Saud Univ. Comput. Inf. Sci. 30, 431–448 (2018)

486 Y. Arfat et al.

11. Philip Chen, C.L., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

12. Borthakur, D.: HDFS architecture guide. Apache Software Foundation. https://
hadoop.apache.org/docs/r1.2.1/hdfs_design.html. Accessed

13. Dean, J., Ghemawat, S.: MapReduce. Commun. ACM. 51, 107 (2008)
14. Vavilapalli, V.K., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., Balde-

schwieler, E., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T.,
Lowe, J., Shah, H.: Apache Hadoop YARN. In: Proceedings of the 4th Annual Symposium
on Cloud Computing—SOCC’13, pp. 1–16. ACM, New York (2013)

15. Apache Hadoop 2.9.1—Apache Hadoop YARN. Apache Software Foundation. http://
hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html. Accessed

16. Welcome to Apache Pig! Apache Software Foundation. https://pig.apache.org/. Accessed
17. Apache Hive™. Apache Software Foundation. http://hive.apache.org/. Accessed
18. Apache Storm. Apache Software Foundation. http://storm.apache.org/. Accessed
19. Apache Spark™—unified analytics engine for big data. Apache Software Foundation. https:/

/spark.apache.org/. Accessed
20. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: clus-

ter computing with working sets. ACM Digital Library (2010). https://dl.acm.org/
citation.cfm?id=1863103.1863113. Accessed 4 Aug 2018

21. Spark Streaming|Apache Spark. Apache Software Foundation. http://spark.apache.org/
streaming/. Accessed 4 Aug 2018

22. Apache Spark: Apache Spark™—Lightning-Fast Cluster Computing
23. Agarwal, S., Panda, A., Mozafari, B., Madden, S., Stoica, I., Panda, A., Milner, H., Madden,

S., Stoica, I., Mozafari, B., Madden, S., Stoica, I., Berkeley, U.C.: BlinkDB: queries with
bounded errors and bounded response times on very large data. Proceedings of ACM EuroSys
2013, Prague

24. Software. AMPLab—UC Berkeley. https://amplab.cs.berkeley.edu/software/. Accessed 5
Aug 2018

25. Hindman, B.: Apache Mesos. Apache Software Foundation. http://mesos.apache.org/.
Accessed 5 Aug 2018

26. Murthy, A.C.: Apache Hadoop YARN. Apache Software Foundation. http://
hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html. Accessed 5
Aug 2018

27. Li, H., Ghodsi, A., Zaharia, M., Baldeschwieler, E., Shenker, S., Stoica, I.: Tachyon: memory
throughput I/O for cluster computing frameworks. Memory. 18, 1 (2013)

28. ML Base. AMP Lab, UC Berkeley. http://www.mlbase.org. Accessed 5 Aug 2018
29. MLlib | Apache Spark
30. Spark SQL & DataFrames | Apache Spark SQL. Apache Software Foundation. https://

spark.apache.org/sql/. Accessed 6 Aug 2018
31. GraphX | Apache Spark. Apache Software Foundation. http://spark.apache.org/graphx/.

Accessed 5 Aug 2018
32. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX. In: First International Workshop

on Graph Data Management Experiences and Systems—GRADES’13, pp. 1–6. ACM, New
York (2013)

33. MongoDB for GIANT Ideas. MongoDB Inc. https://www.mongodb.com/. Accessed 5 Aug
2018

34. Chambers, J.: Bell Laboratories: What is R? The R Foundation. http://www.r-project.org/.
Accessed 5 Aug 2018

35. Data Dryad. http://datadryad.org. Accessed 5 Aug 2018
36. NexisNexis Risk Solutions. HPCC Systems. http://hpccsystems.com. Accessed 5 Aug 2018
37. Sagiroglu, S., Sinanc, D.: Big data: a review. Int. Conf. Collab. Technol. Syst. 42–47 (2013)
38. Neo4j: the world’s leading graph database. Neo4j, Inc. http://neo4j.com. Accessed 7 Aug

2018

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://pig.apache.org/
http://hive.apache.org/
http://storm.apache.org/
https://spark.apache.org/
https://dl.acm.org/citation.cfm?id=1863103.1863113
http://spark.apache.org/streaming/
https://amplab.cs.berkeley.edu/software/
http://mesos.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.mlbase.org
https://spark.apache.org/sql/
http://spark.apache.org/graphx/
https://www.mongodb.com/
http://www.r-project.org/
http://datadryad.org
http://hpccsystems.com
http://neo4j.com

19 Big Data Tools, Technologies, and Applications: A Survey 487

39. Pentaho | Data Integration, Business Analytics and Big Data Leaders. http://
www.pentaho.com. Accessed 7 Aug 2018

40. Talend open source data integration software. https://www.talend.com. Accessed 7 Aug 2018
41. Big data | what is big data? Oracle. https://www.oracle.com/big-data/index.html. Accessed 7

Aug 2018
42. Syncfusion Big Data Platform | Big Data Platform simplifies working with Hadoop on

Windows. https://www.syncfusion.com/products/big-data. Accessed 7 Aug 2018
43. Cloudera. http://www.cloudera.com. Accessed 7 Aug 2018
44. Cloudera. Implementing active/active multi-cluster deployments with Cloudera Enterprise.

http://www.cloudera.com/content/dam/www/static/documents/whitepapers/active-active-
deployments-with-cloudera-enterprise-whitepaper.pdf. Accessed 7 Aug 2018

45. Pivotal HDB | Big Data (2015)
46. Amazon Web Services: Amazon Web Services (AWS)—Cloud Computing Services. http://

aws.amazon.com. Accessed 7 Aug 2018
47. Business Intelligence and Analytics | Tableau Software. http://www.tableau.com. Accessed 7

Aug 2018
48. IBM big data platform—Bringing big data to the Enterprise (2016)
49. Big Data & IoT insights. SAS. http://www.sas.com/en_us/insights/big-data.html. Accessed 5

Aug 2018
50. Big data, big data beyond the hype and big data successes. Teradata. http://

bigdata.teradata.com/. Accessed 5 Aug 2018
51. Nuaimi, E.A., Neyadi, H.A., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart

cities. J. Internet Serv. Appl. 6, 25 (2015)
52. Suciu, G., Suciu, V., Martian, A., Craciunescu, R., Vulpe, A., Marcu, I., Halunga, S., Fratu,

O.: Big data, internet of things and cloud convergence—an architecture for secure E-health
applications. J. Med. Syst. 39, 141 (2015)

53. Collins, B.: Big data and health economics: strengths, weaknesses, opportunities and threats.
PharmacoEconomics. 34, 101–106 (2015)

54. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Heal.
Inf. Sci. Syst. 2, 3 (2014)

55. Huang, T., Lan, L., Fang, X., An, P., Min, J., Wang, F.: Promises and challenges of big data
computing in health sciences. Big Data Res. 2, 2–11 (2015)

56. Barkhordari, M., Niamanesh, M.: ScaDiPaSi: an effective scalable and distributable
MapReduce-based method to find patient similarity on huge healthcare networks. Big Data
Res. 2, 19–27 (2015)

57. Toga, A.W., Dinov, I.D.: Sharing big biomedical data. J. Big Data. 2, 7 (2015)
58. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A

framework for faster porting of scientific applications between heterogeneous clouds. In:
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering, LNICST, pp. 27–43. Springer, Cham (2018)

59. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pp. 207–215. Springer, Cham (2018)

60. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 216–
231. Springer, Cham (2018)

http://www.pentaho.com
https://www.talend.com
https://www.oracle.com/big-data/index.html
https://www.syncfusion.com/products/big-data
http://www.cloudera.com
http://www.cloudera.com/content/dam/www/static/documents/whitepapers/active-active-deployments-with-cloudera-enterprise-whitepaper.pdf
http://aws.amazon.com
http://www.tableau.com
http://www.sas.com/en_us/insights/big-data.html
http://bigdata.teradata.com/

488 Y. Arfat et al.

61. Al Shehri, W., Mehmood, R., Alayyaf, H.: A smart pain management system using big data
computing. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 232–
246. Springer, Cham (2018)

62. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational
intelligence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA
2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 247–257. Springer, Cham (2018)

63. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications.
SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 139–154. Springer, Cham (2018)

64. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications.
SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 155–168. Springer, Cham (2018)

65. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 169–184.
Springer, Cham (2018)

66. Al-Dhubhani, R., Mehmood, R., Katib, I., Algarni, A.: Location privacy in smart cities era.
In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pp. 123–138. Springer,
Cham (2018)

67. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 98–
110. Springer, Cham (2018)

68. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

69. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems—enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems—Problems and Perspectives, pp. 3–
35. Springer, Cham (2016)

70. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on Intel
MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pp. 306–322. Springer, Cham (2018)

71. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on Apache Spark. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac,
I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 323–336. Springer, Cham (2018)

19 Big Data Tools, Technologies, and Applications: A Survey 489

72. Wang, J., Xiao, Q., Yin, J., Shang, P.: DRAW: a new data-grouping-aware data placement
scheme for data intensive applications with interest locality. IEEE Trans. Magn. 49, 2514–
2520 (2013)

73. Lee, S., Sukumar, S.R., Hong, S., Lim, S.-H.: Enabling graph mining in RDF triplestores
using SPARQL for holistic in-situ graph analysis. Expert Syst. Appl. 48, 9–25 (2016)

74. Xia, Y., Tanase, I.G., Nai, L., Tan, W., Liu, Y., Crawford, J., Lin, C.: Explore efficient data
organization for large scale graph analytics and storage. In: Proceedings of the 2014 IEEE
BigData Conference, pp. 942–951 (2014)

75. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International
Conference on Management of Data—SIGMOD’10, pp. 135–146 (2010)

76. Fang, C., Secondary, C.A., Author, C., Fang, C., Liu, J., Ansari, N., Fang, C.: Wireless
networks revealing connectivity structural patterns among web objects based on co-clustering
of bipartite request dependency graph revealing connectivity structural patterns among web
objects based on co-clustering of bipartite request dependency. Under Rev

77. Xue, R., Gao, S., Ao, L., Guan, Z.: BOLAS: bipartite-graph oriented locality-aware schedul-
ing for MapReduce tasks. In: 2015 14th International Symposium on Parallel and Distributed
Computing, pp. 37–45. IEEE, Piscataway (2015)

78. Orozco, D., Garcia, E., Gao, G.: Locality optimization of stencil applications using data
dependency graphs. In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6548 LNCS, pp. 77–
91 (2011)

79. Hassanzadeh-Nazarabadi, Y., Küpçü, A., Özkasap, Ö.: Locality aware skip graph. In:
Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing
Systems Workshops. ICDCSW 2015, pp. 105–111 (2015)

80. Kandemir, M., Choudhary, A., Ramanujam, J., Banerjee, P.: A graph based framework
to detect optimal memory layouts for improving data locality. In: Proceedings of the
13th International Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, San Juan (1999). doi: 10.1109/IPPS.1999.760558

81. Chernov, A., Belevantsev, A., Malikov, O.: A thread partitioning algorithm for data locality
improvement. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3019, pp. 278–285 (2004)

82. Zhang, Y.M., Huang, K., Geng, G., Liu, C.L.: Fast kNN graph construction with locality
sensitive hashing. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8189 LNAI, pp. 660–674
(2013)

83. Zhang, M., Shen, F., Zhang, H., Xie, N., Yang, W.: Fast graph similarity search via locality
sensitive hashing. Adv. Multimed. Inf. Process. PCM 2015. 9315, 447–455 (2015)

84. Yuan, P., Xie, C., Liu, L., Jin, H., Member, S.: PathGraph: a path centric graph processing
system. IEEE Trans. Parallel Distrib. Syst. 9219, 1–15 (2016)

85. Shao, Y., Cui, B., Ma, L.: PAGE: a partition aware engine for parallel graph computation.
IEEE Trans. Knowl. Data Eng. 27, 518–530 (2015)

86. Qin, L., Li, R.-H., Chang, L., Zhang, C.: Locally densest subgraph discovery. In: Proceedings
of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining—KDD’15, pp. 965–974 (2015)

87. Zamanian, E., Binnig, C., Salama, A.: Locality-aware partitioning in parallel database sys-
tems. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pp. 17–30 (2015)

88. Chen, R., Yang, M., Weng, X., Choi, B., He, B., Li, X.: Improving large graph processing
on partitioned graphs in the cloud. In: Proceedings of the Third ACM Symposium on Cloud
Computing—SoCC’12, pp. 1–13 (2012)

490 Y. Arfat et al.

89. Zeng, Z., Wu, B., Wang, H.: A parallel graph partitioning algorithm to speed up the large-scale
distributed graph mining. In: Proceedings of the 1st International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and
Applications—BigMine’12, pp. 61–68 (2012)

90. Lee, K., Liu, L.: Efficient data partitioning model for heterogeneous graphs in the cloud. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage Analysis, pp. 1–12 (2013)

91. LeBeane, M., Song, S., Panda, R., Ryoo, J.H., John, L.K.: Data partitioning strategies for
graph workloads on heterogeneous clusters. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage Analysis—SC’15, pp. 1–12 (2015)

92. Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation and
partitioning on skewed graphs. In: Proceedings of the Tenth European Conference on
Computer Systems—EuroSys’15, pp. 1–15 (2015)

93. Xu, N., Chen, L., Cui, B.: LogGP: a log-based dynamic graph partitioning method. Proc.
VLDB Endow. 7, 1917–1928 (2014)

94. Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large
graphs. In: Proceedings of the 2012 International Conference on Management Data—
SIGMOD’12, pp. 517–528 (2012)

95. Wang, C., Li, X., Chen, P., Wang, A., Zhou, X., Yu, H.: Heterogeneous cloud framework
for big data genome sequencing. IEEE/ACM Trans. Comput. Biol. Bioinforma. 12, 166–178
(2015)

96. Jaiswal, A., Upadhyay, A.: An Enhanced Framework of Genomics Using Big Data Com-
puting. Proceedings of the 2015 International Conference on Computer, Communication and
Control (IC4), Indore (2015)

97. Qin, Y., Yalamanchili, H.K., Qin, J., Yan, B., Wang, J.: The current status and challenges in
computational analysis of genomic big data. Big Data Res. 2, 12–18 (2015)

98. Davis, J., Olsen, G., Overbeek, R., Vonstein, V., Xia, F.: In search of genome annotation
consistency: solid gene clusters and how to use them. 3 Biotech. 4(3), 331–335 (2014)

99. Yeo, H., Crawford, C.H.: Big Data: Cloud Computing in Genomics Applications. Proceedings
of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, 2904–2906
(2015)

100. Heinzlreiter, P., Krieger, M.T., Leitner, I.: Hadoop-based genome comparisons. In: Proceed-
ings of the 2nd International Conference on Cloud and Green Computing, pp. 695–701 (2012)

101. Liang, Y.-H., Wu, S.-Y.: Sequence-growth: a scalable and effective frequent itemset mining
algorithm for big data based on MapReduce framework. In: 2015 IEEE Int. Congr. Big Data,
pp. 393–400 (2015)

102. Dodson, S., Ricke, D.O., Kepner, J.: Genetic sequence matching using D4M big data
approaches. In: 2014 IEEE High Performance Extreme Computing Conference HPEC 2014
(2014)

103. Phinney, M., Cao, H., Dhroso, A., Shyu, C.: Ecosystem. pp. 4–6
104. Toh, S.-H.T.S.-H., Lee, H.-J.L.H.-J., Do, K.-H.D.K.-H.: Basic sequence search by hashing

algorithm in DNA sequence databases. In: 2009 11th International Conference on Advanced
Communication Technologies, pp. 2317–2320 (2009)

105. Meng, M., Gao, J., Chen, J.J.: Blast-Parallel: The parallelizing implementation of sequence
alignment algorithms based on Hadoop platform. In: Proceedings of the 2013 6th Interna-
tional Conference on BioMedical Engineering and Informatics, BMEI 2013, pp. 465–470
(2013)

106. O’Driscoll, A., Belogrudov, V., Carroll, J., Kropp, K., Walsh, P., Ghazal, P., Sleator, R.D.:
HBLAST: parallelised sequence similarity—a Hadoop MapReducable basic local alignment
search tool. J. Biomed. Inform. 54, 58–64 (2015)

107. Sait, S.M., Al-Mulhem, M., Al-Shaikh, R.: Evaluating BLAST runtime using NAS-based
high performance clusters. In: Proceedings—CIMSim 2011 3rd International Conference on
Computational Intelligence, Modelling and Simulation, pp. 51–56 (2011)

108. Boratyn, G.M., Schäffer, A.A., Agarwala, R., Altschul, S.F., Lipman, D.J., Madden, T.L.:
Domain enhanced lookup time accelerated BLAST. Biol. Direct. 7, 12 (2012)

Chapter 20
Big Data for Smart Infrastructure
Design: Opportunities and Challenges

Yasir Arfat, Sardar Usman, Rashid Mehmood, and Iyad Katib

20.1 Introduction

Big data is a buzzword, which catches lots of attention in the recent years. It means
massive amount of structured, semi-structured, and unstructured data collected from
different resources and is not possible to store and process this data by traditional
databases and software techniques [1]. Big data refers to the emerging technologies
that are designed to extract value from data having four Vs characteristics, volume,
variety, velocity, and veracity [2]. Volume refers to the vast amount of data generated
every second. Just think of all the emails, machine generated data, transactions,
IoT, and social media data that we share every second. When this data reaches
to zettabyte or exabyte in scale, data owners need a distributed processing and
storage, which does not come cheaply. Velocity refers to the speed at which new
data is generated and the speed at which data moves around. As the volume and
speed of data generation is increasing rapidly, there is growing need of advancing
the capabilities of the devices, equipment, and software collecting data. Variety
refers to the different types of data that we can use. This data comes from different
resources and is heterogeneous, unstructured, and inconsistent that demands high
storage capacity and efficient processing resources. Value is the most important
aspect of big data; it refers to the process of discovering huge hidden values from
large datasets with various types and rapid generation. Big data allows us to take
informed decision from structured or unstructured data as it contains information,

Y. Arfat · S. Usman (�) · I. Katib
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: yqasim@stu.kau.edu.sa; susman@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_20

491

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_20&domain=pdf
mailto:yqasim@stu.kau.edu.sa
mailto:susman@stu.kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_20

492 Y. Arfat et al.

which cannot be available in small sized data. Big data technologies are being used
in many application areas, see e.g., [3–8].

Most of the existing data mining algorithms and knowledge discovery tools are
optimized for structured data and is difficult to use them to extract the value of the
data from unstructured or semi-structured data. Big data veracity refers to the biases,
noise, and abnormality in data. Big data with their ability to extract meaningful
and valuable information from huge volume of data to enhance decision-making
has recently attracted lots of attention from both academia and industry. Many
organizations have adopted big data solutions to improve operational efficiency,
revenues and to take competitive advantage over their counterparts. The increasing
demands of computational resources and HPDA (High Performance Data Analytics)
resulting in use of HPC (High-Performance Computing) resources for big data
solutions and vice versa open up a new dimension of converged HPC and big data
environment. Smart cities and IoT (Internet of Things) are some of the emerging
market segments of HPDA and different solutions starting to emerge in the recent
years, such as in smart infrastructure [1, 9], healthcare [10–13], transport [6, 14–20],
and other applications [21, 22].

Numerous research publications have been published over the years to give
a comprehensive review of big data tools, techniques, analytics, challenges, and
issues. For example, Kruse et al. [23] focused on the challenges and issues faced by
big data analytics in healthcare. Sivarajah et al. [24] presented a holistic view of big
data challenges and Chauhan et al. [25] focused on big data challenges and issues in
smart cities. Chen et al. [26] examined the background, state-of-the-art techniques,
and some applications of big data to get better understanding of big data concept in
general. Our work is mainly focused on challenges and issues of big data (Hadoop),
primarily focusing on data locality, scheduling, load balancing, heterogeneity, I/O
issues, etc. by analyzing different research efforts over the years to address above-
mentioned challenges. We also provide the taxonomy of the related research.

The rest of the chapter is organized as follows. The next section provides an
abstract overview of Hadoop and its two main components. Section 20.3 gives
an overview of challenges and opportunities with big data in general. Sections
20.4–20.10 provides a detailed survey of opportunities, challenges, and issues of
big data (Hadoop) in terms of data locality, load balancing, heterogeneity issues,
scheduling issues, in-memory computation, multiple query optimization, and I/O
issues, respectively. We also provide the taxonomy of the research efforts conducted
over the years to overcome these challenges. Chapter is concluded in the final
section.

20.2 Hadoop

Hadoop is open source software framework that provides reliable distributed
data storage with design that facilitates high scalability from single server to
multiple commodity hardware, for the distributed processing of large-scale datasets

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 493

using Map-Reduce programming model. Hadoop is widely accepted and adopted
successfully by many organizations like Amazon, AOL, EBay, Facebook, Twitter,
etc. Hadoop has two main units, i.e., Hadoop distributed file system (HDFS) and
Map-Reduce processing.

20.2.1 Hadoop Distributed File System

Hadoop distributed file system (HDFS) is a system that allows multiple commodity
machines to store data from a single source. HDFS consists of name node and data
node and is operated as master slave architecture. Name node serves as a master
component and data nodes serve as slave components [27] (Fig. 20.1).

Name nodes comprise only the metadata information of HDFS [27, 28], i.e.,

• The blocks of data that are present on the data node
• How many times the data files have been replicated
• When does the name node start?
• How many data nodes constitute the name node
• Capacity of the name node and space utilization

Data node comprises

• Data processing
• All the processing data that is stored on data nodes and deployed on each machine
• The actual storage for the file being processed
• Serving read and write requests for the clients

Fig. 20.1 Hadoop distributed file system

494 Y. Arfat et al.

20.2.2 Map-Reduce

HDFS works with map/reduce to divide the data in parallel fashion on local or
network nodes. The parallel structure requires that data is immutable and cannot
be updated. It begins with input files where data is initially stored typically residing
in HDFS. The input files are split up in input format, which selects the file, defines
the inputs splits, breaks the file into tasks and provides the place for the record reader
objects. The input format defines the list of tasks that makes up the map phase. The
task then assigns to the node of the system based on where the input file chunks
are physically resident. The input split describes the unit of work that comprises
a single map task in a map-reduce program. The record reader loads that data and
converts it into (key value) KV pairs that can be read by the mapper. The mapper
performs the first phase of the map-reduce program given the key and the value,
the mappers export key, and value pairs, and sends these values to the reducers.
The process of moving map outputs to the reducers is known as shuffling [28]
(Fig. 20.2).

The set of intermediate keys are automatically stored before they send to the
reduce function. A reducer instance is created for each reduce task to create an
output format. The output format governs the way objects are written, functioning
similar to input format class as described earlier. The output format provided by
Hadoop writes to the files to HDFS [27, 28].

Fig. 20.2 Map-Reduce

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 495

20.3 Challenges and Opportunities with Big Data

Datasets grow in size over the years generated from enterprises, IoT, biomedical,
and other sources. Imagine the amount of data being generated on daily basis from
mobile devices, sensory technologies, software logs, cameras, and social websites.
Data captured at high cost is often ignored and deleted due to lack of storage
requirements but big data has changed the way we store and capture data [26].
The data generated by these sources are heterogeneous, which brings numerous
challenges and diversity in solutions. Big data allows us to take educative decisions
from structured or unstructured data as it contains great values, which cannot be
explored in small sized data.

Retailers get to know their customer needs, attitudes, and motivations to buy.
They use this information to create a competitive advantage by making relevant
personalized offers to individual customers. Manufacturers are using big data to
determine optimal maintenance cycles to replace component parts before they fail,
thus increasing uptime and customer satisfaction. Pharmaceuticals are using big data
to accelerate drug discovery and offer more personalized medicine. Government
agencies are using big data to protect against cyber-attacks. While the reward for
the successful big data initiative can be game changing, the reality is, there are some
challenges to overcome.

To store and access huge volume of data, companies needed to go for either
horizontal or vertical scaling. In horizontal scaling, multiple independent machines
are added to distribute the workload across many servers with multiple operating
systems running on each. Companies normally contact database vendors for a bigger
solution, which requires significant investment. With horizontal scaling we can
increase the performance in small steps and thus minimizing the upfront investment.
One can scale out as much as needed but data distribution and parallel processing
complexities needed to be handled at the software level. Vertical scaling involves a
high-performance machine with more memory, storage and processing capabilities,
and easy maintenance; high availability of software is added advantage in vertical
scaling. But at the same time there is limit on the amount of scaling that can be done
and also upfront cost to increase the hardware capabilities [26].

The solution for big data comes from the interdisciplinary activities and can be
broadly categorized in management science, information science, match and statis-
tics, and engineering. Management science involves in data acquisition and data
management while information science includes data access and processing. Data
understanding comes under mathematical activities and application development is
the engineering activity [29].

The semi-structured and unstructured data needs to be transformed to structured
data as the current data mining or machine learning algorithms are not optimized
to handle huge chunks of unstructured data. The current technologies are also
lacking the computing capability to handle the big volume of unstructured data
[30]. Big data technologies have become commodities for mass adoption provided
by Hadoop platform for storing and processing big data. Most of the data storage

496 Y. Arfat et al.

solutions reside in clouds. Data collected from different resources is inconsistent
and redundant which needs pre-processing for effective data analysis. The pre-
processing may involve in providing a user with a uniform view of integrated
data, which is collected from multiple resources. To improve the data quality and
consistency data needs to be purified by identifying incomplete, un-reasonable and
in-accurate data. Redundant data not only cause transmission expense but also use
storage resources. This redundancy needs to be eliminated for data consistency and
reliability. Although data redundancy methods help to remove redundant data but on
expense of computation cost, e.g., data compression and decompression especially
for video data which has temporal and spatial redundancy [29, 30].

The following sections provide a detailed survey of opportunities, challenges,
and issues of big data (Hadoop) in terms of data locality, load balancing, heterogene-
ity issues, scheduling issues, in-memory computation, multiple query optimization,
and I/O issues, respectively

20.4 Data Locality and Data Placement Issues in Hadoop

MapReduce is widely used for distributed parallel processing and data intensive
applications. In Hadoop, the input data file is divided into different data blocks.
These blocks are distributed into many nodes in the cluster. One of the important
concepts of the Hadoop is to move the computation instead of moving the data when
we are dealing with a large amount of data. It helps to improve the performance
and network congestion of the system. The following section describes some of the
research efforts to optimize the performance of Hadoop in terms of data locality.

Hadoop implements three levels of locality. First level locality is node locality. It
is most efficient locality where it processes the map tasks. Second level locality
is rack level locality; if a task is failed to achieve the first level locality then
scheduler launches the task where computation node and data node are on the
same rack. If still it cannot be able to get the second level locality, then it
again starts the job on the node having the different racks; it is also called the
rack off level. Straggler problem occurs due to the unavoidable runtime clash for
the transmission capacity of system, processor, and memory. Radha et al. [31]
proposed the speculative execution performance balance where data locality can
fulfill by slot prescheduling. Moreover, delay scheduling is feasible for improving
the data locality of MapReduce [2, 3]. They also proposed the dynamic map reduce,
concentration of Hadoop fair scheduler as compared to FIFO scheduler. It has three
main components, i.e., rescheduling of slots, speculative execution balance, and
slot allocation of Hadoop dynamically. Primary objectives of proposed approach
are to improve the job execution time on the cluster and enhance the performance
of MapReduce. Data locality minimizes the network traffic and bottleneck in data
intensive applications. Traditional high-performance computing (HPC) has separate
computation and storage. For multiple users, it fulfills the needs by providing
the high-speed link interconnection. But the capacity of these links is very less

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 497

compared to the bandwidth of a computing node. Zhenhua et al. [32] explored
the data locality by providing mathematical model for the MapReduce scheduling
and investigated the impact of data locality theoretically. They investigated the
scheduling of Hadoop and proposed an algorithm. The main objective of algorithm
was to schedule the multiple jobs concurrently instead of one by one for the optimal
data locality.

Eltabakh et al. [33] introduced co-Hadoop which is an extension of the Hadoop
framework. It enables the applications to control where data is stored. There is no
need to convert the data into the certain format. Instead, there is an application that
will help by giving the hints to co-Hadoop that some set of files are related and
need joint processing. They developed this technique in such a way so that it can
achieve the fault tolerance of Hadoop. They argued that colocation could be used for
the improvement of efficiency of various operations having aggregation, columnar
storage indexing and joins in a context of log processing. For the processing of the
log they find out two use cases, one is sessionization and second is joins. The main
aim is to speed up query processing and showed that if both co-partitioning and
collocating are used together, higher performance can be achieved on sessionization
and joins. MapReduce is very popular programming model for processing and
analysis; it has limitations such as an application created for a single cluster cannot
be work for large-scale data processing for distributed environment. It also has
limitation for distributed data processing such as efficiency and reliability. Wang
et al. [34] have introduced G-Hadoop, a framework of map reduce, whose main
objective is to provide the large-scale distribution among the various clusters. The
need for data intensive analysis among many distributed clusters for scientific data
has risen significantly nowadays. To overcome these issues they designed a new
architecture of G-Hadoop, which has master and slave computation model. They
also stated that existing cluster could be added G-Hadoop with little modification.

There are many issues and challenges in the processing, storage, and analysis of
big data. However framework like MapReduce can manage big data by processing
and distributing data among the various nodes. MapReduce allows the users to
perform the task without having the internal knowledge and detail of the system.
But the problem occurs when it works in the heterogeneous environment. Hsu
et al. [35] introduced new approach to improve the data locality and load balancing
using by virtual machine mapping. Before the mapping, it dynamically divides
the data and utilizes the resources of using the virtual machine mapping in the
reduce phase. The primary objective of this technique is to enhance the performance
of MapReduce in the heterogeneous environment. The advantage of using this
strategy is to minimize the overhead in distributed system and to optimize the
shuffling performance and workload balancing at runtime. The experiment shows
that proposed technique enhances the performance of MapReduce in terms of data
locality and total execution time. Performance of Hadoop map-reduce cluster can be
improved by avoiding the off-switch communication. Presently, a primary focus of
Hadoop is to minimize off-switch task of a map phase. Grouping of blocks in racks
could significantly minimize the exchange of off-switch data and thus can decrease
the execution time. Yu et al. [36] proposed this approach to reduce the off-switch

498 Y. Arfat et al.

data access and execution time. They also find out the loss of parallelism due to
sticky effects and conflicts during the grouping of blocks for the enhancement of the
data access. To minimize these effects, they also introduced the task scheduling and
data placement to reduce the impact of grouping blocks approach on parallelism.
They also conducted the experiments to validate their approach and show that
execution time of the job reduced up to 56% with minimum loss of parallelism.

MapReduce performs extensively join operation during the processing of a large
amount of data and traditional approaches are not effective due to the partitioning
skew and take long to response for the execution. Lin et al. [37] proposed the skew
avoiding and locality aware algorithm by using volume aware locality in spite of
hash partitioning. It distributes the data and reduces equally only when there is skew
data and also transfers the data based on the locality of the network without any
modification in MapReduce framework. They have also checked the performance of
the proposed method in terms of effectiveness of partitioning, a degree of skew, and
response time of the join operation. Rhine and Bhuvan [38] proposed locality aware
scheduling and splitting strategies to improve the performance of MapReduce. In
locality aware scheduling approach, it checks that slot is available for the local data.
On the other hand, input-splitting method verifies that the cluster data blocks from
the same node splits into single partition. They executed splitting and scheduling
methods separately, to show the better performance without any modification.

Data intensive applications and cloud environment bring new challenges for
the data such as computation, assessment, and placement. Network traffic plays
a major role in the performance of data intensive applications. Some of these
existing challenges can be reduced by increasing the data locality in the distributed
applications. Chen et al. [39] addresses the data locality issues in Hadoop and
proposed the locality-aware scheduling (LaSA) algorithm. In large-scale Hadoop
clusters improving the data locality of the MapReduce is very important by
moving the computation instead of data. Optimal tasks scheduling can minimize
the overhead of network traffic, which is essential for the efficiency and stability of
the system. Most of the available schedulers do not consider the data locality during
the reduce phase which affects the performance of the application. To improve the
data locality, Tan et al. [40] applied the threshold-based optimal placement for the
reduce task to reduce the fetching cost of the data. The issue of a partitioning
skew due to a massive amount of data transfer during the shuffling phase is one
of the major bottlenecks which causes a significant impact on the performance.
Skew partition causes the network congestions due to the blind partitioning. Ibrahim
et al. [41] proposed a novel locality and fairness aware key partitioning (LEEN)
methodology. They argue that locality and fairness are important factors for the data
partitioning in MapReduce. The proposed technique solved this issue by providing
the asynchronous scheme for the map and reduce phase. It has full control on the key
distribution during the reduce phase and improves the data locality and fairness of
MapReduce. Experiments results show that proposed technique improves the overall
performance of the Hadoop by 40% compared to the default technique.

To improve the data locality and load balancing, Panchputre et al. [42] proposed
various steps. Affinity is calculated using the mathematical formula, then they assign

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 499

the weight to the various components based on the location of the server of a region.
They also evaluated the proposed scheme and found out that locality aware balancer
performs better than the simple load balancer. Wang et al. [43] have described that
load balancing is essential for the disturbed system and task to achieve the best
performance. They argue that in work stealing environment, tasks are randomly
transferred from one heavy loaded scheduler to the idle scheduler. However, the
data locality of the data intensive applications where the larger amount of data is
transferred blindly is an important factor. To solve this issue, they tried to improve
the work stealing approach by organizing that task queue on the basis of task
location and its size. They implemented this approach using the MATRIX that is
a platform for the multiple tasks computing scheduler. Using this method, they tried
to achieve load balancing and data locality. The distributed key value pair is used to
organize and manage the metadata, of tasks. They evaluated their approach by using
the different scheduling policies for various applications.

Park et al. [44] proposed dynamic resource reconfiguration (DRR) scheme for
data intensive applications to maximize the resource utilization of the individual
virtual machine (VM) by increasing its capability. Using this technique, they tried to
improve the data locality of the overall system. Hadoop and MapReduce framework
have scheduling issues which are addressed by Zhang et al. [45]. Over the years
data locality is widely investigated for the cloud environment. They proposed
data locality aware scheduling for improving the performance of the MapReduce
framework in a heterogeneous environment. It receives the request from the node
and schedules the task preferentially on the requesting node; if it does not exist then
will go for the near- by node and decide whether it schedule the task or reverse
the task for the storage of data for input by sending the data on the fly. For the
evolution of the technique, they compared the proposed method with default Hadoop
scheduling and find out it improves the data locality and decreases the execution and
response time.

It is very costly to fetch data from the remote server in the large processing of
data. So, it is necessary that data should be co-located with computation. Fan et al.
[46] proposed a dependency aware data locality for the map reduce (DALM). It is
a replication-based approach for the general input real-world data that is dependent
and skewed. DALM adjusts the dependency of the data in locality framework and
has two main parts, one is computing factor of each file and second is replica
placement. The proposed methodology is compatible with traditional infrastructure
and can be extended to the other distributed paradigm of computation. Khan et al.
[47] investigated the various scheduling algorithms, i.e., DARE scheduling, delay
scheduling, matchmaking scheduling, prefetching, pre-shuffling, and next-k-node
algorithms. The basic purpose of these algorithms is to improve the data locality.
They also evaluated these algorithms and found that these algorithms solve the data
locality problem but raise many other issues like cost of replication and an overhead
of computation.

500 Y. Arfat et al.

20.5 Load Balancing

Load balancing can be broadly categorized as static and dynamic. Static load
balancing techniques are usually based on the greedy algorithms, search algorithm,
and machine learning algorithms. Usually, overheads occur at the start of the static
load balancing. In dynamic load balancing, there are also various techniques such
as stream based, cloud computing, and discrete event simulation. Usually, map and
reduce stages are used to parallelize and process large amount of the data efficiently
but data skew problem causes data imbalance. Ye Chen et al. [48] proposed a new
partitioning cluster locality algorithm (CLP). It consists of three parts. The first
part is pre-processing; in this part, they select the sample from the main collection
of data, so that they can understand the distribution of data. The second part is
clustering; in this part data is formed from the various cluster data. Data that
have the same key kept with the same cluster so that it can reduce the size of
data. Third and final part is partition of locality; it assigns the data to the cluster
suitable according to data locality. They also analyzed according to the execution
time, data locality, and skewed degree. They showed that proposed technique is
better than default technique but comes with large overhead due to extra Mapreduce
phases.

Hadoop applications run as containers, so the problem like concurrency affects
the job completion time and resource usage of the system. When there are too
many concurrent containers, resources bottleneck occurs, and system resources are
underutilized. Kamal et al. [49] introduced a new approach, concurrent container
slot (CCS) and tried to enhance the performance of Hadoop applications. The
proposed method is dynamic, and uses the controllers that take instantaneous score
or score to CSS ratio as input and generate the new CSS as output. This score
is a combination of user CPU, blocked processes, and context switches values.
They also assessed the water level, PD, and PD + pruning controller. On the
other hand, a dynamic controller has the better performance. To make sure that
their work applies to the all of the map reduce applications, they selected the
six applications in this work to have diverse usage of IO and CPU usage profile.
Finally, they find out that using the dynamic tuning offer better performance instead
of using the existing default best settings. Indranil et al. [50] proposed parallel-
boosting algorithm and also define a framework for the MapReduce to improve its
performance. They analyzed the performance of the proposed algorithm by using the
Amazon EC2 to show improved speedup, accuracy, and scalability. Sui et al. [51]
have surveyed various techniques and frameworks for the load balancing and data
intensive computation. They also explored the various data intensive frameworks
such as MapReduce, Hadoop, and Dryad framework.

Web-based applications have a large amount of data and handing the millions
of users is one of the challenging tasks. Traditional methods to process the data
are inefficient due to computation cost. Most of the frameworks proposed over the
years to handle these issues are primarily focusing on homogeneous data, but a
performance of these frameworks suffers while dealing with heterogeneous data.

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 501

Ajitha et al. [52] introduced a dynamic allocation framework, to allocate available
resources based on the direct acyclic graph. The proposed architecture consists
of job manager, which is responsible for managing the jobs, and divides the jobs
into tasks. The second component is task manager, run by the virtual machines,
receives the new task, executes it and informs others about its completions. The third
component is a load balancer, it uses the join idle queue algorithm, and whenever
task manager becomes idle it joins the queue. The main objective of proposed
approach is to enhance the throughput, load balancing and decrease the latency in
the heterogeneous environment. Data is not co-located in Hadoop by default, which
affects its performance and can be resolved by grouping and partitioning the log
processing operations, i.e., grouping joins, sessionization, and indexing. Nishanth
et al. [53] proposed a new approach that achieves the load balancing and colocation
of HDFS data blocks. It was developed on the co-Hadoop. It divides the input files
by grouping that is an attribute of the similar data. The same set of data is co-
located so that similar data can be partitioned. So the problem of load balancing
can occur due to the skew data. So they enhanced the co-Hadoop and introduced
the new algorithm to solve the problem of load balancing. Proposed scheme
ensures the load balancing, fault tolerance and reduces the application execution
time.

Data skew occurs in various applications like mining of data, operations of joins,
and graph-based applications, resulted in load imbalance. Some approaches handle
the skew of the data, but it leads to additional overhead and computation cost. Xu
et al. [54] proposed a new technique that has two phases, one is sampling and
second phase is job execution of MapReduce. In sampling phase, it computes the
key frequency approximated distribution to make the good partitioning scheme. In
MapReduce job execution phase, it applies the partitioning scheme on each step
for grouping the keys quickly. To achieve the load balancing, they further proposed
the cluster split and cluster combination methodologies. The proposed technique
reduces the overall execution time by improving data locality. Data skew causes
some tasks to take longer execution time and degrade the overall performance.
Chen et al. [55] proposed the lightweight data skew mitigation technique to solve
the load imbalance problem. As compared to the existing approaches, it does not
need sampling at runtime. It is an innovative method to balance the load among the
reduce task that encourages to split the large keys when there is the semantics of
applications. It also modifies load of MapReduce in a heterogeneous environment.
To attain the goal of load balancing, they also try to achieve the transparency,
parallelism, accuracy, large cluster splitting and tackled heterogeneity issue to
enhance performance. Zhou and Wen [56] have proposed the novel scheme to
improve the load balancing in Hadoop. The proposed scheme is based on the user
history for specific access of data and mixture of analytical process hierarchy (APH)
for the load balancing. It checks the history of file access, a capacity of the machine,
CPU and memory utilization.

502 Y. Arfat et al.

MapReduce has good performance in a homogenous environment, but in the
heterogeneous environment its performance is suffered and takes a long time to
execute the job. When various nodes work together on the same amount of data,
problem of load balancing arises in heterogeneous environment. Gao et al. [57]
proposed a new scheme for load balancing based on the performance of the node
(LBNP). It is based on the history of the evaluated performance of the node and
assigns the task according to the performance of each node. They tried to enhance
the efficiency of the MapReduce by shortening the tasks of the reduce phase. There
are also some limitations in the existing load balancing techniques, i.e., static load
balancing is less effective in a large size cluster. Fadika et al. [58] proposed a
MapReduce with adaptive load balancing for heterogeneous and load imbalanced
cluster (MRLA). The proposed technique is suitable for both homogeneous and
heterogeneous environment. They also compared their technique with existing
techniques, and enhanced performance is reported. Shi et al. [59] addresses the
relocation of the shuffling phase in MapReduce and aimed to reduce the network
traffic, balance the workload, and remove the network hotspot for improving the
overall performance. To achieve these goals they have introduced a new technique
and name it as smart shuffling scheduler. They showed that proposed scheduler
outperforms CoGRS and random scheduler. Myung et al. [60] proposed a multi-
dimensional range partitioning (MDRP) to address the data locality and skewness
issues. The proposed technique solves the limitations in two ways, one to handle the
data skew in the better way and second, to handle the degree of skew data. They also
performed experiments with the proposed technique and compared it with the range-
based method. The proposed method is 6.76 times faster compared to its counterpart
without any modification to original MapReduce.

20.6 Heterogeneity Issues

As Hadoop implementation assumes, most of the map tasks are data local and
computing nodes are homogeneous, which are not always true, as in virtualized data
centers. Map-reduce performance is severely affected if data locality is not taken
into consideration in heterogeneous environment. Xie et al. [61] introduced a tech-
nique for placing data across the node in a way that each node has a balanced data
for the processing. They also identified performance problem in HDFS (Hadoop
Distributed File System) on heterogeneous clusters. Motivated by the performance
degradation caused by heterogeneity, they have designed and implemented a data
placement mechanism in HDFS. The proposed scheme distributes fragments of an
input file to heterogeneous nodes based on the computing capabilities. Rajashekhar
et al. [62] proposed a mathematical model; based on the specification of hardware,
it estimates the computation ratio. The model calculates the computational ratio by
resources available at execution time. MapReduce consists of various nodes that are

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 503

different according to the computing capacity of the different nodes in cluster. They
assumed that it is necessary for data placement algorithm to divide the input data
based on the computing capability of a node in clusters. They proposed a method,
which is based on the history that calculates the computation ratio of a machine
when a job is completed.

As Hadoop assumes that each node in a cluster has the same capability of
processing, the data and task are local. But on the other hand, it decreases the
performance and increases the overhead MapReduce. To overcome these issues,
Lee et al. [63] proposed the dynamic data placement (DDP) policy for mapping
task of data locality to allocate data blocks. DDP consists of two different phases,
in first phase input data is written into the HDFS, in the second phase given job
is processed. By default, Hadoop policy of data placement can be applied to the
homogeneous environment, but in a heterogeneous environment, it creates problems
like load imbalance and unnecessary overhead. They introduce the DDP algorithm
to solve the problem like load balancing, data locality, and overhead reduction.
For the analysis, they did experiments on the two types of job, word count and
grep, to evaluate the performance of proposed scheme in Hadoop heterogeneous
cluster. They find out that DDP can improve the word count up to 24.7% with
an average of 14.5%. But in grep, the DDP improves up to 32% with average
enhancement up to 23.5%. Hadoop is the well-known framework to deal with
extensive data of distributed applications among the many clusters of commodity
servers. A main advantage of the Hadoop is that it handles failures. Hadoop has by
default homogeneous scheduling approach for the processing of various jobs. But in
the cluster, performance of Hadoop suffers due to a heterogeneous environment. To
overcome this issue, Sujitha et al. [64] proposed the new technique for heterogeneity
and data locality for Hadoop. In this approach, they define a new architecture,
which consists of various levels. The first level includes an operating system,
which controls the hardware; in second tier there is Java virtual machine. The
third level consists of three components: (1) processing of data, (2) data storage,
(3) coordination; the core purpose of these components was to make processing
and storage, fault tolerant, fast, and scalable. Fourth and fifth level consists of
network and application layer, respectively. They also evaluated their technique
in terms of response and execution time, fairness, velocity, and mean time for
completion.

Hadoop supports homogenous task and due to the heterogeneity, Hadoop faces
significant challenges in cloud environment. Existing techniques have several issues,
i.e., consuming unnecessary bandwidth, not useful when history is not accessible,
and cluster size increasing the complexity of the system. To address these issues,
Ubarhande et al. [65] have proposed the new data distribution technique for
the heterogeneous environment. Distribution of data includes the calculation of
capability of processing of every node specified in Hadoop cluster. Algorithm begins
with response of the log file of each slave node, which is generated by the speed
execution analyzer. Using the proposed technique, they tried to improve the response

504 Y. Arfat et al.

time of the Hadoop system. Moreover, they also verify the proposed technique
whether the response time is increased or not; they tested their technique using the
two applications of MapReduce. They find out that the performance of the Hadoop
is improved in a heterogeneous environment when data size is increased. Hadoop
MapReduce allows user to flexible customization and the convenient usage. There
are some issues in the processing of a large amount of data; one of the issues is
straggler task, which delays the processing of the job due to the slow running tasks.
Huang et al. [66] have proposed two techniques, one is estimated remaining time
using linear relationship model (ERUL) and second is extensional maximum cost
performance (ex MCP). It is dynamic load aware approach and also performs well
and overcomes the issues of the state-of-the-art approach such as LATE and ex MCP.
In MCP, they also tried to allocate the slot’s value that is ignored in the traditional
MCP. The experiment results show that proposed approach estimates remaining time
of the task efficiently and also detects the stragglers accurately.

20.7 Scheduling Issues

There are many challenges existing in Hadoop, which ranges from the job schedul-
ing, locality of data processing, usage of resources efficiently, and fault tolerance.
Hadoop uses by default first in first out (FIFO) scheduler and uses the two different
types of scheduling policies, one is job level and second is task level. Therefore, task
assignment is a responsibility of scheduler; a job will be moved to the queue when
submitting this job. From the job queue, the job is divided into tasks and distributed
into different nodes. By using the proper assignment of tasks, time of the job
completion can be reduced. The performance of Hadoop framework depends on the
hardware configuration of each node and cluster size. Prasad et al. [67] analyzed the
performance of scheduler for multi-jobs in the Hadoop cluster, i.e., homogeneous
and heterogeneous workload. They have compared different schedulers, which are
default scheduler (FIFO), fair scheduler, and capacity scheduler. They compared
these schedulers regarding job execution time and waiting time for a job. They find
out that default scheduler takes less time when a job is small but takes the more time
when the job is bigger. The fair scheduler takes the less time for job execution, and
the capacity scheduler consumes more time for the job execution as compared to
the fair scheduler. Job scheduling in MapReduce is an important and critical issue
that affects the performance of Hadoop framework. Sethi et al. [68] introduced a
new algorithm that runs the high priority jobs on the free nodes. Scheduler will
assign tasks on some other nodes based on the availability. The primary objective of
the proposed technique is to process the jobs locally to improve the throughput and
response time. Moreover, they identify the problem with delay scheduling regarding
the overhead on job tracker. The proposed algorithm reduces the cost on the job
tracker by distributing the load on task tracker.

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 505

Zaharia et al. [69] have proposed a new technique for the cluster scheduling to
achieve the locality and fairness. There exist a tradeoff between fairness and locality
as performance of both is interconnected. So to solve the fair sharing problem there
are two approaches, one is to kill the task or wait for the job to be completed and
then submit the new job. The second approach is to achieve the data locality. To
address these issues, an algorithm is proposed called delay scheduling that addresses
the fairness and data locality issue. They also argued that delay scheduling is
not performing well for the environment like Hadoop. But this approach is not
suitable where the fraction of a task is longer than a job and there are few nodes
per slots. However, they believe that it can improve by two things first by short
tasks and usage of multicore environment. They also discussed various ways for the
generalization of delay scheduling, i.e., scheduling preferences, load management
mechanism, scheduling policies, and distributed scheduling. They also implemented
the delay scheduling in Hadoop fair scheduler (HFS) which improves the throughput
for a heavy workload and also improves the execution time for shorter jobs. Sun
et al. [70] proposed the high-performance scheduling optimizer (HPSO). The main
objective of HPSO is to decrease the execution time of MapReduce and improve
its overall performance. HPSO consists of three modules prefetching, scheduling
optimizer, and prediction. The main job of scheduling optimizer is to predict the
suitable nodes of task tracker in which upcoming task will be allocated. Once
the decision of map task scheduling is done, than HPSO loads the estimated data
using the prefetching module. HPSO improves the data locality for the MapReduce
by prefetching. HPSO works by predicting the most suitable node for an already
pending task by determining when to prefetch the task. For launching new task, it
preloads the data required to the memory without delay. It also minimizes the time
of map task and decreases the time of MapReduce job.

Gu et al. [71] introduced the optimized Hadoop named as SHadoop to improve
the performance of MapReduce. It has two main phases, job initialization and job
termination. It provides the instant messages for the communication for efficient
and important event notifications instead of heartbeat mechanism. The proposed
approach is evaluated with various benchmarks and approximately 25% improve-
ment is reported compared to default approach. Yang et al. [72] introduced a new
scheduling algorithm that takes Map and Reduce phases as two separate phases
in a homogenous environment. They have proposed a novel one to one sampling
technique that calculates the average time of execution for the MapReduce tasks.
They also argue that proposed methods take fewer resources for the map and reduce
phases to determine the characteristic of job and which job property is more suitable.
The proposed algorithm improves the efficiency and real-time scheduling for the
MapReduce. Sadasivam et al. [73] addresses the problem of task assignment in
the heterogeneous and homogeneous environment by applying the hybrid particle
swarm optimization genetic algorithm (HPSO-GA). The operation of GA such as
mutation and crossover utilizes the resource of data intensive application efficiently
and completes the task within given time. The main objective of proposed algorithm

506 Y. Arfat et al.

is to divide the workload of each node according to the processing capacity of a
node in the heterogeneous environment. The proposed algorithm is a combination of
both particle swarm optimization and genetic algorithm. The operations of particle
swarm optimization (PSO) and genetic algorithm (GA) are applied in specific
particles. Allocations of the tasks are based on the fitness value, to balance the
load. There are various steps in this algorithm; initially, it initializes the count
of the generation, size of the population, and maximum generation. It generates
the initial population of particles randomly. It calculates the fitness value of the
population and updates the generation of population and velocity after they perform
the crossover operation. They also evaluate the fitness function of the particles. They
continue this process until they get the global best particles. HPSO-GA applied on
the MapReduce framework improves the utilization of the resource and load balance
in a grid environment. Reliability, efficiency, and scalability of MapReduce also
improved with the proposed methodology.

Li et al. [74] analyzed the LATE scheduling algorithm to analyze how much time
needed for a particular task to complete. The main drawback of a LATE algorithm is
its inability to deal with data locality in cloud computation. It executes reduce task
without considering data is local or not. On the other hand, it executes the map task
locally. To improve this algorithm, they have stated following steps. One checks the
speed of the node; if it is slower than the threshold, it is better to ignore it; otherwise
continue the processing. According to the request of task node in the particular rack,
make sure that if task is slow then find out how much time is remaining to complete
that task. The third step is to make sure that if task being executed in other rack is
slow then keeps it to another queue. The fourth step is to find out whether the task
has an access to data locally, if it doesn’t have, than make sure the remaining time
of a task is longer than a threshold value. Their experiments show that the proposed
enhancement reduces the response time and improves the throughput of the system.

20.8 In-Memory Computation

Zaharia et al. [75] proposed a resilient distributed dataset (RDD), so that developer
can able to perform the in-memory computation on the massive cluster in the
fault tolerant way. They addressed two major issues, inefficiency in case of an
iterative algorithm and interactive data mining. In both case data is not stored
in the memory for computation instead the data is stored on hard disk, which
needs multiple accesses and becomes the bottleneck for these algorithms. Moreover,
existing frameworks reuse the data by storing it to the stable external storage. It
also causes an extra overhead for the disk I/O, replication of data, and serialization,
resulting in increased execution time of an application. The proposed technique
RDD has a parallel data structure and optimized data placement, and it provides
the fault tolerance, having the rich manipulation operators. Cliff et al. [76] have

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 507

presented the coarse-grained distribution memory for data analysis which allows
user interactive query processing and deep analytics for large dataset. They also
argue that it is essential to manipulate in-memory computation for the sophisticated
data analysis, which is valid for the machine learning algorithms as these algorithms
are iterative in nature and have a strong temporal locality. The traditional database
uses the fine-grained technique, which works only on the single record. In case of
a large number of nodes, fine-grained approach is hard to scale and provides the
failure recovery. Matei et al. [77] proposed a framework called spark that enables
the fault tolerance and scalability of map reduce for in-memory computation. They
have introduced the resilient distributed dataset (RDD) (read only object collection)
and are used to rebuild the portion, which is lost. Spark also consists of two types
of variables; one is broadcast variables and second is an accumulator, which makes
more reliable processing on the large dataset.

20.9 Multiple Query Optimization

The most common problem that users are facing is to query data over Hadoop. The
user uses the traditional infrastructure of RDBMS and is not aware of an internal
aspect of MapReduce, for data extraction from the warehouse. Hadoop Hive is an
open source tool to address these issues. Dokeroglu et al. [78] reviewed the multiple
query optimization (MQO), which gives higher performance over decision support
system [79, 80]. They proposed the shared hive to improve the performance of
Hadoop hive. The proposed approach processes the query of HiveQL for improving
the execution time. In shared hive, they have detected the common task of TPC-H
and Hive Query and merge them together to form the global set of insert query.
Dokeroglu et al. [81] have analyzed the performance of MapReduce based query
execution on the Hadoop using the different virtual resource settings and observed
the performance results under each setting. The distributed environment of Hadoop
takes advantage of the more power of CPU and RAM capacity than the network
bandwidth, for higher performance. On the other hand, data warehouse with larger
sizes consumes the greater network bandwidth as compared to the smaller data
warehouses.

Spark provides the feature like fault tolerance and allows users to run the
query with much faster rate, and machine learning code speeds up as compared
to the Hadoop. Unlike a traditional system, spark shows that it is possible to
achieve the speedup while keeping the execution engine of MapReduce and without
compromising the fault tolerance. Xin et al. [82] have extended the execution engine
of spark by providing the in-memory computation based on column orientation
and re-planning the mid query for efficient execution of SQL. Spark uses both
MapReduce and traditional techniques into column-oriented storage and partial
direct acyclic graph (DAG) implementation.

508 Y. Arfat et al.

Guoping et al. [83] presented two different techniques to optimize the multi-
query on the MapReduce. A first technique is multi-job optimization for the
MapReduce framework as it merges the multiple jobs into a single job, so it can
scan and share the input file and output. They have also proposed multi-query
optimization based on the materialization that supports multi-jobs sharing. An
algorithm is proposed to organize jobs in optimal way with optimal processing to
each group. Cherif et al. [84] proposed new technique on the basis of HadoopDB.
The primary objective of this technique is to improve the performance of Hadoop by
adding more components to the system. They also introduced a new space efficient
data placement technique for the MapReduce warehouse and SQL-translator. Higher
performance, flexible query interface, scalability, and fault tolerance are main
concerns for optimal and efficient query processing. The processing of a large
amount of data and efficient analysis on the cloud is critical. The essential thing for
processing and analysis of data is the similarity of joins. Silva et al. [85] proposed
multi-round MapReduce similarity joins (MRsimJoins). A multi-round MapReduce
based algorithm efficiently solves the problem of similarity of joins. It divides the
data and distributes among the node until subset is small enough to process by a
particular single node. The process is also divided into various rounds. An input
data is partitioned by initial round and previously generated partition done by the
subsequent round. MRsimJoins executes the data until all data is processed. Two
types of partitioning are used for the data using K pivots, one is window pair and
other is base partitioning. Window pair partitioning has all the recodes in boundary
between two base partitions. Base partitioning consists of all records that are close
to the pivot than any other pivot. So the proposed technique is more general and it
can be applied to any dataset.

Dan Suciu et al. [86] have presented an algorithm for the evaluation of query
and edge label graph on the semi-structured data. This algorithm also provides
the efficient communication steps and transferring of data during the assessments.
However, they mentioned that algorithm has an issue like communication data is
gathered from the single site. It leads us to the bottleneck, when we evaluate it for the
real-time data. There is also another problem that the performance is also suffered
when links are quickly increased in social graphs. To overcome this issue, they
proposed two enhancements in the existing algorithm. The first enhancement is one-
pass algorithms to remove a large amount of data. Second, the iter_acc algorithm
using the MapReduce programming model in an environment of Hadoop. The
fundamental purpose of this is to solve a performance-suffering problem. They also
performed experiments, which shows that proposed one-pass algorithm removes the
redundant data 50% during the evolution process and second algorithm performs
well even if the input data size is doubled. Nowadays there are many cost effective
solutions provided for the cloud platform, for the effective and efficient query
processing. But currently, many researchers focus on optimizing query performance
without considering the characteristics of query. So without bearing in mind the
similarity of query, it can cause the redundant data computation that also affects
the efficiency of query. Ding et al. [87] proposed a framework based on the multi-
query optimization called the multi-Q. The multi-query divides the search range

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 509

of query into the set of query reuse units (QRU). It also manages the similarity
among the incoming queries by managing the multi-query reuse dependent graph
(MQDG). Based on the MQDG, they showed how to process the query in multi-
Q. They manipulate the cluster-based partition algorithm to conduct the logic
partitioning of the query. They implemented the multi-Q based on the SEU-Cloud
and they did experiments for the demonstration of efficiency and effectiveness of
their approach. They also compared their technique with Hive with approximately
39% of improvement.

There are various challenges in the traditional system for processing of the query
on huge volume of data. The core issue lies in the traditional indexing structure such
as R-Tree and B-Tree are naturally centralized and crippled when it is employed in
a distributed environment. Aly et al. [88] built the system called the kangaroo to
improve the execution of queries over the range of data. It also divides the data into
the various non-overlapping partitions to reduce the query execution time. Workload
awareness, no duplication of data, no partition overlapping and size are some of the
characteristics on which the proposed technique is based. It also has four primary
processes through which a query is processed, i.e., loading the data, data partition
planning, data partitioning, and query execution. They evaluated the effectiveness of
their approach by checking the selective query effects, i.e., effects of search space
scale and data skew on the partition size.

20.10 Input/Output Issues

High-End Computing (HEC) machines are creating the massive amount of data
on single execution by running the big data application. The huge volume of
data increases the complexity of scientific discovery, pattern analysis, decision
making etc. The ability to move, store, analyze, and visualize huge volume of
data is also a challenging task. The vast amount of growing data also imposes
various requirements on the I/O performance; it becomes a reason of bottleneck
in modern HEC machines. Zou et al. [89] presented the data analytics, how to
minimize the data movement and release the severe I/O performance congestion.
For a solution of this problem, they also build a quantity model for the evaluation of
analytics algorithm and placement methodology. They presented a flexible analytics
framework for the I/O performance optimization. It is flexible placements approach,
which combines the both visualization query and data compression. It consists
of two algorithms, which dynamically choose and change to attain the best I/O
performance with features describing and real-time resources observing. They also
analyzed the bandwidth analysis from simulation to storage, analysis of bandwidth
from simulation to staging nodes, analysis of latency with data query, and analysis
of throughput with data query. Their results show that two important factors that
have the significant impact on the analytics selection are data reduction ration and
availability of processors.

510 Y. Arfat et al.

Li et al. [90] have proposed a new architecture for Tachyon that is capable of
read and write by preventing the synchronous data replication on write at the speed
of memory. They also described that more data in memory becomes the bottleneck
for any application. To overcome this issue, they also introduced recovery scheme
based on lineage. By using the caching mechanism, read throughput could be
improved for the distributed systems. Authors identified various characteristics of
Tachyon e.g. immutable data, deterministic computation, and higher performance.
The MapReduce needed the shuffling for a global exchange of the data that is
produced by the mapping phase. The movement of the data across the disk causes a
problem of I/O compound and contention. Yu et al. [91] introduces a new approach,
which is virtual shuffling for the efficient movement of the data and reduction of the
I/O for shuffling of MapReduce. The virtual shuffling technique is the combination
of three techniques: three level segment table, balanced and dynamic merging sub-
tree, and near demand merging. Three level segment tables manage the MapReduce
tasks. It consists of a directory of segment table, a middle directory of segment table,
and a global directory of the table. The data structure linked with these directories
listed in the table. In balanced and dynamic merging sub-tree, they organize the
entire virtual segment into a tree having leaves SEBs. In near demand merging,
it waits until clarifying which particular segment requires the reduce function of
reduce task. It does not wait for the last movement of the data fetch. As a result,
they showed that proposed technique speed up the data placement, reduce the power
consumption and solve the contention of I/O disk problem. Hadoop distributed file
system (HDFS) is an open source and an attractive system for the processing of large
dataset including parallel program processing based on the MPI, graph processing,
and Java/Scala based framework to enable the user to do the iterative and interactive
in-memory data analysis.

Yin et al. [92] investigated the problems in a parallel system as they find out
that due to lack of intention in data distribution and access in HDFS, request for
the parallel data sometimes serves as the imbalance and remote fashion. Due to
this problem, it becomes I/O bottleneck for the storage nodes. To solve this issue, a
new technique was introduced in which I/O middleware and match based algorithm
are used for the optimization of data access in distributed file systems. To attain
this, they get the data from the distributed storage and also perform the mapping
relation among the process and chunk file where these files are associated with data
processing task and operators. They also showed the relation in the form of bitrate
matching graph. With this technique parallel data access used in such manner that
it will be useful for the balanced and locality aware access to attain the higher I/O
performance. At last, they have presented the content aware method for fast access
to data without scanning the useless data from the large dataset. Table 20.1 presents
the taxonomy of the related research efforts for each of the above-mentioned
challenges.

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 511

Table 20.1 Taxonomy: challenges and issues of big data

Major Minor Primary Secondary

Data locality Data placement Eltabakh et al. [33], Yu and
Hong [36], Tan et al. [40],
Wang and Chan [83]

DGM and graph based [85],
scheduling [24, 28]

Graph based Xue et al. [94] Scheduling [36, 40]
Scheduling Guo et al. [32], Chen et al.

[26], Wang et al. [34], Park
et al. [44], Zhang et al. [45]

Resource allocation [26, 44]

Prefetching Radha and Rao [31], Khan
et al. [47]

Prescheduling [31]

Virtual mapping Hsu et al. [35] Dynamic partitioning [35]
Partitioning
scheme

Lin et al. [37], Rhine and
Bhuvan [38], Ibrahim et al.
[41]

Join partitioning [37], input
splitting/scheduling [38], key
partitioning/fairness [41]

Affinity/resource
allocation

Panchputre et al. [42]

Replication
based

Fan et al. [46]

Load
balancing

Partitioning
scheme

Chen et al. [39], Nishanth
et al. [53], Fadika et al. [58],
Myung et al. [60]

Random sampling [39],
colocation [53], cluster split
[58]

Resource
allocations

Ajitha and Ramesh [52],
Zhou and Wen [56]

Graph based [52], APH [56]

Sampling Xu et al. [54], Chen et al.
[48]

Partitioning scheme [54],
cluster split [48]

Data skew Gao et al. [57] Node performance [57]
Shuffling Li et al. [90] Scheduler [90]
Parallel
processing

Kc and Freeh [49] CCS [37], parallel boosting
[49]

Scheduling Delay
scheduling
(fairness, data
locality)

Zaharia et al. [69] Fairness, data locality [69]

Data locality
(priority-based
scheduling)

Sethi and Ramesh [68], Gu
et al. [71], Sadasivam and
Selvaraj [73], Li et al. [74]

Priority-based scheduling
[68]

Data placement Sun et al. [70] Prefetching based on node
predictions [70]

Resource aware
allocation

Yang et al. [72] Yang et al. [72] sampling

Heterogeneity Data placement Xie et al. [61], Arasanal and
Rumani [62], Lee et al. [63],
Ubarhande et al. [65]

Data partitioning [32, 33],
load distribution [65]

Speculative
execution

Huang et al. [66], Sujitha and
Jaganathan [64]

Heuristic approach [40]

Load balancing Arasanal and Rumani [62],
Lee et al. [63]

Data allocation [34]

Data locality Sujitha and Jaganathan [64] Scheduling [64]

(continued)

512 Y. Arfat et al.

Table 20.1 (continued)

Major Minor Primary Secondary

In-memory
computation

Resilient
Distributed
Dataset (RDD)

Zaharia et al. [75, 77] Optimize data placement [75, 77]
RDD variables

Coarse-grained Engle et al. [76] Scalability [76]
Multi-query
processing

Virtual
resources

Dokeroglu et al. [81]

Share scan task Dokeroglu et al. [78],
Wang and Chan [83]

Computational task [78],
optimal processing [83]

Fault tolerant Xin et al. [82] RDD [82]
Similarity of
joins

Silva and Reed [85] Partitioning scheme [85]

Data placement Wang et al. [93] Optimal processing [93]
Graph based Tung et al. [96],

Ding et al. [87]
Distributed graph based [95, 96],
partitioning scheme [87]

Partitioning
scheme

Ding et al. [87],
Aly et al. [88]

Load aware [75]

I/O
improvement

Asynchronous
data replication

Li et al. [90] Line age fault tolerance [90]

Data
placement/data
preparation

Zou et al. [89] Data placement/data preparation
[89]

Virtual shuffling Yu et al. [91] I/O contention [91]
Optimized
parallel data
access

Yin and Wang [92] I/O contention [92]

20.11 Conclusion

There are numerous challenges faced by the big data community when exploring
huge volume of data to extract knowledge and meaningful information. These
challenges include data capturing, transportation, storage, data analysis, man-
agement, visualization, etc. In this chapter, we focused on some of the core
issues of big data by providing a detailed survey of opportunities and challenges
of big data (Hadoop) in terms of data locality, load balancing, heterogeneity,
scheduling, in-memory computation, multiple query optimization, and I/O issues.
The taxonomy of the research efforts conducted over the years to overcome these
challenges is also presented. The outburst of data generated over the last few years
demands innovation in current processing technologies to process huge volume
of unstructured data. The current technologies are also lacking the computing
capability to tackle huge chunks of unstructured datasets. Real-time data analytics
demands high-performance computing resources. These challenges demand solu-
tions from multidisciplinary domains and need collaborative efforts to address these
issues.

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 513

Acknowledgments The authors acknowledge with thanks the technical and financial support from
the Deanship of Scientific Research (DSR) at the King Abdul-Aziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-673-793-38. The work carried out in this chapter is
supported by the HPC Center at the King Abdul-Aziz University.

References

1. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge
and outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 11–26.
Springer, Cham (2018)

2. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531–558. IGI Global, Hershey (2015)

3. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

4. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258
(2018)

5. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

6. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 111–122.
Springer, Cham (2018)

7. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

8. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

9. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A
framework for faster porting of scientific applications between heterogeneous clouds. In:
Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp. 27–43.
Springer, Cham (2018)

10. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
207–215. Springer, Cham (2018)

11. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 216–231.
Springer, Cham (2018)

12. Al Shehri, W., Mehmood, R., Alayyaf, H.: A Smart pain management system using big data
computing. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for

514 Y. Arfat et al.

Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 232–246.
Springer, Cham (2018)

13. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac,
I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 247–257. Springer, Cham (2018)

14. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications.
SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 139–154. Springer, Cham (2018)

15. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib,
I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA
2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 155–168. Springer, Cham (2018)

16. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 169–184.
Springer, Cham (2018)

17. Al-Dhubhani, R., Mehmood, R., Katib, I., Algarni, A.: Location privacy in smart cities era.
In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pp. 123–138. Springer,
Cham (2018)

18. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 98–110.
Springer, Cham (2018)

19. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

20. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems—enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems—Problems and Perspectives, pp. 3–
35. Springer, Cham (2016)

21. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on intel
MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
306–322. Springer, Cham (2018)

22. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of united states
road network data on apache spark. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.)
Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pp. 323–336. Springer, Cham (2018)

23. Kruse, C.S., Goswamy, R., Raval, Y., Marawi, S.: Challenges and opportunities of big data in
health care: a systematic review. JMIR Med. Inf. 4, e38 (2016)

24. Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big data challenges
and analytical methods. J. Bus. Res. 70, 263–286 (2017)

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 515

25. Chauhan, S., Agarwal, N., Kar, A.K.: Addressing big data challenges in smart cities: a
systematic literature review. Info. 18, 73–90 (2016)

26. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171–209 (2014)
27. Padhy, R.P.: Big data processing with Hadoop-MapReduce in cloud systems. IJ-CLOSER Int.

J. Cloud Comput. Serv. Sci. 2, 233–245 (2012)
28. Singh, K., Kaur, R.: Hadoop: addressing challenges of big data. In: 2014 IEEE International

Advance Computing Conference (IACC), pp. 686–689. IEEE (2014)
29. Xu, Z., Shi, Y.: Exploring big data analysis: fundamental scientific problems. Ann. Data Sci.

2(4), 363–372 (2015)
30. Hashem, I.A.T., Yaqoob, I., Badrul Anuar, N., Mokhtar, S., Gani, A., Ullah Khan, S.: The rise

of “Big Data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115
(2014)

31. Radha, K., Rao, B.T.: Slot utilization and performance improvement in hadoop cluster.
Presented at the (2016)

32. Guo, Z., Fox, G., Zhou, M.: Investigation of data locality in MapReduce. In: IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 419–426.
IEEE (2012)

33. Eltabakh, M.Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., McPherson, J.: CoHadoop:
flexible data placement and its exploitation in Hadoop. Proc. VLDB Endow. 4, 575–585 (2011)

34. Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-Hadoop: MapReduce
across distributed data centers for data-intensive computing. Futur. Gener. Comput. Syst. 29,
739–750 (2013)

35. Hsu, C.-H., Slagter, K.D., Chung, Y.-C.: Locality and loading aware virtual machine mapping
techniques for optimizing communications in MapReduce applications. Futur. Gener. Comput.
Syst. 53, 43–54 (2015)

36. Yu, X., Hong, B.: Grouping blocks for MapReduce co-locality. In: 2015 IEEE International
Parallel and Distributed Processing Symposium, pp. 271–280. IEEE (2015)

37. Lin, Z., Cai, M., Huang, Z., Lai, Y.: SALA: a skew-avoiding and locality-aware algorithm for
MapReduce-Based Join. 1, 311–323 (2014)

38. Rhine, R., Bhuvan, N.T.: Locality Aware MapReduce, pp. 221–228. Springer, Cham (2016)
39. Chen, T.Y., Wei, H.W., Wei, M.F., Chen, Y.J., Hsu, T.S., Shih, W.K.: LaSA: a locality-aware

scheduling algorithm for Hadoop-MapReduce resource assignment. Proc. 2013 Int. Conf.
Collab. Technol. Syst. CTS 2013, pp. 342–346 (2013)

40. Tan, J., Meng, S., Meng, X., Zhang, L.: Improving reducetask data locality for sequential
MapReduce jobs. In: 2013 Proceedings IEEE INFOCOM, pp. 1627–1635. IEEE (2013)

41. Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., Qi, L.: LEEN: locality/fairness-aware key
partitioning for MapReduce in the Cloud. In: 2010 IEEE Second International Conference
on Cloud Computing Technology and Science, pp. 17–24. IEEE (2010)

42. Panchputre, K., Chaudhary, P., Garg, R.: Locality-aware load balancer for HBase, pp. 1–8
43. Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and data-

locality with data-aware scheduling. In: Proceedings—2014 IEEE International Conference on
Big Data, IEEE Big Data 2014, pp. 119–128 (2015)

44. Park, J., Lee, D., Kim, B., Huh, J., Maeng, S.: Locality-aware dynamic VM reconfiguration
on MapReduce clouds. In: Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing—HPDC’12, pp. 27. ACM Press, New York
(2012)

45. Zhang, X., Feng, Y., Feng, S., Fan, J., Ming, Z.: An effective data locality aware task scheduling
method for MapReduce framework in heterogeneous environments. In: 2011 International
Conference on Cloud and Service Computing, pp. 235–242. IEEE (2011)

46. Fan, X., Ma, X., Liu, J., Li, D.: Dependency-aware data locality for MapReduce. In: IEEE
International Conference on Cloud Computing CLOUD, pp. 408–415 (2014)

47. Khan, M., Liu, Y., Li, M.: Data locality in Hadoop cluster systems. In: 2014 11th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2014), pp. 720–724 (2014)

516 Y. Arfat et al.

48. Chen, Y., Liu, Z., Wang, T., Wang, L.: Load balancing in MapReduce based on data locality.
Presented at the (2014)

49. Kc, K., Freeh, V.W.: Dynamically controlling node-level parallelism in Hadoop. 2015 IEEE
8th Int. Conf. Cloud Comput., pp. 309–316 (2015)

50. Palit, I., Reddy, C.K.: Scalable and parallel boosting with mapReduce. IEEE Trans. Knowl.
Data Eng. 24, 1904–1916 (2012)

51. Perkins, L.S., Andrews, P., Panda, D., Morton, D., Bonica, R., Werstiuk, N., Kreiser, R.:
A survey of load balancing techniques for data intensive computing. In: 2009 International
Symposium on Collaborative Technologies and Systems (CTS 2009), vol. 41, p. c1 (2011)

52. Ajitha, A., Ramesh, D.: Improved task graph-based parallel data processing for dynamic
resource allocation in cloud. Procedia Eng. 38, 2172–2178 (2012)

53. Nishanth, S., Radhikaa, B., Ragavendar, T.J., Babu, C., Prabavathy, B.: CoHadoop ++ : a
load balanced data colocation in radoop distributed file system. In: Proceedings of 2013 5th
International Conference on Advanced Computing, pp. 100–105 (2013)

54. Xu, Y., Qu, W., Li, Z., Liu, Z., Ji, C., Li, Y., Li, H.: Balancing reducer workload for skewed
data using sampling. Comput. Electr. Eng. 40, 675–687 (2014)

55. Chen, Q., Yao, J., Xiao, Z.: LIBRA: Lightweight Data Skew Mitigation in MapReduce. IEEE
Trans. Parallel Distrib. Syst. 9219, 1–1 (2014)

56. Zhou, H., Wen, Q.: Load balancing solution based on AHP for Hadoop. In: 2014 IEEE
Workshop on Electronics, Computer and Applications pp. 633–636 (2014)

57. Gao, Z., Liu, D., Yang, Y., Zheng, J., Hao, Y.: A load balance algorithm based on nodes
performance in Hadoop cluster. In: APNOMS 2014—16th Asia-Pacific Network Operations
and Management Symposium, pp. 1–4 (2014)

58. Fadika, Z., Dede, E., Hartog, J., Govindaraju, M.: MARLA: MapReduce for heterogeneous
clusters. In: Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2012), pp. 49–56. 2012.eneous clusters (2012)

59. Wang, Y., Croft, W.L.: Smart shuffling in MapReduce: a solution to Balance Network Traffic
and Workloads (2015)

60. Myung, J., Shim, J., Yeon, J., Lee, S.: Handling data skew in join algorithms using MapReduce.
Expert Syst. Appl. 51, 286–299 (2016)

61. Xie, J.X.J., Yin, S.Y.S., Ruan, X.R.X., Ding, Z.D.Z., Tian, Y.T.Y., Majors, J., Manzanares, A.,
Qin, X.Q.X.: Improving MapReduce performance through data placement in heterogeneous
Hadoop clusters. In: 2010 IEEE International Symposium on Parallel and Distributed Process-
ing, Workshops and Phd Forum (IPDPSW), vol. 9, pp. 29–42 (2010)

62. Arasanal, R.M., Rumani, D.U.: Improving MapReduce performance through complexity and
performance based data placement in heterogeneous hadoop clusters. In: Presented at the
(2013)

63. Lee, C.W., Hsieh, K.Y., Hsieh, S.Y., Hsiao, H.C.: A dynamic data placement strategy for
Hadoop in heterogeneous environments. Big Data Res. 1, 14–22 (2014)

64. Sujitha, S., Jaganathan, S.: Aggrandizing Hadoop in terms of node heterogeneity & data
locality. In: 2013 IEEE International Conference on Smart Structures and Systems, ICSSS
2013, 145–151 (2013)

65. Ubarhande, V., Popescu, A.-M., Gonzalez-Velez, H.: Novel data-distribution technique for
Hadoop in heterogeneous cloud environments. In: 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems, pp. 217–224. IEEE (2015)

66. Huang, X., Zhang, L., Li, R., Wan, L., Li, K.: Novel heuristic speculative execution strategies
in heterogeneous distributed environments. Comput. Electr. Eng. 50, 166–179 (2015)

67. Prasad, M.S.G., Nagesh, H.R., Prabhu, S.: Performance analysis of schedulers to handle multi
jobs in Hadoop cluster. Int. J. Mod. Educ. Comput. Sci. 7, 51–56 (2015)

68. Sethi, K.K., Ramesh, D.: Delay scheduling with reduced workload on JobTracker in Hadoop.
Presented at the (2016)

69. Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In:
Proceedings of the 5th European conference on Computer systems—EuroSys ’10, 2010,
p. 265.

20 Big Data for Smart Infrastructure Design: Opportunities and Challenges 517

70. Sun, M., Zhuang, H., Li, C., Lu, K., Zhou, X.: Scheduling algorithm based on prefetching in
MapReduce clusters. Appl. Soft Comput. 38, 1–10 (2015)

71. Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., Huang, Y.: SHadoop: improving
MapReduce performance by optimizing job execution mechanism in Hadoop clusters. J.
Parallel Distrib. Comput. 74, 2166–2179 (2014)

72. Yang, Y., Xu, J., Wang, F., Ma, Z., Wang, J., Li, L.: A MapReduce task scheduling algorithm for
deadline-constraint in homogeneous environment. In: 2014 Second International Conference
on Advanced Cloud and Big Data, pp. 208–212. IEEE (2014)

73. Sadasivam, G.S., Selvaraj, D.: A novel parallel hybrid PSO-GA using MapReduce to schedule
jobs in Hadoop data grids. In: Proceedings—2010 Second World Congress Nature and
Biologically Inspired Computing NaBIC 2010, pp. 377–382 (2010)

74. Li, L., Tang, Z., Li, R., Yang, L.: New improvement of the Hadoop relevant data locality
scheduling algorithm based on LATE. In: Procedings of 2011 International Conference on
Mechatron Science, Electric Engineering and Computer, MEC 2011, pp. 1419–1422 (2011)

75. Zaharia, M., Chowdhury, M., Das, T., Dave, A.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI’12, pp. 2–2 (2012)

76. Engle, C., Lupher, A., Xin, R., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark: fast
data analysis using coarse-grained distributed memory. In: Proceedings of the SIGMOD—
International Conference on Management of Data, pp. 689–692 (2012)

77. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. https://dl.acm.org/citation.cfm?id=1863103.1863113 (2010)

78. Dokeroglu, T., Ozal, S., Bayir, M.A., Cinar, M.S., Cosar, A.: Improving the performance of
Hadoop Hive by sharing scan and computation tasks. J. Cloud Comput. 3, 12 (2014)

79. He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: A fast and space-
efficient data placement structure in MapReduce-based warehouse systems. In: Proceedings of
the International Conference on Data Engineering, pp. 1199–1208 (2011)

80. Thusoo, A., et al.: Hive—a petabyte scale data warehouse using Hadoop. In: Proceedings of
the ICDE, pp. 996–1005 (2010)

81. Dokeroglu, T., Cınar, M.S., Yazıcı, A., Sert, S.A., Cosar, A.: Improving Hadoop hive query
response times through efficient virtual resource allocation. Flex. Query Ans. Syst. 5822, 88–
98 (2009)

82. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark:SQL and rich
analytics at scale. In: Proceedings of the 2013 International Conference on Management of
data, SIGMOD’13, pp. 13–24 (2013)

83. Wang, G., Chan, C.-Y.: Multi-query optimization in MapReduce framework. In: Proceedings
of VLDB Endowment, pp. 145–156 (2013)

84. Bissiriou, C.A.A., Chaoui, H.: Big data analysis and query optimization improve HadoopDB
performance. In: Proceedings of the 10th International Conference on Semantic Systems,
SEM’14, pp. 1–4 (2014)

85. Silva, Y.N., Reed, J.M.: Exploiting MapReduce-based similarity joins. In: Proceedings of the
2012 International Conference on Management Data—SIGMOD’12, vol. 693 (2012)

86. Suciu, D.: Distributed query evaluation on semistructured data. ACM Trans. Database Syst. 27,
1–62 (2002)

87. Ding, D., Dong, F., Luo, J.: Multi-Q: multiple queries optimization based on MapReduce in
cloud. In: 2014 Second International Conference on Advanced Cloud and Big Data, pp. 100–
107 (2014)

88. Aly, A.M., Elmeleegy, H., Qi, Y., Aref, W.: Kangaroo. In Proceedings of the Ninth ACM
International Conference on Web Search Data Mining—WSDM’16, pp. 397–406 (2016)

89. Zou, H., Yu, Y., Tang, W., Chen, H.W.M.: FlexAnalytics: A flexible data analytics framework
for big data applications with I/O performance improvement. Big Data Res. 1, 4–13 (2014)

90. Li, H., Ghodsi, A., Zaharia, M., Baldeschwieler, E., Shenker, S., Stoica, I.: Tachyon: memory
throughput I/O for cluster computing frameworks. Memory. 18, 1 (2013)

https://dl.acm.org/citation.cfm?id=1863103.1863113

518 Y. Arfat et al.

91. Yu, W., Member, S., Wang, Y., Que, X., Xu, C.: Virtual shuffling for efficient data movement
in MapReduce. IEEE Trans. Comput. 64, 556–568 (2015)

92. Yin, J., Wang, J.: Optimize parallel data access in big data processing. In: 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 721–724
(2015)

93. Wang, J., Xiao, Q., Yin, J., Shang, P.: DRAW: a new Data-gRouping-AWare data placement
scheme for data intensive applications with interest locality. IEEE Trans. Magn. 49, 2514–2520
(2013)

94. Xue, R., Gao, S., Ao, L., Guan, Z.: BOLAS: bipartite-graph oriented locality-aware scheduling
for MapReduce tasks. In: 2015 14th International Symposium on Parallel and Distributed
Computing, pp. 37–45. IEEE (2015)

95. Satapathy, S.C., Mandal, J.K., Udgata, S.K., Bhateja, V.: Information systems design and
intelligent applications, vol. 434. Springer, New Delhi (2016)

96. Tung, L.-D., Nguyen-Van, Q., Hu, Z.: Efficient query evaluation on distributed graphs with
hadoop environment. In: ACM International Conference Proceedings Series, pp. 311–319
(2013)

Chapter 21
Software Quality in the Era of Big Data,
IoT and Smart Cities

Fatmah Yousef Assiri and Rashid Mehmood

21.1 Introduction

Software quality is the degree to which the software conforms to its requirements.
General software quality attributes include testability, maintainability, efficiency,
and reliability. One important aspect of software quality is software correctness,
which concerns how well the program provides the required functionalities, as
defined by its specifications, and can be achieved through software testing and
debugging. Software testing is a dynamic process that executes the software under
study using a set of test inputs to ensure its outputs meet the users’ expectations. If
the software behavior fails to perform as expected, software debugging is performed,
which involves checking the code to determine the cause of failures and fixing them.

Software testing and debugging are time-consuming. Studies show that soft-
ware debugging and testing form between 50 and 70% of the total development
cycle [41]. Software testing involves comparing a set of test inputs and expected
results to the actual software outputs. If the software outputs fail to match the
expected ones, a fault is detected and the software must be checked for errors. Code
is debugged to locate faults and fix them. As requirements change, the software
is tested again to ensure that it continues to return the expected behavior, and
additional tests are written to test any new requirements; however, writing new tests
is not a trivial process.

F. Y. Assiri (�)
College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
e-mail: fyassiri@uj.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_21

519

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_21&domain=pdf
mailto:fyassiri@uj.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_21

520 F. Y. Assiri and R. Mehmood

The complexity of software is on the rise with the developments of smart cities.
Smart cities are driven by, or involve, integration of multiple city systems, such
as transport and healthcare, with the aim to provide its citizens a high quality of
life [76], see, e.g., [72] for motivations of smart cities and societies. Integrating
multiple complex systems causes an increase in the complexity of the underlying
software interactions and leads to a higher software complexity. This in turn makes
the software quality a bigger challenge.

Relatedly, big data and Internet of Things (IoT) are driving radical changes in
smart cities designs, and hence, the software systems landscape. Big data “refers
to the emerging technologies that are designed to extract value from data having
four Vs characteristics; volume, variety, velocity and veracity [71].” The Internet
of Things (IoT) becomes one of the key technological developments of our times
that we are able to realize its full potential; it is expected to be a major producer
of big data [5]. IoT is defined as “a global infrastructure for the information
society, enabling advanced services by interconnecting (physical and virtual) things
based on existing and evolving interoperable information and communication
technologies [81].”

Together, big data, IoT, smart cities, and other emerging complex applications
have exacerbated the challenges of maintaining software quality. The big data
produced by IoT and other sources is used in designing or operating various software
machines and systems. Since the data is uncertain (i.e., the veracity characteristic),
it could lead to inaccurate or faulty system behavior. For example, a computed
tomography (CT) scan based on inaccurate machine behavior, or inaccurate data,
may give a false positive result for cancer. A wearable device may analyze the data
of a diabetic patient incorrectly, giving false negative results, leading to no insulin
dose for a patient who actually needed a high dose of insulin. Automatic surgery
machines, autonomous vehicles, and spaceships all are examples of critical software
with high software and data quality requirements. Moreover, data is being used by
organizations to develop strategies, policies, and operations; inaccurate data could
lead to disastrous outcomes for these organizations and even for the whole national
or global economy.

The aim of this paper is to review the technologies related to software quality in
the era of big data, IoT, and smart cities. We elaborate on software quality processes,
software testing and debugging. Model checking is discussed with some thoughts
on the role it could play in the big data era and the benefits it could gain from big
data. The role of big data in software quality is explored. Conclusion is drawn to
suggest future directions.

The remainder of the paper is structured as follows. Section 21.2 discusses
software quality, software testing and debugging. Section 21.3 discusses model
checking. Section 21.4 introduces big data and reviews some related work. Sec-
tion 21.5 presents a review of the work that applies data mining techniques to utilize
available data to improve software quality. Section 21.6 concludes the paper.

21 Software Quality in the Era of Big Data, IoT and Smart Cities 521

21.2 Software Quality

Software quality is the degree to which the software conforms to a set of require-
ments that meet the design specification and the users’ expectations. Quality can
be viewed and evaluated from the aspects of function, structure, and process [26].
Functional quality concerns the conformance of the tasks to the users’ required
functionalities, with few defects as possible. Structural quality relates to the quality
of the written code and can be measured by code maintainability, testability,
and understandability. Process quality relates to the development process such as
meeting the delivery deadlines and budgets. These three aspects of software quality
interleave and thus affect each other.

Software testing and debugging are among the main activities in the development
cycle that guarantee the quality of the developed software. Software testing is
a validation process that is conducted to ensure that the software meets its
specifications, and software debugging is the process of analyzing the code to locate
errors that caused the software to fail and correcting them [41]. In Sects. 21.2.1
and 21.2.2, we explain the work that has been done in both areas.

21.2.1 Software Testing

Testing, which is among the main steps in the software development life cycle to
ensure software quality, involves executing a set of input values and checking their
outputs to validate that the software meets its requirements and intended usage[10].
Testing is a dynamic process performed by observing the software execution. If the
resulting output differs from the expected results, a fault is detected. The process of
finding these faults and correcting them is called debugging.

Testing can be done at different levels depending on the phase that has been
performed. Unit testing evaluates the software at the implementation phase and
tests each unit separately. Units can be an individual element of the software such
as a method or a class. System and integration testing are performed when the
system is complete. System testing verifies that the whole system meets the design
specifications, and integration testing checks that the subsystems (group of units)
integrate correctly.

Software testing is divided into black-box and white-box testing. Black-box test-
ing examines the application functionalities without looking to internal structures.
Black-box testing creates tests from the software requirements and specifications;
one form of applying it is through the equivalence class partitioning in which the
program behaves the same for each set of input values; each set is called a class. For
example, the program should retain the same output values for all positive number,
thus the set of positive number is considered a class, and the program should be
tested with exactly one value of each class.

522 F. Y. Assiri and R. Mehmood

White-box testing (also known as structural testing) is a method of testing
software functionalities (internal structure), and it can be applied through unit and
system testing. Tests performed by the software development team are called alpha
testing, and those performed by the customer are called beta testing. Beta testing is
also a form of black-box testing [79].

Tests consist of a set of test cases. Each test case consists of input values and a
test oracle, which compares the expected output with the actual output to determine
whether a program has failed or not [20]. To overcome the problem of having no
oracles or the time-consuming process of writing them [94], metamorphic testing
was introduced [28, 97]. Metamorphic testing creates follow-up test cases from a
set of initial test cases using metamorphic relations. For example, if the initial test
evaluates the power function f (x) = ex and the value of x is (3), then e2 is equal
to value (let’s assume its (8)). Metamorphic testing creates another test case which
is the value of a is (−2), and the output is (1/8). The metamorphic relation (MR)
is used to check the outputs of the two tests. In this case, MR is that output of first
test case (8) + the output of the second test case (1/8) is equal to (1). If MR does not
satisfy, a failure is detected.

Mutation testing is an alternative testing approach which was designed to assess
the quality of the test cases [35, 46]. Mutation testing creates a copy of the original
program, called a mutant, with a seeded fault. The faults are a simple syntax change
injected to the code [61, 80]. Tests are executed and the fault is detected if the output
of the mutant is different from the output of the original program. Mutation testing
computes a mutation adequacy score, which represents the number of detected faults
over the total number of seeded faults. A higher score indicates a higher quality of
the test sets. MuJava tool was developed to perform automated mutation testing by
generating mutants and computing the adequacy score for a set of JUnit tests [62].

Software testing is labor intensive; thus, to reduce the costs, many automation
techniques were developed to automate the generation of test data and test ora-
cles [22, 23, 36, 55, 74, 90].

21.2.2 Software Debugging

Software debugging is a diagnosis process for locating and fixing errors that
cause software to fail. Fault localization (FL) techniques were introduced to locate
statements in source code that are more likely to contain faults. FL computes
a suspiciousness score for each statement, and the computed score indicates the
probability that a statement contains a fault.

Spectrum-based FL (SBFL) [1, 4, 18, 29, 32, 49, 86], which is a common FL
approach, is a dynamic process that counts the number of passed and failed tests
executed for each statement and computes a suspiciousness score for each statement.
Statements executed during a failed run are considered to be more likely to contain
faults and are thus assigned a higher suspiciousness score than other statements.

21 Software Quality in the Era of Big Data, IoT and Smart Cities 523

Table 21.1 The dynamic behavior of the faulty program gcd when executed against tests in T 1,
. . ., T 5. Sus. Score is the suspiciousness score computed using Tarantula

Stmt ID Stmt T1 T2 T3 T4 T5 Sus. Score

gcd (int a, int b) {

1 if(a < 0) //fault x 1.00

2 { printf(“%g \n”, b); 0.00

3 return 0 ; } 0.00

4 while(b ! = 0) x x x x x 0.50

5 if(a > b) x x x x 0.57

6 a = a − b ; x x 0.00

7 else x x x x 0.57

8 b = b − a ; x x x x 0.57

9 printf(“%g \n”, a) ; x x x x 0.00

10 return 0 ; x x x x 0.00

}

Many heuristics have been proposed to compute statement suspiciousness scores [1,
4, 48, 49, 77, 86].

To illustrate how FL techniques order statements based on the likelihood they
contain faults, we used the C program shown in Table 21.1 that is adapted from [47].
The program computes the Euclid’s greatest common divisor. This example used
four passed tests: T1, T2, T3, and T4, and one failed test: T5. To compute the
suspiciousness score, we applied the Tarantula heuristic (Eq. (21.1)). To reduce the
time of performing this step, many tools have been developed to automate other
parts of testing, such as the FL techniques [45, 47, 83].

susp_T urantula(s) = %FailedT ests(s)

%PassedT ests(s) + %FailedT ests(s)
(21.1)

The debugging process also involves fixing located faults. Although this was
traditionally a manual process, automated program repair (APR) techniques were
developed to automate the process [52, 53, 59, 63, 78]. APR techniques take a faulty
program and conduct a set of repair tests to produce a repaired program. Figure 21.1
describes the overall structure of the APR techniques. The APR technique applies
an FL technique to create a list of potentially faulty statement (LPFS) that is ordered
based on their likelihood of containing fault, creates a copy of the original program
with one inserted change called a variant, and validates the created variant to check
whether or not the fault is fixed.

To create the variants, a set of program modification operators (PMOs) are
applied to change the code in the faulty statement generating the variant. PMOs
are selected randomly or in order based on the applied search algorithm. Then,
each variant is validated by executing it on a set of test cases, regression tests,
or formal specifications. The variant is considered a potential repair or potential
repaired program if it passes all the tests used in the process. The generated repair

524 F. Y. Assiri and R. Mehmood

Fig. 21.1 Overall automated
program repair (APR)
technique adapted from [15]

is considered a potential repair, rather than a validated repair, because it is a repair
with respect to the selected set of tests used in the process of fixing the faults. The
repair is only considered a valid repair when it passes a set of tests (often regression
tests) that were not included in the repair process.

Many researchers have contributed to improve the APR process and the quality
of generate repairs. Debroy and Wong [33, 34] proposed using mutations through
a brute-force search and an FL technique to automate fault fixing. Nguyen et
al. [78] developed SemFix, which is a tool that locates faults using the Tarantula
heuristic [49]. Then, symbolic execution and program synthesis were used to fix
faults. Program syntheses are applied in a predefined order. Wei et al. [91] fix faults
using Eiffel programs equipped with contracts, and Kim et al. [53] repaired faults
by creating fix templates using 10 built-in patterns that were developed based on
common patches written by humans. Weimer et al. [92] developed a weighting
scheme to locate faults and applied an evolutionary algorithm to fix faults. APR
techniques are also used to fix faults for executable software [25, 82]. Evolutionary
computing and genetic programming have been adapted to repair faults in C
software [38, 59, 92, 93], Java [12, 52], and Python [2], and to help satisfy non-
functional requirements [13, 95].

The state-of-the-art APR technique is GenProg tool, which uses genetic pro-
gramming to modify a program until it finds a variant that passes all the repair
test [38, 59, 92, 93]. GenProg was used to successfully fix the Microsoft Zune
bug date error, which froze Microsoft devices in 2008 due to an infinite loop that
occurred on the last day of a leap year [75]. However, repairs generated using
GenProg were hard to read and it only performed potential repairs since they failed
when they were executed on a set of regression tests. Assiri and Bieman [15–17]
proposed using first-order mutations with a stochastic search algorithm to generate
repairs that are similar to efficient ones written by humans.

Even though debugging activities (locating and fixing faults) have been auto-
mated to reduce debugging costs, there are many new challenges particularly with
big data because it runs largely on parallel cloud computing platforms, making

21 Software Quality in the Era of Big Data, IoT and Smart Cities 525

it error prone and inefficient. Researchers have developed debugging tools to
overcome these problems.

BigDebug is an interactive debugging tool that allows developers to set break-
points to inspect program states during program execution [40]. BigDebug also
provides guarded watchpoints, which return a set of records that satisfy a given
condition. BigDebug, which provides backward and forward tracking and allows
developers to fix faults and resume execution, improves the performance, avoids
having to start the execution from the beginning, and reduces the locations should
be checked for failures.

Considerable research has developed debugging tools for distributed systems.
However, these typically depend on the use of a single frontend that controls many
backend debuggers, which slows the process when used for large-scale distributed
systems. Mehmood et al. [70] improved the structure of debuggers to scale them
to large systems. The proposed debugging tool follows a hierarchical approach by
using intermediate backend servers for a limited number of processes (Fig. 21.2),
which evaluate assertions on the connected processes and report violations. This
method improves the FL and system overall traffic, making it a suitable approach
for large-scale distributed systems.

An alternative method for debugging a distributed system is to perform the
debugging at higher-abstraction level than the unit level [21]. When performed at
the system level, system behavior is translated into a set of events that are filtered
to remove all events that are not of interest to the user. Event sequences are then
clustered to create one single event that is used to identify the cause of failures in
complex distributed systems. Event definition language (EDL) is used to define a
set of events based on a combination of previously determined events. Events are
compiled and interpreted to determine the cause of the failures.

Fig. 21.2 PDB architecture
adapted from [70]

526 F. Y. Assiri and R. Mehmood

Debugging tools rely on setting breakpoints or sets of slices to check the
software’s behavior. Thus, if the specified locations of the variables do not contain
the cause of the errors, the tools will be unable to identify the faulty code. Andrew
and Myers developed the Whyline tool [54], an interactive debugging tool that allows
developers to ask questions for a given output. Whyline records execution traces for
each event and each execution trace has a specific trace file. Then, an output history
is created for all stored events. When a class is loaded, Whyline runs an algorithm
that depends on data dependencies to identify all variables and fields affected by
the output. After identifying the codes responsible for the specified output, the tool
generates questions using static and dynamic methods. Two questions are asked:
why did and why did not. The first question is answered using the dynamic slicing
technique and the latter is answered by investigating each instruction individually.
The evaluation study found that using Whyline improved the debugging time for
novice programmers, but it suffers from performance issues.

21.3 Model Checking

Model checking is a verification method that is performed to ensure program
correctness by investigating all possible software internal states. Model checking
requires a complete and clear set of properties that describes what the system should
and should not do. The software states are checked against the specified properties.
If a violation is found, counterexamples to the execution paths that caused the
violation are generated. Model checking has been used to debug many systems such
as airline reservation and e-commerce systems [19].

Model checking has also been used to automate software testing (see Callahan et
al. [24]). White-box testing, which concerns the software’s internal representation
through the investigation of execution traces for intermediate values, detects errors
if an inconsistency exists between the actual and expected values. Specification-
based testing, which uses model checking techniques, was proposed to validate
and generate tests during the software evolutionary process. In this method, a
computation tree comprising all possible execution paths is generated and searched
to ensure that all paths follow the specified constraints.

Even though the work by Callahan et al. [24] used a model checker to generate
test cases automatically, Amman et al. [9, 11] proposed using a model checker to
generate mutation-adequate test cases by adapting mutation testing. Model checking
is used widely to write and validate specifications. The proposed combination of
model checking and mutation testing addresses the limitation of automatic test
generation and mutation testing at the system level. System specifications are
converted into a format used by the model checker using a modeling tool. Then,
the generated specifications are mutated and used by the model checker to create
counterexamples, which are used to automatically generate test cases. Tests are
executed and the results and coverage are reported.

21 Software Quality in the Era of Big Data, IoT and Smart Cities 527

For test generation, the SPIN model checker [44] is used to identify execution
trace paths for a specified property. Paths are validated and divided into partitions
based on a defined set of requirements; each partition, which is called a coverage
property, consists of a set of execution paths. Test templates, comprising actual
test sequences, are generated using SPIN and are used to create invalid coverage
properties to force the program to fail.

Formal methods, such as software cost reduction (SCR), have been used to
improve software quality. SCR reduces the development cost since it helps to detect
violations at an early stage in the software life cycle before the implementation [39].
SCR uses requirements to generate test sequences that consist of a set of input values
and a set of output values for each input. The input values are validated by checking
the set of constraints that are specified through the requirement specifications. Then,
the test sequences are divided into equivalent partitions and test inputs are generated
for all partitions.

Model checking relies on building models of the actual systems and then
verifying the models, and therefore, big data technologies can be used to automate
the process of model building. Big data technologies could also improve the quality
of models that are built before being model checked. Alternatively, model checking
can be applied to address the veracity challenges of big data.

While model checking has been very successful in verifying real-life systems,
its biggest hurdle is the state-space explosion problem. Researchers have developed
various techniques to address this challenge. These include, among others, the use
of high performance computing techniques, see, e.g., [66, 67, 69].

21.4 Big Data

Big data is a relatively new research area that has been utilized in many fields such
as online retail stores, decision-making, and scientific research [27]. Big data is
defined variously in the literature: some researchers define it using the 3Vs: volume,
velocity, and variety [56]. Volume relates to the size of the data, velocity is the
speed of the data stream, and variety refers to the data types. Other researchers
define big data using 4Vs, with the forth V referring to value, variability, or
virtual [98]. Fen and Befit defined big data as the 3Vs plus two more: variability
(data interpretation) and value (making decisions) [37]. We consider the definition
where volume, variety, velocity, and veracity are used as the 4Vs of big data [71],
and consider veracity, as many have noted, to be the biggest challenge of big data.

Big data applications can be used in business, technology, health, and smart
cities. Big data can be used to improve quality of life. Data have been used in
online retail stores, such as Amazon, to identify user preferences. Algorithms collect
information about the users’ preferences based on their actions [65]. In addition, the
amount of healthcare data is increasing and is expected to reach a zettabyte in the
near future in the USA [85]. Using this medical data will benefit individuals’ health
by enabling doctors to detect diseases at the early stages and determine treatments,

528 F. Y. Assiri and R. Mehmood

recovery options, and risks. For additional works on big data in context of smart
cities, see [6, 7, 14, 68, 73, 88].

21.5 Big Data and Software Quality

Data can be used as a validity tool to ensure software correctness, build rec-
ommender systems, and predict future actions. Big data has been utilized in
many sectors such as healthcare, banking, and transportation. Data are processed
using data mining techniques to determine trends and to help in decision-making.
Software quality can be related to big data in at least two ways. Firstly, big data
can help develop better software quality techniques. Secondly, software quality
techniques are needed to improve the quality of big data software and possibly deal
with the big data veracity challenge.

With respect to software quality, existing work has applied data mining tech-
niques to analyze data repositories, fix faults, determine trends, and automate test
generation.

21.5.1 Mining Big Data

Data mining is performed to analyze large amounts of data to understand trends in
the data and support decision-making [42]. Software intelligence (SI) is a new field
of mining software data to help practitioners in daily decision-making processes,
such as when to release the system, what part of the system to test, and/or what part
to change [43].

Mining software repositories is a research direction that analyzes data repos-
itories to obtain useful information about systems and projects. The types of
repositories include historical repositories that show project progress; run-time
repositories, which show system usage on deployment sites; and code repositories,
which contain the code for software versions. Linking code repositories and bug
repositories can provide a method for warning practitioners about bugs and risky
codes.

Lin and Ryaboy analyzed Twitter data using data mining tools; however, due to
the limitations of existing tools, the analysis was not a straightforward process [60].
In [89], the researchers mined heterogeneous information using the semantics of
node types and the links between them in the networks. The researchers in [51]
studied the potential of mining big graphs and found the PEGASUS tool to be a
promising approach since it finds anomalous in the large Twitter connected graphs.
Last, the authors in [8] focused on mining a large stream of Netflix Prize data to
personalize recommendations. To improve the probabilities of customers selections,
a lot of factors and more data need to be considered.

21 Software Quality in the Era of Big Data, IoT and Smart Cities 529

The authors in [50] used mining bug reports to develop the BugMiner tool, which
uses the support vector machines (SVM) machine learning technique to perform
a completion check and a redundancy check on new reports and estimate bug
report trends (e.g., incident rate over time) of bug report databases using natural
language processing. SVM used the historic reports to train the model to fill any
missing fields. For any given report, the tool checks if it already exists by applying
similarity ranking using cosine similarity, and Weibull distribution uses historic data
to estimate the number of bug reports received during a specified period (weeks
or months) after the start of the project. The experimental results showed that
BugMiner was effective in terms of bug reports completion, redundancy, and finding
trends. The authors suggest combining the tool with other bug tracking tools to
create advanced intelligent software.

Mining software is also used to develop a repair model in the area of APR [64].
In their paper, the authors mine software repositories by investigating developers
comments to generate repair actions that can be used later to fix faults. Repair
actions can be in the form of adding a method call or changing the condition of
if statements. Repair actions are then assigned different probabilities that are also
learned from the repositories. To collect fixes from repositories, the authors used
data set of 14 repositories and checked the differences between transitions at the
abstract syntax tree (AST) level. A difference algorithm was used to produce the
set of changes between each pair of Java files. The authors generated 41 change
types and 137 possible change type entity types. The empirical study found that
28% of the changes were statement insertions, 23% were statement deletions,
and 23% were statement updates. However, the change type statement insert was
composed of many entity types, e.g., insert method invocation, if conditional, insert
new variable. The results showed that the probability distribution of change type is
project independent.

To repair faults, the authors of [64] created a repair model and used different
approaches to compute the probabilities of each repair action. The repair shape,
which is a set of all possible combinations of repair actions, was then created. The
search space is a combination of fault space, repair shapes, and the concrete repair
actions that create the shape.

In [96], the authors mined software repositories to study the co-evolution of
the production code and test code. Repository histories and log messages were
analyzed; however, the results found no matching between changes in the production
code and the test. In other words, the test codes remained the same after changing
the production code. The test coverage also dropped since no new test was created
to guarantee the coverage of the new boundary values. Despite the notable finding,
the study failed to specify which data mining techniques were used to check the
repositories.

Data mining algorithms are used to automatically induce missing functional
requirements from data executions [58]. This approach can help to recover missing
and incomplete specifications, design regression tests, and evaluate the correct-
ness of software. Creating up-to-date regression tests is difficult, especially with
legacy systems. One way to create regression tests is to identify the input–output

530 F. Y. Assiri and R. Mehmood

relationships to write the requirements of the existing system. In [57], the authors
proposed to identify the input–output relationships automatically using info-fuzzy
networks (IFN), and they evaluated the effectiveness of IFN methodology on
complex systems. The experimental results found that the data mining methods are
effective for generating tests automatically without needing humans or complete
sets of requirements since functional requirements are learned from data execution.

This study compares two approaches of automated construction of oracle:
artificial neural networks (ANNs) and IFNs [3]. ANNs have been used to generate a
minimal set of tests that are effective at revealing faults [57, 87]. To generate oracles
automatically, the following three steps are performed: (1) the training phase, where
the system is given positive oracles; (2) the evaluation phase, which accepts positive
oracles and rejects negative ones; and (3) the decision phase in which the trained
oracles identify correct test cases from unlabeled ones. The experimental results
found that IFN would be more appropriate for testing applications that are at the
early stages. However, ANNs appear to be better at identifying hard-to-detect faults.

Data mining techniques have been adapted to troubleshoot distributed sys-
tems [30]. The goal of this approach is to identify which resources properties would
succeed or fail for specific jobs. To demonstrate this approach, the job and machine
features for 1000 jobs were extracted, and the job status was described as either
a success or failure. Then, two data mining techniques were applied to generate
a prediction model: C4.5 decision tree [84] and RIPPER rule-based classification
algorithm [31]. Even though both methods predicted that the same features would
cause the failures, RIPPER was found to be a more robust and promising method.
While other data mining techniques, such as the lazy learning technique, can be
applied, they tend to require more information before drawing the model. Additional
research is needed to examine more internal or external features.

21.6 Summary, Conclusions, and Future Work

Software quality is the degree to which the software conforms to its requirements.
General software quality attributes include testability, maintainability, efficiency,
and reliability. One important aspect of software quality is software correctness,
which concerns how well the program provides the required functionalities, as
defined by its specifications, and can be achieved through software testing and
debugging. The complexity of software is on the rise with the developments of
smart cities due to the complex nature of these applications and environments.
Big data and Internet of Things (IoT) are driving radical changes in the software
systems landscape. Together, big data, IoT, smart cities, and other emerging complex
applications have exacerbated the challenges of maintaining software quality.

The big data produced by IoT and other sources is used in designing or operating
various software machines and systems. Since the data is uncertain (i.e., the veracity
characteristic), it could lead to inaccurate or faulty system behavior. In this paper,
we reviewed the technologies related to software quality in the era of big data, IoT,

21 Software Quality in the Era of Big Data, IoT and Smart Cities 531

and smart cities. We elaborated on software quality processes, software testing and
debugging. Model checking was discussed with some directions on the role it could
play in the big data era and the benefits it could gain from big data. The role of big
data in software quality was explored.

We discussed that software quality can be related to big data in at least two
ways. Firstly, big data can help develop better software quality techniques. Secondly,
software quality techniques are needed to improve the quality of big data software
and possibly deal with the big data veracity challenge. We also highlighted that big
data technologies can be used to automate the process of model building as part of
the model checking process. Big data technologies could also improve the quality
of models that are built before being model checked. Alternatively, model checking
can be applied to address the veracity challenges of big data. As mentioned that the
biggest hurdle of model checking is the state-space explosion problem that could be
addressed using high performance computing techniques.

Our future work will focus on bringing together cutting-edge software quality
and big data techniques to develop novel techniques for improving software and
data quality of smart city systems.

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based fault local-
ization. In: Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION, 2007. TAICPART-MUTATION 2007, pp. 89–98. IEEE, Piscataway (2007)

2. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In: Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11,
pp. 1427–1434. ACM, New York (2011)

3. Agarwal, D.: A comparative study of artificial neural networks and info fuzzy networks on
their use in software testing. Master’s Thesis, University of South Florida (2004)

4. Agrawal, H., Horgan, J.R., London, S., Wong, W.E.: Fault localization using execution
slices and dataflow tests. In: Proceedings of the Sixth International Symposium on Software
Reliability Engineering, pp. 143–151. IEEE, Piscataway (1995)

5. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algo-
rithms for smarter internet of things (IOT). Procedia Comput. Sci. 98, 437–442 (2016).
https://doi.org/10.1016/j.procs.2016.09.068. http://www.sciencedirect.com/science/article/pii/
S187705091632213X. The 7th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN 2016)/The 6th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated
Workshops

6. Alomari, E., Mehmood, R.: Analysis of Tweets in Arabic Language for Detection of Road
Traffic Conditions, pp. 98–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94180-6_12. http://link.springer.com/10.1007/978-3-319-94180-6_12

7. Alotaibi, S., Mehmood, R.: Big Data Enabled Healthcare Supply Chain Management: Oppor-
tunities and Challenges, pp. 207–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94180-6_21. http://link.springer.com/10.1007/978-3-319-94180-6_21

8. Amatriain, X.: Mining large streams of user data for personalized recommendations. ACM
SIGKDD Explor. Newsl. 14(2), 37–48 (2013)

https://doi.org/10.1016/j.procs.2016.09.068
http://www.sciencedirect.com/science/article/pii/S187705091632213X
http://www.sciencedirect.com/science/article/pii/S187705091632213X
https://doi.org/10.1007/978-3-319-94180-6_12
https://doi.org/10.1007/978-3-319-94180-6_12
http://link.springer.com/10.1007/978-3-319-94180-6{_}12
https://doi.org/10.1007/978-3-319-94180-6_21
https://doi.org/10.1007/978-3-319-94180-6_21
http://link.springer.com/10.1007/978-3-319-94180-6{_}21

532 F. Y. Assiri and R. Mehmood

9. Ammann, P.: System testing via mutation analysis of model checking specifications. ACM
SIGSOFT Softw. Eng. Notes 25(1), 33 (2000)

10. Ammann, P., Offutt, J.: Introduction to software testing, Cambridge University Press, Cam-
bridge (2016)

11. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests from
specifications. In: Proceedings of Second International Conference on Formal Engineering
Methods, pp. 46–54. IEEE, Piscataway (1998)

12. Arcuri, A.: On the automation of fixing software bugs. In: Companion of the 30th International
Conference on Software Engineering, ICSE Companion ’08, pp. 1003–1006. ACM, New York
(2008)

13. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In:
IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on
Computational Intelligence), pp. 162–168. IEEE, Piscataway (2008)

14. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel Shortest Path Graph Computations of United
States Road Network Data on Apache Spark, pp. 323–336. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94180-6_30. http://link.springer.com/10.1007/978-3-319-94180-
6_30

15. Assiri, F.Y., Bieman, J.M.: An assessment of the quality of automated program operator repair.
In: Proceedings of the 2014 ICST Conference, ICST’14, IEEE, Piscataway (2014)

16. Assiri, F.Y., Bieman, J.M.: The impact of search algorithms in automated program repair.
Submitted to the 2015 International Conference on Soft Computing and Software Engineering,
(SeSe’15) (2015)

17. Assiri, F.Y., Bieman, J.M.: Fault localization for automated program repair: effectiveness,
performance, repair correctness. Softw. Qual. J. 25(1), 171–199 (2017)

18. Baah, G.K., Podgurski, A., Harrold, M.J.: The probabilistic program dependence graph and its
application to fault diagnosis. IEEE Trans. Softw. Eng. 36(4), 528–545 (2010)

19. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press, Cambridge (2008)
20. Baresi, L., Young, M.: Test oracles. Tech. Rep., Technical Report CIS-TR-01-02, University of

Oregon, Dept. of Computer and Information Science, Eugene, Oregon (2001)
21. Bates, P.C., Wileden, J.C.: High-level debugging of distributed systems: the behavioral

abstraction approach. J. Syst. Softw. 3(4), 255–264 (1983)
22. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java predicates. In:

ACM SIGSOFT Software Engineering Notes, vol. 27, pp. 123–133. ACM, New York (2002)
23. Burdonov, I., Kossatchev, A., Petrenko, A., Galter, D.: Kvest: automated generation of test

suites from formal specifications. In: International Symposium on Formal Methods, pp. 608–
621. Springer, Berlin (1999)

24. Callahan, J., Schneider, F., Easterbrook, S., et al.: Automated software testing using model-
checking. In: Proceedings 1996 SPIN workshop, vol. 353 (1996)

25. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezze, M.: Automatic recovery from run-
time failures. In: Proceedings of the 2013 International Conference on Software Engineering,
pp. 782–791. IEEE, Piscataway (2013)

26. Chappell, D.: The three aspects of software quality: functional, structural, and process, White
Paper. Chappell & Associates, San Francisco, CA. Available at www.davidchappell.com. Last
accessed 30 May 2019

27. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies:
a survey on big data. Inf. Sci. 275, 314–347 (2014)

28. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for generating next
test cases. Tech. Rep., Technical Report HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, Hong Kong (1998)

29. Chilimbi, T.M., Liblit, B., Mehra, K., Nori, A.V., Vaswani, K.: Holmes: effective statistical
debugging via efficient path profiling. In: IEEE 31st International Conference on Software
Engineering, 2009. ICSE 2009, pp. 34–44. IEEE, Piscataway (2009)

https://doi.org/10.1007/978-3-319-94180-6_30
https://doi.org/10.1007/978-3-319-94180-6_30
http://link.springer.com/10.1007/978-3-319-94180-6{_}30
http://link.springer.com/10.1007/978-3-319-94180-6{_}30
www.davidchappell.com

21 Software Quality in the Era of Big Data, IoT and Smart Cities 533

30. Cieslak, D.A., Thain, D., Chawla, N.V.: Short paper: troubleshooting distributed systems
via data mining. In: 15th IEEE International Symposium on High Performance Distributed
Computing, pp. 309–312. IEEE, Piscataway (2006)

31. Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–
123. Elsevier, Amsterdam (1995)

32. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for Java. In: ECOOP 2005-
Object-Oriented Programming, pp. 528–550. Springer, Berlin (2005)

33. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty programs.
In: Third International Conference on Software Testing, Verification and Validation (ICST),
pp. 65–74. IEEE, Piscataway (2010)

34. Debroy, V., Wong, W.E.: Combining mutation and fault localization for automated program
debugging. J. Syst. Softw. 90, 45–60 (2014)

35. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing
programmer. Computer 11(4), 34–41 (1978)

36. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from model-based
specifications. In: International Symposium of Formal Methods Europe, pp. 268–284. Springer,
Berlin (1993)

37. Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM SIGKDD
Explor. Newsl. 14(2), 1–5 (2013)

38. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming approach to
automated software repair. In: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, GECCO ’09, pp. 947–954. ACM, New York (2009)

39. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from requirements
specifications. In: ACM SIGSOFT Software Engineering Notes, vol. 24, pp. 146–162.
Springer, Berlin (1999)

40. Gulzar, M.A., Interlandi, M., Yoo, S., Tetali, S.D., Condie, T., Millstein, T., Kim, M.: Bigdebug:
debugging primitives for interactive big data processing in spark. In: Proceedings of the 38th
International Conference on Software Engineering, pp. 784–795. ACM, New York (2016)

41. Hailpern, B., Santhanam, P.: Software debugging, testing, and verification. IBM Syst. J. 41(1),
4–12 (2002)

42. Hand, D.J.: Principles of data mining. Drug Saf. 30(7), 621–622 (2007)
43. Hassan, A.E., Xie, T.: Software intelligence: the future of mining software engineering data. In:

Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp. 161–
166. ACM, New York (2010)

44. Holzmann, G.J.: Design and Verification of Computer Protocols, Prentice Hall, Upper Saddle
River (1991)

45. Janssen, T., Abreu, R., van Gemund, A.J.: Zoltar: A toolset for automatic fault localization.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, pp. 662–664. IEEE Computer Society, Washington, D.C. (2009)

46. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2011)

47. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM international Conference on Automated
Software Engineering, pp. 273–282. ACM, New York (2005)

48. Jones, J.A., Harrold, M.J., Stasko, J.T.: Visualization for fault localization. In: Proceedings of
ICSE 2001 Workshop on Software Visualization, Toronto, Ontario, pp. 71–75. Citeseer (2001)

49. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault
localization. In: Proceedings of the 24th International Conference on Software Engineering,
pp. 467–477. ACM, New York (2002)

50. Kaiser, L.W.B.X.G., Passonneau, R.: Bugminer: Software reliability analysis via data mining
of bug reports. Delta 12(10), 09–0500 (2011)

51. Kang, U., Faloutsos, C.: Big graph mining: algorithms and discoveries. ACM SIGKDD Explor.
Newsl. 14(2), 29–36 (2013)

534 F. Y. Assiri and R. Mehmood

52. Kern, C., Esparza, J.: Automatic error correction of Java programs. In: Proceedings of the
15th International Conference on Formal Methods for Industrial Critical Systems, FMICS’10,
pp. 67–81. Springer, Berlin (2010)

53. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written
patches. In: Proceedings of the 2013 International Conference on Software Engineering,
pp. 802–811. IEEE, Piscataway (2013)

54. Ko, A.J., Myers, B.A.: Debugging reinvented: asking and answering why and why not
questions about program behavior. In: Proceedings of the 30th International Conference on
Software Engineering, pp. 301–310. ACM, New York (2008)

55. Lamancha, B.P., Polo, M., Caivano, D., Piattini, M., Visaggio, G.: Automated generation of
test oracles using a model-driven approach. Inf. Softw. Technol. 55(2), 301–319 (2013)

56. Laney, D.: 3d data management: controlling data volume, velocity and variety. META Group
Res. Note 6(70), 1 (2001)

57. Last, M., Kandel, A.: Automated test reduction using an info-fuzzy network. In: Software
Engineering with Computational Intelligence, pp. 235–258. Springer, Boston (2003)

58. Last, M., Friedman, M., Kandel, A.: The data mining approach to automated software
testing. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 388–396. ACM, New York (2003)

59. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic
software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

60. Lin, J., Ryaboy, D.: Scaling big data mining infrastructure: the twitter experience. ACM
SIGKDD Explor. Newsl. 14(2), 6–19 (2013)

61. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for java. In: Proceedings of 13th
International Symposium on Software Reliability Engineering, 2002. ISSRE 2003, pp. 352–
363. IEEE, Piscataway (2002)

62. Ma, Y.S., Offutt, J., Kwon, Y.R.: Mujava: a mutation system for Java. In: Proceedings of the
28th International Conference on Software Engineering, pp. 827–830. ACM, New York (2006)

63. Martinez, M., Monperrus, M.: Astor: evolutionary automatic software repair for Java. arXiv
preprint arXiv:1410.6651 (2014)

64. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the search space
of automated program fixing. Empir. Softw. Eng. 20(1), 176–205 (2015)

65. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management
revolution. Harv. Bus. Rev. 90(10), 60–68 (2012)

66. Mehmood, R.: Disk-based techniques for efficient solution of large Markov chains. Ph.D.
Thesis, School of Computer Science, University of Birmingham (2004)

67. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. Tech. Rep. UCAM-CL-TR-650, University of Cambridge, Computer Laboratory
(2005). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf

68. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing
model. Procedia Comput. Sci. 64, 1107–1114 (2015). https://doi.org/10.1016/j.procs.2015.
08.566. http://www.sciencedirect.com/science/article/pii/S1877050915027015. Conference on
ENTERprise Information Systems/International Conference on Project MANagement/Confer-
ence on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN
/ HCist 2015 October 7–9, 2015

69. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Tech Report, School of Computer Science, University of
Birmingham (2003)

70. Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive
debugging. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing,
pp. 186–193. IEEE Computer Society, Washington, D.C. (2005)

71. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future Networked Healthcare Systems: A Review
and Case Study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf
https://doi.org/10.1016/j.procs.2015.08.566
https://doi.org/10.1016/j.procs.2015.08.566
http://www.sciencedirect.com/science/article/pii/S1877050915027015

21 Software Quality in the Era of Big Data, IoT and Smart Cities 535

the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey (2015). https://
doi.org/10.4018/978-1-4666-8371-6.ch022. http://services.igi-global.com/resolvedoi/resolve.
aspx?doi=10.4018/978-1-4666-8371-6.ch022

72. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: Utilearn:
A personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017). https://doi.org/10.1109/ACCESS.2017.2668840

73. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1),
75–104 (2017). https://doi.org/10.1108/IJOPM-03-2015-0179.

74. Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated test oracles for GUIs. In: ACM
SIGSOFT Software Engineering Notes, vol. 25, pp. 30–39. ACM, New York (2000)

75. Microsoft Zune affected by ‘bug’ (2008). http://news.bbc.co.uk/2/hi/technology/7806683.stm
76. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Ubehealth: A personalized ubiquitous

cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32,258–
32,285 (2018). https://doi.org/10.1109/ACCESS.2018.2846609

77. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software diagnosis. ACM
Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (2011)

78. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair via semantic
analysis. In: Proceedings of the 2013 International Conference on Software Engineering,
pp. 772–781. IEEE, Piscataway (2013)

79. Nidhra, S., Dondeti, J.: Black box and white box testing techniques-a literature review. Int. J.
Embed. Syst. Appl. 2(2), 29–50 (2012)

80. Offutt, J., Ma, Y.S., Kwon, Y.R.: The class-level mutants of MuJava. In: Proceedings of the
2006 International Workshop on Automation of Software Test, pp. 78–84. ACM, New York
(2006)

81. Overview of the internet of things. Recommendations ITU-T Y.2060 (2012)
82. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C.,

Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.F., Zibin, Y., Ernst, M.D., Rinard, M.:
Automatically patching errors in deployed software. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, pp. 87–102. ACM, New York
(2009)

83. Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.P.: Automated fault localization using
potential invariants. arXiv preprint cs/0310040 (2003)

84. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
85. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Health

Inf. Sci. Syst. 2(1), 3 (2014)
86. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proceedings of

the 18th IEEE International Conference on Automated Software Engineering, pp. 30–39. IEEE,
Piscataway (2003)

87. Saraph, P., Kandel, A., Last, M.: Test set generation and reduction with artificial neural net-
works. In: Artificial Intelligence Methods in Software Testing, pp. 101–132. World Scientific,
Singapore (2004)

88. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017).
https://doi.org/10.1016/j.procs.2017.05.440. http://www.sciencedirect.com/science/article/pii/
S1877050917311225. 8th International Conference on Ambient Systems, Networks and Tech-
nologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information
Technology, SEIT 2017, 16–19 May 2017, Madeira

89. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach.
Acm SIGKDD Explor. Newsl. 14(2), 20–28 (2013)

90. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with Java pathfinder. ACM
SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004)

https://doi.org/10.4018/978-1-4666-8371-6.ch022
https://doi.org/10.4018/978-1-4666-8371-6.ch022
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022
https://doi.org/10.1109/ACCESS.2017.2668840
https://doi.org/10.1108/IJOPM-03-2015-0179
http://news.bbc.co.uk/2/hi/technology/7806683.stm
https://doi.org/10.1109/ACCESS.2018.2846609
https://doi.org/10.1016/j.procs.2017.05.440
http://www.sciencedirect.com/science/article/pii/S1877050917311225
http://www.sciencedirect.com/science/article/pii/S1877050917311225

536 F. Y. Assiri and R. Mehmood

91. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing
of programs with contracts. In: Proceedings of the 19th International Symposium on Software
Testing and Analysis, ISSTA ’10, pp. 61–72. ACM, New York (2010)

92. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic
programming. In: Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pp. 364–374. IEEE Computer Society, Washington, D.C. (2009)

93. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with evolutionary
computation. Commun. ACM 53(5), 109–116 (2010)

94. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470 (1982)
95. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans.

Evol. Comput. 15(4), 515–538 (2011)
96. Zaidman, A., Van Rompaey, B., Demeyer, S., Van Deursen, A.: Mining software repositories

to study co-evolution of production & test code. In: 1st International Conference on Software
Testing, Verification, and Validation, pp. 220–229. IEEE, Piscataway (2008)

97. Zhou, Z.Q., Huang, D., Tse, T., Yang, Z., Huang, H., Chen, T.: Metamorphic testing and
its applications. In: Proceedings of the 8th International Symposium on Future Software
Technology (ISFST 2004), pp. 346–351 (2004)

98. Zikopoulos, P., Eaton, C., et al.: Understanding big data: analytics for enterprise class hadoop
and streaming data. McGraw-Hill, New York (2011)

Chapter 22
Open Source and Open Data Licenses
in the Smart Infrastructure Era: Review
and License Selection Frameworks

Emad Alamoudi, Rashid Mehmood, Wajdi Aljudaibi, Aiiad Albeshri,
and Syed Hamid Hasan

22.1 Introduction

According to the Open Source Initiative [1], open source licenses are “licenses that
comply with the Open Source Definition—in brief, they allow software to be freely
used, modified, and shared.” The expression open source was first used by Bruce
Perens and Eric Raymond in 1997 [2]. They wrote the Open Source Definition
(OSD), which is based on ten criteria to determine whether a license is qualified
to be an open source license [3].

The use of open source software (OSS) has increased over the years, particularly
during the last two decades. In 2010, a study [4] showed that 98% of all enterprises
use an open source software. Nevertheless, the use of open source is not restricted
to businesses only; 76% of all software developers had acknowledged that they
had used open source components in their software [4]. OSS give the user the
right to use, change, and publish the software source code. However, there are
some restrictions regarding its protection and copyrighting. These limitations are

E. Alamoudi (�) · W. Aljudaibi · A. Albeshri
Department of Computer Science, Faculty of Computing and Information Technology (FCIT),
King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: ealamoodi0004@stu.kau.edu.sa; waljedaibi@kau.edu.sa; aaalbeshri@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

S. H. Hasan
Department of Information Systems, Faculty of Computing and Information Technology (FCIT),
King Abdulaziz University, Jeddah, KSA
e-mail: shhasan@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_22

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_22&domain=pdf
https://opensource.org/osd
mailto:ealamoodi0004@stu.kau.edu.sa
mailto:waljedaibi@kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
mailto:RMehmood@kau.edu.sa
mailto:shhasan@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_22

538 E. Alamoudi et al.

presented in the software license. The license serves as a contract between the
developer of the software and the end user who will use the software.

The open source software culture has helped the development of many new
distributed and collaborative applications paving the way for integrated systems and
hence smart cities. Many new smart city applications are being developed, such as
in transport [5–12], healthcare [13–16], infrastructure [17, 18], and applications [19,
20].

The open data licenses have received an increased attention in the recent years
due to the emergence of big data and relevant technologies. Big data refers to the
“emerging technologies that are designed to extract value from data having four Vs
characteristics; volume, variety, velocity and veracity” [21]. Big data technologies
are being used in many application areas, see e.g., [9, 22–26].

Smart city developments are increasingly relying on data sharing concepts. Data
sharing and “open data” are opening the doors for the use of timely data in making
new products and services, and hence are allowing businesses, governments, and
individuals to develop, accelerate, and innovate knowledge, science, technology,
and economy. For example, Transport for London (TfL) has published the traffic
information for London city under an open license to be used by developers [27].
TfL uses an Open Government License (OGL) v2.0 [28]. A study done in 2017 by
Deloitte shows that opening up the data by TfL has generated about £130 million
for the economy [29]. See e.g., [30–34], for other initiatives and success stories of
data sharing.

Data and software licensing are playing an important role in the data sharing
economy era. Making the data or software publicly available is not a simple matter
due to privacy, competing interests of the parties involved, and many other reasons.
The legal information of who could access and use the data and software, and how
to use them, needs to be explicitly stated. These matters are dealt with by specifying
data and software licenses. This has given rise to many types of licenses.

The license selection process is critical because a license, once picked, could
hardly be changed in the future [35]. Very few cases had been made in the past to
change licenses and had faced a furious resistance from contributors. The process
requires a painful effort from licensors to acquire permission from each and every
contributor [35]. More importantly, selecting a wrong license could have severe
financial and social implications, cause risks, and hinder developments (see e.g.,
[36–38]).

This chapter proposes frameworks for the selection of open source software
and open data licenses. A review of notable open source and open data licenses,
their differences, and the suitability of these licenses for various kinds of data and
software is carried out. Conclusions are drawn with recommendations for the future
work.

The chapter is structured as follows. In Sect. 22.2, we give a brief overview of the
open source license domain. Section 22.3 reviews the related works. Section 22.4
describes some notable open source applications in the smart city domain. In Sect.
22.5, we give an overview of the main categories of the open source software license
with a brief explanation of each type. In Sect. 22.6, we review open data licenses and

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 539

briefly describe its main categories. In Sect. 22.7, we discuss the licenses which we
have selected to be used in our frameworks and give justifications for their selection.
Sections 22.8 and 22.9 present and discuss the software license and data license
frameworks, respectively. Section 22.10 concludes the chapter.

22.2 Background

Why a developer gets involved in OSS projects? According to Kolassa and Rumpe
[39], there are several reasons, such as showing their skills, showing the world their
work, for altruistic reasons, and/or for possible rewards in the future.

There are two well-known organizations and movements that certify the OSS
license: The OSI (Open Source Initiative) and the FSF (Free Software Foundation).
The OSI, a non-profit corporation, was founded in 1998 for the purpose of reviewing
and approving licenses as OSD-conformant [40], whereas the FSF, a non-profit
organization, was established in 1984 by Richard Stallman [2]. It introduces one
of the most notable licenses which is GNU General Public License (GPL) along
with the concept of copyleft.

OSI had approved until this point 83 licenses [41] while FSF lists 98 open source
software licenses [42]. Many licenses had been ratified in the past years. Also, a
single license may have many versions, and each released might be distinct from
its earlier versions. As a result, there is a growing need to simplify the disparity
between the different types of licenses.

The open source concept can also be applied to hardware. Open Source Hardware
Association (OSHWA) defines open source hardware as a hardware that has an
available design to the public [43]. Same as open source software, open source
hardware enables users to change, produce, and distribute the devices based on that
design.

The “smart city,” on the other hand, starts to get more attention recently. Different
cities have already taken the start on the smart city initiatives [44]. Smart cities
“provide the state of the art approaches for urbanization, having evolved from the
developments carried out under the umbrella of knowledge-based economy, and
subsequently under the notion of digital economy and intelligent economy” [25].
Caragliu et al. [45] “believe a city to be smart when investments in human and social
capital and traditional (transport) and modern (ICT) communication infrastructure
fuel sustainable economic growth and a high quality of life, with a wise management
of natural resources, through participatory governance.”

Tsarchopoulos et al. [46] argued that a smart software that enables reusability
will facilitate the strategy of the smart city. Thus, software applications are an
essential part of building smart cities. To develop an application that targets smart
city problem, organization and city authorities should avoid spending extra money
and technology lock-in. Therefore, open source paradigm will be a good strategy to
adopt since it allows sharing application between cities, build collaboration, provide
an application for free to other cities, and reuse existing application created by

540 E. Alamoudi et al.

others. Moreover, Komninos et al. [44] believe that open source software are perfect
for city authorities because they will not be able to compete in software and do not
create advantages over proprietary software.

Selecting an open license might be problematic. One of the challenges on the
selecting process is when a developer uses an OSS component that is licensed under
a particular OSS license. So, the final product license should be compatible with the
component license. This problem is called license-mismatch [47]. As the number of
components would increase, as the complexity of selecting which license to apply
to the final software will be. For example, GPL version 3 is not compatible with
components that are published under GPL version 2.

A solution for the license-mismatch problem, rather than combining the two
components under an incompatible license, would be to form a new license
which could include both different licenses restrictions. This solution is called
license proliferation, and it is strongly discouraged by the OSI because it raises
another type of incompatibilities [48]. Lately, different companies such as Palamida
(palamida.com), BlackDuckSoftware (www.blackducksoftware.com), and Open-
Logic (www.openlogic.com) offer to help clients by analyzing the possible legal
outcomes when planning to use OSS components in their products. Another solution
is to apply the concept of dual licensing [49]. However, this solution may rise further
problems.

The licensor of the OSS software may be represented by an organization, a single
developer, or a group of developers. On the other hand, the licensee could be the end
user of the software or somebody who has embedded it in his application.

22.3 Related Work

Many publications addressed the topic of choosing the suitable license for a
particular project from a different perspective.

Lindman et al. [50] propose an OSS license decision-making model which links
the license with the business model. The paper also discusses various factors that
should be taken into consideration when selecting a license. However, the suggested
model was targeting a small size company. For the open data selection, the European
data portal had a guide that can help in selecting the right data license [51].
Androutsellis-Theotokis et al. [2] provide a general overview of all aspects related
to OSS such as history and evolution, licensing, reuse and adoption, communities,
creation process, business models, and motivation. Furthermore, Laurent [52] went
in-depth speaking about the most popular license in details. He addressed the
advantage and disadvantage when using each one. Mathur et al. [47] analyze 1423
projects from Google Code project hosting that contain around 69 million lines of
code. Their goal was to spot license violation by tracking cases of OSS code reuse.
As a result, they found four types of violations. They provided two solutions to
avoid similar violations. Kolassa and Rumpe [39] study the legal impact that a code
generator’s license can impose on the generated code or artifacts. Kechagia et al.

http://palamida.com
http://www.blackducksoftware.com
http://www.openlogic.com

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 541

[53] discuss various features of OSS licensing. Also, they present a study based on
FreeBSD port collection, which is a group of more than 20,000 software packages.
They investigate their licensing dependency to find any sort of pattern. Their aim
was to guide and explain the process of selecting an OSS license. Fitzgerald [54]
identifies the characteristics of the original free and open source software (FOSS)
phenomenon. Then, he tried to determine the new paradigm which he called OSS
2.0. He illustrates the key challenges for research and practice that occur as a result
of the appearance of OSS 2.0. Later, he stated the differences of licensing selection
process between the two phenomena. Kapitsaki et al. [55] investigate different tools
that detect the license of a software component in order to avoid license violations.
Then, authors propose their graph approach in identifying license compatibility.
Reincke et al. [56] offer an easy and reliable tool to fulfill what one has to do in
order to use open source compliantly. Their tools have been authorized by OSI as
a tool that one may use to manage the open source compliance. It provides a to-
do list that must be executed to ensure that user act in accordance to open source
license requirements. Singh and Phelps [35] present a study of social factors that
influence the choice of open source license. They test their hypotheses on a sample
consisting of 5307 open source projects hosted by SourceForge. Heikkilä et al. [57]
discuss the problem of transferring process from proprietary development model
to open source model. Furthermore, they demonstrate challenges and benefits that
might be expected from such a process and how license choice could affect this
transition. Widenius and Nyman [58] try to answer the question of how can someone
make money out of open source project? They compare common OSS license then
they identify one that suits their purpose. Tsarchopoulos et al. [46] has created
a special repository for open and proprietary application, which they call ICOS
(Intelligent City Software and Solutions). Their repository provides a platform for
uploading and sharing intelligent and smart city application. They also provide a
forum for discussion between users. Amiri-Kordestani and Bourdoucen [59] review
some state-of-art open source applications used in the field of IoT. They also listed
a number of parameters that need to be studied before adopting open source project.

The challenges of 2014 mission of GBIF (Global Biodiversity Information
Facility) to provide a machine readable, standard license for American bullfrog
records downloaded from GBIF are discussed in [60, 61].

Most of the papers and books that previously discussed were dealing with the
problem from the business point of view. However, in our paper, we will propose a
simple yet comprehensive model that helps to pick the right license for developers
who are not interested to gain profit out of their open source product.

22.4 Open Source Software, Projects, and Applications

As smart cities model advance, lots of software are being developed to compensate
for its rising needs. Existing large-scale software repositories, namely, GitHub,
Bitbucket, and SourceForge can be used to host smart city applications. However,

542 E. Alamoudi et al.

Table 22.1 Open source projects for IoT with their associate licenses

Application License Purpose

IoTivity [59, 62] Apache License
version 2.0.

An open source framework of the connectivity
standards for IoT devices

Tizen [59, 63] Tizen SDK License,
Flora License

An operating system for many embedded devices,
such as smartphones, tablets, TVs, cameras, printers,
wearables, and home appliances

Automotive
Grade Linux
[59, 64]

Apache License 2.0 It is an embedded Linux project to create open source
software with members from the silicon industries,
automotive, and telecom

Yocto [59, 65] MIT License It is an embedded Linux project that offers a
framework to make a highly customized Linux
distribution

Zephyr [59] Apache 2.0 An embedded and real-time operating system (RTOS)
targeting microcontrollers

Android Things
[59]

Apache 2.0/GPLv2 It is built to assist high-end IoT devices, wireless
networking, and sensors

special repositories for only smart city applications can be found, such as Apps for
Barcelona, the Code for America, and ICOS [46]. Such a repository will enable
sharing and reusing smart city application, which indicates some degree of maturity
of smart city development. ICOS currently holds 83 projects classified by their
own function and software license. Out of the 83 projects, 69 (83%) have open
source licenses, which shows the popularity of open source software in the smart
city applications. Table 22.1 shows some examples of open source projects in the
smart city domain.

22.5 Open Source Software Licenses

Choosing a license is a very critical task because each license could flourish or
shrink the community around your software.

All open source licenses assure the user the right to use, modify, and redistribute
the source code in its original or modified form. Rather than those fundamental
rights, licenses may differ considerably. Open source software licenses are usually
divided based on how they treat derivative works into three categories: (1) Permis-
sive, (2) Weak copyleft, and (3) Strong copyleft licenses.

A comparison between the three categories is presented in Table 22.2.
A number of open source licenses that are approved by OSI divided into the three

categories are presented in Table 22.3.
The hierarchical structure is presented in Fig. 22.1 along with some examples for

each category.

http://www.apache.org/licenses/LICENSE-2.0.html

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 543

Table 22.2 Open source license categories

Permissive Weak copyleft Strong copyleft

Free of cost
√ √ √

Redistribution
√ √ √

No usage restrictions
√ √ √

The availability of the source code
√ √ √

Source code modification
√ √ √

Integrating with proprietary work
√ √ ×

Derivative work can be proprietary
√ × ×

Can be relicensed by others × × ×
Based on information from [53]

Licenses

Freeware Public Domain

OSS

Non-copyle�
(permissive)

Examples:
Apache, MIT

and BSD.

Weak copyle�

Examples: LGPL
and MPL

Strong copyle�
(restric�ve)

Example: GPL
v2.0 and GPL

v3.0

Proprietary

Fig. 22.1 A hierarchical structure of software license categories

544 E. Alamoudi et al.

Table 22.3 Some OSI-approved licenses divided into three groups

Permissive Weak copyleft Strong copyleft

Apache License v. 2.0 Adaptive Public License v.
1.0

Frameworx License
(Frameworx-1.0)

Boost Software License (BSL-1.0) Artistic License (Perl) GNU Affero General Public
License v. 3 (AGPL-3.0)

BSD 3-Clause “New” or
“Revised”

Apple Public Source License
(APSL-2.0)

GNU General Public License
v. 2.0 (GPL-2.0)

BSD 3-Clause “Simplified” or
“FreeBSD”

Eclipse Public License (EPL) GNU General Public License
v. 3.0 (GPL-3.0)

Academic Free License (“AFL”)
v. 3.0

GNU Lesser General Public
License v. 2.1 (LGPL-2.1)

Non-Profit Open Software
License v3.0 (NPOSL-3.0)

Attribution Assurance Licenses
(AAL)

GNU Lesser General Public
License v. 3.0 (LGPL-3.0)

Open Software License v. 3.0
(OSL-3.0)

EU DataGrid Software License
(EUDatagrid)

Microsoft Reciprocal License
(Ms-RL)

Reciprocal Public License v.
1.5 (RPL-1.5)

Educational Community License,
v. 2.0 (ECL-2.0)

Motosoto License (Motosoto) Sleepycat License (Sleepycat)

Eiffel Forum License v. 2.0
(EFL-2.0)

Mozilla Public License v. 2.0
(MPL-2.0)

Entessa Public License v. 1.0 Nokia Open Source License
(Nokia)

Fair License Ricoh Source Code Public
License (RSCPL)

ISC License (ISC) Sun Public License v. 1.0
(SPL-1.0)

MirOS Licence wxWindows Library License
(WXwindows)

MIT License (MIT)
PHP License v. 3.0 (PHP-3.0)
PostgreSQL License
(PostgreSQL)
Python License (Python-2.0)
CNRI Python License
(CNRI-Python)
Vovida Software License v. 1.0
(VSL-1.0)
W3C License (W3C)
X.Net License (Xnet)
Zope Public License v. 2.0
(ZPL-2.0)

Based on material from [42, 55]

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 545

22.5.1 Permissive Licenses

Permissive licenses are the most liberal category. In contrast to weak copyright
licenses, there are no restrictions to give back the modifications to the community.
It gives the user the right to use and reuse (or even fork) the source code. It only
requires licensees to give credit to the original contributors. By using this type,
people could fork the source code and release it under a proprietary license. An
example of a forking case was Apple’s OS X operating system which contains
code that copied from the FreeBSD operating system, which released under BSD
(Berkeley Software Distribution) license. Sometimes people referred to this type as
“academic licenses.” The most common examples of this category are the Apache,
MIT, and BSD licenses.

22.5.2 Weak Copyleft Licenses

Weak copyleft license enables users to combine their software with proprietary
software. It, hence, establishes a middle layer between the strong copyleft licenses
that prohibit such merging, and the permissive licenses that allow this without any
control. However, this type cannot be relicensed under a proprietary license. Any
modification to code under this category should be made available as an open
source too. Some examples of weak copyleft licenses are the Mozilla Public License
(MPL), which is the license used with the Firefox internet browser and GNU Lesser
General Public License (LGPL), which is used with the Linux OS libraries [62].

22.5.3 Strong Copyleft Licenses

An essential feature of the strong copyleft licenses, which lead to its extensive
approval, is the viral nature, which requires that any modification to the source code
to also be released under a strong copyleft license [53]. Programs that have been
released under this type of license cannot be relicensed under a more permissive
license. The most notable example is GNU General Public License (GPL), which
has been used for Linux kernel [62].

A general rule about changing a license is that user can switch to a license that is
more restrictive license type yet not to a more permissive one. Moreover, only the
permissive license type can be modified to proprietary [58].

546 E. Alamoudi et al.

22.6 Open Data License

In a smart city context, data is expected to be generated massively. Sensors, cameras,
smartphones, among others, all are expected to generate information. However,
without opening these data, developers will not be able to fully utilize the data.
Open data can greatly help speed up innovation and invention, which is going to
help opening new businesses and jobs. Yet, open data is a term that can only be given
to the data that has an open license [51]. Open data license can help in regulating
the legal conditions about how to use, distribute, and modify these data. Different
countries are competing to provide their data. Global Open Data Index [63] ranks
countries on how much data they offer. Table 22.4 shows the open data portal for a
number of countries along with their ranking.

Open data licenses can be divided into three categories according to the restric-
tions that they put on the users. First, the public domain category, which waives
all the author rights and puts no restrictions on the user. Second, the attribution
category, which gives the user the freedom to use, modify, and share the data as
long as the user give credit to the original author. Finally, a share-alike category
which requires that all derivative work to be shared (Fig. 22.2).

Table 22.4 The data portal
websites for a number of
countries

Country Open data website Rank

Taiwan data.gov.tw 1
Australia data.gov.au 2
United Kingdom data.gov.uk 3
France data.gouv.fr 4
India data.gov.in 32
Saudi Arabia data.gov.sa –

Ranking data were collected from: https://index.
okfn.org/place/

Public
Domain

CC0

CDLA-
Permissive-1.0

PDDL

A�ribu�on

CC-BY v4.0

OGL v2.0

Licence Ouverte

ODC-BY

Share-ALike

CC-BY-SA v4.0

CDLA-Sharing-
1.0

ODbL

Fig. 22.2 Open data licenses divided into different categories according to the restrictions that
they place on the user

http://data.gov.tw
http://data.gov.au
http://data.gov.uk
http://data.gouv.fr
http://data.gov.in
http://data.gov.sa
https://index.okfn.org/place/
https://index.okfn.org/place/

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 547

Data Licenses

Crea�ve Commons
Licences

Public Domain (CC0)

A�ribu�on (CC-BY v4.0)

A�ribu�on & Share-Alike
(CC-BY-SA v4.0)

A�ribu�on & Non
Commercial (CC BY-NC)

A�ribu�on & No
Deriva�ves (CC BY-ND)

Linux Founda�on
Data Licenses

CDLA-Permissive-1.0

CDLA-Sharing-1.0

Governmental
Open Data Licenses

OGL v2.0

Licence Ouverte

Open Data
Commons

PDDL

ODC-BY

ODbL

Custom-made
Licenses

Fig. 22.3 A hierarchical structure of data license categories according to their issuers

Moreover, one can also divide them according to the source that issues the
licenses. There are five major issuers of open data licenses, namely, creative
commons licenses, Linux Foundation, governmental open data licenses, open data
commons, and custom-made licenses [27] (Fig. 22.3).

Creative Commons Licenses First, the Creative Commons (CC) licenses are a
group of licenses that used for open content. It is used to give the user the right to
use, distribute, and build upon a work that is already created. Version 4.0 explicitly
considers licensing data. Yet, the CC licenses, in case of data, can be further divided
into three licenses, namely, public domain, attribution, and share-alike.

Linux Foundation Data Licenses Linux foundation has several projects, one
of which is called Community Data License Agreement (CDLA). CDLA is a
community work to develop data licenses similar to the one that was created for
software which enables using and sharing the data. CDLA collaboration resulted in
two open data licenses, CDLA-Permissive v1.0 and CDLA-Sharing v1.0.

Governmental Open Data Licenses Governments usually own a large volume
of data. These data might be tax, power consumption, water usage, crime reports,
and business data. Thus, these data are routinely collected and being ready to be
navigated and mined. For maximum utilization, governments start to open these data
for the public. In order to release the data, governments usually issue data license
to regulate the legal issues. Governments usually publish their data by using their

548 E. Alamoudi et al.

own license. Open Government License (OGL), which is published by the United
Kingdom government, is an example of a governmental license that respects the
open data terms [64]. OGL gives the user the right to use, share, copy, and distribute
the data. It also allows exploiting the data commercially, and it has two versions
(v1.0 and v2.0). However, it requires to mention the source of the data by providing
an attribution statement [64]. OGL is compatible with both the Creative Commons
Attribution License v4.0 (CC-BY v4.0) and the Open Data Commons Attribution
License (ODC-BY) [64].

Another example of a clear and open data license is the License Ouverte, which
was issued in 2012 by the French government. Similar to the OGL, the license
ouverte allows the user to use, share, modify, and commercial exploitation of the
data while requiring the user to attribute the source of the data [65]. It is compatible
with other licenses like OGL, ODC-BY, and CC-BY 2.0.

Open Data Commons Licenses Open Data Commons (ODC) project provides
legal solutions for open data. It had launched its first license in 2008. ODC is
a project that was carried out by the Open Knowledge Foundation, which is a
global non-profit organization [66]. ODC has three open data licenses, namely,
PDDL (Public Domain Dedication and License), ODC-BY (Attribution License),
and ODC-ODbL (Open Database License). PDDL license waives all author rights
[67]. There are no obligations on the user when using PDDL. ODC-BY is similar to
PDDL, but it requests an attribution. Finally, ODC-ODbL license enables the user
to use, share, and distribute the data, but it asks for attribution and to license all
derivative works under the same license [68].

Custom-made licenses Rarely, a data publisher will share his data under a specific
custom-made license. The author might need to do that in case that current licenses
do not cover his specifications. Custom-made licenses can be written by the data
owner or adapted from an existing standard license through the insertion of new
specifications and/or the adjustment of existing licenses.

However, usually custom-made licenses increase the legal complexity for the end
user. Moreover, the extra specification might violate the open data standards or limit
the freedom of the user [27].

22.7 Selected Licenses

22.7.1 Software Licenses

In our framework for selecting open source software license, we will only include
the most notable licenses. The license popularity will be taken from the black duck
license usage statistics [69]. These statistics are calculated from the Black Duck
KnowledgeBase which includes 1.1 million open source projects from over than
8500 sites.

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 549

Table 22.5 List of licenses and their approval status

License name Type FSF approval OSI approval

MIT Permissive
√ √

Apache License 2.0 Permissive
√ √

GNU General Public License (GPL) 3.0 Strong Copyleft
√ √

BSD License 2.0 (3-clause, New or Revised) Permissive
√ √

Artistic License (Perl) Weak Copyleft
√ √

GNU Lesser General Public License (LGPL) 3.0 Weak Copyleft
√ √

Eclipse Public License (EPL) Weak Copyleft
√ √

GNU Affero General Public License v3 (AGPL) Strong Copyleft
√ √

The GNU Free Documentation License (GFDL) –
√ ×

Based on material from [41, 42, 70]

We looked for the ten most broadly used licenses and then decided to eliminate
older versions of each license. Moreover, we removed the Microsoft Public License
since it is similar to the Eclipse Public License (EPL) which is more valuable in
the context of model-driven development. We end up having seven licenses for our
analysis. Furthermore, we add the GNU Free Documentation License (GFDL) and
GNU Affero General Public License (AGPL) since they tackle areas that are not
touched by the other licenses. Table 22.5 shows all the covered licenses along with
their types and the acceptance status.

MIT MIT license is another permissive license. It is considered to be the simplest
on its category [52]. The license was written in 1987 for the purpose of licensing
the source code of the X Window System.

Apache License 2.0 Apache license was created by the Apache Foundation. It has
been derived from BSD license. Version 2.0 had been written in 2004. It shares some
similarities with both MIT and BSD licenses. However, licensing the modifications
under another license is allowed as long as the requirements of the Apache License
v2.0 are complied with (This has been implying in BSD and MIT but not spelled
out) [2]. It allows contributors to grant their patent right from users [71].

GNU General Public License (GPL) 3.0 GPL is one of the essential open source
licenses. It was created by Richard Stallman in the mid of 1980s. GPL enforces
any derivative works or modifications to be published under the same GPL licenses.
Hence, it assures to its users that their work would never convert to a proprietary
product [72]. GPL is the heart of the concept of copyleft. Most OSS to date are
released under GPL. According to Black Duck KnowledgeBase, 30% of all OSS
project are released under different versions of GPL [69]. GPL v3.0 released in
2007 included patent protection clauses.

550 E. Alamoudi et al.

Examples of software that use GPL are C Compiler, Linux operating system
kernel, and the GNU Emacs Editor.

BSD License 2.0 (3-clause, New or Revised) License The Berkeley Software
Distribution (BSD) license was created for the purpose of licensing a big portion
of the Unix operating system code by the University of California (UC) [2]. Since
then, BSD license was gradually being adopted by many OSS. It permits derivative
works to be licensed under different licenses, as long as it gives credit to the original
contributors. However, the clause that requires the acknowledgment of all previous
contributors dropped in 1999.

Artistic License (Perl) Artistic License (AL) was introduced firstly in 1991 by
Larry Wall for Perl. The reason behind creating AL was that Larry felt that
conditions of GPL (which used to be Perl’s license) was very restricted, so he
was looking for a much flexible license. The aim of this license was to permit Perl
programs to be integrated into commercial packages [2].

Its name reflects the author’s intention to preserve his artistic control over the
licensed product and its derivative works [52]. It enables developers to do anything
with the source code if only the changes they made are declared and explained in
the source code. Thus, it allows the original author to keep his artistic control [72].

The AL and GPL are pretty similar licenses. However, AL is a weak copyleft
license because it doesn’t require its derivative works to be published using the
same license.

GNU Lesser General Public License (LGPL) 3.0 The GNU Lesser General
Public License (LGPL), which also known as the Library GPL, was introduced
by FSF as a tactic to protect the free software library against more permissive
licenses. Therefore, this tactic allows the library to be combined with proprietary
software. Thus, the library would have bigger chance to be widely adopted. The
main difference between LGPL and GPL is that program and library released under
LGPL could be incorporated into a proprietary software, or one that is licensed
under non-LGPL license. It is referred to as a weak copyleft license.

However, the FSF advocates the use of GPL license in cases when there is a
library that provides unique and extraordinary advantages that are not found in
similar competing libraries [2].

Eclipse Public License (EPL) Eclipse public license was initially driven from
IBM’s Common Public License (CPL), which was used in the past for licensing the
Eclipse codebase. The only difference between EPL and CPL is related to how they
deal with the patent litigation. The EPL was created for the Eclipse Foundation.
There are two versions which are ELP v1.0. and ELP v2.0. Both versions have
been approved by the OSI as a qualified OSS license that satisfied the OSD
requirements on May 2004 and August 2017, respectively [73, 74]. Furthermore,
both are considered as weak copyleft licenses by the FSF [42]. The only difference
that ELP v2.0 offers is that it allows the GNU GPL version 2 or later as a “secondary
license” [42].

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 551

GNU Affero General Public License v3 (AGPL) The GNU Affero General
Public License v3 (AGPL) is a copyleft license that was created by the FSF. It is
similar to GPL v3 with one additional term that allows users who deal with an
AGPL-licensed software over a network to acquire the source code of that software
[42]. Hence, this license is recommended by FSF for any software that runs over the
network. However, the license is not compatible with both GPL v2 and v3.

The GNU Free Documentation License (GFDL) GFDL was created for licensing
manuals, textbooks, or other documents. It allows everyone to copy, modify, and
redistribute the material freely either commercially or non-commercially.

22.7.2 Open Data Licenses

In this section, we will consider data licenses from trusted sources and organiza-
tions. There are four major open data license providers: creative commons licenses,
Linux Foundation, governmental open data licenses, and open data commons. From
each one, we will select the most notable ones.

From the creative commons licenses, we will select the CC0, CC-BY v4.0, and
CC-BY-SA v4.0. Furthermore, we will pick the shared and permissive licenses from
the Linux foundation. Finally, three licenses will be selected from the open data
commons, which are PDDL, and ODC-BY.

CC0 License CC0 is one of the creative commons licenses. It waives all the legal
restriction on the data. So, the user can use the data without any obligation.

CC-BY License v4.0 CC-BY v4.0 allows the user of the data to use, change, and
distribute the data as long as he gives the attribution to the original author.

CC-BY-SA License v4.0 CC-BY-SA v4.0 gives the user the right to use, modify,
and share the data as long as the original source of the data is attributed. Moreover,
it requires that any derivative work to be published under the same license.

CDLA-Permissive v1.0 License CDLA-Permissive v1.0 allows the user of the
data to use, share, and modify the data without any legal obligations [75]. No need
to share any derivative works when using the CDLA-Permissive.

CDLA-Sharing v1.0 License The CDLA-Sharing v1.0 license allows the user to
use and modify the data under the license; yet, the user is required to publish any
changes and modifications that he made [76].

PDDL License PPDL license is one of the results of the open data common project.
It gives the user to use the data in any form without any legal restriction.

ODC-BY License Similar to PPDL, ODC-BY license allows the user to use, edit,
and distribute the data. However, ODC-BY asks for attribution to the original author.

552 E. Alamoudi et al.

22.8 The Open Source Software License Selection
Framework

Different factors could affect the decision of picking the license to an OSS software.
However, there are some general rules better to keep in mind when choosing a
license. First, try to select an existing license that is empirically worked, rather
than creating a new one [72, 77]. Using a trusted and reputable license can give
confidence toward your software. On the other hand, using an unpopular license
might create ambiguity and confusion. In addition, to create a license from scratch,
you need to have a solid legal background.

Nonetheless, the selecting process sometimes may be restricted by pre-existing
applications used in the software. For instance, if GPL licensed software is used,
derivative works would have no choice but to use GPL.

Here, we will illustrate a useful yet straightforward framework to pick the right
license for your software. The framework is presented in Fig. 22.4 with all different
cases.

When deciding which license to select for your software, one of the following
scenarios might occur:

Case 1. You need to be sure that there is no pre-existing license on the software or
at least there is no strong copyleft one. A strong copyleft license would limit the
developer options to stick with the same old license. However, permissive type
would allow the user to pick any license for the derivative work.

Case 2. In the case if the developer wants his code to stay open source yet be able to
be combined with a proprietary license, then EPL would be a good choice. EPL
enables an open source software to be combined with non-open source software
without any collision.

Case 3. Then, a developer should ask himself whether he cares about sharing the
improvements done to his software. If yes, then he should consider a strong
copyleft license. We would recommend user to select GPL 3.0 since it vigorously
enforces derivative works to stick with the same license. If a user selects GPL to
his software, he will guarantee that any modification would be released under the
same license. So, the software (and its derivative works) would always be strong
copylefted and immune from forking.

Case 4. If the developer is not concern about the chance that people might fork his
work, yet he wants to maintain access to the original version and modification.
Then, we advise him to use AL license. AL allows the original author to maintain
his artistic control over the source code.

Case 5. However, if the developer is concern about using a very liberal and simple
license that gives the user the right to do anything with the source code, then we
would recommend using either MIT or BSD License v2.0. Both come under the
permissive category, and they only require the user to give attribution back to the
original author.

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 553

Immune from forking?

Allow forking but share the
modification?

Software documentation?

Library package?

Software run over network?

Permissive & concerned about
patents?

Permissive license?

Copyleft & combine with proprietary
license application?

Pre-existing license?

No

No

No

No

No

No

No

No

Is the pre-existing license
a strong copyleft?

EPL

Apache License 2.0

MIT, BSD License 2.0

AL

GPL v3.0

AGPL v3

LGPL 3.0

GFDL

Keep the same
license

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Fig. 22.4 A flowchart of the open source software license selection framework

Case 6. When developer seeks to publish his software under a permissive license
but still he wants to retain his patent rights from users, then Apache License 2.0
is an advised pick. It allows contributors to grant their patent rights.

Case 7. If a developer wants a license that is similar to GPL while it is still
compatible with web applications, then AGPL would be the solution. It retains
the same restrictions as the GPL but with an extra sentence which required that
the web publication should be distributed beside the source code.

Case 8. For libraries, LGPL v3 is a suitable option. It requires that library’s
derivative works to be released under the same LGPL, but applications that utilize
that library do not have to stick with the same license.

Case 9. Finally, when a developer wants to license manual, textbook, or other
functional and useful documents, GFDL would be recommended. It gives
everybody the right to use, redistribute, modify, and sell the documentation.
It gives credit to the original creator while eliminating any responsibility for
modifications done by others.

554 E. Alamoudi et al.

Concerned about giving the credit
to the original data author?

Existing license does not meet your
specification?

Permissive license?

Concerned about sharing
improvements on data?

Is it governmental data?

No

No

No

No

Create a governmental license
that is compatible with open

data terms

CC-BY-SA v4.0,
CDLA-Sharing-1.0

Create a custom-made
license

CC0, CDLA-Permissive-1.0,
PDDL

CC-BY v4.0, ODC-BY

Yes

Yes

Yes

Yes

Yes

Is the data already licensed with a
share-alike license?

Yes
Keep the same license

No

Fig. 22.5 A flowchart of the open data licenses selection framework

22.9 The Open Data License Selection Framework

Similar to what we have done in the software licenses, we created a framework that
helps to pick the right open data license. The framework (see Fig. 22.5) consists of
six cases:

Case 1. If the data that is being licensed is already licensed under the share-alike
category, then it is better to keep the same license.

Case 2. If a government authority wants to publish a governmental open data, then
it is better to create an open data license that is compatible with the open data
standards. The license is better to be short, compatible with notable existing
licenses, and easy to follow.

Case 3. If the author wants to keep all derivative work out of his data to be published
and shared, then share-alike category can help to achieve this goal. CC-BY-SA
v4.0 and CDLA-Sharing v1.0 licenses are the ones to consider in such a scenario.

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 555

Case 4. If the data owner wants to share his data, and at the same time he wants to
get the credit for his work, then he should use attribution licenses. Two suggested
licenses under these categories are: ODC-BY and CC-BY v4.0.

Case 5. In case that the owner does not want to put any restrictions upon data, then
we would suggest public domain license category. In this situation, we would
recommend three licenses: CC0, CDLA-Permissive-1.0, or PDDL, each of which
serves the same purpose.

Case 6. Finally, if all previous licenses do not cover all the specifications of the
data owner, then he can create his own open data license. This step is not
recommended since it is going to create more complexity for users of open data.

22.10 Conclusion

Open source software has remarkably increased lately paving the way for many
innovations such as Internet of Things (IoT) and smart cities. The introduction
of technologies like big data has given rise to open data licenses, and the “Share
more—Develop less” culture, which in turn have raised new legal challenges. The
community has been developing many new licenses to address these emerging legal
issues. However, selecting the right license is becoming more difficult due to the
licensing complexities and continuous arrival of new licenses. The license selection
process is critical because selecting a wrong license might lead to serious financial
and social consequences.

In this chapter, we gave a brief overview of the open source license domain with
a review of related works. Furthermore, we described some notable open source
applications in the smart city domain. Then, we gave an overview of the main
categories of the open source software license with a brief explanation of each type.
We reviewed open data licenses and briefly described its main categories. Finally,
we presented the software license and data license frameworks, respectively.

Future work will focus on improving the quality of the proposed frameworks by
including more licenses and making the selection process more robust.

References

1. Licenses & Standards | Open Source Initiative. https://opensource.org/licenses. Last accessed
30 July 2018

2. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G.: Open Source Software:
a survey from 10,000 feet. Found. Trends

®
Technol. Inf. Oper. Manag. 4, 187–347 (2010)

3. Perens, B., Sroka, M.: The Open Source Definition (2007)
4. Zenoss Releases 2010 Open Source Systems Management Survey Report. http:/

/www.marketwired.com/press-release/zenoss-releases-2010-open-source-systems-
management-survey-report-1302973.htm. Last accessed 30 July 2018.

https://opensource.org/licenses
http://www.marketwired.com/press-release/zenoss-releases-2010-open-source-systems-management-survey-report-1302973.htm

556 E. Alamoudi et al.

5. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by
forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp.
139–154. Springer, Cham (2018)

6. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp.
155–168. Springer, Cham (2018)

7. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST, pp. 169–184. Springer, Cham (2018)

8. Al-Dhubhani, R., Mehmood, R., Katib, I., Algarni, A.: Location privacy in smart cities era. In:
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering, LNICST, pp. 123–138. Springer, Cham (2018)

9. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies and
Applications SCITA 2017: Smart Societies, Infrastructure, Technologies and Applications, pp.
111–122. Springer, Cham (2018)

10. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, pp. 98–110. Springer, Cham (2018)

11. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

12. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems—enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems–Problems and Perspectives, pp. 3–35.
Springer, Cham (2016)

13. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, pp. 207–215. Springer, Cham
(2018)

14. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, pp. 216–231. Springer, Cham (2018)

15. Al Shehri, W., Mehmood, R., Alayyaf, H.: A smart pain management system using big data
computing. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 232–246.
Springer, Cham (2018)

16. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp. 247–257.
Springer, Cham (2018)

17. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: The cutting edge and
outlook. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, pp. 11–26. Springer, Cham (2018)

18. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A
framework for faster porting of scientific applications between heterogeneous clouds. In: Lec-
ture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, pp. 27–43. Springer, Cham (2018)

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 557

19. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on intel
MIC: performance analysis. In: Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, pp. 306–322. Springer, Cham
(2018)

20. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp. 323–336.
Springer, Cham (2018)

21. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future Networked Healthcare Systems: a review
and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning
the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey (2015)

22. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. http://ieeexplore.ieee.org/document/7911293/ (2017)

23. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiq-
uitous cloud and edge-enabled networked healthcare system for smart cities. https://
ieeexplore.ieee.org/document/8382164/ (2018)

24. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

25. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn:
a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5,
2615–2635 (2017)

26. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model.
Procedia Comput. Sci. 64, 1107–1114 (2015)

27. Why do we need to license? https://www.europeandataportal.eu/elearning/en/module4/#/id/co-
01. Last accessed 30 July 2018

28. Transport Data Service—Transport for London. https://tfl.gov.uk/corporate/terms-and-
conditions/transport-data-service. Last accessed 30 July 2018

29. Open data and smart cities—openmind. https://www.bbvaopenmind.com/en/open-data-and-
smart-cities. Last accessed 30 July 2018

30. Carbon, S., Champieux, R., McMurry, J., Winfree, L., Wyatt, L.R., Haendel, M.: A measure
of open data: a metric and analysis of reusable data practices in biomedical data resources.
bioRxiv. 282830 (2018)

31. Request for community partnership in data resource licensing planning. https://figshare.com/
articles/Request_for_Community_partnership_in_data_resource_licensing_planning/
4972709. Last accessed 30 July 2018

32. National Institutes of Health (NIH): NIH awards to test ways to store, access, share, and
compute on biomedical data in the cloud., https://www.nih.gov/news-events/news-releases/nih-
awards-test-ways-store-access-share-compute-biomedical-data-cloud, last accessed 30 July
2018

33. Toga, A.W., Dinov, I.D.: Sharing big biomedical data. J. Big Data. 2, 7 (2015)
34. (Re)usable Data Project. http://reusabledata.org/. Last accessed 30 July 2018
35. Singh, P.V., Phelps, C.: Determinants of Open Source Software License Choice: a social

influence perspective part of the management information systems commons (2010)
36. Gilbert, N.: Legal tussle delays launch of huge toxicity database. http://www.nature.com/

doifinder/10.1038/nature.2016.19365 (2016)
37. Oxenham, S.: Legal confusion threatens to slow data science. http://www.nature.com/doifinder/

10.1038/536016a (2016)
38. Showing you this map of aggregated bullfrog occurrences would be illegal—Peter Desmet.

http://peterdesmet.com/posts/illegal-bullfrogs.html. Last accessed 30 July 2018
39. Kolassa, C., Rumpe, B.: The influence of the generator’s license on generated artifacts
40. About the Open Source Initiative | Open Source Initiative. https://opensource.org/about. Last

accessed 30 July 2018
41. Licenses by Name | Open Source Initiative. https://opensource.org/licenses/alphabetical. Last

accessed 30 July 2018

http://ieeexplore.ieee.org/document/7911293/
https://ieeexplore.ieee.org/document/8382164/
https://www.europeandataportal.eu/elearning/en/module4/#/id/co-01
https://tfl.gov.uk/corporate/terms-and-conditions/transport-data-service
https://www.bbvaopenmind.com/en/open-data-and-smart-cities
https://figshare.com/articles/Request_for_Community_partnership_in_data_resource_licensing_planning/4972709
https://www.nih.gov/news-events/news-releases/nih-awards-test-ways-store-access-share-compute-biomedical-data-cloud
http://reusabledata.org/
http://www.nature.com/doifinder/10.1038/nature.2016.19365
http://www.nature.com/doifinder/10.1038/536016a
http://peterdesmet.com/posts/illegal-bullfrogs.html
https://opensource.org/about
https://opensource.org/licenses/alphabetical

558 E. Alamoudi et al.

42. Various licenses and comments about them. https://www.gnu.org/licenses/license-list.en.html.
Last accessed 30 July 2018

43. Open Source Hardware (OSHW) Definition. http://www.oshwa.org/definition. Last accessed
30 July 2018

44. Komninos, N., Pallot, M., Schaffers, H.: Special issue on smart cities and the future internet in
Europe. J. Knowl. Econ. 4, 119–134 (2013)

45. Caragliu, A., Del, C.B., Nijkamp, P.: Smart cities in Europe (2009)
46. Tsarchopoulos, P., Komninos, N., Kakderi, C.: Accelerating the uptake of smart city applica-

tions through cloud computing. In: World Acad. Sci. Eng. Technol. Int. J. Soc. Behav. Educ.
Econ. Bus. Ind Eng. pp. 129–138. Paris, France (2017)

47. Mathur, A., Choudhary, H., Vashist, P., Thies, W., Thilagam, S.: An empirical study of
license violations in open source projects. In: Proceedings of the 2012 IEEE 35th Software
Engineering Workshop, SEW 2012. IEEE, pp. 168–176 (2012)

48. The Licence Proliferation Project | Open Source Initiative. https://opensource.org/proliferation.
Last accessed 30 July 2018

49. German, D.M., Hassan, A.E.: License integration patterns: addressing license mismatches
in component-based development. In: 2009 IEEE 31st International Conference on Software
Engineering. IEEE, pp. 188–198 (2009)

50. Lindman, J., Rossi, M., Puustell, A.: Matching Open Source Software Licenses with Corre-
sponding Business Models. IEEE Softw. 28, 31–35 (2011)

51. Licence Assistant - European Data Portal. https://www.europeandataportal.eu/en/licence-
assistant. Last accessed 30 July 2018

52. St. Laurent, A.M.S.: understanding open source and free software licensing. Ariadne. 193
(2004)

53. Kechagia, M., Spinellis, D., Androutsellis-Theotokis, S.: Open Source Licensing Across
Package Dependencies. In: 2010 14th Panhellenic Conference on Informatics. IEEE (2010)

54. Fitzgerald, B.: The transformation of open source software. MIS Q. 30, 587 (2006)
55. Kapitsaki, G.M., Tselikas, N.D., Foukarakis, I.E.: An insight into license tools for open source

software systems. J. Syst. Softw. 102, 72–87 (2015)
56. Reincke, K., Dobson, J., Sharpe, G., Schichl, P., Kern, M.: Open Source License Compendium.

Version 0 (2012)
57. Heikkilä, M., Pikkarainen, J., Väisänen, M.: From proprietary to open source—Ensuring

successful transition on code release
58. Monty Widenius, M., Nyman, L.: The business of open source software: a primer. Technol.

Innov. Manag. Rev. 4–11 (2014)
59. Amiri-Kordestani, M., Bourdoucen, H.: A survey on embedded open source system software

for the internet of things. In: FOSSC’2017, pp. 27–32 (2017)
60. Licensing milestone for data access in GBIF.org. https://www.gbif.org/news/82812/licensing-

milestone-for-data-access-in-gbiforg. Last accessed 30 July 2018
61. Analyzing the licenses of all 11,000+ GBIF registered datasets—Peter Desmet. http://

peterdesmet.com/posts/analyzing-gbif-data-licenses.html. Last accessed 30 July 2018
62. Chen, Y.: Business models based on open innovation strategy. In: 2011 International Confer-

ence on Management Service Science, pp. 1–4 (2011)
63. Global Open Data Index. https://index.okfn.org. Last accessed 30 July 2018
64. Open Government Licence. http://www.nationalarchives.gov.uk/doc/open-government-

licence/version/2. Last accessed 30 July 2018
65. Open License / Open License | Etalab’s blog. https://www.etalab.gouv.fr/licence-ouverte-open-

licence. Last accessed 30 July 2018
66. About | Open Data Commons. https://opendatacommons.org/about. Last accessed 30 July

2018
67. ODC Public Domain Dedication and License Summary | Open Data Commons. https://

opendatacommons.org/licenses/pddl/summary. Last accessed 30 July 2018
68. ODC Open Database License (ODbL) Summary | Open Data Commons. https://

opendatacommons.org/licenses/odbl/summary. Last accessed 30 July 2018

https://www.gnu.org/licenses/license-list.en.html
http://www.oshwa.org/definition
https://opensource.org/proliferation
https://www.europeandataportal.eu/en/licence-assistant
http://gbif.org
https://www.gbif.org/news/82812/licensing-milestone-for-data-access-in-gbiforg
http://peterdesmet.com/posts/analyzing-gbif-data-licenses.html
https://index.okfn.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2
https://www.etalab.gouv.fr/licence-ouverte-open-licence
https://opendatacommons.org/about
https://opendatacommons.org/licenses/pddl/summary
https://opendatacommons.org/licenses/odbl/summary

22 Open Source and Open Data Licenses in the Smart Infrastructure Era . . . 559

69. Top Open Source Licenses | Black Duck Software. https://www.blackducksoftware.com/top-
open-source-licenses. Last accessed 30 July 2018

70. SPDX License List | Software Package Data Exchange (SPDX). https://spdx.org/licenses. Last
accessed 30 July 2018

71. Apache License, Version 2.0. https://www.apache.org/licenses/LICENSE-2.0. Last accessed
30 July 2018

72. Goldman, R., Gabriel, R.P., Kaufmann, M.: Innovation Happens Elsewhere: Open Source as
Business Strategy. Morgan Kaufmann, Burlington (2005)

73. Eclipse Public License 1.0 (EPL) Frequently Asked Questions | The Eclipse Foundation. https:/
/www.eclipse.org/legal/eplfaq.php. Last accessed 30 July 2018

74. EPL-2.0 FAQ | The Eclipse Foundation. https://www.eclipse.org/legal/epl-2.0/faq.php. Last
accessed 30 July 2018

75. Community Data License Agreement—Permissive, Version 1.0—CDLA. https://cdla.io/
permissive-1-0. Last accessed 30 July 2018

76. Community Data License Agreement—Sharing, Version 1.0—CDLA. https://cdla.io/sharing-
1-0. Last accessed 30 July 2018

77. Fogel, K.: Producing open source software: how to run a successful free software project.
O’Reilly, Newton (2005)

https://www.blackducksoftware.com/top-open-source-licenses
https://spdx.org/licenses
https://www.apache.org/licenses/LICENSE-2.0
https://www.eclipse.org/legal/eplfaq.php
https://www.eclipse.org/legal/epl-2.0/faq.php
https://cdla.io/permissive-1-0
https://cdla.io/sharing-1-0

Chapter 23
Big Data and HPC Convergence for
Smart Infrastructures: A Review
and Proposed Architecture

Sardar Usman, Rashid Mehmood, and Iyad Katib

23.1 Introduction

The data growth over the last couple of decades increases on a massive scale.
As the volume of the data increases so are the challenges associated with big
data. Over the years, high performance computing (HPC) has contributed a lot
in scientific discoveries, improved engineering designs, enhanced manufacturing,
fraud detection, health care, and national security, thus played crucial role towards
quality of human life. The world has seen exponential data growth due to social
media, mobility, E-commerce, and other factors. Major chunk of data has been
generated in the last few years alone and is even growing at more rapid rate
[1]. To deal with ever-growing volume of data, researchers have been involved in
developing algorithms to accelerate the extraction of key information from massive
data. Big data is a buzzword, which has caught a great deal of attention in the
recent years. Big data refers to “the emerging technologies that are designed to
extract value from data having four Vs characteristics, volume, variety, velocity,
and veracity” [2]. It usually implies massive amounts of structured, semi-structured,
and unstructured data collected from different resources and is not possible to store
and process this data by traditional databases and software techniques.

Historically only the largest companies, government research organizations, and
academic computing centers have had an access to the computing power necessary
to get to valuable conclusions in a reasonable amount of time. All that is rapidly

S. Usman (�) · I. Katib
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: susman@stu.kau.edu.sa; iakatib@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_23

561

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_23&domain=pdf
mailto:susman@stu.kau.edu.sa
mailto:iakatib@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_23

562 S. Usman et al.

changing with vast improvement in the price, performance, availability, and density
of compute power beyond the human imagination.

The categorization of data vs. computing is affected by solution urgency, i.e.,
real-time solution, and also depends on what we are trying to achieve. As the
volume of data is growing bigger, it brings more challenges to process that data
in real time. As projected, in 2018 over 4.3 exabyte of data will be created on daily
basis [3]. Over the years HPC community has not been deprived of huge volume of
data, i.e., climate modeling, design and manufacturing, and financial services that
resulted in high fidelity models and interdisciplinary analysis to explore data for
deeper insights. The use of High Performance Data Analytics (HPDA) is increasing
at brisk speed in many industries, resulting in expansion of HPC market in these
new territories.

Powerful analytics is a key to extract a value from data by confronting budget
and marketing challenges and plays huge roles in making plans, predicting business
trends, and understanding customer demands. Choosing a right solution depends
on the size of data, urgency of results, prediction about the needs of more
processing power as the size of data increases, fault tolerance for applications in
case of hardware failure, data rate, scalability, etc. A real-time application with
high response time especially when dealing with huge volume of data is still a
challenging task and is one of the driving forces towards the convergence of big
data and HPC.

Both HPC and big data are different systems not only at the technical level
but also have two different ecosystems. Both have different programming models,
resource managers, file systems, and hardware. HPC is mainly developed for
computational intensive applications but recently data intensive applications are
also among the major workloads in HPC environments. Big data is relatively a new
term compared to HPC that has been in research for decades (see, for example,
[4–13]). Due to recent advancements of data intensive applications, number of
software frameworks has been developed for distributed systems, cluster resource
management, parallel programming models, and machine learning frameworks.
High performance computing has very well established standard programming
model, e.g., Open MP/MPI. Big data analytics have been grown up in different
perspective and have different population of developers that uses java and other
high level languages with primary focus on simplicity of use, so that problem
domain can be solved without a detailed knowledge of HPC. These differences in
the infrastructure, resource manager, file system, and hardware make the system
integration a challenging task.

As the data is getting bigger and bigger in volume so is the need of high
computing. HPC community has been dealing with massive amount of data and
big data analytics for years. The solutions evolved over the years to deal with
large volume of data should be useful for big data analytics [14]. The main aim
of this chapter is to identify motivation and driving forces towards the integration of
HPC and big data and also highlight the current trends, challenges, benefits, and
future aspects of unified integrated system. We also present architecture for the
convergence of HPC and big data using design patterns. This chapter is an extension

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 563

of our earlier work [15]. We have added a whole new section on programming
models and frameworks of big data and HPC. Another new section on the big
data and HPC challenges in the exascale-computing era has been added. Further
elaborations are provided on HPC and big data convergence research efforts. The
proposed HPC-big data convergence architecture has been enhanced.

The rest of the chapter is organized as follows. The next section gives a brief
overview of some of the most widely used HPC and big data models and frame-
works. Section 23.3 examines the difference between HPC and Hadoop framework
with respect to hardware, resource management, fault tolerance, and programming
model. Section 23.4 highlights some of the big data and HPC challenges in the
exascale era. Literature survey is presented in Sect. 23.5 and convergence challenges
are discussed in Sect. 23.6 followed by the future directions in Sect. 23.7. The
proposed architecture using design pattern for the convergence of HPC and big data
is presented in Sect. 23.8 and chapter is concluded in the Sect. 23.9.

23.2 HPC and Big Data Programming Models
and Frameworks

This section gives a brief overview of some of the most widely used HPC and big
data frameworks and programming interfaces.

23.2.1 Hadoop

Hadoop is an open source Apache project out of yahoo in 2006, which provides
distributed fault-tolerant data storage, batch processing, and linear scalability on
commodity hardware. Hadoop is adopted successfully by many organizations like
Amazon, AOL, EBay, Facebook, and Twitter. Hadoop can be broadly categorized
into two units, i.e., Hadoop distributed file system (HDFS) and map-reduce
processing [16]. The core concept behind Hadoop is to divide a job into multiple
tasks to be executed on the multiple data processing nodes. HDFS is used to store
data with high availability to multiple nodes (Fig. 23.1).

Hadoop is shared nothing architecture, where each node acts independently
throughout the system and a piece of work is divided among several parallel
map/reduce tasks. Each task operates independently on cheap commodity servers.
This enables businesses to generate value for data that was previously considered too
expensive to store and process in traditional data warehouse or OLTP environment.
In the old paradigm, companies were using traditional enterprise data warehouse
system and would buy biggest data warehouse that they could afford and store data
on a single machine. However with the increased amount of data being generated

564 S. Usman et al.

Fig. 23.1 Hadoop architecture overview

every day, this is no longer affordable or practical. The traditional enterprise data
warehouse may not be able to address big data problem space [1].

23.2.2 Spark

Both Hadoop and Spark are big data frameworks and do perform the same tasks,
are not mutually exclusive and able to work together. Spark is mostly used on the
top of Hadoop and advance analytics of spark are used on data stored in Hadoop’s
distributed file system (HDFS). Spark has the ability to run as Hadoop’s module
through YARN and as a standalone solution [17] and can be seen as an alternative
to map-reduce rather than a replacement to Hadoop framework (Fig. 23.2).

Spark is much faster compared to Hadoop because it handles in-memory
operations by copying data from distributed file systems into faster logical RAM.
Map-reduce writes all data back to distributed storage system after each iteration to
ensure full recovery, whereas Spark arranges data in resilient distributed data sets
that are capable of full recovery in case of failure. Spark capability of handling
advance data analytics in real-time stream processing and machine learning is a
much more advance that gives Spark edge over Hadoop. The choice of selecting
either of the data processing tool depends on the needs of an organization, e.g.,
dealing with big structured data can be done efficiently with map-reduce and there
is no need to install a separate layer of Spark over Hadoop [18]. Spark on demand
allows users to use Apache Spark for in situ data analysis of big data on HPC

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 565

Fig. 23.2 Spark architecture overview

resources [19]. With this setup, there is no longer need to move petabytes of data
for advance data analytics.

23.2.3 MPI (Message-Passing Interface)

MPI is widely a de facto standard for writing message-passing programs and
provides standard programming model where messages communicate with each
other by using different routines to send and receive messages in distributed/shared
memory systems. The Message-Passing Interface (MPI) is a standardization of
a message-passing library interface specification. MPI defines the syntax and
semantics of library routines for standard communication patterns. MPI provides
user a complete control to optimize data distribution, synchronization and enhance
data locality [20]. The programmer is responsible for handling all issues related to
parallelism, i.e., parallel algorithms, data structures, load balancing, communication
commands, and synchronization (Fig. 23.3).

23.2.4 OpenMP

OpenMP (Open Multiprocessing) targets shared memory systems used for multi-
threaded parallel processing available in gcc (gnu compiler), Intel compiler, and
others. OpenMP directives can be inserted into C/C++ or Fortran programs and
have runtime library for organizing parallel parameters. The environment variables
and library routines control the runtime system (Fig. 23.4).

566 S. Usman et al.

Fig. 23.3 MPI application architecture

Fig. 23.4 Shared memory

23.2.5 PGAS

PGAS (Partitioned Global Address Space) is a parallel programming model where
global memory is logically shared among processes/threads, which improves pro-
grammer productivity without compromising high performance [21]. The global
address space is partitioned among the cluster nodes and is basis of Co-array
Fortran, Split-C, X10, Unified Parallel C, etc. [22] (Fig. 23.5).

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 567

Fig. 23.5 Partitioned global address space

23.3 HPC and Big Data Frameworks and Their Differences

Different solutions emerged over the years to deal with big data issues and are
successfully implemented. But never the less, all these solutions do not satisfy the
ever-growing needs of big data. The issues related to big data are immense and
cover variety of challenges that needs a careful consideration, for example data rep-
resentation, data reduction/compression, data confidentiality, energy management,
high dimensionality, scalability, real and distributed computation, non-structured
processing, analytical mechanism, and computational complexity. The exponential
outburst of data and rapidly increasing demands for real-time analytical solutions
urges the need for the convergence of high-end commercial analytics and HPC.
Business intelligence/analytical solutions today, lack the support for predictive
analytics, lack of data granularity, lack of software flexibility to manipulate data,
lack of intuitive user interface, relevant information is not aggregated in a required
manner and have slow system performance [23].

HPC community has been dealing with complex data and compute intensive
applications, and solutions have been evolved over the years. As the volume of
data is increasing at brisk speed so are the associated challenges, i.e., data analysis,
minimizing data movement, data storage, data locality, and efficient searching. As
we are heading towards exascale era, the increase in system concurrency introduced
a massive challenge for system software to manage applications to perform at
extreme level of parallelism. Large-scale applications use most widely deployed
message-passing programming model MPI along with traditional sequential lan-
guages, but with the introduction of architectural changes (many core chip) and high
demand in parallelism make this programming model less productive for exascale
systems. Billion-fold parallelism is required to exploit the performance of extreme
scale machines and locality is critical in terms of energy consumption. As the
complexity and scale of software requirements is on a rise, simple execution model
is a critical requirement, which ultimately reduce the application programming

568 S. Usman et al.

complexity required to achieve the goals of achieving extreme scale parallelism. A
current trend in HPC market includes the use of advanced interconnects and RDMA
protocols (Infinity Band, 10–40 Gigabits Ethernet/iWARP, RDMA over converged
Enhanced Ethernet), enhanced redesign of HPC middleware (MPI, PGAS), SSDs,
NVRAM, burst buffer, etc. Scalable parallelism, synchronization, minimizing
communication, task scheduling, memory wall, heterogeneous architecture, fault
tolerance, software sustainability, memory latencies, simple execution environment,
and dynamic memory access for data intensive application are some of the core
areas that requires considerable time and efforts to address exascale challenges [24].
The difference between Hadoop and HPC framework is highlighted in the following
section.

23.3.1 Hardware

Most of the modern HPC and Hadoop clusters are commodity hardware. In HPC
environment, compute nodes are separated from data nodes. There are two types
of data storage, temporal file system on local nodes and persistent global shared
parallel file system on data nodes. The existing HPC clusters have limited amount of
storage on each compute node. LUSTRE is most widely used parallel file system in
HPC and almost 60% of the top 500 supercomputers use LUSTRE as their persistent
storage. Data needs to be transferred from data nodes to the local file system on each
compute node for processing. Data sharing is easy with distinct data and compute
nodes but spatial locality of data is an issue [25, 26].

Hadoop cluster uses local disk space as a primary storage. The same node serves
as a data node and compute node. The computational task is scheduled on same
machine where data is resided resulting in enhanced data locality. Hadoop is write-
once and read-many framework. I/O throughput of Hadoop is much higher, due to
co-locating of data and compute node on the same machine [26].

23.3.2 Resource Management

Another major difference between Hadoop and HPC cluster is resource manage-
ment. Hadoop’s name node has job tracker daemon. Job tracker supervised all
map-reduce tasks and communicates with the task trackers on the data node.
Compared to Hadoop’s integrated job scheduler, HPC scheduling is done with
the help of specialized tools like grid engine and load leveler [27] with controlled
resources (memory, time) provided to the user.

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 569

23.3.3 Fault Tolerance

HPC resource scheduler uses checkpoint mechanism for fault tolerance. In case of
node failure, it reschedules job from the last stored checkpoint. It needs to restart the
whole process if the checkpoint mechanism is not used. On the other hand, Hadoop
uses job tracker for fault tolerance. As data and computation are co-located on same
machine, job tracker can detect a node failure on run time by re-assigning a task on
a node where duplicate copy of data is resided [27, 28].

23.3.4 Programming Model

Hadoop uses map-reduce programming model, which makes life easier for the
programmers as they just need to define map step and reduce step, when compared
to the programming efforts needed for HPC applications. In HPC environment, pro-
grammer needs to take fine-grained responsibilities of managing communication,
I/O, debugging, synchronization, and checkpoint mechanism. All these tasks need
considerable amount of efforts and time for effective and efficient implementation.
Hadoop does provide a low level interface to write and run map-reduce applications
written in any language, although Hadoop is written in Java. Table 23.1 summarizes
the difference between HPC and Hadoop framework [26].

Table 23.1 HPC vs. Hadoop Ecosystem

Big data HPC

Programming model Java applications, SparQL Fortran, C, C++
High-level
programming

Pig, Hive, Drill Domain specific language

Parallel runtime MapReduce MPI, Open MP, OpenCL
Data management HBase, MySQL iRODS
Scheduling (resource
management)

YARN SLURM (Simple LINUX
Utility for Resource
Management)

File system HDFS, SPARK (local storage) LUSTRE (remote storage)
Storage Local shared nothing

architecture
Remote shared parallel storage

Hardware for storage HDDS SSD
Interconnect Switch Ethernet Switch Fibre
Infrastructure Cloud Supercomputer

570 S. Usman et al.

23.4 Big Data and HPC Challenges in the
Exascale-Computing Era

The following section briefly introduces some of the big data issues and also
highlights the exascale challenges.

23.4.1 Data Heterogeneity

One of the biggest challenges of big data is to deal with data heterogeneity. As data
is collected from different resources, which is, either structure, semi-structure or
unstructured having different semantics, granularity, and accessibility. Effective data
analysis will be a challenging task with improper data representation. Data needs
to be pre-processed for efficient representation, improved quality data access, and
effective analytical results. To perform the big data acquisition, organizational strat-
egy must be considered for data ownership, data value, and quality assurance [29].

23.4.2 Data Redundancy

Effective data redundancy reduction and compression techniques need to be imple-
mented as most data from heterogeneous resources like sensor networks is highly
redundant.

23.4.3 Data Freshness

Data freshness is another important aspect, as values encapsulated in big data
depend on data freshness. There is need for comprehensive mechanism to decide
which data needs to be stored and which data needs to be discarded [30].

23.4.4 Data Confidentiality

Most of the organizations could not store and process their data due to their limited
capacity and are heavily dependent on the third-party solutions, which give rise to
another fundamental problem of data confidentiality [30].

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 571

23.4.5 Big Data Access and Processing

Processing the data for data mining and interpretation is a challenging task due
to diverse nature of big data. Over the years, numerous data mining and machine
learning algorithms have been constructed but mainly for the structured data and
lack the ability to work on semi-structured or unstructured data [29]. There is a need
for a comprehensive mechanism to construct these semi-structured or unstructured
data sets into structured format and then expose them to well-known structured data
mining or machine learning algorithms.

23.4.6 Scalability

As the rate at which the data is being generated is increasing exponentially,
scalability is another major concern in big data. Analysis of big data needs to be
performed in such a way that supports complex present and future data sets.

23.4.7 Engineering

Another fundamental challenge is how to effectively discover knowledge from
big data analysis and efficiently use that knowledge in a real-life application.
This engineering problem perhaps depends on the efficient co-operation from
interdisciplinary domain experts [31].

23.4.8 Data Storage

The digital data growth has been immense and according to IDC [32] estimate by
2020, 2.5 exabyte of data will be created every day which resulted in a challenging
task of how we can efficiently store and make data available for further analysis.

Table 23.2 summarizes some of the challenges faced by big data and HPC
community.

23.5 Research Related to HPC and Big data Convergence

The integration of HPC and big data started at different levels of their ecosystems
and these integrated solutions are still at very infant stages. The convergence of
both these technologies is the hottest topic for the researchers over the last few

572 S. Usman et al.

Table 23.2 Exascale, big data and business/analytical challenges

Exascale challenges Big data challenges Business/analytical solutions (challenges)

Data analysis Data representation Lack of predictive analytics
Minimizing data
movement

Data reduction Lack of data granularity

Data storage Data confidentiality Lack of software flexibility to manipulate
data

Data locality Energy management Lack of intuitive user interface
Fault tolerance High dimensionality Slow system performance
Energy efficiency Real and distributed

computing
Scalable parallelism Unstructured processing
Synchronization Analytical mechanism
Memory wall Computational

complexity
Heterogeneity
Software sustainability
Simple execution
environment
Dynamic memory
access for data
intensive applications

years. Reed et al. [33] provided a comprehensive view of some of the techni-
cal challenges, global ecosystems, advancement in computing, and relationship
between data analysis and computational modeling. They highlighted some of the
benefits of advanced computing from biology and medicines to High Energy Physics
(HEP), climate science, cosmology, astrophysics, experimental and computational
material sciences, etc. They also highlighted some of the technical challenges in
advanced computing including hardware and architecture challenges, resilience and
energy efficiency at scale, locality and scalability, parallel programming support,
algorithmic and mathematics challenges, economic and political challenges, etc.
Several international workshops have been organized over the years to address the
issues and challenges faced by the inevitable convergence of the two paradigms; see
for example the Big Data and Extreme-scale Computing (BDEC) project report [34].
BDEC community focused on the problems of two different divisions of ecosystem,
i.e., the split between HPC & HPDA and stateless network & state-full service
provided by the end systems. They focused on the most critical big data challenges,
i.e., logistics of wide area, data productions, data transformation, data sharing and
analysis. The software infrastructure needs to be reframed to accommodate the
diversity of the workflow patterns. They discussed the opportunities and challenges
to converge HPC and HPDA, and also highlighted the problems associated with
the converged infrastructure for distributed edge environments. The authors also
discussed about the opportunities for the converged software ecosystem, specifically
focused on logical centralized facility capable of running both high-end simulations
and large-scale data analytics [34].

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 573

In [25] Krishnan et al. proposed a myHadoop framework using standard
batch scheduling system for configuring Hadoop on-demand on traditional HPC
resources. The overhead in this setup includes site-specific configuration, keeping
input data into HDFS and then staging results back to persistent storage. HDFS
is heavily criticized for its I/O bottleneck. Availability of limited storage is big
challenge to integrate Hadoop with HPC clusters. Islam et al. [35] proposed a
hybrid design (Triple-H) to reduce I/O bottleneck in HDFS and efficient resource
utilization for different analytics system performance and cluster efficiency with
overall low system cost.

Data intensive applications have been intensively used in HPC infrastructure with
multicore systems using map-reduce programming model [36]. With increase in
parallelism, the overall throughput increases resulted in high energy efficiency as
the task is completed in shorter span of time. When Hadoop runs on HPC cluster
with multiple cores and each node is capable of running many map/reduce tasks
using these cores. This ultimately decreases the data movement cost and increases
throughput but due to high disk and network accesses of map-reduce tasks, the
energy consumption and throughput cannot be predicted. High degree of parallelism
may or may not affect energy efficiency and high performance. MPI (Message-
Passing Interface) is most commonly used parallel programming paradigm to
exploit parallelism and rely on the high-speed/low-latency network for message
passing and make use of parallel file systems, e.g., Lustre [37], GPFS [38], and PVS
[39]. Data intensive computing makes use of distributed file systems, which includes
Google file system GFS [38], HDFS Hadoop distributed file system [40], etc. The
HPC applications use data intensive distributed file system through an interface for
example libHDFS [41]. Over the years, different solution started to emerge to cope
with massive amount of data more specifically in data intensive applications, e.g.,
SRM [42], iRODS [43], MapReduce-MPI [44], and Pilot-MapReduce [45].

Tiwari et al. [46] studied the Hadoop’s energy efficiency on HPC cluster. Their
study shows that energy efficiency of map-reduce job on HPC cluster changes
with increase in parallelism and network bandwidth. They determine the degree
of parallelism on a node for improving the energy efficiency and also benefits of
increasing the network bandwidth on energy efficiency by selecting configuration
parameters on different types of workloads, i.e., CPU intensive and moderate
I/O intensive, CPU and I/O intensive workloads, also energy and performance
characteristics of a disk and network I/O intensive jobs. When the number of
map slots reached beyond 40, number of killed map tasks almost doubled. Thus
increasing the parallelism to certain extent has positive impact on energy efficiency.

Scientific data sets are stored in back end storage servers in HPC environment
and these data sets can be analyzed by YARN map-reduce program on compute
nodes. As both compute and storage servers are separated in HPC environment,
the cost of moving these large data sets is very high. The high-end computation
machine and analysis clusters are connected with high-speed parallel file system.
To overcome the shortcomings of offline data analysis, “in situ” data analysis can
be performed on output data before it is written to parallel file system. The use high-
end computation node for data analysis results in slowing down simulation job by

574 S. Usman et al.

Table 23.3 Current convergence efforts

Approaches Solutions

iRODS, MapReduce-MPI, Pilot-MapReduce,
SRM, etc.

Solutions to deal with massive amount of data
in data intensive applications

Spark on demand Apache Spark for in situ data analysis of big
data on HPC resources

Mellanox UDA, RDMA-Hadoop, DataMPI,
Hadoop with IPoIB (IP over InfiniBand),
HMOR, etc.

HPC-oriented map-reduce solutions

myHadoop Hadoop on-demand on traditional HPC
resources

LibHDFS HPC application’s interface to HDFS
MPI, ad-hoc Hadoop, CloudBlast, Spark,
HTCondor

Parallelization of many task applications with
different workflow systems

DataMPI A framework which exploits the overlapping
of map, shuffle and merge phases of
map-reduce framework

Virtualized Analytics Shipping (VAS), Spark
on demand

Map-reduce-like framework for in situ data
analysis

the interference of the analysis task and inefficient use of computation resources for
data analysis tasks. Spark on demand allows users to use Apache Spark for in situ
data analysis of big data on HPC resources [19]. With this setup, there is no longer
to move petabytes of data for advance data analytics.

According to Dhabaleshwar K. Panda [47], the use of InfiniBand for large clus-
ters is most cost effective than standard Ethernet. The performance of HPC oriented
map-reduce solutions (Mellanox UDA, RDMA-Hadoop, DataMPI, etc.) depends
on the degree of change in Hadoop framework as more deep modification means an
optimal adaption to HPC systems. Hadoop with IPoIB (IP over InfiniBand) and
Mellanox UDA requires minimal or no changes in Hadoop implementation and
only requires minor changes in Hadoop configuration. RDMA-Hadoop and HMOR
are the HPC oriented solutions to take advantage of high-speed interconnects
by modifying some of the subsystems of Hadoop. DataMPI is a framework that
developed from the scratch, which exploits the overlapping of map, shuffle, and
merge phases of map-reduce framework and increases data locality during the
reduce phase. DataMPI provides the best performance and an average energy
efficiency [48]. Table 23.3 gives the brief overview of some of the efforts, which
one can relate towards the convergence of HPC and big data.

The use of InfiniBand improved the network bandwidth, as InfiniBand being
widely used in HPC environment. Communication support in Hadoop relies on
TCP/IP protocol through Java sockets [48]. So it is difficult to use high performance
interconnects in an optimal way so different HPC oriented map-reduce solutions
came that addresses the problem of leveraging high performance interconnects
RDMA-Hadoop, DataMPI, etc. Yandang et al. [49] compared the performance of 10
GigaBit Ethernet and InfiniBand on Hadoop. With small intermediate data sizes, the

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 575

use of high-speed interconnect increased the performance by efficiently accelerating
jobs but doesn’t show the same performance with large intermediate data size.
The use of InfiniBand on Hadoop provides better scalability and removes the disk
bottleneck issues. As the Hadoop cluster is getting bigger, organizations feel the
need of specialized gear like solid-state drives (SSDs) and the use of InfiniBand
instead of standard Ethernet. The use of InfiniBand with RDMA (remote direct
memory access) allows 40 Gigabits/s raw capacity out of Quad Data Rate (QDR)
InfiniBand port which is four times as much bandwidth as 10 GigaBit Ethernet port
can deliver [47].

The use of InfiniBand allows maximum scalability and performance while
overcoming the bottlenecks in the I/O. Islam et al. [50] proposes an alternative
parallel replication scheme compared to pipelined fashioned replication scheme
by analyzing the challenges and compared its performance with existing pipelined
replication in HDFS over Ethernet, IPoIB, 10 GigE and RDMA and showed perfor-
mance enhancement with parallel model for large data sizes and high performance
interconnects.

23.6 Challenges of HPC-Big Data Convergence

The world of workload is diverse enough and performance sensitivity is high enough
that we cannot have globally optimal and local high sub-optimal solution to all the
issues related to convergence of HPC and big data. HPC and big data architectures
are different and have different ecosystem. The cross-fertilization of HPC and big
data is the hottest topic for the researchers over the last few years. Most of the
research related to the convergence of HPC and big data started at distinct levels
of ecosystem but do not address the problem of moving data especially in HPC
environment. The integration of data intensive applications in HPC environment
will bring many challenges. In exasacle environment, cost of moving big data will be
more than cost of floating point operations. There is a need for high energy efficient
and cost effective interconnects for high bandwidth data exchange among thousands
of processors. We also need a data locality aware mechanism especially when
dealing with big data in HPC shared memory architecture. The cost of moving big
data for processing also brings another challenge of high power consumption. With
massively parallel architecture with hundreds of thousands of processing nodes, the
cost of moving data will be very high. According to Keckler et al. [51], energy
efficiency of 20 pJ (Pico Joules) per floating point operation is required for exascale
system, whereas current state of art multicore CPUs have 1700 pJ and GPUs have
225 pJ per floating point operation.

Minimizing the data movements means the innovation in memory technologies
with enhanced capacity and bandwidth. To deal with 3Vs (volume, velocity,
veracity) of big data, efficient data management techniques need to be investigated
including data mining and data co-ordination [35] as most of the HPC platforms are
compute centric, as opposed to the demands of big data (continuous processing,

576 S. Usman et al.

efficient movement of data between storage devices, network connections, etc.).
To deal with massive parallel architecture and heterogeneous nature of big data,
innovation is needed at the programming model to deal with the next generation
of parallel systems, thus reducing the burden of parallelism and data locality for
application developer as MPI leaves it to the programmer to handle issues related
to parallelism. Hadoop being widely used as a big data framework achieves fault
tolerance by the replication of data on multiple nodes and job tracker assigns job to
other node in case of node failure. Fault tolerance in HPC is by means of checkpoint
mechanism, which is heavily criticized and not suitable for exascale environment.
In exascale systems, hardware failure will be a rule not an exception. The MTBF
(mean time between failures) window in current peta-scale system is in days and
for exascale systems it will be in minutes or may be few seconds. So there is
need for a comprehensive resilience at the different levels of exascale ecosystem.
Exascale systems will be constrained by power consumption, memory per core,
data movement cost, and fault tolerance. The integration between HPC and big data
must address the issues of scalability, fault resilience, energy efficiency, scientific
productivity, programmability, and performance [33].

Resilience, power consumption, and performance are inter-related to each other.
High degree of resilience or fault tolerance is achieved but on the expense of high
power consumption. As we are heading towards exascale era, convergence of both
HPC and big data will make energy efficiency a core issue to handle. Servers
and data-centers are facing the same problem of power consumption including
companies like Google, Amazon, and Facebook. According to an estimate, the
actual cost of exascale system will be less than cost of power consumption for
maintaining and running exascale system for 1 year [52].

The energy efficiency techniques in big data can be broadly categorized as
software/hardware based energy efficient techniques, energy efficient algorithms
and architectures. A set of commodity hardware is used in both HPC and big data
platforms for processing of data. The integrated hardware solution for data intensive
applications and computational intensive applications wouldn’t work for exascale
systems as hardware solution helps to achieve fault tolerance but on the expense of
high energy consumption. The current peta-scale high performance computing with
checkpoint mechanism to achieve fault tolerance and energy efficiency does not suit
well for the integrated solution of HPC (exascale) and big data. Soft, hard, and silent
errors in exascale environment will be rule not an exception. Thus collaborative
efforts are needed at system level or application level resilience to deal with fault
tolerance and energy efficiency for the integrated solution.

As we have seen that both HPC and Hadoop (big data) architectures are different
and have different ecosystem. Both have different programming model, resource
manager, file system, and hardware. These differences in the infrastructure, resource
manager, file system, and hardware make the system integration a challenging task.
As the data is getting bigger and bigger in volume so is the need of high computing.
One of the biggest challenges that both big data and HPC community facing is
energy efficiency. Exascale parallel computing system will have thousands of nodes
with hundreds of cores each and is projected to have billions of threads of execution.

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 577

The frame of Main Time Between Failures (MTBF) in supercomputers is in days
and weeks. But for exascale computing with million times more components, the
perception of MTBF is in hours or minutes or may be in seconds. Each layer of
exascale ecosystem must be able to cope with the errors [53].

Real-time data analysis is also a driving force behind the urgency of the need for
the necessary convergence of the analytics, big data, and HPC when dealing with
computation, storage and analysis of massive, complex data sets in high scalable
environment. Scalability issues should be addressed by the HPC community, by
capitalizing the advancements in network technologies (low-latency network), also
efficient and large memory should also address the scalability issues of the data
analytics [54].

23.7 Driving Forces and Future Aspects

High performance data analytics (HPDA) includes tasks involving massive amount
of structured, semi-structured, and unstructured data volumes and highly complex
algorithms that ultimately demands the needs of HPC resources.

Companies now have the computing power they need to actually analyze and
act upon their data. This translates into numerous benefits for the company,
environment, and society over all. In the energy sector, companies are now able
to more accurately drill for oil. Automobiles and airlines are much safer due to
rapid modeling of operational data design optimization and aerodynamics analysis,
allowing them to deliver more cost effective products that operate safer and are more
fuel-efficient. In the financial sector, banks and card issuers can do fraud detection in
real time. Stock investors can quickly track trends in the market to better serve their
investing customers. Retailers and advertisers can now review historic purchasing
data to better deliver the right products and advertisement to their customers and
whether researchers can study thousands of years of weather data in hours or days
instead of weeks or months, improving the quality of predictions and safety of
people worldwide. HPC industry has been dealing with data intensive simulations
and high performance analytics solutions also evolved over the years urge the
commercial organizations to adopt HPC technology for competitive advantage to
deal with time critical and highly variable complex problems. The chasm between
data and compute power is becoming smaller all the time. The global HPDA market
is growing rapidly and according to forecast HPDA global market size was US 25.2
billion and with the growth of nearly 18%, it is projected to be around US 82 billion
in 2022 [55].

Fault tolerance, high power consumption, data centric processing, limitations
of I/O, and memory performance are few of the driving forces that are reshaping
the HPC platforms to achieve exascale computing [56]. Data intensive simulations,
complex and time critical data analytics require high performance data analytics
solutions for example intelligence community, data driven science/engineering,
machine learning, deep learning, knowledge discovery, etc. These competitive

578 S. Usman et al.

forces have pushed relatively new commercial companies (Small and Medium
scale Enterprises—SMEs) into HPC competency space. Fraud/anomaly detection,
affinity marketing, business intelligence, and precision medicine are some of the
perusable new commercial HPC market segments that require high performance
data analytics. The use of HPDA will increase with time in future demanding
convergence of HPC and big data. HPDA is becoming an integral part of future
business investments plans of enterprises, to enhance customer experience, anomaly
detection marketing, business intelligence, security breaches, etc. and discovery of
new revenue opportunities.

23.7.1 The Internet of Things (IoT) and Smart Cities

IoT links physical devices (computers, sensors, electronics,) equipped with sensors
to the Internet and network connectivity enabling them to communicate. The
common IoT platform brings heterogeneous information together and facilitates
communication by providing common language. According to Gartner [57], IoT
units installed base will reach 20.8 billion by 2020 resulted in massive amount of
data which will further highlight the security, customer privacy, storage manage-
ment, and data centric networks challenges. Smart city demands better and more
innovative services to run whole city smoothly and improve people’s life through
the innovative use of data; see, e.g., smart infrastructure [15, 58], healthcare [59–
62], transport [63–70], and other applications [5, 71].

Smart cities and IoT are some of the emerging HPDA application areas. HPC
has been involved in managing power grids and transport for the upstream design of
vehicles and urban traffic management in smart cities for quite some time and its use
over time will increase in the markets of cognitive computing/AI, driverless vehi-
cles, and healthcare organizations. Baz [72] investigated the connection between
IoT and HPC by highlighting some of the challenges in smart world applications
(smart building management, smart logistics, and smart manufacturing) and possible
opportunities with HPC enable solutions. China’s HPC-IoT plan 2030 is based on
the use of HPC in IoT network wellness management and security [73].

23.7.2 Cognitive Technology

Cognitive systems are capable of understanding complex language constructs, cor-
relate the association and help to rationalize information and discover insights. The
key in cognitive systems is learning, adaptability and how the system is evolving,
helps in decision-making process, discovery of new ventures, improved production
and operation systems, optimizing resources, proactive identification of faults ahead
of failure, etc. The motive of cognitive computing is to handle complex problems
without no or little human intervention. According to IBM estimate, 80% of data is

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 579

unstructured and is of no use for the machines and not fully exploited. The cognitive
computing can be seen as a potential candidate for the exploration of unstructured
data to get more useful information insights and efficient decision-making. The
rapid growth of data from multidisciplinary domains requires powerful analytics but
lacks human expertise to tackle the diverse and complicated problems. The cognitive
computing allows people with less experience to interact with machine thanks to the
advancement in natural language processing and artificial intelligence technologies,
e.g., Google DeepMind and Qualcomm’s Zeroth Platform. The advancement in
cognitive technology with the integration of AI and machine learning for big
data tools and platforms will increase the quality of information, dealing with
the complex data analytics with lesser human intervention but requires rapid data
access (low latency), faster time to insights, hardware acceleration for complex
analytics [3]. Extracting information from vast amount of data requires innovation
in compute and storage technologies, which should provide cost effective storage,
improved performance in a desired time frame. The infrastructure required cognitive
storage with learning ability for computers to store only relevant and important
data. The computing requires efficient processing which demands high memory
bandwidth and extreme scale parallelism for efficient resource utilization within
energy efficiency constraints. Open power foundation [3] is an initiative towards
partnering technology solutions with diverse companies coming together to provide
technology solutions to a variety of problems. With data centric computing, time
to solution will be dramatically reduced. Cognitive computing is though still at its
infancy stages but in future will be a key technology for the success of modern
businesses, to get insights of the vast amount of unstructured data by leveraging
computing technology to work better with the way humans want to work and
smoothing the natural relationship between human and the computer.

23.8 The Proposed HPC-Big Data Convergence Architecture
Based on Design Patterns

The need for HPDA demands innovative ways, to accelerate data and predictive
analysis to target above-mentioned complex challenges by revolutionary and evo-
lutionary changes in programming models, computer architecture, and runtime
systems to accommodate potential interoperability and scaling convergence of HPC
and big data ecosystems [3]. There is growing need for the efficient exploration
of novel techniques to allow HPC and big data applications to exploit billion-
fold parallelism (exascale systems), improved data locality, unified storage systems,
synchronization, and ultimately the single system architecture to overcome the cost
and complexity of moving data which also improves the total cost of ownership and
brings in flexibility to manage workflows and maximize system utilization. Design
patterns and skeletons are the potential candidates to address above-mentioned
challenges to design scalable, robust software development and applicable proved
solutions in both HPC and big data community.

580 S. Usman et al.

The parallel programming problem has been an active area of research for
decades focusing primarily on programming models and their supporting environ-
ments. As we move towards exascale (millions of components, billions of cores)
programming parallel processors and handling billion-way parallelism is one of
the major challenges that research community is facing. Software architecture and
design plays a vital role in designing robust and scalable software. Common set of
design elements (derived from domain expert’s solutions) are captured in a design
pattern of that particular domain to assist the software designer to engineer robust
and scalable parallel software. These patterns define the building blocks of all
software engineering and are fundamental to architect parallel software. The design
problem at different level of software development is addressed by developing
layered hierarchy of patterns by arranging patterns at different levels. These design
patterns have been developed to assist software engineers to architect and implement
parallel software efficiently. Our Pattern Language OPL is one of prominent source
of cataloguing and categorizing the parallel patterns [74]. A design pattern provides
a clean mechanism to cater common design problems using generic guidelines.

Big data design patterns provide the concrete representation of analysis and
technology centric patterns of most common occurring problems in big data
environment [75]. These design patterns provide the building blocks for the efficient
design of big data architecture. The standardization and integration of design
patterns can be seen as the potential candidates for the efficient and effective
convergence of HPC and big data. Figure 23.6 shows the logical architecture of
different layers and design patterns (HPC & Big Data) can then be applied at distinct
levels to address the issues related to big data and HPC convergence. One of the
challenges associated with data visualization and interactive management is huge
volume, variety, and velocity of data and is often hard to evaluate and reapply the
design solution. The visualization and management layer involves applying patterns
for distributed and parallel visualization, interactive data exploration, rendering data
visualization, real-time monitoring for live analysis and recommendations.

The analytics/processing layer includes patterns for analytics and depending
on the problem domain includes in situ, in-transit, real-time, or batch processing.
Advanced analytics requires predictions, advance algorithms, simulations, and
real-time decisions that require high performance computing for processing and
managing massive volume of data [76].

There is a trade-off between performance, resilience, and power consumption.
Trade-off patterns need to identify and accommodate these trade-offs in best possi-
ble way by indulging the best practices from both HPC and big data communities.
The processing pattern includes analytics patterns for unstructured and structured
data, algorithms for conversion of unstructured to structured data, large-scale
batch and graph based processing patterns, and also parallel design patterns. The
access/storage layer includes design patterns for the effective and efficient retrieval
and storage mechanism for parallel and distributed file systems. This includes data
size reduction for high volume hierarchical, linked, tabular and binary cognitive
storage for real-time in-direct and integrated access. The cognitive storage with

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 581

Fig. 23.6 Design Patterns Based Converged Future

learning ability is to automate the process of data purging by keeping only relevant
and important data for cost effective storage and improved performance.

HPC software development community lack the expertise of software engineer-
ing principles as these patterns define the building blocks of software engineering
and are fundamental to architect parallel software. There is a need to invest the
research efforts towards exploration of innovative approaches to make use of design
patterns and skeletons to overcome scalability, elasticity, adaptability, robustness,
storage, parallelization, and other processing challenges of the unified HPC and big
data environment.

23.9 Conclusion

The increased processing power, emergence of big data resources, and real-time
analytical solutions are the prime drivers that push the realm of big data. HPC
and big data systems are different not only at programming level but also have
different architecture. The challenges associated with inevitable integration of HPC
and big data are immense and solutions are starting to emerge at distinct levels

582 S. Usman et al.

of ecosystem. As we are heading towards convergence of both, we will have to
deal with modality, complexity, and vast amount of data. Currently we have distinct
and perhaps overlapping set of design choices at various levels of infrastructure. A
single system architecture but with enough configurability in it that you can actually
serve different design points between compute intensive and design intensive. The
single system architecture overcomes the cost and complexity of moving data. It also
improves the total cost of ownership and brings in flexibility to manage workflows
and maximize system utilization. Realizing these benefits requires coordinated
design efforts around key elements of the system, i.e., compute (multicore, FPGA),
interconnect (next generation fabric), memory (Non Volatile memory, storage burst
buffer, Lustre file system). This coordinated effort may result in useable, effective,
and scalable software infrastructure.

The connected and ubiquitous synergy between HPC and big data is expected
to deliver the results which cannot be achieved by either alone. There is a need for
the leading enterprises to use HPC technology to explore efficiently huge volume of
heterogeneous data to surpass static searches into dynamic pattern discovery for the
competitive advantage. The integration of computing power in HPC and demands
for a quick and real-time analytics for big data with cognitive technology (computer
vision techniques, machine learning, natural language processing) are considered as
reshaping the future technology for accelerating analytics and deriving meaningful
insights for efficient decision-making.

Acknowledgments The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdul-Aziz University (KAU),
Jeddah, Saudi Arabia, under the grant number G-673-793-38. The work carried out in this paper is
supported by the HPC Center at the King Abdul-Aziz University.

References

1. Singh, K., Kaur, R.: Hadoop: addressing challenges of big data. In: 2014 IEEE International
Advance Computing Conference (IACC), pp. 686–689. IEEE (2014)

2. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of research on redesigning the
future of internet architectures, pp. 531–558. IGI Global, Hershey (2015)

3. Charl, S.: IBM—HPC and HPDA for the cognitive journey with OpenPOWER. https://www-
03.ibm.com/systems/power/solutions/bigdata-analytics/smartpaper/high-value-insights.html

4. Alzahrani, S., Ikbal, M.R., Mehmood, R., Fayez, M., Katib, I.: Performance evaluation
of Jacobi iterative solution for sparse linear equation system on multicore and manycore
architectures. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 296–305.
Springer, Cham (2018)

5. Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on Intel
MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
306–322. Springer, Cham (2018)

https://www-03.ibm.com/systems/power/solutions/bigdata-analytics/smartpaper/high-value-insights.html

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 583

6. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations
arising from stochastic modelling. In: Hermanns, H., S.R. (eds.) Process Algebra and Prob-
abilistic Methods: Performance Modeling and Verification. PAPM-PROBMIV, pp. 135–151.
Springer, Berlin (2002)

7. Mehmood, R.: Disk-based techniques for efficient solution of large Markov chains. http://
www.academia.edu/download/3361709/rashidsthesis.pdf (2004)

8. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. Technical Report Number UCAM-CL-TR-650, Computer Laboratory, University of
Cambridge, Cambridge, UK (2005)

9. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution
method for Markov Models. Electron. Notes Theor. Comput. Sci. 68, 589–604 (2002)

10. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804–817 (2011)

11. Kwiatkowska, M., Parker, D., Yi Zhang, Y., Mehmood, R.: Dual-processor parallelisation
of symbolic probabilistic model checking. In: The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems, 2004 (MASCOTS 2004). Proceedings, pp. 123–130. IEEE (2004)

12. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort,
B.R., Hermanns, H., Katoen, J.P., S.M. (eds.) Validation of Stochastic Systems, pp. 230–255.
Springer, Berlin (2004)

13. Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-
state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis, and
Simulation, pp. 293–302. IEEE (2006)

14. Keable, C: The convergence of high performance computing and big data—ascent. https://
ascent.atos.net/convergence-high-performance-computing-big-data/

15. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: The cutting edge
and outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 11–26.
Springer, Cham (2018)

16. Padhy, R.P.: Big data processing with Hadoop-MapReduce in cloud systems. IJ-CLOSER Int.
J. Cloud Comput. Serv. Sci. 2, 233–245 (2012)

17. Hess, K.: Hadoop vs. spark: the new age of big data. http://www.datamation.com/data-center/
hadoop-vs.-spark-the-new-age-of-big-data.html

18. Muhammad, J.: Is Apache Spark going to replace Hadoop? http://aptuz.com/blog/is-apache-
spark-going-to-replace-hadoop/

19. OLCF staff writer: OLCF group to offer spark on-demand data analysis. https://
www.olcf.ornl.gov/2016/03/29/olcf-group-to-offer-spark-on-demand-data-analysis/

20. Jost, G., Jin, H.-Q., anMey, D., Hatay, F.F.: Comparing the OpenMP, MPI, and hybrid pro-
gramming paradigm on an SMP cluster. In: European Workshop on OpenMP and Applications.
Aachen Germany (2003)

21. De Wael, M., Marr, S., De Fraine, B., Van Cutsem, T., De Meuter, W.: Partitioned global
address space languages. ACM Comput. Surv. 47, 1–27 (2015)

22. Calin, G., Derevenetc, E., Majumdar, R., Meyer, R.: A theory of partitioned global address
spaces (2013)

23. Joseph, E., Sorensen, B.: IDC update on how big data is redefining high perfor-
mance computing. https://www.tacc.utexas.edu/documents/1084364/1136739/IDC+HPDA+
Briefing+slides+10.21.2014_2.pdf

24. Geist, A., Lucas, R.: Whitepaper on the Major Computer Science Challenges at Exascale
(2009)

25. Krishnan, S., Tatineni, M., Baru, C.: myHadoop-Hadoop-on-demand on traditional HPC
resources (2011)

http://www.academia.edu/download/3361709/rashidsthesis.pdf
https://ascent.atos.net/convergence-high-performance-computing-big-data/
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://aptuz.com/blog/is-apache-spark-going-to-replace-hadoop/
https://www.olcf.ornl.gov/2016/03/29/olcf-group-to-offer-spark-on-demand-data-analysis/
https://www.tacc.utexas.edu/documents/1084364/1136739/IDC+HPDA+Briefing+slides+10.21.2014_2.pdf

584 S. Usman et al.

26. Xuan, P., Denton, J., Ge, R., Srimani, P.K., Luo, F.: Big data analytics on traditional HPC
infrastructure using two-level storage (2015)

27. Is Hadoop the New HPC. http://www.admin-magazine.com/HPC/Articles/Is-Hadoop-the-
New-HPC

28. Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In:
2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409. IEEE
(2013)

29. Philip Chen, C.L., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. (Ny). 275, 314–347 (2014)

30. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171–209 (2014)
31. Xu, Z., Shi, Y.: Exploring big data analysis: fundamental scientific problems. Ann. Data Sci.

2(4), 363–372 (2015)
32. Hashem, I.A.T., Yaqoob, I., Badrul Anuar, N., Mokhtar, S., Gani, A., Ullah Khan, S.: The rise

of “Big Data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115
(2014)

33. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM. 58, 56–68 (2015)
34. Asch, M., Moore, T., Badia, R., Beck, M., Beckman, P., Bidot, T., Bodin, F., Cappello, F.,

Choudhary, A., de Supinski, B., Deelman, E., Dongarra, J., Dubey, A., Fox, G., Fu, H., Girona,
S., Gropp, W., Heroux, M., Ishikawa, Y., Keahey, K., Keyes, D., Kramer, W., Lavignon, J.-
F., Lu, Y., Matsuoka, S., Mohr, B., Reed, D., Requena, S., Saltz, J., Schulthess, T., Stevens,
R., Swany, M., Szalay, A., Tang, W., Varoquaux, G., Vilotte, J.-P., Wisniewski, R., Xu, Z.,
Zacharov, I.: Big data and extreme-scale computing. Int. J. High Perform. Comput. Appl. 32,
435–479 (2018)

35. Islam, N.S., Lu, X., Wasi-ur-Rahman, M., Shankar, D., Panda, D.K.: Triple-H: a hybrid
approach to accelerate HDFS on HPC clusters with heterogeneous storage architecture. In:
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.
101–110. IEEE (2015)

36. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapReduce
for multi-core and multiprocessor systems. In: 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, pp. 13–24. IEEE (2007)

37. Schwan, P., Schwan, P.: Lustre: building a file system for 1000-node clusters. In: Proceedings
of 2003 LINUX Symposium (2003)

38. Ghemawat, S., Gobioff, H., Leung, S.-T., Ghemawat, S., Gobioff, H., Leung, S.-T.: The
Google file system. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles—SOSP’03, p. 29. ACM Press, New York (2003)

39. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System Guide (2001)
40. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In:

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10.
IEEE (2010)

41. Apache Hadoop 2.9.0—C API libhdfs. https://hadoop.apache.org/docs/stable/hadoop-project-
dist/hadoop-hdfs/LibHdfs.html

42. Martinec, J., Rango, A., Major, E.: The Snowmelt-Runoff Model (SRM) user’s manual (1983)
43. Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C.A., Marciano, R., de Torcy, A., Wan, M.,

Schroeder, W., Chen, S.-Y., Gilbert, L., Tooby, P., Zhu, B.: iRODS primer: integrated rule-
oriented data system. In: Synth. Lect. Inf. Concepts, Retrieval, Serv. 2, 1–143 (2010)

44. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for large-scale graph algorithms. Parallel
Comput. 37, 610–632 (2011)

45. Mantha, P.K., Luckow, A., Jha, S.: Pilot-MapReduce. In: Proceedings of Third International
Workshop on MapReduce and Its Applications Date—MapReduce’12, p. 17. ACM Press, New
York (2012)

46. Tiwari, N., Sarkar, S., Bellur, U., Indrawan, M.: An empirical study of Hadoop’s energy
efficiency on a HPC cluster. Procedia Comput. Sci. 29, 62–72 (2014)

47. Woodie, A: Does InfiniBand have a future on Hadoop? http://www.datanami.com/2015/08/04/
does-infiniband-have-a-future-on-hadoop/

http://www.admin-magazine.com/HPC/Articles/Is-Hadoop-the-New-HPC
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/LibHdfs.html
http://www.datanami.com/2015/08/04/does-infiniband-have-a-future-on-hadoop/

23 Big Data and HPC Convergence for Smart Infrastructures: A Review. . . 585

48. Veiga, J., Exp, R.R., Taboada, G.L., Touri, J.: Analysis and evaluation of big data computing
solutions in an HPC environment (2015)

49. Wang, Y., Jiao, Y., Xu, C., Li, X., Wang, T., Que, X., Cira, C., Wang, B., Liu, Z., Bailey, B., Yu,
W.: Assessing the performance impact of high-speed interconnects on MapReduce. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) LNCS, vol. 8163, pp. 148–163 (2014)

50. Islam, N.S., Lu, X., Wasi-ur-Rahman, M., Panda, D.K.: Can parallel replication benefit
Hadoop distributed file system for high performance interconnects? In: 2013 IEEE 21st Annual
Symposium on High-Performance Interconnects, pp. 75–78. IEEE (2013)

51. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling cool: temperature-aware
workload placement in data centers (2005)

52. Rajovic, N., Puzovic, N., Vilanova, L., Villavieja, C., Ramirez, A.: The low-power architecture
approach towards exascale computing. In: Proceedings of the Second Workshop on Scalable
Algorithms for Large-Scale Systems—ScalA’11, p. 1. ACM Press, New York (2011)

53. Cappello, F.: Fault tolerance in petascale/exascale systems: current knowledge, challenges and
research opportunities. Int. J. High Perform. Comput. Appl. 23, 212–226 (2009)

54. Gutierrez, D: The convergence of big data and HPC—inside BIGDATA. https://
insidebigdata.com/2016/10/25/the-convergence-of-big-data-and-hpc/

55. High performance data analytics (HPDA) market-forecast 2022. https://
www.marketresearchfuture.com/reports/high-performance-data-analytics-hpda-market

56. Willard, C.G., Snell, A., Segervall, L.: Top six predictions for HPC in 2015 (2015)
57. Egham: Gartner says 8.4 billion connected “things” will be in use in 2017, up 31 percent from

2016. http://www.gartner.com/newsroom/id/3598917
58. Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A

framework for faster porting of scientific applications between heterogeneous clouds. In: Lec-
ture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, pp. 27–43. Springer, Cham (2018)

59. Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: oppor-
tunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart
Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp.
207–215. Springer, Cham (2018)

60. Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: DNA profiling methods and tools:
a review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 216–231.
Springer, Cham (2018)

61. Al Shehri, W., Mehmood, R., Alayyaf, H.: A smart pain management system using big data
computing. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 232–246.
Springer, Cham (2018)

62. Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelli-
gence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac,
I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 247–257. Springer, Cham (2018)

63. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 111–122.
Springer, Cham (2018)

https://insidebigdata.com/2016/10/25/the-convergence-of-big-data-and-hpc/
https://www.marketresearchfuture.com/reports/high-performance-data-analytics-hpda-market
http://www.gartner.com/newsroom/id/3598917

586 S. Usman et al.

64. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B.,
Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications.
SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 139–154. Springer, Cham (2018)

65. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib,
I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA
2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 155–168. Springer, Cham (2018)

66. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart
city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 169–184.
Springer, Cham (2018)

67. Al-Dhubhani, R., Mehmood, R., Katib, I., Algarni, A.: Location privacy in smart cities era.
In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pp. 123–138. Springer,
Cham (2018)

68. Alomari, E., Mehmood, R.: Analysis of Tweets in Arabic Language for detection of road
traffic conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 98–110.
Springer, Cham (2018)

69. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128–1133 (2017)

70. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport man-
agement systems—enabler for smart cities, personalized medicine, participation and industry
grid/industry 4.0. In: Intelligent Transportation Systems—Problems and Perspectives, pp. 3–
35. Springer, Cham (2016)

71. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States Road Network Data on Apache Spark. In: Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. SCITA
2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 323–336. Springer, Cham (2018)

72. El Baz, D.: IoT and the need for high performance computing. In: 2014 International
Conference on Identification, Information and Knowledge in the Internet of Things, pp. 1–6.
IEEE (2014)

73. Conway, S: High performance data analysis (HPDA): HPC—big data convergence—
insideHPC (2017)

74. Keutzer, K., Tim, M.: Our pattern language_our pattern language,
file:///Users/abdulmanan/Desktop/Our Pattern Language_Our Pattern Language.htm (2016)

75. Bodkin, R., Bodkin, R.: Big data patterns, pp. 1–23 (2017)
76. Mysore, D., Khupat, S., Jain, S.: Big data architecture and patterns, Part 1: introduction

to big data classification and architecture. https://www.ibm.com/developerworks/library/bd-
archpatterns1/index.html

https://www.ibm.com/developerworks/library/bd-archpatterns1/index.html

Part V
Internet of Things (IoT)

Chapter 24
Towards a Runtime Testing Framework
for Dynamically Adaptable Internet of
Things Networks in Smart Cities

Moez Krichen and Mariam Lahami

24.1 Introduction

Recent advances in communication and sensing devices make our everyday objects
smarter. This smartness is resulted from the capability of objects to sense the
environment, to process the captured (sensed) data, and to communicate it to users
either directly or through the internet. Taking an example of the object “lamp,”
a classical lamp needs to be wired, linked to the electricity in order to produce
light and it does not handle more than the on and off states. This lamp becomes
smarter if it is equipped with sensors that can detect environment luminosity and
adjust its brightness automatically based on the sensed value. Moreover, this lamp
can be equipped with a communication system and therefore can be remotely
controlled and supervised (e.g., energy consumption). The IoT refers to the ability
of everyday objects to connect to the Internet and to send and receive data. The
integration of these smart objects to the Internet infrastructure is promoting a new
generation of innovative and valuable services for people. These services include
home automation, traffic control, public transportation, smart water metering, waste
and energy management, etc. When integrated in a city context, they make citizens
live better and so form the modern smart city.

M. Krichen (�)
Faculty of CSIT, Al-Baha University, Al Baha, Saudi Arabia

ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: moez.krichen@redcad.org

M. Lahami
ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: mariam.lahami@redcad.org

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_24

589

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_24&domain=pdf
mailto:moez.krichen@redcad.org
mailto:mariam.lahami@redcad.org
https://doi.org/10.1007/978-3-030-13705-2_24

590 M. Krichen and M. Lahami

In recent years, several research works are shaping the smart cities concept [9]. In
October 2015, ITU-T’s Focus Group on Smart Sustainable Cities (FG-SSC) agreed
on the following definition of a smart sustainable city: “A Smart Sustainable City
(SSC) is an innovative city that uses information and communication technologies
(ICTs) and other means to improve quality of life, efficiency of urban operation
and services, and competitiveness, while ensuring that it meets the needs of present
and future generations with respect to economic, social and environmental aspects.”
Based on this definition, the main goal for SSC is to enhance the quality of life of its
citizens across multiple, interrelated dimensions, including the provision and access
to water resources, energy, transportation and mobility, education, environment,
waste management, housing, and livelihoods (e.g., jobs), utilizing ICTs as the key
medium. Therefore, the IoT as a promising ICT technology will play a major role
in the development of these new smart cities. With IoT, objects like phones, cars,
household appliances, or clothes become wirelessly connected and can sense and
share data.

Nowadays, distributed component-based systems tend to evolve dynamically
without stopping their execution. Known as dynamically adaptable and distributed
systems, these systems are currently playing an important role in society’s services.
Indeed, the growing demand for such systems is obvious in several application
domains such as crisis management [10] and medical monitoring [4]. This demand
is stressed by the complex, mobile, and critical nature of these applications that
also need to continue meeting their functional and non-functional requirements and
to support advanced properties. Nevertheless, dynamic adaptations of component-
based systems may generate new risks of bugs, unpredicted interactions, unintended
operation modes, and performance degradation. This may cause system malfunc-
tions and guide its execution to an unsafe state. Therefore, guaranteeing their high
quality and their trustworthiness remains a crucial requirement to be considered.
One of the most promising ways of testing dynamic systems is the use of an
emerging technique, called runtime testing.

In this work, we propose a standard-based test execution platform for dynami-
cally adaptable IoT networks in smart cities which affords a platform-independent
test system for isolating and executing runtime tests. This platform uses the TTCN3
standard and considers both structural and behavioral adaptations. Moreover, our
platform is equipped with a test isolation layer that reduces the risk of interference
between testing processes and business processes. We also compute a minimal
subset of test cases to run and efficiently distribute them among the execution
nodes. The main research contributions presented in this paper are the following.
The minimal subset of test cases is obtained using a smart generation algorithm
which keeps old tests cases which are still valid and replaces invalid ones by new
generated or updated test cases.

The remainder of this paper is organized as follows. In Sect. 24.2, we provide
techniques for runtime testing for structural adaptations. Section 24.3 is dedicated to
runtime testing of behavioral adaptations. Finally, Sect. 24.4 provides a conclusion
that summarizes the paper and discusses items for future work.

24 Runtime Testing Framework for Dynamically Adaptable IoT 591

Structural
Reconfiguration action

Start

Online Dependency
Analysis

Affected Components

Minimal Set of test cases

Te
st

 S
el

ec
tio

n
an

d
D

is
tr

ib
ut

io
n

Verdicts

Pass Verdict

Fail Verdict

Finish

Resource Aware Test Plan

Te
st

 Is
ol

at
io

n
an

d
E

xe
cu

tio
n

Online Test Case
Selection

Constrained Test
Component Placement

Test Isolation &
Execution

SUT
Architecture

Executable
Test case

Repository

Test
Component

Required
Resources

Resource
States of

Execution
nodes

Fig. 24.1 Runtime testing process for the validation of structural adaptations

24.2 Runtime Testing for Structural Adaptations

Testing at design-time or even at deployment-time usually demonstrates that the
system under test, SUT, satisfies its functional and non-functional requirements.
However, its applicability becomes limited and irrelevant when this system is
adapted at runtime according to evolving requirements and environmental con-
ditions that were not explicitly specified at design-time. For this reason, runtime
testing is strongly required to extend assurance from design-time to runtime.

The process depicted in Fig. 24.1 spans the different steps to fulfill with the aim
of executing runtime tests when structural reconfiguration actions are triggered, as
follows:

– Online dependency analysis: In this step, we focus on identifying the affected
components and compositions by a structural reconfiguration action.

592 M. Krichen and M. Lahami

– Online test case selection: Once the affected parts of the system are identified,
we look for their corresponding test cases that are stored in the executable test
case repository.

– Constrained test component placement: Test components are assigned to exe-
cution nodes in an appropriate manner with respect to resource and connectivity
constraints.

– Test isolation and execution: A test isolation layer is set up then test compo-
nents are dynamically created and test cases are executed.

More details are presented in the next sections.

24.2.1 Online Dependency Analysis

To reduce the time cost and the resource burden of the runtime testing process,
the key idea is to avoid the re-execution of all tests at runtime when structural
adaptations occur. Thus, we use the dependency analysis approach with the aim
of determining the parts of the system impacted by dynamic evolutions and then
computing a minimal set of tests to rerun. In fact, the dependency analysis technique
is widely used in various software engineering activities including testing [15],
maintenance, and evolution [16].

Definition Dependencies between components are defined in [1] as “the reliance
of a component on other(s) to support a specific functionality.” It is also considered
as a binary relation between two components. A component A is an antecedent to
another component B if its data or functionalities are utilized by B. Equivalently,
A component B is dependent on another component A if it utilizes data or
functionalities of A. Formally, the relation → called “Depends on” is defined in
[13] where B → A means that the component B depends on the component
A. The set of all dependencies in a component-based system is defined as:
D = {

(Ci, Cj) : Ci, Cj ∈ S ∧ Ci → Cj

}
where S is the set of components in the

system. Accordingly, the current system configuration is a set of components and its
dependencies Con = (S,D).

Several forms of dependencies component-based systems are identified in the
literature [15]. For instance, we mention data dependency (i.e., data defined in
one component is used in another component), control dependency (i.e., caused
by sending a message from one component to another component), etc. The
main dependency form that we support in this work is the interface dependency,
which means that a component requires (respectively provides) a service from
(respectively to) another component.

Dependency Representation To represent and analyze component dependencies,
two formalisms are generally described: a component dependency graph (CDG)
and a component dependency matrix (CDM). A CDG is a directed graph denoted
by G = (S,D) where S is a finite nonempty set of vertices representing system’s

24 Runtime Testing Framework for Dynamically Adaptable IoT 593

Fig. 24.2 A CDG and its CDM representing direct dependencies

components and D is a set of edges between two vertices, D ⊆ (S × S). A CDM
is defined as a 0-1 adjacency matrix AMn×n that represents direct dependencies
in a component-based system. In this matrix, each component is represented by a
column and a row. If a component Ci depends on a component Cj , then dij = 1
otherwise dij = 0. Figure 24.2 shows an example of dependency graph and its
corresponding adjacency matrix.

Initially, D represents only direct dependencies between components. In order
to gather all indirect dependencies in the component-based system, the transitive
closure of the graph has to be calculated. Several transitive closure algorithms have
been widely studied in the literature such as the Roy–Warshall algorithm and its
modification proposed by Warren [8].

24.2.2 Online Test Case Selection

This concern has been extensively studied in the literature. In fact, various regression
test selection techniques have been proposed with the purpose of identifying a
subset of valid test cases from an initial test suite that tests the affected parts of a
program. These techniques usually select regression tests based on data and control
dependency analysis [17].

Two kinds of tests are considered after the occurrence of dynamic adaptations.
On the one hand, unit tests are executed to validate individual affected components.
On the other hand, integration tests are performed to check interactions and
interoperability between components.

Let us take an example with four components and a dependency graph that looks
like Fig. 24.3. Assume that C2 is replaced with a new version. Thus, two dependence
paths are identified: C1 → C2 → C3 and C1 → C2 → C4. As a result, the mapping
to integration tests produces: IT C1C2C3 and IT C1C2C4 have to be rerun.

Recall that tests are written in the TTCN-3 notation and are executed by TTCN-3
test components. As depicted in Fig. 24.4a, an MTC component is only charged with

594 M. Krichen and M. Lahami

Fig. 24.3 Illustrative
example of dependence path
computation

(a) (b)

Fig. 24.4 TTCN-3 test configuration for unit and integration testing. (a) Unit test configuration.
(b) Integration test configuration

executing a unit test. It shares this responsibility with other PTC components when
an integration test is executed (see Fig. 24.4b). Each PTC is created to simulate a
test call from a component to another at lower hierarchy in the dependence path.
The following subsection copes with test case distribution and more precisely with
main test components assignment to execution nodes.

24.2.3 Constrained Test Component Placement

In the following subsections, we discuss how to formalize resource and connectivity
constraints and how to find the adequate deployment host for each test involved in
the runtime testing process.

Resource Allocation Issue For each node in the execution environment, three
resources are monitored during the SUT execution: the available memory, the
current CPU load, and the battery level. The value of each resource can be directly

24 Runtime Testing Framework for Dynamically Adaptable IoT 595

captured on each node through the use of internal monitors. These values are
measured after the runtime reconfiguration and before starting the testing activity.
Formally, provided resources of m execution nodes are represented through three
vectors: C contains the CPU load, R provides the available RAM, and B introduces
the battery level.

C =

⎛

⎜
⎜
⎜
⎝

c1

c2
...

cm

⎞

⎟
⎟
⎟
⎠

R =

⎛

⎜
⎜
⎜
⎝

r1

r2
...

rm

⎞

⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎝

b1

b2
...

bm

⎞

⎟
⎟
⎟
⎠

The resources required by the n test components are initially computed at the
deployment-time after a preliminary test run. Similarly, they are formalized over
three vectors: Dc that contains the required CPU, Dr that introduces the required
RAM, and Db that contains the required battery by each test.

Dc =

⎛

⎜
⎜
⎜
⎝

dc1

dc2
...

dcn

⎞

⎟
⎟
⎟
⎠

Dr =

⎛

⎜
⎜
⎜
⎝

dr1

dr2
...

drn

⎞

⎟
⎟
⎟
⎠

Db =

⎛

⎜
⎜
⎜
⎝

db1

db2
...

dbn

⎞

⎟
⎟
⎟
⎠

As the proposed framework is resource aware, the overall resources required by
n test components must not exceed the available resources in m nodes. This rule is
formalized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
xij dci ≤ cj ∀j ∈ {1, . . . , m}

n∑

i=1
xij dri ≤ rj ∀j ∈ {1, . . . , m}

n∑

i=1
xij dbi ≤ bj ∀j ∈ {1, . . . , m}

(24.1)

where the two dimensional variable xij can be equal to 1 if the corresponding test
component i is assigned to the node j , 0 otherwise.

Connectivity Issue Dynamic environments are characterized by frequent and
unpredictable changes in connectivity caused by firewalls, non-routing networks,
node mobility, etc. For this reason, we have to pay attention when assigning a
test component to a host computer by finding at least one route in the network
to communicate with the component under test. For each test component, a set of
forbidden nodes to discard during the constrained test component placement step is
defined. This connectivity constraint is denoted as follows:

xij = 0 ∀j ∈ f orbiddenNodeSet (i) (24.2)

596 M. Krichen and M. Lahami

Finding a satisfying test placement solution is achieved by fitting the former
constraints (24.1) and (24.2). The latter can be seen as a constraint satisfaction
problem (CSP) [5].

Optimizing the Test Component Placement Problem Looking for an optimal test
placement solution consists in identifying the best node to host the concerned test
component in response with two criteria: its distance from the node under test and
its link bandwidth capacity. To do so, we are asked to attribute a profit value pij for
assigning the test component i to a node j . For this aim, a matrix Pn×m is computed
as follows:

pij =
{

0 if j ∈ f orbiddenNodeSet (i)

maxP − k × stepp otherwise
(24.3)

where maxP is a constant, stepp = maxP
m

, k corresponds to the index of a node j in
a rank vector that is computed for each node under test. This vector corresponds to
a classification of the connected nodes according to two criteria: the distance from
the testing node to the node under test [12] and the link bandwidth capacities.

As a result, the constrained test component placement module generates the best
deployment host for each test component involved in the runtime testing process by
maximizing the total profit value while fitting the former resource and connectivity
constraints. Thus, this problem is formalized as a variant of the knapsack problem,
called multiple multidimensional knapsack problem (MMKP).

MMKP =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maximize Z =
n∑

i=1

m∑

j=1
pij xij (24.4)

subject to (24.1) and (24.2)
m∑

j=1
xij = 1 ∀i ∈ {1, . . . , n} (24.5)

xij ∈ {0, 1} ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , m}

Constraint (24.4) corresponds to the objective function that maximizes test com-
ponent profits while satisfying resource (24.1) and connectivity (24.2) constraints.
Constraint (24.5) indicates that each test component has to be assigned to at most
one node.

24.2.4 Test Isolation and Execution Support

With the purpose of alleviating the complexity of testing adaptable and distributed
systems, we propose a test system called, TTCN-3 test system for Runtime Testing
(TT4RT) [11].

http://dx.doi.org/10.1007/978-3-030-13705-2_24
http://dx.doi.org/10.1007/978-3-030-13705-2_24

24 Runtime Testing Framework for Dynamically Adaptable IoT 597

Fig. 24.5 Internal interactions in the TT4RT system

Detailed Interactions of TT4RT Components TT4RT relies on the classical
TTCN-3 test system. Thus, it reuses all its constituents, namely test management
(TM), TTCN-3 executable (TE), component handling (CH), coding and decoding
(CD), system adapter (SA), and platform adapter (PA). These entities are briefly
introduced below. As depicted in Fig. 24.5, a new generic test isolation component
is added to the TTCN-3 reference architecture with the aim of handling test isolation
concerns. The next steps define the different components of TT4RT and their
internal interactions:

– When a reconfiguration action is triggered, the RATP (resource aware test plan)
file is generated and it is considered as an input to the TT4RT test system (Step 1).

– The test execution is initiated by the TM entity which is charged with starting
and stopping runtime tests (Step 2).

– Once the test process is started, the TE entity (i.e., which is responsible for
executing the compiled TTCN-3 code) creates the involved test components and
informs the SA entity (i.e., which is charged with propagating test requests from

598 M. Krichen and M. Lahami

TE to SUT) with this start-up in order to set up its communication facilities
(Step 3).

– Next, TE invokes the CD entity in order to encode the test data from a structured
TTCN-3 value into a form that will be accepted by the SUT (Step 4).

– The encoded test data is passed back to the TE entity as a binary string and
forwarded to the SUT via the SA entity (Steps 5–7).

– After the test data is sent, a timer can be started (Step 8).
– The generic test isolation component, implementing test isolation facilities,

intercepts the test request, identifies the component under test and its supported
test isolation technique, and prepares the test environment (Steps 7–9).

– Different test isolation instances are automatically created to perform test
isolation inter-component invocations (Step 9).

– The SUT response is forwarded to the SA entity through the generic test isolation
component. The given response is an encoded value that has to be decoded in
order to be understandable by the TTCN-3 test system (Step 10).

– For this purpose, the SA entity forwards the encoded test data to the TE entity
(Step 11).

– The TE entity transmits the encoded response to the CD entity with the intention
of decoding it into a structured TTCN-3 value (Step 12).

– The decoded response is passed back to the TE that stops the running timer and
finally computes a verdict (pass, fail, or inconclusive) for the current test case
(Steps 13–15).

– Finally, a local verdict is computed depending on the obtained verdicts for test
cases executed by the current TT4RT instance (Step 16).

Overview of the Generic Test Isolation Component As outlined in Fig. 24.6, the
proposed policy is executed while a test request is intercepted from the system
adapter entity. Five strategies can be applied in response to the testability degree
of a component under test (CUT). With the assumption that the CUT is testable,
the test request can be redirected to one or more test operations provided by its
corresponding test interface or its associated aspect (particularly in the advice part)
when the aspect-based technique is used. If the component under test is test aware,
the tagging technique is applied and the CUT is invoked by tagging the input
test data with a flag to discriminate them from business data. If we deal with
untestable components, either cloning or blocking techniques can be performed.
For a test sensitive component, a clone is created and the test request is redirected
to it. Regarding the blocking strategy, it consists in interrupting the activity of the
component under test consumers for a lapse of time that corresponds to the test
duration. During this period, all business requests are delayed until the end of the
test. Once the test is achieved, the component under test consumers are unlocked
and the delayed requests are treated.

The Adopted Distributed Architecture The TTCN-3 standard offers concepts
related to test configurations, test components, their communicating ports between
each other and with the SUT, their execution, and their termination only at an

24 Runtime Testing Framework for Dynamically Adaptable IoT 599

Fig. 24.6 Test isolation policy

abstract level. Nevertheless, the means to control the distributed execution of these
test components are not explicitly defined in the current specification. Regarding this
issue, we propose our own test architecture that relies on a test system coordinator
(TSC) and several TT4RT instances. As outlined in Fig. 24.7, TSC is mainly charged
with distributing selected test cases to rerun and assigning their corresponding test
components to the execution nodes. Several TT4RT instances are installed within
the host computers involved in the final execution environment. They can be seen
as test containers that hold test components (i.e., either MTC or PTC components).
Each instance controls the execution of a subset of selected test cases.

24.3 Runtime Testing of Behavioral Adaptations

Running old test suites on dynamic software systems, in which not only the structure
evolves but also the behavior may change, seems to be meaningless. Therefore,
it is highly required to update test suites in a cost-effective manner as long as
the software system is changing to fulfill new requirements. In this section, we
address this issue by merging model-based testing and selective regression testing
capabilities. To do so, we propose a selective test generation approach, called
TestGenApp.

600 M. Krichen and M. Lahami

Fig. 24.7 The distributed test execution platform

As illustrated in Fig. 24.8, our selective test generation approach is composed of
four modules.

– Model differencing module: It is proposed to capture correspondences and
differences between two models in terms of added, removed, or modified
locations and transitions.

– Old test suite classification module: It is charged with classifying the old test
suite issued from the original model M into reusable, retestable, aborted, and
obsolete tests.

– Test generation and recomputation module: It generates new abstract test
sequences covering newly added behaviors and adapts aborted and obsolete tests.

– TTCN-3 transformation module: It is used to transform the abstract test
sequences, obtained in the last step, into the TTCN-3 code.

24.3.1 Prerequisites: UPPAAL Timed Automata

In order to specify the behavioral models of evolved systems, timed automata
(TA) is chosen for the reason that it is a widespread formalism usually used for
modeling behaviors of critical and real-time systems. More precisely, we opt for
the particular UPPAAL style [2] of timed automata because UPPAAL is a well-

24 Runtime Testing Framework for Dynamically Adaptable IoT 601

Fig. 24.8 TestGenApp: selective test case generation approach

established verification tool. It is made up of a system editor that allows users to edit
easily timed automata, a simulator that visualizes the possible dynamic execution of
a given system and a verifier that is charged with verifying a given model w.r.t.
a formally expressed requirement specification. Within UPPAAL timed automata,
a system is modeled as a network of timed automata, called processes. A timed
automaton is an extended finite-state machine equipped with a set of clock-variables
that track the progress of time and that can guard when transitions are allowed.

Let C be a set of variables called clocks, and Act = I ∪ O ∪ {τ } with I a set of
input actions, O a set of output actions, and the non-synchronizing action (denoted
τ). Let G(C) denote the set of guards on clocks being conjunctions of constraints of
the form c �� n, where c ∈ C, n ∈ N, and ��∈ {�,≤,=,≥,�}. Moreover, let U(C)

denote the set of updates of clocks corresponding to sequences of statements of the
form c := n.

602 M. Krichen and M. Lahami

A timed automaton over (Act, C) is a tuple (L, l0,Act, C, I, E), where:

– L is a set of locations, l0 ∈ L is an initial location.
– I : L �−→ G(C) a function that assigns to each location an invariant.
– E is a set of edges such that E ⊆ L × G(C) × Actτ × U(C) × L

We write l
g,α,u−−−→ l′ when 〈l, g, α, u, l′〉 ∈ E.

Let (L, l0,Act, C, I, E) be a timed automaton. The semantics of T A is defined
in terms of a timed transition system over states in the form (l, σ) where l is a
location and σ ∈ R

C
�0 is a clock valuation satisfying the invariant of l. The initial

state (l0, σ0) is a state where l0 is the initial location of the automaton and σ0 is the
initial mapping where ∀c ∈ C, c = 0. Indeed, there are two kinds of transitions:

– Delay transitions, (l, σ)
d−→ (l, σ +d), in which all clock values of the automaton

are incremented with the amount of the delay, denoted σ + d. In such a case, the
automaton may stay in a location l as long as its invariant remains true.

– Discrete transitions, (l, σ)
α−→ (l′, σ ′), correspond to the execution of edges

(l, g, α, u, l′) for which the guard g is satisfied by σ . The clock valuation σ ′
of the target state is obtained by modifying σ according to updates u.

A run of timed automaton (L, l0,Act, C, I, E) is a sequence of transitions

(l0, σ0)
d1−→ α1−→ (l1, σ1)

d2−→ α2−→ · · · dn−→ αn−→ (ln, σn), with σi ∈ R
C
�0, di ∈ R�0 and

αi ∈ Act. A network of timed automata, T A1‖ . . . ‖T An over (Act, C) is modeled
as a timed transition system obtained by the parallel composition of n T A over
(Act, C). Synchronous communication between the timed automata is performed
by hand-shake synchronization using input and output actions.

24.3.2 Differencing Between Behavioral Models

We introduce a novel differencing algorithm that concisely captures differences
and similarities between networks of timed automata. In such a case, two main
elements are compared: locations and transitions. First, we differentiate automata
at the transition level. The two transitions Ti in the initial T A and Tj in the evolved
T A′ are considered similar if the following conditions are met:

(a) Ti and Tj have the same source and target locations, and
(b) they have the same values in the guard, assignment, and synchronization fields.

The procedure used for this purpose takes as input two array lists including
transitions of two timed automata: T A and T A′. For each transition in the initial
automaton, we firstly check its presence within the evolved one. From a technical
point of view, this condition is checked by looking for an equivalent transition in
the evolved model having similar source location id and target location id. As
long as this condition is satisfied, we look for meeting conditions defined above
meaning that they have the same source and target locations (i.e., name, label,

24 Runtime Testing Framework for Dynamically Adaptable IoT 603

committed, and urgent) and unchanged transition labels (i.e., guard, assignment,
and synchronization). As a result, the transition is considered unmodified.

If at least one condition is not respected, the transition is considered modified
and it is marked in yellow (see lines 8–9). New transitions which exist only in the
evolved model are finally marked in red (see lines 13–16). If a transition in T A
does not have an equivalent in the new timed automaton T A′, then this transition is
not copied in the final array list because it is considered as a removed transition.
The output of this procedure is an array list containing all marked transitions
(unmodified, modified, and new ones).

Following the same logic, we compare locations in both models. Two locations
li in T A and lj in T A′ are considered similar if the following conditions are
satisfied:

(a) li and lj have the same name and the same identifier,
(b) they have the same incoming and outgoing transitions, and
(c) they have the same invariant expression.

One location is marked as changed if at least one of these conditions is not met.
Finally since the SUT is generally modeled by a network of timed automata, it is
necessary to apply these procedures for each timed automaton in the network.

24.3.3 Old Test Suite Classification

Inspired from the test classification proposed by Leung et al. [14], we introduce in
this section a new test classification algorithm in which the old test suite generated
from the original model M is analyzed and then partitioned into:

– Reusable test set TRu: valid traces that traverse unimpacted items by the change.
– Retestable test set TRt : valid traces that traverse impacted items by the change.
– Aborted test set TAb: invalid traces that cannot be animated on the new model

because they cannot traverse modified items.
– Obsolete test set TOb: invalid traces that cannot be animated on the new model

because they traverse removed items.

For that aim, each trace in the T R set should be animated on the Mdiff model
and its covered items should be identified. Two scenarios are then tackled. On the
one hand, the test animation on the new model is achieved successfully. If the
trace traverses unchanged items, it is classified as a reusable test. Otherwise, it
is classified as a retestable test. On the other hand, the test animation on the new
model is abandoned. If this abort is due to some removed items which are no longer
available in the new model, the trace is seen as an obsolete test and it should be
automatically discarded from the new test suite. Otherwise, this abort can be due to
a modified transition which cannot be reached any more. In such a case, the trace

is classified as an aborted test.

604 M. Krichen and M. Lahami

24.3.4 Test Generation And Recomputation

Our approach identifies critical regions in the evolved model not only by marking
added locations and transitions but also by detecting old traces that cannot be
animated on the new model. Consequently, the Mdiff is used in this stage to
generate new tests and adapt aborted and obsolete ones in a cost-effective manner.

To generate new tests covering newly added behaviors, we are based on the
findings of Blom et al. [3], which express coverage criteria by using observer
automata with parameters and formulate the test generation problem as a search
exploration problem. Instead of adding auxiliary variables to enable the expression
of a coverage criterion as a reachability property using UPPAAL, the superposition
of an observer onto timed automata is supported.

The test generation tool UPPAAL CO
√

ER [7] supports the concept of observers
and the test case generation algorithm [6]. This efficient test suite generator is
adopted in this thesis to realize a selective test generation approach when behavioral
adaptations occur. The key idea is to formulate an observer that monitors only new
regions in the evolved model. A test sequence satisfies this coverage criterion if
when executed on the model it traverses at least one new edge where the col variable
is updated to zero.

24.3.5 Test Case Concretization

At this stage, we define several rules to derive TTCN-3 test cases from abstract test
sequences (see Table 24.1) [20]. First of all, we assume that for each test suite, a
TTCN-3 module should be generated (R1).

Within the TTCN-3 standard, the module concept is used as a top-level structure.
The first part includes definitions of test data, templates, test components, functions,
communication ports, test cases, and so on. The second part is usually used to
describe the execution sequence of test cases. A test component can be either a
main test component (MTC) or a parallel test component (PTC). Remember that
the MTC is charged with creating PTC components and executing TTCN-3 test
cases. To do so, a port must be defined in order to specify a point of control and

Table 24.1 TTCN-3 transformation rules

Rules Abstract concepts TTCN-3 concepts

R1 A test suite A TTCN-3 module

R2 A single trace A TTCN-3 test case

R3 Time dependent behavior A timer definition

R4 A test sequence in the form of input delay output A TTCN-3 test behavior

R5 Each involved TA A PTC component

R6 Each channel A template

24 Runtime Testing Framework for Dynamically Adaptable IoT 605

observation via which the test component can interact with other components and
with the SUT. To specify time delays, TTCN-3 supports a timer mechanism (R3).
Timers can be declared in component type definitions, the module control part, test
cases, functions, and altsteps. The channels declared in the UPPAAL XML file are
transformed into TTCN-3 templates (R6).

Moreover, an abstract test system interface is defined similarly to a component
definition. It includes a list of all possible communication ports through which
the test system is connected to the SUT. Once the test configuration is generated,
we look for the mapping of the abstract test sequences to test cases. As stated in
Table 24.1, for each test behavior in the form of input delay output a TTCN-3
function is derived (R4). Moreover, for a single trace (i.e., an abstract test sequence),
a test case is generated (R2). Then, the communication is established between the
PTC ports and the system ports. Finally, a sequence of calls to the already generated
TTCN-3 functions is performed. To compile the obtained test cases, the TThree
compiler [19] is used. It transforms the abstract test suite into an executable test
suite. Then, our TT4RT test system can be used for test isolation and execution
purposes.

24.4 Conclusion

In this article, we applied the runtime testing process to validate dynamically
adaptable IoT networks in smart cities after the occurrence of dynamic structural
adaptations. For this aim, we proposed a generic and resource aware test execution
platform that covers essentially two phases. The first phase deals with test selection
and distribution concerns. The main issue tackled in this first part is alleviating
test burden, cost, and resource consumption. This goal is achieved by reducing
the amount of test cases to rerun and by assigning efficiently their associated test
components to execution nodes while fitting resource and connectivity constraints.
The second phase handles test isolation and execution concerns. Based on the
TTCN-3 standard, we proposed a test system, TT4RT, which performs tests written
in a standardized notation. Accordingly, we gained in terms of using the same
notation for all types of tests and using a generic and flexible test harness.
Furthermore, TT4RT afforded a test isolation infrastructure supporting components
with various testability options (i.e., testable, test aware, untestable, etc.).

As another contribution to this article, we defined a model differencing technique
that highlights similarities and differences between an original behavioral model
and the evolved one, generally obtained after behavioral adaptations. Second, we
provided a test classification technique that selects efficiently reusable and retestable
tests, identifies aborted tests, and discards obsolete ones. These two steps are
responsible for identifying critical regions in the evolved model that need to be
covered by newly generated tests. For this purpose, we specified our own coverage
criteria based on the observer automata language and we used the well-established
tool UPPAAL model-checker and its extension UPPAAL CO

√
ER for generating

606 M. Krichen and M. Lahami

new tests. Also, a test recomputation technique was introduced with the aim
of adapting aborted and obsolete tests. Finally, the mapping of the abstract test
sequences to the TTCN-3 notation was handled.

Many possible extensions for our work are possible:

– Meta-heuristic techniques for the constrained test placement problem:
The major problem we may face while applying our approach on large-scale
environments comes from the constrained test placement module. In fact, this
module requires a long time to compute an exact optimal solution fitting the
resource and connectivity constraints. Therefore, we intend to use the Tabu
search (TS) meta-heuristic as a resolution algorithm and performing a parallel
exploration of the solution domain.

– Extension of the distributed TTCN-3 test system: The so far proposed
approach focuses only on distributing TTCN-3 test cases. Each one is managed
by a main test component (MTC) and may create several parallel test components
(PTC) in order to execute integration tests. To gain more performance and to alle-
viate the test workload on the execution environment, we should also distribute
PTC components over the execution nodes in order to avoid the communication
overhead introduced by the centralized execution architecture [18].

– Test generation based on probabilistic model-checking: The key idea here is
to apply runtime testing before the occurrence of dynamic proactive adaptations
which consist in making predictions of how the environment or the system
is going to evolve in the near future. To do so, tests have to be generated
from behavioral models that are augmented with probabilities to describe the
unpredictable system’s behavior. Formalisms like probabilistic timed automata
can be used to specify the system behavior.

References

1. Alhazbi, S., Jantan, A.: Dependencies management in dynamically updateable component-
based systems. J. Comput. Sci. 3(7), 499–505 (2007)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F.
(eds.) International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004. Revised Lectures. LNCS, vol. 3185, pp. 200–237.
Springer, Berlin (2004)

3. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test cases using
observer automata. In: Proceeding of the 5th International Workshop on Formal Approaches to
Software Testing (FATES’05), pp. 125–139 (2005)

4. Chen, I.-Y., Tsai, C.-H.: Pervasive digital monitoring and transmission of pre-care patient
biostatics with an OSGi, MOM and SOA based remote health care system. In: Proceeding of
the 6th Annual IEEE International Conference on Pervasive Computing and Communications
(PerCom’06), pp. 704–709 (2008)

5. Ghédira, K., Dubuisson, B.: Foundations of CSP. In: Constraint satisfaction problems, pp. 1–
28. Wiley, New York (2013)

6. Hessel, A.: Model-Based Test Case Generation for Real-Time Systems. Ph.D. thesis, Uppsala
University, Sweden (2007)

24 Runtime Testing Framework for Dynamically Adaptable IoT 607

7. Hessel, A., Pettersson, P.: CO
√

ER a real-time test case generation tool. In: Proceeding of the
7th International Workshop on Formal Approaches to Testing of Software (FATES’07) (2007)

8. Ioannidis, Y.E., Rantakrishnan, R.: Efficient transitive closure algorithms. In: Proceedings of
the 14th International Conference on Very Large Databases (VLDB’88) (1988)

9. Joachim, W.: Internet-of-Things architecture IoTA project deliverable D1.2 – Initial Architec-
tural Reference Model for IoT 07 (2018)

10. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: a case study for aspect-
oriented modeling. In: Transactions on Aspect-Oriented Software Development VII: A
Common Case Study for Aspect-Oriented Modeling, pp. 1–22. Springer, Berlin (2010)

11. Lahami, M., Fakhfakh, F., Krichen, M., Jmaïel, M.: Towards a TTCN-3 test system for
runtime testing of adaptable and distributed systems. In: Proceedings of the 24th IFIP WG
6.1 International Conference Testing Software and Systems (ICTSS’12), pp. 71–86 (2012)

12. Lahami, M., Krichen, M., Bouchakwa, M., Jmaïel, M.: Using Knapsack problem model to
design a resource aware test architecture for adaptable and distributed systems. In: Proceedings
of the 24th IFIP WG 6.1 International Conference Testing Software and Systems (ICTSS’12),
pp. 103–118 (2012)

13. Larsson, M., Crnkovic, I.: Configuration management for component-based systems. In:
Proceeding of the 10th International Workshop on Software configuration Management
(SCM’01) (2001)

14. Leung, H.K.N., White, L.: Insights into regression testing [software testing]. In: Proceedings
of the International Conference on Software Maintenance (ICSM’89), pp. 60–69 (1989)

15. Li, B., Zhou, Y., Wang, Y., Mo, J.: Matrix-based component dependence representation and its
applications in software quality assurance. ACM SIGPLAN Not. 40(11), 29–36 (2005)

16. Qu, B., Liu, Q., Lu, Y.: A framework for dynamic analysis dependency in component-
based system. In: 2nd International Conference on Computer Engineering and Technology
(ICCET’10), pp. 250–254 (2010)

17. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE Trans.
Softw. Eng. 22(8), 529–551 (1996)

18. Schieferdecker, I., Vassiliou-Gioles, T.: Realizing distributed TTCN-3 test systems with TCI.
In: Proceedings of the 15th IFIP International Conference on Testing of Communicating
Systems (TestCom’03) (2003)

19. Testing Technologies. TTthree - Compile TTCN-3 modules into test executables. http://www.
testingtech.com/products/ (2008)

20. Vassiliou, T., Rennoch, A., Desroches, C., Schieferdecker, I.: TTCN-3 Quick Reference Card
(2016)

http://www.testingtech.com/products/
http://www.testingtech.com/products/

Chapter 25
HCDSR: A Hierarchical Clustered Fault
Tolerant Routing Technique for
IoT-Based Smart Societies

Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri, and Ahmed Alzahrani

25.1 Introduction

Urban population has increased vastly in the recent years. The United Nations
Human Settlements Program (UN-Habitat) [41] has foreseen it to be 10 billion by
2050, which is two-thirds of the current population on earth. The cities will have
to deal with pressing issues such as public safety, efficient transportation, energy
consumption, environmental sustainability, and expense reduction. These pressing
issues have led to smart city paradigm which aims to plan and develop efficient
urban cities in future.

The past decade has witnessed the advancement of Internet of Things (IoT)
[37, 40] especially the sensing technology [25]. In addition to the widespread
development of sensors, improvement in big data computing infrastructure has
enabled the collection of huge amount of heterogeneous data produced daily by
urban spaces [11]. Urban spaces produce data related to temperature, weather, pol-
lution, traffic control, the mobility of people, and resource consumption (water and
electricity) which can be analyzed to improve the services provided and make the
environment greener. Smart cities rely on sensors, webcams, IoT systems, wireless
sensor networks, databases, ubiquitous devices, and many other frameworks that
collect, process, and take informed decisions based on the data [5]. A survey on
data fusion and IoT for smart ubiquitous environments can be seen in [6].

T. Muhammed (�) · A. Albeshri · A. Alzahrani
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: m.thaha.h@ieee.org; aaalbeshri@kau.edu.sa; asalzahrani@kau.edu.sa

R. Mehmood
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood@kau.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_25

609

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_25&domain=pdf
mailto:m.thaha.h@ieee.org
mailto:aaalbeshri@kau.edu.sa
mailto:asalzahrani@kau.edu.sa
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_25

610 T. Muhammed et al.

Wireless sensor networks (WSNs) are one of the atomic components of IoT.
Data acquisition for IoT applications requires wireless sensor network and is the
link between the real world and the digital world. WSNs play a major role in
building interconnected urban territories and are critical to smart cities. WSNs
consist of small low power sensor nodes that can sense, process, and wirelessly
communicate with each other. The sensors are devices with limited battery, storage,
size, and computational power. The sensors nodes sense data and forward it to
a base station known as sink for further processing of data by IoT systems.
Intelligent monitoring and management of smart cities are possible through IoT.
WSNs are used in a number of time-critical smart city applications such as
agriculture monitoring [43], intruder detection [19], disaster management, health
care, mobile object tracking, environment monitoring [19], intelligent transport
system (obstacle detection, collision warnings and avoidance, traffic monitoring)
[16, 42, 47], vehicular ad-hoc networks [35], energy monitoring in smart grids [38],
and home/office automation systems (HOS) [20].

Since WSNs are deployed in harsh and hostile conditions they are susceptible
to frequent errors. The occurrence of faults results in disruption of the network
or worse in the failure of the network. This might lead to human, economic,
environmental loss since the sensors are used in many safety critical applications.
Another source of a fault in WSN is the power [25]. Since the WSNs work
unattended in a hostile environment it is not feasible to replenish the batteries of
the sensors. Moreover, various hazard might cause the power to run out, which
results in a node failure. Data transmission consumes a major portion of energy
[46]. Hence prolonging energy in WSN becomes a critical and challenging issue
[1, 3, 9, 15, 32]. A detailed discussion on possible faults in wireless sensor networks
has been discussed in [39].

It is required that the data collected by the sensors on critical events should not
be of low quality [18, 21, 22] that might lead to important information loss, but
often random link failures occur that disrupt communication in the network. All
these issues point to the necessity of fault tolerance techniques that would provide
techniques to mask these faults and provide the expected services, in the presence of
faults. Major disadvantages of existing techniques are a high dissipation of energy,
large mean time to repair (MTTR), and the use of extra software and hardware
[44, 45].

Clustering has been used by the researchers to reduce the energy consumption
in WSN [4]. In a clustered WSN, the sensors are clustered into mutually exclusive
clusters. A sensor node is associated with a single cluster and each cluster has a
cluster head (CH) that aggregates the data from the nodes associated with it and
transmits it to the base station (sink). The transmission of a large amount of data
by the CHs leads to depletion of energy and consequently leads to the death of the
CH. To prevent this many researchers [28–30] have proposed using special gateways
with higher initial energy, but the use of special gateways is not feasible when the
network is deployed randomly in inaccessible locations. This also creates a problem
with clustering and reclustering when randomly deployed. Consequently, many
researchers have used techniques such as multipath routing, backbone scheduling,

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 611

and node scheduling. Researchers have also proposed various clustering techniques
to improve ad-hoc network performance, see, e.g., [7, 8, 33, 34, 36].

In this paper, we propose a new fault tolerant routing algorithm based on modified
dynamic source routing (DSR) on a clustered, hierarchical sensor network for IoT
applications. We use a vice cluster head that takes over the duties of the CH on
the failure of a CH. Moreover, we use multiple paths that have been prioritized and
sorted on the basis of a cost function that takes into consideration the total energy
in a path and the distance from the source to sink. Furthermore, we use energy
thresholds to decide the CHs that would participate in the routing process. One
of the major advantages of the technique is that the mean time to repair (MTTR)
for this technique is small. We simulate our algorithm and compare our algorithm
with DFTR [12], a distributed fault tolerant algorithm and LEACH (low-energy
adaptive clustering hierarchy) [25], a well-known routing algorithm. Metrics such
as the number of alive nodes, total energy consumption of the network, and total
packets transmitted to the sink are compared measured for all the three techniques.
Based on these metrics it was observed that HCDSR performs better than the other
techniques. This paper extends our earlier work [40]. The contributions to this work
can be summarized as follows:

– We present a survey of fault tolerant and energy-efficient routing techniques for
WSNs.

– We propose a new up-to-date taxonomy for fault tolerant strategies for WSNs.
– We provide a brief qualitative analysis and comparison of latest fault tolerant

strategies for WSNs.
– We propose a new energy-efficient fault tolerant routing strategy called hetero-

geneous modified dynamic source routing (HCDSR).
– We simulate the proposed technique.
– The results from the proposed technique are compared with two current tech-

niques, LEACH [25] and DFTR [12], demonstrating better performance.

The rest of the article is organized as follows. Section 25.2 discusses the proposed
taxonomy for fault tolerant techniques in WSN. In Sect. 25.3, we discuss the state-
of-the-art fault tolerant techniques for WSN. We also do a qualitative analysis of
FT techniques in WSN. In Sect. 25.4, we discuss the system model and Sect. 25.5
introduces our proposed FT routing technique. Section 25.6 presents the simulation
of the proposed technique. It also presents the comparison with techniques to
validate our proposed technique. Section 25.7 concludes the paper.

25.2 Taxonomy

Fault tolerance techniques in wireless sensor networks can be classified according to
two criteria, namely based on the phase at which the fault tolerant technique triggers
and based on the origin of faults in WSN. Based on these criteria fault detection

612 T. Muhammed et al.

Fault Tolerance Strategies in WSN

Proactive

Node

Energy

Clustering Scheduling

Backbone Cluster head

Data

Network

Path Connectivity
maintanence

Bridge Protection

Reactive

Node

Sleep

Network

Path

Multi-path Path
Recalculation

Backup
Paths

Connectivity
Restoration

Node
Relocation

Relay Node

Holistic

Fig. 25.1 Proposed taxonomy of fault tolerant techniques in WSN

techniques in WSN can be classified as (1) proactive and (2) reactive as shown in
Fig. 25.1.

25.2.1 Proactive Techniques

Proactive techniques in WSN proactively and sensibly use the existing resources of
the wireless sensor to extend the lifetime of the network or prevent the fault from
occurring. These techniques take preemptory action against potential faults. Based
on the origin of faults these techniques can be classified (1) node-based techniques,
(2) network-based techniques, and (3) holistic techniques.

Node-Based Techniques The node-based proactive techniques can be further
classified as (1) energy-based fault tolerance technique and (2) data fault tolerance.
Energy-based fault tolerance increases the mean time to failure and the lifetime
of the network. This strategy uses techniques such as clustering of sensor nodes,
hibernation of nodes, and scheduling nodes and backbone of the WSN. Proactive
data fault tolerant techniques help in recovering from data faults. One of the major
techniques of data fault tolerance is the dual transmission of the same value and
comparison of these data to detect the faults.

Network-Based Techniques It comprises of mainly two techniques, namely (1)
connectivity maintenance technique and (2) multipath routing. Connectivity main-
tenance techniques increase the lifetime of network using various algorithms. Bridge
protection algorithm is an example of connectivity maintenance algorithm that
increases the lifetime of WSNs comprising bridged nodes. Data is sent through
multiple paths to increase the redundancy and tolerate network fault in multipath
techniques.

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 613

25.2.2 Reactive Techniques

Reactive techniques trigger the fault tolerant strategy on the occurrence of the faults.
This strategy waits for the faults to occur and then adjusts or reacts to the fault by
starting the recovery process. These techniques can also be further classified based
on the origin of the faults as (1) node-based, (2) network-based, and (3) holistic-
based technique.

Node-Based Techniques Node-based reactive techniques are used to recover from
node failures. It consists of strategies like switching to the sleeping backup node on
the occurrence of node failure.

Network-Based Faults Network-based reactive techniques consist of using mul-
tiple paths, backup paths, and path recalculation in case of network/link failure.
Moreover, for restoring the connectivity, extra nodes are deployed or the existing
nodes are repositioned.

Holistic Techniques These are the techniques that can deal and recover from both
network- and node-based faults. They provide a complete fault tolerance for various
faults.

25.3 Previous Work

In this section we shall discuss the existing work related to WSN fault tolerance
techniques. In this section we shall discuss the current work related to WSN fault
tolerance techniques. Tables 25.1 and 25.2, respectively, give the advantages and
disadvantages of various fault tolerant techniques for WSNs that shall be discussed
in this section. Tables 25.3 and 25.4 give a comparison of some of the FT routing
techniques that shall be discussed ahead.

25.3.1 Proactive Techniques

Zhao et al. [49] propose a sleep scheduling technique, called virtual backbone
scheduling (VBS). In this technique, we form multiple backbones that overlap
with each other. Data is transmitted to the sink using only these backbones. The
nodes that are not part of the backbone do not participate in transmission to save
energy. The energy consumption of the nodes is balanced by rotating the backbones.
This results in a longer lifetime of the network. Selection of the backbones that
increases the network lifetime is an NP-hard problem and hence the authors
propose three techniques to solve this. These schemes are based on (1) schedule
transition graph (STG), (2) virtual scheduling graph (VSG), and (3) iterative local
replacement (ILR). The longest path in a schedule transition graph corresponds to

614 T. Muhammed et al.

Table 25.1 Comparison of advantages of various fault tolerant techniques in WSN

Protocol Taxonomy Advantages

VBS [49] Proactive – Energy-efficient routing

– Increases lifetime of network

BPA [27] Proactive – Reduction in message overhead

– Increases energy efficiency

– Balance the energy in the network

PASC_AR [17] Proactive – Increases network lifetime

DFTR [12] Proactive – Reduces energy consumption

– Increases gateway lifetime

MDSR [2] Reactive – Energy-efficient routing

– Fault tolerant routing

– Total throughput increases due to higher lifetime of the network

B3FT [23] Reactive – Energy efficient

– Energy balanced

– Cluster head tolerance

– Increases the time span of network (CH + nodes)

FT PSO [13] Reactive – Increases lifetime of network

– Energy balanced

FTEAM [26] Reactive – Increases lifetime of cluster heads

– Improves reliability

IFTF [24] Holistic – Holistic approach detects permanent node failures

– Monitors network quality

– Determines source and cause of the fault

Table 25.2 Comparison of disadvantages of various fault tolerant techniques in WSN

Protocol Disadvantages

VBS [49] – Node failures might require recalculating the backbones as nodes overlap
among backbones

BPA [27] – Trade-off between time and residual energy

PASC_AR [17] – Reduction of sensing accuracy due to the sleep mode of nodes

DFTR [12] – Fixed gateways not always suitable or plausible

– Clustering difficult when there is fixed gateways

MDSR [2] – Reduction in throughput of network for any given time period as all nodes
not involved in transmission

B3FT [23] – Use of extra hardware as gateways

FT PSO [13] – Does not handle fault tolerance if no gateway in range

FTEAM [26] – Trade-off between accuracy and lifetime

– Only reliable when rate of change of sensed value is very small inside the
cluster

IFTF [24] – Four percent increase in message overhead

– Does not consider the computation overhead

– Does not provide a specific technique for recovering from fault

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 615

Table 25.3 Comparison of fault tolerant routing techniques

Protocol Energy savings Phases Message reduction FT technique

MDSR [2] � 1 X Multiple routes stored

E3BFT [23] � 3 � Rejoin new cluster head

FT PSO [13] � 3 � Selection of alternate gateways

DFTR [12] � 3 � Selection of alternate gateways

Table 25.4 Comparison of clustering techniques used in selected fault tolerant routing schemes

Intra cluster

Protocol Clustering Clustering type routing Clustering technique

E3BFT [23] Yes Proactive Multi-hop Using residual energy, routing
overhead, and node-gateway
distance

MDSR [2] X NA NA NA

FT PSO [13] Yes Proactive Multi-hop Using special gateways

DFTR [12] Yes Reactive Multi-hop Using special gateways

the backbone that provides maximum network lifetime. STG models structure and
energy separately. In VSG, multiple virtual nodes are created from sensor nodes
in such a way that the energy of corresponding sensor nodes is represented by
their degrees. STG and VSG are both centralized techniques. ILR is a distributed
technique that uses local information for switching backbone. The switching is done
node by node iteratively and each node decides the next node to be switched by
analyzing the energy of neighboring nodes.

Khan et al. [27] propose a fault tolerant algorithm for bridge protection in WSNs.
The fragmentation of WSN due to the various events might result in the formation
of a bridge node, which maintains the network connectivity. Bridge nodes are nodes
whose removal results in communication failure between the fragments of WSN.
The authors propose a bridge protection algorithm with manifold goals. Primarily to
prevent the bridge node(s) from prematurely exhausting the energy and secondarily
for preventing the formation of new bridge nodes from its neighboring nodes and
to maintain the minimal functionality of the network with minimal interference.
The authors modify the functionalities at the bridge node, gate nodes (non-bridge
neighboring nodes of bridge node(s) on the side without sink), and fan-out nodes
(non-bridge neighboring nodes of bridge node(s) on the side with sink). Most
message reasoning is shifted from sink to gate nodes. Heartbeat messages will no
longer be sent by the nodes, instead the gate nodes will process and detect if a node
fails and send a message only on failure to save energy. Occlusion reasoning is
used to avoid obsolete and redundant messages being sent to sink to save energy.
To avoid creating load on fan-out nodes, the bridge node splits the traffic based on
round-robin scheduling. The fan-out nodes further split the traffic to avoid the traffic
coalescing at a single node to result in energy depletion. The routing alternatives
chosen by the fan-out and bridge nodes are selected using Delaunay triangulation of

616 T. Muhammed et al.

the nodes and further reducing it into relative neighboring graphs, which will further
diminish power consumption, extending the life of bridge nodes.

Boucetta et al. [17] propose an energy-efficient fault tolerant scheduling algo-
rithm, called power aware scheduling and clustering protocol with adaptive rede-
ployment (PASC_AR). In this technique, all nodes are considered to have the initial
same energy level and same capabilities. The network is partitioned into zones. All
sensor nodes which sense identical values are considered to be in the same zone.
The network is clustered geographically based on node location. Only one node
from each node will be active and this node will be assigned as the cluster head.
The cluster head creates a TDMA schedule that is used to select a new cluster head.
The cluster head is selected in rotation from the nodes in the zone based on this
schedule. The rest of the nodes are put to sleep. The nodes at the sink tend to fail
earlier due to higher traffic. To recover from this, the authors propose a cascading
movement of the redundant sensor nodes toward zones near the sink. PASC_AR
maintains network connectivity and coverage by preventing routing holes.

Azharuddin et al. [12] propose an energy saving and FT routing technique, called
DFTR that not only deals with energy utilization of cluster heads but also their
fault tolerance. The routing is done based on the following criteria: (1) gateway to
next hop gateway distance, (2) next-hop gateway to base station distance, and (3)
energy remaining at the next-hop gateway. In the cluster setup phase, the clusters
are formed and data is transmitted to the base station by the cluster heads. In
this technique, the cluster heads are classified into three categories: (1) forward
cluster head (ForwardCH), (2) backward cluster head (BackwardCH), and (3)
orphan cluster head (OrphanCH). ForwardCH (G) is a set of neighboring cluster
heads of the cluster head G closer to the base station. BackwardCH (G) is a set of
neighboring cluster heads of the cluster head G which are farther from base station
than G and ForwardCH in different routes. OrphanCHs are cluster heads that are
not included in ForwardCH and BackwardCH. If the next-hop faulty cluster head
is from ForwardCH, then a new next-hop gateway from ForwardCH is selected on
the basis of minimum cost. If the ForwardCH for a gateway is empty, then the new
next-hop gateway is selected from BackwardCH on the basis of minimum cost.
Moreover, if the gateway doesn’t have any ForwardCH and BackwardCH, then that
CH is said to be OrphanCH and a gateway that has BackwardCH can help out the
OrphanCH.

25.3.2 Reactive Techniques

Rana [2] proposes a modified dynamic source routing (DSR) algorithm offering
energy-efficient, fault tolerant routing. The major features of this technique are (1)
non-usage of nodes below certain energy threshold in the routing process, and (2)
two routes cached between source and destination. Initially in the route discovery
phase, the source node floods the network with route request packets (RREQ).
It appends to this packet, its energy level at time t . Only the nodes with energy

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 617

level above a threshold energy participate in the flooding process. Each node that
participates in this process appends its energy level to the RREQ packet. Multiple
packets traveling through multiple paths may reach the destination D. Two best paths
are selected based on the highest average energy of the paths. The destination waits
for a time period T , for the arrival of all possible packets before making the final
decision. Once the decision has been made the destination sends a route reply packet
(RREP) informing the source about the selected paths. In the case of failure in the
primary path, the secondary path is immediately used and the neighboring nodes
send route error message (RERR) to update the routing information.

Gupta et al. [23] propose an energy-efficient fault tolerant clustering algorithm,
named B3FT . In this technique, the authors discuss fault tolerance for cluster heads
without the redundant usage of cluster heads. Initially during the bootstrap process,
all the cluster heads broadcast a HELLO message which consists of the cluster
head ID, distance from base station, remaining energy, and distance from the base
station. Sensor nodes that receive this message are considered to be in the range
of the cluster head. All nodes that did not receive the HELLO packet broadcast
an REQ message. Nodes which receive the REQ packet reply with RES packet
that consists of its ID, distance from the base station, and the overhead of cluster
head it is the associated with. In the next phase, the sensors join various cluster
heads by considering the routing overhead, the distance between the nodes and the
gateways, and the remaining energy of relay nodes. If a sensor node couldn’t find a
cluster head, then the neighbor node with the higher remaining energy and minimal
overhead acts as a cluster head for that node. In the case of cluster head failure,
all sensor nodes associated with this node broadcast REQ message and wait for an
REP message. If a node receives REP message from cluster heads, then the node
will associate itself with cluster head that has minimum cost else it joins the node
with minimum cost.

Azharuddin et al. [13] propose a fault tolerant clustering- based routing algorithm
based on particle swarm optimization. This routing technique has two stages: (1)
network setup stage and (2) steady state. During the network setup phase, the base
station assigns ID to all the nodes and gateways. The nodes broadcast these IDs and
are assigned to gateways depending on the distance from the nodes. The gateways
send this local node information to base station, where the load (number of packets
received) of each gateway is calculated. This can be calculated as follows:

Pr(gi) =
{∑{Pr(gj) = gi, gj ∈ G} If NextHop(gj) = gi, ∀gj∈G

0 Otherwise
(25.1)

where Pr(gi) is the number of data packets received by each gateway gi per round.
Let ER, ET (gi, NextHop(gi)), and Eintraclstr be the energy utilization due to

receiving of data by the gateways, sending of a data packets to the next-hop gateway,
and energy utilization of a gateway gi due to various intra-cluster activity. The power
utilized by a gateway gi for a round can be calculated as follows:

618 T. Muhammed et al.

Econsump(gi) = Pr(gi) × ER + (Pr(gi) + 1)×
ET (gi, NextHop(gi)) + Eintraclstr

The lifetime of gi with remaining residual energy Er(gi) can be calculated as
follows: Lif etime(gi) = Er(gi)/Econsmp(gi). We maximize the lifetime of the
gateway with minimum lifetime by minimizing the routing load over the gateway.
This is achieved with the help of particle swarm optimization. In case of a gateway
failure during routing, the preceding gateway to the failed gateway broadcasts a
HELP message. The neighboring gateways respond and the gateway with maximum
lifetime toward the base station is selected as the new gateway. If no gateways
respond, then the gateway is assumed as dead.

Hezaveh et al. [26] propose a technique called fault tolerant and energy aware
mechanism (FTEAM). In this technique, we identify overlapped sensor nodes and
put the nodes with highest residual energies to sleep so they can be used as a cluster
head in case of cluster head failures. FTEAM consists of four phases: (1) cluster
formation, (2) error free, (3) cluster failure, and (4) error recovery phase. In the
initial phase, clusters are formed as nodes associate themselves with cluster heads
depending upon the distance. The cluster heads determine the overlapped nodes
with similarly sensed data and put the nodes with higher residual energy to sleep.
In the error free state, the nodes send sensed data to cluster heads, which aggregates
the data and sends it to the base station. During this state many nodes die and the
energy of the cluster heads gradually decline below a certain threshold. This results
in switching to error recovery phase wherein the sleeping nodes are awoken and
the 5% of nodes with the highest energy is chosen as new cluster heads. When all
sleeping nodes die later, the network fails.

25.3.3 Holistic Techniques

Dima et al. [24] propose an integrated fault tolerance framework (IFTF) which
holistically considers all the fault issues in WSNs. IFTF monitors the wireless sensor
network and can detect and diagnose application level faults, network layer faults,
and establish the root cause of the fault. To achieve this IFTF uses two services,
(1) a network level diagnosis sub-service for identifying network level faults such
as node and link failure and (2) an application testing sub-service for detecting
application anomalies. IFTF manager coordinates these two sub-services together
to deal with complex fault scenarios. Application testing sub-service is responsible
for ascertaining the adeptness of the system in accomplishing its functionalities.
It performs functional testing by comparing an input value with expected value.
The network diagnosis service monitors the energy levels of the nodes and the
connectivity of the nodes to their neighbors. It uses a two-phase detection algorithm
for detecting permanently faulty nodes.

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 619

25.4 Network and Radio Model

We consider a clustered WSN which consists of a single base station/sink and
multiple clusters of sensor nodes. The sensor nodes in each cluster are normal nodes
that are responsible for sensing and transmitting the data to their respective cluster
heads (CH). All the nodes and the cluster heads are considered to be homogeneous
with identical initial energy levels. The CHs are also normal nodes with the same
energy constraints as that of sensing nodes. The CHs receive the sensed data,
aggregate the data, and forward it to the base station. Direct data transmission occurs
if the base station is one hop away from the CH else the aggregated data is forwarded
to the CH closer to the base station. The nodes are deployed randomly as in smart
dust model. The sensor nodes and CHs are considered immobile. There is only a
single base station which is stationary and has an inexhaustible power supply. All
sensor nodes have equivalent bi-directional communication range. All the wireless
links are assumed to be symmetric so as to compute the distance between the nodes
based on the received signal strength [48]. CSMA/CA MAC protocol is used by the
CHs for communicating with base station [48]. For energy consumption analysis
we only consider the energy used due to transmission and receiving of data since
radio is the most power consuming parts as the consumption due to sensing and
computing is negligible.

In this technique we use a radio model that is used in [25]. The energy dissipated
ET due to the transmission of a message of size l-bit between two nodes separated
by a distance d is given by

ET (l, d) =
{

l(Eelec + εFS × d2) f or (d < d0)

l(Eelec + εMP × d4) f or (d > d0)
(25.2)

where d0 = √
εFS/εMP , Eelec is the electronic energy required by the circuit, εFS

and εMP are the transmit amplifier parameters that represent the energy required
by the amplifier in free space and multipath models, respectively. The energy
dissipation at the receiver sensor node for a message of size l-bit is given by

ER(l) = l × Eelec (25.3)

Moreover, the energy consumed for fusing l−bits can be given by

EF (l) = l × Edf (25.4)

where Edf is the energy incurred due to fusing of one bit data.

620 T. Muhammed et al.

25.5 Proposed Technique

The proposed technique has four phases: (1) setup phase, (2) route determination
phase, (3) data communication phase, and (4) fault recovery phase.

25.5.1 Network Setup

Initially the network will be in the setup phase and all the sensor nodes send a
HELLO message to the sink. The sink then assigns an ID to all sensor nodes.
During the setup phase, we use any of the standard clustering algorithm to cluster
the network and assign a cluster head to each cluster. The cluster head in each of
the cluster sends a HELLO message to all its nodes with specific power and based
on the strength of the signal received, it finds the nearest node to itself. The nearest
node to the cluster head in each cluster is assigned as the vice cluster head. The
sink then broadcasts a HELLO message using specific amount of power to all the
cluster heads. The sink calculates the distances to each sensor node using the radio
strength and this distance is sent back to the cluster head. The setup phase ends
and the communication phase starts wherein the nodes send their data to the cluster
heads and the cluster heads will fuse multiple identical values into a single value
[25]. After a certain amount of time the network switches back to the setup phase
so as to balance the energy of the nodes in the network. Subsequently, it enters
the communication phase and this process continues until the network encounters a
fault.

25.5.2 Route Discovery and Routing Algorithm

We develop our routing technique on top of the foregoing medium access control
(MAC) layer. The major steps in our routing technique are given below:

Step 1: Initially in the route determination phase, each cluster head broadcasts
an REQ packet similar to that of dynamic source routing (DSR). The REQ initially
consists of the source ID, destination ID, the energy of the each cluster head, and
the distance to the sink that was obtained during the bootstrap process.

Step 2: This REQ packet is flooded among other cluster heads, and each cluster
adds to the packet their respective ID, energy level, and the distance to the base
station.

Step 3: We define an energy threshold level. Any cluster head that has energy
level below this threshold will not participate in the flooding process.

Step 4: The broadcasted REQ packets reach the destination. For each cluster
head, the sink starts a timer on the arrival of the first REQ packet from that cluster
head. The sink will wait for more packets till timer expires. Once the timer expires

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 621

the sink will analyze and select the routes for each cluster head based on the
remaining energy level and the sum of distance of all cluster heads in the path to
the sink. Based on this the routes for each cluster head are prioritized and are given
priority numbers P1, P2,. . ., Pn.

Step 5: Thereafter, the sink sends an REP message to the cluster heads through
all the discovered routes for the cluster heads. The REP message consists of the ID
of the nodes that are in the path and the priority of that path.

Step 6: Once all REP messages reach the cluster heads they save the routes on
basis of their priority and the route with priority P1 will be used for sending data to
base station. The intermediate nodes between the source and destination also save
the routes.

Step 7: Once the routes are selected, the cluster heads pass the route information
to their respective vice cluster heads and the vice cluster head resume their sleep
state after storing this information.

The routing algorithm has been given in Algorithm 1.

25.5.3 Fault Tolerance

In this technique we only consider faults in routing especially disruption of route
due to failure of cluster heads. We can consider the following cases of failures:

Failure of the source cluster head. When the source cluster head fails, the vice
cluster head takes over the job of the cluster head. The routing table is already
present in the vice cluster head as explained before.

Failure of the intermediate cluster head. When the data from the source cluster
head is sent ahead and one of the intermediate cluster heads fails then the failed
cluster head sends an error message (ERR) to the preceding cluster head. The
preceding cluster head will switch its route from primary to secondary route and
the faulty cluster head will be replaced by the vice cluster head. If the secondary
route also fails, then it will use the tertiary route and so on. Since the routes have
been stored this will save us from recalculating the routes again.

Failure of vice cluster head. On the instance of vice cluster head failure, we go
back to the network setup phase, recluster the network, and determine new routes.
The fault tolerance algorithm has been given in Algorithm 2.

25.6 Simulation Results and Discussion

25.6.1 Experimental Setup

The proposed protocol was simulated using MATLAB R2015a on an Intel i5
machine with 2.40 GHz and 16 GB RAM running on Ubuntu 15.10. We deployed

622 T. Muhammed et al.

Algorithm 1 Proposed routing algorithm
Input: ∀CHk, Energyk, Distance to Sinkk

Output: All paths, f rom Source CHi to Sink

1: procedure CH–ROUTESELECTION

2: Nodei receives REQi packet from it NeighborNode(i)

3: if Nodei ! = sink then
4: if Energy(i) < Ethresh then
5: REQi ← REQi + (Idi , Energyi ,Disti)

6: Forward REQi to NeighborNodes(i)

7: else
8: Nodei does not broadcast
9: end if

10: else if Nodei is == Sink then
11: Start t imerj
12: while t imeri < T imethresh do
13: if REQ == REQi then
14: REQSet (i) ← REQSet (i) ∪ REQi

15: end if
16: end while
17: for each Request REQi ∈ REQSet (j) do
18: Cost (j, i) ← 0.3 × Dist (Source, Sink) + 0.7 × Energy(Source, Sink)

19: end for
20: for each row Cost (j, :) do
21: Sort Cost (j, :)
22: Set Priority in Descending Order in Cost (j, :)
23: end for
24: for each REQi in REQSet (j) do
25: REPi ← REPi + (Idi , P athi , P riorityi)

26: Forward REPi to Sourcei

27: end for
28: Node Ni creates routing table using REP messages.
29: end if
30: end procedure
31:
32: procedure CH–ROUTING

33: Use the Path with Priority = 1
34: end procedure

400 sensor nodes in a square area of size 300×300 square meters. The topology of
the simulated network is illustrated in Fig. 25.2. The sensor nodes were considered
to have a starting energy of 2 J. When the energy level of the node reached 0 J the
node was considered dead. We use Weibull reliability function [10] to model the
faults in the cluster heads in our network which is given by

R(t) = e
−
(

t−γ
η

)β

(25.5)

where γ is the location parameter, η is the scale parameter, and β is the shape
parameter. We set the values of γ = 0, β = 3, and η = 3000. If β is greater
than 1, then the rate of failure increases with time else if β is less than 1, then the
rate of failure decreases with time. Moreover, β = 0 the rate of failure is constant.

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 623

Algorithm 2 Fault tolerance algorithm
1: procedure CH–FAULTTOLERANCE

2: for i ∈ Priority do
3: if Path with Priority = i fails due to CH failure then
4: if Vice CH not used then
5: Awake Vice CH
6: Replace CH with Vice CH
7: Update routing Tables
8: end if
9: else

10: Use path with Priority = i + 1
11: end if
12: end for
13: end procedure

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Fig. 25.2 The simulated network topology

β is chosen as per the analysis provided in [31] where it is established that the
failure of cluster heads can be represented using a Weibull distribution with β = 3.
Furthermore, [12] uses β = 3 for gateway faults in WSN. The simulation parameters
used in the simulation are shown in Table 25.5. The parameters used are similar to
[25].

The proposed algorithm is compared with DFTR [12] and LEACH [14] in terms
of residual energy, number of packets received at sink, number of dead cluster heads,
and network lifetime. We discuss the results of the experiments in the following
sections.

624 T. Muhammed et al.

Table 25.5 The simulation
parameters

Simulation parameters

Network size 400

Number of clusters 300×300

Initial sensor node energy 2.0 J

Eelec 50 nJ/bit

EF 5 nJ/bit

Communication range 100 m

εFS 10 pJ/bit/m2

εMP 0.0013 pJ/bit/m4

d0 88 m

Packet size 4000 bits

Message size 200 bits

Ethresh 20%

Fig. 25.3 The number of
alive nodes per round in the
simulated network among
DFTR, LEACH, and HCDSR

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

25.6.2 Analysis of HCDSR

A wireless sensor network consisting of 120 nodes was simulated and clustered
initially into 20 clusters. These 120 nodes were deployed in a sensing field of size
300 × 300. The sink was placed at the center of the sensing field at the coordinates
(150,150). The simulated network is depicted in Fig. 25.2. The total number of alive
nodes is compared in Fig. 25.3. We can see that the total alive nodes after 5000
rounds for the proposed technique are more than the LEACH and DFTR. Nodes
are considered dead when their energy reaches 0 J or due to the simulation of faults
following the Weibull distribution. We can observe in our proposed technique that
initially there is a decrease in alive nodes that stabilize after a certain amount of
rounds.

The stability of alive nodes is due to the energy threshold that was applied which
resulted in many cluster heads with lower energy not to participate in the clustering,
whereas in LEACH protocol, we can observe that the rate of dead nodes increases
after a certain number of rounds. The DFTR protocol that does not provide an energy

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 625

threshold has the least amount of total energy in the network. This is because once
the cluster head dies in DFTR technique and nodes of clusters become orphan they
have to send it to a longer distance. Since DFTR uses special fixed gateways, a
failure in the cluster head means another normal node doesn’t take its place as a
replacement, unlike the proposed technique. Figure 25.4 shows the total energy in
the network per round for each of the technique. It is also similar to the previous
graph where the total energy at the end of 5000 rounds is highest in the proposed
technique. Hence, we can clearly say that the proposed technique increases the
overall lifetime of the network as compared to LEACH and DFTR.

The total number of packets that have been transmitted to the sink for 5000
rounds has been compared in Fig. 25.5. We can see that the proposed technique
transmits the maximum amount of packets. This is due to the presence of vice
cluster heads which replace the failed cluster heads unlike LEACH protocol or
DFTR protocol. A higher number of packets transmitted to the base station indicates
the longer life of gateways. We can see that the proposed algorithm performs better
than both DFTR and LEACH.

Fig. 25.4 Comparison of
total energy in the simulated
network per round among
DFTR, LEACH, and HCDSR

0 1000 2000 3000 4000 5000
Rounds

0

20

40

60

80

100

A
liv

e
N

od
es

Fig. 25.5 The total number
of data packets received at
sink per round among DFTR,
LEACH, and HCDSR

0 1000 2000 3000 4000 5000
Rounds

0

1

2

3

4

Pa
ck

et
s t

o
B

S

105

626 T. Muhammed et al.

25.7 Conclusions

In this article, we have proposed a reliable and resilient routing technique for
wireless sensor networks that forms the atomic component of IoT for smart city
applications. We have proposed a taxonomy for fault tolerant techniques in WSN.
Furthermore, we proposed a new fault tolerant routing algorithm for hierarchical
WSN networks based on modified DSR (dynamic source routing) and vice cluster
heads. Multiple routes are identified and these routes are prioritized on the basis of
residual energy in the path and the distance of the source from the sink. In addition,
the proposed technique uses vice cluster heads to tolerate faults during routing. We
have shown through simulation that the proposed technique is better than LEACH
and DFTR in terms of total energy in the network, the total number of packets
transmitted to the sink, and the number of alive nodes. Our future work will be based
on the mobility of the sensor nodes and the interaction with other IoT components.

Acknowledgements The authors acknowledge with thanks the technical and financial support
from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah,
Saudi Arabia, under the grant number G-651-611-38. The work carried out in this paper is
supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

1. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks.
Comput. Commun. 30(14–15), 2826–2841 (2007)

2. Ahmed, R.E.: A fault-tolerant, energy-efficient routing protocol for wireless sensor networks.
In: 2015 International Conference on Information and Communication Technology Research
(ICTRC), pp. 175–178 (2015)

3. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc
Netw. 3(3), 325–349 (2005)

4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Commun. Mag. 40(8), 102–114 (2002)

5. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for
smarter internet of things (IOT). Procedia Comput. Sci. 98(Suppl. C), 437–442 (2016). http://
www.sciencedirect.com/science/article/pii/S187705091632213X

6. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart
ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)

7. AlTurki, R., Mehmood, R.: Multimedia ad hoc networks: performance analysis. In: 2008
Second UKSIM European Symposium on Computer Modeling and Simulation, pp. 561–566
(2008)

8. Alturki, R., Mehmood, R.: Cross-layer multimedia QoS provisioning over Ad Hoc networks.
In: Using Cross-Layer Techniques for Communication Systems, pp. 460–499. IGI Global, Her-
shey (2012). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-
0960-0.ch019

9. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless
sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)

10. Antle, C.E., Bain, L.J.: Weibull distribution. In: Encyclopedia of Statistical Sciences, vol. 12,
pp. 7629–7634. Wiley, Hoboken (2004)

http://www.sciencedirect.com/science/article/pii/S187705091632213X
http://www.sciencedirect.com/science/article/pii/S187705091632213X
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0960-0.ch019
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0960-0.ch019

25 HCDSR: A Fault Tolerant Routing Technique for IoT-Based Smart Societies 627

11. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani,
A.: Enabling smarter societies through mobile big data fogs and clouds. Proce-
dia Comput. Sci. 109, 1128–1133 (2017). http://www.sciencedirect.com/science/article/pii/
S1877050917311213

12. Azharuddin, M., Jana, P.K.: A distributed algorithm for energy efficient and fault tolerant
routing in wireless sensor networks. Wirel. Netw. 21(1), 251–267 (2015)

13. Azharuddin, M., Jana, P.K.: A PSO Based Fault Tolerant Routing Algorithm for Wireless
Sensor Networks, pp. 329–336. Springer, New Delhi (2015)

14. Balakrishnan, H., Heinzelman, W.R., Chandrakasan, A.: Energy-efficient communication
protocol for wireless microsensor networks. In: 2014 47th Hawaii International Conference
on System Sciences, vol. 08, 8020 (2000)

15. Bogliolo, A., Lattanzi, E., Acquaviva, A.: Energetic sustainability of environmentally powered
wireless sensor networks. In: Proceedings of the 3rd ACM International Workshop on
Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks, PE-WASUN
’06, pp. 149–152. ACM, New York (2006)

16. Bottero, M., Chiara, B.D., Deflorio, F.: Wireless sensor networks for traffic monitoring in a
logistic centre. Transp. Res. C Emerg. Technol. 26, 99–124 (2013)

17. Boucetta, C., Idoudi, H., Saidane, L.A.: Adaptive scheduling with fault tolerance for wireless
sensor networks. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, pp. 1–
5. IEEE, Piscataway (2015)

18. Calero, C., Caro, A., Piattini, M.: An applicable data quality model for web portal data
consumers. World Wide Web 11(4), 465–484 (2008)

19. Casey, K., Lim, A., Dozier, G.: A sensor network architecture for tsunami detection and
response. Int. J. Distrib. Sens. Netw. 4(1), 27–42 (2008)

20. Cetinkaya, O., Akan, O.B.: Use of wireless sensor networks in smart homes. In: Emerging
Communication Technologies Based on Wireless Sensor Networks: Current Research and
Future Applications, pp. 233–258 (2016)

21. Gelenbe, E., Ngai, E.: Adaptive random re-routing for differentiated QOS in sensor networks.
Comput. J. 53(7), 1052–1061 (2010)

22. Gillies, D., Thornley, D., Bisdikian, C.: Probabilistic approaches to estimating the quality of
information in military sensor networks. Comput. J. 53(5), 493–502 (2010)

23. Gupta, S.K., Kuila, P., Jana, P.K.: E3bft: energy efficient and energy balanced fault tolerance
clustering in wireless sensor networks. In: 2014 International Conference on Contemporary
Computing and Informatics (IC3I), pp. 714–719 (2014)

24. Hamdan, D., Aktouf, O.E.K., Parissis, I., El Hassan, B., Hijazi, A.: Integrated fault tolerance
framework for wireless sensor networks. In: 2012 19th International Conference on Telecom-
munications (ICT), pp. 1–6. IEEE, Piscataway (2012)

25. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol
architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670
(2002)

26. Hezaveh, M., Shirmohammdi, Z., Rohbani, N., Miremadi, S.G.: A fault-tolerant and energy-
aware mechanism for cluster-based routing algorithm of WSNs. In: 2015 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pp. 659–664 (2015)

27. Khan, S.A., Bölöni, L., Turgut, D.: Bridge protection algorithms a technique for fault-tolerance
in sensor networks. Ad Hoc Networks 24, 186–199 (2015)

28. Kimençe, Ş., Bekmezci, İ.: Weighted relay node placement for wireless sensor network
connectivity. Wirel. Netw 20(4), 553–562 (2014)

29. Kuila, P., Jana, P.K.: Improved load balanced clustering algorithm for wireless sensor networks.
In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds.) Proceedings
of the 2011 International Conference on Advanced Computing, Networking and Security,
ADCONS’11, pp. 399–404. Springer, Berlin (2012)

30. Kuila, P., Jana, P.K.: Approximation schemes for load balanced clustering in wireless sensor
networks. J. Supercomput. 68(1), 87–105 (2014)

http://www.sciencedirect.com/science/article/pii/S1877050917311213
http://www.sciencedirect.com/science/article/pii/S1877050917311213

628 T. Muhammed et al.

31. Lee, J.J., Krishnamachari, B., Kuo, C.C.J.: Aging analysis in large-scale wireless sensor
networks. Ad Hoc Netw. 6(7), 1117–1133 (2008)

32. Li, Y., Xiao, G., Singh, G., Gupta, R.: Algorithms for finding best locations of cluster heads for
minimizing energy consumption in wireless sensor networks. Wirel. Netw. 19(7), 1755–1768
(2013)

33. Mehmood, R., Alturki, R.: A scalable multimedia QoS architecture for ad hoc networks.
Multimed. Tools Appl. 54(3), 551–568 (2011). https://doi.org/10.1007/s11042-010-0569-0

34. Mehmood, R., Alturki, R.: Video QoS analysis over Wi-Fi networks. In: Advanced Video
Communications over Wireless Networks, pp. 439–480. CRC Press, Boca Raton (2013)

35. Mehmood, R., Nekovee, M.: Vehicular ad hoc and grid networks: discussion, design and
evaluation. In: Proceedings of the 14th World Congress on Intelligent Transport Systems (ITS),
Beijing (2007)

36. Mehmood, R., Alturki, R., Faisal, M.: A scalable provisioning and routing scheme for
multimedia QoS over ad hoc networks. In: Mauthe, A., Zeadally, S., Cerqueira, E., Curado,
M. (eds.) Future Multimedia Networking, pp. 131–142. Springer, Berlin (2009)

37. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: Utilearn:
A personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5,
2615–2635 (2017)

38. Morello, R., Mukhopadhyay, S.C., Liu, Z., Slomovitz, D., Samantaray, S.R.: Advances on
sensing technologies for smart cities and power grids: a review. IEEE Sens. J. PP(99), 1–1
(2017)

39. Muhammed, T., Shaikh, R.A.: An analysis of fault detection strategies in wireless sensor
networks. J. Netw. Comput. Appl. 78(Suppl. C), 267–287 (2017). http://www.sciencedirect.
com/science/article/pii/S1084804516302545

40. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IOT based smart
city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies,
Infrastructure, Technologies and Applications, pp. 169–184. Springer, Cham (2018)

41. Nations, U.: Global Urban Observatory (GUO) UN-Habitat, https://unhabitat.org/urban-
knowledge/guo/

42. Nikam, S.S., Mane, P.B.: Swarm Intelligent WSN for Smart City, pp. 691–700. Springer,
Singapore (2017)

43. Pantazis, N., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless
sensor networks: a survey. IEEE Commun. Surv. Tutorials 15(2), 551–591 (2013)

44. Ramanathan, N., Kohler, E., Girod, L., Estrin, D.: Sympathy: a debugging system for
sensor networks [wireless networks]. In: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, pp. 554–555. IEEE Computer Society, Washington,
DC (2004)

45. Ringwald, M., Römer, K., Vitaletti, A.: Snif: sensor network inspection framework. Tech.
Rep. 535, Department of Computer Science, ETH Zurich, Zurich (2006)

46. Shnayder, V., Hempstead, M., Chen, B.R., Allen, G.W., Welsh, M.: Simulating the power con-
sumption of large-scale sensor network applications. In: Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, SenSys ’04, pp. 188–200. ACM, New
York (2004)

47. Wang, R., Zhang, L., Sun, R., Gong, J., Cui, L.: Easitia: a pervasive traffic information
acquisition system based on wireless sensor networks. IEEE Trans. Intell. Transp. Syst. 12(2),
615–621 (2011)

48. Xu, J., Liu, W., Lang, F., Zhang, Y., Wang, C.: Distance measurement model based on RSSI in
WSN. Wirel. Sens. Netw. 02(08), 6 (2010)

49. Zhao, Y., Wu, J., Li, F., Lu, S.: On maximizing the lifetime of wireless sensor networks using
virtual backbone scheduling. IEEE Trans. Parallel Distrib. Syst. 23(8), 1528–1535 (2012)

https://doi.org/10.1007/s11042-010-0569-0
http://www.sciencedirect.com/science/article/pii/S1084804516302545
http://www.sciencedirect.com/science/article/pii/S1084804516302545
https://unhabitat.org/urban-knowledge/guo/
https://unhabitat.org/urban-knowledge/guo/

Chapter 26
Security Testing of Internet of Things for
Smart City Applications: A Formal
Approach

Moez Krichen, Mariam Lahami, Omar Cheikhrouhou, Roobaea Alroobaea,
and Afef Jmal Maâlej

26.1 Introduction

Internet of Things (IoT) is a promising technology that permits to connect everyday
things or objects to the Internet by giving them the capabilities to sense the
environment and interact with other objects and/or human beings through the
Internet. This evolving technology has promoted a new generation of innovative and
valuable services. Today cities are getting smarter by deploying intelligent systems
for traffic control, water management, energy management, public transport, street
lighting, etc., thanks to these services. Nevertheless, these services can easily be
compromised and attacked by malicious parties in the absence of proper mechanism
for providing adequate security.

Recent studies have shown that the attackers are using smart home appliances to
launch serious attacks such as infiltrating to the network or sending malicious email
or launching malicious actions such as distributed denial of service (DDoS) attack.
Therefore, security solutions need to be proposed, set up, and tested to mitigate
these identified attacks.

M. Krichen (�)
Faculty of CSIT, Al-Baha University, Al Baha, Saudi Arabia

ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: moez.krichen@redcad.org

M. Lahami · A. J. Maâlej
ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: mariam.lahami@redcad.org; afef.jmal@redcad.org

O. Cheikhrouhou · R. Alroobaea
Taif University, Taif, Saudi Arabia
e-mail: o.cheikhrouhou@tu.edu.sa; r.robai@tu.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_26

629

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_26&domain=pdf
mailto:moez.krichen@redcad.org
mailto:mariam.lahami@redcad.org
mailto:afef.jmal@redcad.org
mailto:o.cheikhrouhou@tu.edu.sa
mailto:r.robai@tu.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_26

630 M. Krichen et al.

In this work, we aim to adopt a model-based security testing (MBST) approach
to check the security of IoT applications in the context of smart cities. The MBST
approach consists in specifying the desired IoT application in an abstract manner
using an adequate formal specification language and then deriving test suites from
this specification to find security vulnerabilities in the application under test in a
systematic manner.

The work introduced here is an extension of a previous work [19] and it is a piece
of a broader approach dealing with the security of IoT applications for smart cities
and consisting of the following steps:

– Identify and assess the threats and the attacks in smart cities IoT applications.
– Design and develop security mechanisms for standard protocols at the applica-

tion and the network layer.
– Evaluate the performance and the correctness of the proposed security protocols

using simulation and implementation on real devices.

The rest of this paper is organized as follows. Section 26.2 introduces some
preliminaries about IoT and smart cities. Section 26.3 defines the model of extended
timed automata. Section 26.4 presents our conformance testing framework. Sec-
tion 26.5 presents an overview about our proposed approach. Section 26.6 reports
on related research efforts dealing with IoT security testing. Finally Sect. 26.7
concludes the paper.

26.2 Preliminaries

26.2.1 Internet of Objects

Recent advances in communication and sensing devices make our everyday objects
smarter. This smartness is resulted from the capability of objects to sense the
environment, to process the captured (sensed) data, and to communicate it to users
either directly or through the Internet. Taking an example of the object “lamp,” a
classical lamp needs to be wired, linked to the electricity in order to produce light
and it does not handle more than the on and off states. This lamp becomes smarter
if it is equipped with sensors that can detect environment luminosity and adjust
its brightness automatically based on the sensed value. Moreover, this lamp can be
equipped with a communication system and therefore can be remotely controlled
and supervised (e.g., energy consumption). This example can be generalized to any
other thing (object) and therefore leading to the Internet of Things (IoT) concept.
The IoT refers to the ability of everyday objects to connect to the Internet and to send
and receive data. The integration of these smart objects to the Internet infrastructure
is promoting a new generation of innovative and valuable services for people. These
services include home automation, traffic control, public transportation, smart water

26 Security Testing of Internet of Things for Smart City Applications 631

metering, waste and energy management, etc. When integrated in a city context, they
make citizens live better and so form the modern smart city.

26.2.2 Smart Cities

In the recent years, several research works are shaping the smart cities concept
[4, 34]. In October 2015, ITU-T’s Focus Group on Smart Sustainable Cities (FG-
SSC)1 agreed on the following definition of a smart sustainable city: A smart
sustainable city (SSC) is an innovative city that uses information and communi-
cation technologies (ICTs) and other means to improve quality of life, efficiency
of urban operation and services, and competitiveness, while ensuring that it meets
the needs of present and future generations with respect to economic, social,
and environmental aspects. Based on this definition, the main goal for SSC is to
enhance the quality of life of its citizens across multiple, interrelated dimensions,
including (but not limited to) the provision and access to water resources, energy,
transportation and mobility, education, environment, waste management, housing,
and livelihoods (e.g., jobs), utilizing ICTs as the key medium. Therefore, the IoT as
a promising ICT technology will play a major role in the development of these new
smart cities. With IoT, objects like phones, cars, household appliances, or clothes
become wirelessly connected and can sense and share data.

26.2.3 Threats

Indeed, connecting our everyday things to the public Internet opens these objects
to several kinds of attacks. Take the example of a traffic control system. If the
hackers could insert fake messages to these traffic control system devices, they
can make traffic perturbations and bottlenecks. Another example related to home
automation, if attackers gain access to smart devices such as lamps and doors, it
could manipulate doors and steal the house properties. The main security threats in
the IoT are summarized in [8] as follows:

– Cloning of smart things by untrusted manufacturers;
– Malicious substitution of smart things during installation;
– Firmware replacement attack;
– Extraction of security parameters since smart things may be physically unpro-

tected;
– Eavesdropping attack if the communication channel is not adequately protected;
– Man-in-the-middle attack during key exchange;

1https://www.itu.int/en/ITU-T/focusgroups/ssc.

https://www.itu.int/en/ITU-T/focusgroups/ssc

632 M. Krichen et al.

– Routing attacks;
– Denial-of-service attacks; and
– Privacy threats.

Therefore, a key challenge for IoT towards smart city applications is ensuring
its reliability, security, and privacy, which represent the main scope of this work.
Without guarantees that smart city IoT objects are: (1) sensing correctly the
environment, (2) exchanging the information securely, (3) safeguarding private
information, and (4) providing correct and not manipulated information, users are
reluctant to adopt this new technology that will be a part of their everyday lives.

26.2.4 Challenges

Due to its specific characteristic, new issues are raised in the area of IoT. Trust
management, which plays an important role in the IoT for reliable data fusion,
qualified services, and enhanced user privacy and information security, is one of
these main issues. Indeed, data collection trust is a crucial issue in the IoT. If the
huge collected data is not trusted (e.g., due to the damage or malicious input of
some sensors), the IoT service quality will be greatly influenced and hard to be
accepted by users even though the network layer trust and the application layer
trust can be fully provided [36]. On the other hand, in order to have intelligent
context-aware services, users should disclose or have to share their personal data
or privacy such as location, preferences, and contacts. Providing intelligent context-
aware and personalized services and at the same time preserving user privacy are
two conflicting objectives that induce a big challenges in the IoT. Another challenge
faced when designing security solutions to the IoT is the limited resources of the IoT
devices. Indeed, most of IoT devices are limited in terms of CPU, memory capacity,
and battery supply. They often operate on lossy and low bandwidth communication
channels. This renders the application of the conventional Internet security solutions
not appropriate. As an example, the use of small packets (i.e., IEEE 802.15.4
supports only 127-bytes packets) may result in fragmentation of larger packets when
using the standard protocols. This will quickly exhaust the lifetime of IoT devices
and open new possibilities for DoS attacks [25]. Moreover, the limited resources of
IoT devices render the use of complex cryptographic protocols inadequate. Finally,
the inherent complexity of the IoT, where multiple heterogeneous entities located in
different contexts can exchange information with each other, further complicates
the design and the deployment of efficient, interoperable, and scalable security
mechanisms [28]. The proposed security solutions should fulfill the following
security requirements [26].

– Data confidentiality: make information inaccessible to unauthorized users. For
example, a 6LoWPAN node should not leak some of its collected data to
neighboring networks.

26 Security Testing of Internet of Things for Smart City Applications 633

– Data authentication: since an adversary can easily inject messages, the receiver
needs to ensure that data are originated from trusted sources.

– Data integrity: ensures that an adversary does not alter the received data in transit.
– Availability: ensures the survivability of network services to (only) authorized

parties when needed, despite a DoS attack(s).
– Energy efficiency: a security scheme must be energy efficient so as to maximize

the network lifetime.

26.3 Extended Timed Automata

We extend the framework presented in [18].

26.3.1 Timed Labeled Transition Systems

Let R be the set of non-negative reals, Q the set of non-negative rationals, and N the
set of non-negative integers. Given a finite set of actions Ac, the set (Ac ∪ R)∗ of
all finite-length real-time sequences over Ac will be denoted RT(Ac). ε ∈ RT(Ac)
is the empty sequence. Given Ac′ ⊆ Ac and ρ ∈ RT(Ac), PAc′(ρ) denotes the
projection of ρ to Ac′ ∪R, obtained by “erasing” from ρ all actions not in Ac′ ∪R.
Similarly, DPAc′(ρ) denotes the (discrete) projection of ρ to Ac′. For example, if
Ac = {a, b}, Ac′ = {a} and ρ = a 1 b 2 a 3, then PAc′(ρ) = a 3 a 3 and DPAc′(ρ) =
a a. The time spent in a sequence ρ, denoted duration(ρ), is the sum of all delays
in ρ, for example, duration(ε) = 0 and duration(a 1 b 0.5) = 1.5. In the rest of the
document, we assume given a set of actions Ac, partitioned in two disjoint sets: a set
of input actions Acin and a set of output actions Acout. Actions in Acin ∪ Acout are
called observable actions. We also assume there is an unobservable action τ
∈ Ac.
Let Acτ = Ac ∪ {τ }. A timed labeled transition system (TLTS) over Ac is a tuple
(S, s0,Ac, Td, Tt), where:

– S is a set of states;
– s0 is the initial state; Td is a set of discrete transitions of the form (s, a, s′) where

s, s′ ∈ S and a ∈ Ac;
– Tt is a set of timed transitions of the form (s, t, s′) where s, s′ ∈ S and t ∈ R.

Timed transitions must be deterministic, that is, (s, t, s′) ∈ Tt and (s, t, s′′) ∈ Tt

implies s′ = s′′. Tt must also satisfy the following conditions: (s, t, s′) ∈ Tt and
(s′, t ′, s′′) ∈ Tt implies (s, t + t ′, s′′) ∈ Tt ; (s, t, s′) ∈ Tt implies that for all t ′ < t ,
there is some (s, t ′, s′′) ∈ Tt .

We use standard notation concerning TLTS. For s, s′, si ∈ S, μ,μi ∈ Acτ ∪ R,
a, ai ∈ Ac ∪ R, ρ ∈ RT(Acτ) and σ ∈ RT(Ac), we have

634 M. Krichen et al.

• General transitions:

– s
μ→ s′ Def= (s, μ, s′) ∈ Td ∪ Tt ; s

μ→ Def= ∃s′ : s
μ→ s′;

– s
 μ→ Def=
 ∃s′ : s
μ→ s′;

– s
μ1···μn−→ s′ Def= ∃s1, · · · , sn : s = s1

μ1→ s2
μ2→ · · · μn→ sn = s′;

– s
ρ→ Def= ∃s′ : s

ρ→ s′;
– s
 ρ→ Def=
 ∃s′ : s

ρ→ s′.

• Observable transitions:

– s
ε⇒ s′ Def= s = s′ or s

τ ···τ−→ s′;
– s

a⇒ s′ Def= ∃s1, s2 : s
ε⇒ s1

a→ s2
ε⇒ s′;

– s
 a⇒ Def=
 ∃s′ : s
a⇒ s′; s

a1···an=⇒ s′ Def= ∃s1, · · · , sn : s = s1
a1⇒ s2

a2⇒ · · · an⇒
sn = s′;

– s
σ⇒ Def= ∃s′ : s

σ⇒ s′;
– s
 σ⇒ Def=
 ∃s′ : s

σ⇒ s′.

A sequence of the form s0
μ1→ s

μ2→ · · · μn→ s′ is called a run and a sequence of
the form s0

a1⇒ s
a2⇒ · · · an⇒ s′ an observable run.

26.3.2 Extended Timed Automata

We use timed automata [2] with deadlines to model urgency [18]. An extended timed
automaton over Ac is a tuple A = (Q, q0, X, I,Ac,E), where:

– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– X is a finite set of clocks;
– I is a finite set of integer variables;
– E is a finite set of edges.

Each edge is a tuple (q, q ′, ψ, r, inc, dec, d, a), where:

– q, q ′ ∈ Q are the source and destination locations;
– ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X ∪ I, c

is an integer constant and # ∈ {<,≤,=,≥,>};
– r ⊆ X ∪ I is a set of clocks and integer variables to reset to zero;
– inc ⊆ I is a set of integer variables (disjoint from r) to increment by one;
– dec ⊆ I is a set of integer variables (disjoint from r and inc) to decrement by one;
– d ∈ {lazy,delayable,eager} is the deadline;
– a ∈ Ac is the action.

26 Security Testing of Internet of Things for Smart City Applications 635

Fig. 26.1 An example of an
extended timed automaton

An example of an extended timed automaton A = (Q, q0, X, I,Ac,E) over the
set of actions Ac = {a, b, c, d} is given in Fig. 26.1 where:

– Q = {q0, q1, q2, q3} is the set of locations;
– q0 is the initial location;
– X = {x} is the finite set of clocks;
– I = {i} is the finite set of integer variables;
– E is the set of edges drawn in the figure.

The figure uses the following notation:

– “x := 0” means resetting the clock x to 0;
– “i := 0” means resetting the integer variable i to 0;
– “i + +” means incrementing i by 1;
– “i − −” means decrementing i by 1.

26.3.3 Semantics of Extended Timed Automata

An extended timed automaton A = (Q, q0, X, I,Ac,E) defines an infinite TLTS
which is denoted LA = (SA, sA

0 ,Ac, T A
d , T A

t).

• Its states SA are tuples s = (q, vX, vI), where:

– q ∈ Q;
– vX : X → R is a clock valuation;
– and vI : I → N is a integer variable valuation.

636 M. Krichen et al.

• sA
0 = (q0, 0X, 0I) is the initial state, where:

– 0X is the valuation assigning 0 to every clock of A;
– 0I is the valuation assigning 0 to every integer variable of A.

• Discrete transitions are of the form (q, vX, vI)
a→ (q ′, v′

X, v′
I) where a ∈ Ac

and there is an edge (q, q ′, ψ, r, inc, dec, d, a) such that (vX, vI) satisfies ψ and
(v′

X, v′
I) is obtained by:

– resetting to zero all clocks and integer variables in r;
– incrementing integer variables in inc by one;
– decrementing variables in dec by one;
– leaving all other variables unchanged.

• Timed transitions are of the form (q, vX, vI)
t→ (q, vX+t, vI) where t ∈ R, t > 0

and there is no edge (q, q ′′, ψ, r, inc, dec, d, a) such that:

– either d = delayable and there exist 0 ≤ t1 < t2 ≤ t such that (vX +t1, vI) |=
ψ and (vX + t2, vI)
|= ψ ;

– or d = eager and (vX, vI) |= ψ .

Lazy edges do not impact the semantics. They denote that an edge is neither
delayable nor eager. More precisely, lazy edges cannot block time progress, whereas
delayable and eager edges can. We do not allow delayable edges with guards of the
form x < c since there is no latest time when the guard is still true. Similarly, we
do not allow eager edges with guards of the form x > c since there is no earliest
time when the guard becomes true.

A state s ∈ SA is reachable if there exists ρ ∈ RT(Ac) such that sA
0

ρ→ s. The
set of reachable states of A is denoted Reach(A).

For instance, for the TA presented in Fig. 26.1, the initial state is (q0, 0, 0).

A possible timed transition of the system is (q0, 0, 0)
5→ (q0, 5, 0) which

corresponds to the fact that the system spends 5 time units at node q0. A possible

discrete transition is (q0, 5, 0)
a→ (q1, 0, 0) which corresponds to the execution of

action a and results in the reset of clock x to 0. Another possible discrete transition

is (q1, 0, 0)
b→ (q0, 0, 1) by which the integer variable i is incremented for the

first time. The time constraint x ≤ 1 means that the execution of b must happen
at most 1 time unit after the execution of a. The deadline delayable associated
with this constraint means that time is blocked after one time unit and that it is
compulsory to execute action b before that limit. It is not difficult to see that action
b needs to be executed at least 5 times (resp., 10 times) in order to execute action c

(resp., d).

26 Security Testing of Internet of Things for Smart City Applications 637

26.3.4 Extended Timed Automata with Inputs and Outputs

An extended timed automaton with inputs and outputs (ETAIO) is an extended timed
automaton over the partitioned set of actions Acτ = Acin ∪Acout ∪ {τ }. For clarity,
we will explicitly include inputs and outputs in the definition of an ETAIO A and
write (Q, q0, X, I,Acin,Acout,E) instead of (Q, q0, X, I,Acτ ,E).

– An ETAIO is called observable if none of its edges is labeled by τ .
– Given a set of inputs Ac′ ⊆ Acin, an ETAIO A is called input-enabled with

respect to Ac′ if it can accept any input in Ac′ at any state:

∀s ∈ Reach(A) .∀a ∈ Ac′ : s
a→ .

It is simply said to be input-enabled when Ac′ = Acin.
– A is called lazy-input with respect to Ac′ if the deadlines on all the transitions

labeled with input actions in Ac′ are lazy. It is called lazy-input if it is lazy-
input with respect to Acin. Note that input-enabled does not imply lazy-input in
general.

– A is called deterministic if:

∀s, s′, s′′ ∈ Reach(A) .∀a ∈ Acτ : s
a→ s′ ∧ s

a→ s′′ ⇒ s′ = s′′.

– A is called non-blocking if:

∀s ∈ Reach(A) .∀t ∈ R . ∃ρ ∈ RT(Acout ∪ {τ }) : duration(ρ) = t ∧ s
ρ→ .

This condition guarantees that A will not block time in any environment.

The set of timed traces of an ETAIO A is defined to be

TTr(A) = {ρ | ρ ∈ RT(Acτ) ∧ sA
0

ρ→}.

The set of observable timed traces of A is defined to be

OTTr(A) = {PAc(ρ) | ρ ∈ RT(Acτ) ∧ sA
0

ρ→}.

The TLTS defined by an ETAIO is called a timed input–output LTS (TIOLTS).
From now on, unless otherwise stated, all the considered ETAIO are defined
with respect to the same sets Acin and Acout and unobservable action τ . As
for ETAIO, a given TIOLTS L is denoted (S, s0,Acin,Acout, Td, Tt) instead of
(S, s0,Acτ , Td, Tt). The two operators TTr(·) and OTTr(·) are extended in a natural
way to the case of TIOLTS.

638 M. Krichen et al.

26.3.5 Parallel Composition of ETAIO with Shared Integer
Variables

The parallel composition we propose here is similar to the parallel composition for
classical timed automata. The new thing here is that we consider shared variables
between the different elements to compose. The shared variables can be incremented
and decremented by any participant in the composition. These variables are used to
formulate the constraints of the different automata. In this way the behaviors of the
different components of the system are related to each other and depend on each
other. For instance, the shared variables may represent the shared resources of the
system.

Let n be a non-negative integer such that n ≥ 2. We consider n ETAIO (Ai)1≤i≤n

where Ai = (Qi, qi
0, X

i, I,Aci
in,Ac

i
out,E

i). That is the set of integer variables I is
shared between all the considered ETAIO (Ai)1≤i≤n while no other element from
Qi , Xi , Aci

in, and Aci
out is shared with the other ETAIO (Aj)j
=i .

The TIOLTS LP = (SP , sP
0 ,AcP

in,Ac
P
out, T

P
d , T P

t) generated by the parallel
product of the ETAIO (Ai)1≤i≤n is defined as follows:

– sP
0 = ((q1

0 , · · · , qn
0), (0X0 , · · · , 0Xn), 0I);

– AcP
in =⋃1≤i≤n Ac

i
in, Ac

P
out =⋃1≤i≤n Ac

i
out;

– and SP , T P
d , and T P

t are the smallest sets such that

– sP
0 ∈ SP ;

– For sP =((q1, · · ·, qn), (vX0 , · · ·, vXn), vI) ∈ SP and δ ∈ R:

∀1 ≤ i ≤ n : (qi, vXi , vI)
δ→ (qi, vXi + δ, vI) ∈ T i

t

⇒ s′P = ((q1, · · · , qn), (vX0+δ, · · · , vXn+δ), vI) ∈ SP and sP δ→ s′P ∈ Tt .

– For sP = ((q1, · · · , qn), (vX0 , · · · , vXn), vI) ∈ SP , 1 ≤ i ≤ n and ai ∈
Acτ

i = Aci
in ∪ Aci

out ∪ {τ }):

(qi, vXi , vI)
ai→ (q ′

i , v
′
Xi , v

′
I) ∈ T i

d

⇒ s′P = (q ′p, v
′p
X , v′

I) ∈ SP ∧ sP ai→ s′P ∈ Td

where

q ′p = (q1, · · · , qi−1, q ′i , qi+1, · · · , qn)

and

v
′p
X = (vX0 , · · · , vXi−1 , v

′
Xi , vXi+1 · · · , vXn).

26 Security Testing of Internet of Things for Smart City Applications 639

It is worth noticing here that it is possible to define the parallel composition of
n copies (Ai)1≤i≤n of the same ETAIO A. In this case we assume it is possible to
distinguish the sets of inputs and outputs of the different instances by a particular
identifier corresponding to each instance. Obviously, the n instances share the set of
integer variables of the ETAIO A. The obtained TIOLTS is denoted LP

n .

26.4 Conformance Testing Framework

In this section, we are going to define a new extended timed input–output confor-
mance relation, etioco. Then, we propose a new approach for deriving analog-clock
tests from the SUT specification. Finally, we discuss both test execution and
correctness requirements.

26.4.1 Conformance Relation

In order to formally define the conformance relation, we define a number of
operators. Given a TIOLTS L = (SL, sL

0 ,AcL
in,Ac

L
out, T

L
d , T L

t) and a timed trace
σ ∈ RT(AcL) L after σ is the set of all states of L that can be reached by
some timed sequence ρ whose projection to observable actions is σ . Formally:

L after σ = {s ∈ SL | ∃ρ ∈ RT(Acτ
L) : sL

0
ρ→ s ∧ PAc(ρ) = σ }.

Given state s ∈ SL, elapse(s) is the set of all delays which can elapse from s

without L making any observable action. Formally: elapse(s) = {t > 0 | ∃ρ ∈
RT({τ }) : duration(ρ) = t ∧ s

ρ→}. Given state s ∈ SL, out(s) is the set of
all observable “events” (outputs or the passage of time) that can occur when the
system is at state s. The definition naturally extends to a set of states S. Formally:

out(s) = {a ∈ AcL
out | s

a→} ∪ elapse(s) and

out(S) =
⋃

s∈S

out(s).

The specification of the system to be tested is given as a non-blocking ETAIO AS

while the implementation can be modeled as a non-blocking, input-enabled ETAIO
AI . For n ≥ 1, let LP

S,n (resp., LP
I,n) be the parallel composition of n copies of

AS (resp., AI). Input-enabledness is required so that the implementation can accept
inputs from the tester at any state. The extended timed input–output conformance
relation, denoted etioco, is an extension of our previous conformance relation
tioco [17, 18]. The new relation etioco is defined as AI etioco AS iff ∀n ≥
1 ∧ σ ∈ OTTr(LP

S,n) : out(LP
I,n after σ) ⊆ out(LP

S,n after σ). The relation states
that an implementation AI conforms to a specification AS iff for any number of
copies n of AS and any observable behavior σ of LP

S,n, the set of observable outputs

640 M. Krichen et al.

of LP
I,n after any behavior “matching” σ must be a subset of the set of possible

observable outputs of LP
S,n. Notice that observable outputs are not only observable

output actions but also time delays. Also notice that in case we consider only n = 1,
the definitions of etioco and tioco become the same.

26.4.2 Analog-Clock Tests

A test (or test case) is an experiment performed on the implementation by an agent
(the tester). There are different types of tests, depending on the capabilities of the
tester to observe and react to events. In general, one may consider either analog-
clock or digital-clock tests [11]. In this work, we consider only analog-clock tests.
The latter can measure precisely the delay between two observed actions and can
emit an input at any point in time.

It should be noted that we consider adaptive tests (following the terminology
of [21]), where the action the tester takes depends on the observation history. For
n ≥ 1, let Acn (resp., Acn

in) denote the union of all observable actions (resp., all input
actions) of n copies of the specification AS . An analog-clock test for n parallel exe-
cutions of AS is a total function Tn : RT(Acn) → Acn

in ∪ {Wait,Pass, Fail}. Tn(ρ)

specifies the action the tester must take once it observes ρ:

– If Tn(ρ) = a ∈ Acn
in, then the tester emits input a.

– If Tn(ρ) = Wait, then the tester waits (lets time elapse).
– If Tn(ρ) ∈ {Pass, Fail}, then the tester produces a verdict (and stops).

26.4.3 Test Execution and Correctness Requirements

The execution of the test Tn on the implementation AI can be defined as the parallel
composition of the TIOLTS defined by Tn and LP

I,n the TIOLTS corresponding to n

copies of AI , with the usual synchronization rules for transitions carrying the same
label. We will denote the product TIOLTS by LP

I,n‖Tn. The execution of the test
reaches a pass/fail verdict after bounded time. Formally, we say that AI passes the
test, denoted AI passes Tn, if state Fail is not reachable in the product LP

I,n‖Tn.
We say that an implementation passes (resp. fails) a set of tests (or test suite) T if
it passes all tests (resp. fails at least one test) in T . We say that an analog-clock test
suite T is sound with respect to AS if

∀AI : AI etioco AS ⇒ AI passes T .

We say that T is complete with respect to AS if

∀AI : AI passes T ⇒ AI etioco AS.

26 Security Testing of Internet of Things for Smart City Applications 641

26.5 Proposed Approach

In this section, we define a workflow that covers the different steps of a classical
model-based testing process, namely: model Specification, test generation, test
selection, test execution, and evaluation activities as depicted in Fig. 26.2.

26.5.1 Test Generation and Selection

Test Generation We adapt the untimed test generation algorithm of [30]. Roughly
speaking, the algorithm builds a test in the form of a tree. A node in the tree is a set
of states S of the specification and represents the “knowledge” of the tester at the
current test state. The algorithm extends the test by adding successors to a leaf node,
as illustrated in Fig. 26.3. For all illegal outputs ai (outputs which cannot occur from
any state in S) the test leads to Fail. For each legal output bi , the test proceeds to
node Si , which is the set of states the specification can be in after emitting bi (and
possibly performing unobservable actions). If there exists an input c which can be
accepted by the specification at some state in S, then the test may decide to emit this
input (dashed arrow from S to S′). At any node, the algorithm may decide to stop
the test and label this node as Pass.

Analog-clock tests cannot be directly represented as a finite tree, because there is
an a-priori infinite set of possible observable delays at a given node. To remedy this,
we use the idea of [31]. We represent an analog-clock test as an algorithm. The latter
essentially performs subset construction on the specification automaton, during the

Fig. 26.2 Model-based security testing process

642 M. Krichen et al.

Fig. 26.3 Test generation
principle [18]

Algorithm 1 On-the-fly analog-clock test generation

1 S ← tsucc({sP
n,0}, 0);

2 while(not Fail)
3 x ← 0; /* x is a clock measuring elapsing time */
4 await(output b is received at x < T or x = T)
5 if (b received at x)
6 S ← dsucc(tsucc(S, x), b);
7 else
8 S ← tsucc(S, T);
9 endif ;

10 if (S = ∅)
11 announce Fail;
12 exit ;
13 endif ;
14 if (validinputs(S)
= ∅)
15 i ← pick({0, 1}); /* 0 to send an input and 1 to continue observation */
16 endif ;
17 if (i = 0)
18 a ← pick(validinputs(S));
19 S ← dsucc(S, a);
20 endif ;
21 endwhile;

execution of the test. Thus, our analog-clock testing method can be classified as on-
the-fly or on-line, meaning that the test is generated at the same time it is executed.
More precisely, the tester will maintain a set of states S of the TIOLTS LP

S,n.
S will be updated every time an action is observed or some time delay elapses.

Since the time delay is not known a-priori, it must be an input to the update function.
We define the following operators:

dsucc(S, a) = {s′ | ∃s ∈ S : s
a→ s′}

and

tsucc(S, t) = {s′ | ∃s ∈ S . ∃ρ ∈ RT({τ }) : duration(ρ) = t ∧ s
ρ→ s′}

26 Security Testing of Internet of Things for Smart City Applications 643

where a ∈ Acn and t ∈ R. dsucc(S, a) contains all states which can be reached
by some state in S performing action a. tsucc(S, t) contains all states which can be
reached by some state in S via a sequence ρ which contains no observable actions
and takes exactly t time units. The test operates as follows. It starts at state S0 =
tsucc({sP

n,0}, 0) where sP
n,0 is the initial state of LP

S,n. Given current state S:

– if output a is received t time units after entering S, then S is updated to
dsucc(tsucc(S, t), a).

– If ever the set S becomes empty, the test announces Fail.
– At any point, for an input b, if dsucc(S, b)
= ∅, the test may decide to emit b

and update its state accordingly.

On-line analog-clock test generation is performed by Algorithm 1. The algorithm
keeps running as long as no non-conformance is detected. At any time the tester can
stop testing and declare Pass. The algorithm uses the following notation. Given a
nonempty set X, pick(X) chooses randomly an element in X.

Given a set of states S, validinputs(S) is defined as the set of valid inputs at
S, that is: validinputs(S) = {a ∈ Acn

in|dsucc(tsucc(S, 0), a)
= ∅}. Following
the same methodology as in [18] we can prove that the proposed test generation
algorithm is both sound and complete. Indeed both frameworks and both approaches
are based on IOLTS and at this level the algorithms are the same and the
conformance relations are equivalent. The difference between the two frameworks is
only at syntactic and structural levels. In [18] the authors consider only one instance
of the system whereas in our case we consider many instances which interact with
each other and the behaviors of which are influenced by the total number of active
components and the state of the shared resources.

The used test generation technique is based on model checking. The main idea
is to formulate the test generation problem as a reachability problem that can be
solved with the model checker tool UPPAAL [3]. However, instead of using model
annotations and reachability properties to express coverage criteria, the observer
language is used.

In this direction, we reuse the finding of Hessel et al. [14] by exploiting its exten-
sion of UPPAAL, namely UPPAAL CO

√
ER.2 This tool takes as inputs a model,

an observer, and a configuration file. The model is specified as a network of timed
automata (.xml) that comprises a SUT part and an environment part. The observer
(.obs) expresses the coverage criterion that guides the model exploration during
test case generation. The configuration file (.cfg) describes mainly the interactions
between the system part and the environment part in terms of input/output signals. It
may also specify the variables that should be passed as parameters in these signals.
As output, it produces a test suite containing a set of timed traces (.xml).

2http://user.it.uu.se/~hessel/CoVer/index.php.

http://user.it.uu.se/~hessel/CoVer/index.php

644 M. Krichen et al.

Our test generation module is built upon these well-elaborated tools. The key idea
here is to use UPPAAL CO

√
ER and its generic and formal specification language

for coverage criteria to generate tests for security purposes.

Test Selection Different coverage criteria have been proposed for software, such
as statement coverage and branch coverage [24]. In the TA case existing methods
attempt to cover either finite abstractions of the state space (e.g., the region
graph [29]) or structural elements of the specification such as edges or loca-
tions [14]. Here, we propose a technique for covering states, locations, edges,
actions, or shared variables of the specification:

– State coverage: As already mentioned each node of a given test case corresponds
to a set of states S of ATick

S . We say that the node covers S. We say that such a
test covers the union of all sets of states covered by its nodes. We say that a set
of tests (or test suite) achieves state coverage if every reachable state of LP

S,n is
covered by some test in the suite.

– Location coverage: A test suite achieves location coverage if every reachable
location of AS is covered by some test in the suite.

– Edge coverage: Every edge of a test case can be associated with an edge of LP
S,n.

In particular, an edge S
a→ S′ will be associated with all edges which are visited

during the reachability algorithm which computes S′ from S. We say that a test
suite achieves edge coverage if every reachable edge of LP

S,n is covered by some
test in the suite.

– Action coverage: We also define action coverage as follows. If a given edge

S
a→ S′ is reachable, then the corresponding observable action a is said to be

reachable as well. Action coverage is achieved if all the reachable observable
actions are covered by the considered test suite.

– Shared integer variable coverage: Finally we define shared integer variable
coverage which consists in generating tests which cover the different possible
values of the system variables.

26.5.2 Test Execution and Verdict Analysis

For the execution of the obtained security tests, we aim to use a standard-based
test execution platform, called TTCN-3 test system for runtime testing (TT4RT),
developed in a previous work [20]. To do so, security tests should be mapped to
the TTCN-3 notation since our platform supports only this test language. Then,
test components are dynamically created and assigned to execution nodes in a
distributed manner.

Each test component is responsible for (1) stimulating the SUT with input values,
(2) comparing the obtained output data with the expected results (also called oracle),
and (3) generating the final verdict. The latter can be pass, fail, or inconclusive.
A pass verdict is obtained when the observed results are valid with respect to

26 Security Testing of Internet of Things for Smart City Applications 645

the expected ones. A fail verdict is obtained when at least one of the observed
results is invalid with respect to the expected one. Finally, an inconclusive verdict
is obtained when neither a pass nor a fail verdict can be given. After computing for
each executed test case its single verdict, the proposed platform deduces the global
verdict.

26.5.3 Cloud Testing

The emergent paradigm, cloud computing, is formally defined by U.S.NIST
(National Institute of Standards and Technology) [23] as follows. Cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

This cloud model is characterized with three service models: software as-a-
service (SaaS), platform as-a-service (PaaS), and infrastructure as-a-service (IaaS).
The SaaS refers to the capability provided to the consumer to use the provider’s
applications running on a cloud infrastructure. With PaaS, the consumer is able to
deploy his own applications without installing any platform or tools since he uses
provided platform layer resources, including operating system support and software
development frameworks. Regarding IaaS, it provides a collection of resources
such as servers, storage, networks, and other computing resources in the form of
virtualized systems, which are accessed through the Internet.

It is worthy to note that public cloud providers like Amazon Web Services3

and Google Cloud Platform4 offer a cloud infrastructure made up essentially
of availability zones and regions. As shown in Fig. 26.4, a region is a specific
geographical location in which public cloud service providers’ data centers reside.
Each region is further subdivided into availability zones. Several resources can live
in a zone, such as instances or persistent disks. In the context of Google Cloud
Platform, the us-central1 region, for example, denotes a region in the Central United
States that has four zones, namely us-central1-a, us-central1-b, us-central1-c, and
us-central1-f.

Cloud computing has been used in the context of software testing to encounter the
lack of resources and the expensiveness of building a distributed test environment
during the testing process. As a result, the concept of cloud testing is newly
emerging in order to provide cost-effective testing services. According to [7],
it refers to testing activities, essentially test generation, test execution, and test
evaluation on a cloud-based environment. The latter supports on-demand resource
allocation to large-scale testers whenever and wherever they need by following the

3https://aws.amazon.com/fr/.
4https://cloud.google.com/.

https://aws.amazon.com/fr/
https://cloud.google.com/

646 M. Krichen et al.

Fig. 26.4 Illustration of cloud partitioning in regions and zones

pay-per-use business model. Such virtualized and shared resources may reduce
effectively the cost of building a distributed test environment for the runtime
validation of dynamically adaptive systems.

Testing as-a-service (TaaS) is an innovative concept that provides end users
with testing services such as test case generation, test execution, and test result
evaluation. It has been proposed to improve the efficiency of software quality
assurance. Notably, it is used for software systems that are remotely deployed
in a virtualized runtime environment using shared hardware/software resources,
and hosted in a third-party infrastructure (i.e., a cloud). One of the primary
objectives is to reduce the cost of software testing tasks by providing on-demand
testing services and also on-demand test environment services (i.e., establishing the
required virtual (or physical) cloud-based computing resources and infrastructures
for testing purposes).

26.5.4 Test Execution Platform as-a-Service

The proposed approach is built based on TaaS concepts. Figure 26.5 outlines an
overview of its different constituents.

– Test management GUI: This component offers a graphical user interface (GUI)
charged with managing the overall testing process: the automatic creation/dele-
tion of VM instances, the dynamic allocation of test components to the appro-
priate VMs, the start-up of test component execution, and the computation of
the final verdict. Moreover, it is responsible for querying the runtime monitoring
component for information about the usage of resources in running VMs.

26 Security Testing of Internet of Things for Smart City Applications 647

Fig. 26.5 Test execution platform overview

– Resource management: This component enables flexibility and elasticity during
the testing process. If there is no adequate VM to handle the execution of a test
component, a new VM can be created and started automatically. Moreover, it
is possible to scale up or scale down an existing VM. The unused one can be
released as well.

– Test component management: This component offers services for creating/delet-
ing test components and starting/stopping their execution. A test component is
an entity that interacts with the SUT to execute the available test cases (i.e., a set
of input values and expected results) and to observe its response related to this
excitation. Its main role consists of stimulating the SUT with the input values,
comparing the obtained output values to the expected results and generating the
final verdict that can be pass, fail, or inconclusive.

– Runtime monitoring: This component monitors VM instances during or even
before the test execution and gives the status of each VM in terms of computing
resources (such as CPU, memory, and storage).

As already discussed, several VM instances are created and started in the pro-
posed cloud infrastructure in which several components under test are running too
and can be evolved at runtime. To perform runtime tests in a cost-effective manner,
several test components should be deployed in the final execution environment. The
major question to be tackled here is how to assign efficiently test components to the
existing VM instances?

Before answering to this question, we should mention that the components under
test are distributed in several VM instances that can be located in the same region

648 M. Krichen et al.

and in the same zone as well as in different zones and even in different regions
of the cloud infrastructure. Such information is provided via a SUT deployment
descriptor. In this file, the SUT manager defines, for each component under test,
the VM instance hosting its execution and also its main characteristics (i.e., its IP
address, its corresponding zone, and region). Hereafter, we denote the VM hosting
a component under test by VM under test (VMUT) and the VM hosting the test
component by test VM (T_VM).

26.6 Related Work

In this section we give an overview of contributions from the literature and from our
previous work related to the security of IoT applications in smart cities.

Although the security protocols are well elaborated in the Internet domain, it is
still not fully clear how these existing IP security protocols and architectures can be
adapted and deployed in the context of distributed and heterogeneous environment
like the Internet of Things (IoT). From its appearance as a promiscuous technology,
several works are addressing the security problems of the IoT [4, 8, 12, 13, 26, 28, 32,
36], but until now there is no sufficient solutions that meet the users’ requirements
and performance needs. In the following, we will provide an overview of the most
important related works and clarify the contributions of our proposal in comparison
to the state of the art.

The authors in [4] presented the security contributions of the SMARTIE work,
which aims to provide secure IoT data management for smart cities. The authors
first classified attacks to internal and external. Internal attacks are caused by devices
and/or users of the smart city environment. Internal attackers are more dangerous
than external ones as they have detailed knowledge about the infrastructure, they
have access to part of the systems and they hold some keys. Internal attackers can
be users or administrators of the smart city systems or any hackers that succeed to
compromise a component of the system. Note that, due to the diversity of the IoT
devices and their spread in different locations, device compromise attack is easier
in IoT than in classical networks. On the other hand, external attackers may try to
access private data from users, components, or subsystems of the IoT environment.
Moreover, as in IoT some components are controlled remotely, attackers can exploit
these features to gain control and manipulate victims devices. Two main security
mechanisms are defined in [4] to address the above issues. First, DCapBAC [13]
is an authorization scheme that takes access control decisions before the actual
service is accessed. It does this by giving a signed authorization token to a user
who is asking for any particular service or functionality offered by a thing. The
authorization token is sent along with a request to the thing that verifies the
validity of the request and the authorization token, delivering the requested data, if
successful. Second, PrivLoc [33] offers secure location-based services, in particular
a secure geo-fencing service that alerts users if objects enter or leave a defined
area. Location-based services are increasingly gaining importance. Not only end

26 Security Testing of Internet of Things for Smart City Applications 649

users but also companies can make use of location data to track assets (e.g., public
transport services, users looking for transportation, or logistics companies). PrivLoc
scrambles location information in a way that allows computation on intersections
of scrambled geometric objects, which is the main operation behind a geo-fencing
service.

In paper [32], the authors proposed OSCAR (object security architecture for the
Internet of Things), an architecture for end-to-end security in the Internet of Things.
It is based on the concept of object security that relates security with the application
payload. The architecture includes authorization servers that provide clients with
access secrets that enable them to request resources from constrained nodes. The
nodes reply with the requested resources that are signed and encrypted. Although
this architecture solves some of disadvantages of Datagram Transport Layer
Security (DTLS) since it supports multicast, asynchronous traffic, and caching, it
has certain limitations. Indeed, OSCAR is vulnerable to the replay attack and its
performance is affected with the eventual usage of larger elliptic curve cryptography
(ECC) curves. In [12], an architectural reference model-compliant framework was
proposed. This framework emphasizes on security and privacy aspects to be used
on smart buildings scenarios. Additionally, authors proposed an extension of the
security functional components of the reference architecture in order to enable more
flexible sharing models, in which the physical context information is considered
as a first-class component in order to realize the so-called context-aware security
on IoT scenarios. As an instantiation of this framework, a platform for services
management on smart buildings has been deployed and extended to offer both
user-centric services, like comfort and energy saving, and discovery and security
functionality for such services. The feasibility of the proposed mechanisms has been
demonstrated through the instantiation of the platform and its evaluation in a smart
building used as reference [4].

From a standardization perspective, the recently standardized constrained appli-
cation protocol (CoAP) was proposed as a lightweight alternative to the HTTP
protocol for web-based IoT applications, but security does not keep up. For this
purpose, the IETF has thus taken a position to reuse the datagram transport layer
security (DTLS), the all-round point-to-point security protocol, to secure the com-
munication channel between a constrained device running CoAP and a client [32].
However, apart from its current incompatibility with caching and multicast traffic,
the DTLS approach has an important impact on scalability: Memory limitations of
constrained nodes restrict the number of DTLS sessions. In IoT scenarios such as
smart cities in which a large number of clients may communicate with constrained
CoAP nodes, the limitations lead to a considerable load that translates to an
increased energy consumption and a shortened lifetime [32]. Several works have
thus been proposed to overcome these limitations of DTLS.

The DTLS in constrained environments (DICE), an IETF working group, was
formed to add multicast security to DTLS [15]. In [15], the authors present a
method for securing IPv6 multicast communication based on the DTLS which is
already supported for unicast communication for CoAP devices. They deal with the
adaptation of the DTLS record layer to protect multicast group communication,

650 M. Krichen et al.

assuming that all group members already have the group security association
parameters in their possession. The adapted DTLS record layer provides message
confidentiality, integrity, and replay protection to group messages using the group
keying material before sending the message via IPv6 multicast to the group [15].
However, the authors did not present how group members can agree on the group
security association.

In [33], the authors presented Lithe—an integration of DTLS and CoAP for the
IoT. Lithe proposes a novel DTLS header compression scheme that aims to reduce
the energy consumption by leveraging the 6LoWPAN standard based on reducing
the number of transmitted bytes while maintaining DTLS standard compliance.

Granjal et al. [9], described mechanisms to enable security at the network
layer, based on the IPSec protocol, and at the application layer, based on the
DTLS protocol, and performed an extensive experimental evaluation study with
the goal of identifying the most appropriate secure communication mechanisms
and the limitations of current sensing platforms for supporting end-to-end secure
communications in the context of Internet-integrated sensing applications [9]. These
results showed a similar performance of the two approaches, except in the case when
DTLS is additionally used to exchange keys with the elliptic curve Diffie-Hellman
exchange.

Heer et al. [10] discussed the applicability and limitations of existing Internet
protocols and security architectures in the context of IoT. They presented challenges
and requirements for IP-based security solutions and highlighted specific technical
limitations of standard IP security protocols. It was indicated that for supporting
secure IoT, its security architecture should fit the life cycle of a thing and its
capabilities, and scale from small-scale ad-hoc security domains of things to
large-scale deployments, potentially spanning several security domains. Security
protocols should further take into account the resource-constrained nature of things
and heterogeneous communication models. Lightweight security mechanisms and
group security that are feasible to be run on small things and in IoT context should be
developed, with particular focus on possible DoS/DDoS attacks. In addition, cross
layer concepts should be considered for an IoT-driven redesign of Internet security
protocols.

The authors in [35] addressed the routing protocol for low-power and lossy
networks (RPL) attacks and they provided a comprehensive analysis of IoT
technologies and their new security capabilities that can be exploited by attackers
or IDSs. One of the major contributions in [35] is the implementation and
demonstration of well-known routing attacks against 6LoWPAN networks running
RPL as a routing protocol. The implemented attacks are selective-forwarding attacks
(where malicious nodes selectively forward packets and therefore can achieve a DoS
attack), sinkhole attacks (where a malicious node advertises an artificial beneficial
routing path and attracts many nearby nodes to route traffic through it), HELLO
flood attacks (where the attackers by broadcasting a HELLO message with strong
signal power and a favorable routing metric can introduce himself as a neighbor
to many nodes, possibly the entire network), wormhole attacks, clone ID, and

26 Security Testing of Internet of Things for Smart City Applications 651

Sybil attacks. In order to mitigate these attacks, the authors proposed an intrusion
detection system (IDS), called SVELTE [27].

SVELTE [27], an intrusion detection system for the IoT was designed, imple-
mented, and evaluated against routing attacks such as spoofed or altered infor-
mation, sinkhole, and selective-forwarding. SVELTE’s overhead is small enough
to deploy it on constrained IoT nodes with limited energy and memory capacity.
However, SVELTE assumes that it has access to the border router of the network to
place heavyweight IDS parts there. This assumption is not always possible. For
example in a smart city application, the messages can be routed over a cellular
station that belongs to the network of another owner and therefore we did not have
access to the border router.

The previously cited proposed solutions can be classified to three categories
which are application layer security solutions [15, 33], network layer security
solutions [27, 35], and context-aware security solutions [4, 12, 32]. Context-
aware security solutions are very dependent to the specific characteristics of the
applications use case and so suffer from the lack of inter-operability. Moreover, the
existing solutions have a high computation and communication cost that make them
inadequate to resource-constrained things. Network security solutions are limited
to attacks related to network layer and so cannot mitigate attacks that target the
application layer and cannot provide some security services such as authentication
and access control.

Contrary to [27, 35] that proposed an IDS that is limited to routing attacks. In
this work we aim to extend the functionality of the IDS and to address also the
application layer attacks that target the CoAP protocol. This kind of IDS will present
a first line of defense and will mitigate several attacks such as the DoS attack. In
addition, this work will focus on providing security based on the DTLS protocol
as there are several attempts to make this protocol as the standard for security in
the IoT. Therefore, we will propose enhancements to the DTLS protocol to fit the
IoT objects. Moreover, we will focus on not resolved aspects such as group key
management and multicast communication.

The authors of [6] propose a good survey on more than one hundred publications
on model-based security testing extracted from the most relevant digital libraries and
classified according to specific criteria. Even though this survey reports on a large
number of articles about MBST it does not contain any reference to IoT applications
or smart cities. Contrary to that the authors of [1] propose a model-based approach
to test IoT platforms (with tests provided as services) but they do not deal with
security aspects at all.

26.7 Conclusion

In this work we aimed to combine these two directions, namely: model-based testing
and security testing for IoT applications in smart cities. For that purpose we took
advantage of our previous findings [5, 16, 20, 22] related to these fields. Moreover,

652 M. Krichen et al.

we extended the notions proposed in the survey [5] to the case of IoT applications.
We also exploited our previous results about test techniques of dynamic distributed
systems [16, 20].

Our work is at its beginning and a lot of efforts are needed at all levels on both
theoretical and experimental aspects. First we need to deal with modeling issues. In
this respect we need to extend our modeling formalism and to identify the particular
elements of IoT applications to model (using extended timed automata). Models
must not be big in order to avoid test number explosion. For that purpose we need to
keep an acceptable level of abstraction. As a second step we have to adapt our test
generation and selection algorithms to take into account security requirements of
the applications under test. The new algorithms must be validated theoretically and
proved to be correct. In the same manner we need to upgrade our tools to implement
new obtained algorithms. We also need to validate our approach with concrete
examples with realistic size. Finally we propose to adopt the same methodology
as in [22] to combine security and load tests for IoT applications.

References

1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based testing as a
service for IOT platforms. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination, Applications, pp.
727–742. Springer, Cham (2016)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
3. Behrmann, G., David, A. and Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini,

F. (eds.)International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004. Revised Lectures, vol. 3185, LNCS, pp. 200–237.
Springer, Berlin (2004)

4. Bohli, J.-M., Skarmeta, A., Moreno, M.V., García, D., Langendörfer, P.: Smartie project: secure
IoT data management for smart cities. In: 2015 International Conference on Recent Advances
in Internet of Things (RIoT), vol. 00, pp. 1–6 (2015)

5. Cheikhrouhou, O.: Secure group communication in wireless sensor networks: a survey. J. Netw.
Comput. Appl. 61, 115–132 (2016)

6. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based security testing: a
taxonomy and systematic classification. Softw. Test. Verif. Reliab. 26(2), 119–148 (2016)

7. Gao, J., Bai, X., Tsai, W.-T.: Cloud testing- issues, challenges, needs and practice. Softw. Eng.
Int. J. 1(1), 9–23 (2011)

8. Garcia-Morchon, O., Kumar, S., Keoh, S.L., Hummen, R., Struik, R.: Security Considerations
in the IP-Based Internet of Things, Internet-Draft draft-garcia-core-security-06, Internet
Engineering Task Force, Fremont (2013). Work in Progress

9. Granjal, J., Monteiro, E., Sá Silva, J.: On the effectiveness of end-to-end security for internet-
integrated sensing applications. In: 2012 IEEE International Conference on Green Computing
and Communications, pp. 87–93 (2012)

10. Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security
challenges in the ip-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)

11. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
Automata, Languages and Programming, pp. 545–558. Springer, Berlin (1992)

12. Hernández-Ramos, J.L., Moreno, M.V., Bernabé, J.B., Carrillo, D.G., Skarmeta, A.F.: SAFIR:
secure access framework for IoT-enabled services on smart buildings. J. Comput. Syst. Sci.
81(8), 1452–1463 (2015)

26 Security Testing of Internet of Things for Smart City Applications 653

13. Hernández-Ramos, J.L., Jara, A.J., Marin, L., Gómez, A.F.S.: Dcapbac: embedding authoriza-
tion logic into smart things through ECC optimizations. Int. J. Comput. Math. 93(2), 345–366
(2016)

14. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-time test case
generation using uppaal. In: Petrenko A., Ulrich, A. (eds.) Formal Approaches to Software
Testing, pp. 114–130. Springer, Berlin (2004)

15. Keoh, S., Kumar, S., Garcia-Morchon, O., Dijk, E., Rahman, A.: DTLS-Based Multicast Secu-
rity for Low-Power and Lossy Networks (LLNs). Internet-Draft Draft-keoh-dice-multicast-
security-08, Internet Engineering Task Force, Fremont (2014). Work in Progress.

16. Krichen, M.: A formal framework for black-box conformance testing of distributed real-time
systems. IJCCBS 3(1/2), 26–43 (2012)

17. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) Model Checking Software, pp. 109–126. Springer, Berlin (2004)

18. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Methods Syst.
Des. 34(3), 238–304 (2009)

19. Krichen, M., Cheikhrouhou, O., Lahami, M., Alroobaea, R., Jmal Maâlej, A.: Towards a
model-based testing framework for the security of internet of things for smart city applications.
In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications, pp. 360–365. Springer, Cham (2018)

20. Lahami, M, Krichen, M., Jmaïel, M.: Safe and efficient runtime testing framework applied in
dynamic and distributed systems. Sci. Comput. Program. 122(C), 1–28 (2016)

21. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey.
Proceedings of the IEEE 84(8), 1090–1123 (1996)

22. Maâlej, A.J., Krichen, M.: A model based approach to combine load and functional tests
for service oriented architectures. In: Proceedings of the 10th Workshop on Verification and
Evaluation of Computer and Communication System, VECoS 2016, Tunis, October 6–7, 2016,
pp. 123–140 (2016)

23. Mell, P., Grance, T.: The Nist Definition of Cloud Computing (2011)
24. Myers, G.J., Sandler, C.: The Art of Software Testing, Wiley, Hoboken (2004)
25. Nguyen, K.T., Laurent, M., Oualha, N.: Survey on secure communication protocols for the

internet of things. Ad Hoc Netw. 32, 17–31 (2015)
26. Park, S.D., Kim, K.-H., Haddad, W., Chakrabarti, S., Laganier, J.: IPv6 over Low Power

WPAN Security Analysis. Internet-Draft draft-daniel-6lowpan-security-analysis-05, Internet
Engineering Task Force, Fremont (2011). Work in Progress

27. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in the internet of things.
Ad Hoc Netw. 11(8), 2661–2674 (2013)

28. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in
distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

29. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theor. Comput.
Sci. 254(1), 225–257 (2001)

30. Tretmans, J.: Testing concurrent systems: a formal approach. In: Baeten, J.C.M., Mauw, S.
(eds.) CONCUR’99 Concurrency Theory, pp. 46–65. Springer, Berlin (1999)

31. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.R. (eds.) Formal
Techniques in Real-Time and Fault-Tolerant Systems, pp. 205–221. Springer, Berlin (2002)

32. Vucinic, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.: OSCAR:
object security architecture for the internet of things. CoRR, abs/1404.7799 (2014)

33. Vučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.: Oscar. Ad
Hoc Netw. 32(C), 3–16 (2015)

34. Walewski, J.: Internet-of-Things Architecture IOTA Project Deliverable d1.2 - Initial Architec-
tural Reference Model for IOT (2018)

35. Wallgren, L., Raza, S., Voigt, R.: Routing attacks and countermeasures in the RPL-based
internet of things. Int. J. Distrib. Sens. Netw. 9(8), 794326 (2013)

36. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of things. J.
Netw. Comput. Appl. 42, 120–134 (2014)

Index

A
Adaptations

behavioral
differencing algorithm, 602–603
old test suite classification, 603
test case concretization, 604–605
test generation and recomputation, 604
UPPAAL TA, 600–602

constrained test component placement,
594–596

CSR5 and CSRNS, 417
DTLS, 649
online

dependency analysis, 592–593
test case selection, 593–594

test isolation and execution support,
596–599

Advanced RISC Machine (ARM), 352–354,
358, 370, 372, 440

Amazon EC2 instance, 297–299
Analytic hierarchy process (AHP), 330, 331,

334, 344
Apache GraphX, 191
Apache Hadoop, 199, 204, 331, 358, 364,

462
Apache Pig, 456
Apache Spark

high-performance frameworks, 125
MLlib, 65
open-source framework, 124
parallel data processing, 56
smart transportation (see Smart

transportation)

social media, 57
using HPC (see High performance

computing (HPC))
Apriori algorithm, 312, 317, 318, 326
Arabic language, 21, 43, 58
Arterial hierarchy (AH), 190, 197
Artificial intelligence (AI)

big data, 74
data-driven studies, 161
data mining techniques, 80
healthcare networked systems, 430
integration, 579
machine learning, 137
mathematical methods, 18
natural language processing, 579
smarter algorithms and solutions, 430
traffic analysis, 80

Artificial neural networks (ANNs), 118–121,
127, 313, 530

Association rules
CS courses, 319
dependency rules, 312
Eclat algorithm, 314
in education, 317, 318
measures of interestingness, 314–316
null invariance, 316
two-step process, 316
See also Data mining (DM)

Automatic selection, see Web frameworks
Autonomous driving (AD), 21, 57, 115, 136,

137, 139
Autonomous vehicles (AVs), 19, 135–139,

140, 152, 160, 520

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2

655

https://doi.org/10.1007/978-3-030-13705-2

656 Index

Autoregressive integrated moving average
(ARIMA), 116–118, 120, 121,
125–128, 166

B
Basic sequence search by hash algorithm

(BSSHA), 478–480
Berkeley data analytics stack (BDAS),

458–459, 482, 484
Big data

analytics workflow, 17, 57, 61, 191, 229,
268, 270–271, 273, 276, 277, 464,
492, 562

Apache Spark, 124–125
Beowulf cluster, 350
challenges and opportunities, 495–496
classification, 454
cloud infrastructure, 349, 350
commercial tools and techniques

Cloudera, 462
EC2, 462–463
IBM, 463
Pivotal HD, 462
SAS, 463
Syncfusion, 462
Tableau platform, 463
Teradata Aster, 464

data management (see Data management)
dimension, 55
financial benefits, 454
fixed-size chunks, 349
fused dataset (see Data fusion)
genome sequence annotation, 476–479
GPU computing, 81
graph-based applications, 468–476
Hadoop (see Hadoop)
healthcare

and smart city applications, 464–468
supply chains (see Supply chain

management)
and HPC, 18–20, 56
low-cost effective cloud computing, 350
open source (see Open source)
road transportation, 79
SAP HANA, 38
SBC-based clusters (see Single board

computers (SBC))
and semantic web, 23
in smart cities (see in Smart cities)
and smart infrastructure (see Smart

infrastructure)
smart transportation (see Smart

transportation)

software quality (see Software quality)
traffic congestion, 80
in transport operations, 39, 41, 81

Big data shortest path graph computing
(BDSPG), 186, 192, 209

Bioinformatics, 144, 220, 229–230, 477, 479
Bipartite-graph oriented locality-aware

scheduling (BOLAS), 470
Bipartite request dependency graph (BRDG),

469, 480
Blink DB, 458, 482
Box–Jenkins model, 125

C
C5.0

block diagram, 147
classification statistics, 152
CM, 149
DL, 137, 152
DT (see Decision tree (DT))
feed-forward deep neural networks, 142,

146
sample rules, 143
sensitivities measurement, 150

Carver, 434
CeesIt, 237, 239
Cloud computing

advantages, 252–253
architecture, 250, 251
computation-based, 293
disaster management system, 160
EHRs, 249
and healthcare, 253–254

applications, 17
architecture, 261

high performance computing, 18
HPC (see High performance computing

(HPC))
implement processing, 299–301
infrastructure, 350
load balancing, 500–502
mobile recommender systems, 290
model, 16
organizations, 250
pay-per-use services, 284
performance analysis (see Performance

analysis)
reconfiguration and allocation, 250
security, 255–258
service-based computing, 16
time-consuming efforts, 249
wireless communication, 289

Cloud security, 251, 252, 256, 257–260, 264

Index 657

Clusters
computing systems, 163
DM-Clusters (see DM-Clusters)
Hadoop benchmark tests (see Hadoop)
HPC implementation, 227
labels of tweet, 58
multi-GPU, 190
policy strategy, 7
SBC (see Single board computers (SBC))

CodeIgniter, 330, 333–334, 336, 339–344
Cognitive computing, 578, 579
Community Data License Agreement (CDLA),

547, 551, 554, 555
Compressed sparse row (CSR), 379, 383, 386,

387, 393–395, 402, 405, 417–423
Computer science (CS) education, 312, 318,

319, 321, 324–326, 479
Conformance testing framework

analog-clock tests, 640
correctness requirements, 640
relation, 639–640
test execution, 640

Context-sensitive blast (CS-BLAST), 479
Convolution neural networks (CNNs), 81, 138,

164
Coordinate storage (COO), 383
Coverage, 56, 109, 339, 526, 529, 604, 616,

643, 644
Cryptography, 649
Cumulative interestingness, 317

D
Data analytics

BDAS, 458–459
big data (see Big data)
high-performance computing resources,

512
mobile cloud computing, 17
research, 57
SSSP, 191
in supply chain management, 273–274
twitter (see Twitter data analytics)

Data fusion, 18, 81, 138, 632
Data locality, 256, 468–471, 480, 482, 492,

496–500, 503, 511, 565, 568,
574–576

Data management
big data, 271
dataset structure, 60–61
IoT, 648
mining and co-ordination, 571–572
preprocessing, 61–63

processing methodology, 74
and quality of data, 461
tools and techniques, 453

Data mining (DM)
association rule (see Association rules)
classification in education, 313
clusters (see DM-Clusters)
databases and spreadsheets, 311
experimental settings, 318–320
IoT, 18
knowledge discovery tools, 492
machine learning, 478
real-time road traffic tweets, 39
regression techniques, 312
results, experiments, 321–326
road traffic data, 80
software quality (see Software quality)
support decision-making, 528
troubleshoot distributed systems, 530

DataNodes, 123, 455
Datasets, 58, 60–61, 82, 84, 87, 89–92,

103–110, 141–142, 172, 174,
192–204

Debugging, 230, 428, 521–526, 531, 569
Decision Fusion based Recognition System

(D2TFRS), 21, 146, 148–152
Decision tree (DT)

algorithms
C5.0 classifier, 143
DL, 144
SVM, 144

AV, 135–137
classification, 312, 313
CM, 148–149
contributions, 137
dataset and data preparation, 141–142
D2TFRS, 21
Kappa and speed, 150–152
literature review, 137–141
proposed method

comparison, 146–148
testing, 146
training, 145, 146

road transportation, 132
sensitivity and specificity, 150–151

Deep belief networks (DBN), 83, 166
Deep learning (DL)

algorithm, 84
background material, 163–164
C5.0, 152
classifiers, 137
configuration, 95
disaster management, 20
DT (see Decision tree (DT))

658 Index

Deep learning (DL) (cont.)
GPUs (see Graphical processing units

(GPUs))
high-level abstractions, 81
incident prediction (see Incident prediction)
model setup, 95
neural system, 144
performance metrics, 96–97
video-only pedestrian detection system,

138
Deep model setup, 172–173
Design patterns, 330, 562, 563, 579–581
Diagonal storage (DIA), 384
Disaster management system

data processing layer, 170–171
DL layer, 171–172
input layer, 169–170

Django, 330–334, 336, 338–339, 342–344
Django Software Foundation, 333
DM-Clusters

components and design, 356–357
energy consumption approximation,

358–360
performance

CPU, 360–361
network, 363–365
storage, 361–363

Raspbian and Ubuntu MATE, 358
DNA mix software, 235, 236
DNA mixture interpretation, 22, 223–225,

231–235, 244, 245
DNA profiling

in bioinformatics, 229–230
biology and genetics, 221, 222
comparison, tools, 243, 244
complexity, 225
computational performance and accuracy,

220
forensic science, 223
genetic markers, 224–225
HPC, 220, 226–227
human identity test, 218
LR, 225–226, 231–232
methods, 231
mixture, 223
number of contributors, 232–235
parallel technologies, 227–229
PCR, 218
RFLP and VNTRs, 217
sample processing, 218, 219
software tools, 235–243
SWGDAM, 219
technologies, 223–224

DNA typing, 22, 217, 218, 224, 225, 231
Domain enhancement lookup time acelerated

BLAST (DELTA-BLAST), 479, 480
Dynamic distributed dimensional data model

(D4M), 478, 480
Dynamic fault-tolerant routing (DFTR), 611,

614–616, 623–626

E
ELLPACK format, 383
Enterprise system (ES)

architecture, 15
business process, 14
components, 14–15
definitions, 12, 14
evolution, 11–13
and future city logistics, 26
innovations, 11
IT, 10

Equivalence class transformation (Eclat), 312,
314

EuroForMix, 241–242
Event detection

mobility and transportation, 57
road traffic, 58
sensor-based, 56
social media, 39–40, 57
supervised learning

accuracy evaluation, 65
classification, 64–65
cross-validation, 66
evaluation metrics, 66
feature extraction, 64

word frequency analysis and validation,
66–69

Event-driven smart city (EdSC), 5, 6
Exascale

data
confidentiality, 570
freshness, 570
heterogeneity, 570
and processing, 570
redundancy, 570
storage, 571

engineering, 571
performance analysis, 438–440
scalability, 571

F
Fault tolerance, 187, 226, 455, 457–458, 460,

497, 507, 508, 569, 613, 614, 621

Index 659

Forensic science, 217, 223, 224, 230, 243
Frequent pattern growth (FPGrowth), 312, 314
Frequent pattern tree (FP-tree), 314
Fujitsu exabyte file system (FEFS), 56, 59, 60,

74, 192
Fully polynomial-time approximation scheme

(FPTAS), 189, 196

G
GEODICT, 39
Geo-extender, 60, 69–70
Global memory, 162, 228, 414, 423, 566
Graph analytical platform (GAP), 91, 200
Graphical processing units (GPUs), 161–162

architecture, 411–413
disaster management (see Disaster

management system)
DL (see Deep learning (DL))
HPC systems, 226
multi-core CPUs, 386, 388
performance

characteristics, 413–415
optimization memory access, 417
optimization strategies, 415–416
thread/block configuration, 416

road traffic incidents (see Traffic prediction)
Green cloud computing, 358

H
Hadoop

Apache Spark, 124–125
benchmark tests, 364–370
big data analysis, 123
cluster, 351, 354
data locality and data placement issues,

496–499
Hadoop_GIS Tool, 123–124
HBlast, 479
HDFS, 493
heterogeneity, 503
HPC, 563–564, 569
map-reduce computation, 477, 494
open-source big data tools, 455
Pi computation, 366–367
random placement method, 468
RDMA, 574
Wordcount program, 367–370

Hadoop distributed file system (HDFS), 123,
192, 366, 455, 458, 460, 493, 494,
510, 563, 573–575

Healthcare
big data (see Big data)
cloud computing (see Cloud computing)
EMRs, 268
GDP, 267
IoT application, 18
personalized systems, 17
security threats, cloud, 258–261
supply chain management (see Supply

chain management)
technological developments, 267–268
and transport capacity, 19

Heterogeneity, 245, 276, 427, 467, 474, 475,
492, 501–504, 511, 570, 572

Hierarchical clustered dynamic source routing
(HCDSR), 611, 624–625

High performance computing (HPC)
Amazon EC2 cloud, 434
Apache Spark MLlib, 56
applications, 428–431
Aziz supercomputer, 152
and benchmarking suites, 428–431
and big data, 18–20, 55, 80, 492
big data convergence, 20, 563, 571–575,

579–581
in bioinformatics, 229–230
categorization, 562
challenges, 575–577
cloud computing (see Cloud computing)
cluster, 460
cognitive systems, 578–579
design patterns, 579–581
detection system, 56
distributed-memory, 427
DNA

concepts, 220
mixture (see DNA profiling)

fault tolerance, 569
GPUs, 81
Hadoop, 563–564
hardware, 568
and IoT, 17
IoT and smart cities, 578
MPI, 565
OpenMP, 565, 566
performance analysis (see Performance

analysis)
PGAS, 566, 567
programming model, 569
resource management, 568
in scientific discoveries, 561
Spark, 564–565
sparse linear equation systems, 409

660 Index

High performance computing cluster (HPCC),
434, 460, 477, 479

High performance data analytics (HPDA), 20,
492, 562, 572, 577–579

Hive, 123, 456–457, 459, 466, 507, 569
HiveQL, 123, 457, 507
Hugin package, 240
Hybrid methods

ARIMA/SVM, 127–128
model evaluation, 128–129
road traffic prediction, 116, 125
statistical analysis (see Statistical analysis)
traffic

flow analysis and prediction methods,
120–121

flow modeling, 115
prediction (see Traffic prediction)

I
Incident prediction

configuration, 95
confusion matrix, 105
discussion and analysis, 103–109
management problem, 80
occupancy and percent observed, 99–101
road networks, 82
speed, 97–99
vehicles flow, 97
vehicles occupancy data, 101–103

Information and communication technology
(ICT)

applications, 6
communication infrastructure, 3
digital and physical systems, 431
global infrastructure, 520
healthcare systems, 273
infrastructure, 17
integration, 5
and IoT, 590, 631
pay-on-demand, 255
smart cities (see Smart cities)
SSC, 631

In-memory computing, 506–507
background material, 162–163
GPU computing (see Graphical processing

units (GPUs))
Hadoop, 125
literature review, 82–84
smart infrastructure developments, 80
socio-economic and environmental

damages, 79
spark, 59
traffic congestion, 80

Input/Output (I/O), 97, 206, 350–352, 360,
442, 509–512, 568, 569, 575, 577,
643

Intel Many Integrated Core Architecture
(MIC), 20, 378, 379, 384–389

average execution, 403
execution time, 400, 404
experimental

environments, 397
results, 400–401

vs. multi-core node, 397, 398, 401–402
IntelMIC Knights Corner (KNC), 378, 379,

405
Interestingness measures, 313, 314, 316, 317,

320, 326
Internet of Things (IoT), 17–20, 578

big data, 23, 220
driving radical changes, 530
fault tolerance (see Fault tolerance)
HPDA, 492
and IoV, 167
open source (see Open source)
runtime testing (see Runtime testing)
smart city (see Smart cities)
software quality (see Software quality)

Isolation, 4, 11, 331, 590, 596–599, 605

J
Jacobi, 393–396

computations, 389
data storage, 386
iterative method, 397, 410, 411
method, 381
multi-core nodes, 398–400
parallel implementation, 379
storage formats, 379

K
Kongoh, 241

L
Lab Retriever, 237, 238
Lazy-input, 637
License-mismatch, 540
Likelihood ratio (LR), 220, 225, 226, 231–233,

237, 239, 242–245
LikeLTD, 230, 235, 237, 239–240, 244, 245
Linear solver, 417
Live traffic index (LTI), 188, 195
Load balancing, 186, 199, 429, 430, 492,

496–502

Index 661

Long short-term memory (LSTM), 165, 166
LRmix, 230, 235–236, 241, 244,

M
Machine learning

algorithms, 39
ANNs, 118–119
comparison, 74
data

analytics architecture, 56
management, 55

software tool based, 19, 21
studies, 40
SVM, 119, 127

Map-reduce programming, 493, 494, 502, 563,
564, 568, 569, 573, 574

Maximum allele count (MAC), 232, 233
Mean absolute percentage error (MAPE),

96–100, 166–167, 174, 176
Metapackages, 12
Microscopic models, 164–165
Mobile cloud computing, 16, 17, 286, 290,

291, 306
context-aware interfaces, 283
dataset, 301–302
framework evaluation

accuracy, 302–303
efficiency, 304
validity, 304–306

metrics, 301–302
mobility/portability, 284
platform, 301–302
proposed contributions, 286
recommendation system (see

Recommendation system)
solution overview, 285–286

Model checking, 520, 526–527, 531, 605, 643
Model–view–controller (MVC), 329–330,

332–334, 338–341
Modified sparse row (MSR), 378, 379, 383,

386, 389, 393, 395, 405
Mongo DB, 298, 299, 301, 459, 482
Multiple multidimensional knapsack problem

(MMKP), 596
Multiple query optimization (MQO), 492, 496,

507–509

N
Neo4j, 185, 460, 483
NOCIt, 242
Notting Hill Carnival 2017, 21, 56, 72–74

O
Object classification, 137
Open data

ICT technology, 7
licenses, 538, 546–548
selected licenses, 551
selection framework, 554–555

OpenMP, 220, 227, 228, 230, 240, 384, 387,
393, 394, 396, 405, 565, 566

Open source
Apache, 335, 563
applications, 241, 541–542
big data tools (see Big data)
decision-making model, 540
definition, 537
FOSS, 541
GBIF, 541
license, 540
OSI and FSF, 539
OSS (see Open source software (OSS))
projects, 541–542
selection process, license, 538
software, 541–542
suitable license, 540
tools

Apache Hive, 456–457
Apache Pig, 456
Apache Storm, 457
Blink DB, 458
Dryad, 459–460
Hadoop, 455
MapReduce, 455–456
MongoDB, 459
R analytical tool, 459
Spark Streaming, 457–458
YARN, 456

Ubuntu MATE 15.10, 358
Open source software (OSS), 537, 539–541,

549, 550, 552
Oracle, 461, 484, 522, 530, 644

P
Parallel computing, 81, 186, 192, 208, 220,

412, 455, 481, 576
Partial least square (PLS) regression, 2, 23, 24,

26, 27
Password protection, 258, 260
Pentaho, 461, 483
Performance analysis, 175–179

applications, 440, 441
comparison, 421–423
exascale systems, 438–440
GUI, 441, 442

662 Index

Performance analysis (cont.)
HPC, clouds, 432–435
metrics, 431–432
MONT-BLANC project, 441
PeMS (see Performance measurement

system (PeMS))
sparse storage and SpMV kernels, 418–421
SpMV (see Sparse matrix-vector

multiplication (SpMV))
tools, 436–438

Performance measurement system (PeMS)
Caltrans, 168
deep model for prediction, 92–94
incident prediction (see Incident prediction)
input data

collection, 84–86
preparation, 86–92

road traffic data, 81
Performance metrics, 56, 74, 96–97, 166, 172,

174–179, 438, 441
PLS SEM, 23, 24, 26, 27
Power consumption, 163, 192, 301, 351, 359,

372, 439–441, 575–577, 580, 616
PowerLyra, 475
Proposed technique

cloud testing, 645–646
experimental setup, 622–624
HCDSR, 624–625
network setup, 620
route discovery, 620–621
routing algorithm, 620–621
test execution

generation and selection, 641–644
platform, 646–648
and verdict analysis, 644–645

Prosecution hypothesis, 225, 226, 242

R
Radio model, 619
Rails, 330–332, 336–338, 342, 344
R analytical tool, 459
Raspberry Pi (RPi), 350–356, 360–364,

370–372
Recommendation system

algorithms, 294–297
Apriori algorithm, 317
architecture and patterns, 291–292
cloud-based, 289–291, 299–301
computation-based, 293
context-aware, 288–289, 292–293,

298–299
e-type software, 289

tools and technologies, 297–298
types, 287–288
See also Mobile cloud computing

Reliability, 16, 24–25, 138, 139, 256, 455, 457,
461, 496, 519, 622, 632

Resilient distributed datasets (RDDs), 481,
484, 506, 507, 512

Restriction fragment length polymorphism
(RFLP), 217, 224, 225

Road networks
Apache Spark (see Apache Spark)
congestion cases, 80
data sources, 122
as graphs, 21, 187
incident prediction, 82
OpenStreetMap, 190
Rhode Island, 206
shortest path computations (see Shortest

path)
vehicles data, 92
vehicles’ speed, 166
visualization, 205

Routing
comparison, 615
discovery, 620–621
DSR, 611
fault-tolerant, 18
hybrid and electric vehicles, 189

Runtime testing
component-based systems, 590
FG-SSC, 590
IoT, 589
6LoWPAN networks, 650
structural adaptations (see Adaptations)
TT4RT, 644

S
SAP HANA

big data, 38
detected events, 48, 49
graphs data, 163
percentage of tweets, 46, 47
pre-processing and analysis configuration

custom dictionary, 43–44
entity extraction, 44
normalization, 44
tokenization, 44

roads/street names, 47, 48
tweets (see Twitter data analytics)
web-based development workbench, 42

Scheduling, 277, 441, 456, 458, 480–482,
496–499, 504–506, 511, 568

Index 663

Secure sockets layer (SSL), 263
Security issues, 250, 256, 258–261, 264
Security testing

challenges, 632–633
CoAP, 649
DDoS, 629–630
DTLS, 649–650
internet of objects, 630–631
OSCAR, 649
security contributions, 648
smart cities, 631
SVELTE, 651
threats, 631–632

SelecWeb, 330, 343, 344
See also Web frameworks

Semantically enriched computational
intelligence (SECI), 22

Sentiment analysis (SA)
Arabic text classifications, 37, 40–41
driver’s feeling and opinions, 38, 50
entity, 598
event detection, social media, 39–40
lexicon, 40, 46
SAP HANA, 38
test components, 597
tokenization, 271

Shortest paths
Apache Spark, 186
big data (see Big data)
characteristics, 186
computation, 186
graph-based software, 185
graph computation approaches, 192–202
multiple queries, 206–207
single queries, 204–206

Single board computers (SBC)
ARM, 352
clusters, 350
deployment of clusters, 370
DM-Clusters (see DM-Clusters)
energy consumption, 372, 373
Hadoop (see Hadoop)
Hardkernel Odroid platform, 353–355
low-cost low-power ARM-based, 372
RPi, 352–353

Smart cities
AI technology, 161
automatic detection, 55–56
concept, 2–9
disaster and emergency management

systems, 160
dynamic monitoring and management, 159
EdSC (see Event-driven smart city (EdSC))

ES (see Enterprise system (ES))
event detection system, 56
GPU-based, 161
HPC (see High performance computing

(HPC))
hybrid methods (see Hybrid methods)
integrated ICT systems, 167
literature review, 57–58
mobility, 160
open source (see Open source)
runtime testing (see Runtime testing)
security testing (see Security testing)
service-oriented architecture, 2
software quality (see Software quality)
spatial intelligence, 4
specific enhancements, 56–57
technological foundations (see Smart City

technological foundations)
transportation, 39
Word cloud, 9

Smart city systems
definitions, 2–9
enterprises (see Enterprise system (ES))
ICT and IoT, 1

Smart city technological foundations
applications and systems, 21–23
big data, 18–20
HPC, 18–20
IoT, 17–18
PLS applications, 26
service-based distributed computing,

16–17
Smart infrastructure

data mining algorithms, 492
Hadoop (see Hadoop)
HPC and machine learning (see High

performance computing (HPC))
performance analysis (see Performance

analysis)
research publications, 492
technological advancements, 80

Smart markets, 284–286, 291, 300, 304, 306
Smart mobility, 2, 21, 22, 115, 160, 187
Smart society, 8, 20, 22, 57, 159, 187, 220
Smart transportation

BDSPG, 192
dataset, 202–204
environmental data, 123
infrastructures, 22, 57, 135, 160
literature review, 187–192
multiple queries, 206–207
probe vehicles and people data, 122
relative speedup, 208–209

664 Index

Smart transportation (cont.)
shortest paths (see Shortest paths)
single shortest path, 204–206
smart card data, 123
social network data, 122
speedup, 208
traffic flow sensors, 121
VIP, 122

Social media analytics, 18, 21, 22, 39–40,
56–60, 74, 83, 187, 271, 273, 491

application areas, 18
event detection, 39–40, 58
smart societies, 74
spatiotemporal experiences, 21, 55, 56, 58
traffic event detection, 80, 122
twitter (see Twitter data analytics)

Software debugging, 519, 521–526
Software engineering, 291, 580, 581, 592
Software licenses

framework, 552–554
permissive, 545
selected, 548–551
strong copyleft, 545
weak copyleft, 545

Software quality
attributes, 519
big data (see Big data)
debugging, 519, 522–526
efficiency, 646
features, 301
mining big data, 528–530
testing, 521–522

Software testing, 11, 519–522, 526, 530, 646
Sparse linear system

direct methods
Gaussian elimination, 380
LU Factorisation, 380

experimental setup, 397–398
iterative methods

Gauss-Seidel method, 381
Jacobi method, 381
Krylov subspace methods, 382
SOR, 381–382
test of convergence, 382

matrix storage formats
COO, 383
CSR, 383
DIA, 384
ELLPACK format, 383
MSR, 383

motivation and problem statement,
378–379

parallel methods, 386
SpMV, 378

Sparse matrix-vector multiplication (SpMV),
378, 379, 384, 386–387, 389,
391–393, 402–404

algorithm, 409–410
computation techniques, 417
GPUs (see Graphical processing units

(GPUs))
and iterative methods, 410–411
performance analysis (see Performance

analysis)
scientific computation unit, 409
storage formats, 417

Spring, 330–333, 340–344
Statistical analysis

analytical tool, 459
autoregressive integrated moving average,

118, 125–127
Kalman filtering, 118
machine learning (see Machine learning)

Storm tool, 457, 481
STRmix, 242–243
Structural equation modeling (SEM)

construct reliability and validity, 24–25
inner/structural model, 25
PLS, 24, 26
reflective vs. formative constructs, 23–24

Supercomputers, 19, 56, 145, 146, 204, 209,
210, 229, 230, 412, 430, 433, 434,
568, 569, 577

Supply chain management
activities in healthcare, 269
big data analytics, 270–271
challenges, 276
E-SCM, 268–269
opportunities, 274–276
twitter data (see Twitter data analytics)
See also Healthcare

Support vector machine (SVM), 39, 40, 65,
119, 120, 125, 127–130, 138, 144,
168, 274, 312, 529

Support vector regression (SVR), 127
SVELTE, 651

T
Talend, 461, 483
TensorFlow, 172
TestGenApp, 599
Timed Automata (TA)

ETAIO, 638–639

Index 665

extended, 634–635
inputs and outputs, 637
labeled transition systems, 633–634
semantics of extended timed, 635–636
UPPAAL, 600–602

Timed input–output LTS (TIOLTS), 637–640,
642

Traffic congestion
accidents, 121
GPS data, 82
pair algorithm, 190
pollution, 80
in Saudi Arabia, 38
SVM, 40

Traffic prediction
DL, 175, 180
hybrid methods (see Hybrid methods)
LSTM, 165
machine learning methods (see Machine

learning)
multiple sources, 122
parallel big data platforms, 116
single prediction method, 119–120
statistical methods (see Statistical analysis)

TrueAllele, 235, 237, 240, 244
TTCN-3 test system for Runtime Testing

(T4RT), 590, 596–599, 605, 644
Twitter data analytics

big data
in healthcare, 272–273
in supply chain management, 272–274

collection, 42
cost-effective way, 56, 74
and Facebook, 116, 122
fuzzy technique, 58
Google Maps Geocoding API, 19
intensity, 72–74
JSON data, 61
location extraction, 45
road traffic, 40
SA, 46
in Saudi Arabia, 38
shortest path graph computation

approaches, 193–201
social media

data source, 60
networking, 271

spatio-temporal event detection purposes,
58

traffic events detection, 45–46
traffic in London, 71

V
Vampir toolset, 436
Variable number of tandem repeats (VNTRs),

217
Verdicts, 598, 640, 644–647
Virtual backbone scheduling (VBS), 613, 614

W
Warps, 412–417, 420, 423
Web frameworks

AHP, 330
applications and services, 329, 330
CodeIgniter, 333–334, 339–340
collection of packages, 331
developer criteria, 335
Django, 333
evaluation process, 337
literature survey, 330
MVC architecture, 330
rails, 332
ranking, 341
software applications, 329
Spring, 333, 340–341
user criteria, 336
WebSelec, 342–344
world wide web, 332

Wireless sensor networks (WSNs)
challenging issues, 610
fault tolerant techniques, 614
radio model, 619
station/sink and multiple clusters, 619
techniques

holistic, 618
proactive, 612–616
reactive, 613, 616–618

X
Xeon Phi, 229, 378, 384, 387–388, 405

Y
Yet Another Resource Negotiator (YARN),

364, 366, 371, 456, 462, 481, 564,
569

	Preface
	Contents
	About the Editors
	1 Enterprise Systems for Networked Smart Cities
	1.1 Introduction
	1.2 The Concept of Smart City
	1.3 Enterprise Systems: Technology and Evolution
	1.3.1 Information Technology in Organizations
	1.3.2 About Enterprise Systems
	1.3.3 Evolution of Enterprise Systems
	1.3.4 Definitions of Enterprise Systems
	1.3.5 Business Process
	1.3.6 Components of Enterprise Systems
	1.3.7 The Architecture of Enterprise Systems

	1.4 Technological Foundations of Smart Cities
	1.4.1 Service-Based Distributed Computing
	1.4.2 Internet of Things
	1.4.3 Big Data, High-Performance Computing (HPC), and their Convergence
	1.4.4 Smart City Applications and Systems

	1.5 Structural Equation Modeling
	1.5.1 Reflective Versus Formative Constructs
	1.5.2 Partial Least Squares (PLS) Regression
	1.5.3 Construct Reliability and Validity
	1.5.4 Assessment of Inner or Structural Model
	1.5.5 PLS Applications in Smart City

	1.6 Conclusion
	References

	Part I Smart Transportation
	2 Sentiment Analysis of Arabic Tweets for Road Traffic Congestion and Event Detection
	2.1 Introduction
	2.2 Literature Review
	2.2.1 Transportation and Smart Cities
	2.2.2 Event Detection from Social Media
	2.2.3 Arabic Sentiment Analysis

	2.3 Methodology
	2.3.1 Tweets Collection
	2.3.2 Pre-processing and Analysis Configuration
	Custom Dictionaries
	Tokenization, Normalization, and Entity Extraction.

	2.3.3 Tweets Analysis
	Location Extraction
	Traffic Events Detection
	Sentiment Analysis

	2.4 Results and Dissection
	2.5 Conclusions
	References

	3 Automatic Detection and Validation of Smart City Events Using HPC and Apache Spark Platforms
	3.1 Introduction
	3.2 Literature Review
	3.3 Methodology and Design
	3.3.1 Data Acquisition
	Dataset Structure

	3.3.2 Data Preprocessing
	3.3.3 Event Detections
	Supervised Learning
	Word Frequency Analysis and Validation

	3.3.4 Geo-Extender
	3.3.5 Analysis and Visualization

	3.4 Result and Discussion
	3.5 Conclusion
	References

	4 In-Memory Deep Learning Computations on GPUs for Prediction of Road Traffic Incidents Using Big Data Fusion
	4.1 Introduction
	4.2 Literature Review
	4.3 Methodology
	4.3.1 Input Data Collection
	4.3.2 Input Data Preparation
	4.3.3 Deep Model for Prediction

	4.4 Performance Analysis
	4.4.1 Deep Model Setup
	4.4.2 Performance Metrics
	4.4.3 Incident Prediction Using Vehicles Flow
	4.4.4 Incident Prediction Using Vehicles Flow and Speed
	4.4.5 Incident Prediction Using Vehicles Flow, Speed, Occupancy, and Percent Observed
	4.4.6 Incident Class Prediction Using Vehicles Occupancy Data
	4.4.7 Discussion and Analysis

	4.5 Conclusion and Future Work
	References

	5 Hybrid Statistical and Machine Learning Methods for Road Traffic Prediction: A Review and Tutorial
	5.1 Introduction
	5.2 Traffic Flow Prediction and Modeling Methods
	5.2.1 Statistical Methods
	Kalman Filtering
	Autoregressive Integrated Moving Average

	5.2.2 Machine Learning Methods
	Artificial Neural Networks
	Support Vector Machines

	5.2.3 Limitations of Using a Single Prediction Method
	5.2.4 Hybrid Traffic Flow Analysis and Prediction Methods

	5.3 Transportation Data Sources
	5.3.1 Traffic Flow Sensors
	5.3.2 Video Image Processors
	5.3.3 Probe Vehicles and People Data
	5.3.4 Social Network Data
	5.3.5 Smart Card Data
	5.3.6 Environmental Data

	5.4 Big Data Analysis and Processing Tools
	5.4.1 Hadoop
	Hadoop_GIS Tool

	5.4.2 Apache Spark

	5.5 Process of Hybrid Prediction
	5.5.1 Statistical Analysis
	Autoregressive Integrated Moving Average

	5.5.2 Machine Leaning Analysis
	Support Vector Machine

	5.5.3 Hybrid Autoregressive Integrated Moving Average–Support Vector Machine Methodology
	5.5.4 Model Evaluation

	5.6 Conclusions
	References

	6 Comparison of Decision Trees and Deep Learning for Object Classification in Autonomous Driving
	6.1 Introduction
	6.2 Literature Review
	6.3 Dataset and Data Preparation
	6.4 Algorithms
	6.4.1 Decision Tree
	6.4.2 Support Vector Machine
	6.4.3 Deep Learning

	6.5 Proposed Method
	6.5.1 Training
	6.5.2 Testing
	6.5.3 Comparison

	6.6 Results and Analysis
	6.6.1 Confusion Matrix
	6.6.2 Sensitivity and Specificity
	6.6.3 Kappa and Speed

	6.7 A Detailed Comparison of C5.0 and Deep Learning Results
	6.8 Conclusion
	References

	7 A Smart Disaster Management System for Future Cities Using Deep Learning, GPUs, and In-Memory Computing
	7.1 Introduction
	7.2 Background Material
	7.2.1 Graphical Processing Units
	7.2.2 In-Memory Computing
	7.2.3 Deep Learning
	7.2.4 Microscopic Models and Tools

	7.3 Related Work
	7.4 Disaster Management System
	7.4.1 Input Layer
	7.4.2 Data Processing Layer
	7.4.3 Deep Learning Layer

	7.5 Datasets
	7.6 Analysis and Comparison
	7.6.1 Deep Model Setup
	7.6.2 Input Dataset Schema
	7.6.3 Performance Metrics
	7.6.4 Performance Analysis

	7.7 Conclusion and Future Work
	References

	8 Parallel Shortest Path Big Data Graph Computations of US Road Network Using Apache Spark: Survey, Architecture, and Evaluation
	8.1 Introduction
	8.2 Literature Review
	8.3 Methodology and Design
	8.3.1 Dataset

	8.4 Results and Discussion
	8.4.1 Single Shortest Path Query Results
	8.4.2 Multiple Shortest Path Query Results
	8.4.3 Speedup
	8.4.4 Relative Speedup

	8.5 Conclusion
	References

	Part II Smart Healthcare
	9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling
	9.1 Introduction
	9.2 Background Material
	9.2.1 DNA Biology and Genetics
	9.2.2 Forensic Science
	9.2.3 DNA Mixture
	9.2.4 Technologies for DNA Profiling
	9.2.5 Genetic Markers
	9.2.6 Factors Increasing the Complexity of DNA Profiles
	9.2.7 Likelihood Estimator
	9.2.8 HPC Systems
	9.2.9 Parallel Frameworks
	9.2.10 High-Performance Computing in Bioinformatics

	9.3 DNA Profiling: General Methods
	9.4 DNA Profiling Using Likelihood Ratio
	9.5 Estimating Number of Contributors for DNA Profiling
	9.6 Software Tools for DNA Profiling
	9.6.1 DNA Mix
	9.6.2 LRmix Studio
	9.6.3 TrueAllele
	9.6.4 Lab Retriever
	9.6.5 CeesIt
	9.6.6 LikeLTD
	9.6.7 DNAMixture
	9.6.8 Kongoh
	9.6.9 EuroForMix
	9.6.10 NOCIt
	9.6.11 STRmix
	9.6.12 A Comparison of the DNA Profiling Tools

	9.7 Conclusion
	References

	10 An Architecture to Improve the Security of Cloud Computing in the Healthcare Sector
	10.1 Introduction
	10.2 Cloud Computing: An Overview
	10.2.1 Types of Cloud Services: IaaS, PaaS, and SaaS
	10.2.2 Advantages of Cloud Computing

	10.3 Cloud Computing and Healthcare
	10.4 Cloud Computing Security
	10.5 Methods of Cloud Security
	10.6 Security Threats in the Healthcare Cloud
	10.7 Secure Healthcare Cloud Architecture
	10.8 Our Architecture
	10.8.1 Results

	10.9 Conclusion
	References

	11 The Role of Big Data and Twitter Data Analytics in Healthcare Supply Chain Management
	11.1 Introduction
	11.2 Background
	11.2.1 Supply Chain
	11.2.2 Supply Chain Activities in Healthcare
	11.2.3 Big Data
	11.2.4 Big Data Analytics
	11.2.5 Twitter Data

	11.3 Big Data and Twitter Data in Healthcare or Supply Chain Management
	11.3.1 Big Data in Supply Chain Management
	11.3.2 Big Data in Healthcare
	11.3.3 Twitter Data Analytics in Supply Chain Management

	11.4 Big Data in Healthcare Supply Chains
	11.4.1 Opportunities
	11.4.2 Challenges

	11.5 Conclusion and Future Research Directions
	References

	Part III Miscellaneous Applications
	12 A Mobile Cloud Framework for Context-Aware and Portable Recommender System for Smart Markets
	12.1 Introduction
	12.2 Background and Related Research
	12.2.1 Types of Recommender Systems
	12.2.2 Context-Aware Recommender Systems
	12.2.3 Recommender Systems for E-Type Software
	12.2.4 Cloud-Based Recommender Systems

	12.3 Architecture of the Recommendation Framework
	12.3.1 Architecture and Patterns for the Framework
	12.3.2 Context-Aware Mobile Computing Layer
	12.3.3 Computation-Based Cloud Computing Layer

	12.4 Algorithms and Technologies for Framework Implementation
	12.4.1 Algorithms for Recommender System
	Algorithm 1: Recommend-Products
	Algorithm 2: Similar-Users-Product-Ratings
	Algorithm 3: Similar-Product-Ratings Algorithm

	12.4.2 Tools and Technologies for Framework Implementation
	12.4.3 Implementing Context-Aware Mobile Computing Layer
	12.4.4 Implementing Processing Based Cloud Computing Layer

	12.5 Qualitative Evaluation of the Framework
	12.5.1 Platform, Metrics, and Dataset for Evaluation
	12.5.2 Results for Framework Evaluation
	Accuracy of Framework's Recommendations
	Efficiency of the Framework

	12.5.3 Threats to the Validity of Framework

	12.6 Conclusions and Future Research
	References

	13 Association Rule Mining in Higher Education: A Case Study of Computer Science Students
	13.1 Introduction
	13.2 Related Work
	13.2.1 Classification in Education
	13.2.2 Background to Association Rule Mining
	13.2.3 Association Rule Mining in Education

	13.3 Experimental Settings and Results
	13.3.1 Experimental Settings
	Setting of Apriori Parameters

	13.3.2 Results of the Experiments

	13.4 Conclusion
	References

	14 SelecWeb: A Software Tool for Automatic Selection of Web Frameworks
	14.1 Introduction
	14.2 Literature Survey
	14.3 Web Frameworks
	14.3.1 General
	14.3.2 Ruby on Rails
	14.3.3 Django
	14.3.4 Spring
	14.3.5 CodeIgniter

	14.4 Selection Criteria
	14.4.1 Developer Criteria
	14.4.2 User Criteria

	14.5 Evaluation
	14.5.1 Evaluation Process
	14.5.2 Ruby on Rails
	14.5.3 Django
	14.5.4 CodeIgniter
	14.5.5 Spring

	14.6 Discussion
	14.7 Example Scenario
	14.8 Conclusion
	References

	Part IV Big Data and High Performance Computing
	15 On Performance of Commodity Single Board Computer-Based Clusters: A Big Data Perspective
	15.1 Introduction
	15.2 The Single Board Computers
	15.3 Design and Architecture of the DM-Clusters
	15.3.1 Components and the Design of the DM-Clusters
	15.3.2 Raspbian and Ubuntu MATE Image Installation

	15.4 Performance Evaluation of DM-Clusters
	15.4.1 Energy Consumption Approximation
	15.4.2 CPU Performance
	15.4.3 Storage Performance
	15.4.4 Network Performance

	15.5 Performance of Hadoop Benchmark Tests on Clusters
	15.5.1 The Pi Computation Benchmark
	15.5.2 The Wordcount Benchmark

	15.6 Discussion
	15.7 Conclusions and Future Work
	References

	16 Parallel Iterative Solution of Large Sparse Linear Equation Systems on the Intel MIC Architecture
	16.1 Introduction
	16.1.1 Motivation and Problem Statement

	16.2 Background
	16.2.1 Solving Large Sparse Linear Equation Systems
	Direct Methods
	Iterative Methods

	16.2.2 Test of Convergence for Iterative Methods
	16.2.3 Sparse Matrix Storage Formats
	Coordinate Storage (COO)
	Compressed Sparse Row (CSR)
	Modified Sparse Row (MSR)
	The ELLPACK (ELL) Format
	Diagonal Storage (DIA)

	16.2.4 Sparse Matrix-Vector Multiplication (SpMV)
	16.2.5 Intel MIC Architecture

	16.3 Related Work
	16.3.1 Parallel Methods for Solving Linear Equation Systems
	16.3.2 Sparse Matrix-Vector Multiplication
	16.3.3 Studies Related to the Intel Xeon Phi Coprocessor

	16.4 Methodology
	16.4.1 SpMV
	16.4.2 Jacobi

	16.5 Performance Evaluation
	16.5.1 Experimental Setup
	16.5.2 Experimental Results of Jacobi on Multi-Core Nodes
	16.5.3 Experimental Results of Jacobi on Intel MIC
	16.5.4 Comparison Between a Multi-Core Node and Intel MIC
	16.5.5 Sparse Matrix-Vector Multiplication (SpMV) Results

	16.6 Conclusion and Future Work
	References

	17 Performance Characteristics for Sparse Matrix-Vector Multiplication on GPUs
	17.1 Introduction
	17.2 SpMV and Iterative Methods
	17.3 GPU: An Overview
	17.3.1 Architecture
	17.3.2 Performance Characteristics: Discussion
	17.3.3 Performance Optimization Strategies
	17.3.4 Performance Optimization: Discussion

	17.4 SpMV Storage Formats and Computation Techniques
	17.5 Performance Analysis of Notable Sparse Storage and Computation Techniques
	17.5.1 Sparse Storage and SpMV Kernels: Qualitative Analysis
	17.5.2 Performance Comparison

	17.6 Conclusion
	References

	18 HPC-Smart Infrastructures: A Review and Outlook on Performance Analysis Methods and Tools
	18.1 Introduction
	18.2 HPC Applications and Benchmarking Suites
	18.3 Performance Analysis of HPC Applications: Literature Review
	18.3.1 Performance Analysis Metrics (Theoretical)
	18.3.2 HPC on the Clouds
	18.3.3 Performance Analysis Tools
	18.3.4 Performance Analysis of Exascale Systems
	Energy-Efficient Systems (Embedded Systems Nodes)

	18.4 Discussion and Analysis
	18.5 Future Research and Issues
	18.6 Conclusions
	References

	19 Big Data Tools, Technologies, and Applications: A Survey
	19.1 Introduction
	19.2 Open-Source Big Data Tools and Technologies
	19.2.1 Hadoop
	19.2.2 MapReduce
	19.2.3 YARN
	19.2.4 Apache Pig
	19.2.5 Apache Hive
	19.2.6 Apache Storm
	19.2.7 Spark
	19.2.8 Spark Streaming
	19.2.9 Blink DB
	19.2.10 Berkeley Data Analytics Stack
	19.2.11 MongoDB
	19.2.12 R
	19.2.13 Dryad
	19.2.14 High-Performance Computing Cluster
	19.2.15 Neo4j
	19.2.16 Pentaho
	19.2.17 Talend
	19.2.18 Oracle

	19.3 Commercial Tools and Techniques for Big Data
	19.3.1 Syncfusion
	19.3.2 Cloudera
	19.3.3 Pivotal HD
	19.3.4 EC2
	19.3.5 Tableau
	19.3.6 IBM Info Sphere
	19.3.7 SAS
	19.3.8 Teradata Aster

	19.4 Key Applications of Big Data
	19.4.1 Healthcare and Smart City Applications of Big Data
	19.4.2 Graph-Based Applications of Big Data
	19.4.3 Genome Sequence Annotation Applications of Big Data

	19.5 Conclusion
	References

	20 Big Data for Smart Infrastructure Design: Opportunities and Challenges
	20.1 Introduction
	20.2 Hadoop
	20.2.1 Hadoop Distributed File System
	20.2.2 Map-Reduce

	20.3 Challenges and Opportunities with Big Data
	20.4 Data Locality and Data Placement Issues in Hadoop
	20.5 Load Balancing
	20.6 Heterogeneity Issues
	20.7 Scheduling Issues
	20.8 In-Memory Computation
	20.9 Multiple Query Optimization
	20.10 Input/Output Issues
	20.11 Conclusion
	References

	21 Software Quality in the Era of Big Data, IoT and Smart Cities
	21.1 Introduction
	21.2 Software Quality
	21.2.1 Software Testing
	21.2.2 Software Debugging

	21.3 Model Checking
	21.4 Big Data
	21.5 Big Data and Software Quality
	21.5.1 Mining Big Data

	21.6 Summary, Conclusions, and Future Work
	References

	22 Open Source and Open Data Licenses in the Smart Infrastructure Era: Review and License Selection Frameworks
	22.1 Introduction
	22.2 Background
	22.3 Related Work
	22.4 Open Source Software, Projects, and Applications
	22.5 Open Source Software Licenses
	22.5.1 Permissive Licenses
	22.5.2 Weak Copyleft Licenses
	22.5.3 Strong Copyleft Licenses

	22.6 Open Data License
	22.7 Selected Licenses
	22.7.1 Software Licenses
	22.7.2 Open Data Licenses

	22.8 The Open Source Software License Selection Framework
	22.9 The Open Data License Selection Framework
	22.10 Conclusion
	References

	23 Big Data and HPC Convergence for Smart Infrastructures: A Review and Proposed Architecture
	23.1 Introduction
	23.2 HPC and Big Data Programming Models and Frameworks
	23.2.1 Hadoop
	23.2.2 Spark
	23.2.3 MPI (Message-Passing Interface)
	23.2.4 OpenMP
	23.2.5 PGAS

	23.3 HPC and Big Data Frameworks and Their Differences
	23.3.1 Hardware
	23.3.2 Resource Management
	23.3.3 Fault Tolerance
	23.3.4 Programming Model

	23.4 Big Data and HPC Challenges in the Exascale-Computing Era
	23.4.1 Data Heterogeneity
	23.4.2 Data Redundancy
	23.4.3 Data Freshness
	23.4.4 Data Confidentiality
	23.4.5 Big Data Access and Processing
	23.4.6 Scalability
	23.4.7 Engineering
	23.4.8 Data Storage

	23.5 Research Related to HPC and Big data Convergence
	23.6 Challenges of HPC-Big Data Convergence
	23.7 Driving Forces and Future Aspects
	23.7.1 The Internet of Things (IoT) and Smart Cities
	23.7.2 Cognitive Technology

	23.8 The Proposed HPC-Big Data Convergence Architecture Based on Design Patterns
	23.9 Conclusion
	References

	Part V Internet of Things (IoT)
	24 Towards a Runtime Testing Framework for Dynamically Adaptable Internet of Things Networks in Smart Cities
	24.1 Introduction
	24.2 Runtime Testing for Structural Adaptations
	24.2.1 Online Dependency Analysis
	24.2.2 Online Test Case Selection
	24.2.3 Constrained Test Component Placement
	24.2.4 Test Isolation and Execution Support

	24.3 Runtime Testing of Behavioral Adaptations
	24.3.1 Prerequisites: UPPAAL Timed Automata
	24.3.2 Differencing Between Behavioral Models
	24.3.3 Old Test Suite Classification
	24.3.4 Test Generation And Recomputation
	24.3.5 Test Case Concretization

	24.4 Conclusion
	References

	25 HCDSR: A Hierarchical Clustered Fault Tolerant Routing Technique for IoT-Based Smart Societies
	25.1 Introduction
	25.2 Taxonomy
	25.2.1 Proactive Techniques
	25.2.2 Reactive Techniques

	25.3 Previous Work
	25.3.1 Proactive Techniques
	25.3.2 Reactive Techniques
	25.3.3 Holistic Techniques

	25.4 Network and Radio Model
	25.5 Proposed Technique
	25.5.1 Network Setup
	25.5.2 Route Discovery and Routing Algorithm
	25.5.3 Fault Tolerance

	25.6 Simulation Results and Discussion
	25.6.1 Experimental Setup
	25.6.2 Analysis of HCDSR

	25.7 Conclusions
	References

	26 Security Testing of Internet of Things for Smart City Applications: A Formal Approach
	26.1 Introduction
	26.2 Preliminaries
	26.2.1 Internet of Objects
	26.2.2 Smart Cities
	26.2.3 Threats
	26.2.4 Challenges

	26.3 Extended Timed Automata
	26.3.1 Timed Labeled Transition Systems
	26.3.2 Extended Timed Automata
	26.3.3 Semantics of Extended Timed Automata
	26.3.4 Extended Timed Automata with Inputs and Outputs
	26.3.5 Parallel Composition of ETAIO with Shared Integer Variables

	26.4 Conformance Testing Framework
	26.4.1 Conformance Relation
	26.4.2 Analog-Clock Tests
	26.4.3 Test Execution and Correctness Requirements

	26.5 Proposed Approach
	26.5.1 Test Generation and Selection
	26.5.2 Test Execution and Verdict Analysis
	26.5.3 Cloud Testing
	26.5.4 Test Execution Platform as-a-Service

	26.6 Related Work
	26.7 Conclusion
	References

	Index

