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Preface

This proceedings volume consists of selected papers presented at the Ninth Inter-

national Conference on Computer-Aided Scheduling of Public Transport (CASPT

2004), which was held at the Hilton San Diego Resort and Conference Center in

San Diego, California, USA, from August 9-11, 2004. The CASPT 2004 conference

is the continuation of a series of international workshops and conferences present-

ing recent research and progress in computer-aided scheduling in public transport.

Previous workshops and conferences were held in:

• Chicago (1975)

• Leeds (1980)

• Montreal (1983 and 1990)

• Hamburg (1987)

• Lisbon (1993)

• Cambridge, Mass. (1997)

• Berlin (2000)1

1 While there were no formal proceedings for the first workshop (only pre-prints were dis-

tributed to participants), the subsequent workshops and conferences were well documented:

Wren, A. (ed.) (1981). Computer Scheduling of Public Transport, North-Holland, Am-

sterdam.

Rousseau, J.-M. (ed.) (1985). Computer Scheduling of Public Transport 2, North-

Holland, Amsterdam.

Daduna, J.R. and A. Wren (eds.) (1988). Computer-Aided Transit Scheduling, Lecture

Notes in Economics and Mathematical Systems 308, Springer, Berlin.

Desrochers, M. and J.-M. Rousseau (eds.) (1992). Computer-Aided Transit Scheduling,

Lecture Notes in Economics and Mathematical Systems 386, Springer, Berlin.

Daduna, J.R., I. Branco, and J.M.P. Paixão (eds.) (1995). Computer-Aided Transit

Scheduling, Lectures Notes in Economics and Mathematical Systems 430, Springer, Berlin.

Wilson, N.H.M. (ed.) (1999). Computer-Aided Transit Scheduling, Lecture Notes in

Economics and Mathematical Systems 471, Springer, Berlin.

Voß, S. and J.R. Daduna (eds.) (2001). Computer-Aided Scheduling of Public Transport,

Lecture Notes in Economics and Mathematical Systems 505, Springer, Berlin.
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The scope and purpose of the conference has broadened significantly since 1975,

although it retains as its core the primary mission of advancing the state of the art

and the state of the practice in computer-aided systems in public transport (which

also let us choose the title of this book). Yet, this volume illustrates a greater breadth

of subjects in this area. The common theme of these conferences remains on the use

of computer-aided methods and operations research techniques to improve:

• Information management

• Network and route planning

• Vehicle and crew scheduling and rostering

• Vehicle monitoring and management

• Practical experience with scheduling and public transport planning methods

The conference was organized for the benefit of individuals from transport oper-

ators, consulting firms and academic institutions involved in research, development

or utilization of computer-aided scheduling methods in public transport. A total of

60 attendees were present for the conference in San Diego. During the conference, a

total of 39 presentations were given in these subject areas, representing both research

and applications. Of these, a full 35 involved formal papers. These papers were then

peer-reviewed, resulting in a select number of high quality papers (22) that are rep-

resented in this volume.

The organization of this volume follows the more general structure of the confer-

ence itself. Consistent with previous volumes, the initial section is organized around

the topic of vehicle and crew scheduling. These papers highlight significant advances

in both areas, but also illustrate that very useful and computationally efficient meth-

ods are being developed for integrated vehicle and crew scheduling.

The second section deals more specifically with vehicle routing and timetabling.

In this section, various new methods are advanced for establishing public transport

timetables for railways, ferries, and school buses. For many of these cases, new vehi-

cle routing methods must also be devised to enhance the vehicle scheduling process.

Of considerable note are the advances in periodic vehicle scheduling, which is rele-

vant to short-distance rail systems.

The third section addresses a growing topic in transport service and performance

monitoring, operations management and control, and dispatching. These topics re-

flect a considerable growth in interest in the improvement of transport operations

through the use of decision tools. The papers in this section cover applications from

bus and rail vehicle tracking and travel time prediction. A number of the papers cover

decision-making techniques to improve operations when there are inevitable service

disruptions.

The final section includes papers dealing with more strategic-level planning of

public transport services. Topics covered in these areas include network design, op-

timal fare and tolling policies, line planning, fleet sizing, and the level of service for

demand-responsive transit services. These papers reflect a growing interest in the ap-

plication of operations research tools to more strategic decisions by transit operators.

We believe that this volume captures some sense of the state of the art in this

field. In this spirit, we realize that there have been significant advances since the first
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workshop in 1975 in the capabilities for information processing and computation,

allowing us now to address and solve problems that were previously beyond reach.

At the same time, we look forward to further advances, as they may be relayed in

future conferences: in Leeds in 2006, and (tentatively) in Hong Kong in 2009.
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Part I

Vehicle and Crew Scheduling





A Bundle Method for Integrated Multi-Depot Vehicle

and Duty Scheduling in Public Transit

Ralf Borndörfer, Andreas Löbel, and Steffen Weider

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, Email

{borndoerfer,loebel,weider}@zib.de

Summary. This article proposes a Lagrangean relaxation approach to solve integrated duty

and vehicle scheduling problems arising in public transport. The approach is based on a ver-

sion of the proximal bundle method for the solution of concave decomposable functions that

is adapted for the approximate evaluation of the vehicle and duty scheduling components. The

primal and dual information generated by this bundle method is used to guide a branch-and-

bound type algorithm.

Computational results for large-scale real-world integrated vehicle and duty scheduling

problems with up to 1,500 timetabled trips are reported. Compared with the results of a classi-

cal sequential approach and with reference solutions, integrated scheduling offers remarkable

potentials in savings and drivers’ satisfaction.

1 Introduction

The process of operational planning in public transit is traditionally organized in

successive steps of timetabling, vehicle scheduling, duty scheduling, duty rostering,

and crew assignment. These tasks are well investigated in the optimization and oper-

ations research literature. And enormous progress has been made in both the theoret-

ical analysis of these problems and in the computational ability to solve them. For an

overview see the proceedings of the last five CASPT conferences (Voß and Daduna

(2001), Wilson (1999), Daduna et al. (1995), Desrochers and Rousseau (1992), and

Daduna and Wren (1988)).

It is well known that the integrated treatment of planning steps discloses ad-

ditional degrees of freedom that can lead to further efficiency gains. The first and

probably best known approach in this direction is the so-called sensitivity analysis, a

method on the interface between timetabling and vehicle scheduling that uses slight

shiftings of trips in the timetable to improve the vehicle schedule. The method has

been used with remarkable success in HOT and HASTUS, see Daduna and Völker

(1997) and Hanisch (1990).
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Vehicle and duty scheduling, the topic of this article, is another area where in-

tegration is important. The need is largest in regional scenarios, which often have

few relief points for drivers, such that long vehicle rotations can either not be cov-

ered with legal duties at all or only at very high cost. In such scenarios the powerful

optimization tools of sequential scheduling are useless. Rather, the vehicle and the

duty scheduling steps must be synchronized to produce acceptable results, i.e., an

integrated vehicle and duty scheduling method is indispensable. Urban scenarios do,

of course, offer efficiency potentials as well.

The current planning systems provide only limited support for integrated vehicle

and duty scheduling. There are frameworks for manual integrated scheduling that

allow to work on vehicles and duties simultaneously, rule out infeasibilities, make

suggestions for concatenations, etc. Without integrated optimization tools, however,

the planner must still build vehicle schedules by hand, anticipating the effects on

duty scheduling by skill and experience.

The literature on integrated vehicle and duty scheduling is also comparably scant.

The first article on the integrated vehicle and duty scheduling problem (ISP) that we

are aware of was published in 1983 by Ball et al. (1983). They describe an ISP at

the Baltimore Metropolitan Transit Authority and develop a mathematical model for

it. However, they propose to solve this model by decomposing it into its vehicle

and duty scheduling parts, i.e., the model is integrated, but the solution method is

sequential.

For the next two decades, the predominant approach to the ISP was to include

duty scheduling considerations into a vehicle scheduling method or vice versa. The

first approach is, e.g., presented by Scott (1985) and Darby-Dowman et al. (1988),

who propose two-step methods that first include some duty scheduling constraints

in a vehicle scheduling procedure and afterwards solve the duty scheduling problem

in a second step. Examples of the opposite approach are the articles of Tosini and

Vercellis (1988), Falkner and Ryan (1992), and Patrikalakis and Xerocostas (1992).

They concentrate on duty scheduling and take the vehicle scheduling constraints and

costs heuristically into account. A survey of integrated approaches until 1997 can be

found in Gaffi and Nonato (1999).

The complete integration of vehicle and crew scheduling was first investigated

in a series of publications by Freling and coauthors (Freling (1997), Freling et al.

(2001a), Freling et al. (2001b), Freling et al. (2003)). They propose a combined

vehicle and duty scheduling model and attack it by integer programming methods,

especially column generation and Lagrangean relaxation is used. Computational re-

sults on several problems from the Rotterdam public transit company RET with up to

300 timetabled trips, and from Connexxion, the largest bus company in the Nether-

lands, with up to 653 timetabled trips are reported. A branch-and-price approach to

ISP instances involving a single type of vehicles was also described by Friberg and

Haase (1999) and tested on artificial data. Another approach to the single-depot ISP is

presented in Haase et al. (2001). There a set partitioning model for the duty schedul-

ing problem is used that ensures that also a vehicle schedule can be built. Additional

constraints are introduced to count the number of vehicles. This model was tested on
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artificial data with up to 350 timetabled trips and up to 700 tasks on timetabled trips.

It was solved by a branch and price approach using CPLEX as LP-solver.

We propose in this article an integrated vehicle and duty scheduling method sim-

ilar to that of Freling et al. Our main contribution is the use of bundle techniques

for the solution of the Lagrangean relaxations that come up there. The advantages

of the bundle method are its high quality bounds and automatically generated pri-

mal information that can both be used to guide a branch-and-bound type algorithm.

We apply this method to real-world instances from several German carriers with up

to 1,500 timetabled trips. As far as we know, these are the largest and most com-

plex instances that have been tackled in the literature using an integrated scheduling

approach. Our optimization module IS-OPT has been developed in a joint research

project with IVU Traffic Technologies AG (IVU), Mentz Datenverarbeitung GmbH

(mdv), and the Regensburger Verkehrsbetriebe (RVB). It is incorporated in IVU’s

commercial scheduling system MICROBUS 2.

The article is organized as follows. Section 2 gives a formal description of the

ISP and states an integer programming model that provides the basis of our approach.

Section 3 describes our scheduling method. We discuss the Lagrangean relaxation

that arises from a relaxation of the coupling constraints for the vehicle and the duty

scheduling parts of the model, the solution of this relaxation by the proximal bun-

dle method, in particular, the treatment of inexact evaluations of the vehicle and

duty scheduling component functions, and the use of primal and dual information

generated by the bundle method to guide a branch-and-bound algorithm. Section 4

reports computational results for large-scale real-world data. In particular, we apply

our integrated scheduling method to mostly urban instances for the German city of

Regensburg with up to 1,500 timetabled trips.

2 Integrated Vehicle and Duty Scheduling

The integrated vehicle and duty scheduling problem contains a vehicle and a duty

scheduling part. We describe these individual parts first and conclude with the inte-

grated scheduling problem. The exposition assumes that the reader is familiar with

the terminology of vehicle and duty scheduling; suitable references are Löbel (1999)

for vehicle scheduling and Borndörfer et al. (2003) for duty scheduling.

We use the following notation for dealing with vectors: x ∈ XA, X ⊂ �, A is

some index set. For a ∈ A, xa ∈ X denotes the component of x corresponding to a.

For B ⊂ A, xB denotes the subvector xB := (xa)a∈B . Finally, x(B) :=
∑

a∈B xa,

B ⊂ A, denotes a sum over a subset of components of x.

The vehicle scheduling part of the ISP is based on an acyclic directed multigraph

G = (T ∪ {s, t},D). The nodes of G are the set T of timetabled trips plus two

additional artificial nodes s and t, which represent the beginning and the end of a

vehicle rotation, respectively; s is the source of G and t the sink. The arcs D of G
are called deadheads, the special deadheads that emanate from the source s are the

pull-out trips, those entering the sink t are the pull-in trips. Associated with each

deadhead a is a depot ga ∈ G from some set G of depots (i.e., vehicle types), that
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indicates a valid vehicle type, and a cost da ∈ �. There may be parallel arcs in G
with different depots and costs. We denote by Dg := {a ∈ D : ga = g} the set of

deadheads that can be covered by a vehicle of type g ∈ G, by δ+
g (v) := δ+(v) ∩ Dg

the outcut of node v, restricted to arcs in Dg , and by δ−g (v) := δ−(v) ∩Dg the incut

of node v, restricted to arcs in Dg.

A vehicle rotation or block of type g ∈ G is an st-path in G that uses only

deadheads of type g, i.e., an st-path p such that p ⊆ Dg for some depot g ∈ G.

A vehicle schedule is a set of blocks such that each timetabled trip is contained in

one and only one block. The vehicle scheduling problem (VSP) is to find a vehicle

schedule of minimal cost. It can be stated as the following integer program:

(VSP) min dTy
(i) y(δ+

g (v)) − y(δ−g (v)) = 0 ∀v ∈ T , g ∈ G
(ii) y(δ+(v)) = 1 ∀v ∈ T
(iii) y(δ−(v)) = 1 ∀v ∈ T
(iv) y ∈ {0, 1}D

The duty scheduling part of the ISP also involves an acyclic digraph D = (R ∪
{s, t},L). The nodes of D consist of a set of tasks R plus two artificial nodes s
and t, which mark the beginning and the end of a part of work of a duty; again s is

the source of D and t the sink. A task r can correspond either to a timetabled trip

vr ∈ T or to a deadhead trip ar ∈ D. There may also be additional tasks independent

of the vehicle schedule that model sign-on and sign-off times and similar activities

of drivers.

Let RT and RD be the sets of tasks that correspond to a timetabled trip and

a deadhead trip, respectively. We assume that there is at least one task associated

with every timetabled trip and every deadhead trip; these tasks correspond to units

of driving work on such a trip. Several tasks for one trip indicate that this trip is

subdivided by relief opportunities to exchange a driver into several units of driving

work. The arcs L of D are called links; they correspond to feasible concatenations of

tasks in a potential duty. A part of work of a duty is an st-path p in D that corresponds

to certain legality rules and has some cost cp, again determined by certain rules. A

duty is a concatenation of one or more (usually one or two) compatible parts of work.

Denote by S the set of all such duties, and by cp, p ∈ S, their costs. Let further

Sr := {p ∈ S : r ∈ p} be the set of all duties that contain some task r ∈ R and let

Dr ⊂ D be the set of deadheads that contain task r. Given a vehicle schedule y, a

compatible duty schedule is a collection of duties such that each task that corresponds

to either a timetabled trip or a deadhead trip from the vehicle schedule is contained

in exactly one duty, while the tasks corresponding to deadhead trips that are not

contained in the vehicle schedule are not contained in any duty. The duty scheduling

problem associated with a vehicle schedule y is to find a compatible duty schedule

of minimum cost. This DSP can be stated as the following integer program:

(DSPy) min cTx
(i) x(Sr) = 1 ∀r ∈ RT

(ii) x(Sr) = ya ∀(r, a) ∈ R×D with a ∈ Dr

(iii) x ∈ {0, 1}S
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This type of model is generally solved by column generation. For duty scheduling in

public transit this was first proposed by Desrochers and Soumis (1989).

The integrated vehicle and duty scheduling problem is to simultaneously con-

struct a vehicle schedule and a compatible duty schedule of minimum overall cost.

Introducing suitable constraint matrices and vectors, the ISP reads:

(ISP) min dTy + cTx
(i) Ny = b
(ii) Ax = �

(iii) My − Bx = 0
(iv) y ∈ {0, 1}D
(v) x ∈ {0, 1}S

In this model, the multiflow constraints (ISP) (i) correspond to the vehicle scheduling

constraints (VSP) (i)–(iii); they generate a feasible vehicle schedule. The (timetabled)

trip partitioning constraints (ISP) (ii) are exactly the duty scheduling constraints

(DSPy) (i); they make sure that each timetabled trip is covered by exactly one duty.

Finally, the coupling constraints (ISP) (iii) correspond to the duty scheduling con-

straints (DSPy) (ii); they guarantee that the vehicle and duty schedules x and y are

synchronized on the deadhead trips, i.e., a deadhead trip is either assigned to both

a vehicle and a duty or to none. Note that fixing variables corresponding to dead-

head trips reduces the size of the subproblems as well as the number of coupling

constraints by logical implications.

We remark that practical versions of the ISP include several types of additional

constraints such as depot capacities, and duty scheduling base constraints (e.g., duty

type capacities, average paid/working times), which we omit in this article. The in-

clusion of such constraints in our scheduling method is, however, straightforward.

The integrated scheduling model (ISP) consists of a multicommodity flow model

for vehicle scheduling and a set partitioning model for duty scheduling on timetabled

trips. These two models are joined by a set of coupling constraints for the deadhead

trips, one for each task on a deadhead trip. The model (ISP) is the same as that used

by Freling (1997).

3 A Bundle Method

Our general solution strategy for the ISP is a Lagrangean relaxation approach. For

an introduction to this we suggest Lemarechal (2001). There also an overview of

applications and variants of Lagrangean relaxation can be found.

Relaxing the coupling constraints (ISP) (iii) in a Lagrangean way decomposes

the problem into a vehicle scheduling subproblem, a duty scheduling subproblem,

and a Lagrangean master problem. All three of these problems are large scale, but

of quite different nature. Efficient methods are available to solve vehicle schedul-

ing problems of the sizes that come up in an integrated approach with a very good

quality or even to optimality. We use the method of Löbel (1997). Duty schedul-

ing is, in fact, the hardest part. We are not aware of methods that can produce high



8 Ralf Borndörfer, Andreas Löbel, and Steffen Weider

quality lower bounds for large-scale real-world instances. However, duty scheduling

problems can be tackled in a practically satisfactory way using column generation

algorithms; see Borndörfer et al. (2003) for the algorithm we used to “solve” our

duty scheduling subproblems. In the Lagrangean master, multipliers for several tens

of thousands of coupling constraints have to be determined. Here, the complexity of

the vehicle and the duty scheduling subproblems demands a method that converges

quickly and that can be adapted to inexact evaluation of the subproblems. The proxi-

mal bundle method of Kiwiel (1995) has these properties. It further produces primal

information that can be used in a branch-and-bound algorithm to guide the branch-

ing decisions. Moreover, the large dimension of the Lagrangean multiplier space, a

potential computational obstacle, collapses by a simple dualization.

This section discusses our Lagrangean relaxation/column generation approach

to the ISP using the proximal bundle method. In a first phase, the procedure aims

at the computation of an “estimation” of a global lower bound for the ISP and at

the computation of a set of duties that is likely to contain the major parts of a

good duty schedule. This procedure constitutes the core of our integrated vehicle

and duty scheduling method. In a second phase, the bundle core is called repeatedly

in a branch-and-bound type procedure to produce integer solutions.

3.1 Lagrangean Relaxation

We consider in this subsection a restriction (ISPI) of the ISP to some subset of duties

I ⊆ S that have been generated explicitly (in some way): This set I may change

(grow and shrink) from one iteration to another in our algorithm, however, for sim-

plicity of exposition we keep it constant in the next two sections. The dynamic case

will be described in Section 3.3.

(ISPI) min dTy + cT
IxI

(i) Ny = d
(ii) AIx

I = �

(iii) My − BIx
I = 0

(iv) y ∈ {0, 1}D
(v) xI ∈ {0, 1}I

A Lagrangean relaxation with respect to the coupling constraints (ISPI) (iii) and a

relaxation of the integrality constraints (iv) and (v) results in the Lagrangean dual

(LI) max
λ






min

Ny=d,

y∈[0,1]D

(dT − λTM)y + min
AIxI=�,

xI∈[0,1]I

(cT
I + λTBI)x

I






.

Define functions and associated arguments by

fV : �RD → �, λ �→ min(dT − λTM)y; Ny = d; y ∈ [0, 1]D

f I
D : �RD → �, λ �→ min(cT + λTBI)x

I ; AIx
I = �; xI ∈ [0, 1]I

f I := fV + f I
D,
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and

y(λ) := argminy∈[0,1]D fV (λ); Ny = d

xI(λ) := argminxI∈[0,1]I f I
D(λ); AIx

I = �

breaking ties arbitrarily. With this notation, (LI ) becomes

(LI) max
λ

f I(λ) = max
λ

[

fV (λ) + f I
D(λ)

]

.

The functions fV and f I
D are concave and piecewise linear. Their sum f I is there-

fore a decomposable, concave, and piecewise linear function; f I is, in particular,

nonsmooth. This is precisely the setting for the proximal bundle method.

3.2 The Proximal Bundle Method

The proximal bundle method (PBM) is a subgradient-type procedure to minimize

concave functions. It can be adapted to handle decomposable, nonsmooth functions

in a particularly efficient way.

We recall the method in this section as far as we need for our exposition. An

in-depth treatment can be found in Kiwiel (1990), Kiwiel (1995).

When applied to (LI ), the PBM produces two sequences of iterates λi, µi ∈
�RD , i = 0, 1, . . . . The points µi are called stability centers; they converge to a

solution of (LI ). The points λi are trial points; calculations at the trial points result

either in a shift of the stability center, or in some improved approximation of f I .

More precisely, the PBM computes at each iterate λi linear approximations

f̄V (λ;λi) := fV (λi) + gV (λi)
T(λ − λi)

f̄ I
D(λ;λi) := f I

D(λi) + gI
D(λi)

T(λ − λi)

f̄ I(λ;λi) := f̄V (λ;λi) + f̄ I
D(λ;λi)

of the functions fV , f I
D, and f I by determining the function values fV (λi), f I

D(λi)
and the subgradients gV (λi) and gI

D(λ). By definition, these approximations over-

estimate the functions fV and f I
D, i.e., f̄V (λ;λi) ≥ fV (λ) and f̄ I

D(λ;λi) ≥ f I
D(λ)

for all λ. Note that f̄V and f̄ I
D are polyhedral, such that subgradients can be derived

from the arguments y(λi) and xI(λi) associated with the multiplier λi as

gV (λi) := − My(λi)

gI
D(λi) := BIx

I(λi)

gI(λi) := − My(λi) + BIx
I .

For implementation an affine function f̄ can be stored as a tuple (f̄(0),∇f̄) of its

function value at the origin and its gradient. We call the sets of linearizations col-

lected until iteration i bundles and denote them by JV,i and JD,i. The PBM uses

such bundles to build piecewise linear approximations
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f̂V,i(λ) := min
f̄V ∈JV,i

f̄V (λ)

f̂D,i(λ) := min
f̄D∈JD,i

f̄D(λ)

f̂i := f̂V,i + f̂D,i

of fV , f I
D, and f I . Adding a quadratic term to this model that penalizes large devi-

ations from the current stability center µi, the next trial point λi+1 is calculated by

solving the quadratic programming problem

(QPi) λi+1 := argmaxλ f̂i(λ) − u
2 ‖µi − λ‖2

.

Here, u is a positive weight that can be adjusted to increase accuracy or convergence

speed. If the approximated function value f̂i(λi+1) at the new iterate λi+1 is suffi-

ciently close to the function value f I(µi), the PBM stops; µi is the approximate solu-

tion. Otherwise a test is performed whether the predicted increase f̂i(λi+1)−f I(µi)
leads to sufficient real increase f I(λi+1) − f I(µi); in this case, the model is judged

accurate and the stability center is moved to µi+1 := λi+1. The bundles are up-

dated by adding the information computed in the current iteration, and, possibly, by

dropping some old information. Then the next iteration starts, see Algorithm 1 for a

listing (the affine functions f̃V,i and f̃D,i will be defined and explained below).

Require: Starting point λ0 ∈ �n, weights u0, m > 0, optimality tolerance ǫ ≥ 0.

1: Initialization: i ← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.

2: Direction finding: Compute λi+1, g̃V,i, g̃D,i by solving problem (QPi).

3: Function evaluation: Compute fV (λi+1), gV (λi+1), fI
D(λi+1), gI

D(λi+1).

4: Stopping criterion: If f̂i(λi+1) − fI(µi) < ǫ(1 +
��fI(µi)

��) output µi, terminate.

5: Bundle update:

Select JV,i+1 ⊆ JV,i ∪ {f̄V (·, λi+1), f̃V,i},

select JD,i+1 ⊆ JD,i ∪ {f̄I
D(·, λi+1), f̃D,i}.

6: Ascent test: µi+1 ← fI(λi+1) − fI(µi) > m(f̂i(λi+1) − fI(µi)) ? λi+1 : µi.

7: Weight update: Set ui+1.

8: i ← i + 1, goto Step 2.

Algorithm 1: Generic PBM

Besides function and subgradient calculations, the main work in the PBM is the

solution of the quadratic problem QPi. This problem can also be stated as

(QPi) max vV + vD −u
2 ‖µi − λ‖2

(i) vV −f̄V (λ) ≤ 0 ∀f̄V ∈ JV,i

(ii) vD −f̄D(λ) ≤ 0 ∀f̄D ∈ JD,i.

A dualization and some algebraic transformations using the optimality criterion 0 ∈
∂f̂i(λ) + u(µi − λ) of (QPi) results in the equivalent formulation
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(DQPi) max
∑

f̄V ∈JV,i

αV,f̄V
f̄V (µi) +

∑

f̄D∈JD,i

αD,f̄D
f̄D(µi)

− 1
2u

∥

∥

∥

∥

∥

∑

f̄V ∈JV,i

αV,f̄V
∇f̄V +

∑

f̄D∈JD,i

αD,f̄D
∇f̄D

∥

∥

∥

∥

∥

2

,

∑

f̄V ∈JV,i

αV,f̄V
= 1,

∑

f̄D∈JD,i

αD,f̄D
= 1,

αV , αD ≥ 0.

Here, αV ∈ [0, 1]JV,i and αD ∈ [0, 1]JD,i are the dual variables associated with

the constraints (QPi) (i) and (ii), respectively. Note that (DQPi) is again a quadratic

program, the dimension of which is equal to the size of the bundles, while its codi-

mension is only two. In our integrated scheduling method, we solve (DQPi) using a

specialized version of the spectral bundle method of Helmberg (2000), a variant of

the PBM that can take advantage of this special structure. Given a solution (αV , αD)
of DQPi, the vectors

g̃V,i :=
∑

f̄V ∈JV,i
αf̄V

∇f̄V

g̃D,i :=
∑

f̄D∈JD,i
αf̄D

∇f̄D

g̃i := g̃V,i + g̃D,i

are convex combinations of subgradients; they are called aggregated subgradients of

the functions fV , f I
D, and f I , respectively. It can be shown that they are, actually,

subgradients of the respective linear models of the functions at the point λi+1 and,

moreover, that this point can be calculated by means of the formula

λi+1 = µi +
1

u





∑

f̄V ∈JV,i

αV,f̄V
∇f̄V +

∑

f̄D∈JD,i

αD,f̄D
∇f̄D



 .

The aggregated subgradients can be used to define linearizations of f̂V,i, f̂D,i, and

f̂i, at λi+1:

f̃V,i(λ) := f̂V,i(λi+1) + g̃T
V,i(λ − λi+1)

f̃D,i(λ) := f̂D,i(λi+1) + (g̃D,i)
T(λ − λi+1)

f̃i(λ) := f̂i(λi+1) + g̃T
i (λ − λi+1)

Primal approximations can be calculated using aggregated arguments as follows:

x̃i :=
∑

f̄D∈JD,i
αf̄D

x(f̄D)

ỹi :=
∑

f̄V ∈JV,i
αf̄V

y(f̄V )
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Here x(f̄D) and y(f̄V ) are the arguments associated with the affine functions f̄D

and f̄V , respectively. The PBM (without stopping) is known to have the following

properties:

• The series (µi) converges to an optimal solution of LI , i.e., an optimal dual so-

lution of the LP-relaxation of (ISPI ).

• The series (ỹi, x̃i) converges to an optimal primal solution of the LP-relaxation

of (ISPI ).

• Convergence is preserved if, at every iteration i, the bundles contain at least two

affine functions, namely, the last linearizations f̄ I
V (·;λi), f̄

I
D(·;λi) and the lin-

earization of the cutting plane model f̃D,i, f̃V,i, see step 5 of Algorithm 1.

The bundle size controls the convergence speed of the PBM. If large bundles are

used, less iterations are needed, however, problem (QP
I
i ) becomes more difficult.

We limit the bundle size for both bundles JV,i and JDi
to 500. This is in practice no

limit for our instances, since we usually perform less than 500 iterations of the bundle

method. We use such large bundles because the computation time to solve problem

(DQPi) is very short in comparison to the time needed for the column generation

even for this size of bundles.

3.3 Adaptations of the Bundle Method

Two obstacles prevent the straightforward application of the PBM to the ISP. First,

the component problem for duty scheduling is NP-hard, even in its LP-relaxation;

the vehicle scheduling LP is computationally at least not easy. We can therefore not

expect that we can compute the function values fV (λi) and f I
D(λi) and the associ-

ated subgradients gV (λi) and gI
D(λi) exactly. The algorithms of Löbel (1997) and

Borndörfer et al. (2003) that we use provide in general only approximate solutions.

Second, the column generation process that is carried out for the duty scheduling

problem must be synchronized with the PBM. That is, the set I changes throughout

the bundle algorithm.

The literature gives two versions of approximate versions of the PBM that can

deal with inexact evaluations of the component functions. Kiwiel (1995) stated a ver-

sion of the PBM that asymptotically produces a solution, given that ǫ-linearizations

of the function f to be minimized can be found at every trial point µ ∈ �m for all

ǫ > 0, i.e., one can find an affine function f̄ǫ(λ;µ) := fǫ(µ) + gǫ(µ)T(λ − µ) such

that fǫ(µ) ≥ f(µ) − ǫ and f(λ) ≥ f̄ǫ(λ;µ) for all λ ∈ �m.

Hintermüller (2001) gave another version which replaces exact subgradients of

f by ǫ-subgradients. In his method it is not necessary to know or control the ac-

tual value of ǫ; his method produces solutions that are as good as the supplied ǫ-

subgradients. They converge, in particular, to the optimum if the linear approxima-

tion converges to the original function.

We could use these approaches in principle in our setting, but at a high compu-

tational cost and with only limited benefit. In fact, our vehicle scheduling algorithm

produces not only a primal solution, but also a lower bound and an adequate sub-

gradient from a certain single-depot relaxation of the vehicle scheduling problem.
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However, the information that can be derived from the subgradients associated with

this single-depot relaxation was not very helpful in our computational experiments.

Concerning the duty scheduling part, we are also able to compute a lower bound

and adequate subgradients for the duty scheduling component function f I
D for any

fixed column set using exact LP-techniques. However, this is a lot of effort for a

bound that is not globally valid. We remark that one can, at least in principle, also

compute a lower bound for the entire duty scheduling function fD, see Borndörfer

et al. (2003). Such procedures are, however, extremely time consuming and do not

yield high quality bounds for large-scale problems. Therefore, we use a different,

much faster approach to approximate the component functions themselves by piece-

wise linear functions. We show below how this can be done rigorously for the vehicle

scheduling part; in the duty scheduling part, the procedure is heuristic, and we simply

update our approximation whenever we notice an error.

Vehicle Scheduling Function fV . Denote by fL
V : �D �→ � the approximation

to the value of the vehicle scheduling component function fV (λ) as given by some

vehicle scheduling algorithm, and by yL(λ) ∈ [0, 1]D the associated argument. We

have fL
V (λ) := (dT − λTM)yL(λ) ≥ fV (λ), but fL

V is in general not concave.

However, we can use fL
V to create a concave approximation f̂L

V,i ≥ fV using a

linearization at the current trial point λi+1 and the linearizations stored in the bundle,

namely, by setting

gL
V,i+1 := −MyL(λi+1)

f̄L
V (λ;λi+1) := fL

V (λi+1) + gL
V,i+1

T
(λ − λi+1)

f̂L
V,i+1(λ) := min

f̄V ∈JV,i∪{f̄L
V

(·;λi+1)}
f̄V (λ).

We use this approximation in the PBM Algorithm 1 by replacing fV by f̂L
V,i. The

bundle update (Step 5) is implemented as

JV,i+1 ⊂
{

JV,i ∪
{

f̄L
V (·;λi+1), f̃V,i

}

, if fL
V (λi+1) < f̂L

V,i+1(λi+1),

JV,i, otherwise.
(1)

Since the function f̂L
V,i+1 depends on JV,i, we must also recalculate its value

f̂L
V,i+1(µi) at the stability center in the stopping criterion and the ascent test (Steps 4

and 6) of the PBM at each iteration.

Duty Scheduling Function fI

D
. The idea is similar as in the vehicle scheduling

case. Denote by Ii the duty set that is used in iteration i, by fL,Ii

D : �D �→ � a lower

bound of the duty scheduling component function f Ii

D (λ) and by xL,Ii(λi) the argu-

ment of fL,Ii

D computed again by the bundle algorithm. Here we have fL,Ii

D (λ) ≤
f Ii

D (λ), and fL,Ii

D is in general not concave. Further, we know f Ii

D (λ) ≥ fD(λ).

Thus, fL,Ii

D (λ) can be smaller or larger than fD(λ), the function that we actually

want to maximize.

Similar, but this time heuristically, we use fL,Ii

D and the current bundle to create

a concave approximation f̂L
D,i of fD, namely,
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gL
D,i+1 := BIi

xL,Ii(λi+1)

f̄L,Ii

D (λ;λi+1) := fL,Ii

D (λi) + gL
D,i

T
(λ − λi+1)

f̂L
D,i+1(λ) := min

f̄D∈JD,i∪{f̄
L,Ii
D

(λ;λi+1)}

f̄D(λ).

Since each linearization is computed with respect to a subset of duties Ij , it is

in general not true that f̄
L,Ij

D ≥ f Ii

D if Ii 
= Ij . It can (and does) therefore hap-

pen that we notice that the current iterate is cut off by some previously computed

linearization, i.e.,

fL,Ii

D (λi+1) > f̄
L,Ij

D (λi+1;λj)

for some j ≤ i. In this case, we have detected an error made in a previous iteration

and simply remove the faulty elements from the bundle and also from the approxi-

mation. The duty scheduling bundle update in Step 5 of Algorithm 1 is implemented

as

JD,i+i ⊂











{

f̄D ∈ JD,i : fL,Ii

D (λi+1) ≤ f̄D(λi+1)
}

∪
{

f̄L,Ii

D (·;λi+1), f̃V,i

}

, if fL,Ii

D (λi+1) < f̂L
D,i(λi+1),

JD,i, otherwise.

(2)

This approximation must also be recomputed at the stability center in every iteration.

Combined Function fI . The combined approximate functions are

fL,Ii := fL
V + fL,Ii

D

f̂L
i := f̂L

V,i + f̂L
D,i.

Require: Starting point λ0 ∈ �
n, duty set I0, weights u0, m > 0, optimality tolerance

ǫ ≥ 0.

1: Initialization: i ← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.

2: Direction finding: Compute λi+1, g̃L
V,i, g̃L

D,i by solving problem (QPi).

3: Function evaluation: Compute fL
V (λi+1), gL

V (λi+1), Ii, fL,Ii
D (λi+1), gL,Ii

D (λi+1).

4: Stopping criterion: If f̂L
i (λi+1) − fL,Ii(µi) < ǫ(1 +

��fL,Ii(µi)
��) output µi, terminate.

5: Bundle update: Select JV,i+1, JD,i+1 as stated in (1), (2).

6: Ascent test: µi+1 ← fL,Ii(λi+1)−fL,Ii(µi) > m(f̂L,Ii
i (λi+1)−fL,Ii(µi))?λi+1 : µi.

7: Weight update: Set ui+1.

8: i ← i + 1, goto Step 2.

Algorithm 2: Inexact PBM with Column Generation

Column generation. This is the most time consuming part of our algorithm, and

we therefore enter this phase only if significant progress can be expected. Details

about the column generation itself can be found in Borndörfer et al. (2003). Our

strategy to generate new columns is basically to recompute the duty set when the

stability center changes; we call such an iteration a serious step, all other iterations

are called null steps.
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The reasoning behind this strategy is as follows. The quadratic penalty term in the

quadratic program QPi ensures that the next trial value for the dual multipliers λi+1

stays in the vicinity of the current stability center. When the multipliers change only

little, one has reason to believe that the number and the potential effect of improving

duties is also small. We therefore hope that the current duty set Ii, which has been

updated when the stability center was set, does still provide a good representation of

the duty space also for the new multipliers λi+1. In practice, we reduce the number

of column generation phases even further by requiring a certain minimum increase

ε in the objective function at the new stability center; the larger ε, the less column

generation phases will occur.

Algorithm 2 gives a listing of our bundle algorithm using inexact evaluations of

the component functions and column generation in the duty scheduling component.

3.4 Backtracking Procedure

The inexact proximal bundle method that we have described in this section is em-

bedded in a backtracking procedure that aims at the generation of integer solutions.

This procedure makes use of the primal information produced by the bundle method,

namely, the sequence (ỹi, x̃i). As in an LP-approach, fractional values can be inter-

preted as probabilities for the inclusion/exclusion of a deadhead trip or duty in an

optimal integer solution.

Our computational experiments revealed that it is advantageous to fix the dead-

head trips first, until the vehicle scheduling part of the problem is decided. The re-

maining duty scheduling problem can then be solved with the duty scheduling mod-

ule of the algorithm as described in Borndörfer et al. (2003). Our strategy for fixing

the deadhead variables is to fix the deadheads in the order of largest y-values. Our

algorithm also examines the consequences of such fixings and, if the increase in the

objective function is too large, also reverses decisions. The details on how many

variables to fix at a time, up to which threshold, etc. have been determined exper-

imentally. In general, the algorithm fixes more boldly in the beginning and more

carefully towards the end.

Fig. 1 shows a typical runtime chart of our algorithm IS-OPT. The x-axis mea-

sures time in seconds, the y-axis gives statistics in two different scales, namely, on

the right scale, the number of duties generated (#columns), the number of deadheads

fixed to one (#fixed deadheads), and the residuum of the coupling constraints (more

precisely: the norm is the square of the Euclidean norm of g̃i), as well as, on the left

scale, the vehicle, duty, and the integrated scheduling objective values. Here the duty

scheduling value is the lower bound of the restricted DSP calculated by the PBM,

and integrated scheduling objective value is simply the sum of the VSP and the DSP

value.

In the first phase of the algorithm until point A a starting set of columns was gen-

erated with Lagrangean multipliers λ all at zero. In principle the DSP objective value

should be strictly decreasing here, while the number of columns should grow. How-

ever, we calculated in this initial phase only rough lower bounds for the restricted

DSP, which may be more or less accurate. Additionally we deleted columns with



16 Ralf Borndörfer, Andreas Löbel, and Steffen Weider
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Fig. 1. IS-OPT Runtime Chart

large reduced cost if the total number of columns exceeded 450,000. Between points

A and B, a series of null steps was performed, which resulted in a decreased norm

and an increased ISP-value. Between points B and C, column generation phases al-

ternated with PBM-steps, until an aggregated subgradient of small norm and thus

also a “good” primal approximation of the LP-relaxation of ISP was calculated.

Since the column generation process did not find enough improving columns at

this point, we used the computed information to fix deadheads until (at point D)

the vehicle scheduling part of the problem was completely decided. At that point,

the duty scheduling component of the algorithm concluded by computing a feasible

duty scheduling.

Serious steps of the PBM are marked by peaks of the norm statistic. This effect

is due to the shift of the stability center in combination with the possible inclusion of

additional columns in Ii. In fact, the new stability center may lie in a region where

the model f̂L,Ii of the previous iteration i is less accurate; also, new columns in Ii

change the function fL,Ii , which also worsens the model.

In our computational tests the algorithm rarely had to reverse a fixing decision

for a deadhead and backtrack. In all our instances, the ISP objective value is very

stable with respect to careful fixings of deadheads, see also Fig. 1. In fact, the gap

between our estimated lower bound, i.e., the objective value prior to the first fixings,

and the final objective value was never larger than 5% and only 1-2% on the average.

However, we do not know the size of the gap between the estimated lower bound and

the real minimum of (ISP); the mentioned behavior is therefore only a weak indicator

for the quality of the final solution found by IS-OPT.
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4 Computational Results

In this section, we report the results of computational studies with our integrated

vehicle and duty scheduling optimizer IS-OPT for several medium- and large-scale

real-world scenarios as well as for benchmark scenarios from the literature. Our code

IS-OPT is implemented in C and has been compiled using gcc version 3.3.3 with

switches -O4. All computations were made single-threaded on a Dell Precision 650

PC with 4 GB of main memory and a dual Intel Xeon 3.0 GHz CPU running SuSE

Linux 9.0. The computation times in the following tables are in hours:minutes.

We compare our integrated scheduling method is with two sequential approaches.

The first one, denoted by v+d, is a classical sequential vehicles-first duties-second

approach, i.e., v+d first solves the vehicle scheduling part of the problem using our

optimizer VS-OPT (Löbel (1997)), fixes the deadheads chosen by the vehicle sched-

ule, and solves the resulting duty scheduling problem in a second step using our

optimizer DS-OPT (Borndörfer et al. (2003)). The second method d+v uses kind of

the contrary approach. A simplified integrated scheduling problem is set up that iden-

tifies drivers and vehicles, i.e., vehicle changes outside of the depot are forbidden.

This “poor man’s integrated scheduling model” is solved using the duty schedul-

ing algorithm DS-OPT. The vehicle rotations resulting from this duty schedule are

concatenated into daily blocks using the vehicle scheduling algorithm VS-OPT in a

second step.

We calibrated the parameters of the bundle method, namely m and the series

(ui)i=1,2,..., such that about 20% of the iterations were serious steps. We never

needed more than 50 iterations of the bundle method before the first fixing of vari-

ables.

4.1 RVB Instances

The Regensburger Verkehrsbetriebe GmbH (RVB) is a medium sized public trans-

portation company in Germany. We consider two instances that contain the entire

RVB operation for a Sunday and for a workday. The structure of the RVB data is

mostly urban with only four relief points. In fact, the network of the RVB is mostly

star-shaped with nearly all lines meeting in a small area around the main railway

station. Only there, at two stations nearby, and at the also nearby garage the drivers

can change buses and begin or end duties. The RVB uses only one type of vehicle

on Sundays, and three types on workdays, i.e., the Sunday scenario is fleet homoge-

nous, while the workday scenario is a multi-depot problem. The vehicle types can

only be used on trips on certain sets of (non-disjoint) lines. The Sunday scenario

involves three different types of early, mid, and late duties, each with four different

types of break rules. In Germany, detailed legal regulations exist about the number,

the length, and the feasible positions of breaks in a duty. These regulations may also

differ from one company to the other by works council agreements. We use in the

RVB instances block breaks of 1× 30, 2× 20, and 3× 15 minutes plus 1/6-quotient

breaks. The most important regulations valid for all these break rules are: There is no

interval without break with more than six hours working time. There is no interval
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without break with more than four and a half hours driving time. Between two breaks

is at least half an hour of working time. A duty fulfills the 1/6-quotient break rule

if every continuous segment of a duty contains at least a sixth part break time, and

every break must be at least eight minutes.

The workday scenario contains in addition a type of split duties, again with the

mentioned break rules per part of work. Table 1 reports further statistics on the num-

ber of timetabled trips, tasks, and deadhead trips (also equal to the number of La-

grangean multipliers). The Sunday scenario is medium-sized, while the workday

scenario is, as far as we know, the largest and most complex instance that has been

attacked with integrated scheduling techniques.

Table 1. Statistics on the RVB Instances

Sunday workday

vehicle types 1 3

timetabled trips 794 1414

tasks on tt 1248 3666

deadhead trips 47523 57646

duty types 3 4

break rules 4 4

Table 2 gives computational results for the Sunday scenario. The column ‘refer-

ence’ lists statistics for the solution that RVB planners had generated by hand. The

next four columns give the results of two sequential v+d-optimizations and two in-

tegrated is-optimizations; we do not report results for the method d+v, because we

could not produce a feasible solution for this scenario with this method. The ob-

jective function consists of a weighted sum of the number of duties, the number of

pieces of work, the paid time of the duty schedule, and penalties for exceeding an

average duty time. A piece of work is an inclusion-maximal continuous segment of

a duty where a driver does not change the vehicle. Changes of vehicles should be

avoided because they may lead to operational problems in case of delays of vehicles.

In the optimization runs “v+d 2” and “is 2”, emphasis was placed on the mini-

mization of the number of duties, while runs “v+d 1” and “is 1” tried to reproduce

the average duty time of the reference solution.

Table 2. Results for the RVB Sunday Scenario

reference v+d 1 v+d 2 is 1 is 2

time on vehicles 518:33 472:12 472:12 501:42 512:55

paid time 545:25 562:58 565:28 518:03 531:31

paid break time 112:36 131:40 85:41 74:17 64:27

number of duties (slacks) 82 83 74(1) 76 66

number of vehicles 36 32 32 32 35

average duty duration 6:39 6:48 7:38 6:40 8:03

computation time — 0:33 5:13 35:44 37:26
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As expected the sequential methods reduce the number of vehicles and the time

on vehicle rotations since these are the primary optimization objectives. Also they

produce quite reasonable results in terms of duty scheduling. “v+d 1” suffers from a

slight increase in duties and paid time, “v+d 2” yields substantial savings in duties;

however, the price for this reduction is a raised average paid time. Also one task was

not covered by duties in the solution (remarked by the one in brackets). Even better

are the results of the integrated optimizations. “is 1” is perfect with respect to any

statistic and produces large savings. These stem from the use of short duties involv-

ing less than 4:30 hours of driving time, which do not need a break; this potential

improvement of the Sunday schedule is one of the most significant results of this op-

timization project for the RVB. Even more interesting is solution “is 2.” This solution

trades three vehicles and an increased average for another 10 duties; as longer duties

must have breaks, the paid time (breaks are paid here) increases as well. Solution “is

2” revived a discussion at the RVB whether drivers prefer to have less, but longer

duties on weekends or whether they want to stay with more, but short duties.

Table 3 lists the results of the workday optimizations. Method d+v could again

not produce a feasible solution and is therefore omitted from the table. The objective

in this scenario is far from obvious; it is given as a complicated mix of fixed and

variable vehicle costs, fixed costs and paid time for duties, and various penalties

for several pieces of work, split duties, etc., that can compensate each other such

that one cannot really compare the solutions by means of a single statistic. Doing it

nevertheless, we see that both optimization approaches clearly improve the reference

solution substantially. The outcome is close. In fact, v+d has less paid time than is;

in the end, however, is is better in terms of the composite objective function.

Table 3. Results for the RVB Workday Scenario

reference v+d is

time on vehicles 1037:18 960:29 1004:27

paid time 1103:48 1032:20 1040:11

granted break time 211:53 109:11 105:23

number of duties 140 137 137

number of vehicles 91 80 82

number of pieces of work 217 290 217

number of split duties 29 39 36

average duty duration 7:56 8:03 7:55

objective value — 302.32 291.16

computation time — 8:02 125:55

4.2 RKH Instances

The Regionalverkehrsbetrieb Kurhessen (RKH) is a regional carrier in the middle of

Germany. They provided data for the subnetworks of Marburg and Fulda which is

not (yet) in industrial use; some deadheads are missing, while for some others travel
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times have only been estimated by means of distance calculations. In our opinion the

data still captures to a large degree the structure of a regional carrier and we therefore

deem it worthwhile to report the results of the conceptual study that we did with it.

Fig. 2 shows the spatial structure of the line network of Fulda, which is one part

of the RKH service area. The black arcs denote the timetabled trips (drawn straight

from the line’s start to the end), the gray arcs indicate the potential deadhead trips.

It can be seen that the trip network is hub-and-spoke-like, connecting several cities

and villages among themselves and with the rural regions around them. While the

deadhead network is almost complete, there are only a few relief opportunities for

drivers to leave or enter a vehicle.

Table 4 gives further statistics on the RKH instances. They are similar to the

RVB Sunday scenario in terms of timetabled trips and tasks, but contain much more

deadhead trips. The scenarios involve three duty types, two types of split duties that

differ in the maximum duty length and one type of continuous duties. Each duty type

can have 1 × 30, 2 × 20, or 3 × 15 minutes block breaks or 1/6-quotient breaks.

Table 4. RKH Instances for the Cities of Marburg and Fulda

Marburg Fulda

depots 3 1

vehicle types 5 1

timetabled trips 634 413

tasks on tt 1022 705

deadhead trips 142,668 67,287

Table 5 reports the results of our optimizations. We do not report results for the

method v+d as we were not able to produce a feasible solution for either scenario

with this method. Method d+v yields useful results, but it is not able to cover all

tasks/trips of the Fulda-scenario with duties and vehicles; in fact, d+v left three tasks

Fig. 2. The Graph of Scenario Fulda
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and six timetabled trips uncovered (numbers in parentheses). These deficiencies are

resolved in the is-solutions, which also look better in terms of numbers of vehicles.

Table 5. Solutions on Marburg and Fulda

Marburg Fulda

d+v is d+v is

time on vehicles 772:02 642:41 365:41 387:37

paid time 620:27 606:30 390:08 374:53

granted break time 120:51 103:27 88:13 57:44

number of duties 73 70 41(3) 41

number of vehicles 62 50 45(6) 37

average duty duration 10:35 10:18 10:59 11:18

computation time 5:29 17:18 1:42 7:05

4.3 ECOPT Instances

Finally, we compare IS-OPT with the approach of Huisman et al. (2005) on the

randomly generated benchmark data proposed in their article. These data consist of

two sets of instances involving two and four depots, respectively. Each set contains

ten instances of 80, 100, 160, 200, 320, and 400 trips; see again Huisman et al. (2005)

for a detailed description. The duty scheduling rules associated with these examples

are relatively simple. Duties are allowed to have at most one break, which must be

outside of a vehicle, i.e., each break also begins a new piece of work. The only other

rule is that each piece of work must be of certain minimum and maximum length. It is

shown in Huisman et al. (2005) that in this situation one can solve the duty generation

subproblem in polynomial time, i.e., exact column generation is applicable.

Tables 6 and 7 report average solution values for each of the ten instances of

each problem class for the problem variant A; similar results for variant B have been

omitted. All computations were done with the same set of parameters, which was

optimized for speed. Row reference gives the sum of the numbers of vehicles and

duties as published in Huisman et al. (2005); for the problems with 4 depots and 320

and 400 trips, no reference is given due to excessive computation time.

Table 6. Results for ECOPT-Instances with 2 Depots Variant A

trips 080 10 0 160 200 320 400

vehicles 9.4 11.2 15.0 18.6 27.0 33.3

duties 21.2 25.1 33.9 40.6 57.7 69.8

total 30.6 36.3 48.9 59.2 84.7 103.1

reference 29.8 35.6 48.3 59.1 86.8 106.1

time 00:05 00:08 00:17 00:31 01:58 03:19
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Table 7. Results for ECOPT-Instances with 4 Depots Variant A

trips 080 100 160 200 320 400

vehicles 9.2 11.2 15.0 18.5 26.7 33.1

duties 20.4 24.5 32.7 40.5 56.1 68.9

total 29.6 35.7 47.7 59.0 82.8 102.0

reference 29.6 36.2 49.5 60.4 — —

time 00:13 00:21 00:44 01:46 05:28 12:00

It can be seen that our algorithm IS-OPT performs worse than that in Huisman

et al. (2005) for the small instances, but produces better results with increasing prob-

lem size and complexity; it can also solve the largest problem instances. We remark

that IS-OPT can also produce slightly better solutions for the small instances than

those reported in Huisman et al. (2005) by changing the optimality parameter ǫ in

Algorithm 2 and by raising the threshold for deadhead fixes. This leads, of course, to

longer computation times.

5 Conclusions

We have shown that it is possible to tackle large-scale, complex, real-world inte-

grated vehicle and duty scheduling problems using a novel “bundle” algorithm for

integrated vehicle and duty scheduling. The solutions produced by such an integrated

approach can be decidedly better in several respects at once than the results of vari-

ous types of sequential planning.

Acknowledgement: This research has been supported by the German ministry for

research and education (BMBF), grant No 03-GRM2B4. Responsibility for the con-

tent of this article is with the authors.

References

Ball, M. O., Bodin, L., and Dial, R. (1983). A matching based heuristic for schedul-

ing mass transit crews and vehicles. Transportation Science, 17, 4–31.
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scharfen Abfahrtszeiten (in German). Der Nahverkehr, 11/1997, pages 39–43.

Daduna, J. R. and Wren, A., editors (1988). Computer-Aided Transit Scheduling,

volume 308 of Lecture Notes in Economics and Mathematical Systems. Springer.

Daduna, J. R., Branco, I., and Paixão, J. M. P., editors (1995). Computer-Aided

Transit Scheduling, volume 430 of Lecture Notes in Economics and Mathematical

Systems. Springer.



Integrated Vehicle and Duty Scheduling 23

Darby-Dowman, K., J. K. Jachnik, R. L. L., and Mitra, G. (1988). Integrated de-

cision support systems for urban transport scheduling: Discussion of implemen-

tation and experience. In J. R. Daduna and A. Wren, editors, Computer-Aided

Transit Scheduling, volume 308 of Lecture Notes in Economics and Mathematical

Systems, pages 226–239, Berlin. Springer.

Desrochers, M. and Rousseau, J.-M., editors (1992). Computer-Aided Transit

Scheduling, volume 386 of Lecture Notes in Economics and Mathematical Sys-

tems. Springer.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban

transit crew scheduling problem. Transportation Science, 23(1), 1–13.

Falkner, J. C. and Ryan, D. M. (1992). Express: Set partitioning for bus crew schedul-

ing in Christchurch. In M. Desrochers and J.-M. Rousseau, editors, Computer-

Aided Transit Scheduling, volume 386 of Lecture Notes in Economics and Mathe-

matical Systems, pages 359–378, Berlin. Springer.

Freling, R. (1997). Models and Techniques for Integrating Vehicle and Crew Schedul-

ing. Ph.D. thesis, Erasmus University Rotterdam, Amsterdam.

Freling, R., Huisman, D., and Wagelmans, A. P. M. (2001a). Applying an integrated

approach to vehicle and crew scheduling in practice. In S. Voß and J. R. Daduna,

editors, Computer-Aided Scheduling of Public Transport, volume 505 of Lecture

Notes in Economics and Mathematical Systems, pages 73–90, Berlin. Springer.

Freling, R., Wagelmans, A. P. M., and Paixao, J. M. P. (2001b). Models and algo-

rithms for single-depot vehicle scheduling. Transportation Science, 35, 165–180.

Freling, R., Huisman, D., and Wagelmans, A. P. M. (2003). Models and algorithms

for integration of vehicle and crew scheduling. Journal of Scheduling, 6, 63–85.

Friberg, C. and Haase, K. (1999). An exact algorithm for the vehicle and crew

scheduling problem. In N. H. M. Wilson, editor, Computer-Aided Transit Schedul-

ing, volume 471 of Lecture Notes in Economics and Mathematical Systems, pages

63–80, Berlin. Springer.

Gaffi, A. and Nonato, M. (1999). An integrated approach to extra-urban crew and

vehicle scheduling. In N. H. M. Wilson, editor, Computer-Aided Transit Schedul-

ing, volume 471 of Lecture Notes in Economics and Mathematical Systems, pages

103–128, Berlin. Springer.

Haase, K., Desaulniers, G., and Desrosiers, J. (2001). Simultaneous vehicle and crew

scheduling in urban mass transit systems. Transportation Science, 35(3), 286–303.

Hanisch, J. (1990). Die Regionalverkehr Köln GmbH und HASTUS (in German).
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Summary. This paper presents a new approach for solving the crew scheduling problem in

public transit. The approach is based on interaction with the corresponding vehicle scheduling

problem. We use a model of the vehicle scheduling problem which is based on a time-space

network formulation. An advantage of this procedure is that it produces a bundle of optimal

vehicle schedules, implicitly given by the solution flow. In our approach, we give this degree

of freedom to the crew scheduling phase, where a vehicle schedule is selected that is most

consistent with the objectives of crew scheduling.

1 Introduction

Scheduling of vehicles and of crews are two main problems arising in public trans-

port scheduling, because there are the main resources necessary to service passen-

gers. The main objective of vehicle and crew scheduling is to use a minimum amount

of resources per required service. Traditionally, vehicle and crew scheduling prob-

lems have been approached in a sequential manner, so that vehicles are first assigned

to trips, and in a second phase, crews are assigned to the vehicle blocks generated

before. However, this procedure implies that the crew duties are based on a fixed un-

derlying vehicle schedule. The crews’ schedule flexibility is thereby restricted, which

sometimes leads to an infeasible or inefficient crew schedule.

The fact of possibly losing efficiency or feasibility has motivated several re-

searchers to work on simultaneous vehicle and crew scheduling. In the last years,

different ways have been proposed to combine bus and driver scheduling. These

approaches can be divided into two main groups, namely partial and complete inte-

gration.

Most of the techniques of the first category schedule vehicles during a heuristic

approach to crew scheduling. Many of these heuristics are based on the procedure

proposed by Ball et al. (1983). Similar procedures were proposed by Tosini and



26 Vitali Gintner, Natalia Kliewer, and Leena Suhl

Vercellis (1988), Falkner and Ryan (1992), and Patrikalakis and Xerocostas (1992).

Another technique for a partial integration is to include crew considerations in the

vehicle scheduling process. Approaches of this sub-category include Darby-Dowman

et al. (1988) – an interactive part of a decision support system – and Scott (1985),

who heuristically determines vehicle schedules while taking crew costs into account.

For a detailed overview of these papers, we refer to Freling (1997).

Approaches of the second category (complete integration of vehicle and crew

scheduling) have only appeared very recently. The first mathematical formulation

was by Patrikalakis and Xerocostas (1992), followed and slightly changed by Frel-

ing et al. (1995). An exact algorithm for the single-depot vehicle and crew schedul-

ing problem was proposed by Friberg and Haase (1999). Both the vehicle and crew

scheduling aspects are modeled by using a set partitioning formulation of the prob-

lem. The solution approach combines column generation and cut generation in a

branch-and-bound (B&B) algorithm. Haase et al. (2001) propose an approach which

solves the crew scheduling problem (CSP) while incorporating side constraints for

the vehicles. This is done in such a way that the solution of this problem guaran-

tees that an overall optimal solution is found after constructing a compatible vehicle

schedule.

A complete integration of vehicle and crew scheduling for the multiple-depot

case is treated by Desaulniers et al. (2001), and, very recently, by Huisman et al.

(2005), Huisman (2004). Their approaches are based on Lagrangian relaxation com-

bined with column generation. However, these methods are hardly applicable to huge

real-world problems, with multiple depots and heterogeneous fleet. As a result, algo-

rithms incorporated in commercially successful computer packages keep using the

sequential approach or, sometimes, offer integration on the user level.

The solution approach presented in this paper can be assigned to the first cat-

egory, namely to the partial integration of vehicle and crew scheduling. It solves

the vehicle scheduling problem first and the crew scheduling problem afterwards. In

contrast to the traditional sequential approach, in our method scheduling of crews is

based not only on one given optimal vehicle schedule but on a set of optimal vehicle

schedules with minimum fleet size and minimal operational costs. This is possible

due to the specific model used for solving the Multiple-Depot Vehicle Scheduling

Problem (MDVSP), known to be NP-hard (see Bertossi et al. (1987)). We use a

multi-commodity flow formulation to solve the MDVSP, which is based on the time-

space network as described in Kliewer et al. (2002), Kliewer et al. (2005), Gintner

et al. (2005). The model guarantees a minimal fleet size and minimal operational

costs for vehicles (deadhead cost and idle time outside of a depot).

An optimal solution of our formulation for MDVSP is a flow in the underlying

network. Due to our time-space formulation each flow can be decomposed into many

different sets of paths, because this decomposition is not unique. Each path represents

a day route (vehicle block) for a vehicle, while each path set builds an optimal vehicle

schedule. In our approach, we give this freedom over the choice of decomposition to

the crew scheduling phase in order to select a vehicle schedule that harmonizes with

the objectives of the crew scheduling. Note that we only select one of the optimal

solutions, so that optimality of vehicle schedules is preserved.
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To solve the crew scheduling problem, we use a column generation approach ap-

plied to a set partitioning formulation. However, in our method, the vehicle schedule

is not given explicitly. Possible crew duties are generated not only based on a single

optimal vehicle schedule but on the optimal flow in the time-space network used for

the MDVSP. Since all decompositions of the optimal flow produce an optimal vehi-

cle schedule (with respect to the fleet size and the operational costs for a vehicle),

the final vehicle schedule can be created afterwards, depending on the final crew

schedule.

We have tested our proposed approach on randomly generated and real-world

data instances and compared it to the traditional method. Due to the additional flexi-

bility in duty generation, a better crew schedule was produced.

The paper is organized as follows. In Section 2, we briefly define the MDVSP and

the time-space network based model which we use for it. In Section 3, we discuss

the traditional crew scheduling problem based on a given vehicle schedule. Section 4

provides the proposed crew scheduling approach, which is based on an interaction

with the corresponding vehicle scheduling problem. In Section 5, we show some

computational results on randomly generated and real-world data instances. Finally,

a summary is given in Section 6.

2 Vehicle Scheduling

The Vehicle scheduling problem (VSP) deals with assigning vehicles to trips so that

the total vehicle costs are minimal. The total vehicle costs usually consist of a fixed

component for using each vehicle and variable costs as a function of travel distance

and time. A vehicle schedule is feasible if all trips are assigned to a vehicle and if

each vehicle starts in a depot, performs a sequence of trips and ends in the same

depot.

In the one depot case with a homogeneous fleet (all vehicles are identical) we

have the standard Single-Depot Vehicle Scheduling Problem (SDVSP). It is well

known that the SDVSP can be solved in polynomial time (see, e.g., Freling (1997)).

The problem with more than one depot and/or heterogeneous fleet (more than one

vehicle type) is defined as the MDVSP. In this case all vehicles have to be assigned

to a depot (home depot). Furthermore, some trips may be assigned only to vehicles

from a certain subset of depots and/or vehicle types. In some practical cases there

are also other types of constraints, such as depot capacity constraints, which specify

a maximum number of vehicles for every depot. The MDVSP is shown to be NP-

hard by Bertossi et al. (1987) if there are at least two depots. Moreover, Löbel (1997)

shows that even ǫ-approximation of the MDVSP is NP-hard.

For the last decades, a lot of attention has been given to the MDVSP in the lit-

erature. Most approaches base on a multi-commodity flow formulation (see, e.g.,

Forbes et al. (1994), Mesquita and Paixão (1999), Löbel (1997)). The most popular

network model for the MDVSP is a so-called connection based network, where each

possible connection between compatible trips is presented by an arc. A drawback of

such a network is the number of possible connections which increases quadratically
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with the number of trips. Thus, models with several thousand trips become too large

to be solved directly by standard optimization tools in a reasonable time. There are

different techniques to reduce the number of possible connections. Some approaches

discard arcs with too long waiting time; other approaches generate arcs applying the

column generation idea to the network flow representation. Further special solution

techniques, such as column generation or branch-and-price with Lagrangian relax-

ation, have been introduced in order to solve problems of practical size (see, e.g.,

Löbel (1999)).

Very recently, Kliewer et al. (2002), Kliewer et al. (2005) proposed a new way

to model the MDVSP. They use a time-space network which is known from the

airline scheduling background (see Hane et al. (1995)). The main contribution of

this network is that connections between compatible trips are presented implicitly

by the flow. Thus, the number of arcs in such a network is only a fraction of this in

equivalent connection-based network.

In this paper, we exploit another property of the time-space network, namely

that a solution flow can be decomposed into a multitude of different optimal vehicle

schedules. Therefore, we give some details of this modeling approach next. For a

full description, we refer the reader to Kliewer et al. (2002), Kliewer et al. (2005),

Gintner et al. (2005).

MDVSP Formulation Based on the Time-Space Network

Nodes in a time-space network correspond to points in time and space. Each trip

is represented by two nodes (one for the departure and one for the arrival event;

each event referring to the corresponding station) and a trip arc in-between. Two

additional arcs (depot arcs) for each trip represent possible pull-out and pull-in trips

from and to the depot, respectively. The from-depot arc (to-depot arc) connects the

corresponding departing node (arriving node) of the trip with a depot node which

represents the start point of the pull-out trip (end point of the pull-in trip).

All nodes are grouped by corresponding stations and sorted by ascending time.

We create a waiting arc between two consecutive nodes at the same station if there is

not enough time to perform a round-trip to the depot. Waiting arcs represent vehicles

waiting at a station. Thus, a trip arriving on its end station can be implicitly connected

with each trip departing later from the same station through a flow using waiting

and/or depot arcs.

One special requirement in bus traffic is that empty movements (deadheading)

are basically possible between all stations, i.e., after each trip, a bus may move to

any of the other stations to take over a trip starting elsewhere. Thus, we have to

provide a connection between all compatible trips. But instead of doing it explicitly

by creating an arc for each connection as in the connection-based network, we take

advantage of the special structure of a time-space network and its ability to forward

the flow through the waiting and/or depot arcs. For each trip i, we consider a dead-

head (dh) arc from its arriving node to the first available departing nodes on every

other station. Note that for each trip, there is at most one dh-arc to each station. All

later trips are connected with i through the dh-arc and a sequence of waiting and/or

depot arcs. Moreover, not all such dh-arcs are needed. Some of them can be omit-
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ted due to forwarding the flow on the source station as well. We refer to Kliewer

et al. (2002), Kliewer et al. (2005), Gintner et al. (2005) for the detailed description

of this and further aggregation techniques. Thus, all possible connections between

compatible trips are implicitly included. Let n and m be the number of trips and

stations, respectively. Then the number of arcs is O(nm) instead of O(n2) for the

connection-network model, while usually n >> m holds. Kliewer et al. (2005) re-

port that the number of arcs in the time-space network amounts only 1-3% of the

arcs in an equivalent connection-based network. Thus, the problem size could be re-

duced significantly without reducing the solution space because all compatible trips

are implicitly connected.

Finally, we create a circulation arc from the last to the first depot node. The

network is a directed acyclic graph. A path from the first to the last depot node

represents a day schedule for one vehicle. The capacity of the arcs is set to one for

trip and depot arcs and to C for all remaining arcs, where C is the maximum number

of vehicles available at the corresponding depot. Fig. 1 shows an example of a time-

space network for an instance with six trips and one depot.

station A

station B

station C

DEPOT

time

t1

t2 t3

t4

t5

t6

task arc
deadhead arc
waiting arc
depot arc
circulation arcdh1

Fig. 1. Basic Structure of the Time-Space Network Model

For the case with more than one depot and/or vehicle type, such a network is built

for each combination of depot and vehicle type. As some trips can only be performed

by a certain vehicle type or from a certain subset of depots, each network contains

only trips allowed for the corresponding depot and vehicle type.

The MDVSP is formulated as a min-cost multi-commodity network flow prob-

lem. We associate vehicle costs with each arc in the network according to the cor-

responding driving/waiting activity. Fixed costs for using a vehicle are associated

with each circulation arc. An integer variable for each arc indicates the flow value

through the arc. We minimize the total vehicle costs. For each node in the network,

there is a flow conservation constraint in the MIP model. An additional set of con-

straints ensures that each trip is covered by a vehicle. The proposed MIP formulation

is solved using the all-purpose solver CPLEX 9.0. Note that this time-space-network

based model has very good MIP behavior. The IP-gap is infinitesimally small or non-

existent and almost all variables have integer values in the optimal (basis) solution

of the LP-relaxation.

Flow Decomposition

The solution vector describes the solution flow (a set of selected arcs) in each net-
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work. Each flow unit represents a vehicle starting in the first depot node, flowing

through the network arcs and returning back through the circulation arc into the first

depot node. In order to create a feasible vehicle schedule, the solution flow has to

be decomposed into paths. However, such flow decomposition is usually not unique

since there are many possibilities to determine an optimal schedule.

Fig. 2a shows an example of this situation. Consider three arrivals t1, t2, t3 and

three departures t4, t5, t6. If the flow value on the dh-arc equals three units in the

optimal solution, there is still a degree of freedom with respect to connecting these

trip arcs. It is obvious that there are six possible ways to connect the arrivals with

the departures in the optimal solution. Multiple decompositions do not only occur in

aggregated arcs, but also in nodes, see Fig. 2b.
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Fig. 2. Multiplicity of Decompositions

A possible approach to constructing a set of feasible paths is to decompose lo-

cally in each node. Due to the flow conservation constraints, the number of flow units

entering a node equals the number of units leaving that node. Therefore, it is suffi-

cient to connect each entering flow unit with a leaving flow unit for each node (e.g.,

using Last-In-First-Out order).

In our approach, we postpone the decomposition decision to the crew scheduling

phase in order to select a vehicle schedule that is consistent with the objectives of

crew scheduling. Note that we only select among optimal solutions, so that optimality

of the vehicle schedules is always preserved. Further details of the proposed approach

are given in Section 4.

3 Traditional Crew Scheduling

In the following, we assume that the VSP has already been solved and a set of ve-

hicle blocks defining the vehicle schedule is known. For each block, a set of relief

points, i.e., locations where a driver in the vehicle can be replaced by a new driver,

is given. A task is defined by two consecutive relief points and represents the mini-

mum portion of work that can be assigned to a crew. A piece of work is one or more

consecutive tasks performed by a driver on one vehicle block without a break. The
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feasibility of the pieces of work is restricted by a minimum and a maximum duration.

A duty consists of one or more pieces of work executed by the same driver.

The Crew Scheduling Problem (CSP) deals with assigning tasks to duties such

that each task is performed, each duty is feasible, and the total cost of the duties is

minimized. A duty is feasible if it satisfies several constraints corresponding to work

regulations for crews. Typical examples of such constraints are maximum working

time without a break, minimum break duration, maximum duty duration and so on.

These constraints can vary between different types of duties, e.g., tripper, early, late

and split duties.

Generate Network Flow Model

Solver

Decompose Solution Flow

Generate feasible duties

Timetable

Vehicle
Schedule

Crew
Schedule

VSP

Solver

CSP

Fig. 3. Traditional Crew Scheduling Approach

Fig. 3 shows the main phases of the solution approach for vehicle and crew

scheduling problems and the interactions between them. Again, an optimal vehicle

schedule serves as input for the traditional CSP.

The CSP is NP-hard even in the case of very simple feasibility requirements for

duties (e.g., only spread time or working time constraints), see, e.g., Fischetti et al.

(1987) and Fischetti et al. (1989). Since the beginning of the 70s, several researchers

have worked on approaches to computerize crew scheduling. The most common ap-

proaches formulate CSP as a set partitioning/covering problem (SPP/SCP). Because

of the large number of variables involved, column generation techniques are often

applied in order to solve the LP-relaxation, and the process is embedded in a B&B

framework to produce integer solutions (see, e.g., Desrochers and Soumis (1989) and

Falkner and Ryan (1992)). Other authors apply a dual heuristic based on Lagrangian

relaxation for solving the master problem (see Carraresi et al. (1995) and Freling

(1997)). For a good literature overview of existing approaches for the CSP, we refer

to Huisman (2004).

Our traditional crew scheduling approach is based on a SCP formulation. The

objective is to minimize the total duty costs which are usually a combination of

fixed costs such as wages and variable costs such as overtime payment. A set of

cover constraints guarantees that each task is included in at least one of these duties.
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We chose a set covering formulation instead of a set partitioning one because it is

easier to solve from the computational point of view. The over-covers of the tasks can

always be deleted in order to convert a set covering solution into a set partitioning

solution. From the practical point of view, the over-covers of the tasks mean that the

person who is assigned to such a duty will make a trip as a passenger.

The solution algorithm is a combination of column generation and Lagrangian

relaxation. The Lagrangian dual problem is solved using a subgradient method. Since

a piece of work is a feasible sequence of consecutive tasks on the same vehicle block

restricted only by its duration, we can easily enumerate all feasible pieces at the

beginning. Then, in the column generation pricing problem, we generate new duties

with negative reduced cost by enumerating all possible combinations of pieces of

work and checking if such a combination is feasible.

Feasible integer solutions are found by applying the default B&B algorithm of

CPLEX for the set of columns generated during the column generation. Note that

we apply column generation only for the root node of the B&B-tree. Thus, there is

no guarantee that the integer solution is optimal, unless the gap between LP and IP

solutions is zero.

We assume that all crews have their own depot. Therefore, a duty of a single crew

member contains only tasks on vehicles from that depot. However, it is not necessary

that every duty starts and ends in this depot. Thus, in the case of multiple depots, we

solve a separate CSP for each depot.

4 Crew Scheduling Enhanced with Aspects from Vehicle

Scheduling

The traditional CSP described in the previous section is a common method used in

most commercial optimization tools. However, this procedure has the drawback that

crew duties are based on a fixed underlying vehicle schedule. Often, several optimal

vehicle schedules exist but the traditional crew scheduling considers only one of

them. Yet a vehicle scheduling solution that is not considered may in fact lead to a

better crew schedule.

The reasons for the propagation of the traditional approach may be found in the

methods of solving the VSP in the previous phase. Most of these methods provide

only one optimal vehicle schedule. We use an alternative approach based on the

time-space network formulation for solving the VSP. An additional advantage of this

procedure is that it produces a bundle of optimal vehicle schedules, implicitly given

by the solution flow.

Fig. 4 shows an example of how the multiplicity of the optimal vehicle sched-

ules affects crew scheduling. We consider the solution flow of a problem with five

trips t1, . . . , t5. The result of the vehicle scheduling is the optimality graph presented

in the figure. Dotted arrows represent selected depot trips d1, . . . , d4 and deadhead

dh1. In order to obtain a certain vehicle schedule, the presented solution has to be

decomposed in the node in the middle into two paths. There are two possibilities of
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combining two inflowing arcs dh1 and t2 with two outgoing arcs t3 and t4. This re-

sults in two equivalent vehicle schedules with two vehicle blocks each. The first con-

tains vehicle blocks B1 = {d1, t1, dh1, t4, t5, d4} and B2 = {d2, t2, t3, d3} while

the second includes blocks B′
1 = {d1, t1, dh1, t3, d3} and B′

2 = {d2, t2, t4, t5, d4}.
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Fig. 4. Multiplicity of Optimal Vehicle Schedules

Following the example in Fig. 4, we apply the traditional crew scheduling ap-

proach separately to the schedules obtained. Furthermore, we assume that the max-

imum duration of a piece of work is limited between two and four hours. Thus,

performing crew scheduling based on the first vehicle schedule produces a solution

with three drivers, namely two performing B1 (B1 is too large to be covered by a

single driver and has to be divided into two duties) and one performing B2. How-

ever, the crew scheduling solution based on the second vehicle schedule needs only

two drivers, namely one for each vehicle block.

In our approach, instead of decomposing the solution flow during vehicle schedul-

ing, we give this degree of freedom to the crew scheduling phase, where a vehicle

schedule is selected that is most consistent with the objectives of crew scheduling.

Note that we only select among optimal solutions, so that optimality of vehicle sched-

ules is preserved. We denote the proposed crew scheduling problem by CSP2.

Fig. 5 shows the interaction between vehicle and crew scheduling. The vehi-

cle scheduling is interrupted one step before the last. Instead of decomposing the

optimal flow into a vehicle schedule at this point, we leave it until the crew schedul-

ing phase. The set of tasks and corresponding pieces of work cannot be generated

directly because the vehicle blocks are not present. They are generated with an alter-

native method, which will be described in the next subsection.

After a crew schedule is found, a compatible vehicle schedule can always be

created afterwards (because all decompositions of the solution flow of the MDVSP-

network produce vehicle schedules which are equivalent with respect to fleet size and

to operational vehicle costs). In fact, from the bundle of the optimal vehicle sched-

ules, we select one that is most consistent with the objectives of crew scheduling.
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Fig. 5. Vehicle and Crew Scheduling: The Proposed Approach

4.1 Mathematical Formulation

At first, we define a crew scheduling network (CSN) which is an extension of the ve-

hicle scheduling network (see Section 2) containing only arcs selected in the solution

of the VSP (in the following we consider only the single depot case since CSP2 is

solved for each depot separately). For each arc in the CSN, we associate a flow value

resulting from the VSP-solution. Furthermore, we delete the circulation arc and all

waiting arcs representing waiting in the depot. Thus, all remaining arcs in the CSN

represent vehicle activities and have to be covered by duties. Moreover, due to the arc

aggregation, some dh- and waiting arcs can be used by several vehicles (indicated by

flow value greater than one). Such arcs have to be covered by an appropriate number

of duties. Note that the CSN is not necessarily strongly connected.

A piece of work is represented by a path in the CSN. However, not each path

represents a feasible piece of work because piece feasibility is restricted by duration

and not each node represents a relief point. We distinguish between nodes which are

relief points and nodes which are not (each node represents either start or end of a

trip). If there are relief points during a trip (between start and end of the trip), we

divide the arc which represents such a trip into several arcs by inserting additional

nodes for each relief point (according to its corresponding location and time).

Let dk be the cost of duty k ∈ K, where K is the set of all feasible duties. Define

K(e) ∈ K as the set of duties covering arc e ∈ E, where E is the set of arcs building

the CSN. Let ze be the flow value of arc e ∈ E. Consider binary decision variable

xk indicating whether duty k is selected in the solution or not. We formulate CSP2

as a generalized SPP.

min
∑

k∈K

dkxk (1)

∑

k∈K(e)

xk = ze ∀ e ∈ E (2)

xk ∈ {0, 1} ∀ k ∈ K (3)
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The objective is to minimize total duty costs. In fact, the constraint set (2) guar-

antees that the number of duties, which contain a task indicated by arc e is equal to

the number of vehicles using arc e. This ensures that there always is a driver for a

bus movement.

4.2 Column Generation Approach

For solving CSP2, we propose a solution algorithm which is based on a combination

of column generation and Lagrangian relaxation. At first, we compute a feasible so-

lution by using the traditional crew scheduling approach, which means that we solve

the MDVSP, decompose the solution flow into an optimal vehicle schedule, and af-

terwards solve the CSP for each depot. We take the resulting duties from this solution

as an initial set of columns for the column generation approach. Thereby, we save

the intermediate solution of the MDVSP (Solution Network Flow in Fig. 5), which is

the basis for the crew scheduling network described above.

Master problem

The main part of the approach is used to compute a lower bound. As in the previ-

ous section we solve the master problem with Lagrangian relaxation. After relaxing

the partitioning constraints (2) in a Lagrangian way, the remaining subproblem can

be solved by pricing out columns with negative reduced costs. The Lagrangian dual

problem is solved by applying subgradient optimization.

Pricing problem

Furthermore, in each iteration of column generation, we generate and add new duties

with negative reduced costs (pricing problem) to the current set of columns. Recall

that vehicle blocks are not known in CSP2. Instead, we implicitly consider a bundle

of vehicle schedules given by the flow in the CSN. This leads to a greater freedom

in the generation of pieces of work and consequently to many more feasible duties

compared to traditional CSP.

The column generation pricing subproblem is solved using a two phase procedure

which is similar to method proposed by Freling (1997): in the first phase, the CSN

is used to generate a set of pieces of work which serves as input for the second

phase where duties are generated. We modify costs of arcs in the CSN according to

duals provided from solving the master problem in such a way that the costs of a

path are equal to the reduced costs of the corresponding piece of work. Then, the

set of pieces is defined by using an all-pair shortest path algorithm involving all

nodes which represent a relief point. However, only paths that satisfy the duration

are generated.

In the second phase duties are generated. Duties have to satisfy certain feasibility

conditions. In particular, they consist of a maximum number of pieces. In our case,

the maximum number is equal to 2. This is the reason why we simply enumerate all

possible combinations of pieces and check whether each combination is feasible. The

reduced cost of a duty can be easily computed when those of the pieces are already

known. In the pricing problem, we search only for duties with negative reduced costs
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in order to satisfy the column generation optimality condition. New duties are added

to the current master problem which is then resolved. The master and pricing phases

are repeated alternately until no column with negative reduced cost can be found or

another termination criterion is satisfied.

Feasible solution

After the column generation process is terminated, a feasible crew schedule has to

be constructed. We investigate two methods for finding a feasible IP-solution: one is

the Branch-and-Bound procedure of CPLEX for columns which are generated dur-

ing column generation; the second approach is a local search heuristic based on a

Simulated Annealing algorithm. The B&B-method may produce an optimal solution

for some problems (especially small problems) very fast. However, the drawback of

this method is that its solution time is unpredictable and may even be exponential in

the worst case. In fact, we can limit the solution time of the B&B-process, but then

the solution quality of problems which are hard to solve is very poor.

The second approach which we have investigated for finding a feasible IP-

solution is a local search heuristic based on the Simulated Annealing algorithm

combined with the Volume algorithm of Barahona and Anbil (2000). The Volume

algorithm is an extension of the subgradient method which also provides an approx-

imate primal solution in addition to a dual solution. We apply the Volume algorithm

to columns generated during column generation and use the primal information to

construct an initial feasible solution which is improved using a Simulated Annealing

approach afterwards. Moreover, we create a pool of primal solutions from differ-

ent iterations of the Volume method. In each replication of the Simulated Annealing

heuristic one solution is chosen as a starting point for the local search. The second

IP-approach provides very good solutions in a given time frame. Thus, this method

outperforms the default B&B of CPLEX for problems which are hard to solve. How-

ever, the local search heuristic always consumes a predefined time.

In our IP-procedure, we combine the advantages of both methods. The overall

approach starts with the B&B-procedure of CPLEX with a time limit (in our case

10 minutes). If the problem is hard to solve with B&B, i.e., the procedure does not

terminate within that time, then B&B is stopped with the incumbent solution and the

second approach is started afterwards. Finally, we choose the best solution of both

methods.

Note, we do not generate new columns during the IP-procedure. Thus, there is

no guarantee that the integer solution is optimal, unless the gap between the LP

and IP solution is zero. However, due to the good initial set of columns in column

generation, the solution of CSP2 is at least as good as the solution of the traditional

crew scheduling approach.

4.3 Vehicle Schedule

After the CSP is solved, the feasible vehicle schedule must be built, depending on

the final crew schedule. Since all decompositions of the optimal flow of the MDVSP-

network correspond to an optimal vehicle schedule and the crew scheduling problem
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was solved based on this bundle of optimal solutions, an optimal vehicle schedule

can always be built afterwards.

Once a crew schedule is given, all pieces of work are set. Recall that the pieces of

work are sequences of consecutive tasks performed by a single driver on one vehicle.

Thus, a vehicle block can be presented as a sequence of pieces of works without

additional vehicle movements in-between. Since all tasks (trip tasks and deadhead

tasks) are covered by a set of pieces of work, the final vehicle schedule can be defined

as a minimal set of vehicle blocks which cover all pieces of work from the final crew

schedule. Due to the flow conservation constraints, the number of pieces of work

arriving at a node is equal to the number of pieces of work leaving it except for the

first and the last depot nodes, which represent the source and the sink, respectively.

5 Computational Results

We tested our approach on some randomly generated and real-world instances. All

tests were performed on an Intel P4 3.4GHz/2GB personal computer running Win-

dows XP.

We consider five different duty types, namely tripper, early normal, day normal,

late normal and split, where tripper consists of a single piece of work and the re-

maining types consist of two pieces. We use the same duty rules and cost functions

as described in Huisman (2004), Huisman et al. (2005).

We denote results of the traditional crew scheduling approach with the label

CSP. Results of our crew scheduling approach enhanced with aspects from vehi-

cle scheduling are labeled as CSP2.

Results for Random Instances

We use randomly generated instances published in Huisman (2004), Huisman et al.

(2005) and available at http://www.few.eur.nl/few/people/huisman/instances.htm.

There are six sets of instances with two depots and six sets of instances with four

depots. The sets differ in the number of trips and contain 80, 100, 160, 200, 320 and

400 trips, respectively. Thus, there are twelve sets together. Each set consists of ten

data instances. The detailed description, characteristics, and the way of generating

these data instances can be found by Huisman (2004).

Tables 1 and 2 give an overview of the accumulated number of drivers and com-

putational time for all ten instances for each data set. The number of drivers saved

by using our approach (CSP2) compared to traditional crew scheduling is shown in

the row ’GAP’. As one can see, the number of drivers provided by our approach is

always less than this number provided by traditional crew scheduling. The difference

achieves up to eight drivers for the largest instance. However, the execution time for

CSP2 increases as well because there are many more possible duties which have

to be considered. Note that the computational times for CSP2 do not contain times

needed for computing the first initial solution because it was given by CSP.

Note that the results presented in Tables 1 and 2 can not be directly compared

with results published in Huisman (2004) because we use another vehicle schedul-
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Table 1. Results for Random Instances – 2 Depots

#trips 80 100 160 200 320 400

#drivers 249 305 370 445 603 742
CSP

cpu (sec) 13 13 58 58 1250 1770

#drivers 245 304 363 439 597 733
CSP2

cpu (sec) 26 16 120 306 3910 4050

GAP 4 1 7 6 6 7

Table 2. Results for Random Instances – 4 Depots

#trips 80 100 160 200 320 400

#drivers 274 319 394 466 630 782
CSP

cpu (sec) 9 10 25 38 250 1460

#drivers 27.3 318 389 464 623 774
CSP2

cpu (sec) 13 12 53 89 2210 3065

GAP 1 1 5 2 7 8

ing approach. In fact, vehicle schedules we computed are optimal and have the same

objective values as published in Huisman (2004). However, the optimal assigning of

trips to depots may not be unique. Therefore, two vehicle schedules with the same

objective value may consist of different assignment to depots and different vehicle

blocks. As mentioned in Section 3, drivers can perform only tasks which are assigned

to the same depot. Therefore, two equivalent vehicle schedules with different parti-

tioning of trips to depots state different bases to form duties and consequently may

provide different crew schedules.

Results for Real-World Instances

We also tested our algorithm on two large real-world instances with 2047 and 2633

trips, respectively. Further properties of the data instances are provided in the Ta-

ble 3. Since the crew scheduling is solved separately for each depot, we split the first

instance into two independent problems A1 and A2 with respect to the partitioning of

tasks to depots in the corresponding vehicle schedule. Similarly, the second problem

is split into B1, B2 and B3. The second part of the Table 3 shows results of traditional

and our crew scheduling. Except for the instance B3, the number of drivers can be

improved by using our approach.

Table 4 presents detailed results for both methods of crew scheduling. Rows

‘#pows’ and ‘#duties’ provide the number of pieces of work and the number of pos-

sible duties, respectively. We can conclude that the CSP2 considers more pieces of

work which results in many more possible duties. However, due to applying the col-

umn generation approach, only most promising of them are iteratively selected and

finally passed to the B&B procedure. The presented computational time is separated

into time spent in column generation (cpu CG) and time for computing an integer
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Table 3. Results for Real-World Instances

name A B

data properties

#trips 2047 2633

#tasks 2545 3075

#depots 2 3

#vehicles 114 126

subprob. A1 A2 B1 B2 B3

#tasks 793 1752 1320 1446 309

results(#drivers)

CSP 118 302 124 144 29

CSP2 117 300 123 141 29

GAP 1 2 1 3 0

solution (cpu IP). However, we limit the time spent in B&B to 60 minutes. The total

execution time is denoted by ‘cpu total’.

Table 4. Detailed Results for Real-World Instances

name A1 A2 B1 B2 B3

# pows 5,030 10,715 27,773 33,044 6,183

# duties 483,130 1,341,340 5,182,764 9,590,720 730,778

CSP cpu CG (sec) 21 60 413 496 48

cpu IP (sec) 8 143 678 652 672

cpu total (sec) 29 203 1091 1148 720

# pows 8,445 23,655 40,881 49,791 6,400

# duties 1,200,464 6,837,831 13,603,777 17,248,574 832,141

CSP2 cpu CG (sec) 35 215 602 643 51

cpu IP (sec) 10 521 3750 3915 1265

cpu total (sec) 45 736 4352 4558 1316

For the instances B1 and B2, the B&B is stopped after the given time limit with

an integrality gap of four and eight drivers, respectively. These incumbent solutions

could not be improved by applying the local search heuristic presented in Section 4.2.

Therefore, the number of drivers for the method CSP2 (see Table 3) may theoretically

be improved by increasing the time limit for the B&B procedure or by applying a

sophisticated IP-heuristic.

6 Conclusion

The results reported in the previous section indicate that the quality of the crew

scheduling solution can be improved by using the proposed crew scheduling method.
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We have considered two methods of solving the crew scheduling problem. The first

method is the traditional one, vehicles are first assigned to trips, and in the sec-

ond phase crews are assigned to the vehicle blocks. However, this procedure implies

that the crew duties are based on a fixed underlying vehicle schedule. The crews’

schedule flexibility is thereby restricted, which sometimes leads to an infeasible or

inefficient crew schedule. Our method couples the vehicle and the crew scheduling

phases. We use a specific model of the vehicle scheduling problem which is based

on the time-space network formulation. An advantage of this procedure is that it pro-

duces a bundle of optimal vehicle schedules, implicitly given by the solution flow. In

our approach, we give this degree of freedom to the crew scheduling phase, where

a vehicle schedule is selected that is most consistent with the objectives of crew

scheduling.

We have tested the proposed method on some medium-size randomly generated

and large real-world instances.
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Summary. In this paper we discuss several methods to solve large real-world instances of the

vehicle and crew scheduling problem. Although there has been an increased attention to inte-

grated approaches for solving such problems in the literature, currently only small or medium-

sized instances can be solved by such approaches. Therefore, large instances should be split

into several smaller ones, which can be solved by an integrated approach, or the sequential

approach, i.e., first vehicle scheduling and afterwards crew scheduling, is applied.

In this paper we compare both approaches, where we consider different ways of splitting

an instance varying from very simple rules to more sophisticated ones. Those ways are exten-

sively tested by computational experiments on real-world data provided by the largest Dutch

bus company.

1 Introduction

In the literature on vehicle and crew scheduling, not much attention has been paid to

the problem of splitting up large instances into several smaller ones such that a good

overall solution is obtained. Algorithms are developed to solve a certain problem,

either optimally or heuristically, and they are tested on self made problem instances,

or on (small) instances from practice which the algorithm can still solve. If a real-

world instance has to be solved and it seems to be too large for the algorithm to solve

it, the problem is just split up into several smaller instances, the algorithm is used

to solve those smaller instances and the results are combined such that there is an

overall solution. This solution is then feasible, but of course, even if the algorithm

itself provides an optimal solution, optimality for the overall problem is likely to be

lost. The way the instance has been divided up is almost never an issue in the litera-

ture. However, different divisions can result in completely different final outcomes;

one splitting can result in a much better solution than another one. Therefore, the

instances are mostly divided according to some logical rules.
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For example, in the field of crew scheduling, Fores et al. (2001) describe this

problem. In 1998, they subdivided a large instance of ScotRail into two smaller in-

stances according to a geographic division. Since this resulted in some strange out-

comes, several tasks were exchanged between the different divisions. After several

days of trial and error, they found a reasonable splitting of the instance such that the

optimal solutions of both smaller instances seemed to give a reasonable overall solu-

tion. In 2000, they were able to solve the large instance optimally. They checked the

performance of the splitting and indeed the optimal solution of the complete instance

was the same as the solution which they obtained by splitting up the instance several

years before.

Haghani et al. (2003) describe a comparative analysis of different approaches

to solve large-scale vehicle scheduling problems with route time constraints. This

can be seen as a special case of the integrated vehicle and crew scheduling prob-

lem, namely where a duty exactly coincides with a vehicle and the only constraint

is a maximum duty length. They compared several approaches on a large real-world

instance in Baltimore which consists of multiple depots. Since they could not solve

this problem exactly, they considered three approaches. The first approach (see also

Haghani and Banihashemi (2002)) used CPLEX to solve a reduced problem instance,

i.e., several variables in the large IP were just omitted. In the second and third ap-

proach, they solved several smaller, single-depot instances with an exact algorithm.

The difference between both approaches is the way in which the problem is split up.

One is based on the current solution of the public transport company, the other on

the outcome of the first approach. They showed that this last approach outperformed

the first one.

For the integrated vehicle and crew scheduling problem only small and medium-

sized instances have been solved (see, e.g., Huisman et al. (2005)). Therefore, we try

to answer the following questions in this paper.

1. How can large instances be split up into several smaller ones such that applying

an integrated approach on those instances can be done in a reasonable computa-

tion time?

2. Does such a splitting approach outperform the sequential approach when the

latter is used to solve the large instance at once?

3. Does it outperform the integrated approach when this is terminated after a certain

computation time?

Furthermore, we compare different ways of splitting the problem and we give

some results on several real-world instances from Connexxion. Finally, we use these

ideas to find a solution for large problem instances which we could not solve before

with an integrated approach.

The paper is organized as follows. In Section 2, we describe the integrated ve-

hicle and crew scheduling problem and summarize a mathematical formulation and

algorithm for this problem, which we introduced in an earlier paper (Huisman et al.

(2005)). We discuss several splitting approaches in Section 3. Finally, a computa-

tional study is provided in Section 4.
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2 Multiple-Depot Integrated Vehicle and Crew Scheduling

Several approaches to tackle the integrated variant of the vehicle and crew schedul-

ing problem are recently proposed in the literature (see, e.g., Freling (1997), Haase

and Friberg (1999), Haase et al. (2001) and Freling et al. (2003) for the single-depot

case, and Gaffi and Nonato (1999), Huisman et al. (2005) and Huisman (2004) for

the multiple-depot case). In Huisman et al. (2005), two different algorithms are pro-

posed. Both are based on different mathematical formulations, which are themselves

extensions of the single-depot case formulations proposed by Freling et al. (2003)

and Haase et al. (2001), respectively. Because the first algorithm performed slightly

better, we will only consider this one in the remainder of the paper. Before we discuss

that algorithm, we will first provide a formal problem definition and a mathematical

formulation.

2.1 Problem Definition

The multiple-depot vehicle and crew scheduling problem (MD-VCSP) combines the

multiple-depot vehicle scheduling problem (MDVSP) and the crew scheduling prob-

lem (CSP). Given a set of trips within a fixed planning horizon, it minimizes the

total sum of vehicle and crew costs such that both the vehicle and the crew schedule

are feasible and mutually compatible. Each trip has fixed starting and ending times,

and can be assigned to a vehicle and a crew member from a certain set of depots.

Furthermore, the travelling times between all pairs of locations are known. A vehicle

schedule is feasible if (1) all trips are assigned to exactly one vehicle, and (2) each

trip is assigned to a vehicle from a depot that is allowed to drive this trip. From a vehi-

cle schedule it follows which trips have to be performed by the same vehicle and this

defines so-called vehicle blocks. The blocks are subdivided at relief points, defined

by location and time, where and when a change of driver may occur and drivers can

enjoy their break. A task is defined by two consecutive relief points and represents

the minimum portion of work that can be assigned to a crew. These tasks have to

be assigned to crew members. The tasks that are assigned to the same crew member

define a crew duty. Together the duties constitute a crew schedule. Such a schedule

is feasible if (1) each task is assigned to one duty, and (2) each duty is a sequence of

tasks that can be performed by a single crew, both from a physical and a legal point

of view. In particular, each duty must satisfy several complicating constraints corre-

sponding to work load regulations for crews. Typical examples of such constraints

are maximum working time without a break, minimum break duration, maximum

total working time, and maximum duration. Finally, a piece (of work) is defined as a

sequence of tasks on one vehicle block without a break that can be performed by a

single crew member without interruption.

We distinguish between two types of tasks, viz., trip tasks corresponding to trips,

and dh-tasks corresponding to deadheading. A deadhead is a period that a vehicle is

moving to or from the depot, or a period between two trips that a vehicle is outside

of the depot (possibly moving without passengers).
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2.2 Mathematical Formulation

Let N = {1, 2, ..., n} be the set of trips, numbered according to increasing starting

time. Define D as the set of depots and let sd and td both represent depot d. Moreover,

define E as the set of compatible trips, where two trips i and j are compatible if

a vehicle can perform trip j directly after trip i. We define the vehicle scheduling

network Gd = (V d, Ad), which is an acyclic directed network with nodes V d =
Nd ∪ {sd, td}, and arcs Ad = Ed ∪ (sd × Nd) ∪ (Nd × td). Note that Nd and Ed

are the parts of N and E corresponding to depot d, since it is not necessary that all

trips can be served from every depot. Let cd
ij be the vehicle cost of arc (i, j) ∈ Ad.

To reduce the number of constraints, we assume that a vehicle returns to the

depot if it has an idle time between two consecutive trips which is long enough to

let it return. In that case the arc between the trips is called a long arc; the other arcs

between trips are called short arcs. Denote Asd (Ald) as the set of short (long) arcs.

Furthermore, Kd denotes the set of duties corresponding to depot d and fd
k de-

note the crew cost of duty k ∈ Kd, respectively. The subset of duties covering the trip

task corresponding to trip i ∈ Nd is denoted by Kd(i), where we assume that a trip

corresponds to exactly one task. Kd(i, j), Kd(sd, j) and Kd(i, td) denote the set of

duties covering dh-tasks corresponding to deadhead (i, j), (sd, j) and (i, td) ∈ Ad,

respectively. Decision variables yd
ij indicate whether an arc (i, j) is used and as-

signed to depot d or not, while xd
k indicates whether duty k corresponding to depot d

is selected in the solution or not. The MD-VCSP can then be formulated as follows.

min
∑

d∈D

∑

(i,j)∈Ad

cd
ijy

d
ij +

∑

d∈D

∑

k∈Kd

fd
k xd
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∑
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yd
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The objective is to minimize the sum of total vehicle and crew costs. The first

three sets of constraints, (2)-(4), correspond to the formulation of the MDVSP. Con-

straints (5) assure that each trip task will be covered by a duty from a depot if and

only if the corresponding trip is assigned to this depot. Furthermore, constraints (6),

(7) and (8) guarantee the link between dh-tasks and deadheads in the solution, where

deadheads corresponding to short and long arcs in Ad are considered separately.

2.3 Algorithm

An outline of the algorithm is shown in Fig. 1.

Step 0: Initialization

Solve MDVSP and CSP for every depot and take as initial set of columns the duties in the

CSP-solution.

Step 1: Computation of dual multipliers

Solve a Lagrangian dual problem with the current set of columns. This gives a lower bound

for the current set of columns.

Step 2: Deletion of columns

If there are more columns than a certain minimum amount, then delete columns with positive

reduced cost greater than a certain threshold value.

Step 3: Generation of columns

Generate columns with negative reduced cost.

Compute an estimate of a lower bound for the overall problem. If the gap between this

estimate and the lower bound found in Step 1 is small enough (or another termination criterion

is satisfied), go to Step 4;

otherwise, return to Step 1.

Step 4: Construction of feasible solution

Solve a second Lagrangian dual problem with the set of columns generated in Step 3, where

the optimal solution of the subproblem gives feasible vehicle schedules. Solve for each depot

the crew scheduling problem corresponding to the feasible vehicle schedules.

Fig. 1. Solution Method for MD-VCSP

First, we compute a feasible solution by using the sequential approach, which

means we compute the optimal solution of the MDVSP and afterwards, we solve for

each depot a CSP given the vehicle schedule for that depot. To solve the MDVSP, we

use the model described in Huisman et al. (2004) and the all-purpose solver CPLEX.

The approach we used to solve the CSP is described in Freling et al. (2003).

The main part of the algorithm is used to compute a lower bound and we use

therefore a column generation algorithm. The master problem is solved with La-

grangian Relaxation. Furthermore, we generate the duties in the column generation

subproblem (pricing problem). For details about the master and pricing problem, we

refer to Huisman et al. (2005). Since we do not want to get a very large master prob-

lem, columns with high positive reduced costs will be removed. This only happens

if there are more columns than a certain minimum number. Finally, in Step 4 we

compute feasible solutions.
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3 Different Ways of Splitting

In this section we describe several approaches of splitting a large instance of the

MD-VCSP into several smaller ones. The different approaches can be divided into

two categories:

1. splitting the problem into several single-depot vehicle and crew scheduling prob-

lems (SD-VCSPs), i.e., assign each trip to a depot;

2. splitting an instance into a predetermined number of smaller ones.

We will start the discussion with the first category. The most simple way is a

random assignment of the trips to the depots. Although this is not interesting in itself,

a more sophisticated rule should always beat this trivial one. The more interesting

assignments of trips to depots are the following:

• assign each trip to the depot closest to its start location;

• assign each trip to the depot closest to its end location;

• assign each trip to the depot closest to a combination of its start and end location;

• solve the MDVSP and assign each trip to the depot where it is assigned to in the

MDVSP.

The first three rules are based on the geographical structure of the problem and

can be based on distances or travel times. However, the last rule requires solving

of another, much simpler, optimization problem, namely the multiple-depot vehicle

scheduling problem, and uses that solution. Note that even the MDVSP is a NP-hard

problem. Moreover, recall that the solution approach on the MD-VCSP starts with

solving the MDVSP to obtain an initial feasible solution. Therefore, the extra effort

is very low. Of course, it is possible to recombine certain smaller SD-VCSPs again

to larger MD-VCSPs. This is especially attractive if certain subproblems are so small

that recombining does not result in a too large problem again. Another possibility is

to use this assignment only as a splitting of the instance and to consider more depots

again during the optimization.

The second category is dividing the trips instead of the depot(s) into several small

subproblems. We assume here that we have given a maximum number of trips per

subproblem. This leads to a certain minimum number of subproblems. Below, we

give an overview of such divisions.

• Assign each trip arbitrarily to a subproblem such that the maximum number of

trips in a subproblem is not exceeded.

• Solve the MDVSP and assign all trips executed by the same vehicle to the same

subproblem. However, the vehicles themselves are assigned arbitrarily to a sub-

problem.

• Solve the MDVSP and assign all trips executed by the same vehicle to the same

subproblem. Moreover, assign the vehicles in consecutive order to the subprob-

lems.
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• Solve the MDVSP and assign all trips executed by the same vehicle to the same

subproblem. Moreover, assign the vehicles with the highest correlation to the

same subproblem.

The first three ways of dividing speak for themselves. The fourth one needs some

further explanation. We calculate the correlation wij between two vehicle blocks

with the algorithm suggested in Fig. 2.

wij := 0.

For each different line number l in vehicle block i:
δi := number of trips in block i with line number l;
δj := number of trips in block j with line number l;
if δj > 0, then wij := wij + δi + δj − 1;

otherwise, wij := wij .

Fig. 2. Algorithm to Compute wij

It can be easily seen that the weight is only positive if both vehicle blocks have

at least one trip in common of the same bus line.

We define a weighted graph G = (V,E) with V as the set of nodes, where a

node corresponds to a vehicle block and E as the set of edges. There is an edge

(i, j) between each pair of nodes with its weight equal to wij . The assignment of

the vehicle blocks to different subproblems corresponds now to the partitioning of

the graph in certain subgraphs such that the total weight of the cuts is minimal and

the different parts have an (almost) equal size, where the size of a part is defined as

the sum of the number of trips executed by each vehicle block in that part. A well-

known algorithm for bipartition is the one of Kernighan and Lin (1970). Hendrickson

and Leland (1993) have generalized this algorithm for partitioning in more than two

parts. We use this algorithm to partition our graph.

After the problem has been divided into several subproblems and they have been

solved with an integrated approach, we can still recombine some parts of the problem

such that the solution can be improved. Since the last step of the algorithm consists

of solving a CSP for a certain vehicle schedule, we can recombine all vehicle sched-

ules for each depot and solve one large CSP. Notice that this is possible, since the

bottleneck of solving an integrated approach is not the CSP. We will see in the next

section that this recombining significantly improves the solutions.

4 Computational Results

In this section we test our algorithms on two large data sets from Connexxion, which

is the largest bus company in the Netherlands. The first set consists of 1104 trips and

four depots in the area between Rotterdam, Utrecht and Dordrecht, three large cities

in the Netherlands. The second set contains 1372 trips and six depots in the triangle
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Rotterdam, Hoek van Holland, Leiden. We use eight subsets of the first set to test

the splitting methods described in the previous section. Then, we choose the best

one and perform that approach on the total set. This approach is also used to tackle

the second set. The eight subsets are called instance 1 until 8, the complete set 1 is

called instance 9 and set 2 is instance 10. In Subsection 4.1 we describe some other

properties of these data instances.

All tests in this subsection are executed on a Pentium IV 1.8GHz personal com-

puter (512MB RAM) with the following parameter settings. Notice that all compu-

tation times are denoted in minutes.

1. The objective is to minimize the total sum of vehicles and duties, i.e., we only

consider fixed costs and the cost of a vehicle is equal to the cost of a duty. For

solving the MDVSP in the sequential approach and in the initial step for the

integrated approach we use an additional fictitious cost in the variable vehicle

costs, viz., for every minute a vehicle is empty outside the depot a cost equal to

1 is incurred.

2. The pricing problems are solved independently for each depot and each type of

duty. Moreover, we generate at most 1500 duties for each combination of a depot

and type of duty.

3. The maximum number of iterations in the subgradient algorithm to solve the

master problem (Step 1) is 500 + 3k in the k-th iteration of the column gener-

ation algorithm. However, for constructing the feasible solutions in Step 4, the

number of iterations is only 10, since in that case the subproblem is NP-hard.

Such a small number of iterations is sufficient, since we already start with good

multipliers, namely the best ones of the last iteration in the previous step. We

construct 10 feasible solutions from which the best one will be selected.

4. The column generation algorithm is stopped if the difference between the current

and estimated lower bound is smaller than 0.1% or if the computation time of the

lower bound phase is more than 4 hours (2 hours for cases where the problem is

divided). Notice that in the latter case we do not have a proven lower bound.

4.1 Properties of the Real-World Data Instances

The restrictions that we have taken into account are as follows. A driver can only be

relieved by another driver at the start or end of a trip at certain specified locations or

at the depot. If a driver starts/ends his duty at the depot, there is a sign-on/sign-off

time of 10 and 5 minutes, respectively. If a driver starts/ends his duty at another relief

location, an extra time of 15 minutes plus the deadhead time between this location

and the depot is added to the length of the duty. There are five different types of

duties, one tripper type consisting of one piece with a length between 30 minutes and

5 hours, and four normal types consisting of two pieces with the properties described

in Table 1.



Solving Large Real-World Instances 51

Table 1. Properties of the Different Duty Types

type 1 (early) 2 (day) 3 (late) 4 (split)

min max min max min max min max

start time 8:00 13:15

end time 16:30 18:14 19:30

piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00

break length 0:45 0:45 0:45 1:30

duty length 9:45 9:45 9:45 12:00

work time 9:00 9:00 9:00 9:00

4.2 Sequential and Integrated Approach

In Table 2, an overview of the results of the sequential and the integrated approach is

provided. For each instance, we give the number of trips and the average number of

depots to which a trip may be assigned. Furthermore, we give the number of vehicles,

duties and the sum of these two as well as the computation time for the sequential

and the integrated approach. Finally, we report the best lower bound given by the

integrated approach. As can be seen from this table the integrated approach gives

much better results than the sequential one. We were only able to compute lower

bounds for five of the eight instances, given the maximum computation time of 4

hours for the lower bound phase.

Table 2. Results Without Splitting

instance 1 2 3 4 5 6 7 8

number of trips 194 210 220 237 304 386 451 653

av. depots/trip 1.60 2.47 1.52 2.38 2.48 1.27 1.67 1.74

vehicles 19 33 27 34 40 32 47 67

seq. duties 35 56 49 62 75 61 86 125

V+D 54 89 76 96 115 93 133 192

cpu (min.) 1 0 0 0 1 2 2 3

vehicles 19 33 27 34 40 32 47 67

int. duties 29 52 40 55 66 59 75 117

V+D 48 85 67 89 106 91 122 184

cpu (min.) 155 32 94 43 244 260 254 275

lower 44 77 64 81 95 - - -

4.3 Assigning Trips to Depots

In Section 3 we suggested four different methods to assign a trip to a depot. These

approaches have been tested to split real-world Instance 2 (see Subsection 4.1), con-

taining four depots, into two subproblems. Notice that this can be done in seven

different ways (four with a single-depot and a 3-depot instance and three with two
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2-depot instances). Table 3 provides the results of these divisions where the trips are

assigned to a depot at random (average results over three runs), or using one of the

four methods, i.e., closest to the start location, closest to the end location, closest to

a combination of start and end location or according to the solution of the MDVSP.

Notice that, e.g., 12-34 means that Depots 1 and 2 are in one subdivision, while 3

and 4 are in the other one.

Table 3. Sum of Vehicles and Crew Duties with Splitting Depots – Instance 2

123-4 124-3 134-2 234-1 12-34 13-24 14-23 av.

random 95 99 93.7 93 91.7 101.7 95.3 95.6

start 104 104 89 88 89 110 102 98.0

end 96 101 90 86 91 101 97 94.6

start-end 94 98 90 83 88 99 92 92.0

MDVSP 86 87 85 83 84 87 86 85.4

From Table 3 we can immediately conclude that dividing based on the MDVSP

is much better than on one of the geographical rules. Some of these do not even

outperform a random assignment. We refer to De Groot (2003) for similar results

on other instances. Therefore, we will only consider these types of divisions of the

depots in the remainder of this section.

4.4 Splitting of the Trips

The different methods for the second category introduced in Section 3 have been

tested on the eight real-world problem instances discussed in Subsection 4.1. We

refer to De Groot (2003) for a detailed overview of the results of these tests. Here,

we only provide an overview of those methods that performed well. These are the

following methods.

• Solve the MDVSP and assign each trip to the depot where it is assigned to in the

MDVSP. Afterwards divide the trips into two sets: one set with the trips assigned

to the largest depot, i.e., the one with most trips assigned to it, and the other set

with the remainder of trips. Divide those sets again into sets of at most 200 trips

such that the trips executed by the same vehicle (resulting from the earlier solved

MDVSP) should be in the same subproblem and the vehicles are assigned to the

different subproblems in consecutive order (Method A).

• Same as Method A. However, the vehicles are now divided such that the ones

with high correlation are as much as possible in the same subproblem (Method

B).

• Same as Method A. However, the depots are not split first (Method C).

• Same as Method B. However, the depots are not split first (Method D).

• Same as Method C. However, the subproblems consists of at most 150 trips in-

stead of 200 (Method E).
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• Same as Method D. However, the subproblems consists of at most 150 trips in-

stead of 200 (Method F).

Before we continue our discussion on methods of the second category, we first

look at the effect of recombining the different crew scheduling problems per depot

at the end. Since the effect on the computation time of this step can be neglected, we

only compare the solution values. In Table 4 we provide this comparison for Method

C.

Table 4. Sum of Vehicles and Crew Duties With/Without Recombining CSPs – Method C

instance 1 2 3 4 5 6 7 8

with 49 86 70 89 105 91 122 182

without 49 87 71 91 108 91 126 188

As can be seen from Table 4 the saving of recombining can be quite large (up to

six duties). Therefore, we recommend to use this option always and thus we take this

option into account for the other methods as well.

In Table 5, we report the total number of duties and the maximum computation

time for one subproblem (cpu) in minutes for the methods A until F. The number

of vehicles is not mentioned since it is independent of the method and the same

as in Table 2. The total computation time is also not mentioned, since one of the

advantages of splitting is that the algorithm can run on parallel machines.

Table 5. Results Splitting on Instances 1 - 8

instance 1 2 3 4 5 6 7 8

trips 194 210 220 237 304 386 451 653

depots/trip 1.60 2.47 1.52 2.38 2.48 1.27 1.67 1.74

A duties 31 51 43 57 66 59 75 117

cpu 17 7 5 7 20 72 44 30

B duties 31 51 43 57 66 58 77 117

cpu 17 7 5 7 20 56 47 36

C duties 29 53 43 55 65 59 75 115

cpu 155 3 9 2 27 59 34 22

D duties 29 53 43 56 66 58 74 114

cpu 155 3 7 3 32 127 42 41

E duties 30 53 43 55 67 57 75 118

cpu 10 3 9 2 13 9 12 12

F duties 31 53 43 56 66 58 76 118

cpu 18 3 8 3 6 19 17 12

If we look at the results we need to make a distinction between Instance 1, In-

stances 2-5, Instance 6, and Instances 7 and 8. For Instance 1, Methods C and D pro-

vide the same results as the standard integrated approach, since there is no splitting
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at all. Furthermore, Methods A and B are the same. That is, the problem is divided

into two subproblems, which reduces the computation time significantly but needs

two duties more. For Instances 2-5 Methods A and B are the same. Here, we can see

that the solutions are mostly slightly worse if we split the problems. However, the

computation times reduce significantly. As mentioned earlier, for the largest three

instances, the lower bound phase of the integrated approach was terminated after a

maximum computation time and then feasible solutions were constructed. Here, we

can already see an important benefit of the splitting idea. The solutions of some of

the methods are better, while the others are equal. Moreover, the computation times

are reduced dramatically. For the Instances 7 and 8, we can even see that most of the

splitting methods provide better results. Moreover, the computation times become

reasonably small. If we would run the subproblems on parallel machines the compu-

tation time would be less than one hour on each machine. For all instances, we can

see that splitting the problem leads to much better results than the fast and simple

sequential approach. If we compare the different methods with each other, we can

conclude that Methods A and B perform worse than the others. If we compare C with

D and E with F, i.e., using a more advanced approach to divide the vehicle blocks

over the subproblems, then we can conclude that they are quite similar. Therefore, it

does not make much sense to use this more complicated division. Moreover, if we

compare E with C or F with D, then we see that the impact of smaller subproblems

(at most 150 or 200 trips), is significant on the computation time, which could be ex-

pected of course, but small on the quality of the solutions. Altogether, we conclude

that Method E performs well and has a low computation time. Therefore, we will use

this one in the next subsection to solve the large instances.

4.5 Large Instances

Since we have shown that these methods to split an instance perform well, we con-

sider the two large data sets introduced in the beginning of this section. Recall that

those sets consist of 1104 and 1372 trips, and are called Instance 9 and 10, respec-

tively. Furthermore, notice that the Instances 1 until 8 were derived from Instance 9

and that Instance 10 is completely independent. Although Instances 9 and 10 have

four and six depots, on average each trip can only be assigned to 1.71 and 3.64

depots, respectively. Since Method E performed as the best one in the previous sub-

section, we use this method here. Moreover, we compared it with the sequential ap-

proach and the integrated approach with a maximum computation time. The results

are shown in Table 6.

As can be seen from this table, the computation time of the integrated approach

can far exceed the time limit of 4 hours for computing a lower bound. This can be

explained by the fact that other steps take more time. For instance, the computation

time of the MDVSP is about 9 and 35 minutes for Instances 9 and 10, respectively,

while this was negligible before. Moreover, it can take some time before an itera-

tion in the lower bound phase is finished. Since an iteration is always finished, the

final computation time of the lower bound phase can exceed the time limit. Finally,

the computation of the CSPs in Step 4 takes longer and this is done 10 times for
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Table 6. Results Splitting on Instances 9 & 10

instance 9 10

vehicles 109 117

seq duties 185 224

cpu 10 46

int duties 179 219

cpu 336 474

E duties 178 210

cpu 35 62

each subproblem. We can also see that the computation time of one subproblem in

Method E can rise over one hour, while it was at most 13 minutes before. This can

be explained by the larger sizes of the subproblems. Although the maximum size of

a subproblem is 150 trips, this was never reached before. For these larger instances

the number of trips in a subproblem comes closer to this maximum.

If we look at the results, we can see that the splitting method saves 7 and 14 duties

compared to the sequential approach, and 1 and 9 duties compared to the integrated

one. This is a reduction in labor force of 0.6% and 4.1%, respectively, which is quite

significant. Moreover, the computation times are reduced drastically. Therefore, we

can conclude that these splitting methods clearly outperform the sequential approach

as well as the integrated one with a time limit.

5 Conclusions

In this paper we discussed several methods to split large problem instances of the in-

tegrated vehicle and crew scheduling problem into several smaller instances. We first

applied these approaches to small instances, where we were able to calculate lower

bounds on the optimal solutions and a feasible solution with the integrated approach

on the complete instance. We showed that the effect of dividing these instances did

not deteriorate the quality of the solutions a lot. Later on, we applied these ideas to

large instances and showed that those could be solved now, which was not possible

before. Furthermore, we showed that the saving compared with the simple, sequen-

tial approach is large. Finally, we recommend the use of such splitting methods to

solve practical instances instead of dividing the problem in a ‘logical’ way.
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Summary. The vehicle scheduling problem, arising in public transport bus companies, ad-

dresses the task of assigning buses to cover a given set of timetabled trips. It considers

additional requirements, such as multiple depots for vehicles and vehicle type groups for

timetabled trips as well as depot capacities. An optimal schedule is characterized by mini-

mal fleet size and minimal operational costs including costs for unloaded trips and idle time

spent outside the depot. This paper discusses the multi-depot, multi-vehicle-type bus schedul-

ing problem for timetabled trips organized in bus lines. We use time-space-based networks

for problem modeling. The cost-optimal vehicle schedule may involve several line changes

for a given bus within a working day which might not be desirable from the practical point of

view. Some bus companies prefer to pose a restriction for bus line changes as well. Because

the network flow based model works with trips and not lines, it does not explicitly take into

account line changes. In this contribution, we discuss several methods to find schedules with

an acceptable number of line changes.

1 Planning of Vehicle Schedules in Public Transport

This paper discusses the vehicle scheduling problem in public transport companies,

with the goal of assigning buses to cover a given set of timetabled trips, organized in

bus lines with well-defined start and end stations as well as intermediate stops. One

trip with fixed departure and arrival times as well as start and end locations cannot

be shared by several buses but has to be taken over by exactly one bus. The task is to

build a set of rotations (vehicle schedule), such that each trip of a given timetable is

covered by exactly one rotation.

We consider the scheduling of vehicles under constraints and objectives arising

in urban and suburban public transport. Thus, each timetabled trip can be served

by a vehicle belonging to a given set of vehicle types – vehicle type group. The
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intersection of allowable vehicle type groups for all trips served by one bus rotation

must be not empty. Each vehicle has to start and end its work day in the same depot.

After serving one timetabled (loaded) trip, each bus can serve one of the trips

starting later from the station where the vehicle is standing, or it can change its

location by moving unloaded to any another station (deadhead trip – unloaded trip

between two end stations) in order to serve the next loaded trip starting there. This

unconstrained deadheading is the main difference compared to an analogue problem

in airline scheduling described in Hane et al. (1995). Within a bus rotation consisting

of several (loaded) service trips chained with each other, the use of deadhead trips

often provides an improvement in order to serve all trips of a given timetable by a

minimum number of buses.

With respect to the typical “camel-shaped” timetable structure, it can be favorable

to return to the depot in the middle of the day between the morning and the afternoon

peaks, because waiting time in the depot implies smaller costs compared to idle time

at other end stations outside the depot.

Thus a working day for one bus is defined as a sequence of trips, deadheads,

waiting times at stations and pull-out/pull-in trips from/to the assigned depot. Since

deadhead trips mean an additional cost factor, they should only be used if they imply

a benefit for the total schedule. Waiting time costs should be avoided as well. Sec-

tion 2 describes how this decision situation can be modeled as a time-space network

based optimization problem.

Being obliged to save total schedule operation costs, more and more public trans-

port companies plan mixed-line instead of pure-line vehicle schedules. However,

within schedules that are cost-minimal, the planners strive for a low number of dif-

ferent lines per bus rotation. Each bus company has its own constraints on the num-

ber of lines, which at most can be served by one driver or one bus. In our practical

experience this number varies from one to eight different lines per working day.

Section 3 compares total costs of mixed-line and pure-line schedules. Since the

proposed time-space network model leads to non-negative integer variables instead

of single flow variables, the optimal flows have to be split into single flows in order

to define a vehicle schedule. The decomposition method may take into account a

secondary objective function, in this case - the line purity of each single bus rotation.

In Section 4 we describe different flow decomposition strategies with the goal to

reduce the number of line changes while maintaining the optimal costs.

The next section briefly describes a time-space network based modeling ap-

proach, proposed for multi-depot vehicle scheduling in Kliewer et al. (2006).

2 Solving the MDVSP with a Time-Space Network Based

Approach

The task of vehicle planning in public transport is known in literature as the ve-

hicle scheduling problem. We consider here a bus network with multiple depots

and multiple vehicle types, thus dealing with the Multiple Depot Vehicle Schedul-

ing Problem (MDVSP in the following). MDVSP means in the sense of this paper
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the MDMVTBSP - the multi-depot, multi-vehicle-type bus scheduling problem. It

is well-known that the MDVSP with heterogeneous fleet is NP-hard (see Bertossi

et al. (1987)). The combinatorial complexity of the multi-depot bus scheduling prob-

lem is determined by numerous possibilities to assign vehicle types to each trip, to

build sequences of trips for particular buses, and to assign buses to certain depots.

To represent these sequences of trips, exact modeling approaches known in the lit-

erature consider explicitly all possible connections - pairs of trips that can be served

successively.

In Kliewer et al. (2002) and Kliewer et al. (2006) we introduced a time-space net-

work based exact optimization model which guarantees minimal fleet size and mini-

mal operational costs. Our solution approach consists in building a network structure

for each depot-vehicle type combination. The arcs of such a network represent possi-

ble activities which can be carried out by one vehicle of corresponding vehicle type,

assigned to a corresponding depot. The arc costs are computed using travel distance

rate and time spent outside the depot rate, both user-defined.

First we define a time line for each station connecting the arriving and departing

events with waiting arcs at one station to represent standing vehicles. Timetabled

trips are represented by arcs, connecting corresponding events - departure in the

start station to arrival in the end station. Compatible trips in different stations are

connected by arcs for possible deadheads. Unlike well-known network flow mod-

els (compare, e.g., Forbes et al. (1994), Daduna and Paixão (1995), Löbel (1999))

or set partitioning models (see Ribeiro and Soumis (1994)) from the literature we

only insert non-redundant deadhead arcs. A deadhead arc for a certain connection

of two compatible trips is redundant if the same connection can be achieved using

other deadhead arcs and waiting arcs in connected time lines. It leads to a crucial

size reduction of the corresponding mathematical models compared to well-known

network flow models.

 Arrivals

 Station k  Time 

 Time 

 Arrivals

 Station k 

 Departures

 Departures

Fig. 1. Nodes as Aggregated Series of Immediate Arrivals and Following Departures
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In analogy to stations we build a time line for each depot, although there may not

be scheduled trips starting or ending directly in a depot. In the next step we insert

arcs for possible depot trips. From the depot time line we insert arcs to start points

of scheduled trip arcs and from end points of scheduled trip arcs to the depot time

line with associated deadhead costs. Because it is more favorable for buses to stand

at a depot than at other stations, we place a higher cost for waiting arcs outside the

depots, therefore avoiding long waiting times outside the depots.

We build the nodes of the time-space network by aggregating an arrivals series

with the immediately following departures series as shown in Fig. 1. In this way

all stations, including depots, are represented as ordered sets of connection nodes,

linked together by waiting arcs. Finally a circulation flow arc connects the last node

in the depot time line to the first node in this time line.

The cost components include fixed costs for required vehicles as well as vari-

able operational costs. On each layer, there is one circulation flow arc. This arc is

provided with fixed cost for the corresponding vehicle type and represents vehicles

parking over night in the depot. Waiting arcs and deadhead arcs are provided with

corresponding operational costs. The variable costs consist of distance-dependent

travel costs and time-dependent costs for time spent outside the depot – the case

where a driver is obliged to stay with the bus. All cost components depend on ve-

hicle type. Since the fixed vehicle cost components are usually orders of magnitude

higher than the operational costs, the optimal solution always involves the minimal

number of vehicles. If required, each circulation flow arc gets an upper (and/or lower)

bound for the number of available vehicles. Upper bounds on the loaded trip-arcs are

equal to one.

The resulting network flow model contains one network layer for each depot (as

defined above), where 0/1-variables on trip arcs and integer flow variables on other

arcs are defined. The solution vector describes the flow solution in each network layer

with minimal total costs. Each flow unit represents a vehicle starting in the first depot

node, flowing through the network arcs and returning back through the circulation arc

into the first depot node. In the following we describe the mathematical formulation

for the MDVSP based on the time-space network.

Mathematical Formulation Let N = {1, 2, . . . , n} be the set of trips, and let D
be the set of depots (in the following, we define the depot as a combination of a

depot and a vehicle type). We define the vehicle scheduling network Gd = (V d, Ad)
corresponding to depot d, which is an acyclic directed network described above with

nodes V d and arcs Ad.

Let cd
ij be the vehicle cost of arc (i, j) ∈ Ad, which is usually some function of

travel and idle time. The vehicle cost of arcs representing idle time activity in the

depot is 0. Furthermore, a fixed cost for using a vehicle is set on the circulation arc.

Let Nd(n) ∈ Ad be the arc corresponding to the trip n in the vehicle scheduling

network Gd.

Decision variable xd
ij indicates whether an arc (i, j) is used and assigned to the

depot d or not. For each decision variable an upper bound is defined as follows:
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ud
ij =























1 , if xd
ij corresponds to a timetable trip

ud , if xd
ij corresponds to a circulation arc,

(where ud is the capacity for depot d)

M , otherwise,

(where M is the maximum number of available vehicles)

The MDVSP can be formulated as follows.

min
∑

d∈D

∑

(i,j)∈Ad

cd
ijx

d
ij (1)

∑

{j:(i,j)∈Ad}

xd
ij −

∑

{j:(j,i)∈Ad}

xd
ji = 0 ∀ i ∈ V d,∀ d ∈ D (2)

∑

d∈D,(i,j)∈Nd(n)

xd
ij = 1 ∀ n ∈ N (3)

0 ≤ xd
ij ≤ ud

ij ∀ (i, j) ∈ Ad,∀ d ∈ D (4)

xd
ij integer ∀ (i, j) ∈ Ad,∀ d ∈ D (5)

The objective (1) is to minimize the sum of total vehicle costs. Constraints (2)

are the typical flow conservation constraints, indicating that the flow into each node

equals the flow out of each node, while constraints (3) assure that each trip must be

covered by exactly one vehicle. In this way we obtain a time-space network based

multi-commodity flow formulation.

Thus we solve the mathematical model with branch-and-cut, obtaining lower

bounds for the minimization problem by LP-relaxations of the original MIP-formu-

lation. Our modeling approach enables us to solve real-world problem instances with

thousands of scheduled trips by direct application of standard optimization software

such as MOPS (Suhl (2000)) or ILOG CPLEX (ILOG (2003)).

In order to create a feasible vehicle schedule, the flow solution has to be decom-

posed in paths. It is an important characteristic of the time-space network formulation

that due to the aggregation of possible connections, any feasible flow, including also

an optimal flow, represents a bundle or a class of vehicle schedules. All of them have

minimal total costs but different other characteristics. With the help of a suitable

flow decomposition procedure, we extract a vehicle schedule with an optimal flow

and desired characteristics (see Section 4).

3 Mixed-Line Versus Pure-Line Vehicle Scheduling

We have tested our approach on several data sets from real life cases. Three dif-

ferent instances from the public transport companies of Halle and Munich are used

here in order to illustrate the cost savings caused through mixed-line bus schedul-

ing. The first instance - city H, has 2047 scheduled trips from 19 lines, 2 depots for

stationing of buses, belonging to 3 vehicle types. The second instance - city Mun14,

has 2452 scheduled trips from 23 lines, 2 depots and homogeneous bus fleet. The
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largest instance - city Mun, has over 11 thousand scheduled trips with 55 allowed

depot-vehicle type combinations.

Interesting is the relationship in the size of the mathematical models, correspond-

ing to the conventional explicit-connection based modeling approaches from the lit-

erature and to the time-space based approach, that we applied to the bus scheduling

problem. While connection based approaches would contain over 5 million variables

for explicit deadhead connections, our mathematical model for city Mun14 instance

has only 75.000 of such variables and can be solved by branch-and-cut to optimality

using dual simplex of ILOG CPLEX 9.0 for LP-relaxations on 2,1 GHz processor

in 22 seconds (see Table 1). Due to confidentiality reasons we do not show here the

original but only scaled total and operational cost values.

Table 2 illustrates the cost difference between pure-line and mixed-line schedules

for three instances. Mixed-line scheduling leads to reductions of both operational

costs and number of vehicles. Over 5% less busses are needed to serve city Mun14

timetable with mixed-line bus rotations instead of pure-line rotations. Due to confi-

dentiality reasons we do not show here the original cost values for city Mun instance

but only the savings.

Mixed-line bus schedules may involve trips of several different lines per bus ro-

tation. Thus it makes sense to schedule mixed-line bus rotations due to cost savings,

but we need some strategies how to reduce or to limit the number of different lines

per bus rotation. How we can maintain such objectives?

The computing of an optimal bus schedule consists of two stages: at first we com-

pute the minimum cost flow in the constructed network by solving the IP-formulation

of the multi-commodity flow problem, then we decompose this flow into a set of

paths – these are the required bus rotations.

The optimal flow solution of the mixed-line formulation describes several vehicle

schedules, with different statistics of line changes. Each extracted bus schedule may

involve several line changes for a given bus within a working day which might be

more or less desirable from the practical point of view. The line consideration can

be a part of a flow decomposition strategy; in this case we are not forced to lose the

cost optimality. The disadvantage of such methods is the impossibility to guarantee

a strict upper bound for the number of different lines per bus rotation.

Although it probably is more important to reduce the number of line changes for

drivers, some bus companies prefer to pose a restriction for bus line changes as well.

Because the time-space network based flow model works with trips and not lines, it

does not explicitly take into account line changes. For this case, the consideration of

line changes as a cost component in the network model can be unavoidable. Thus the

mathematical model receives a cost trade-off between schedule operating cost and

line-considering cost component.

In the following we discuss several methods to find bus schedules with an ac-

ceptable number of line changes.
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Table 1. Properties of Data Instances, Model Size and Optimization Time

explicit rows

instance
stop

layers trips matches connections in columns
IP opt.

points
TSN model nonzeros

time

12981

city Mun14 60 2 2452 5014262 75215 (1.5%) 100354 22s

205614

280854

city Mun 160 55 11063 51108336 1083311 (1.25%) 1504171 10h

3315811

15000

city H 21 6 2047 2115896 26412 (1.25%) 56543 143s

119660

Table 2. Cost Savings Through Mixed-line Instead of Pure-line Schedules

instance # of vehicles operational cost total cost

city Mun14 (2452 trips of 23 lines, 2 depots, 1 vehicle types)

pure-line schedule 113 2409887 192814887

mixed-line schedule 107 2387027 182682027

savings 6 22860 10132860

savings in % 5.31% 0.95% 5.26%

city Mun (11063 trips of 165 lines, 18 depots, 12 vehicle types)

pure-line schedule 553

mixed-line schedule 417

savings 136 2866

savings in % 24.59% 9.96% 24.84%

city H (2047 trips of 19 lines, 2 depots, 3 vehicle types)

pure-line schedule 117 134005 337005

mixed-line schedule 115 13138 332138

savings 2 2866 4866

savings in % 1.71% 2.14% 1.14%

4 Flow Decomposition with Lines Consideration

A large number of possible flow decomposition algorithms may be constructed to

decompose a given flow. Line-considering approaches use the fact that the described

optimization model usually has not only one, but many optimal solutions with vary-

ing number of line changes. We present a heuristic method with the goal to reduce

the number of line changes. Furthermore, we discuss an exact model based on the

set partitioning problem (SPP) to find a solution with least line changes among all

optimal schedules. Because there are many ways to measure the solution quality,

we provide several objective functions, such as minimizing the total number of line

changes within the schedule or minimizing the maximum number of line changes

within one given rotation.
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2 2
1 1

1 1 1 11 1 1 1

1 1 1 optimal flow values on arcs1 1 1

Fig. 2. FIFO- vs. LIFO-decomposition for Given Flow Solution

Fig. 2 shows two different possible decompositions of flow through one node

of the time-space network. Flow feasibility, especially the feasibility of the optimal

flow, assures the balance of incoming and outgoing flow units. Now we have to assign

each incoming flow unit to one outgoing flow unit. With given optimal flow values

on arcs as shown in Fig. 2, different assignments are possible to build an optimal

vehicle schedule. For example, the left rectangle contains FIFO-decomposition - first

departure will be taken by a bus which arrived first. LIFO-decomposition in the right

rectangle means the bus with latest arrival has to serve the first departure.

4.1 MinAlt and XMinAlt Flow Decomposition

FIFO- and LIFO-decompositions do not consider line changes explicitly. For the

case where homogeneous bus rotations are required, we developed and tested new

decomposition strategies.

Table 3. Improvements for City Mun14 Instance by New Decomposition Strategies Compared

to LIFO and FIFO

# of lines LIFO FIFO MinAlt XMinAlt LineArcs

1 12 5 5 11 47

2 16 21 20 28 36

3 18 15 16 18 18

sum 46 41 41 62 101

4 16 23 22 10 6

5 22 21 23 19 0

6 12 15 16 12 0

7 8 7 4 4 0

8 3 0 1 0 0

sum 61 66 66 53 6

≤3 lines 42.99% 38.32% 38.32% 57.94% 94.39%
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Table 4. Improvements for City Mun Instance by New Decomposition Strategies Compared

to LIFO and FIFO

# of lines LIFO FIFO MinAlt XMinAlt LineArcs

1 81 69 72 73 198

2 75 76 73 86 108

3 69 64 70 75 72

sum 225 209 215 234 378

4 49 61 57 57 26

5 45 53 48 48 9

6 37 40 43 32 3

7 29 26 25 26 0

8 17 13 12 9 1

9 8 8 9 7 0

10 6 3 4 2 0

11 1 3 2 2 0

12 0 1 2 0 0

sum 192 208 202 183 39

≤3 lines 53.96% 50.12% 51.56% 56.12% 90.65%

Table 5. Improvements for City H Instance by New Decomposition Strategies Compared to

LIFO and FIFO

# of lines LIFO FIFO MinAlt XMinAlt LineArcs

1 3 0 3 69 90

2 30 21 35 28 21

3 34 38 36 6 4

sum 67 59 74 103 115

4 21 29 22 2 0

5 14 16 8 3 0

6 6 5 5 4 0

7 6 3 3 1 0

8 0 1 2 1 0

9 0 1 0 0 0

10 0 1 1 0 0

11 1 0 0 1 0

sum 48 56 41 12 0

≤3 lines 58.26% 51.30% 64.35% 89.57% 100.00%

The first strategy is a “straight forward” one. It is obvious to link at first the

scheduled trips belonging to the same line, and then the remaining arcs. The results

of this algorithm are shown in Tables 3, 4 and 5 in MinAlt (Minimal Alternation)

columns. We count the number of “good” bus rotations, containing trips of at most

three different lines. Public transport companies usually consider a rotation with no

more than three different lines as being “good”. The MinAlt-strategy supplies an

improvement of 6% and 12% for city H compared to LIFO- and FIFO-strategy, re-
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spectively. But it does not supply any improvement for both the city Mun14 and the

city Mun problem instances.

MinAlt is a greedy strategy, acting only locally. A further improvement could be

achieved by considering for each decision the decisions made before. Every activ-

ity (flow unit on certain arc) gets a list with the line IDs of all service trips which

are already chained in one bus rotation containing this arc. We provide each possi-

ble match with costs, showing how well both lists fit to each other. We then solve

an assignment problem in each node. This strategy, called XMinAlt (for eXtended

Minimal Alternation), leads to further improvement for the city H instance. We gain

25% more “good” bus rotations compared to local MinAlt strategy and 31-38% com-

pared to LIFO or FIFO. This strategy produces also better results for the city Mun14

instance - there are 15-19% more “good” bus rotations.

4.2 SPP-Decomposition

We observe in Section 4.1 an improvement in line consideration, which is, however,

not necessarily satisfying in reality. The next step in handling the problem of line

changes is an exact set partitioning model to find a solution with least line changes

among all optimal schedules. After the mathematical model is solved to optimality,

the set of activities to be served by buses is finally fixed. Now we have to decompose

the optimal flow into a set of paths leading from source node of each network layer

to sink node of this layer. Each path from the first node in the depot time line to the

last node of this time line is one possible bus rotation. The columns of the SPP are

binary decision variables of flow units for each possible path, which can be extracted

from the optimal flow solution. They indicate whether the bus rotation is selected in

the solution schedule or not. The rows are bus activities, such as trips, deadheads,

waiting times at stations and in depot and pull-out/pull-in trips from/to the assigned

depot.

The objective is to select a minimum cost set of columns such that each row is

contained exactly once in one of these columns. In other words, each activity must

be served by exactly one bus.

The objective function minimizes the sum of the number of different lines in se-

lected bus rotations and/or the number of line changes. In the case of a given strict

upper bound for the number of different lines per bus rotation, the objective is mini-

mization of the maximum number of different lines within one given rotation. These

two objectives correspond to requirements which we met in practice.

As different ways to measure the solution quality are conceivable, we provide

several objective functions, such as minimizing the total number of line changes

within the schedule or minimizing the maximum number of line changes within one

given rotation.

In the operational practice we suggest to use the SPP-decomposition as an add-on

strategy, which re-optimizes only the “bad” vehicle blocks with too many different

lines.



Line Change Considerations in Multi-Depot Bus Scheduling Model 67

5 Additional Line Arcs in the Network Model

The total SPP-decomposition can take a long time because we should enumerate all

possible paths in the bus activities network. Furthermore, depending on the data, it

is not always possible to find an optimal solution with at most the allowed number

of line changes. Thus, we furthermore present an optimization model which com-

bines both objectives, minimizing cost and minimizing the number of line changes.

The model is embedded in a decision support system which allows the user to set

priorities and to experiment with different approaches, objective functions, and pa-

rameters. For this purpose we extend the network model by inserting a new kind of

arc: line arcs. These arcs are provided with a bonus for “line-purity” as negative costs

and can be used by flow units connecting trip arcs belonging to the same line (see

Fig. 3).

arrival activities 

Station k 

departure activities

time

Fig. 3. Inserting Line Arcs in the Network

The IP-formulation gets additional flow constraints, allowing the usage of line

arcs, only if both connected service arcs are used. The user can now manage the

trade-off between cost minimization and line purity by modifying the bonus value

for using the line arcs. Fig. 4 shows the computational results for each strategy

on all instances. Concerning different lines, Minimal Alternation strategy provides

a bus schedule with similar quality as FIFO and LIFO. Extended Minimal Alter-

nation significantly improves line-purity of the vehicle blocks. Applying the SPP-

decomposition for re-optimization of all “bad” vehicle blocks, having four or more

different lines, leads to further improvement compared to the Extended Minimal Al-

ternation results (see Fig. 5 for city H statistics). After inserting line arcs we obtain

nearly the pure-line schedule with the same fleet size (115 buses - compare to pure-

line scheduling, which needs 117 buses!) and a marginal operational cost increase.
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4. Dominance of Line Arcs and XMinAlt Strategies for All Instances 

0 O 

5. Line Statistics for CityH Instance 
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6 Conclusion and Outlook

This contribution discusses the vehicle scheduling problem in public transport com-

panies and particularly the consideration of lines in the mixed-lines bus schedules.

We implemented the time-space network based modeling approach as a software

component which has been integrated in commercial software packages to support

planning processes in public transport. This software component generates mathe-

matical models for given instances and solves them to optimality. We have carried

out tests on real-life timetables of several public transport companies in Germany,

such as Halle and Munich.

Thus, we used two ways to consider the line information:

1. The line consideration as a part of flow decomposition strategy. In this case we

are not forced to lose the cost optimality.

2. The consideration of line changes as cost component in the network of possible

bus activities. Thus, the mathematical model receives a cost trade-off between

schedule operating cost and line-considering cost component.

The first two approaches for the line consideration are based on the fact that

the optimal solution of the optimization model based on proposed time-space net-

work usually describes many optimal vehicle schedules with varying number of

line changes. We present heuristic algorithms which search among possible opti-

mal schedules, with the goal to reduce the number of line changes. Furthermore,

we discuss an exact set partitioning model to find a solution with the smallest num-

ber of line changes among all optimal schedules. An appropriate modification of

the network model makes possible to trade between cost optimality and line purity

by modifying the bonus values for using additional line arcs connecting trips of the

same line.

The cumulative number of bus rotations with not more than a given number of

lines is shown in Fig. 4. The presented methods are integrated in a commercial sys-

tem for scheduling in bus companies (ptv interplan) of the software development

company PTV AG and are already used in the planning of the vehicle schedules of

several public transport companies.
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Löbel, A. (1999). Solving large-scale multiple-depot vehicle scheduling problems. In

N. Wilson, editor, Computer-Aided Transit Scheduling, pages 193–220. Springer,

Berlin.

Ribeiro, C. and Soumis, F. (1994). A column generation approach to the multiple-

depot vehicle scheduling problem. Operations Research, 42, 41–52.

Suhl, U. (2000). Mops - mathematical optimization system. OR News, 8, 11–16.



Scheduling Models for Short-Term Railway Traffic

Optimisation

Alessandro Mascis1, Dario Pacciarelli2, and Marco Pranzo2

1 Bombardier Transportation Italy S.p.A., Via Cerchiara 125, 00131 Roma, Italy.

alessandro.mascis@it.transport.bombardier.com
2 Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre, Via della
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Summary. In this paper we report on the results of a research project on train traffic control

systems, supported by the European Commission. The results of the project include the de-

velopment of new optimisation models and algorithms for traffic management, and a general

architecture for train traffic control, capable of managing both fixed block and moving block

signaling safety concepts. This paper focuses in particular on models and algorithms for real

time conflict resolution. Computational results are reported, based on a portion of the Dutch

railway network, on the high-speed line Paris-Brussels-Amsterdam.

1 Introduction

This paper deals with the results of a research project on train traffic control systems

supported by the European Commission, entitled Project No. TR4004 IV FP - DG

XIII Telematics, acronym COMBINE. The project involves suppliers and users of

rail traffic systems, software houses and universities from different European Coun-

tries. Its goal is to analyze opportunities and problems for traffic management related

to the introduction of the moving block signaling standard ERTMS. The results of

the project include the development of a general architecture for a train traffic control

system and new optimization models and algorithms for traffic management.

Due to its inherent complexity, the management and control of rail operations is

usually organized in a hierarchically structured planning process to generate and

maintain train schedules. The strategy consists of developing off-line a detailed

timetable for each train, often called the master schedule, and by operating in real

time with strict adherence to these timetables (Hallowell and Harker (1996)). When

unforeseen events occur, such as the temporary unavailability of some resources,

which make infeasible the planned timetables, it is necessary to partially modify in

real time the master schedule in order to restore feasibility. Modifications may in-

clude changing precedence between trains and/or their planned speed. This on-line
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process is called train dispatching or conflict resolution (CR) in the first case, and

speed regulation in the second case.

Even if the resolution of conflicts is presently performed by human dispatchers all

over the world, several computerized Traffic Management Systems (TMS) have been

designed and implemented to support them to re-schedule the train movements and

to prevent them from making wrong decisions, such as causing a deadlock situation.

Among the published results, we cite the papers by Dorfman and Medanic (2004),

Adenso-Dı́az et al. (1999), Cai et al. (1998), Higgins et al. (1997), Sahin (1999) and

the papers of Kraay and Harker (1995), Hallowell and Harker (1996), Hallowell and

Harker (1998). In any case, models at the on-line control and planning level are not

designed to replace the human decision maker, who is always in charge to take the

decision of implementing a solution.

One aim of the COMBINE project is to move a step further in the direction

of automating the train traffic control process, by enabling the TMS to implement

some traffic control actions without the authorization of the human dispatcher. A

significant difference between a decision support system and a partially automated

system, like the COMBINE TMS, is that while the former one can provide a solution

which is not feasible in reality, a partially automated TMS must either provide a

solution which can be really implemented, or ask for the help of a human decision

maker. To this aim, detailed optimization models are necessary, in order to guarantee

that a solution, which is feasible for the optimization model, is always also physically

feasible.

It is worth noting that the TMS is not in charge of the safety of the rail network. In

fact, there exist underlying safety systems that, when necessary, can take the control

of the trains by imposing emergency braking in order to avoid collisions between

trains.

The paper is organized as follows. Section 2 introduces the train scheduling prob-

lem or conflict resolution problem. Section 3 introduces and describes the architec-

ture of the COMBINE TMS. In Section 4 we first introduce the notation and the

alternative graph formulation, then we formulate the conflict resolution problem by

means of an alternative graph. Finally, we describe the solution procedure adopted

to solve the conflicts. Section 5 deals with the solution procedures for the Speed

Regulation System. In Section 6 we illustrate the computational experiences, which

are based on the so-called Breda triangle, in the Dutch part of the high-speed line

Paris-Brussels-Amsterdam. Finally some conclusions follow in Section 7.

2 Problem Description

In this section we introduce the conflict resolution problem. There are two different

technologies to ensure safety in the railway networks: the fixed block technology and

the moving block technology. Since there are many different national standards, in

this paper we refer to the Dutch NS54 fixed block signaling and to the European

standard ERTMS for the moving block technology.



Scheduling Models for Short-Term Railway Traffic Optimisation 73

In its basic form a fixed block railway network is composed by track segments

and signals. Signals allow to control the traffic on the network, and to avoid any

potential collision among trains. There are signals before every station, passing loop,

junction, etc., as well as along the lines. A block section is a track segment between

two signals. Signaling systems vary quite a lot from country to country. However, the

basic mechanism is as follows. A signal may turn into three or more colors, say red,

yellow, or green. A red signal means that the subsequent block section is either out of

service or occupied by another train, a yellow signal means that the subsequent block

section is empty, but the following block section is occupied by another train, and

a green signal means that the next two block sections are empty. A train is allowed

to enter a block section depending both on its speed and on the signal color. Slow

trains can enter a block section only if the signal is either green or yellow, fast trains

can enter a block section at high speed only if the signal is green. Hence, each block

section can host at most one train at a time. A block section takes a minimum time

to be traversed, which is known in advance for each train, depending on the train

and infrastructure characteristics. Besides the traversing time, a delay may occur at

the end of a block section if the signal is red or yellow. The combinatorial structure

of the train scheduling problem is therefore similar to that of the blocking job shop

scheduling problem, a block section corresponding to a blocking machine, and a train

corresponding to a job.

With the moving block technology, at any time the exact position and speed for

each train are known. Signals are not necessary in this case, since the safety of the

trains is ensured by regulating and controlling their respective speeds. Safety stan-

dards impose a maximum speed for each train, depending on the distance from the

preceding train, necessary to grant the space for completely blocking the train in case

of emergency. Hence, track segments in this case are multiple capacity resources.

In both cases, i.e., fixed and moving blocks, stopping or slowing a train causes a

remarkable loss of time and energy, due to the long braking distances, followed by

acceleration of large masses. More important, if a railway line slopes up over a cer-

tain gradient, then there are some freight trains that should not decrease their speed

under a certain limit, otherwise they would not be able to reach the top, due to horse-

power reasons. Therefore, in a feasible schedule, there are some freight trains that

must not decelerate too much. However, in a good schedule, fast trains should always

have a good speed profile, i.e., a speed profile that permits low energy consumption.

This means that in a fixed block railway network some trains should always find

green signals, whereas slow trains should always find green or yellow signals. On

the other hand, in a moving block railway network fast and freight trains should not

suffer too many speed variations.

The real-time management of rail operations requires checking if the off-line

timetables are coherent with the current train positions and speeds. If unforeseen

events cause a train not to follow exactly its planned timetable, then an action is

required in order to restore the feasibility in the schedule. In this paper we deal

with this short term planning process, which is often called conflict resolution. More

precisely, a conflict is any unforeseen event which makes the planned timetables

infeasible (see, e.g., Kraay and Harker (1995)). A conflict occurs, e.g., when two
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trains require the same resource, i.e., the same segment of track, at the same time.

The conflict resolution problem requires determining a new feasible plan of meets

and overtakes as close as possible to the master schedule, i.e., such that the delay at

all the stations is minimized. In particular, in this paper we address the problem of

minimizing the maximum delay.

3 Traffic Management System Architecture

In this section we describe the architecture of the TMS developed in the COMBINE

project, as far as the modules for automated train control are concerned. The archi-

tecture of the TMS is shown in Fig. 1, where two different layers inside the TMS can

be distinguished: the conflict resolution system (CRS) and the speed regulator (SR).

Conflict Resolution System

Speed Regulator

Field

current speeds

current positions

interlocked routes

infrastructure availability

advisory speeds

failed goal achievement goals

train sequencing

failed timetable achievement timetable

alternative routes

constraints

Dispatcher

TMS

Fig. 1. Train Management System Architecture

At the highest hierarchical level there is the human dispatcher in charge for con-

trolling the rail network. The dispatcher evaluates the rail network status and controls

the traffic flows in the network. The human dispatcher, in the COMBINE TMS, fo-

cuses on important planning decisions only and leaves to the TMS all other minor
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decisions. In other words, while the human dispatcher is able to make major deci-

sions, such as canceling a connection or changing the route of a train, the computer-

ized dispatcher can only re-schedule train movements, thus maintaining in real time

a conflict-free schedule for each train, compatible with the real time situation. Three

different operating possibilities can be identified:

• (Manual Mode) The dispatcher decides to manually solve the conflicts.

• (Mixed Mode) The dispatcher can interact with the TMS modifying the planned

timetable or imposing precedence relations between trains.

• (Supervision Mode) The dispatcher supervises the work of the automatic TMS.

In the manual mode the dispatcher manually solves every conflict arising in the

rail network.

In the mixed mode the dispatcher can impose to the TMS some constraints in

order to guide the solution process. A typical constraint is a fixed precedence relation

among two trains or a given route for a train. By constraining the TMS the dispatcher

can influence the behavior of the system guiding the algorithm towards good quality

solutions.

In the supervision mode, the TMS is in charge of solving the conflicts, and the

main role of the dispatcher is to control the work of the TMS. In any case and at

any time, in the supervision mode, the dispatcher can switch to the manual mode

to assure a better circulation. Moreover, in some critical situations the TMS might

not be able to find a feasible solution, thus requiring the dispatcher’s help. In these

situations the dispatcher has to take the control of the network by solving the arising

conflicts manually. Usually in these situations major changes in the timetable are

required in order to restore a feasible situation.

The CR layer takes as input the position, the speed and the planned timetable,

usually obtained by some off-line algorithm, for each train circulating in the rail net-

work. Moreover, as mentioned before, in the mixed mode, a set of precedence rela-

tions could be directly added to the problem by the dispatcher. In other words, given

the current network status, the aim of the CRS is to obtain in real time a conflict-free

schedule, as close as possible to the planned timetable.

The output of the CRS is a set of precedence constraints among trains and a set

of goals for each train. A goal specifies a relevant point along the line to be met by

the train, such as a station, a junction, or the end of the current resource, an inter-

val [earliest, latest] possible time to reach the position, and an interval [minimum,

maximum] speed for the train at the goal position.

The SR module is in charge of regulating the speed profile of each train in the

network with the aim of respecting all goals and saving energy. In other words, the

SR module generates a speed profile for each train, such that the train is able to

reach the position specified by all goals within the given margins of time and speed.

Speed regulation is expected to become a significant aspect of traffic control under

the moving block technology, whereas it is usually managed with simple static rules

under the traditional fixed block technology. The SR layer takes the feasible plan

produced by the CRS as input, and for each train decides the train speed needed to

reach the goal while reducing the energy consumption.
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Finally, the output of the SR is sent to the field level. In our experiments, the field

has been modeled using a detailed rail simulator compliant to the NS54 signaling

system and the ERTMS standard.

In the COMBINE TMS the SR procedure is executed every time the rail network

status is updated, whereas the CRS is invoked, and a new feasible plan is obtained,

only if the SR is not able to reach all the goals. Note that, as long as the SR is able

to reach all the goals the CRS algorithm is not executed. In this way the CRS is

executed only a small number of times, and the solution of the TMS is “stable,” i.e.,

it changes rarely over time. If the CRS is not able to respect all the planned timetable

constraints then the help of the dispatcher is requested.

4 Conflict Resolution

In this section we describe in details the CR system developed in the COMBINE

project. First we introduce the mathematical notation used to model the train schedul-

ing problem, then we show how the alternative graph formulation (Mascis (1997),

Mascis and Pacciarelli (2002)) is able to represent in details the train scheduling

problem. Finally, we describe the algorithm developed for the CRS, based on the

alternative graph formulation. As already observed in Section 2, the combinatorial

structure of the train scheduling problem is similar to that of the blocking job shop

scheduling problem, a block section corresponding to a blocking machine, and a

train corresponding to a job. In what follows, we describe the alternative graph for-

mulation for the blocking job shop problem, we then extend the model to the CR

context.

4.1 Models

Following the traditional terminology used in scheduling theory, we refer to a train as

a job, whereas we refer to a track segment as a machine (i.e., a resource that is used

by a job). In the usual definition of the job shop problem a job must be processed

on a set of machines (i.e., a train must pass through a given set of track segments).

The sequence of machines for each job is prescribed; the processing of a job on

a machine is called an operation and it cannot be interrupted. We have therefore

a set of operations {o0, o1, . . . , on} which have to be performed on m machines

{m1,m2, . . . , mm}. Each operation oi requires a specified amount of processing pi

on a specified machine mi (or M(i)), and cannot be interrupted from its starting

time ti to its completion time ci = ti + pi. o0 and on are dummy operations, with

zero processing time, that we call “start” and “finish,” respectively. Each machine

can process only one operation at a time.

There is a set of precedence relations among operations. A precedence relation

(i, j) is a constraint on the starting time of operation oj , with respect to ti. More

precisely, the starting time of the successor oj must be greater or equal to the starting

time of the predecessor oi plus a given time lag fij , which in this model can be either
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positive, null or negative. A positive time lag may represent, e.g., the fact that oper-

ation oj may start processing only after the completion of oi, plus a possible setup

time. A time lag smaller or equal to zero represents a synchronization between the

starting times of the two operations. Finally, we assume that o0 precedes o1, . . . , on,

and on follows o0, . . . , on−1. Precedence relations are divided into two sets: fixed

and alternative. Alternative precedence relations are partitioned into pairs.

A schedule is an assignment of starting times t0, t1, . . . , tn to the respective op-

erations o0, o1, . . . , on, such that all fixed precedence relations, and exactly one for

each pair of the alternative precedence relations, are satisfied. Without loss of gener-

ality we assume t0 = 0. The goal is to minimize the starting time of operation on.

This problem can be formulated as a particular disjunctive program, i.e., a linear pro-

gram with logical conditions involving operations “and” (∧, conjunction) and “or”

(∨, disjunction), as in Balas (1979).

min tn − t0
s.t. tj − ti ≥ fij (i, j) ∈ F

(tj − ti ≥ aij) ∨ (tk − th ≥ ahk) ((i, j), (h, k)) ∈ A
(1)

Associating a node to each operation, Problem (1) can be usefully represented

by the triple G = (N,F,A) that we call alternative graph (Mascis and Pacciarelli

(2002)). The alternative graph is as follows. There is a set of nodes N , a set of

directed arcs F and a set of pairs of directed arcs A. Arcs in the set F are fixed and fij

is the length of arc (i, j) ∈ F . Arcs in the set A are alternative. If ((i, j), (h, k)) ∈ A,

we say that (i, j) and (h, k) are paired and that (i, j) is the alternative of (h, k).
Finally, aij is the length of the alternative arc (i, j).

A selection S is a set of arcs obtained from A by choosing at most one arc from

each pair. The selection is complete if exactly one arc from each pair is chosen.

Given a pair of alternative arcs ((i, j), (h, k)) ∈ A, we say that (i, j) is selected in S
if (i, j) ∈ S, whereas we say that (i, j) is forbidden in S if (h, k) ∈ S. Finally, the

pair is unselected if neither (i, j) nor (h, k) is selected in S. Given a selection S, let

G(S) indicate the graph (N,F ∪ S). A selection S is consistent if the graph G(S)
has no positive length cycles. With this notation each schedule is associated with a

complete consistent selection on the corresponding alternative graph. The makespan

of a consistent selection S is the length of a longest path from node 0 to node n in

G(S). Given a selection S, we denote the value of a longest path from i to j in G(S)
by lS(i, j).

4.2 Train Scheduling Formulation

In this section a description of the alternative graph model for the conflict resolution

problem is given. We first address the case of a fixed block signaling system. Then,

at the end of this section, we extend the results to deal with the moving block case

and with mixed situations.

A railway network can be modeled as a set of track lines and signals, as described

in Section 2, and a block section is a track segment between two signals. In the
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alternative graph model of the conflict resolution problem a node in the alternative

graph corresponds to the time at which a given train enters a given block section. In

this model fast trains require two or more empty block sections at a time, in order to

travel at their maximum speed, and this can be easily modeled by suitably choosing

the alternative pairs. Fig. 2 shows an example for the case of two trains moving in the

same direction: train A is a slow train and train B is a fast train, nodes i and j refer

to the same block section k. Here, phk is the travel time for train h and block section

k. If train B precedes A on block section k, train A must wait until the section is

empty, i.e., until train B enters section k + 1. On the contrary, if train A enters block

section k before B, then train B must wait until the next two sections are empty, i.e.,

until train A reaches block section k + 2.

A

B

i

j

pAk p A(k+2)
p A(k+1)

pBk p B(k+2)p B(k+1)

00

0 0

Fig. 2. The Graph Representation for a Slow and a Fast Train

We observe that different trains have different further requirements. For energy

saving and horsepower reasons, fast trains and freight trains should not decrease their

speed under a certain limit. These constraints can be easily modeled by specifying a

maximum time for moving from one point to another of the network. The require-

ment that a passenger train should not be too late at the stop stations can also be

easily modeled as a due date constraint.

Fig. 3 shows a small railway network with four block sections (denoted as 1, 7,

9, and 10), a simple station with two platforms (denoted as 3 and 4), and four special

resources, called routes (denoted as 2, 5, 6 and 8), each of them including all the

track segments in a junction. These resources have capacity one. At time t there are

three slow trains in the network. Train A is a freight train, going from block section

1 to block section 10, and passing through Platform 3 without stopping. Here, α is

the time needed for train A to pass through all block sections at the lowest speed

allowed. Train B is a passenger train going from block section 9 to block section

1, and passing through Platform 4. Train C is a passenger train going from block

section 7 to block section 1, and stopping on Platform 4. Its departure time from the

station is β. Finally, the planned times for trains A,B and C to leave the network are

γ, δ and χ, respectively.

In Fig. 4 the alternative graph for this example is reported. For the sake of clarity

we make use of a different notation here. Each node of the alternative graph is de-
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Fig. 3. A Small Rail Network
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Fig. 4. The Alternative Graph for the Example with Three Trains

noted by the pair (train, block section). A pair of alternative arcs is represented by

connecting the two arcs with a small circle in Fig. 4. Each alternative pair of arcs is

associated to the usage of a common resource. In particular, trains A and B share re-

sources 1, 2, 5, 6, and 8. Trains A and C share resources 1, 2, 5, and 6. Trains B and

C share resources 1, 2, 4, 5, and 6. Note that the initial position of train A implies

that B and C are not allowed to precede A on block sections 1 and 2, and therefore

we have the selected alternative arcs (A2, B1), (A2, C1), (A3, B2) and (A3, C2).
The respective forbidden alternative arcs are not depicted. On all the alternative arcs

there is an arbitrarily small weight ǫ > 0.

The fixed arcs with negative weight represent the minimum speed constraint for

train A and the delays of the three trains at some relevant points of the network. In

particular, arc (A10, A1), with weight −α, corresponds to requiring a maximum time

α for train A to travel from block section 1 to 10. Due to minimum and maximum

travel time constraints, in a feasible schedule the train speed is always kept within

the feasible interval.

The planned departure time β of train C from the station (resource 4) is modeled

with arc (C2, n) with weight −β. Similarly, arcs (A12, n), (B11, n) and (C11, n)
with weight −γ,−δ and −χ, respectively, model the planned exit time of each train

from the network. With this model, given a complete consistent selection S, the

length of the longest path from 0 to n in G(S) equals the maximum delay of the

three trains in the associated schedule. In fact, lS(0, C2) is the departure time of

Train C from the station, and therefore lS(0, C2) − β is the delay of Train C at the

station. Similarly, lS(0, C11), lS(0, A12), and lS(0, B11) are the exit times of the
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three trains from the network, and therefore lS(0, C11) − χ, lS(0, A12) − γ, and

lS(0, B11) − δ are their respective exit delays.

The case of a moving block signaling system is now addressed. This case is

slightly more complicated to model than the fixed block case. A moving block sec-

tion can be represented as a resource with multiple capacity in which two consecutive

trains cannot enter simultaneously, but rather with a minimum time lag depending on

train speed. Since the overtaking is not allowed within a resource, the model must

represent this fact.

A

B

i

h

pA

pB

j

k

Fig. 5. The Alternative Graph Model for a Moving Block Signaling System

Fig. 5 shows an example for a moving block section with two trains (A and B).

There are two pairs of alternative arcs ((i, h), (k, j)) and ((h, i), (j, k)). The mini-

mum separation at the beginning [at the end] of the block section equals the length of

arcs (i, h) and (h, i) [(j, k) and (k, j)]. The non-overtaking constraint follows from

the fact that, if an arc from any of the two pairs is selected, then an arc from the other

pair is forbidden. For example, if (i, h) is selected from the first pair, then (h, i) must

be forbidden in the second in order to avoid positive length cycles in the graph.

It is worth noting that this representation is not able to limit the number of trains

simultaneously using the same moving block section, thus resulting in an infinite

capacity resource. However, in practical applications, the capacity of a moving block

section is rarely reached, and the number of trains simultaneously using the same

moving block section can be easily checked in a post-processing phase.

Fig. 6 shows an example of a mixed situation. In this case the junction in bold,

labeled with number 3, is equipped with fixed block technology, while the following

block section, numbered with 4, is equipped with the moving block technology.

The alternative graph for the Train A and the Train B is shown in Fig. 7, where

the shaded nodes represent the actual position of the two trains. In this example

there are three pairs of arcs, the pair ((j, k), (l, i)) representing the conflict arising

in the block section (resource 3), and the pairs ((j, l), (m,h)) and ((l, j), (h,m))
representing the conflict arising in the multiple capacity resource 4.
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Fig. 6. Example of a Mixed Situation
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Fig. 7. The Alternative Graph Model for a Mixed Situation

4.3 Conflict Resolution Procedure

The CRS is responsible for train scheduling, and it is the critical system from the

computational perspective. In fact, finding the optimal solution to a problem formu-

lated by means of the alternative graph is an NP-hard problem. More generally, the

problem of deciding whether a deadlock-free schedule exists or not, being fixed the

initial positions and routes of the trains is an NP-complete problem (Mascis and

Pacciarelli (2002)). Unfortunately, within a real time environment it is necessary to

solve the problem under severe time requirements. Hence, the COMBINE CRS uses

a fast heuristic algorithm to find a feasible solution to the Problem (1). If the al-

gorithm fails in finding a feasible solution, it means either that there is no feasible

solution respecting all the constraints, or that the heuristic is unable to find one. In

both cases the system requires the help of the human dispatcher to restore feasibility.

In order to respect the strict time bound the CRS only considers those trains that

are or will be present in the network within a given time window, called the planning

horizon, thus obtaining a significant reduction in the size of the problem. With a

short planning horizon only few trains, and few conflicts, are considered, whereas a

longer planning horizon leads to a larger number of circulating trains and a larger

number of possible conflicts. There is a trade-off between the size of the planning

horizon time window and the quality of the solution found by the CRS. In fact the

solutions found with few circulating trains could be myopic, since the CRS does not

take into account conflicting trains not in the planning horizon. On the other hand

a conflict arising far in the future is not important as a closer conflict, since other

unforeseen events could still affect the far conflict. In other words there is a priority

in the conflicts; conflicts arising in near future are more important than others that
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could arise far in the future. Moreover, the size of the resulting alternative graph is

strictly dependent on the number of circulating trains, i.e., the smaller the planning

horizon the smaller the alternative graph is.

The CR algorithm can be considered basically as a sequence of three independent

phases: pre-processing, plan creation and post-processing. Every time a sequence is

completed the output of the algorithm is given as input to the SR. In what follows we

describe in details the three phases composing the algorithm.

Pre-processing: The pre-processing phase can be divided in two basic subtasks:

the update scenario phase and the graph building phase.

The update scenario phase is responsible for filling the internal data structures

of the CRS with the current route status and train position and speed and, when

available, with a new plan received by the dispatcher. The current position and the

speed of a train influence the minimum travel time needed for moving through the

subsequent track segments.

The second task of the pre-processing operations is the graph building phase.

In the graph building phase the alternative graph representing the rail network is

built. Every train is represented in the alternative graph by a chain of nodes and

fixed arcs, representing the sequence of actions to be performed by the train: e.g.,

perform route x, enter track y, enter track z, etc. A travel time is associated with

each action; this time is evaluated in the update scenario task, assuming the train is

running at a constant speed and without taking into account any conflict. In order

to reduce computational times we update the alternative graph instead of rebuilding

it completely. New trains are added to the alternative graph model as they enter the

planning horizon. The duration of each operation is updated according to the new

position and speed of the train and the length of the arc is modified accordingly. If

the train route is modified by the dispatcher, the train is removed and added again as

a new train entering in the planning horizon.

As mentioned before, the dispatcher has the chance of imposing some prece-

dence constraints between trains, i.e., imposing that a train should enter a conflicting

resource before another train. The set of constraints received by the dispatcher is

represented with a set of fixed arcs that is added to the alternative graph during the

building graph task. A check is performed to verify if the graph is feasible, i.e., with

no positive length cycles. If the resulting graph is infeasible then a new plan is re-

quired from the dispatcher, and the TMS switches to the manual mode.

In order to reduce the computing time, the build graph subtask does not generate

in the alternative graph all the pairs needed to represent the problem. The alternative

pairs are added to the graph only when needed. More precisely, in the preprocessing

step a plan of earliest/latest possible arrival and departure times for the trains at a set

of key points is computed. Then, for each resource in the network, a conflict can arise

only for those pairs of trains that are allowed to pass through the resource at the same

time, i.e., such that the respective intervals of earliest/latest possible arrival/departure

times for the trains overlap. Hence, we add a pair of alternative arcs only for these

trains and resources. A time window, and consequently the number of alternative

pairs, is increased whenever a train violates it. Computational experience shows that
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even a large network with high traffic conditions can be modeled with a reasonable

number of pairs of alternative arcs, thus allowing us to solve it within a very short

time.

Plan Creation: Our scheduling procedure, shown in Fig. 8, is a constructive

greedy algorithm that repeatedly enlarges a feasible partial solution. If an infeasi-

ble selection is reached, the algorithm performs a backtrack and explores another

branch of the enumeration tree. The aim of the search is to find a feasible solution

such that the maximum delay of a train at each stop is never larger than a given

quantity.

Procedure Conflict Resolution

1. while a conflict is found

2. begin

3. Add to the graph the alternative pair representing the conflict.

4. Solve the conflict by selecting the pair.

5. if the graph is infeasible then

6. begin

7. Perform backtrack and choose the alternative arc.

8. if no backtrack is possible then exit (found an infeasible solution).

9. end

10. end

11. exit (feasible solution found).

Fig. 8. The Conflict Resolution Procedure

A conflict arises when a train asks for a resource already in use by another train in

case of fixed blocks or when a train overtakes another train in the moving block case.

More precisely in the fixed block case it arises when a Train A enters a resource Rx

before Train B leaves the resource Rx. Whereas in the moving block case a conflict

occurs if Train A enters resource Rx before Train B and Train B exits from Rx

before Train A.

The conflicts are detected by means of a topological visit of the alternative graph,

and the algorithm solves the conflicts with higher priority first. The CR algorithm

solves the conflicts giving the precedence to the conflicting train that minimizes the

increase in the delay. More formally let ((i, j), (h, k)) be the alternative pair detected

by the topological visit. The pair is selected according to the following expression

min{lS(0, i) + aij + lS(j, n), lS(0, h) + ahk + lS(k, n)} (2)

where lS(x, y) denotes the length of the longest path in G(S) from node x to node

y. In other words, the criterion adopted to solve the conflicts can be considered as

giving the precedence to the a posteriori more delayed train.
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Note that in some situations there is no choice on how to select an alternative

pair. For example, let us consider an alternative pair ((i, j), (h, k)) such that there

exists a path in G(S) from node j to node i, and let lS(j, i) be its length. Then, if

lS(j, i) + aij > 0 (3)

selecting the arc (i, j) would cause a positive length cycle in the graph. Hence, that

arc has to be forbidden and its alternative selected. For some resources the planned

timetable defines intervals earliest/latest on the earliest and latest entry time allowed

on that resource. If selecting an alternative pair causes a train not respecting those

constraints, then the Condition (3) permits to identify positive length cycles in the

graph and thus immediately to select the pair in the other direction.

Post-processing: When a satisfactory solution has been found by the CR algo-

rithm, a post-processing is applied to it. The main task of the post-processing phase

is to specify a set of goals for each train and each relevant point visited by the train.

A goal contains the following information:

• a relevant point along the line to be met by the train, such as a station, a junction,

or the end of the current resource,

• an interval [earliest, latest] possible time to reach the position,

• an interval [minimum, maximum] speed for the train at the goal position.

In other words, each train has to reach its next goal within given margins of time

and speed. The definition of goals starts from the output of the plan creation phase,

in which trains are scheduled to travel at maximum speed through all block sections.

If a train reaches a station early with respect to the timetable, or if a train has to wait

for another train at a junction, then in the post-processing phase the earliness or the

waiting time is distributed backwards along the train path whenever this does not

cause a delay to the previous trains. In doing so, the train is allowed to travel at a

lower speed, thus saving energy, while reaching on time all the relevant points.

After the post-processing phase, the resulting goals and precedence relationships

between booking actions (the plan graph) are sent to the SR.

5 Speed Regulation

In this section we briefly describe the SR. A more detailed description of the speed

regulation procedures is given in Mascis et al. (2002), we provide only a brief sum-

mary here. The SR is responsible for controlling the train speed. Different SR proce-

dures are necessary when dealing with fixed block and moving block technologies.

In fact, in the moving block technology the advisory speed is given by the mini-

mum between possible local speed restrictions and the maximum speed related to

the distance from the next train, whereas in the fixed block case the speed depends

on signals. In other words, the advisory speed depends on the status of the next block

sections (available/not available). Note that this difference does not affect the archi-

tecture of the system, but only the computation of the SR.
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As shown in the previous section the CRS process sends a plan to the SR. A

CRS plan contains an ordered set R of resources and the associated goals and routes

for each train and a set of precedence relations between the routes to be booked.

Recall that a goal specifies a position, such as the end of the current resource, and

the [earliest,latest] possible time to reach the position, and the [minimum,maximum]

possible speed at the goal position. Reaching the goal at the minimum time and with

the maximum speed typically allows to reduce the delays but causes an increase in

the energy consumption. The opposite holds when reaching the goal at the maximum

time and minimum speed.

In both fixed block technology and moving block technology, the SR performs

a sequence of three independent phases: update scenario, safety check, and speed

evaluation. Every time a sequence is completed a new sequence can start.

• In the update scenario phase the SR updates the status of the network and the

train positions and speeds. Also the plan of precedences and goals is updated

when the CRS provides a new plan.

• In the safety check phase a simple and very fast check on the train speed is per-

formed in order to avoid that the underlying safety system takes the control of the

train with undesired safety braking. Two different limitations on the maximum

speed allowed to a train can be distinguished: a “static” limitation due to the sta-

tus of the network, and a “dynamic” limitation due to a preceding train having

smaller speed. In the fixed block case the maximum speed allowed to a train is

always dependent on static limitations, in particular it depends on the maximum

speed allowed by the infrastructure, and on the distance between the current train

position and the position of the next red signal. In the moving block case, the

maximum speed allowed for a train also depends on dynamic limitations, i.e., on

the distance between the current train position and the position of the first train

ahead.

• The speed evaluation phase verifies if the train can reach the goal. The speed

evaluation calculates the speed profile for all the trains, while respecting the

precedence constraints imposed by the CRS. If one is interested in optimizing

the punctuality, then the SR looks for a solution in which the trains reach their

respective goals at the center of the time window and with the maximum speed.

If one is interested in minimizing the energy consumption, then the SR looks for

a solution in which the trains reach their respective goals at the latest value of

the time window and with the minimum speed. If the computation proves that no

feasible solution exists, the SR sends a warning message to the CRS, requesting

a new plan and a new set of goals.

6 Computational Experiences

The COMBINE system has been tested with a detailed simulator of a portion of

the Dutch railway network, more precisely the Breda triangle, in the Dutch part of

the high-speed line Paris-Brussels-Amsterdam (hereafter called Breda junction). The
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test site is depicted in Fig. 9. A mini-station with a loop enables passing and recovery

of required train orders on the area boundary. A junction of two train tracks enables

crossing movements of trains, and it is assumed that there are no power supply limi-

tations. The maximum speed on the bold lines is 300 km/h, and in the tunnel is 280

km/h. On the medium tracks the maximum speed is 170 km/h, whereas on the thin

lines the maximum speed is 140 km/h in the first 400 meters from the main line, 110

km/h otherwise. TGV’s run on the main line from Amsterdam to Brussels. Shuttle

trains run from Rotterdam to Breda and from Brussels to Breda, where merging and

exiting is done via fly-overs. The high speed line will be used by TGV’s. Some of its

sections will be jointly used by national high speed Shuttle trains.
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Fig. 9. The Test Site (Breda Junction)

This site has been chosen as a case study for the COMBINE project since at

the time of writing this was one of the first sites undergoing real world implemen-

tation of the ERTMS Level 3 system. The approach has been tested by using a de-

tailed rail simulator fully compliant with ERTMS Level 3 specifications. The rail

simulator takes into account the characteristics of the rolling stock, rail tracks, radio

transmissions, driver reaction times, etc. In particular, we call control loop delay the

minimum time between two consecutive updates of the rail network status. The con-

trol loop delay is dependent on a number of technological variables, such as radio

transmission delays and others. In any case the TMS should be able to obtain a new

solution within the control loop delay time, otherwise the safety layer could take

control of the trains and impose undesired emergency braking. In the computational

experiments the control loop delay is fixed, for all tests, at 20 seconds.

In all the tests the TMS optimization algorithm is compared with a simple dis-

patching rule (First In - First Out, FIFO), which is the most commonly used rule for

train dispatching. The comparison between TMS and FIFO is carried out showing a

set of information presented in graphical form. The description of such information,

as well as definitions necessary to avoid any misunderstanding for the reader, is pre-

sented in the following. Let us define the “entry delay” as the difference between the

actual entry time and the planned entry time, i.e., the difference between the instant

when the observed train enters the control area and the instant when the observed
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train is scheduled to enter the control area according to the timetable. We call “exit

delay” the difference between the actual exit time and the planned exit time, i.e., the

difference between the instant when the observed train leaves the control area and

the instant when the observed train is scheduled to leave the control area accord-

ing to the timetable. The “total tardiness normalized to entry delay” shows the sum

of the exit delays, as a percentage of the sum of the entry delays. The “normalized

energy consumption” shows the energy consumption as a percentage of the energy

consumption for the reference case, i.e., the FIFO case.

We describe here two representative test situations in this section, called AT1

and AT2, and we analyze the influence and the benefits of the TMS versus the FIFO

control strategy. A broader analysis of the TMS performance is reported in Mascis

et al. (2002). In these tests we considered the planned traffic over the high speed line

for year 2015 and no priority distinction among trains. Some perturbations (entry

delay) have been added to the planned traffic in order to generate conflicts among

the circulating trains. Since each test involves stochastic disturbances, and in order

to collect sufficient data for a statistically sound analysis, each test consisted of four

replications of five consecutive hours.

These tests address the behavior of the TMS in order to assess the effectiveness

of optimization algorithms, in conditions where a delay recovery margin is available.

These tests are characterized by the fact that timetables are defined taking into ac-

count suitable delay recovery margins. In other words, planned travel times, for each

train, are higher than their minimum values.

6.1 Hindering Conflict Test

In the first test case, hereafter called AT1, the Shuttle 138604 from Belgium to Breda

enters the control area with large delays (between 780 and 840 seconds), so that a

conflict arises with the TGV 104 from Belgium to Rotterdam.

With the FIFO rule, the Shuttle 138604 passes through the mini-station on the

secondary line and joins the high speed line preceding TGV 104. The TGV is hin-

dered by the Shuttle until the latter leaves the high speed line. This turns out into

significant delays for TGV 104, whereas Shuttle 138604 recovers most of its initial

delay. The delay collected by TGV 104 causes a convergence/hindering conflict with

Shuttle 138601 from Breda to Rotterdam. In this case Shuttle 138605 joins the high

speed line preceding TGV 104, which leaves the control area with a large delay.

Whereas TMS uses the secondary line inside the mini-station in order to allow

TGV 104 to overtake Shuttle 138604, that is slowed down below the maximum speed

allowed inside the station, so that it is no more hindered by the latter and leaves the

control area on schedule. No other conflict arises.

As shown in Fig. 10, with the FIFO rule, the Shuttle 138604 is able to drastically

reduce its delay from 805 seconds to 233 seconds, but the TGV 104 exits with 307

seconds of delay, and all the other trains exit before their scheduled time, since they

all drive at maximum speed. When the TMS is running, the exit delay of Shuttle

138604 is doubled in comparison with the FIFO case, but it is halved in comparison

with the entry delay. All the other trains respect the timetable.
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Fig. 10. AT1. Entry and Exit Delay

6.2 Convergence Conflict Test

Now we address the second test case (AT2). Trains coming from Rotterdam enter

the control area with large delays (between 800 and 900 seconds for TGVs, between

300 and 360 seconds for Shuttles), so that convergence/hindering conflicts are likely

to arise between the TGV 101 from Rotterdam to Belgium and the Shuttle 138602

from Breda to Belgium, when joining the high speed line.

With the FIFO case Shuttle 138602 runs with the speed scheduled by the original

plan and approaches the convergence point before the delayed TGV 101, joining the

high speed line preceding it. The TGV is hindered by the Shuttle up to the control

area border and its exit delay is larger then the entry one. Shuttle 138602 leaves the

control area on schedule.

When TMS is active the algorithm slows down Shuttle 138602 before the conver-

gence point so that it joins the high speed line just behind the delayed TGV 101. This

has some consequences on Shuttle punctuality, but allows the TGV 101 to recover a

significant part of its initial delay, running at maximum speed throughout the control

area.

With the FIFO rule, as shown in Fig. 11, the Shuttle 138603 and Shuttle 183606

are able to recover partially their entry delay from 325 seconds to 51 seconds, and

from 332 to 58 seconds. The TGV 103 exits with 654 seconds of delay, thus reducing

the entry delay, whereas the delay of TGV 101 increases from 838 to 1051 seconds.

All the other trains exit before their scheduled time, since they all drive at maximum

speed. On the other hand when the TMS is running, the exit delay of Shuttles 138603

and 183603 are completely recovered, but Shuttle 138602 exits the Breda junction

with 186 seconds of exit delay. Both the TGV 101 and 103 are capable of reducing

their delays from 838 to 605 and from 861 to 627 seconds, respectively.
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6.3 Discussion

Table 1 summarizes the performance of the TMS solutions with respect to those pro-

vided by the FIFO rule, as far as both punctuality and energy saving are concerned. In

particular, such tests demonstrated the benefits deriving from the implementation of

optimization algorithms which make decisions based on the knowledge of the global

traffic status, with respect to a system where simple control rules are used.

Table 1. AT1, AT2. Total Tardiness Normalized to Entry Delay, and Energy Consumption

Normalized to the FIFO Case

AT1 AT2

Total Energy Total Energy

Tardiness Consumption Tardiness Consumption

FIFO 66.6% 100% 76.7% 100%

TMS 53.0% 89.1% 60.2% 90.8%

Timetables in which trains are planned to travel at less than maximum speed

make possible to speed-up late trains in order to recover delays, thus increasing the

probability of arriving at destination on time. At the same time, when trains are on

time, considerable energy savings can be achieved by letting them travel at lower

speed. As pointed out by Kraay and Harker (1995), “planning at maximum velocity

does not provide this flexibility.”

7 Conclusions

In this paper we discussed models and algorithms capable of describing a rail net-

work equipped both with fixed block and moving block signaling safety systems.
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Performance tests were aimed at showing whether advanced optimization algorithms

are useful to manage railway traffic. Results showed that the optimization algo-

rithms turned out valuable advantages in terms of better punctuality and energy sav-

ing, when compared with simple dispatching rules, whenever appropriate slacks are

present in the train timetables.
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Summary. Airline crew scheduling is a comparably well-studied field in operations research.

An increasing demand for higher crew satisfaction arises; especially after most relevant cost

factors have been optimized to their greatest extent, mostly with secondary or little regard on

quality-of-life criteria for the involved crew members. One such criterion is team orientation.

Independent from the chosen assignment strategy (bidline systems, personalized rostering or

preferential bidding), current approaches do not consider frequently occurring changes within

daily or day-by-day team compositions. By this, crew members rarely know with whom they

work for the next flight(s) and/or day(s), respectively. In case of overnight stays outside their

individual home base, crew members easily experience themselves having to find their ways

to the booked hotels on their own. The avoidance of both aspects is highly appreciated by the

crew as well as by the airlines, and will be addressed in the Team-oriented Rostering Prob-

lem. In this work we present a first interpretation of Team-oriented Rostering for cockpit crew,

namely captains and first officers which can be implemented via two dedicated optimization

models: Extended Rostering Model and Roster Combination Model. Due to the high combi-

natorial complexity, certain strategies are applied during roster generation and roster combi-

nation in order to solve mid-sized instances based on a European tourist airline setting. As a

result, the implied trade-off curve between operational cost and the number of team changes

will be discussed.

1 Introduction

Numerous factors influence the performance of an airline company. After fuel, the

second highest expense known is personnel, especially for onboard crew. Hence crew

scheduling aims to utilize crew members in such a way that their cost is minimized

while ensuring the implementation of the given flight plan.

Recent approaches have focused on the pure cost perspective which is even em-

phasized by the strong competitiveness of the global, meanwhile also continental and

domestic, air traffic markets. After all, the resulting cost-minimized crew schedules

could turn out to be less satisfactory for crew members. Although all governmental
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restrictions, union agreements, and airline specific rules are obeyed, cost-intensive

disturbances of the schedule occur frequently due to absent or sick crew members.

Based on the commonly known positive correlation between employees’ satisfac-

tion and their absence rate, we define the Team-oriented Rostering Problem (ToRP)

as the consideration of teams within the crew rostering process. In this approach,

we address a usually unconsidered factor to increase crew satisfaction, namely the

avoidance of frequent team changes. This factor turns out to be notably important

because of the high inherent stress level associated with it. Imagine a crew member

working his/her onboard shift (or flight duty) for up to 14 hours every day, after-

wards having to find the reserved hotel on his/her own in a possibly even unknown

town. Or within the day, communication and companionship among crew members

is hardened, if those people that just worked together get separated several times a

day, always being in a hurry to arrive at the next scheduled location right in time.

Additionally, the National Transportation Safety Board (NTSB) conducted a study

on the circumstances for cockpit crew of U.S. carriers which experienced major acci-

dents over a period of 15 years, see NTSB (1994). According to their findings, 73%

of all incidents took place during the crew’s first day, and 44% occurred even during

the initial flight of a newly formed crew.

This paper presents techniques for two alternative optimization models treating

the ToRP for cockpit crew. It is specifically tailored to the needs of European airlines

with their distinct fair-and-equal share interpretation of workload in terms of, e.g.,

flight hours – as opposed to the more frequently examined U.S. systems (bidline

system or preferential bidding, see Section 2.2). Both models have been formulated

as a set partitioning problem (SPP). Due to the high combinatorial complexity for

considering roster combinations instead of “just” single rosters, a set of strategies is

applied to enable appropriate solving.

The paper is structured as follows. We first give a brief survey on the airline crew

scheduling problem. In Section 3 an introduction to the general ToRP follows, and,

in particular, special characteristics for cockpit crew. In Section 4 we present and

discuss two possible mathematical formulations for the team-oriented cockpit crew

rostering. The two main tasks, roster generation and roster selection, are addressed

in Section 5 by a variety of implementation methods. Some computational results

based on the setting of a European tourist airline follow in Section 6. We close with

a summary and outlook.

2 Airline Crew Scheduling

A general formulation for the airline crew scheduling problem (CSP) can be para-

phrased as follows. Given the published flight schedule of an airline, the key task is

to assign all necessary crew members of cockpit and cabin crew in such a way that

the airline is able to operate all its flights at minimal expense for personnel. This as-

signment has to consider all restrictions forced by governmental regulations, union

agreements, and company-specific rules. In addition, time- and location-dependent
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crew availabilities have to be accounted for, especially in a setting where crew is

stationed at one of multiple airports (called home bases).

The cost of such a crew schedule is determined by two figures: crew salary and

(planned) operational cost. Whereas crew salary at most European airlines is handled

as a stepwise linear function (fixed salary for about 2/3 of the contracted flight hours,

stepwise higher hourly rate(s) for the rest if needed), North American airlines apply

a system called pay-and-credit which refers to the difference between the number of

hours that a crew member is paid for and the actual hours of flying (see Gerhkoff

(1989)). Furthermore, operational cost has to be minimized – in detail: expenses for

hotel stays and for proceeding crew members from/to their current/next scheduled

location (taxiing).

The general CSP as introduced above is known to be very hard to solve due to its

combinatorial complexity (see, e.g., Barnhart et al. (2003), Suhl (1995)). Thus, it is

usually decomposed into several sub-problems and even sub-steps: Firstly, cockpit

and cabin crew types are separated, usually even to the level of their crew functions.

By this, for cockpit crew, we have a dedicated CSP for the captain (CP) or pilot

and one for the first officer (FO) or co-pilot. Each problem is divided into the crew

pairing problem (CPP) and the crew assignment problem (CAP) which are usually

solved sequentially for every examined instance, see also Fig. 1.

Fig. 1. Tasks of Airline Crew Scheduling

Before we describe the two scheduling steps, some basic terms used throughout

the paper have to be defined as follows:

A flight leg is a non-stop flight from a departure airport to its destination airport.

A flight duty is a series of flight legs that can be serviced by one crew member within

a workday (24 hours). Such a flight duty is surrounded (before and after) by rest

periods, whereas the off-time duration depends, e.g., on the start of the first flight leg

and the number of flights serviced. If the crew members’ time-dependent location

does not equate to the next scheduled location, they need a pre-proceeding in case

that this relocation is required in advance of servicing this flight duty, and a post-
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proceeding for its succeeding occurrence. Those proceedings (or taxiing) are usually

realized via public transportation (e.g., bus, taxi or train), or via passive flight legs

serviced by the airline itself, called deadheading.

The next aggregation level is a pairing which starts from and returns to the crew

member’s home base without any further overnights at their home domicile. There-

fore, hotel stays become necessary, if crew members have to spend their daily rest

periods outside of their home base. Pre-scheduled activities like vacation, requested

and granted off-periods, office, simulator/training, medical examination etc. repre-

sent activities that a crew member has to fulfill. Since those activities are determined

in advance of the scheduling process, overlapping flight duties are not allowed. After

a maximum of up to five working days that can be filled by flight duties or pre-

scheduled activities, a full two-day off as the weekly rest period is required.

A roster (or line-of-work) represents a potential crew schedule for a dedicated

crew member. It consists of his or her pre-scheduled activities and assigned flight

duties, and it incorporates all governmental-, union- and company rules as well as

the crew member’s individual work history and remaining contracted flight/work

hours. A null-roster represents a roster without any assigned flight legs.

2.1 Crew Pairing

As mentioned above, crew pairing is the first step of the solution process for the

CSP. The aim of the CPP is to find a set of pairings that covers, at minimum cost,

all flights of the considered, usually (semi-)monthly, planning period. Whereas those

pairings themselves have to be compliant to the multitude of regulations as already

described, they are still anonymously built without consideration of a crew member’s

individual needs or desires. Therefore, the CPP is usually solved on the level of flight

legs for the entire crew, instead of considering selected crew types and/or functions

(see Mellouli (2003)).

Nevertheless, the high combinatorial complexity of most solution approaches

focus on the process of pairing generation on the one hand, and pairing selection of

a least-cost subset on the other (see, e.g., Anbil et al. (1991), Graves et al. (1993)).

The selection process then is realized via an SPP or a set covering problem (SCP)

(see, e.g., Bixby et al. (1992), Hoffman and Padberg (1993)), meanwhile mostly

being solved by applying the column generation approach (see, e.g., Desaulniers

et al. (1997), Lavoie et al. (1988), Vance et al. (1997)). Alternatively, network flow

models are applied (see, e.g., Guo et al. (2006), Mellouli (2001), Mellouli (2003),

Yan and Tu (2002)), but also modern heuristics such as genetic algorithms (see, e.g.,

El Moudani et al. (2001)).

2.2 Crew Assignment / Crew Rostering

The second step of the CSP is called crew assignment or rostering. In contrast to the

first step, the CAP/CRP is solved for individual crew members. The set of pairings

created during the CPP is assigned in a way that considers all governmental rules,

union- and company agreements as well as pre-scheduled activities, e.g., simulator
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or vacation, for each individual, also known as fingerprint (see Mellouli (2001)) or

skeleton roster (see Barnhart et al. (2003)), whereas all flights are properly staffed

with all onboard crew functions. This assignment is also realized with decomposed

sub-instances of the CAP, e.g., by crew types (cockpit, cabin), crew functions (cap-

tain, first officer etc.), and fleet (see Ryan (1992)).

Among all airlines the individual aims of the CAP/CRP might differ, but in gen-

eral it can be expected that they consist of two contrary goals: cost minimization for

the airline and maximization of quality-of-life criteria for crew. There are three dif-

ferent concepts to address quality-of-life criteria, e.g., by considering crew requests

or their preferences during the scheduling process. Bidline systems are widely ap-

plied in the US. They generate anonymous lines-of-work which are assigned after

an elaborated bidding process to the crew members based on strict seniority. In Eu-

rope, personalized rostering, also known as fair-and-equal share, is more commonly

used where fairness of workload among crew members replaces seniority almost

completely. Therefore, the system accepts or rejects crew requests and outputs the

optimal schedule considering a high degree of expressed preferences. During the

last decade, a third concept called preferential bidding has become more popular

since it bypasses the drawbacks of other methods. Preferential bidding considers

crew preferences up to a certain degree, such as regularly pre-scheduled weekends

or working with specific colleagues; but in case of conflicts, the seniority principle

is applied. Bidline systems are treated in, e.g., Campbell et al. (1997), Jarrah and Di-

amond (1997); personalized rostering has been examined by Day and Ryan (1997),

Gamache et al. (1999), Kohl and Karisch (2004), Nicoletti (1975), Strauss (2001);

and solution methods for preferential bidding are given in Gamache et al. (1998),

among others.

3 Team-oriented Rostering

In this section we introduce the ToRP in general, and for cockpit crew in partic-

ular. This approach is understood as an enhancement to the personalized rostering

concept, see Section 2.2, where automated crew schedules are created that reveal a

certain team orientation. This team orientation intends to grant higher crew satisfac-

tion in terms of quality-of-life criteria. The basic idea is – in addition to the objectives

of the airline CRP – the consideration of team orientation by avoidance of frequent

changes in the composition of a servicing or operating onboard team.

Why is team orientation so important? It is known that crew satisfaction is highly

dependent on the colleagues someone works with (see Strauss (2001)). In current

approaches some crew members may prefer to exclusively work with the same col-

league(s) over a long time period (e.g., married couples or must-fly-together restric-

tions (see Kohl and Karisch (2004)). The realization of such a highly restrictive ap-

proach remains theoretically simple, but it is almost impossible to implement without

great financial losses because of different, non-overlapping pre-scheduled activities

at most airlines. Therefore, teams should be kept as flexible as possible. On the other

hand, aircraft security as well as quality-of-service for passengers are directly at risk
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in cases of disharmonies within and among operating cockpit and servicing cabin

crew. Especially, team changes were identified to have a negative impact on the indi-

vidual crew satisfaction, e.g., being left alone in a non-domicile town after work or

giving up harmonizing working teams.

In order to fully explain the approach, some additional definitions become nec-

essary:

• A team is to be understood as a group of different crew members with, if required,

different crew functions and quantities in such a way that a single (or a series of)

flight leg(s) is staffed adequately. Crew members of such a team may origin from

different home bases, but they all share the minimum qualification for the fleet to

be operated.

• A team change occurs if at least one crew member is scheduled to service the

next flight activity together with a different team composition (other colleagues).

Team changes may occur due to the obeyed rule set (e.g., a crew member has

reached his maximum of daily working hours), or by very strict fair-and-equal

share of workload; but so far, the main reason for team changes is that they are

simply not considered at all. (For bidline systems it is left up to the crew member

to manually choose with a colleague two corresponding rosters as far as possible.

Preferential bidding allows announcing preferences also for colleagues, but team

changes themselves are usually not prevented by this.)

• A shared flight activity (SFA) is defined to be the smallest unit that is considered

in this approach. Such an activity is serviced by a team without any team change.

It may be a single (or multiple) flight leg(s), flight duties, a single (or even several

complete) pairing(s). SFAs can be extracted directly from the generated pairings

of the CPP.

Since the ToRP approach described here aims to minimize the number of team

changes we introduce so-called team change penalties. Such penalties are usually

chosen as positive values. In contrast to this, negative team change penalties (or

bonuses) can be applied for benefits of servicing as a team while, e.g., saving opera-

tional cost by sharing a taxi.

We distinguish between two kinds of team changes:

• The type of a team change expresses when and where the team change occurs.

It can happen within the day, over night, both at the home base and outside, or

after the weekly rest period at the home base. A team change within the day is

the most undesired, especially in combination with an outside location. There-

fore, we propose a clear hierarchy among those listed instances with decreasing

penalty values for each type.

• The degree of a team change refers to how the team composition is changed.

Having, e.g., three crew members that constitute a team, there are exactly two

different ways to get separated: A (1-1-1)-change means that every crew member

will follow his/her own way afterwards, whereas a (2-1)-change indicates that

two of them will continue working together for the next SFA(s). A higher degree
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of splitting is less preferable by the crew and should therefore receive a higher

penalization value.

The focus of this work lies on the ToRP for cockpit teams. A cockpit team usually

consists of one captain and one first officer. In the rare case of downgrading, a captain

works in the function of a first officer. The resulting team of two captains is also valid,

but two first officers are not allowed. All three types of team changes (as introduced

above) can occur frequently to cockpit crew, whereas the degree of team changes is

limited to (1-1)-changes.

In order to evaluate the quality of a crew schedule according to ToRP, we have to

evaluate roster combinations, since all team members follow their assigned rosters

when the team changes happen. In Fig. 2, some roster combinations among a single

captain and several first officers are given: Whenever a shared time period is termi-

nated, a team change takes place. (For better understanding shared flight activities

are given as flight duties in this example.) On day 8 there is a team change after the

weekly rest period (two consecutive OFF-days). The captain presented here expe-

riences a total of five team changes. Team changes are only counted for one crew

function as shown in the example.

Fig. 2. Team Changes Between Roster Combinations

We finally discuss the main disadvantage of the ToRP approach. Of course, a

crew schedule that focuses additionally on the minimization of team-changes is most

likely more cost intensive compared to other requirements, e.g., without team orien-

tation. In general, there is a trade-off between the minimization of operational cost

and the minimization of team changes. Team change penalties may result in out-
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weighing operationally less expensive rosters in preference to those with higher team

orientation, e.g., involving fewer team changes.

Nevertheless, for certain business settings, such as for our cooperation partner,

the reduction of team changes may pay out financially at a certain point. Having

fixed rates for taxi proceedings within the home country of the airline, the breakeven

for dedicated trips is sometimes reached even at less than four crew members. Work-

ing as a team, they are able to share their chauffeured vehicle (sometimes having a

capacity of up to eight people) instead of deploying per-seat tickets for rail or air

transportation.

Due to the penalization of team changes among roster combinations, the aim of

the ToRP is hereby defined as the search for an appropriate set of individual rosters

(one roster for each crew member) such that all given flights are covered properly

at minimum cost with a socially and economically reasonable reduction of team

changes (in comparison to the classical rostering process, separated by crew func-

tions).

For a more detailed problem analysis we refer to Thiel (2005).

4 Mathematical Formulation

After introducing the idea and some basic concepts of the ToRP for cockpit crew,

this section discusses two distinct mathematical formulations. First, we introduce all

variables required, followed by two different approaches: the Extended Rostering

Model and the Roster Combination Model. A review on both approaches discusses

their pros and cons at the end of this section. Further approaches are presented in

Thiel (2005).

4.1 Notations

Before presenting the two optimization models, commonly used variables and pa-

rameters are defined as follows:

F represents the number of SFAs f to be serviced.

K indicates the total number of crew members. Captains are enumerated start-

ing from 1 to kCP and first officers start from kCP + 1 to K.

Rk expresses the total number of rosters for crew member k being considered

in the model.

R =
∑K

k=1 Rk gives the overall number of all rosters among all crew mem-

bers, where rCP =
∑kCP

k=1 Rk is the number of all captain rosters, first

officer rosters have the indices from rCP + 1 to R.

rk is the index of the first roster for crew member k with r1 = 1 and rk =
∑k−1

i=1 Ri + 1∀k ∈ {2, . . . , K}. The special case k = K + 1 is defined as

rK+1 = R + 1.
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cr1 represents overall cost for roster r1. (Those are characterized by operational

cost – here, hotel and taxiing expenses – as well as deviation penalties from

planned flight time or contract usage for the individual crew member to

facilitate fair-and-equal share.)

cr1,r2 indicate team change penalties of the chosen roster combination (r1, r2)
(see Section 3).

aCP
r,f and aFO

r,f , each equals 1, if a SFA f is included in roster r as a captain or

first officer activity, 0 otherwise.

xr ∈ {0; 1} equals 1, if roster r is chosen, 0 otherwise.

xr1,r2 ∈ {0; 1} equals 1, if a specific roster combination (r1, r2) is chosen by

xr1 = 1 ∧ xr2 = 1, 0 otherwise.

xECP
f ,xEFO

f ∈ {0; 1} equals 1, if a SFA f for a captain or a first officer is

unassigned, 0 otherwise.

cE
f points out the (virtual) cost for unassigned SFAs. (Those cases are ab-

sorbed by the usage of the identity matrix E.)

4.2 Extended Rostering Model

The key concept of the Extended Rostering Model can be depicted as a strict ex-

tension of the basic set partitioning model for the airline CRP in such a way that it

handles penalties for team changes via additional rows and columns. In this model

xr1,r2 is defined as indicator variable. The resulting model can be formulated as

follows:

min

R
∑

r=1

crxr +

rCP

∑

r1=1

R
∑

r2=rCP +1

cr1,r2xr1,r2 +

F
∑

f=1

cE
f (xECP

f + xEFO
f ) (1)

Subject to:
rk+Rk−1
∑

r=rk

xr = 1 ∀k = {1, ...,K} (2)

rCP

∑

r=1

aCP
r,f xr + xECP

f = 1 ∀f ∈ {1, ..., F} (3)

R
∑

r=rCP +1

aFO
r,f xr + xEFO

f = 1 ∀f ∈ {1, ..., F} (4)

xr1 + xr2 − xr1,r2 ≤ 1 ∀r1 ∈
{

1, ..., rCP
}

∀r2 ∈
{

rCP + 1, ..., R
}

(5)

If cr1,r2 < 0, then include

xr1,r2 ≤ xr1 ∀r1 ∈
{

1, ..., rCP
}

∀r2 ∈
{

rCP + 1, ..., R
}

(6)
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xr1,r2 ≤ xr2 ∀r1 ∈
{

1, ..., rCP
}

∀r2 ∈
{

rCP + 1, ..., R
}

(7)

The objective function (1) consists of three parts: The first addend of the mini-

mization function summarizes the required operational roster cost, whereas the sec-

ond covers the corresponding team change penalties when captain rosters (=r1) and

first officer rosters (=r2) are combined. The third part ensures the solvability by

treating unassigned SFAs with special cost.

Restrictions (2) to (4) guarantee the regular CRP requirements, whereas the re-

maining focus on the consideration of team-orientated characteristics. In (2) exactly

one roster is assigned to each crew member k. All captain activities are covered by

crew members of this crew function or by the identity matrix in (3); respectively,

all first officer activities in (4). In (5) all required team change penalties for a roster

combination (r1, r2) occur only in the case that both rosters are chosen. Restrictions

(6) and (7) assume that negative team change penalties (or bonuses) are only selected

in the solution if rosters r1 and r2 themselves are chosen, 0 otherwise.

The model structure is given in Fig. 3. The first six columns show the captain

rosters (three for each), followed by (not necessarily) the same amount of rosters

for each first officer (FO). For instance, the second roster of CP1 (second column of

the data matrix) contains SFA1, SFA2 and SFA5, whereas in the third CP1 roster

(third column), SFA1, SFA4 and SFA5 are included. Here, every first roster of a

crew member is a null-roster to grant feasibility. All other columns are introduced

to handle roster combinations and unassigned SFAs. The first row indicates the col-

umn’s influence on the objective function (1), followed by a block of rows for restric-

tions (2) to (4). Since not all team change penalties in this example are positive, re-

strictions (6) and (7) become necessary for roster combination (CP2 R3, FO1 R3)
or (R6, R9) to guarantee in addition to (5) the appropriate consideration of team

change penalties where necessary. All team change penalties were set to exemplary

values ahead of the model creation.

4.3 Roster Combination Model

In contrast to this, the Roster Combination Model follows the idea of directly consid-

ering roster combinations instead of single rosters for each individual crew member.

Therefore, all columns in this model directly represent a roster combination for two

crew members (CPx, FOx′), independent of whether they share any SFA or not.

Such roster combinations are based on all available rosters for each individual crew

member. For a better comparison of both models in Section 4.2 and Section 4.3, let

c̃r1 = cr1

K−kCP and c̃r2 = cr2

kCP (operational cost for a captain roster is divided by the

number of first officers and vice versa). Here xr1,r2 is used as the decision variable.

The resulting model can be formulated as:

min
rCP

∑

r1=1

R
∑

r2=rCP +1

(c̃r1 + c̃r2 + cr1,r2)xr1,r2 +
F
∑

f=1

cE
f (xECP

f + xEFO
f ) (8)

Subject to:



Team-Oriented Airline Crew Rostering for Cockpit Personnel 101
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Fig. 3. Schematic View on Extended Rostering Model

rk1+1−1
∑

r1=rk1

rk2+1−1
∑

r2=rk2

xr1,r2 = 1 (9)

∀k1 ∈
{

1, ..., kCP
}

∀k2 ∈
{

kCP + 1, ...,K
}

rCP

∑

r1=1

aCP
r1,fxr1,r2 + (K − kCP )xECP

f = K − kCP (10)

∀r2 ∈
{

rCP + 1, ..., R
}

∀f ∈ {1, ..., F}

R
∑

r2=rCP +1

aFO
r2,fxr1,r2 + kCP xEFO

f = kCP (11)

∀r1 ∈
{

1, ..., rCP
}

∀f ∈ {1, ..., F}

rk2+1−1
∑

r2=rk2

xr1,r2 −
rk2′+1−1
∑

r2′=rk2′

xr1,r2′ = 0 (12)
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∀(k1, k2) : k1 ∈
{

1, ..., kCP
}

k2, k2′ ∈
{

kCP + 1, ...,K
}

: k2 
= k2′r1 ∈
{

rk1, ..., rk1+1 − 1
}

rk1+1−1
∑

r1=rk1

xr1,r2 −
rk1′+1−1
∑

r1′=rk1′

xr1′,r2 = 0 (13)

∀(k1, k2) : k1, k1′ ∈
{

1, ..., kCP
}

: k1 
= k1′k2 ∈
{

kCP + 1, ...,K
}

r2 ∈
{

rk2, ..., rk2+1 − 1
}

As mentioned above, this model already considers roster combinations. Here op-

erational roster cost and team change penalties are processed simultaneously within

the objective function (8), whereas the second part summarizes the unassigned shared

flight activities. A special characteristic of this modeling approach is the fact that ev-

ery selected captain roster of the solution is combined with all selected first officer

rosters of the solution. As a consequence, in order to remain consistent with the ob-

jective value of the Extended Rostering Model above, all cost factors for each captain

roster cr1 are divided by the number of first officers K − kCP , the same for first of-

ficer roster cost and the utilization of the identity matrix for unassigned SFAs (see

definition of c̃r1, c̃r2 and (8)).

All restrictions satisfy the consistency of the chosen solution: Out of each

(CPx, FOx′)-combination exactly one corresponding roster combination (CPxRy,

FOx′ Ry′) has to be selected by (9). That is the reason why in (10) all captain SFAs

have to be assigned exactly as often as there are first officers in the model. (Every

SFA is still covered exactly once by a single captain CPx; but – since there are CPx
times FO combinations – every SFA needs to be covered as often as first officers are

available.) In (11) all SFAs for first officers are treated analogously.

In the solution a set of roster combinations is selected; each roster combination

implies that a specific captain executes a selected roster (CPx Ry), the same does

the designated first officer (FOx′ Ry′). Since we consider all possible roster com-

binations among captains and first officers, restriction (12) ensures that the chosen

captain roster (r1) is selected within all other chosen roster combinations among this

captain (k1) and all other first officers (k2 and k2′); restriction (13) does the same

in a similar way for the determined roster of every first officer.

In Fig. 4 the structure of the Roster Combination Model is illustrated. Every

column represents a roster combination (CPx Ry, FOx′ Ry′) for each possible

(CPx, FOx′) cockpit team followed by columns that handle unassigned SFAs (like

above in the Extended Rostering Model via the identity matrix). Below the first row

for the objective value, restrictions (9) to (11) are realized in each row block. The

synchronous arrangements in the lower half of the figure implement the set of re-

strictions for (12) and (13) for a consistent treatment of roster combinations. Note

that the operational cost and team change penalties are taken from the example in-

troduced by Fig. 3.
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Fig. 4. Schematic View on Roster Combination Model

4.4 Model Comparison

After describing both distinctive modeling approaches from the mathematical point

of view the important characteristics of both models are reviewed in this subsection.
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The Extended Rostering Model formulated in Section 4.2 as a binary IP model

penalizes each roster combination by additional columns and rows. The number of

those possible combinations increases dramatically with regard to the number of

crew members and their rosters. Considering all of them outranges rather soon the

computable limitations for model generation and solution. Therefore, it is important

to choose an appropriate penalization strategy which should result in relatively few

penalized roster combinations with cr1,r2 
= 0, and by this, only a small amount of

additional columns in the model. As given in (5), such roster combinations require

a single additional restriction to be applied properly, but in case of negative penal-

ties, two further rows become necessary which may lead to a tremendous growth of

the amount of rows for the model. For that reason the model size increases almost

proportionally to the number of penalized roster combinations, which is highly in-

fluenced by the chosen penalization strategy. This leads usually to a high number of

columns and rows.

On the other hand, the Roster Combination Model in Section 4.3 considers team

change penalties simultaneously with operational cost. Since this binary IP-model

here explicitly builds all possible roster combinations, its proposed size remains

fixed independent from the chosen penalization strategy. For comparably small in-

stances where all cr1,r2 < 0 (as the worst case for the Extended Rostering Model),

this model demonstrates great advantages because the identical problem can be ex-

pressed by a much smaller model, e.g., for an instance of thirteen SFAs with five

captains with a sum of 763 rosters and six first officers with totally 468 rosters, both

models are almost equal regarding the number of columns (around 350,000), but the

Extended Rostering Model requires more than 1 million rows whereas all restrictions

of the Roster Combination Model only demand around 5,700 rows. Nevertheless, the

sheer model size does not justify a selection among both alternatives. For the Ros-

ter Combination Model the selection of the optimal solution is much harder (due to

the doubled amount of SFAs closely considered throughout the roster combinations).

In contrast to this, the Extended Rostering Model can be characterized by handling

two almost separate sets of SFAs which are more loosely linked by the team change

penalty restrictions.

A further practical requirement is downgrading, where for cockpit crew a captain

operates one or multiple SFAs in the function of a first officer. For the Extended

Rostering Model those cases are relatively easy to implement by inserting additional

columns, where a valid roster is modified in such a way that a subset of the included

SFAs is shifted to the position of first officer SFAs. Solvability is not endangered by

this action, but in order to consider also team changes of two captains (CPx,CPx′),
several modifications become necessary for the range of the sums in the objective

function and the affected restrictions of the model. For the more compressed Roster

Combination Model it is very hard to realize downgrading without restructuring the

complete formulation. An overall comparison of both modeling approaches is given

in Table 1.

Again, the key characteristic of the ToRP is the consideration of roster combina-

tions instead of single rosters. The quadratic assignment problem (QAP) handles this

special aspect already. In the QAP, quadratic formulations, e.g., xr1xr2, are allowed.
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Table 1. Comparison of Extended Rostering and Roster Combination Model

Extended Rostering Model Roster Combination Model

Basic idea • Columns represent single

rosters or penalized roster

combinations.

• Operational cost and team

change penalties are treated

separately.

• Columns represent roster

combinations.

• Operational cost and team

change penalties are consid-

ered simultaneously.

Max. model

size

Columns (all cr1,r2 �= 0):

R + rCP (R − rCP ) + 2F
Rows (all cr1,r2 < 0):

K + 2F + 3rCP (R − rCP )

Columns:

rCP (R − rCP ) + 2F
Rows:

kCP (K−kCP )+2F+rCP (K−
kCP − 1) +
(R − rCP )(kCP − 1)

Model growth Strongly depends on penalty

strategy chosen

Independent of penalty strategy

Downgrading Yes (model modifications for in-

dices required)

No

Therefore, the objective function of the Extended Rostering model in (1) can be

expressed as follows:

min

R
∑

r=1

crxr +

rCP

∑

r1=1

R
∑

r2=rCP +1

cr1,r2xr1xr2 +

F
∑

f=1

cE
f (xECP

f + xEFO
f ) (14)

Both variables in the product of the binary decision variables have to equal one in

order to enforce the team change penalty for the selected roster combination. All re-

strictions (5) – (7) become obsolete. Nevertheless, instances with more than 10,000

binary variables (here: rosters) are still almost impossible to solve today (see An-

streicher et al. (2002), Caprara (2004)). This makes the application for most real-life

instances of the ToRP impossible and results in the deployment of the above models

as appropriate alternatives.

Typical applications for the QAP are efficient wiring problems (e.g., Steinberg

Wiring problem) or layout problems for hospitals and production lines (see, e.g.,

Commander (2003) for further examples). To the knowledge of the author, there is

no application reported for personnel scheduling so far.

5 Implementation

In this section we describe some of the concepts applied to solve several test instances

in a team-oriented way. With regard to the real-life requirements for a successful ap-

plication of the described ToRP approach, it has to be acknowledged that model size,
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as the most decisive model criterion, indicates that the Extended Rostering Model is

the preferred basis for the upcoming implementation and computational experiments.

Independent from the mathematical formulation chosen, the ToRP implies two

major problems: roster generation and roster combination. As already pointed out in

the state-of-art in Section 2.2, the airline CRP is known as a source of huge SPP mod-

els. Hence we introduce briefly our approach to address those problems adequately.

5.1 Generating Rosters

The implementation of the roster generation is realized in analogy to the recursive

approach presented in Kohl and Karisch (2004). The first run of the algorithm starts

with the null-roster, which is filled step-by-step with the remaining SFAs until it be-

comes illegal due to incompliance with governmental rules, union agreements and/or

airline specific rules. If so, the last element is replaced by the next one on the SFA list.

By this, even a small number of SFAs may produce a high number of legal rosters

for each crew member. In case of no pre-scheduled activities, every single included

SFA needs to be considered, by which we quite soon reach several million rosters

due to combinatorial possibilities.

To address this fact we propose to reduce the set of SFAs called the roster com-

bination basis in an appropriate way. As given above, especially individual crew

members having a high availability (usually with few or no pre-scheduled activities

during the examined time period) are very flexible and produce the highest amount of

legal rosters. Although they are capable to service theoretically on every single day,

they also need their weekly rest periods. Therefore, we propose to review the supply

and demand for every day and home base of the data set. On some days, we may

observe an oversupply where those crew members are most likely not necessarily

required, and their SFAs for this day can be removed from their roster combination

basis without notable impact on the solution.

For settings with multiple home bases another aspect should be reviewed. All

SFAs are initially assigned to home bases by the CPP due to cost minimization. It

is an advantage to keep those pairings primarily at the originally chosen home base,

and in combination with a local gap of personnel, all additional SFAs from other

home bases can be neglected.

Furthermore, it makes sense sometimes to reduce the number of rosters according

to given quality criteria, such as limits on overall operational cost, the number of ho-

tel stays and/or proceedings etc. Those additional restrictions or their combinations

can be applied within defined rule sets, which unfortunately have to be re-evaluated

for every single instance. Furthermore, individually calculated target flight times can

be applied to the roster selection to assure higher fair-and-equal share assignments.

We are aware that whatever roster pre-selection takes place to filter “good” ones

out of valid rosters may greatly influence the quality of the solution. Nevertheless,

the application of some of the proposed strategies remains necessary; however, they

have to be chosen very carefully.
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5.2 Combining Rosters

As discussed in Section 4.4, the Extended Rostering Model has to cope with a high

amount of potentially penalized roster combinations. Because of this, the strategy

for penalizing team changes becomes quite critical, since it very much determines

the overall size of the model. Therefore, we propose a strategy that on the one hand

considers as many roster combinations as possible, but on the other hand penalizes

only quite few of them. We achieved a very low rate for penalties by linking them

only to roster combinations if there is a team change within a working week. So

team changes over the weekly rest period are neglected. Further on, we recommend

choosing a strategy with few or even no negative penalization values to prevent a

high increase in the amount of rows for the model.

So far, we allow all pre-selected rosters of each individual crew member to be

considered in the model. The amount of resulting roster combinations that require

a penalization is still too high to be handled appropriately (usually several million).

One alternative is a strict pre-selection of the rosters for one crew function, namely

first officers. (This is done because captains can be downgraded to first officers in

case that their time and location dependent capacities are not sufficient to cover all

their SFAs.) From those pre-selected rosters, build the starting point for all further

roster combinations with the opposite crew function(s). They are determined by solv-

ing the general CRP for first officers as often as the rostering loop counter is set up;

thereby the best roster solution found so far is explicitly excluded from the solution

space.

6 Computational Experiences

In order to evaluate the effectiveness and efficiency of the Team-oriented Rostering

approach proposed here, a series of computational experiments was conducted. First

key results are presented in this section.

All experiments were realized on a PC with an Intel Pentium IV, 2.26 GHz CPU

with 2.0 GB RAM, operating on Microsoft Windows XP Professional. The prototype

is implemented in Visual C++ 6.0 and considers only valid rosters for each individ-

ual crew member. All models were solved using CPLEX, version 9.0 (see CPLEX

Optimization Inc. (2003)). Time measurements are given in CPU seconds. The con-

sidered data set originates from a European tourist airline. The instances examined

below are based on two typical holiday periods which represent high demand periods

of the year 2002.

Each instance below is described by the time period chosen, the number of home

bases (HB), the amount of captains (CP), first officers (FO), and considered SFA.

Further parameters that have been considered are the maximum number of elements

in the roster combination basis, the maximum number of disposable working days

within the period, the chosen rule set, an indicator whether other airports are ser-

viced, the penalty value for a single team change (TP), the number of rostering loops

(RL), and an indicator whether downgrading is considered in this model or not. The
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resulting integer programming models have been implemented following the Ex-

tended Rostering Model description in (4.2). The model characteristics include the

number of rosters generated for captains (RGCP) and first officers (RGFO), the time

for their generation (RGT), the number of rosters included in the model (RCP and

RFO), the model size in rows and columns, the number on non-zeros (NZ), the du-

ration for solving (ST), the operational cost (OC), and the number of team changes

(TC). (All parameters above which are not mentioned in the tables are unchanged for

all examined instances.)

6.1 Team Change Penalties

The consideration and appropriate setting of team change penalties are the major

aspect within the approach presented in this paper. Therefore, a set of test runs was

conducted with different penalty values for team changes (100, 200, 300, 500 and

1,000) on the same instance in comparison to the conventional approach without any

penalization as documented in Table 2.

For all instances the conventional approach (TP = 0) offers the cheapest so-

lution in terms of operational cost (OC), but with very frequent team changes. In

contrast to that, we observe a tendency for a monotonously slightly increasing op-

erational cost for all listed ToRP variants (TP 
= 0) which can be explained by the

amplified trade-off between operational cost and increasing team change penalties.

As the instances proved, simply applying the ToRP approach manages to dramati-

cally reduce the number of team changes for the new crew schedules at the expense

of slightly higher operational cost. All instances were solved with the same amount

of unassigned SFAs. In Table 2, the significant difference regarding model size be-

tween the conventional and ToRP variants becomes quite obvious. It is caused by the

additional columns and rows for team change penalization as discussed earlier.

In Fig. 5, the decreasing amount of team changes is visualized for the differ-

ent team change penalties, where two pre-selected rosters for each first officer are

considered (RL = 2, see Section 6.2) and downgrading is enabled.

6.2 Rostering Loops

The second set of test runs to be presented is the performance of the so-called ros-

tering loops introduced for the ToRP. Following a sequential procedure which solves

the original CSP only for one crew function several times, we get a set of only few

(first officer) rosters to be pre-selected instead of including all of them in the model.

This time the ToRP variants examined differ by the number of resulting rosters based

on those rostering loops as they are set to values from 1 to 5. Due to the model size,

only the two small instances (July 1-15 with one home base and December 16-31

with two home bases) have been realized without pre-selected rosters for reference.

As shown in Table 3, the application of such rostering loops for their the roster

pre-selection turned out to be quite valuable for both, solution quality and model

size. Although only few (instead of all) rosters have been chosen, the gap in terms
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Table 2. Results for Different Team Change Penalties (TP)

HB CP FO SFA

2 8 10 31

TP RGCP RGFO RGT RCP RFO Rows Cols NZ ST OC TC

   0 11103 12803 11:06 11103 20    80 11185  69232 00:01 4685 10

 100 11103 12803 11:06 11103 20 34851 45956 208316 00:27 4925  4

 200 11103 12803 11:06 11103 20 34851 45956 208316 01:05 5110  3

 300 11103 12803 11:06 11103 20 34851 45956 208316 01:19 5386  2

 500 11103 12803 11:06 11103 20 34851 45956 208316 03:10 5386  2

1000 11103 12803 11:06 11103 20 34851 45956 208316 01:49 5386  2

HB CP FO SFA

4 24 22 78

TP RGCP RGFO RGT RCP RFO Rows Cols NZ ST OC TC

   0 126504 169680 236:17 126576 42    202 126774  802220  01:04 13649 30

 100 126504 169680 236:17 126576 42 543205 669777 2974232 240:25* 14084 11

 200 126504 169680 236:17 126576 42 543205 669777 2974232 240:19* 13875 15

 300 126504 169680 236:17 126576 42 543205 669777 2974232 240:23* 14090 13

 500 126504 169680 236:17 126576 42 543205 669777 2974232 240:19* 14421 14

1000 126504 169680 236:17 126576 42 543205 669777 2974232 480:24** 14200 11

HB CP FO SFA

6 29 27 99

TP RGCP RGFO RGT RCP RFO Rows Cols NZ ST OC TC

   0 102281 121177 223:32 103375 52    254 103625  629153  00:34 19196 51

 100 102281 121177 223:32 103375 52 433512 536883 2362185 240:15* 19529 34

 200 102281 121177 223:32 103375 52 433512 536883 2362185 240:11* 19735 32

 300 102281 121177 223:32 103375 52 433512 536883 2362185 240:11* 19735 32

 500 102281 121177 223:32 103375 52 433512 536883 2362185 240:11* 19787 33

1000 102281 121177 223:32 103375 52 433512 536883 2362185 240:12* 19603 32

HB CP FO SFA

6 33 26 44

TP RGCP RGFO RGT RCP RFO Rows Cols NZ ST OC TC

   0 14163 10904 20:40 14163 48   147 14299  72973 00:01 10532 9

 100 14163 10904 20:40 14163 48 36604 50756 218801 02:01 10828 0

 200 14163 10904 20:40 14163 48 36604 50756 218801 01:05 10828 0

 300 14163 10904 20:40 14163 48 36604 50756 218801 01:10 10828 0

 500 14163 10904 20:40 14163 48 36604 50756 218801 00:55 10828 0

1000 14163 10904 20:40 14163 48 36604 50756 218801 01:25 10828 0

* Abortion of Optimization after 240 minutes. Usage of the best IP-Solution found.
** Abortion of Optimization after 480 minutes. Usage of the best IP-Solution found.

Period

Jul 1-15, 2002

Period

Dec 16-31, 2002

Period

Jul 1-15, 2002

Period

Jul 1-15, 2002

of operational cost between their complete consideration in the model and an ob-

viously appropriate pre-selection appears to be quite low. It has to be noticed that

the number of team changes tend to decrease with a higher number of pre-selected

rosters. In addition, a significant reduction of model size is accomplished, indicated

by the comparison rate (MR) giving the proportions of model sizes with and with-

out those pre-selected rosters. (All instances were computed with TP = 300 and

enabled downgrading.)
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Fig. 5. Development of Team Change Count for Different Penalty Values

6.3 Further Results

Further test runs were exhaustively conducted on all available parameters. They

greatly confirm the following two additional statements:

1. Restrictions on the combinatorial basis for each crew member have to be chosen

very carefully (see Section 5.2). If the number of SFAs is too small, multiple

SFAs remain unassigned, but considering too many of them makes the model

itself impossible to handle.

2. Restrictions regarding roster acceptance within the roster generation part (see

Section 5.1) show that a significant reduction of rosters via stricter rule sets (e.g.,

limits for cost, hotel stays) trades-off with the quality of the solution.
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Table 3. Results for Pre-selected Roster Variants

HB CP FO SFA

1 4 3 16

BC RGCP RGFO RGT RCP RFO MR Rows Cols NZ ST OC TC

1 682 2440 01:06 599    3 99,89%    891   1486    6752 00:00 3128 4

2 682 2440 01:06 770    6 99,72%   1851   2620   11384 00:00 2965 0

3 682 2440 01:06 770    9 99,58%   2830   3602   15321 00:00 2965 0

4 682 2440 01:06 883   12 99,36%   3901   4789   20263 00:01 2965 0

5 682 2440 01:06 883   15 99,20%   4844   5735   24055 00:00 2965 0

- 682 2440 01:06 682 2440  0,00% 513829 516944 2073733 01:17 2965 0

HB CP FO SFA

2 8 10 31

BC RGCP RGFO RGT RCP RFO MR Rows Cols NZ ST OC TC

1 11103 12803 11:06 10905 10 99,92% 18168 29065 140807 00:01 4909 5

2 11103 12803 11:06 11103 20 99,84% 34851 45956 208316 03:14 5386 2

3 11103 12803 11:06 11103 30 99,77% 53643 64758 283535 24:27 5386 2

4 11103 12803 11:06 11103 40 99,69% 72720 83845 359894 28:09 5386 2

5 11103 12803 11:06 11103 50 99,61% 91627 102762 435573 24:20 5386 2

HB CP FO SFA

2 10 9 12

BC RGCP RGFO RGT RCP RFO MR Rows Cols NZ ST OC TC

1 149 141 00:07 99   9 95,76%   96  185  696 00:00 5504 3

2 149 141 00:07 149  16 88,65%  184  330 1235 00:00 5611 1

3 149 141 00:07 164  23 82,05%  240  408 1543 00:01 5611 1

4 149 141 00:07 164  30 76,58%  307  482 1836 00:00 5611 1

5 149 141 00:07 175  38 68,35%  361  555 2121 00:00 5592 1

- 149 141 00:07 149 141  0,00% 1249 1520 5938 00:01 5535 0

HB CP FO SFA

6 33 26 44

BC RGCP RGFO RGT RCP RFO MR Rows Cols NZ ST OC TC

1 14163 10904 20:41 13438  26 99,77% 17618  31023 140380 00:03 11684 0

2 14163 10904 20:41 14163  48 99,56% 36604  50756 218801 01:10 10828 0

3 14163 10904 20:41 14163  69 99,37% 55333  69506 293803 01:34 10828 0

4 14163 10904 20:41 14163  92 99,16% 73501  87697 366565 02:03 10828 0

5 14163 10904 20:41 14163 115 98,95% 89571 103790 430935 08:49 10828 0

Period

Dec 16-31, 2002

Period

Dec 16-31, 2002

Period

Jul 1-15, 2002

Period

Jul 1-15, 2002

7 Summary and Outlook

In this work we defined and presented the new Team-oriented Rostering Problem in

the context of airlines – an approach within the crew assignment phase for onboard

crew scheduling. The ToRP focuses on the minimization of team changes within the

cockpit crew. Based on a setting with time and location dependent crew availabilities

several strategies addressing the high combinatorial complexity were discussed and

implemented, accounting for roster combinations instead of single rosters.

Two distinct mathematical formulations were given to realize the ToRP approach,

whereas for real-life instances the Extended Rostering Model was proven to be more

applicable than the Roster Combination Model. Although some problem characteris-
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tics are literally shared by the widely examined quadratic assignment problems, the

proposed IP models are comparably easier to solve in terms of size and time.

Several implementation techniques were tested on various instances, each with

different parameters. One of the key objectives of this study was to show the effects

of ToRP that result in a trade-off between operational cost on the one hand, and the

number of team changes on the other. Especially the pre-selection of good rosters for

one crew function – here, first officers due to downgrading – turned out to result in

high model size reduction rates without a notable lack of solution quality.

It is acknowledged that only relatively small instances (with less than 1,000 flight

legs) are solved within an acceptable time frame so far. Therefore, further research

will especially concentrate on this drawback of our approach. Firstly, we suggest

appropriate penalization strategies, since their setting is tightly linked to the mostly

critical size of the model. By this, even the application of a Branch-and-Cut approach

may turn out to be suitable. Secondly, a great benefit will arise when defining SFAs

properly already during the pairing generation phase. Although this requirement im-

plies a modification of the models and techniques applied currently for the CPP, the

generation of thousands of potential rosters (consisting of short SFAs) is prevented

and, as a result, larger instances can be solved.

Another option appeared after analyzing our results. We noticed that (1) several

crew members share exactly identical sets of rosters and (2) the majority of staff

(>70%) never experiences any team change in the final crew schedule. Therefore, a

great model reduction can be achieved by grouping crew members with identical ros-

ters, and, if possible, by building “pre-defined” groups already for (potential) teams,

where there will be no team change at all. By this we get a hybrid IP model; see

also Thiel (2005), where the residual problem can be solved, e.g., by the Extended

Rostering Model as described previously.
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Summary. In the planning process of railway companies, we propose to integrate important

decisions of network planning, line planning, and vehicle scheduling into the task of peri-

odic timetabling. From such an integration, we expect to achieve an additional potential for

optimization.

Models for periodic timetabling are commonly based on the Periodic Event Scheduling

Problem (PESP). We show that, for our purpose of this integration, the PESP has to be ex-

tended by only two features, namely a linear objective function and a symmetry requirement.

These extensions of the PESP do not really impose new types of constraints. Indeed, practi-

tioners have already required them even when only planning timetables autonomously without

interaction with other planning steps. Even more important, we only suggest extensions that

can be formulated by mixed integer linear programs.

Moreover, in a self-contained presentation we summarize the traditional PESP modeling

capabilities for railway timetabling. For the first time, also special practical requirements are

considered that we prove not being expressible in terms of the PESP.

1 Introduction

Traditionally, the planning process of railway companies is subdivided into several

tasks. From the strategic level down to the operational level, the most prominent sub-

tasks are network planning, line planning, timetable generation, vehicle scheduling,

crew scheduling, and crew rostering, see Fig. 1.

For a detailed description of these planning steps, as well as for an overview of

solution approaches, we refer to Bussieck et al. (1997). Notice that network plan-

ning and line planning are of course part of the strategic planning process of public

transportation companies. In contrast, vehicle scheduling and crew scheduling are of

operational nature. In between, timetabling forms the linkage between service and

operation. An important reason for the division into at least five subtasks is the high

complexity of the overall planning process (Bussieck et al. (1997), Grötschel et al.

(1997)).
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Network Planning

Line Planning

Timetabling

Vehicle Scheduling

Crew Scheduling

PESP model

Fig. 1. Planning Phases Covered by the PESP Beforehand

During the last years, a trend towards the integration of several planning steps

has emerged. For example, vehicle and crew scheduling were successfully combined

by Borndörfer et al. (2002) and by Haase et al. (2001). Similarly, a combination of

line planning and network planning is the objective of Borndörfer et al. (2007).

Periodic timetabling has also served as a starting point for such attempts. Nachti-

gall (1998) computes timetables that require only few rolling stock for a specific

vehicle schedule. Engelhardt-Funke and Kolonko (2004) consider investments into

infrastructure by using multi-criteria optimization. Lindner (2000) integrates the

choice of rolling stock types in a non-linear model. Liebchen and Peeters (2002)

provide a linear model that serves as a good approximation for minimizing rolling

stock while optimizing periodic timetables.

In this paper, we demonstrate how periodic timetable construction can be com-

bined with other planning steps. Further, we incorporate other practical conditions

on timetables such as timetable symmetry, line planning, and even infrastructure de-

cisions. We show that this can in fact be achieved with only slight variations of the

commonly used model for periodic timetable construction, the PESP model intro-

duced by Serafini and Ukovich (1989). The variations keep much of the properties

of the PESP model and are again mixed integer programs over a feasibility domain

with essentially the same structure as the original PESP. In particular, all of the valid

inequalities for the PESP stay valid, and some of the new formulations even speed

up the solution time with standard MIP solvers. But there have also been proposed

other solution techniques for PESP instances: constraint programming (Schrijver and

Steenbeek (1993)) and genetic algorithms (Nachtigall and Voget (1996)). Hence, in

this paper we will restrain ourselves to the pure modeling capabilities of the general

PESP model – with only two small exceptions. But these exceptions have already

been asked explicitly by practitioners for their own sake.

In the discussion of these modeling features, we will also lay out large parts of

the map of the borderline between what still fits into the traditional PESP model, and

what requires new features, and at what cost. To this end, we also review the tradi-

tional PESP modeling issues, thus altogether providing a self-contained presentation

of the PESP modeling capabilities and its extensions to symmetry, line planning,

and network planning. Any of our suggestions for integrating these features can be

formulated as a MIP, in particular not involving any quadratic terms.
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The paper is organized as follows. Section 2 introduces the PESP. It presents

its main formulations as a graph theoretic potential problem and as a mixed inte-

ger program, and reports on its complexity and a useful characterization of periodic

timetables.

Section 3 discusses requirements for cyclic timetables that can be met by the

PESP. These include simple requirements such as collision-free traffic on single

tracks and headway between successive trains, but also more sophisticated ones such

as bundling of lines, train coupling and sharing, fixed events in connection with hi-

erarchical planning, and also disjunctive constraints and soft constraints.

Section 4 is devoted to timetable requirements that are beyond the scope of the

traditional PESP, such as balanced reduction of service and symmetry of timetables.

We show that the PESP or its MIP model only needs to be extended slightly in order

to accommodate symmetry requirements.

Finally, in Section 5, we consider the integration of aspects of other planning

steps into periodic timetable construction, in particular vehicle scheduling (mini-

mization of rolling stock), line planning (simultaneous construction of line plan and

timetable), and network planning (making infrastructure decisions). This integration

makes essential use of the flexibility of the PESP, in particular disjunctive constraints,

uses symmetry, and – as a new technique – integrates aspects of graph techniques into

the PESP in order to handle line planning.

All model features are illustrated by examples from our practical experience

with timetable construction at Deutsche Bahn AG, S-Bahn Berlin GmbH, and

BVG (Berlin Underground).

2 The Periodic Event Scheduling Problem

Serafini and Ukovich (1989) introduced the PESP, by which periodic timetabling

instances may be formulated in a very compact way. Since then, this model has

been widely used (Schrijver and Steenbeek (1993), Nachtigall (1994), Odijk (1996),

Lindner (2000), Peeters (2003)). In the PESP, we are given a period time T and a

set V of events, where an event models either the arrival or the departure of a directed

traffic line at a certain station. Furthermore, we are given a set of constraints A. Every

constraint a = (i, j) relates a pair of events i, j by a lower bound ℓa and an upper

bound ua.

A solution of a PESP instance is a node assignment π : V �→ [0, T ) that satisfies

(πj − πi − ℓa) mod T ≤ ua − ℓa, ∀ a = (i, j) ∈ A, (1)

or πj − πi ∈ [ℓa, ua]T for short. We call a feasible node potential π a feasible

timetable. Notice that we can scale an instance such that 0 ≤ ℓa < T , and for the

span da := ua − ℓa of a feasible interval [ℓa, ua]T we may assume w.l.o.g. da < T .

Furthermore, for every fixed event i0, every fixed point of time t0 ∈ [0, T ), and

every feasible timetable π there exists an equivalent timetable π′ with π′
i0

= t0. This

is achieved by performing the simple shift π′
i := (πi − (πi0 − t0)) mod T . Let us

denote by D = (V,A, ℓ, u) the constraint graph modeling a PESP instance.
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There are several practical aspects of periodic timetabling which profit from the

presence of a linear objective function of the form

∑

a=(i,j)∈A

wa · (πj − πi − ℓa) mod T,

with weights wa. In our opinion, the most striking one is the integration of central

aspects of vehicle scheduling, cf. Section 5.1.

Another perspective on periodic scheduling can be obtained by considering ten-

sions instead of potentials. In a straightforward way, define for a given node poten-

tial π its tension

x̂a := πj − πi, ∀a = (i, j) ∈ A.

We call a set of edges C ⊆ A an oriented cycle if re-orienting a subset of its edges

yields a directed circuit. The incidence vector γC of an oriented cycle C is a vector

in {−1, 0, 1}A, where the entry minus one indicates a backward arc of the oriented

cycle. The cycle space C of a directed graph D is defined as

C := span{γC |C oriented cycle in D}.

Recall that a vector x̂ is a tension (or potential difference), if and only if for

some cycle basis B of C, and each of its oriented cycles C ∈ B with incidence

vectors γC it holds that γC x̂ = 0 (e.g., Bollobás (2002)). This yields the following

MIP formulation

min ct(x̂ + pT )
s.t. Γ x̂ = 0

ℓ ≤ x̂ + pT ≤ u
p ∈ �A,

or

min ctx
s.t. Γ (x − pT ) = 0

ℓ ≤ x ≤ u
p ∈ �A,









(2)

where Γ ∈ {−1, 0, 1}(|A|−|V |+1)×|A| denotes the cycle-arc incidence matrix (cycle

matrix) of some cycle basis of the directed graph D. The x variables are in fact a

periodic tension, which we formally define for a given node potential π to be

xij := (πj − πi − ℓij) mod T + ℓij .

Sometimes, it is useful to define slack variables x̃a := xa − ℓa.

Recall that cycle matrices are totally unimodular (Schrijver (1998)). This is the

main observation to prove the following lemma.

Lemma 1 (Odijk (1994)). Let I denote an instance of PESP with integral vectors ℓ
and u and an integer period time T . If I admits some feasible timetable π ∈ [0, T )V ,

then it also admits an integral feasible timetable π′ ∈ {0, . . . , T − 1}V .

Already Serafini and Ukovich made the following simple but useful observation.

Lemma 2 (Serafini and Ukovich (1989)). If we relax the requirement π ∈ [0, T )V

to π ∈ �V , then for every spanning tree H and every feasible timetable π there exists

an equivalent feasible timetable π′ which induces pa = 0 for a ∈ H .
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Notice that we may interpret the remaining non-zero integer variables as the rep-

resentants of the elements of a (strictly) fundamental cycle basis. A generalization

to integral cycle bases yields many variants of Formulation (2), some of which are

easier to solve for MIP solvers (Liebchen (2003)).

Periodic tensions can be characterized similarly to classic aperiodic tensions.

Lemma 3 (Cycle Periodicity Property). A vector x ∈ �A is a periodic tension, if

and only if for every cycle C with incidence vector γC ∈ {−1, 0, 1}A, there exists

some zC ∈ �, such that

γCx = zCT. (3)

The PESP is NP-complete, since it generalizes Vertex Coloring (Odijk (1994)).

To see this, orient the edges of a Coloring instance arbitrarily and assign feasi-

ble periodic intervals [1, T − 1]T to each of them. Solution methods for the PESP

include Constraint Programming (Schrijver and Steenbeek (1993)), Genetic Algo-

rithms (Nachtigall and Voget (1996)), and of course integer programming techniques.

For a computational study in which these substantially different approaches are com-

pared to each other, we refer to Liebchen et al. (2007). For the MIP approach, a very

important ingredient is

Theorem 1 (Odijk (1996)). An integer vector p allows a feasible solution for the
MIP (2), if and only if for every oriented cycle C of the constraint graph, the follow-
ing cycle inequalities hold

p
C

:=

�
���

1

T
(
�

a∈C+

ℓa −
�

a∈C−

ua)

�
���

≤
�

a∈C+

pa −
�

a∈C−

pa ≤

���� 1

T
(
�

a∈C+

ua −
�

a∈C−

ℓa)

���� =: pC ,

(4)

where C+ and C− denote the forward and the backward arcs of the cycle C.

We close this section by listing other totally different practical applications which

can be modeled via the PESP (Serafini and Ukovich (1989)). The most prominent

ones are the scheduling of systems of traffic lights and periodic job shop scheduling.

3 Timetabling Requirements Covered by the PESP

This section gives a broad overview of the timetable modeling capabilities of the

PESP. Contrary to the following sections, practical requirements to be modeled are

limited to those arising in periodic timetabling. Nevertheless, there are many facts

we have to discuss in order to give a self-contained overview.

However, let us start by naming two facts which are definitely beyond the scope

of the PESP: routing of trains through stations or even alternative tracks, and routing

of the passenger flow. Hence, throughout this paper we assume fixed routes for both

trains and passengers. A short motivation for these assumptions will be given at the

beginning of Section 4.

For the vast majority of practical requirements to be modeled, we provide exam-

ples which are close to practice. However, in particular time and track information

might not always reflect practice exactly. Depending on the fact to be modeled, we
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provide a track map, a line plan, a visualization (In German: “Bildfahrplan”) of the

timetable of a given track by means of a time-space diagram, and last but not least

the resulting PESP subgraph. For readers not familiar with the first three types of

charts, we refer to any textbook on railway engineering.

Most of our real-world examples are taken from the surroundings of the station

Köln-Deutz (Cologne), which is part of the German ICE/IC-network. Fig. 2 displays

the general track map of Köln-Deutz. Unless stated otherwise, we assume a period

time of T = 60 minutes.

Köln

Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Fig. 2. Track Map of Köln-Deutz (Cologne) – Based on Leuschel (2002)

3.1 Elementary Requirements

Both for the sake of completeness and in order to introduce the notation used in the

following figures, we start by modeling the three most elementary actions within

public transportation networks: trips, stops, and changeovers.

In Fig. 3 (a), we highlight the tracks used by two lines which cross at Köln-Deutz.

The lines themselves are given in Fig. 3 (b). Finally, we provide the constraint
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graph which models running, stopping, and changeover activities of these lines at

Köln-Deutz in Fig. 3 (c) as PESP constraints. For instance, the trip arc with the

constraint [4, 4]60 ensures a trip time of precisely four minutes from Köln-Deutz to

Köln Hbf. Within Köln Hbf, the minimum stopping time is set to three minutes such

that passengers can board and alight the train. Finally, the increase of travel time for

passengers that stay within the train is bounded by additional five minutes, providing

an upper bound of 3 + 5 = 8.

Notice that we ensure changeover quality by linearly penalizing changeover

times which exceed a certain minimal changeover time required for changing plat-

forms. In our example, a minimal changeover time of six minutes is assumed when

connecting from Dortmund to Frankfurt. Using this approach, changeover arcs typi-

cally have a wide span.

An alternative way of modeling changeovers is to require some important ones

not to exceed a maximal amount of effective waiting time. Then, we end up with

rather small spans for changeover arcs. Schrijver and Steenbeek (1993) follow this

approach, which seems to be very suitable for constraint programming solvers.

Stopping arcs typically have very small span. In rather unimportant stations, in

general it is a good choice to fix the span to zero, in particular if there is neither a

junction of tracks, nor a single track, nor any changeovers.

Just as trip arcs, stopping arcs with span zero constitute redundancies which can

be eliminated very efficiently in a preprocessing step. For example, one can contract

any fixed arc, i.e. having zero span, together with its target node. Doing so, the arcs

which were incident with the contracted target node only have to be redirected to

the source node of the contracted arc, after having shifted their feasible intervals ap-

propriately. Moreover, an arc being (anti-) parallel to another one can be eliminated,

if its feasible interval is a superset of the other arc. In addition to nodes with de-

gree at most two, Lindner (2000) gives further situations in which the graph can be

simplified.

If there are several lines using the same track into the same direction, sometimes

a balanced service might be required. For n lines, this can easily be achieved by

introducing arcs with feasible interval [T
n , T − T

n ]T between any unordered pair of

events that represent the departure at the first station of the common track. Certainly,

strict balance may be relaxed by increasing the feasible interval.

Safety Requirements. If, in contrast to the previous discussion, there is no need for

a balanced service, then at least a minimal headway h between any two trains has to

be ensured. In the easiest case, the lines are operated with the same type of trains,

and their running time is fixed. Then, we can sufficiently separate any two lines by

introducing constraints similar to the above ones, having feasible interval [h, T−h]T .

These can be inserted either at the beginning or at the end of their common track. The

more sophisticated constellation of trains involving different speeds will be discussed

in Section 3.2.

But two trains may also use the same track in opposite directions. This is mainly

the case for single tracks, see Fig. 4 (a). Obviously, a train may not enter the single

track until the train of the opposite direction has left it. In Fig. 4 (b), we give a
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Köln

Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Köln−Deutz

Frankfurt

Paris

Amsterdam

Dortmund
[ℓa, ua], wa

[6, 65], 119

[4, 4], 0
[3, 8], 266

stop arc

trip arc

changeover

Köln-Deutz

Fig. 3. Modeling Elementary Requirements: (a) Two Disjoint Routes of Lines Serv-

ing Köln-Deutz (b) The Corresponding Line Plan (c) PESP Constraints Modeling Running

Activities, Stopping Activities, and Changeover Activities

timetable visualization that is extremely useful in particular for single tracks. We

assume a fixed local signaling, and the grey boxes visualize the time a train blocks

a certain part of the track. Surprisingly, there is only one single constraint needed to

prevent two trains of opposite directions from colliding within the single track, as

can be seen in Fig. 4 (c). To that end, consider the western entry point to the single

track. A train may only enter the single track after a train of the opposite direction
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Fig. 4. Modeling Single Tracks: (a) A Single Track South of Köln-Deutz (b) Visualization

of a Feasible Timetable for that Track (c) PESP Constraints Ensuring Safety Distance for a

Single Track

has left (ℓa = 0). But it also must have left the single track before the next train of

the opposite direction may enter the single track (ua = T − (t1 + t2)).
Note that so far we did not care about any buffer times and blocking times when

setting the feasible interval to [0, T−(t1+t2)]T . Assuming a minimal crossing time b
at both endpoints of the single track, i.e., the time that has to pass from a train leaving

the single track until a train in opposite direction may enter, we obtain the following

feasible interval

[b, T − (t1 + t2 + b)]T .
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Again, if there are several lines that have to be scheduled on a single track, one

constraint for every unordered pair of opposite directions is needed.

Some authors (Krista (1997)) consider situations at crossings, where trains are

shortly using the track of the opposite direction (cf. Fig. 5), as another modeling

feature. But this is just a special case of single tracks, if the network is modeled at an

Köln−Deutz

Abzw. Gummersbacher Str.

Fig. 5. Crossing of Track of the Opposite Direction South of Köln-Deutz

appropriate granularity. Abzw. Gummersbacher Straße has to be split into a northern

station and a southern station which are linked by an eastern and a western track,

where the western track can be traversed in both directions.

3.2 More Sophisticated Requirements

Whereas the practical requirements discussed in the previous section might arise in

almost every railway network, the following aspects are of a more specialized nature.

Fixed Events. When planning a timetable hierarchically, e.g. from international

trains down to local trains, one has to consider the fixed settings of previous hi-

erarchies without replanning their times. Hence, the capability to fix an event to a

certain point of time is another important modeling feature.

Fortunately, due to the periodic nature of the PESP, we may shift every feasi-

ble timetable such that a fixed event i0 is fixed to a desired point in time t0 ∈
[0, T ), i.e. πi0 = t0, and the objective value remains unchanged. By defining one

of the events to be fixed as a kind of “anchor” event, we can easily relate the other

events ij to be fixed to certain points of time tj by introducing arcs aj = (i0, ij)
with ℓaj

= uaj
= tj − t0.

Bundling of Lines. Hierarchical planning gives rise to a further challenging aspect

of timetabling. Notice that if a track is used by trains of different speeds, the capacity
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of that track significantly depends on the ordering of the trains. The first two parts of

Fig. 6 visualize this effect. In the first scenario, slow and fast trains alternate, which

implies that only two hourly lines of each of the two train types can be scheduled.

However, if lines are bundled with respect to their speeds, three lines of the same

two types of trains can be scheduled without having to invest into infrastructure,

cf. Fig. 6 (b).

On the one hand, when only planning the high-speed lines in the first step of a

hierarchical approach, it may happen that decisions on a higher level result in infea-

sibility on a lower level. On the other hand, hierarchical decomposition might have

been chosen because an overall plan was considered to be too complex.

In order to keep the advantage of decomposition but limit the risk of infeasibility

on lower levels, we propose to only bundle the lines of the current level of hierarchy.

Fig. 6 (c) gives the complete set of lines which should be operated on the track

in question. In Fig. 6 (d), we provide the PESP graph for the ICE/IC network. To

bundle the three active lines, we introduce an artificial event and require each of the

departure events to be sufficiently close to that artificial event. Hereby, the departure

events will be close to each other as well.

In particular, we must not choose one of the existing events as “anchor”, because

this would predict the corresponding line to be the head of the sequence of bundled

lines. This must definitely be avoided, because – contrary to assumptions made by

Krista (1997) – the ordering of lines is indeed a major result of timetabling. Finally,

based on profound estimates on passengers’ behavior the management has to decide

whether it is more important to operate as many trains as possible – and hereby

bundle the trains of the same type – or whether a balanced service within the different

types of trains should be preferred.

Train Coupling/Train Sharing. During the last decade, in railway passenger traffic

a trend emerged towards train units which can easily be coupled and shared. Doing

so, more direct connections can be offered without increasing the capacity of some

bottleneck tracks.

In Fig. 7 (a), we display a line which is operated by two coupled train units

between Berlin and Hamm. They split in Hamm to serve the two major routes of

the Ruhr area, hereby offering direct connections from Berlin to the most important

cities of that region. Still, this line occupies, e.g., the high-speed track between Berlin

and Hannover only once per hour.

In Fig. 7 (b), we provide PESP constraints which ensure the time for splitting

the two train units in Hamm to be at least five minutes. Furthermore, for the two

departing trains, a safety distance of four minutes is guaranteed. Notice that we do

not need to specify which train should leave Hamm first. This decision will be made

implicitly, and in an optimized way, by the PESP solver.

Variable Trip Times. As long as trip times are fixed, a usual safety constraint pre-

vents two identical trains from overtaking each other. With h being the minimal

headway for the track, we put an arc with feasible interval [h, T − h]T between the

two events of entering the common track. If the line at the tail of the constraints is

by f time units faster than the line at the tail of the constraints, overtaking can be
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Fig. 6. Bundling of Lines: (a) Poor Capacity if Slow and Fast Trains are Alternating (b) Capac-

ity Increase by Bundling Trains of the Same Type (c) Complete Line Plan for All the Types

of Lines (d) PESP Constraints Ensuring Enough Capacity for RE/RB Lines Already when

Planning Only ICE/IC Lines Within the First Step of a Hierarchical Planning

prevented by modifying the constraint to [h + f, T − h]T . This can be understood

easily by having again a look at the corresponding situation in Fig. 6 (a).

But this is no longer guaranteed if the model includes variable trip times. Even

ensuring the minimal headway at the end of the track, too, does no longer prevent

overtaking (even of trains of the same type) if the span in the trip times is at least

twice the safety distance h, i.e. ua − ℓa ≥ 2h. Schrijver and Steenbeek (1993), Lind-

ner (2000), and Kroon and Peeters (2003) tackle this phenomenon by adding extra

constraints on the integer variables of the MIP formulations. Hereby, they leave the

PESP model. In addition, Kroon and Peeters (2003) provide some sufficient condi-
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Fig. 7. Modeling Train Sharing: (a) Line Plan for the Line Berlin-Hamm-

{Bonn Hbf |Köln/Bonn-Airport} (b) PESP Constraints Ensuring Safety Distance and

Time to Split Train Units, but not Specifying the Ordering of Departures

tions on trip times, safety distance, and on the degree of flexibility of the trip times

that prevent trains from overtaking.

In order to stay within the PESP model, we propose to subdivide1 an initial trip

arc into new smaller ones such that ua − ℓa < 2h for every new trip arc. For an

example, we refer to Fig. 8, where bold arcs represent arcs of the spanning tree for

which we set pa = 0, cf. Lemma 2, and 3r is the minimum running time for the

track.

[r, r + h][r, r + h][r, r + h]

[r, r + h][r, r + h][r, r + h][3r, 3r + 3h]

[3r, 3r + 3h]

[h, T − h]

Fig. 8. Overtaking and Variable Trip Times: (a) Standard Granularity does not Prevent Over-

taking (b) Finer Granularity Prevents Overtaking

1 This approach has also been discussed by Peeters (2000, 2003) several years ago.
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Although this might seem to expand the model, the approach behaves rather well.

More precisely, in every feasible timetable, the integer variables which we have to

introduce for our additional arcs are in fact fixed to zero. This can simply be seen by

applying the cycle inequalities (4) to any of the three squares in Fig. 8 (b),

p =

⌈

1

T
(r + h − (T − h) − (r + h))

⌉

=

⌈

h − T

T

⌉

= 0,

p =

⌊

1

T
((r + h) + (T − h) − h − r)

⌋

=

⌊

T − h

T

⌋

= 0.

Notice that the corresponding bounds for the initial formulation are only -1 and 1.

But this is very natural, because there are three different types of timetables possible,

of which we have to cut off two. The value one, e.g., models the fact that the second

(lower) train is overtaking the first (upper) train.

Although we showed that the inconveniences caused by flexible running times

can be overcome, we will assume fixed running times throughout the remainder of

this paper.

3.3 General Modeling Capabilities

There are also important non-timetabling features which can be modeled by the

PESP in a very elegant way. The types of such constraints are disjunctive constraints

and soft constraints. Although they were originally introduced for their own sake,

they turn out to be very useful for even more specialized requirements, which prac-

titioners require to be modeled.

Disjunctive Constraints. The feasible region of MIPs are commonly given as the

intersection of finitely many half-spaces, plus some integrality conditions. If disjunc-

tive constraints have to be modeled, usually artificial integer variables are introduced.

However, the PESP offers a much more elegant way.

When introducing the PESP, Serafini and Ukovich (1989) already made the im-

portant observation that the intersection of two PESP constraints is not always again

a single PESP constraint. Rather, the feasible interval for a tension variable can be-

come the union of two PESP constraints, e.g.,

πj − πi ∈ [ℓ1, u1]T ∩ [ℓ2, u2]T ⇔ πj − πi ∈ [ℓ1, u2]T ∪ [ℓ2, u1]T .

We illustrate their observation in Fig. 9. Nachtigall (1998) observed that any union

of k PESP constraints can be formulated as the intersection of at most k PESP con-

straints.

As an immediate practical application of disjunctive constraints, we consider op-

tional operational stops. Long single tracks with no stop may cause the timetable of a

line to be fixed within only small tolerances. In such a situation, Deutsche Bahn AG

considers the option of letting the ICE/IC trains of one direction stop somewhere,

although there is no ICE/IC station. In the current timetable, this takes places on the

line between Stuttgart and Zurich, at Epfendorf.
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Fig. 9. Disjunctive Constraints

If we want periodic timetable optimization to be competitive, we should enable

the PESP to introduce an additional stop as well. We do so by introducing a pair of

disjunctive constraints. The first constraint is a usual stop arc a1. We set the lower

bound ℓa1
to zero, which models the option of not introducing an additional stop. The

upper bound ua1
is set to the sum of the minimal increase b of travel time occurring

from braking and accelerating, plus the maximal amount of stopping time s at the

station. For the effected increase x̃a of travel time, this translates to

x̃a ∈ {0}T ∪ [b, b + s]T ,

which is a disjunctive constraint. Notice that additional waiting time should be pe-

nalized in this situation similarly to an extension of a regular service stop. Moreover,

if there are other lines operating on the same track, we have to take precautions that

were discussed in the paragraph on variable trip times. However, optional operational

stops make most sense within long single tracks. In many cases there are not several

lines using that large bottleneck.

Obviously, the introduction of an additional stop can also be due to the con-

struction of a new station. Since such decisions are a part of network planning, we

postpone this discussion until Section 5.3.

Soft Constraints. Nachtigall (1996) investigated the combination of two antiparallel

arcs a1 = (i, j) and a2 = (j, i). If they have an identical coefficient in the objec-

tive function and if neither of them can become infeasible for any vector π, or x
respectively, then they model a soft constraint.

Classically, if a certain tension value xa does not satisfy a given PESP con-

straint [ℓa, ua]T , one would declare the complete timetable as infeasible. But some-

times, it can be an alternative only to produce a significant penalty in the objective

function, if a constraint is not satisfied.

To that end, we relax the upper bound of the original constraint to ℓ+T −1 – we

may assume the instance being scaled such that the precondition of Lemma 1 is sat-

isfied. Further, we introduce a new antiparallel arc with feasible interval according to

Fig. 10. Then, these two constraints yield a piecewise constant behavior of the objec-

tive function, which serves as an indicator for the violation of the original constraint,

but without guaranteeing feasibility. For an initial constraint xa ∈ [ℓa, ua] consider
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the corresponding pair of artificial constraints a1 and a2 – each of these having cost

coefficient M . They contribute to the objective function

M · (xa1
+ xx2

) =

{

M · (u − ℓ) if xa1
∈ [ℓa, ua]T , and

M · (u − ℓ + T ) otherwise,

hereby indicating whether the original constraint a is satisfied for the tension vec-

tor x.

[ℓ, ℓ + T )T

[−u, T − u)T

Tℓ u x

�
objective

M · (u − ℓ)

M · (u − ℓ + T )

Fig. 10. Soft Constraints

In our cooperation with Berlin Underground, we were asked to construct a

timetable that, among the top 50 most important connections, maximizes the number

of connections having a waiting time of at most five minutes. In fact, soft constraints

are well-suited for letting MIP solvers produce a timetable being optimal subject to

this kind of objective function.

4 Timetabling Requirements Not Covered by the PESP

Although the most important practical requirements for a periodic timetable can be

modeled within the PESP, we are still aware of some special features for which the

PESP fails. To the best of our knowledge this is the first time that practical require-

ments of timetabling are proven to be beyond the scope of the PESP.

First, one may think of situations in which it is not fixed which trains are operated

on which track, e.g., within stations. Consider a station having two tracks in the

same direction and three lines serving that direction. Then we cannot decide a priori

which pair of lines shall be within the station at the same time, hence omitting the

sequencing constraint between these two lines. This observation is the motivation

for the DONS system to be subdivided into CADANS, covering the timetabling step,

and STATIONS, covering the routing aspect (van den Berg and Odijk (1994)).
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Apart from the rather important routing requirement, which unfortunately is sim-

ply out of scope for the PESP, we will analyze a very special situation in more de-

tail, namely the balanced reduction of service. Finally, we will introduce the impor-

tant notion of symmetry. On the one hand, symmetry slightly exceeds the original

PESP, but on the other hand, when added explicitly, gives rise to a mechanism to in-

clude important aspects of line planning into the very same planning step as periodic

timetabling and vehicle scheduling.

4.1 Balanced Reduction of Service

The Berlin fast train company (S-Bahn Berlin GmbH) aims at operating only one

timetable for one whole day. The late evening service differs from the rush hour

only in that some trains are omitted. Hence, the timetable must respect the available

capacity during the rush hour, and it has to offer a balanced service in the late evening

as well.

From a pure operations point of view, it could seem strange to sidestep an intra-

day change of the timetable structure. It is for sure that the information technology

available in the 21st century could cope with this. But it is still the policy of the com-

pany. It is given as a motivation that customers really expect to have only one single

timetable to be kept in mind for their station.

Consider the approximately 10 km long track from Zoo station to Berlin East

station. On it, a minimal headway of 2.5 minutes has to be respected. The period

time is 20 minutes and eight2 lines (having identical train types) per period and di-

rection have to be scheduled. In the late evening service, there are four trains every

20 minutes, two of them being fixed to a 10 minute time lag. We call these two lines

core-lines.

Of course it would be ideal to have a five minute time lag between two consecu-

tive trains in the evening. But this is impossible because one of the evening trains is

required to serve Potsdam every 10 minutes together with a rush hour train. Hence,

one should ensure that the maximal time lag between two consecutive trains does not

exceed 7.5 minutes.

But this simple requirement cannot be covered by the PESP. Consider the two

types of timetables given in Table 1. Timetables of type 1 satisfy our requirement by

bounding the maximum distance between two consecutive trains to 7.5 minutes, but

type 2 does not because there we have a gap of 10 minutes.

Proposition 1. For every set of PESP constraints either timetables of both types are

feasible, or timetables of both types are infeasible.

Proof. There are two types of constraints to be analyzed:

i. one constraint between the two non-core lines,

ii. four constraints between one of the two core lines and one of the two non-core

lines.

2 One of them only serves as a free slot for occasional non-passenger trips.
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Table 1. Possible Timetables for the Late Evening Service from Zoo Station to Berlin East

Station (This table only shows the core-lines that are actually running in the evenings. Each of

the – entries is a wild card for a rush-hour train.)

Timetable Departure times (T = 20 minutes)

Type 1 0.0 – – 7.5 10.0 12.5 – – (20.0)

Type 2 0.0 2.5 – 7.5 10.0 – – – (20.0)

Since we must not specify the sequence of the lines in advance, only symmetric

constraints [ℓ, T − ℓ]T make sense. Moreover, all constraints of type (ii) have to be

identical for the same reason.

To guarantee feasibility of type 1 timetables, we deduce ℓ ≤ 5 for the constraint

of type (i) and ℓ ≤ 2.5 for the constraints of type (ii). But then, timetables of type 2

stay feasible as well. Hence, in order to cut off timetables of type 2, we have to

increment one of the given bounds. But since they are tight, this would immediately

cut off timetables of type 1 as well. ⊓⊔

4.2 Symmetry of a Periodic Timetable

Throughout our discussion of symmetry, we assume that for every directed line there

exists another directed line serving the same stations just in opposite order. Moreover,

the concept of symmetry only makes sense, if, for every traffic line, the running and

stopping times of its two opposite directions are the same. Also for the minimum

headways and other operational constraints we require them to be identical in both

directions. Furthermore, the passenger flow is assumed to be symmetric.

First, observe that in every periodic timetable with period time T , every train

meets some train of the opposite direction of its line twice within the period time –

assuming the lines to have travel times of at least once the period time. In general,

every line can have different times for these meetings.

A periodic railway timetable is called symmetric with (global) axis s, if at time s
every train in the network meets a train of the opposite direction of its line. From the

above considerations we deduce that we may assume w.l.o.g. s ∈ [0, T
2 ).

For the arrival or departure event of a directed line at a certain station, we denote

by its complementary event the departure or arrival, respectively, of the opposite line

at the same station. In the sequel, we provide two characterizations of symmetric

timetables.

Lemma 4. A timetable is symmetric with axis s if and only if for every pair i and i
of complementary events there holds

(πi + πi) mod T

2
= s. (5)

Proof. Let i and i be any two complementary events. By definition, they are part of

the two opposite directions of the same line. Moreover, they are located in the same

station S.



The Modeling Power of the PESP 135

In a symmetric timetable, the trains of the two opposite directions meet at times s
and s + T

2 . Consider two virtual events j and j of passing the meeting point M . As

the trains meet there, we have πj = πj ∈ {s, s + T
2 }.

We assumed the travel times of two opposite trains to be identical and denote the

travel time between S and M by t. Hence, w.l.o.g.

(πi + πi) mod T = ((πj + t) + (πj − t)) mod T = (2 · πj) mod T.

⊓⊔

To define a counterpart of condition (5) for the tension formulations (2), we de-

fine two arcs a = (i, j) and a = (j, i) to be complementary, if {i, i} and {j, j} are

complementary, and we have ℓa = ℓa and ua = ua. With these definitions at hand,

we are able to define a symmetric instance of PESP: A constraint graph is called

symmetric, if every arc connects either two complementary events, or if for every

arc a ∈ A there exists some complementary arc a ∈ A \ {a}.

Lemma 5. Consider an instance of PESP that is modeled by a connected symmetric

constraint graph. Let π be a feasible timetable with corresponding periodic ten-

sion x. There exists some s ∈ [0, T
2 ) such that Condition (5) holds for every pair of

symmetric events, if and only if every pair of complementary arcs a and a fulfills

x̃a = x̃a. (6)

Proof. “⇒”: Let a = (i, j) and a = (j, i) denote two complementary arcs of the

constraint graph. Then, we have

x̃a = xa − ℓa
(2)
= (πj − πi − ℓa) mod T

(5)
= (2s − πj − (2s − πi) − ℓa) mod T

= (πi − πj − ℓa) mod T = xa − ℓa = x̃a.

“⇐”: Let x be the periodic tension of some feasible timetable π. We show that

there exists one global symmetry axis s such that Condition (5) is satisfied for π.

We compute s from an arbitrary fixed event, say i,

s :=
(πi + πi) mod T

2
.

Now, we consider an arbitrary pair of complementary events j and j. Since D is

connected and symmetric, there exists a path P from i to j or j that only contains

arcs a such that a ∈ A \ {a}. We assume w.l.o.g. that P starts at i and ends at j. By

setting

xP :=
∑

a∈P+

xa −
∑

a∈P−

xa,

we obtain πj = (πi + xP ) mod T . As for every a ∈ P there exists its complemen-

tary arc a ∈ A \ {a}, the complementary path P of P from j to i is well-defined.

Equation (6) ensures xP = xP .
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In total, we obtain

(πj + πj) mod T

2
=

(πi + xP + πi − xP ) mod T

2
=

(πi + πi) mod T

2
= s.

⊓⊔

Remark 1. If the line plan of a traffic network is connected and the constraint graph is

symmetric, we are able to give an even more compact characterization of symmetry.

Then, a feasible tension encodes a symmetric timetable, if and only if Condition (6)

is satisfied for changeover arcs and stopping arcs. In fact, in the proof of Lemma 5

we can then find a path that only uses such arcs, plus trip arcs, which we assume to

have zero span.

Surely, one can introduce a certain tolerance ∆ on the symmetry requirement. But

notice that in this case, condition (6) has to be expanded by a new integer variable.

Example 1 (Deutsche Bahn AG). Fig. 11 shows two real-world timetable queries

for opposite directions. These are representative for large parts of central European

countries, such as Germany and Switzerland, which are operated with symmetry axis

zero within only minor tolerances. Hence, if not stated otherwise we assume s = 0
throughout this paper for ease of notation.

We check the three characterizations of symmetry. Most striking, the changeover

waiting time is almost the same in both directions, cf. Remark 1 and Equation (6).

To check Condition (5), we consider the arrival of ICE 952 in Köln Hbf and the

complementary departure of ICE 953. The two events sum up to (14+47) mod 60 ≈
0, and the same can be observed for the Brussels trains. Finally, notice that the Berlin

line has one of its meeting points between Köln-Deutz and Wuppertal Hbf, at minute

zero, of course. To that end, we have to know that the trains from Berlin arrive at

Köln-Deutz at minute 09, which is two minutes before its departure at minute 11.

Some practitioners consider the changeover condition in Remark 1 to be an im-

portant advantage of symmetric timetables. Even though this might depend on per-

sonal preferences, we do not consider this really to be a striking argument for sym-

metry. Actually, there are examples which prove that symmetric timetables are only

suboptimal, even if the input data is symmetric (Liebchen (2004)).

Apparently there are not yet many discussions of symmetric timetables avail-

able. But among further motivations for symmetry, as they can be found in Liebchen

(2004), the most convincing one seems to be that symmetry halves the complexity

of an instance. This can in particular be useful if there are complex interfaces to in-

ternational trains or to regional traffic, and when planning is performed manually.

However, this argument should become less important in the future, as we think that

PESP solvers achieve some more progress in performance, and hence find their way

into practice.

To summarize, besides a linear objective function, symmetry is the second im-

portant requirement arising in the practice of periodic railway timetabling, by which
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Fig. 11. Symmetric Timetables in Practice

the initial PESP model should be extended. Fortunately, in computations on real-

world data sets it has been observed that MIP solvers may profit from the addition

of symmetry constraints, in particular in formulation (6) (Liebchen (2004)). Such

a generalized MIP model even inherits large parts of the structure of a pure PESP

model. Most important, the cycle inequalities (4) remain valid.
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5 Further Planning Steps Covered by the PESP

In the following, we will demonstrate that the modeling capabilities of the PESP are

not limited only to periodic timetabling. Rather, central aspects of both preceding

and succeeding planning steps in the sense of Fig. 1 can be integrated.

We start this discussion with the well-established technique of minimizing the

number of vehicles required to operate a periodic timetable by penalizing waiting

times of vehicles. Hereafter, we provide first ideas for the integration of important

decisions of line planning. We close this section by proposing a way to model some

specialized decisions arising in network planning.

5.1 Aspects of Vehicle Scheduling

Almost all companies in public transportation have in common that they want to

minimize the amount of rolling stock required to serve their networks. Notice that

the quality of the vehicle schedule for a fully periodic timetable, i.e. with no peak

trips included, is largely determined by the timetable.

Consider, e.g., the hourly line displayed in Fig. 12 (a). Assume the minimal travel

times between the two endpoints to be 235 minutes for each direction. Given strict

minimal turnover times of 45 and 60 minutes, respectively, the minimal number of

vehicles required to operate this line is precisely

N :=

⌈

1

60
(235 + 235 + 45 + 60)

⌉

= 10.

A timetable which lets the trains leave at the full hour from Frankfurt and Am-

sterdam can indeed be operated with only 10 trains, at least if the stopping times

are extended only moderately. On the contrary, a timetable in which only the trains

starting at Frankfurt depart at minute 00, but the trains from Amsterdam leave at

minute 30 requires at least 11 vehicles. Hence, the amount of vehicles depends on

the timetable.

We will analyze in which special cases pure PESP constraints are able to control

the number of trains required. After that, we show that a linear objective function

covers many more of the practical cases.

Proposition 2 (Nachtigall (1998)). Consider a fixed traffic line with period time T .

If we assume trains always serve only this line, and if we do not allow inserting addi-

tional stopping time, then there exist upper bounds u for the turnover activities, such

that the only feasible timetables are those which can be operated with the minimal

amount of trains.

Proof. We present a proof of this simple fact, both in order to provide the notation

used in the following paragraphs, and because it avoids modulo-notation.

Denote the endpoints of the line by A and B. Let ℓAB denote the minimal travel

time from A to B, i.e. the sum of the minimal stopping and running times of the



The Modeling Power of the PESP 139

activities of this directed traffic line. Moreover, denote by ℓB the minimal amount of

time a train has to stay in endpoint B between two consecutive trips.

The minimal number N of trains required to operate this line is precisely

N =

⌈

ℓAB + ℓB + ℓBA + ℓA

T

⌉

.

From the cycle periodicity property (3) we know that every feasible timetable x
fulfills

xAB + xB + xBA + xA = zT, (7)

for some z ∈ �. Hence, we must ensure z = N . To that end, consider the slack

σ := NT − (ℓAB + ℓB + ℓBA + ℓA) (8)

of this traffic line, implying (xA−ℓA)+(xB −ℓB) = σ. But since σ < T , by setting

uA := ℓA + σ (9)

we even ensure xAB + xB + xBA + xA < (N + 1)T . ⊓⊔

Let us now analyze the case in which additional stopping times may be inserted,

i.e., uAB > ℓAB . We will show that together with the constraints (9), some timeta-

bles which require an additional train may become feasible.

On the one hand, consider a timetable for which we have x ≡ ℓ for all activities,

except for the turnover time in one endpoint. This timetable can still be operated with

the minimal number of trains, showing that decreasing the value (9) for uA would

cut off timetables we seek.

On the other hand, assume xAB = uAB and xBA = uBA. If

(uAB − ℓAB) + (uBA − ℓBA) + σ ≥ T, (10)

then we can extend x to a timetable that still respects (9), but which requires at least

one additional train. For instance, if inequality (10) is tight, then for x ≡ u we have

xAB + xB + xBA + xA = uAB + uB + uBA + uA

(9)
= (uAB − ℓAB) + (ℓB + σ) + (uBA − ℓBA) +

+(ℓA + σ) + ℓAB + ℓBA

(10)
= T + σ + ℓAB + ℓB + ℓBA + ℓA

(8)
= (N + 1)T.

The above dilemma is our main motivation for the need of a linear objective function.

Such a function takes advantage of equation (7): By assigning a value M to the arcs

modeling a traffic line, every additional train adds M · T to the objective function

value. Of course, it suffices to consider arcs with positive span, cf. Fig. 12 (b). If the

value for M is chosen to be relatively large compared to the passenger weights, the
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Amsterdam

Frankfurt

Utrecht

Duisburg

Köln−Deutz

Köln-Deutz

Duisburg

Utrecht

[ℓa, ua], wa

[3, 8], M

[2, 5], M

[2, 5], M

[45, 164], M

[2, 5], M

[2, 5], M

[3, 8], M

[60, 179], M

Fig. 12. Modeling Aspects of Vehicle Scheduling: (a) Line Plan (b) PESP Constraints Mea-

suring the Number of Trains Required to Operate the Line

objective function essentially models the piecewise constant behavior of the cost of

the rolling stock for operating the railway network.

From a more local perspective, we just penalize idle time of trains. But this can

even be done without knowing a priori the circulation plan of the trains. Although a

straight-forward exact model involves a quadratic objective function, Liebchen and

Peeters (2002) report that a simple linear relaxation in terms of the PESP yields

results of high quality.

5.2 Aspects of Line Planning

Our main idea for letting PESP solvers even take decisions of line planning is to com-

bine – or match – pre-defined line-segments. To that end, we will make intensive use

of disjunctive constraints. Unfortunately, we will only be able to ensure symmetric

line plans if we require symmetry also within the stations where lines are matched.

We are aware of only one other approach for integrating the planning phases

of line planning, timetabling and vehicle scheduling (Völker (2003)). Whereas that

approach is based on the assumption that the line plan contains no cycles, our ideas

do not require any restrictive assumptions on the topology of the network. Rather,

we are able to keep even very important technical restrictions such as single tracks.

Notice that bad decisions at the level of line planning may cause very bad results

also for vehicle scheduling. Consider the four line segments displayed in Fig. 13. We

assume a period time of T = 60 minutes and a minimal turnover time of 30 minutes
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at each of the four terminus stations. The time for a one-way trip from the matching

station to one of the endpoints is indicated at the corresponding edge.

95
matching

station

85
60

80

?

Fig. 13. Line Segments Where Only One Matching Provides Good Vehicle Schedules

In fact, the vehicle schedule is fixed due to the distinct endpoints. Combining the

south-west segment with the north-east segment causes this line to require at least
⌈

1

60
(60 + 95 + 30 + 95 + 60 + 30)

⌉

=

⌈

370

60

⌉

= 7 trains.

The other line of the same matching requires seven trains, too.

In contrast, the other matching implies seven trains only for the northern line

consisting of the two top line segments. But the other line can be operated with only

six trains. Hence, already the line plan has a major impact on the cost of operation.

Claessens et al. (1998) consider this phenomenon in their approach for construct-

ing cost-optimal line plans. However, they omit the important intermediate linking

step of computing a timetable. Therefore, their approach must also consider possi-

ble constellations in which there is no feasible timetable using only six trains for

the southern line. This would be the case if there was a single track with travel time

25 minutes for every direction just at the end of the south-east segment. The same

holds if it is required that the two lines together form an exact half-hourly service

along the backbone of the network.

We consider a track that has to be served in the same direction by n directed

lines which are operated by trains of identical type. We denote the matching station

by S which resides between the two endpoints of the common track. We consider

n line segments La
1 , . . . , La

n which have station S as their common endpoint, and

n line segments Ld
1, . . . , L

d
n having station S as their common starting point. Any

(bipartite) perfect matching between the arriving and the departing line segments

induces a line plan.

But from the perspective of timetabling, there are only n arrival events a1, . . . , an

as well as n departure events d1, . . . , dn visible. Hence, we must deduce only from

their arrival times πai
and their departure times πdj

which arriving line segment La
i

should be matched with which departing line segment Ld
j . This can be done in a

canonical way, if we choose the matching station S such that it has only one track in

the direction of the line segments we consider. If necessary, we add an artificial sta-

tion in the middle of some track. Then, at most one train can be in S at the same time.

Timetables respecting this constraint can be characterized very easily as follows.
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Definition 1 (Alternating timetable). For a fixed station S and a fixed direction,

a periodic timetable π with n pairwise different arrival times 0 ≤ πa1
< · · · <

πan
< T and n pairwise different departure times 0 ≤ πd1

< · · · < πdn
< T

is called alternating at S, if either πai
≤ πdi

< πai+1
for every i = 1, . . . , n, or

πdi
< πai

≤ πdi+1
for every i = 1, . . . , n, where we define π·n+1

:= π·1 + T .

Lemma 6. A timetable π ensures that there is always at most one train at station S
if and only if it is alternating at S.

Hence, for an alternating periodic timetable, we combine the arriving line seg-

ment La
i with the departing line segment Ld

j , if and only if the latter marks the unique

first possible departure. In the sequel, we will give PESP constraints ensuring every

feasible timetable to be alternating at S. Thus, every feasible timetable will encode

some unique matching and the associated line plan.

The first two sets of constraints ensure the minimal headway d in front of and

behind the matching station S:

∀ i, j ∈ {1, . . . , n} : πaj
− πai

∈ [d, T − d]T , (11)

∀ i, j ∈ {1, . . . , n} : πdj
− πdi

∈ [d, T − d]T . (12)

Notice that (11) and (12) can only be fulfilled if 0 ≤ d ≤ T
n . Moreover, we relate

arrival events to departure events by the following disjunctive constraints

∀ i, j ∈ {1, . . . , n} : πdj
− πai

∈ [0, T − d + h]T , (13)

∀ i, j ∈ {1, . . . , n} : πdj
− πai

∈ [d, T + h]T , (14)

where we denote by h the maximal stopping time for a train at station S. Together,

these constraints (13) and (14) yield

(πdj
− πai

) mod T ∈ [0, h] ∪̇ [d, T − d + h]. (15)

Trivially, 0 ≤ h < d is necessary for every feasible timetable π to be alternating

at S.

Theorem 2. Let π be a timetable respecting constraints (11) to (14). Then for every

departure event dj , there exists a unique arrival event ai satisfying

πdj
− πai

∈ [0, h]T , (16)

if and only if h < (n + 1)d − T .

Since 0 ≤ h, from h < (n + 1)d − T we conclude T
n+1 < d.

Proof. “⇒”: We assume h ≥ (n + 1)d − T . Since d = T
n would imply h ≥ d,

we must only investigate the case that d < T
n . We will construct a timetable which

respects the constraints (11) to (14), but which contradicts (16).

Define πai
:= (i−1)d, for all i = 1, . . . , n, and πdj

:= j ·d, for all j = 1, . . . , n.

By construction, all the constraints are satisfied. However, since πan
+ h < n · d =

πdn
, for departure πdn

none of the arrival events fulfills (16), q.e.d.
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“⇐”: We assume there exists a timetable π having one departure event d0 such

that

∀ i = 1, . . . , n : (πd0
− πai

) mod T > h,

but which respects the constraints (11) to (14). We may assume w.l.o.g. that for the

cyclic predecessor arrival a1 of d0 we have πa1
= 0. As π is feasible, it satisfies (15).

From our assumption, we conclude d ≤ πd0
and πd0

+ (d − h) ≤ πa2
, and hence

πa2
−πa1

≥ 2d−h. Event a1 also takes place at time T . For notational convenience,

we define πan+1
:= T . With this notation, we have πai+1

− πai
≥ d, for all i =

2, . . . , n. By the definition of πan+1
, we know that

n
∑

i=1

(πai+1
− πai

) = πan+1
− πa1

= T.

Summing up the lower bounds yields T ≥ (n + 1)d − h, which contradicts the

hypothesis of Theorem 2. ⊓⊔

Corollary 1. If h < (n + 1)d − T , then every timetable which respects constraints

(11) to (14) is an alternating timetable.

In Fig. 14, we provide an example for the easiest case, namely matching two

lines. As usual, we assume the period time to be 60 minutes.

Amsterdam

Dortmund

Basel

Stuttgart

Duisburg

Mannheim

Köln−Deutz?

Köln-Deutz
[22, 38]

[3, 5]

[0, 43]

[22, 65]

[ℓa, ua]

Fig. 14. Modeling Aspects of Line Planning: (a) Line Segments (b) PESP Constraints Ensur-

ing the Segments to be Matched
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Remark 2. There are of course alternating periodic timetables in the case d ≤ T
n+1 .

PESP solvers are able to detect even those, if we were able to pre-define sufficiently

many empty slots. By an “empty slot” we understand an artificial line which we have

to schedule in the same way as the original lines, hereby separating the lines before

and after the empty slot.

In more detail, let us assume that T
n∗+1 < d ≤ T

n∗ for some n∗ > n, and

that h satisfies the assumptions of Theorem 2 for n∗. We then introduce n∗ − n
artificial dummy arrival and departure events ai and di, i = n+1, . . . , n∗. To prevent

the original line segments from being matched with an artificial event, we require

πdi
− πai

∈ [0, h] for all i = n + 1, . . . , n∗.

By construction, only feasible timetables let the original arrivals and departures

alternate. However, perfectly balanced timetables, i.e. πai
:= (i−1)T

n , are infeasible

under these settings if n∗ < 2n, since they do not provide n∗ − n empty slots.

Recall that so far we have considered only one direction. Hence, there is no mecha-

nism yet to bind the matching of one direction to that of the opposite direction. But

the matchings of opposite directions must fulfill the symmetry assumption that we

gave at the beginning of Section 4.2. Otherwise, the trains from direction A could

pass the matching station S in order to continue towards B, but the trains from B
pass S before continuing in direction C. Thus, it would not be possible to commu-

nicate the line plan in the way customers are used to, because it may no more be

visualized by an undirected graph. However, limited asymmetries in operation are

accepted in practice.

Example 2 (S-Bahn Berlin GmbH). We consider the line S2 serving the route Blan-

kenfelde-Lichtenrade-Buch-Bernau. Between Lichtenrade and Buch, a ten minute

headway must be offered, for the remaining parts a 20 minute headway suffices.

In the current timetable (S-Bahn Berlin GmbH (2003)), this line is served in

an asymmetric way. In order to cope with the single tracks (which are present at

both endpoints) to limit the total amount of stopping time, and to ensure an efficient

employment of the rolling stock, an asymmetric service is offered, and we present it

in Table 2.

In order to ensure symmetric line plans, we have to guarantee the following con-

dition. If we combine the arrival event ai with the departure event dj in one direction,

then in the opposite direction the complementary arrival event a′
j must be combined

with the departure event d′i. More precisely, when considering the corresponding

tension variables xaidj
and xa′

j
d′

i
, they must fulfill

Table 2. Asymmetric Service of Line S2 (Berlin)

Blankenfelde dep | 10:09 | arr o 11:14 |
Lichtenrade dep ↓ 10:15 10:25 arr o 11:05 11:15

Buch arr o 11:06 11:16 dep ↑ 10:14 10:24

Bernau arr o 11:21 | dep | | 10:10
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xaidj
∈ [0, h] ⇔ xa′

j
d′

i
∈ [0, h]. (17)

In fact, this condition is quite similar to the symmetry constraints (6). What

makes things more complicated is the fact that we must not predict in advance for

which pairs (i, j) requirement (17) has to hold, and for which pairs it may be vio-

lated. Hence, we propose to guarantee property (17) for the matched pairs by impos-

ing symmetry requirements on every pair of complementary junctions. But it is clear

that this approach cuts off feasible timetables for symmetric line plans just because

such timetables need not to be symmetric; see, e.g., Example 3.

Example 3 (S-Bahn Berlin GmbH). Consider the current timetable (S-Bahn Berlin

GmbH (2003)) of the ring subnetwork of S-Bahn Berlin GmbH, of which we provide

an excerpt in Table 3. Obviously, the line plan is symmetric. But the timetable is not

Table 3. Symmetric Line Plan but Asymmetric Timetable

Direction A

Line S45 S46 S8 S9 S47 S8

Origin BFHS BKW BGA BFHS BSPF BZN

Schöneweide dep ↓ xx:01 xx:06 xx:10 xx:13 xx:15 xx:18

Baumschulenweg arr o xx:03 xx:09 xx:13 xx:16 xx:17 xx:21

Destination BHMS BGS BPKR BZOO BWES BPKR

Direction B

Line S8 S46 S9 S47 S8 S45

Origin BPKR BGS BZOO BWES BPKR BHMS

Baumschulenweg dep ↓ xx:02 xx:06 xx:08 xx:13 xx:14 xx:19

Schöneweide arr o xx:05 xx:08 xx:10 xx:15 xx:17 xx:21

Destination BGA BKW BFHS BSPF BZN BFHS

symmetric. This can be seen by calculating the symmetry axes of lines S47 and S9

at station Schöneweide. Departure and arrival of line S47 sum up to 30, hence the

trains of this line meet at times 5 and 15. For line S9 the sum yields 23, providing a

symmetry axis of 1.5. An easier argument for asymmetry is that the sequence of the

trains in Direction B is not the inverse of the one in Direction A.

There are two main objectives for the matching approach. First, we want to offer

direct trips for as many passengers as possible. Second, the timetable should require

only few trains for operation.

For the second criterion, in the case h = 0, no additional weight on arcs within

the matching node is required in order to minimize the amount of rolling stock re-

quired to operate the timetable. In the case h > 0, one could put the vehicle weight

on the arcs with feasible interval [0, T − d + h]. But this would no longer yield

the desired exact piecewise-constant behavior of the objective, because some double

counting can appear.
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For maximizing the number of direct travelers, we consider the number of pas-

sengers wij starting their trip before the common track on a train covering line seg-

ment La
i , and finishing their trip after the common endpoint on a train covering line

segment Ld
j . The value wij is added to the weight of the arc a = (ai, dj) with ℓa = 0

and ua = [0, T − d + h]. The resulting cost coefficients in the objective function

make sense even for pairs of line segments which are not matched, because long

changeover times of many passengers are penalized.

Notice that the values wij are only well-defined if the two line segments do not

serve a second matching station. This shows that the decisions to be taken within a

matching station are of a rather local nature.

Summarizing, there are important scenarios in which the PESP can integrate rel-

evant aspects of line planning into a model suited for timetabling and key issues of

vehicle scheduling. This is in particular the case if symmetric timetables and bal-

anced sequences along the common tracks, i.e. d > T
n+1 , are requested for their

own sake. Moreover, we observed that the larger the distance between two matching

stations, the more reliable the passenger weight that we propose.

We think that fast train networks of European agglomerations, such as Frankfurt,

Munich, or Paris (RER), are well-suited candidates for this approach. There, many

passengers might have their origin or destination somewhere on the backbone route,

and balanced sequences must be ensured due to the large number of lines per period.

5.3 Aspects of Network Planning

We propose to also model two questions which arise in network planning within the

PESP: the extension of existing tracks, and thus lines, beyond their current endpoints,

and the construction of faster tracks as substitutes for existing ones. Taking into ac-

count that, in these questions, we have to select one option out of a small number

of disjoint options, it is evident that we will make intensive use of disjunctive con-

straints, cf. Section 3.3. Recall that there, we already discussed the introduction of

optional additional stops. With appropriate weights that reflect amortization – see be-

low – these may also cover the construction of new stations along an existing track.

We only discuss the construction of faster tracks in detail. But the reader will

have no difficulty to adapt our suggestions to the very similar task of the extension

of tracks.

In Fig. 15, we provide a constraint graph which offers the option of a new track

between Aachen and Köln (Engl.: Cologne), being then part of the European high-

speed line PBK (Paris-Brussels-Köln). We provide the status quo, with one interme-

diate stop, only for illustration purposes. In the future, we have the option to either

use the current tracks, thus keeping a trip time of 38 minutes, or to establish the new

high-speed track, hereby reducing the trip time down to 26 minutes.

To define appropriate weights for the arcs, we have to take into account three

different types of objectives: The number of customers c who profit from a new track

by shorter travel times, the trip times of the trains which may allow to reduce the

number of trains required (M , cf. Section 5.1), and the cost M ′ of the investment.
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Köln−Deutz

Köln

Hbf
Aachen Hbf

highŦspeed track

optional

Köln-Deutz

status quo

future options

[21, 21], 0

[2, 2], 0

[15, 15], 0

[26, 38], M + c − M ′

[38, 86], 0

[ℓa, ua], wa

Fig. 15. Modeling Aspects of Network Planning: (a) Infrastructure Including Optional High-

speed Track (b) PESP Constraints Taking into Account the Two Infrastructural Alternatives

One can imagine that it is a non-trivial management decision to derive an hourly

weight M ′ from the total cost of the investment.

Similarly to line planning, investments into infrastructure will only make sense

if they are effected for both directions at the same time. Again, we ensure symmetric

investments by requiring the timetable to be symmetric.

Let us now analyze the situation in which several lines have the option of using

the same new, faster track. Of course, we want to ensure that infrastructure is only

paid once in terms of the objective function. Hence, we have to partition the total

cost onto all of the concerned lines. But what if in a solution of a PESP instance only

one line is routed over the new track?

But a reasonable allocation of the total costs is only possible if we know in ad-

vance how many lines will have to use the new track. Unfortunately, we are only

able to ensure this with constraints of the types already introduced, if all the lines

must use the same track. This would, e.g., be the case when analyzing two mutually

exclusive variants of constructing a new track.

We can guarantee that all the lines use the same track simply by enforcing the

same running time for each line. This is achieved by introducing constraints of

type (6). However, notice that we cheat a bit in this case, because those constraints

no longer relate only pairs of complementary arcs to each other. Nevertheless, the
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MIP formulation of this even slightly more extended model incorporates many of

the computational aspects of the pure PESP model.

6 Conclusion

Our discussion of the PESP model shows that it has a great modeling power and ex-

tendibility. We have demonstrated that many non-standard requirements for periodic

timetables and also important aspects of other – traditionally separate – planning

phases can be integrated into the PESP. Fig. 16 displays the gain by this modeling

power over the traditional use of the PESP displayed in Fig. 1.

Network Planning

Line Planning

Timetabling

Vehicle Scheduling

Crew Scheduling

PESP model

Fig. 16. Planning Phases Covered by the PESP with Our Contribution

Interestingly, this integration into the PESP has been possible without seemingly

complicating it too much. In all cases, we obtained mixed integer programs that still

have the characteristics of a PESP. Hence we believe that these extended models

stay computationally tractable also for networks of relevant sizes. So far, our belief

is confirmed by a confidential study for S-Bahn Berlin GmbH for two of its three

major subnetworks.

We therefore hope that these models, through their integrative approach to vehi-

cle scheduling, timetabling, line planning, and infrastructure planning, will eventu-

ally lead to better decision making in practice.
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Borndörfer, R., Löbel, A., and Weider, S. (2002). Integrierte Umlauf- und Dienst-
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Summary. During the last 15 years, many solution methods for the important task of con-

structing periodic timetables for public transportation companies have been proposed. We first

point out the importance of an objective function, where we observe that in particular a linear

objective function turns out to be a good compromise between essential practical requirements

and computational tractability. Then, we enter into a detailed empirical analysis of various

Mixed Integer Programming (MIP) procedures – those using node variables and those using

arc variables – genetic algorithms, simulated annealing and constraint programming. To our

knowledge, this is the first comparison of five conceptually different solution approaches for

periodic timetable optimization.

On rather small instances, an arc-based MIP formulation behaves best, when refined by

additional valid inequalities. On bigger instances, the solutions obtained by a genetic algorithm

are competitive to the solutions CPLEX was investigating until it reached a time or memory

limit. For Deutsche Bahn AG, the genetic algorithm was most convincing on their various data

sets, and it will become the first automated timetable optimization software in use.

1 Introduction

The central task in the planning process of a large public transport company is

timetabling. So far this is done mostly manually, using computers as clever editors

– if at all. At Deutsche Bahn AG, being the major supplier of railway transport in

Germany, the amount of people and time spent on this task is enormous, e.g., some

hundreds of people are working on it in the year. Roughly speaking the timetabling

task discussed here consists of finding periodic completely regular timetables (no

exceptions on weekends, in the night, on the borders, etc.) given the infrastructure, a

line system, and the amount of changing travelers between the lines (Bussieck et al.

(1997)). The optimization goals are minimizing the travel times and the amount of

rolling stock needed, i.e., satisfying the needs of the customers and the company.
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There have been various approaches proposed for solving this very hard problem

(cf. MIPLIB, Liebchen and Möhring (2003)). These include mixed-integer program-

ming and constraint propagation, but also genetic algorithms and simulated anneal-

ing. Nevertheless, there are no computational studies available that compare at least

two of these techniques on the very same data set. As Deutsche Bahn AG aims at

automating at least parts of the timetabling process in the near future – i.e. within

the next few years – we perform an extensive computational study to examine the

above-mentioned algorithms in detail.

In Section 2 we present the Periodic Event Scheduling Problem (PESP) which is

the model of our choice for periodic railway timetabling. For a detailed description

of its very rich modeling capabilities, we refer to Liebchen and Möhring (2007). In

Section 3 we derive several equivalent MIP formulations for the PESP. This step is

very important as there are immense differences in the performance of the various

MIP formulations – e.g. the most intuitive one does not behave best.

After a short sketch of some refinements of the general methods (Section 4), we

start our computational study in Section 5 by giving detailed information of the three

data sets to which we apply the algorithms. Our program makes use of CPLEX as a

MIP solver, ILOG Solver for constraint programming (CP), and the prosim Express

optimization workbench for local optimization algorithms. The latter has been devel-

oped beforehand in order to deal with other optimization tasks within the Deutsche

Bahn. It is a toolbox of general purpose optimization algorithms. Combining these

with a problem specific interface makes it easy to tackle a problem with different

algorithms.

There will be a certain focus on MIP techniques. This is because these offer the

most variety of parameters in conjunction with three different problem formulations

which can be sharpened by making use of five kinds of valid inequalities which are

defined for every elementary cycle of the constraint graph. The impacts of these nu-

merous adjusting crews becomes most visible on our medium size instance, cf. Sec-

tion 5.2. Here, on the one hand, the best parameter settings provide solution times

which are not too short for identifying significant differences. On the other hand, so-

lution times are not too long to try out a large number of different parameter settings.

On small and medium sized problems, we will observe that CPLEX is able to ter-

minate with a provably optimum solution within the time and memory limits that we

define. Only on the smallest instance, the other algorithms are able to construct (al-

most) optimum solutions. This might not be considered very astonishing. Instead, on

bigger instances, where CPLEX fails to terminate, we were surprised that in particu-

lar the quality of the solutions obtained by the genetic algorithm is still competitive. If

we run CPLEX at default parameter settings, even when refining the most promising

problem formulation with additional valid inequalities CPLEX gets outperformed

by our genetic algorithm. Only with some variations to the parameter settings of

CPLEX, the picture changes slightly. This shows that our earlier parameter testing

was worthwhile.
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2 Modeling Periodic Railway Timetables

Serafini and Ukovich (1989) introduced the periodic event scheduling problem

(PESP), by which instances of periodic timetabling may be formulated in a very

compact way. Since then, this model has been widely used (Schrijver and Steen-

beek (1993), Nachtigall (1994), Lindner (2000)). In the PESP, we are given a period

time T and a set V of events, where an event models either the arrival or the de-

parture of a directed traffic line at a certain station. Furthermore, we are given a set

of constraints A. Every constraint a = (i, j) relates a pair of events i, j by a lower

bound ℓa and an upper bound ua.

A solution of a PESP instance is a node assignment π : V �→ [0, T ) that satisfies

(πj − πi − ℓa) mod T ≤ ua − ℓa, ∀ a = (i, j) ∈ A, (1)

or πj −πi ∈ [ℓa, ua]T for short. Notice that we may assume w.l.o.g. that 0 ≤ ℓa < T
and ua − ℓa < T . The PESP is NP-complete, since it generalizes Vertex Coloring

(Odijk (1997)): Orient the edges of a Coloring instance arbitrarily and assign feasible

periodic intervals [1, T − 1]T to each of them.

At the end of this section, we will give several motivations why we consider an

objective function to be important. On the one hand, a linear objective function is rich

enough to model the most important features. On the other hand, a linear objective

function permits to include powerful MIP solvers, in particular CPLEX, into our

study. Hence, we add a linear objective function of the form

∑

a=(i,j)∈A

ca · (πj − πi − ℓa) mod T

with costs ca.

The PESP yields the capability to model manifold practical requirements arising

in periodic railway timetabling. To name just a few, we will give only three examples.

We model a trip of t time units of a directed line from station D to station A by

requiring πa − πd ∈ [t, t]T . To separate two lines sharing a common track by a

safety distance of d time units, we require πdj
− πdi

∈ [d, T − d]T . Finally, we are

going to model the quality of changeovers. Notice that a timetable is still feasible

from an operational point of view, even though it may offer very long waiting times

for changeovers. Hence, we only introduce “loose constraints,” i.e. we set ua :=
ℓa + (T − 1), where ℓa models the minimal amount of time required for changing

trains. By setting the cost coefficient of such a loose constraint to the number of

passengers on that specific connection, we are able to guarantee good timetables by

minimizing the total changeover waiting time. For further practical requirements, we

refer to Liebchen and Möhring (2007).

In our dialogue with practitioners of both national railway companies and urban

transportation companies, the following three features turned out to be important:

• simultaneous minimization of the amount of rolling stock required to operate the

timetable (Nachtigall (1998) and Liebchen and Peeters (2002b))
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• minimization of passenger waiting time with no risk of overdetermining the sys-

tem by the definition of maximal changeover times which are too tight

• maximization of the number of connections not exceeding a certain waiting time

by making use of so-called soft constraints, cf. Liebchen and Möhring (2007),

Nachtigall (1996).

Fortunately, all these can easily be expressed by means of a linear objective function.

Whereas the way of modeling changeover activities can be seen to depend only

on the flavor of each individual company, almost all companies have in common that

they want to minimize the amount of rolling stock. In fact, this requirement has to be

seen as an input for timetabling, because the quality of the vehicle schedule, being

the next planning step in the classical hierarchical approach, is largely determined by

the timetable. For example, during the off-peak traffic time, in which still a 10 minute

headway is offered, the Berlin Underground strictly rejects timetables which require

75 trains or more, because only 68 are technically necessary and the salaries form a

considerable portion of the operational costs. In order to get an acceptable situation

for changing passengers, about 70 trains suffice.

Consider the very special case where the vehicle schedule is fixed a priori and

the stopping times are fixed, too. Here, Nachtigall (1998) identified PESP constraints

that ensure that only periodic timetables remain feasible, that can be operated with

the minimum number of trains. However, in the more general case, Liebchen and

Möhring (2007) show these constraints to no longer work. More generally, either we

had to cut off timetables that we initially seek for, or timetables that require additional

trains become feasible.

This dilemma is our main motivation for the need of an objective function, at

least for a linear one. Such a function takes advantage of Equation (7) on p. 139

in Liebchen and Möhring (2007): By assigning a value M to the arcs modeling a

traffic line, every additional train pays M · T to the objective function value. If the

value for M is chosen to be relatively large compared to the passenger weights, the

objective function essentially models the piecewise constant behaviour of the cost of

the rolling stock for operating the train network.

From a more local perspective, we just penalize idle time of trains. But this can

even be done without knowing a priori the circulation plan of the trains. Although an

exact model involves a quadratic objective function, Liebchen and Peeters (2002b)

report that a linear relaxation yields results of high quality.

But there is even another problem with forcing lines to be operated with the

minimal number of trains. In Berlin, e.g., the two underground lines U6 and U7 are

required to meet at Mehringdamm, because there they share a common platform. But

due to the existing running times, turnover times, and minimal changeover times, this

simple requirement yields an inconsistent constraint system, as long as we require

both lines to be operated with the minimal number of trains. However, we do not

want to take the decision in advance, on which line to add the extra train. Hence,

every feasible constraint system must contain timetables which require an additional

train for both lines. Whereas the pure PESP has to fail, already by the means of
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a linear objective function we are able to prefer timetables which require only one

extra train in total.

3 Mixed Integer Programming Formulations

Recall the initial definition (1) of the PESP in the previous section. We can interpret

the variables π as a node potential, which periodically satisfies the given constraints.

Notice that if we omit the modulo operator in (1), we obtain the more restrictive

Feasible Differential Problem (FDP), which can be solved easily by network flow

techniques.

The initial formulation (1) will immediately serve as input for the Constraint

Programming formulation, as well as for the local search procedures we are going

to examine. But in order to get to an MIP formulation, we must resolve the modulo

operator by integer variables. The original constraint (1) translates to

ℓa ≤ πj − πi + paT ≤ ua,

where pa is required to be integer. Here, the integer variables permit to shift potential

differences into the target interval [ℓa, ua], where the pure aperiodic difference fails.

We obtain the first MIP formulation:

min
∑

a=(i,j)∈A

ca · (πj − πi + paT )

s.t. ℓ ≤ Btπ + pT ≤ u
p ∈ �A

π ∈ [0, T )V ,











(2)

where B denotes the node-arc incidence matrix of the directed (multi-) graph D =
(V,A). Notice that for every feasible solution, we are able to guarantee pa ∈ [0, pa]∩
�, with

pa =

{

1, if ua < T,
2, otherwise.

(3)

Obviously, for a fixed vector p, the feasible region of (2) is precisely the FDP, show-

ing that indeed the integer variables form the core of the model. Notice that for a

fixed spanning tree H , we may fix pa = 0 for every a ∈ H , if we relax π ∈ �V

(Serafini and Ukovich (1989)), which yields a formulation that we call (2a).

Another perspective of periodic scheduling can be obtained by considering ten-

sions instead of potentials. In a straightforward way, define for a given node poten-

tial π its tension

x̂a := πj − πi, ∀a = (i, j) ∈ A.

Recall that a vector x̂ is a tension, if and only if for an arbitrary cycle basis C, γC x̂ =
0 for every cycle C ∈ C with incidence vector γC ∈ {−1, 0, 1}A. This yields the

second MIP formulation:
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min ct(x̂ + pT )
s.t. Γ x̂ = 0

ℓ ≤ x̂ + pT ≤ u
p ∈ �A,

or

min ctx
s.t. Γ (x − pT ) = 0

ℓ ≤ x ≤ u
p ∈ �A,









(4)

where Γ ∈ {−1, 0, 1}(|A|−|V |+1)×|A| denotes the cycle-arc incidence matrix (cycle

matrix) of some cycle basis C of the graph D. Of course, the box constraints (3)

apply to formulation (4) as well.

We are able to reduce the number of integer variables from |A| down to |A| −
|V |+1, by introducing periodic tensions. For a given node potential π, we define the

corresponding periodic tension x as

xij := (πj − πi − ℓij) mod T + ℓij .

Periodic tensions can be characterized similarly to classic aperiodic tensions.

Lemma 1 (Cycle Periodicity Property). A vector x ∈ �A is a periodic tension if

and only if for every cycle C with incidence vector γC ∈ {−1, 0, 1}A, there exists

some zC ∈ �, such that

γCx = zCT. (5)

By extending an approach of Nachtigall (1994), Liebchen and Peeters (2002a)

proved that it suffices to ensure equation (5) only for the elements of an integral

cycle basis of the directed graph, which leads to the third MIP formulation

min ctx
s.t. Γx = zT

ℓ ≤ x ≤ u
z ∈ �|A|−|V |+1.









(6)

Here, Γ denotes the cycle matrix of an integral cycle basis. By defining slack vari-

ables x̃a := xa−ℓa, we obtain formulation (6a), which turns out to be slightly easier

to solve for CPLEX.

But there is even a problem with formulation (6a): its LP-relaxation has mini-

mal value 0, because a fractional vector z is always able to compensate any vector

x̃a, thus in particular x̃ = 0. Hence, additional valid inequalities are essential for

obtaining good lower bounds.

Theorem 1 (Odijk (1997)). An integer vector p allows a feasible solution for the
MIP (4), if and only if for every oriented cycle C of the constraint graph, the follow-
ing cycle inequalities hold

�
���

1

T
(
�

a∈C+

ℓa −
�

a∈C−

ua)

�
��� ≤

�
a∈C+

pa −
�

a∈C−

pa ≤

���� 1

T
(
�

a∈C+

ua −
�

a∈C−

ℓa)

���� , (7)

where C+ and C− denote the forward and the backward arcs of the cycle C.
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Of course, there is a reformulation of the valid inequalities (7), such that they

apply to formulations (6) and (6a) as well. In these formulations, they immediately

yield box constraints zC ≤ zC ≤ zC for every integer variable zC , when applied to

the corresponding cycle C of the cycle matrix in the problem formulation. Defining

z̃C := zC −zC provides formulation (6b), in which we may declare certain variables

to be binary, which is preferred by the MIP solvers as well.

Furthermore, for a fixed cycle C, the span between lower and upper bound of a

pair of cycle inequalities (7) behaves similarly to the value
∑

a∈C(ua − ℓa). In order

to have only a few choices for the integer variables, we are looking for an integral

cycle basis C, which minimizes

∑

C∈C

∑

a∈C

da, (8)

where we define da := ua − ℓa to be the span of arc a. More precisely, Liebchen

(2003) reports a correlation of about 0.5 between the width

∏

C∈C

(zC − zC + 1) (9)

and the solution time of CPLEX on formulation (6b).

Minimizing (8) for arbitrary cycle bases is just the minimal cycle basis prob-

lem (MCB), for which Horton (1987) designed a polynomial time algorithm. How-

ever, the complexity of minimizing (8) only for integral cycle bases is unknown to

the authors. Finding minimal strictly fundamental cycle bases – which are a very

special subclass of integral cycle bases – has been proven to be NP-hard; see Deo

et al. (1982). Nevertheless, there are powerful heuristics available for constructing

both short strictly fundamental cycle bases and short integral cycle bases; see Deo

et al. (1982), Deo et al. (1995), Liebchen (2003).

We propose to use a variant of the cycle inequalities (7) as well. From formula-

tion (6), one can see that the integer variables can be expressed by sums of tension

variables. After only a few elementary transformations, an original cycle inequal-

ity (7) in terms of the integer variables z becomes a valid inequality (7a) in terms

of the tension variables. Nachtigall (1996) introduced further inequalities in terms of

the tension variables.

Theorem 2 (Nachtigall (1996)). For every elementary cycle C, define

b := (
∑

a∈C− ℓa −∑a∈C+ ℓa) mod T . If b > 0, then

(T − b)(
∑

a∈C+

x̃a) + b(
∑

a∈C−

x̃a) ≥ b(T − b) (10)

is a facet defining inequality for the polyhedra defined by the mixed integer linear

programs (6a) and (6b), in terms of slack variables.
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4 Exhausting the Problem Formulations

In any of the MIP formulations, we have to decide for which cycles to add their cy-

cle inequalities (7), occasionally in their tension variant (7a). In addition, we may

add change cycle inequalities (10) to formulations (4) and (6b). Of course, problem

formulation (6b) is most challenging, because there we may even choose an integral

cycle basis. However, this choice makes it very difficult to compare formulation (6b)

for different cycle bases, in particular if we add cycle inequalities (10), as their for-

mulation essentially depends on the integer variables being available in the specific

formulations.

After occasionally having added some of these valid inequalities by iterated calls

to separation heuristics, we transfer the instance to the MIP solver of CPLEX (Cut

and Branch).

Since there are no polynomial separation algorithms available for the valid in-

equalities that we consider, and since both kinds of valid inequalities are defined for

oriented cycles of the directed graph, we heuristically generate cycles. Apart from

the fundamental cycles of minimal spanning trees (MST) subject to random edge

weights, we use the following four heuristics:

• fundamental cycles of minimal spanning trees subject to the values x∗ in an op-

timal solution of the current LP relaxation,

• fundamental cycles of minimal spanning trees subject to the integral gap |p∗a −
round(p∗a)| in an optimal solution of the current LP relaxation4,

• the up to |A| · |V | candidate cycles of Horton’s polynomial MCB algorithm (Hor-

ton (1987)) subject to the integral gap in an optimal solution of the current LP

relaxation, and

• the up to |A| · |V | candidate cycles of Horton’s polynomial MCB algorithm sub-

ject to the arc spans d.

The cycle bases that we consider in formulation (6b) are

1. MST span: the fundamental cycles of an MST subject to edge weights da,

2. MST nspan: the fundamental cycles of an MST subject to edge weights T − da,

3. NT: the fundamental cycles obtained by the NT heuristic (non-tree edges) of

Deo et al. (1995),

4. UV one: the fundamental cycles obtained by the UV heuristic (unexplored ver-

tices) of Deo et al. (1995),

5. UV span: the fundamental cycles obtained by the UV heuristic, in which we

introduced the values da as edge weights,

6. UV nspan: the fundamental cycles obtained by the UV heuristic, in which we

introduced the values T − da as edge weights, and

7. Horton: the minimal cycle basis obtained by Horton’s algorithm, given that it

produces an integral cycle basis.

4 In formulation (6b), it makes only sense to identify the components of p∗ with the (non-

tree) arcs of the digraph, if we use strictly fundamental cycle bases.
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To any of the heuristics (1) to (6), we apply fundamental improvements (see Liebchen

(2003)), as they have been proposed by Berger (2002).

For the genetic algorithm approach we are going to follow Nachtigall and Voget

(1996) who proposed to encode a timetable by storing, for each event i, at which

point of time πi ∈ {0, . . . , T − 1} it should take place. Moreover, they proposed to

apply a local improvement heuristic to every new individual, which is obtained by a

mutation or a crossover operation. In this local improvement step, they subsequently

consider every event i, and compute for every point of time t ∈ {0, . . . , T − 1} the

(local) objective value along the arcs in the cutset induced by node i, and set πi such

that the minimum is attained. Notice that this procedure depends heavily on the time

precision that is chosen for the computation.

We propose two modifications which make this approach more efficient. First,

in our practical data sets, there are several arcs a = (i, j) with ua − ℓa ≪ T , in

particular stopping activities. Since in such a situation, only few pairs (πi, πj) ∈
{0, . . . , T − 1} × {0, . . . , T − 1} satisfy constraint a, we propose to encode for

event j only its offset relative to πi. Second, we profit from the fact that we only

consider linear objective functions. Hence, for every feasible timetable π, there exists

a timetable π′ having objective value not bigger than π, but in that for every node i,
there exists an arc a = (i, j) ∈ δout(i) or an arc b = (k, i) ∈ δin(i), such that

π′
i ∈ {π′

k +ℓb, π
′
k +ub, π

′
j −ℓa, πj −ua} mod T . Using this property, we propose to

consider only these tightening values during the local improvement step. Doing so,

the running time of the local improvement step becomes independent from the time

precision, i.e., it is not a big difference anymore, whether one time unit represents

60 seconds (T = 120), or only 6 seconds (T = 1200), where only the latter is the

standard for tactical internal documents of Deutsche Bahn.

In contrast to solving LPs, we do not use well known standard software for local

search. Therefore, we should spend some more words on this topic. For the tests of

the genetic algorithm we use a very simple version of the algorithm with only a few

parameters (p, g ∈ �+,m ∈ �+):

1. Create an initial population of p random individuals.

2. Repeat g times:

a) Pair the p individuals randomly to ⌊p/2⌋ pairs. Create 2 children from every

couple by recombination.

b) Create ⌈m · p⌉ mutants of the p individuals by the mutation operator. This

is done by first creating ⌊m⌋ mutants from every individual. Afterwards

⌈m ·p⌉−⌊m⌋ ·p individuals are randomly selected to create another mutant

each.

c) Remove duplicate individuals.

d) Compute the cost function for all individuals (given generation, children and

mutants). Select the p best individuals to form the new generation.

3. Select the best individual of the last generation as the result of the algorithm.

This and some more elaborated versions of the genetic algorithm are discussed in

Mühlenbein (1997). Notice that the best individual of every generation is better or
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equal to the one of the previous generation. Therefore this version of the genetic

algorithm implements an improvement only strategy.

Surely, we are aware that constraint programming algorithms originally were not

designed to solve optimization problems. Nevertheless, the discussion in Section 2

explains why we have to insist on an objective function. As other researchers reported

to us that they successfully applied constraint programming to the feasibility variant

of periodic timetabling, we are giving it a try.

In order to help the constraint programming approach in the optimization context,

we strengthen some constraints with large span and big objective value. In more

detail, for the 15 arcs a with biggest objective value and da > T
2 , we set u′

a :=

ℓa + T
2 . But we also try to prevent the problem from getting over-determined. Hence,

we effect this strengthening only if for every cycle of the constraint graph the sum of

the spans of its arcs remains at least as large as the period time T (Laube (2004)).

5 Computational Results

We perform our computations on three data sets. This small number is motivated by

two facts. Firstly, there are no collections of timetabling instances publicly available,

mostly because companies consider these data very sensitive. Secondly, already the

combination of these three data sets with different families of algorithms – each with

a considerable number of major parameters to be set – leads to a substantial amount

of data, of which we hope to give the reader an accurate overview. We first give a

short description of the real-world problems on which we perform the computations.

Then, we will report the behaviour of the algorithms, where we start each time with

the various MIP formulations. There, besides problem specific parameters, out of the

huge number of CPLEX parameters we follow suggestions of Bixby (2003) and vary

on the following MIP strategies:

• variable selection strategy: default or strong branching (ILOG SA (2004))

• MIP emphasis (ILOG SA (2004)): default, integer feasibility, or optimality

• MIP cuts: default or aggressive cut generation

• user cuts: add valid inequalities as full constraints or only as user cuts (ILOG SA

(2004))

All computations which involve CPLEX are carried out on Intel Pentium 4 machines

with 2.8 GHz and 1024MB RAM.

For the genetic algorithm, the algorithmic behaviour does not change over the

generations. Hence, the total number of generations g is not an interesting parameter.

The result of any test with a large number of generations can be used to analyze a

smaller one, just by cutting off the appropriate number of generations.

The two remaining parameters – population size p and mutation intensity m –

are the subject of our tests. Since both parameters affect the number of produced

individuals per generation and thus the run time, we coordinated them to get almost

the same number of individuals in every test run.
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Emden-Weinert and Proksch (1999) and Proksch (1997) successfully used MIR

(Multiple Independent Runs) on Simulated Annealing for the airline crew schedul-

ing problem. Here we try MIR on U Berlin and ICE small. In addition we test two

different versions of it on ICE small, which will be described there. We further test

the simulated annealing algorithm with the geometric cooling schedule. Since the re-

sults are rather poor, we do not present parameter studies, but only some numbers. All

computations for genetic algorithms and simulated annealing are carried out on the

same machine as those for CPLEX (Intel Pentium 4, 2.8 GHz and 1024MB RAM).

The constraint programming parameters we are going to adjust are the vari-

able selection strategy and the domain reduction policy. Other experimental stud-

ies (Laube (2004)) showed that for timetable optimization instances, the forward

checking (FC) policy (Barták (1999)) and the so-called “look ahead” (LA) policy

(Barták (1999)) perform best. Moreover, it seems to be worth trying to proceed with

the variable having minimal current domain. Unfortunately, an ILOG Solver license

is available to us only on a SUN UltraSPARC-IIi at 333 MHz.

In contrast to the other two approaches, local search procedures – like the ge-

netic algorithm and simulated annealing – are randomized algorithms which cannot

be judged by a single run. Thus, we always start a number of runs with identical

parameter settings and average their results. Such a group of single runs is named

“test run” in the subsequent text.

The deviation of the results within one test run turn out to be very high, espe-

cially on ICE small. When dealing with large deviations on randomized algorithms,

a promising idea is to start a couple of those algorithms and take the best result as the

output of the whole process. In the special case of genetic algorithms, the selection

of the best result can be done by collecting the individuals of all runs to a common

population, on which a final collecting run is started. In doing so the genetic algo-

rithm has the chance to combine different good solutions to a possibly better one.

We try this approach on U Berlin and ICE small. In addition we test two different

versions of this approach on ICE small, which will be described there.

5.1 Solving U Berlin

The first data set models the Berlin Underground. In the evening hours and on week-

ends, the period length is T = 10 minutes. During this off-peak traffic time, with

only one small exception, each of the nine lines is operated on its own track. The

only safety conditions to be obeyed are crossings of tracks in front of terminal sta-

tions, in case that no depot is located behind the station.

There are several objectives to pursue. First, if different lines share a platform,

then a good cross-wise correspondence has to be ensured. Second, the number

of trains required to operate the network has to be minimized. Third, out of the

about 170 changeover relations5, the 48 TOP connections must not offer effective

waiting time of more than five minutes. Fourth, out of the next 36 relations, for a

5 These relations include ten important connections to the fast train network, which we as-

sume to be fixed.
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maximal number of connections the five minute criterion should hold as well. Fi-

nally, the minimal average changeover waiting time has to be minimized. To that

end, we allow to insert additional stopping times at the eight most important corre-

spondence stations, which involve 34 stopping activities in total.

After redundancies are eliminated, the contracted digraph has 40 nodes and

240 arcs. There are 157 arcs with da = T − 1, and 40 arcs with da ≤ 0.2 · T .

The average span is 73.25%.

MIP Formulations: Among the three types of MIP formulations, we start with

the integral cycle basis formulation (6b). Since this formulation will allow very short

solution times for most integral cycle bases and CPLEX parameter settings, we only

give a very compact summary in Table 1.

First, for every integral cycle basis, we give its width (9) and the optimal value

of the LP relaxation of system (6b) (relative to the optimal value) with cycle inequal-

ities (7) added as box constraints on the integer variables. We add up to 250 further

valid inequalities or none, and varied the two CPLEX parameters variable selection

and MIP emphasis.

Table 1. Solution Times on U Berlin for Various Cycle Bases

Tree MST MST UV NT UV UV Horton

Weight nspan span one one span nspan span

Fund. improve no yes no yes no yes no yes no yes no yes —

Width 10108 1049
10

65 1046 1074 1048 1074 1048 1078 1049 1071
10

45 1040

LP relax (%) 8.0 25.1 18.9 24.5 7.9 25.5 8.1 26.1 6.7 24.9 17.7 35.7 24.7

Min time (s) 25 1 1 1 1 1 1 1 1 1 1 1 1
Min param (1) div. div. div. div. div. div. div. div. div. div. div. div.

Max time (s) tilim 11 9 2 2 2 2 3 4 7 2 3 1
Max param div. (2) (2) (2) (2) div. div. div. (2) (2) (2) (2) div.

(1): strong branching, emphasize optimization

(2): no additional inequalities, emphasize integer feasibility

Table 1 shows that on our smallest instance, we may use almost every integral

cycle basis in formulation (6b). Only if we put the arcs with largest spans into a span-

ning tree, we really get a significantly worse problem formulation. However, there

are parameter settings for which even this formulation can be solved. In particular,

strong branching and an emphasis on optimization are a good choice, after we add

additional valid inequalities ((7) and (10)) by iterated calls to separation heuristics.

These push the LP relaxation up to 67.8% of the optimal value. For any of the other

formulations, the longest solution times are attained when we do not add additional

valid inequalities, do not activate strong branching, but put an emphasis on integer

feasibility.

But switching to the node-oriented formulation (2) or to the arc-oriented for-

mulation (4), the picture changes completely. Table 2 shows very impressively that

neither formulation (2) nor formulation (4) are able to attain a solution behaviour
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Table 2. Solution Times on U Berlin for Formulations (2) and (4)

Formulation (2) (2) (2a) (4) (4) (4)

Valid inequalities none (7) none none (7) all

LP relaxation (%) 0 0 0 82.6 87.7

Min time (s) 295 146 7190 (22%) (90%) 1538

default time (s) 181 2155 3329 (28%) (86%) 340

which would be competitive to reasonable formulations in terms of integral cycle

bases (6b), as they can be found in Table 1. Although after at most 90 minutes an op-

timal solution is found with formulation (4) even when no cuts are added, the lower

bound is less than 30% when the memory limit of 512 MB has been reached. We

may only summarize that among these formulations, the node-oriented variant (2)

behaves least bad, and it profits from the addition of cycle inequalities in their pure

form (7).

As in some spot tests on instance ICE small we observed a similar behaviour,

we do not follow these alternative formulations in our further considerations.

Local Search Procedures: For evaluating the genetic algorithm on U Berlin, we

start a number of test runs with different parameter settings for the population size

and the mutation intensity.

Consider Fig. 1. Every function plot represents the cost function by the runtime,

averaged over 30 single runs of the genetic algorithm on a certain parameter set. For

every single run the cost function of the best individual and the run time is taken

after every generation. The run times after every generation are averaged among the

30 runs to get the x-value. The cost function as the y-value is not the average, but the

median of the corresponding values. See the discussion below.

For every used parameter setting, the cost function reaches 12% above the opti-

mum within the first 40 seconds, and on settings with small mutation intensity and

bigger population size even faster. On the two settings (pop 100, mut 0) and (pop 50,

mut 1) a de facto optimum (about 0.02% above the optimum) is reached after 64 and

84 seconds, respectively. The other settings perform worse. While (pop 2, mut 49)

stays at about 9.2% above the optimum within the given runtime, the remaining two

settings reach about 1.2% above the optimum.

We conclude that a small mutation intensity in connection with a large population

size performs best on this data set. De facto optimal solutions can be obtained on

those settings with high probability in a short runtime.

Since the feasibility of a solution is relaxed as a part of a cost function, finding a

feasible solution can not be guaranteed. While among all of the above runs only one

does not satisfy all technical constraints, a small number of solutions with violated

service constraints can be found in almost every test run. Those infeasibilities are

penalized with a high cost value (577% of the optimum for every infeasibility) and

hence have a strong influence on an averaged cost value. Since one infeasible solution

more or less in each test run changes the average cost dramatically, those averaged

values have no significance. Using the median instead solves that problem.
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Fig. 1. Runtime Behaviour of the Genetic Algorithm on U Berlin (Every Plot is Averaged over

30 Single Runs)

Constraint Programming: On U Berlin, also the third class of algorithms is

able to construct a (de facto) minimal solution. For the strengthened instance, the

ILOG Solver does not exceed the time limit6 of one hour and thus provided an opti-

mality proof.

Table 3 shows that our heuristic of tightening ten heavy constraints supports the

work of the solver considerably. However, notice that after the strengthening oper-

ation has been applied, the optimal solution value increases slightly, from 1732571

to 1732708. The results on this particular instance suggest that the combination of

the “look ahead” (LA) propagation strategy with the selection of the variable with

minimum current domain is a good choice.

Table 3. Solution Times on U Berlin for Constraint Programming

Strengthening no yes

Propagation LA LA FC LA LA FC

Variable Selection default MinDom MinDom default MinDom MinDom

First solution (s) < 1 < 1 – < 1 < 1 224

First solution (%) 116.1% 125.5% – 101.2% 100.1% 100.1%

Best solution (s) 1745 889 – 21 < 1 230

Best solution (%) 100.0% 110.5% – 100.0% 100.0% 100.0%

Total time tilim tilim tilim 603 172 1603

6 An entry “tilim” in our tables indicates that the corresponding algorithm has been inter-

rupted after the time limit had been reached.
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If we do not expect the constraint programming algorithm to terminate with an

optimality proof, then on our smallest instance there exist parameter settings such

that it is really competitive to the other algorithms – even though optimization is

conceptually out of scope for constraint programming.

Summary: On U Berlin, any of the algorithms is able to construct an optimal

solution. With respect to both computation time and the ability to provide a proof of

optimality, it is by far the best choice to solve a MIP in the cycle formulation (6),

where almost every cycle basis can be used.

5.2 Solving ICE small

The data sets ICE small and ICE big share the same basic network. In particu-

lar, ICE small is a subset of ICE big, resulting from the deletion of certain traffic

lines. In turn, the lines contained in ICE big are a subset of a strategic planning sce-

nario of Deutsche Bahn AG. Beyond the 31 pairs of directed two-hourly traffic lines

which are contained in ICE big, it consists of seven additional pairs of two-hourly

lines, as well as several four-hourly variants. Hence, ICE small and ICE big share

large parts of their structure. Thus, we give the classification numbers for both data

sets together at this point. However, since the underlying infrastructure has the same

capacity for the two scenarios, it shall be easier to construct a feasible timetable

for ICE small than for ICE big. ICE small is designed such that most parameter

settings for CPLEX yield a provably optimal solution within a reasonable time limit.

In contrast, ICE big is designed such that even with the best parameter combina-

tions that we investigate, CPLEX will not be able to prove optimality of a solution.

However, it should be noted that even this data set is not yet a complete practical

scenario.

The real-world instances are described in Table 4. Notice that two lines, which

shall be synchronized to a frequency of T
2 are synchronized explicitly at every station,

where an extension of minimal stopping time is allowed. Thus, there are still some

lines in ICE small which are not synchronized with any other line.

We obtain our data by some train network planning and analysis software. Nat-

urally, there are many redundancies in the resulting digraph associated with the

PESP instance. These can be eliminated in a preprocessing phase that “contracts”

the graph. For example, nodes with degree at most one as well as arcs with span

equal to zero can be contracted. Table 5 describes the effect of this contraction step

for the digraphs. Let us mention that the size of the initial digraphs essentially de-

pends on how safety arcs are generated. They are needed to ensure a safety distance

between two consecutive trains. If two trains share five consecutive tracks, this could

be translated into five safety arcs. However, our preprocessing method only creates

one single safety arc in this case.

Compared to the timetab-instances (Liebchen and Möhring (2003)) of the

latest MIPLIB, it might seem that already ICE small has a complexity compa-

rable to the bigger instance timetab2. However, it appears that CPLEX has

even less difficulties in solving ICE small than in solving the smaller MIPLIB in-

stance timetab1.
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Table 4. Classification Numbers of the Real-world Problems

Quantity ICE small ICE big

Pairs of traffic lines 11 31

Change activities 30 101

Stopping activities with extension

of minimal stopping time allowed 80 164

Number of pairs of directed lines

synchronized to a frequency of T
2

40 56

Number of sets of four lines

synchronized to a frequency of T
4

8 8

Number of pairs of lines

coupled on some track 2 8

Turnover activities 22 62

Table 5. Classification Numbers of the Digraphs

Quantity ICE small ICE big

Original Digraph Nodes 6592 14516

Arcs 7571 17836

Run/stop arcs 6570 14454

safety arcs 488 1660

Contracted Digraph Nodes 69 173

Arcs 347 1234

– with dij = T − 1 43 132

– with dij ≥ 0.9 · T 256 1016

– with dij ≤ 0.1 · T 59 137

average span 76.7% 84.2%

We suppose that this is due to the fact that in ICE small there are much fewer

change activities and turnover activities than in timetab1. Since these are typically

the only arcs with non-negative objective value – apart from stopping activities – this

might be a significant simplification for CPLEX. Nevertheless, the instance ICE big

is apparently at least as difficult to solve for CPLEX as timetab2, for which so far

no solution has been proven to be optimal.

MIP Formulations: The instance ICE small poses more difficulties even to the

cycle basis formulation (6b). Hence, we have to analyze the influence of the three

main ingredients for CPLEX:

• Which cycle basis shall we use?

• Which and how many valid inequalities shall we add to the problem formulation?

• Which parameter settings shall we select for CPLEX?

Obviously, it is not reasonable to consider combinations of each possible choice for

the above settings. Hence, we decided to proceed as follows.
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First, we compute the width (9) of the 13 integral cycle bases we consider

throughout this paper, as well as the objective values of their LP relaxations. In order

to get a more precise feeling for the different cycle bases, we add to any of the for-

mulations fixed sets of change cycle inequalities (10) in their original formulation.

For every cycle basis, we solve the original formulation as well as the refined ones.

Next, we focus on the types of valid inequalities to add. To the three most promising

cycle bases, we add up to 1000 valid inequalities in any combination of the available

types, in order to obtain the largest lower bounds. Then, we investigate how many

valid inequalities are necessary, again to get very good lower bounds. We perform

these tests with three different parameter sets for the cutting plane pool and for the

13 integral cycle bases. Finally, we ran CPLEX with different values for its MIP em-

phasis, its variable selection strategy, and its strategies for cuts, both user cuts and

CPLEX MIP cuts (ILOG SA (2004)). These experiments are performed for the cycle

bases with smallest search space, shortest solution times in the previous cycle basis

test, and for the cycle bases with biggest lower bound after the previous phase.

Which cycle basis? We start by computing the integral cycle bases for any of the

heuristics that we mentioned in Section 4. Furthermore, we ran our cutting plane

algorithm, in order to detect good sets of valid change cycle inequalities (10), i.e. sets

which induce big lower bounds. This is performed nine times each for different sizes

of the cutting plane pool.

The overall best set of change cycle inequalities has cardinality 243. Besides

this, we considered the best sets of change cycle inequalities having 100 and 200
cuts, respectively. Notice that we construct these sets such that every valid inequality

is tight for the LP relaxation.

We add these three fixed sets of valid inequalities – as well as the empty set –

to formulation (6b), for each of the 13 integral cycle bases. These formulations are

solved by CPLEX with strong branching as a variable selection strategy and with a

time limit of 2.5 hours. Notice that we add the three non-empty fixed sets of valid

inequalities as pure constraints, as well as user cuts. Hence, for each of the 13 cycle

bases, we perform seven runs of the MIP solver.

Table 6 shows that only for the cycle bases induced by a minimal spanning tree

subject to the arcs’ spans, and for a minimal cycle basis, CPLEX is able to solve

ICE small to optimality for any of the seven settings for valid inequalities. Apart

from these cycle bases, CPLEX is only able to solve the UV formulation to opti-

mality, if we turned off the fundamental improvements to spanning trees. Notice that

this cycle basis has smallest width among the strictly fundamental cycle bases, but

implies only a very poor LP relaxation.

After having applied the fundamental improvement heuristic, for every such cy-

cle basis there is a parameter setting such that CPLEX is able to solve that formula-

tion to optimality. In most cases, the quickest solution times are attained by adding

our best set of valid inequalities as pure constraints to the original formulation.

Notice that the pure MIP formulation, i.e., without any valid inequality added, is

only solved for those cycle bases which are solved for any set of additional inequal-

ities. Moreover, in all of these three cases, the solution time for the pure formulation
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Table 6. Solution Times on ICE small for Cycle Bases and Valid Inequalities

Tree MST MST UV NT UV UV Hort

Weight nspan span one one span nspan span

Fund. improve no yes no yes no yes no yes no yes no yes —

Width 10178 1071 10122 1073
10

109
10

70 10117 1072 10112 1072 10132 1071 1067

LP relax (%) 5.3 23.3 2.1 26.3 1.5 43.5 5.2 32.1 1.4 10.0 4.2 19.2 37.9

# opt 0 2 7 7 1 2 0 1 0 2 0 2 7

Min time (s) tilim 880 258 178 4748 697 tilim 5831 tilim 1355 tilim 365 161

Min cuts – (0) (0) (0) (0) (1) (2) (0) (2) (1) (1) (0) (0)

(0): best 243 change cycle inequalities as additional rows

(1): best 243 change cycle inequalities as user cuts

(2): 100 change cycle inequalities as additional rows

is longer than those for the formulations with 200 or our best set of 243 valid in-

equalities added.

Which cuts? To analyze which types of cuts contribute a sufficient benefit to for-

mulation (6b), we run the cutting plane algorithm for three very promising integral

cycle bases: MST span with and without fundamental improvements, because in the

previous step, each of the seven runs was successful; and, UV one with fundamental

improvements, because this yields the best LP relaxation.

For these three cycle bases and any combination of classes of valid inequali-

ties (7), (7a), and (10), we launched the cutting plane algorithm nine times. In any

of these runs, we held up to 1000 valid inequalities in the pool. In every iteration up

to 100 inequalities could be added, and after every iteration, weak cuts are deleted,

if the cutting plane pool is full. Table 7 presents average and extremal values for

the lower bounds of the refined LP relaxations, when only one type of cut is added.

Notice that we only add cycle inequalities in their original formulation (7) to strictly

fundamental cycle bases.

Table 7. Lower Bounds on ICE small for Classes of Valid Inequalities

Tree MST span MST span UV one

Fund. improve no yes yes

Cuts (7) (7a) (10) (7a) (10) (7a) (10)

Minimum (%) 44.4 50.8 43.8 55.6 72.6 55.6 80.7
Average (%) 49.4 57.9 55.1 59.3 73.0 61.1 81.5
Maximum (%) 60.0 66.0 57.6 66.1 73.2 68.6 82.1

Whereas for different cycle bases the lower bounds do not differ much for cycle

inequalities (7a), the lower bounds attained by change cycle inequalities(10) essen-

tially depend on the cycle bases: The better the LP relaxation of the cycle basis, the

better the LP relaxation after adding cuts (10).
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Our explanation for these phenomena is the following. On the one hand, the

initial LP relaxation is only different from zero because we add box constraints of

type (7) on the integer variables. As the box constraints are only a fixed number

of constraints, it is very important to select a very good set of cycles to contribute

their cycle inequalities, i.e., to select a very short cycle basis, in order to obtain a big

objective value for the initial LP relaxation. But if we are free to add to the problem

formulation any other cycle inequality that we are able to separate, there is no more

need to have chosen the best cycles already for the cycle basis. Hence, it is plausible

that although the initial LP relaxations of the three cycle bases differed much, after

adding further cycle inequalities (7a), similar lower bounds are attained.

On the other hand, adding change cycle inequalities (10) provides completely

new information to the problem, since these inequalities can be considered to be com-

plementary to cycle inequalities (Liebchen and Peeters (2002a)). Roughly speaking,

the headstart of short cycle bases is kept when adding change cycle inequalities.

In Table 8, we consider combinations of types of valid inequalities to be added.

One can observe that the best lower bounds are achieved, when at most the cycle

inequalities in their original formulation (7) are excluded. Moreover, the levels of

the final LP relaxations approach each other.

Table 8. Lower Bounds on ICE small for Combinations of Classes of Inequalities

Tree MST span MST span UV one

Fund. improve no yes yes

Cuts not (7) not (7a) not (10) all not (7) not (7)

Minimum (%) 84.0 80.4 43.9 79.4 83.6 85.4
Average (%) 84.8 83.1 57.3 84.3 84.2 86.6
Maximum (%) 89.3 84.6 66.4 88.2 85.0 89.1

Finally, it is interesting that if we omit change cycle inequalities (10), then it

makes no big difference, whether we add only the tension formulation (7a) of the

cycle inequalities, or their original counterpart as well. However, it is somehow sur-

prising to us that formulation (7a) is slightly – but still significantly – superior to

formulation (7).

How many cuts? Now, we want to investigate how many valid inequalities we

should separate both in total and in every iteration of the cutting plane algorithm,

in order to obtain the best lower bounds. To that end, we ran the cutting plane algo-

rithm for each of the 13 cycle bases we consider, nine times for each of the following

parameter settings: We consider pool sizes of 200, 350, 500, 650, and 800 cuts. More-

over, we separated 10 or 100 cuts per iteration. Finally, when adding only 10 cuts per

iteration, we (dis-) allow old cuts to be removed from the current LP, if they are no

longer tight.

The best results by far are attained by adding up to 100 valid inequalities per

iteration, and hence, by removing weak cuts. The best lower bounds are attained
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with pool sizes of 500 or more, which is approximately twice the number of rows of

the initial MIP formulation.

For each of the different cycle bases, their three best runs yield similar lower

bounds: The NT cycle basis with fundamental improvements applied achieves the

three worst lower bounds (85.0%–85.1%). The UV one cycle basis with funda-

mental improvements applied as well, leads to three out of the four best lower

bounds (89.2%–89.5%). For strictly fundamental cycle bases, the best lower bound

is 89.4%, which is attained with the UV nspan basis. But it is somehow interesting

that there are ten cycle bases whose best lower bounds are superior to the best lower

bound computed with a minimal cycle basis.

Which CPLEX parameters? Based on observations of the previous tests, we are

now ready to examine under which parameter settings CPLEX behaves best for pe-

riodic timetabling instances. We will perform runs on a minimal cycle basis and on

the two bases stemming from a minimal spanning tree subject to the arcs’ spans,

because CPLEX behaves well on those bases, see Table 6. Furthermore, we consider

the improved UV one basis, because it yields the best initial lower bound. Finally,

the UV nspan tree is considered, because after adding valid inequalities it allows the

best lower bound for a strictly fundamental cycle basis. We add the specific sets of

cuts, which lead to the largest lower bounds in our previous experiments.

With a time limit of six hours, we solve ICE small for any of the five cycle bases

and any of the 24 combinations for the parameters we analyze, cf. Section 5. There

is only one combination, where the memory limit of 512MB applied after 1.5h (basis

UV span, user cuts, emphasis on optimization, and aggressive cut generation), and

the best solution still has objective value 109% of the minimal solution.

In Table 9, we report the average and the extremal running times for any of the

nine fixed parameter values, and the three other parameters take the eight or twelve

possible combinations. Furthermore, the number of outliers is given, i.e. the number

of runs whose running times fell below/exceeded a 50% radius around the average

solution time. These solution times give a first hint that strong branching yields an

enormous benefit. Furthermore, it can be observed that user cuts only help for rather

long runs of CPLEX. Finally, a MIP emphasis on optimization seems to help.

Table 10 puts another perspective on the 600 computations, leading to another

conclusion in particular concerning the last point: We consider the parameter settings

which lead to the three shortest solution times for the five cycle bases. Here, one can

see that only for MST span a MIP emphasis on optimization entered the best three

runs. Rather, a combination of strong branching together with a MIP emphasis on

integer feasibility provides one of the three shortest solution times for any of the five

cycle bases which we consider here.

Although we do not put a focus on quickly finding (good) first feasible solutions,

let us present the best results of the 120 computations. In only eight of them, the first

feasible solution is found after less than one second of CPU time7. Both the quickest

and the best first solution are attained using a minimal cycle basis: With user cuts ac-

7 We multiply the total solution time with the ratio of the first feasible B&B node divided by

the total number of B&B nodes investigated.
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Table 9. Solution Times on ICE small for Various CPLEX Parameter Settings

Tree MST span UV one UV nspan Horton
Fund. improve no yes yes no –
LP relax (%) 88.4 87.6 89.5 89.3 86.6
Additional valid inequalities as pure rows

Min (s) 63 86 83 482 68
Average (s) 249 907 3262 4184 365

Max (s) 607 3849 21600 21600 987
# Outliers 5/3 7/3 8/3 6/1 4/3

Additional valid inequalities as user cuts

Min (s) 36 83 106 578 82
Average (s) 316 1097 2988 3626 1115

Max (s) 972 3658 12652 10984 6620
# Outliers 4/2 7/4 6/3 4/4 8/3

Default variable selection strategy

Min (s) 36 134 1126 1306 199
Average (s) 353 1859 6009 5925 1340

Max (s) 972 3849 21600 21600 6620
# Outliers 3/3 4/4 5/2 4/2 7/2

Strong branching variable selection strategy

Min (s) 63 83 83 482 68
Average (s) 211 144 241 1884 141

Max (s) 471 303 437 5598 308
# Outliers 4/2 0/2 2/3 6/3 1/1

Default MIP cut generation

Min (s) 36 83 83 482 68
Average (s) 120 845 3305 1503 493

Max (s) 272 3849 12652 4115 2612
# Outliers 1/3 8/3 7/4 6/3 7/2

Aggressive MIP cut generation

Min (s) 199 94 151 985 82
Average (s) 444 1159 2945 6306 987

Max (s) 972 3658 21600 21600 6620
# Outliers 1/2 7/3 7/1 3/2 8/2

Default MIP emphasis

Min (s) 90 93 139 482 84
Average (s) 327 973 1883 5938 1363

Max (s) 972 3658 7593 21600 6620
# Outliers 3/2 6/2 4/2 3/2 5/2

Integer feasibility MIP emphasis

Min (s) 63 83 83 486 68
Average (s) 271 1275 5466 2510 564

Max (s) 837 3849 21600 6614 2000
# Outliers 2/1 4/2 5/2 3/2 3/2

Optimization MIP emphasis

Min (s) 36 106 196 633 127
Average (s) 249 758 2026 3266 292

Max (s) 471 2861 6166 6132 786
# Outliers 3/3 4/1 4/2 2/3 2/1

tivated, and the other parameters as defaults, after 0.33s a solution of objective value

156% is found. With a MIP emphasis on optimization and an aggressive generation

of MIP cuts, after 1.22s a solution with value 100.5% is constructed.

MIP Summary. The most definitive result of our study is that it is essential to add

valid inequalities to the problem formulation. Here, one should consider both cycle

inequalities and change cycle inequalities. It seems to be advantageous to add many

valid inequalities in every iteration of the cutting plane algorithm, and then remove

such inequalities which are no longer tight in subsequent iterations. Furthermore,
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Table 10. Solution Times on ICE small for Best CPLEX Parameter Settings

Tree MST span UV one UV nspan Horton

Fund. improve no yes yes no –

Solution time (s) 36 63 63 83 86 93 83 106 139 482 486 578 68 82 84

User cuts 1 – – 1 – 1 – 1 1 – – 1 – 1 1

Strong branching – – 1 1 1 1 1 1 1 1 1 1 1 1 1

Aggressive cuts – – – – – – – – – – – – – 1 1

MIP Emphasis 2 2 1 1 1 – 1 1 – – 1 1 1 1 –

–: default setting

1: feature activated / MIP emphasis on integer feasibility

2: MIP emphasis on optimality

our computations on ICE small suggest that about twice the number of rows of the

initial MIP suffice as additional inequalities.

For the few CPLEX parameters we investigated, we suggest emphatically to use

strong branching and to put the MIP emphasis on integer feasibility. Possibly, the

positive effect of strong branching can even be intensified by modifying the related

CPLEX parameters which control the strong branching limits (ILOG SA (2004)).

In any case, aggressive MIP cut generation should only be activated if long running

times are expected, in particular if the size of the branch and bound tree has to be

limited.

For the choice of the integral cycle basis to use in problem formulation (6b),

Table 6 indicates that shorter cycle bases allow shorter solution times, even after

having added identical sets of valid inequalities. However, the cycle basis MST span

does seem to have something magic in it, being resistant against our classification

numbers “width of the cycle basis” and “objective value of the LP relaxation,” but

which has an extremely positive effect on the MIP solver of CPLEX.

Local Search Procedures: In contrast to U Berlin the genetic algorithm has no

problems with satisfying constraints on ICE small. Typically within the first three

to five generations a feasible solution is found and the solutions stay feasible in

subsequent generations. Thus there is no need to use the median when comparing

the cost function between test runs.

Fig. 2 shows test runs on five different settings for the population size and the

mutation intensity. Every plot represents 20 runs on one parameter set. Within the

given runtime of about 15 minutes, the test runs reach an average cost value of 34-

38% above the optimum. On a longer test run (without plot) an average cost value of

26% above the optimum is reached after 75 minutes.

This time (again in contrast to U Berlin) no clear result about the best parameter

set can be obtained. The apparently best runs are (pop 2, mut 49) and (pop 10, mut

9), while the run (pop 3, mut 33), whose parameter set is “between” the best ones,

seems to be worst. But the difference between these plots is small in comparison

with the associated standard deviation; see Fig. 3. Thus the plots of Fig. 2 should be

considered as being identical.
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Fig. 2. Runtime Behaviour of the Genetic Algorithm on ICE small (Every Plot is Averaged

over 20 Single Runs)
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Fig. 3. Standard Deviation to Fig. 2

When dealing with large deviations on randomized algorithms, a promising idea

is to start a couple of those algorithms and take the best result as the output of the

whole process. In the special case of genetic algorithms, the selection of the best

result can be done by collecting the individuals of all runs to a common population,

on which a final collecting run is started. In doing so the genetic algorithm has the

chance to combine different good solutions to a possibly better one.

We use two different strategies to test this approach:
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• Multiple long GA: To stay close to the initial idea of just selecting the best

solution, the collecting run is kept short. We start five runs of 35 generations

each and use a collecting run of only 25 generations.

• Multiple short GA: To focus on the aspect of combining solutions in the col-

lecting run, we extend it to 100 generations. In return, the initial runs have to be

shortened to 20 generations each.

In both cases we use a large population size in the collecting run to avoid a fast dom-

ination of certain individuals while mutation is turned off. Fig. 4 shows the result of

those two strategies in comparison with the simple genetic algorithm. For illustrative

purpose we only use the best and the worst plot of Fig. 2.
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Fig. 4. Runtime Behaviour of Multiple Genetic Algorithms on ICE small (Every Plot is Av-

eraged over 20 Single Runs)

Both plots of the multiple genetic algorithms show a sawtooth pattern in their

first phase, when the five independent genetic algorithms are performed. In the sec-

ond phase the cost function drops down to the minimum of the initial runs. Further

improvement is made in the second phase by the collecting run. The results generated

by the “multiple long GA” strategy are at 34% above the optimum and thus between

the two given references, tending towards the better one. The “multiple short GA”

reaches, with 31% above the optimum, a better result than the simple genetic algo-

rithms. But due to the high variance on all these results, this should not be interpreted

as a clear advantage of this strategy. The standard deviation of “multiple short GA”

in the last phase is about 13% of the optimal value, while the standard deviation of

“multiple long GA” is still about 8%.

These plots also show another interesting effect: The collecting run of the “mul-

tiple short GA” starts with cost values, that are comparable to or even a little worse
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than those of the reference plots at the same runtime. But in the remaining runtime

it is able to improve much faster than the references. A possible explanation for the

effect could be that the collecting run gains from combining a number of good but

very different solutions. In a regular run of a genetic algorithm the individuals of a

population tend to be more and more similar, due to the domination of the best.

On this data set we also try the simulated annealing algorithm. We use the ge-

ometric cooling schedule with an initial acceptance ratio of 40%, a stop acceptance

ratio of 0.1%, and with at least six levels after the last improvement. But the results

are rather bad. Within a runtime of 60 minutes we reach only an average cost value

of 68.3% above the optimum (averaged over 30 single runs). The standard deviation

is, with 23.7% of the optimum, even higher than at the genetic algorithms.

For this data set we conclude that all used approaches of the genetic algorithm

can solve the problem to an average cost value of 30-40% above the optimum within

a runtime of 15 minutes. Better values can be achieved on longer runs. Simulated

annealing performs much worse than the genetic algorithm.

Constraint Programming: Unfortunately, on ICE small our heuristic of strength-

ening some constraints makes the problem infeasible. However, for the original for-

mulation the first feasible solution is found in less than half a second on a SUN Ultra-

SPARC-IIi with 333 MHz. After one minute, the best objective value is attained by

standard variable selection combined with the look ahead propagation rule (202.1%).

Six hours later, this value has only been reduced to 200.7%. Here, choosing the vari-

able with minimal domain behaves slightly better (196.8%), although after 60s it

has only an objective value of 226.2%. Summarizing, the time needed to construct a

feasible solution – which is the original application of constraint programming – is

indeed fully competitive to CPLEX, and much superior to local search procedures.

Anyway, for minimizing a linear objective over a PESP instance, the constraint pro-

gramming approach does not seem to help much.

Summary: On ICE small, only CPLEX is able to construct a solution of minimal

objective value. With appropriate parameter settings, this can even be obtained in

only 36 seconds. Nevertheless, with other parameter values, CPLEX does not find an

optimum solution within six hours.

The genetic algorithm takes 10-15 minutes to find a solution with objective value

about 30% above the optimum. Even after one hour, our simulated annealing algo-

rithm is 68% above the optimum. Only constraint programming behaves worst: more

than 90% above the optimum after six hours.

5.3 Solving ICE big

MIP Formulations: Since solving the much bigger instance ICE big will yield

much longer solution times, we will concentrate on the smallest (generalized) funda-

mental cycle basis (Horton) for this instance, and on the smallest strictly fundamental

cycle basis (MST span). Moreover, we are no longer able to vary the parameters of

the cutting plane algorithm. Rather, based on our findings on ICE small, we will

always add up to 2000 valid (change) cycle inequalities. Under these fixed settings,
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we will analyze the impact of the CPLEX parameters, where we omit the value “op-

timization” for the parameter MIP emphasis.

The first observation is that out of the eight following parameter combinations,

only in one case CPLEX is able to construct a feasible solution with a minimal cycle

basis chosen in the most promising problem formulation (6b):

• all parameters at their default values

• precisely one parameter at its non-default value; MIP emphasis on integer feasi-

bility, strong branching (after 42888s, first feasible solution with value 1075421)

• precisely two parameters at their non-default values; MIP emphasis on integer

feasibility and user cuts, MIP emphasis on integer feasibility and strong branch-

ing

• precisely one parameter at its default value; no aggressive MIP cut generation,

no user cuts

• all four parameters at their non-default values.

Nevertheless, the best lower bounds are achieved with a minimal cycle basis. In runs

where strong branching is not activated, the memory limit of 512 MB is reached

after between six and sixteen hours. Otherwise, the time limit of 48 hours applied.

With all four parameters at their non-default values, the value 735385 is proven as

a lower bound. Notice that if the 741 user cuts are added as pure valid inequalities,

then the LP relaxation has an optimal value of 654906, and if no cuts are added, the

LP relaxation already yields 383074.

Fortunately, with the cycle basis MST span, CPLEX is able to construct feasible

periodic timetables for ICE big very reliably. More precisely, in any of the eight pa-

rameter combinations we investigate, a feasible solution is found within a time limit

of 24 hours, cf. Table 11. Complementing the analysis of CPLEX on ICE big, we

give a more detailed impression of the solution process leading to the best timetable

in Fig. 5. There it can be seen that the optimal value of the LP relaxation with cuts

refined is 584692. What cannot be seen is that without the 1332 valid inequalities

added, a lower bound of only 59432 can be achieved.

Table 11. Performance of CPLEX Computing 24 Hours on ICE big

User cuts – 1 – – – – – 1
Strong branching – – 1 – – 1 1 1
Aggressive cuts – – – 1 – – 1 1
MIP Emphasis – – – – 1 1 1 1

First solution (s) 295 515 230 3074 782 49 7743 455
First solution value 1342529 1583975 1142024 1630884 2021758 1030613 1480226 1567532
Best solution (s) 295 515 74817 16613 11769 65207 73658 35234
Best solution value 1342529 1583975 1057918 1445637 1317983 934630 922262 977034
% above best solution 45.6% 71.7% 14.7% 56.7% 42.9% 1.3% 0.0% 5.9%
Final Lower bound 667887 605373 700002 666708 604029 697970 696135 708796

% below best solution 27.6% 34.4% 24.1% 27.7% 34.5% 24.3% 24.5% 23.1%

–: default setting 1: feature activated

Summarizing, even with the most promising parameter settings, CPLEX is not

able to terminate with an optimality proof for ICE big. Although a minimal cycle
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Fig. 5. Performance of CPLEX and of the Genetic Algorithm on ICE big

basis yields the second best solution times on ICE small, there are obviously only

few parameter combinations for CPLEX to detect a feasible solution on ICE big with

such cycle bases.

Rather, one should choose the MST span cycle basis. Moreover, it is very impor-

tant to choose strong branching as the variable selection strategy, because otherwise

the quality of the solution is much worse, in our examples by at least 25%. Similar

to ICE small, the best behaviour can be seen when (at least) strong branching and

an emphasis on integer feasibility are combined.

Local Search Procedures: On ICE big it seems to be difficult again to produce

feasible solutions. On both test runs we start, one out of ten single runs is not able to

find a feasible solution within the given runtime of about 8 hours. While most of the

runs found their first feasible solution within the first 20 minutes, it took some others

more than 2 hours. Hence, we use the median again for the analysis. Since we do not

know the optimal cost value of ICE big, we measure the cost function in % above

the upper bound, i.e., the best known solution.

Consider Fig. 5. It shows the median of the two test runs we made. Again we

vary the population size and mutation intensity to get almost the same runtime per

generation. Both plots reach a cost value of 60% above the upper bound within the

first 50 minutes. During the remaining runtime both make further improvements and

reach 33.97% (pop 30, mut 4) and 35.65% (pop 50, mut 2). If we ignore the infeasible

run in every test run, the standard deviation is, with about 5% of the upper bound,

much smaller than on ICE small. Over this background, we see a small advantage of

(pop 30, mut 4), whose plot is below the one of (pop 50, mut 2) during the whole

runtime. But this advantage vanishes towards the end of the runtime.

Constraint Programming: A really interesting fact about constraint programming

is that even on the largest instance, it takes less than half a second to construct a
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first feasible solution. Only if we choose standard variable selection in combination

with look ahead propagation, no solution is found even after six hours. Nevertheless,

comparing these times to the ones achieved by CPLEX, recall that we do not really

tune CPLEX in order to quickly find some first feasible solution. Furthermore, the

quality of the solutions is rather poor. Selecting the variable with minimal domain

and performing forward checking, after 60s a solution with objective value 2007630
is available. In the next six hours, this decreases only down to 1989110.

After all, our heuristic of strengthening some constraints in advance provides

significantly better solutions for the same CP strategies: after one minute, we already

obtain 1795830. But the improvements attained during the next six hours are again

only marginal (1755060). In total, CP solutions are already considerably worse than

feasible solutions obtained by both our genetic algorithm and CPLEX only with its

standard parameter settings.

Summary: Also for ICE big, CPLEX computes the best solutions. But here, we

were not able to terminate with a proof of optimality within one day. The best solu-

tions were achieved with the cycle basis MST span and the parameter strong branch-

ing activated. But notice that depending on the values of the other parameters it may

take more than two hours until CPLEX finds the first feasible solution.

Much similar to ICE small, the genetic algorithm misses the best solution of

CPLEX by about 30%. Also, constraint programming keeps its gap of 90%. Notice

that the similarity between the values on ICE big and on ICE small could be caused

by the similar structure of these two data sets, cf. Section 5.2.

6 Conclusion

In Table 12 we provide a rough summary of our computational study. The entries are

to be read as follows. The row “Quality” indicates the quality of the best solution that

we obtained with a specific algorithm on a particular instance, having tried various

parameter settings. The row “Time” represents the time that was necessary to obtain

the best solution, where an entry ++ stands for the shortest solution times. Finally, if

there exist (reasonable) parameter settings that cause an algorithm to produce solu-

tions that are significantly worse than the best solution it is able to attain with other

settings, this is indicated by a minus sign.

Due to the immense differences between the three data sets that were available

to us, the entries do not follow general thresholds. Rather, they represent the perfor-

mance relatively to the other algorithms on the very same data set. A minus entry in

the row “Quality” is a knockout criterion for an algorithm. Also, a minus entry in the

row “Time” prevented us from elaborating this algorithm on larger instances. Notice

that there always exist parameter settings such that CPLEX computes the best solu-

tions within a relatively small amount of time. Nevertheless, even on ICE small and

ICE big the compositions of these optimal parameter sets do not coincide. Hence, we

are not able to elect the best general purpose periodic railway timetabling algorithm.

Overall we can state that, given the current state of methods and machines, it is

possible to calculate the timetable for the complete (long distance) network of one
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Table 12. Overall Performance of Five Solution Techniques for PESP Instances

Algorithm MIP (CPLEX) Genetic Alg. Sim. Ann. CP (ILOG Solv.)

formul. (6b) + cuts other

Data U Bln ICE s. ICE big U Bln ICE s. U Bln ICE s. ICE big ICE s. U Bln ICE s. ICE big

Quality ++ ++ ++ ++ ++ ++ + + – ++ – –

Time ++ ++ o + – + + + – + ++ ++

Indepen-

dence of + – – – – – – – + + + + – + +

parameters

of the largest railways in a very satisfying way, with respect to the production time

and to the quality of the results. On the one hand, the comparison of various meth-

ods that we report in this paper was the basis for selecting the genetic algorithm as

the method of choice for the Deutsche Bahn. The genetic algorithm turned out to

be the most stable solution procedure, although the others are serious competitors.

Depending on further developments this picture can change. On the other hand, we

think that this comparison is an important and helpful step towards really under-

standing the timetabling problem. This is an ongoing process, so this is a report on

work-in-progress.
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Summary. This study formulates a mixed-fleet ferry routing and scheduling model while

considering passengers’ choices for differential services. Ferry services with different oper-

ation characteristics and passengers with different preferred arrival time-windows are con-

sidered in the model. The logit model is applied to determine passengers’ service choices.

The formulation then determines the best mixed-fleet operating strategy, including interlin-

ing schemes, so as to minimize the objective function that combines both the operator and

passengers’ performance measures. Mathematically, this mixed-fleet routing and scheduling

problem is formulated as a mixed integer nonlinear program. This study then develops an it-

erative heuristic algorithm to solve this problem. The results show that the algorithm could

improve the operations of the system given different initial points. Nevertheless, finding the

global optimal solution could be difficult due to the inherent non-convex nature of the problem.

1 Introduction

Ferry services in Hong Kong are supplementary for cross-harbor traffic but essential

for the outlying islands. The government plays an important role in the provision of

these services by ensuring a financially viable environment to entice private sector

participation and hence avoid subsidizing their operations. The current practice of

the Hong Kong government is to bundle ferry services into packages, with each of

them operated by a different company. It is then up to the operator of each package to

determine the service schedules, interlining strategies, ferry types (fast and ordinary),

and fleet size, so as to maximize their overall profit by providing services that are

acceptable to passengers.

The problem addressed in this study can be considered as a service network

design problem, which involves determining the service network and its passenger

flows simultaneously, so as to achieve a certain objective. Magnanti and Wong (1984)

first formulated this problem as a mixed integer linear program. Crainic and Laporte

(1997) and Crainic (2000) presented state-of-the-art reviews on this topic. Indeed,

this problem finds applications in many contexts. For example, Lai and Lo (2004)
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developed a single ferry fleet management model. Yan and Chen (2002) studied the

scheduling of inter-city bus carriers, and Yan and Tseng (2002) developed a multi-

fleet airline routing and scheduling model. However, none of the previous service

network design problems considered passenger preferences for differential services.

Lai and Lo (2004) developed a ferry fleet management model and accompanied

heuristic algorithm to optimize the fleet size, ferry routing, and service schedules.

The model is formulated as a mixed integer multi-commodity network flow prob-

lem with a single ferry type. In reality, operators may offer different services, e.g.,

fast ferry with higher fare versus slow ferry with lower fare, to accommodate the

different market segments. As a result, passenger preferences and choices on fare,

service quality, and journey time become important factors for planning and coor-

dinating service schedules, routings, and ferry type allocation. This paper aims at

developing a multi-fleet ferry routing and scheduling model with mode choice in-

tegration. We apply the logit model to determine passengers’ mode choice. For the

context of ferry services to outlying islands in Hong Kong, in the absence of alterna-

tive ground transportation, we consider the total demand for each origin-destination

pair as fixed. On the other hand, passenger demand for each particular type of ferry

service is driven by its service disutility, including fare, journey and waiting times,

subject to the service’s capacity constraints. Furthermore, to more accurately reflect

reality, travelers are segregated according to their preferred arrival time windows at

destinations. Arrival before or after the preferred time windows will incur early or

late arrival penalties.

The model developed in this study primarily considers the perspective of the op-

erator, in terms of minimizing the operation costs or maximizing their profits. Never-

theless, due consideration must be given to its service performance according to the

perspective of passengers. Poor service performance leads to long-term migration

from the outlying islands, causing a drop in demand, or the possibility of losing the

franchise of operating the services all together. Both consequences are undesirable to

the operators. Therefore, the model combines the operator’s as well as users’ objec-

tives, as is typically accomplished in transit network design studies (see, e.g., Ceder

and Wilson (1986)).

The outline of this study is as follows. Section 2 depicts the model formulation.

A heuristic algorithm is developed in Section 3. Section 4 presents the numerical

study. Finally, Section 5 provides some concluding remarks.

2 Model Formulation

2.1 Assumptions

(a) Passenger demand: As this study focuses on ferry services to the outlying islands,

which have limited alternative transportation modes, we assume captive demand.

That is, the total demand for each origin-destination (OD) pair is given. In the long

run, people might change their residences or job locations, rendering demand elastic.

This is not considered in this study. However, even though the total demand for each
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OD pair is fixed, the demand for a particular ferry service is elastic, to be determined

by its service quality and passengers’ choices.

(b) Arrival time window and linear delay penalty: Passengers are segregated accord-

ing to their preferred arrival time windows at destinations. Linear delay penalties are

imposed for early and late arrivals outside passengers’ preferred arrival time win-

dows.

(c) Logit-modal split: The logit model is applied to estimate passenger demands for

different ferry services based on their fares, journey times, and delays.

(d) Transfer is not allowed: Transfer between different ferry services is not consid-

ered in the model as it rarely happens.

(e) Overnight empty ferry repositioning: At a specific pier, the number of ferries at

berth at the start of the day is not necessarily equal to that at the end of the day. This

assumption is justified by the fact that the cost of ferry repositioning at the end of the

day is relatively insignificant as compared to the total operation cost.

2.2 Variable Definitions

This service network design problem involves determining both the ferry routing

and service schedules for the planning horizon, which requires specifying the time

dimension within the formulation. For this purpose, we draw upon the convenience

of a time-space network structure, in which each node represents a specific location

at a specific time, whereas each arc represents the temporal and spatial connection

between the two corresponding nodes. The problem involves the determination of

two types of arc variables: (i) ferry arc flows specify the ferry routes and departure

schedules, and (ii) passenger arc flows depict the passenger movements given the

ferry arc flows. The formulation, therefore, constitutes two types of time-space net-

works: the ferry flow and passenger flow networks. Each of these networks can be

further divided into a group of sub-networks to handle different ferry types and OD

demands. The detailed description of the ferry and passenger time-space networks

refers to Lai and Lo (2004). The variable notations are defined as follows:

Sets

R set of OD pairs

F set of ferry service types

G set of arrival time-windows

Nf , Af sets of nodes and arcs, respectively, in the f ferry flow network (for

ferry service type f )

Nd,f , Ad,f sets of nodes and arcs, respectively, in the d passenger flow network

(for demand on OD pair d) associated with ferry service type f , notated

as the d–f passenger flow network below

Nf
b , Nf

e sets of nodes at the beginning and ending of the planning horizon, re-

spectively, in the d–f ferry flow network; subsets of Nf

Nd,f
b , Nd,f

e sets of nodes at the beginning and ending of the planning horizon, re-

spectively, in the d–f passenger flow network; subsets of Nd,f
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Sf , Sd,f sets of service arcs in the f ferry and the d–f passenger flow network,

respectively

W f ,W d,f sets of wait arcs in the f ferry and the d–f passenger flow network,

respectively

Od,f set of origin arcs in the d–f passenger flow network

Dd,f set of destination arcs in the d–f passenger flow network

Dd,f
e , Dd,f

l sets of destination arcs for arrivals earlier and later than the arrival time-

window g in the d–f passenger flow network, respectively; subsets of

Dd,f

Md,f an artificial node in the d–f passenger flow network

Parameters

d an OD pair

f a ferry service type

g an arrival time-window

κf fixed cost associated with owning or hiring a ferry of type f for one

day

V f maximum fleet size of f type ferry

Bd,g exogenous passenger demands with arrival time-window g on OD pair

d

Qf capacity of f type ferry

Tij travel time between node i and j

T d,f travel time between OD pair d based on direct service of f type ferry

T
d,f,g

average total travel time of passenger on OD pair d and arrival time-

window g, utilizing f type ferry service

βg
ij time duration between the time dimension of node i and the arrival

time-window g for destination arc (i, j)

αd,f fare of f type ferry service for OD pair d

Cf
ij operating cost per trip between node i and j of f type ferry service

ud,f,g utility function segregated into different OD pair d, ferry service type

f and arrival time-window g

θ1, θ2, θf weights of fare, average total travel time and alternative specific con-

stant in the utility function ud,f,g, respectively

ωe, ωl weights of early arrival delay penalty and late arrival delay penalty

vt value of travel time

vw value of waiting time

ξ weight to capture the relative importance of total passenger disutility

to operation costs

Uf
ij upper bound of the ferry flow between node i and j for f type ferry

service (note that Uf
ij equals 1 for the service arcs in set Sf and is a

positive integer value for wait arcs in set W f )
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Decision Variables

Y f
ij ferry flow (i, j) in the f ferry flow time-space network

Xd,f,g
ij passenger flow (i, j) in the d–f passenger flow time-space network

with preferred arrival time window g

2.3 Network Description

Ferry time-space network: The time-space network of ferry flow, shown schemat-

ically in Fig. 1, is defined by a graph G(Nf , Af ), in which f specifies the ferry ser-

vice type. Nf is the set of nodes in the time-space network, Af is the set of arcs

representing ferry movements. Af consists of two subsets: service arc set Sf and

wait arc set W f , such that Af = Sf ∪ W f .

Each service arc describes a ferry trip, whose journey time, origin and destina-

tion are specified by the corresponding time-space nodes. Arc flow is represented

by a binary variable, which equals 1 for a provided service; 0 otherwise. Arc costs

encompass operating costs, including fuel, maintenance, and labor. The fixed cost of

owning or hiring a ferry per day is imposed on arcs originating from the beginning

of the planning horizon. Each wait arc, or vertical arc in the ferry network, indicates

ferries idling at a pier without providing service. It is represented by a non-negative

integer variable, denoting the number of ferries berthing at a pier. We assume that

wait arcs have negligible operating costs.

….

…
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07:15

07:30

23:30

24:00

Pier I Pier II Pier N…

Wait arc

Service arc

Legend

….

….

…

07:00

07:15

07:30

23:30

24:00

Pier I Pier II Pier N…

Wait arc
fW

Service arc
fS

Legend

….

Fig. 1. The Ferry Time-space Network Schematic

Passenger time-space network: The time-space network of passenger flow is de-

fined by a set of graphs G(Nd,f , Ad,f ), where d refers to an OD pair, f the ferry

service type, Nd,f the set of nodes, and Ad,f the set of arcs representing passenger

movements. Similar to Af , the set Ad,f consists of two subsets, service arc set Sd,f
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and wait arc set W d,f such that Ad,f = Sd,f ∪ W d,f . Moreover, associated with

every graph G(Nd,f , Ad,f ) are one artificial node, Md,f , and two types of artificial

arcs: origin arc Od,f and destination arcs Dd,f . Fig. 2 schematically illustrates the

passenger time-space network.

Service arcs denote passenger trips between piers, whose journey times are spec-

ified by the corresponding nodes of the time-space network. Each arc flow represents

the number of onboard passengers, which is constrained by the capacity of the ferry.

The flow on the wait arc, on the other hand, describes the number of passengers

waiting at the pier, which could be a result of either early arrivals at the pier, or in-

sufficient capacity of the departed ferry to carry all the demand. Similar to wait arcs

in the ferry network, passenger wait arcs are represented by vertical arcs.

The passenger flow network associated with each OD pair and each ferry service

has an artificial node Md,f . An origin arc is constructed to connect Md,f to the

origin node of the last time interval, as illustrated in Fig. 2, whose arc flow represents

the amount of passengers not served at the end of the planning horizon. One may

interpret this flow as the unsatisfied or lost demand within the planning horizon. If

serving all demand is an important consideration, one may set a large penalty for the

origin arc, so that more frequent services are arranged to carry all the demand, at

the expense of a higher operating cost. In addition, the passenger network includes a

set of destination arcs that connect the destination nodes to the artificial node Md,f .

These destination arcs delineate the arrival times of passengers at their destinations,

which are used to determine the schedule delay penalty for early or late arrivals

outside the preferred arrival time-windows.
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Fig. 2. The Passenger Time-space Network Schematic
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2.4 Mathematical Formulation

Minimize: Z =





∑

f∈F





∑

i∈Nf

b

∑

j∈Nf\Nf

b

Y f
ijκ

f +
∑

ij∈Sf

Y f
ijC

f
ij −
∑

g∈G

∑

d∈R

∑

ij∈Dd,f

Xd,f,g
ij αd,f







+

ξ





∑

f∈F

∑

g∈G

∑

d∈R

∑

ij∈Dd,f

Xd,f,g
ij βg

ijvw

+
∑

f∈F

∑

g∈G

∑

d∈R

(
∑

ij∈Sd,f

Xd,f,g
ij Tij −

∑

ij∈Dd,f

Xd,f,g
ij T d,f )vt



 (1)

Subject to:

∑

j∈Nf

Y f
ij −

∑

k∈Nf

Y f
ki = 0 ∀i ∈ Nf\(Nf

b ∪ Nf
e ),∀f ∈ F (2)

∑

i∈Nf

b

∑

j∈Nf\Nf

b

Y f
ij ≤ V f ∀f ∈ F (3)

∑

j∈Nd

Xd,f,g
ij −

∑

k∈Nd

Xd,f,g
ki =







eud,f,g

�
f′∈F

eud,f′,g
Bd,g ∀i∈Nd,f

b
,∀d∈R,

∀f∈F,∀g∈G

0 otherwise

(4)

∑

g∈G

∑

d∈R

Xd,f,g
ij ≤ Y f

ijQ
f ∀ij ∈ Sf ,∀f ∈ F (5)

Xd,f,g
ij ≥ 0 ∀ij ∈ Ad,f , Od,f , Dd,f ,∀d ∈ R,∀f ∈ F,∀g ∈ G (6)

0 ≤ Y f
ij ≤ Uf

ij ∀ij ∈ Af ,∀f ∈ F (7)

Y f
ij ∈ integer ∀ij ∈ Af ,∀f ∈ F (8)

Where:

ud,f,g = θ1α
d,f + θ2T

d,f,g
+ θf (9)

T
d,f,g

=

∑

ij∈Dd,f
e

Xd,f,g
ij βg

ijωe +
∑

ij∈Dd,f

l

Xd,f,g
ij βg

ijωl +
∑

ij∈Sd,f

Xd,f,g
ij Tij

∑

ij∈Dd,f

Xd,f,g
ij

(10)
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∀d ∈ R,∀f ∈ F,∀g ∈ G

This model primarily considers the perspective of the operator, aiming to mini-

mize the operation costs, with the revenue from fare collection expressed in negative

cost terms. Thus, a negative objective function value indicates a profit. On the other

hand, the objective function incorporates passengers’ delay and travel times as part

of the “costs” to be considered. The objective function (1) seeks to minimize the

total operating costs, comprising five terms: (i) fixed cost associated with owning

or hiring a ferry for the service period; (ii) trip operating cost; (iii) revenue (i.e., ex-

pressed in negative terms to offset the costs); (iv) total arrival schedule delay penalty;

(iv) total penalty cost of multi-stop trips. All the variable definitions are provided in

Section 2.2.

Specifically, the objective function in (1) consists of two main brackets on the

right hand side. The first bracket sums the operation costs; whereas the second

bracket sums the passenger disutilities, with ξ being the relative weight between

these two main brackets. The first term within the first bracket refers to the total fixed

cost; the second term depicts the total trip operating cost; and the third term gives the

total revenue, where αd,f is the fare of type f ferry service on OD pair d. As for the

second main bracket, the first term inside defines the total schedule delay penalty.

The product βg
ijvw refers to the cost of arrival delay for passengers on the destina-

tion arc, which incurs due to arrivals either earlier or later than their preferred arrival

time windows. The second term represents the total multi-stop trip penalty, which is

measured by the cost of additional travel time experienced by passengers on multi-

stop trips, relative to the travel time on direct services. The term
∑

ij∈Sd,f Xd,f,g
ij Tij

measures the total travel times for passengers of OD pair d, ferry type f and arrival

time-window g. The summation of destination arc flows
∑

ij∈Dd,f Xd,f,g
ij represents

the total passengers reaching their destinations. The product
∑

ij∈Dd,f Xd,f,g
ij T d,f

represents the total passenger travel time, had they been able to use direct services.

Therefore, the difference between
∑

ij∈Sd,f Xd,f,g
ij Tij and

∑

ij∈Dd,f Xd,f,g
ij T d,f

measures the total additional travel time due to multi-stop or indirect services. If

there is no multi-stop trip, i.e. Tij = T d,f , {∀ij | Xd,f,g
ij > 0 and ij ∈ Sd,f}, then

this penalty cost is zero.

Constraint (2) denotes the conservation of ferry flows at each node i in each f
ferry network. Constraint (3) requires that each type of ferry in operation be subject

to the corresponding maximum fleet size. Constraint (4) states the passenger conser-

vation condition at every node in the passenger flow network after considering the

exogenous demand. Note that the logit demand splits for different ferry services are

captured as part of (4). This introduces nonlinearity and in fact, non-convexity in the

formulation. Constraint (5) combines the passenger flows of all OD pairs and arrival

time-windows between (i, j) and requires that the total passenger volume be subject

to the ferry capacity on each service arc (i, j). Constraints (6) and (7) provide the

bounds of passenger flows and ferry flows between (i, j), respectively. Constraint

(8) defines the ferry flow variables to be integer. Equation (9) defines the utility func-

tion, which comprises the attributes of ferry service, including fare αd,f and average
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total travel time T
d,f,g

, and an alternative-specific constant. Equation (10) derives

average total travel time by weighting the early arrival delay, late arrival delay and

journey time. The early or late arrival delay applies if travelers’ arrival times do not

fall within their preferred arrival time-windows.

3 Heuristic Algorithm

An iterative heuristic algorithm is developed to solve this mixed integer nonlinear

program (MINLP). This algorithm first relaxes and decomposes the original prob-

lem and then solves a series of mixed integer linear subproblems iteratively. Note

that the nonlinear nature of the original problem comes from the logit modal-split

function, which captures the interrelationship of service disutilities among the dif-

ferent ferry types. If only the demands for the different services are given and fixed,

the original problem can be relaxed to a mixed integer linear program (MILP). In

other words, given the initial (fixed) passenger demands for each ferry type, i.e.

Bd,f1,g, Bd,f2,g, . . . (f1, f2, . . . refer to different ferry types), the original MINLP

can be decomposed into a set of independent MILP subproblems, with each per-

taining to a particular ferry type. Fig. 3 depicts the relaxation and decomposition

processes. For the MILP subproblems, many existing algorithms can be applied

to solve them. After solving these independent MILP subproblems, we obtain the

passenger flows (i.e., Xd,f1,g
ij , Xd,f2,g

ij , . . .) and ferry flow, (i.e., Y f1

ij , Y f2

ij , . . .) for

Fig. 3. Relaxation and Decomposition of the Original MINLP



190 Z.W. Wang, Hong K. Lo, and M.F. Lai

different ferry service types. The service disutilities for different ferry types (i.e.,

ud,f1,g, ud,f2,g, . . .) can be calculated according to (9) and (10). Then, according

to the logit split function, we re-estimate the corresponding passenger demands for

the different ferry service types. If the gap between the newly estimated passenger

demands and the initial demands falls within a specified tolerance, consistency is

achieved and the algorithm is stopped. The ferry flows obtained as such depict the

“optimal” ferry scheduling and routing. In the case that the gap lies outside the spec-

ified tolerance, the newly obtained passenger demands are fed back into the MILP

subproblems, which are solved again. This whole process is repeated, as schemati-

cally shown in Fig. 4, until convergence is achieved.

Fig. 4. Procedure of the Iterative Heuristic Algorithm

In this algorithm, it is important to initialize the passenger demands for the dif-

ferent ferry types, (i.e., Bd,f1,g, Bd,f2,g, . . .) for the first iteration, or define the initial

solution. In this study, we split the exogenous passenger demands Bd,g arbitrarily to

obtain an initial solution. Also, to ensure convergence of the algorithm, the method

of successive averages (MSA) is used. Specifically, the service disutility defined by

(9) and (10) is used to conduct the MSA procedure. In each iteration, we take the

average of the service disutilities from the current as well as previous iterations,

where each service disutility is derived from the solutions of the decomposed MILP

subproblems. Let ud,f,g
k be the calculated disutility in the kth iteration; the average

disutility is determined as:
(

1
k

)
∑k

n=1 ud,f,g
k .

Summarizing, the steps of the heuristic are as follows:

Step 0: Define the tolerance ǫ > 0 and the initial solution Bd,f,g
0 . Set k = 1.
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Step 1: With given Bd,f,g
k , solve the decomposed independent MILP subprob-

lems for each ferry service type, which yields Xd,f,g
ij and Y d,f,g

ij .

Step 2: Calculate ud,f,g
k based on Xd,f,g

ij and Y d,f,g
ij determined in Step 1.

Step 3: Calculate ũd,f,g
k =

(

1
k

)
∑k

n=1 ud,f,g
k based on the method of successive

averages.

Step 4: Calculate Bd,f,g
k+1 based on the logit split function and ũd,f,g

k determined

in Step 3.

Step 5: If
∣

∣

∣
Bd,f,g

k+1 − Bk+d,f,g
∣

∣

∣
< ǫ then stop; otherwise set k = k + 1 and

return to Step 1.

4 Numerical Studies

We implement the heuristic algorithm for a ferry route package in Hong Kong. The

problem involves two ferry routes that share similar characteristics in terms of pa-

tronage, journey time and fare: CBD-Mui Wo (C-MW) and CBD-Peng Chau(C-PC).

Both MW and PC are outlying islands. The details of the problem setting refer to Lai

and Lo (2004).

We solve the problem for the two-hour morning peak (7:00a.m. - 9:00a.m.). The

time interval in both the ferry and passenger flow time-space networks is set to be 15

minutes. Two types of ferry services, i.e. fast ferry with higher fare and ordinary ferry

with lower fare, are available. Passengers are segregated into two different groups

according to their preferred arrival time windows at destinations, 8:00a.m.-8:30 a.m.

(the first time-window) and 8:45a.m.-9:15 a.m. (the second time-window). With the

segregation ratio pre-set to be 7:3, we obtain the passenger demands for the different

arrival time windows on different OD pairs, i.e., Bd,g.

For this problem scenario, each decomposed MILP subproblem involves 64 bi-

nary variables, 36 integer variables, 840 real variables, and a total of 450 constraints.

We use the commercial optimization package CPLEX-6.0-MIP (ILOG (1998)) to

solve the MILPs. The parameter x is set to be 1 and the stopping tolerance ǫ is 0.01.

Firstly, we apply the heuristic algorithm with two different initial solutions. In

Case 1, the initial demand is estimated from the set of services that incur no delay to

passengers (or the best scenario from passengers’ perspective); whereas in Case 2,

the initial demand is estimated from the existing service schedule. Fig. 5 illustrates

how the objective value changes for both cases. Fig. 5 shows that the resultant solu-

tion depends on the choice of the initial solution, due to the non-convex nature of this

problem. However, in both cases, the heuristic algorithm is able to drive down the ob-

jective function value. The drop or improvement for Case 1 is more pronounced due

to the choice of an extreme initial solution. As for Case 2, using the existing schedule

as a starting point, the result shows that one can still improve the performance of the

system substantially, around 25% of the objective function value.

To demonstrate the non-convex nature of the problem, we also solve the heuristic

algorithm with more than 200 randomly chosen initial solutions. The final result

expressed in terms of objective function values is plotted in Fig. 6. From this figure,
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Fig. 6. Objective Function Values Obtained with Different Initial Solutions

we can see that different starting points can produce similar final solutions. Actually,

each point in Fig. 6 represents a local minimum. Due to the non-convex nature of

the network design problem, one needs to determine all the local minima in order

to find the global minimum. In this sense, we cannot ascertain whether the solution



Mixed-Fleet Ferry Routing and Scheduling 193

obtained with a particular initial solution is globally optimal or not. In addition, the

large gap between the best and worst solutions among these 200 plus trials shows

that the choice of the initial solution has an important impact on the quality of the

final solution. From this limited numerical experience, it is, however, not easy to

determine a priori what is a good initial solution.

To examine the final solutions obtained from these 200 plus initial solutions, we

compute their cumulative probability versus their objective function values. We find

that there are big performance discrepancies among the solutions obtained. However,

overall, the heuristic is more likely to lead to good results. For example, 87.2% of

the solutions obtained have objective functions values that are lower (or better) than

-6976.8, which is the best objective value if the operator only offers one ferry ser-

vice type. Nevertheless, we note that how to construct good a priori initial solutions

remains an important research question.

5 Concluding Remarks

This paper developed a multi-fleet ferry routing and scheduling model while consid-

ering passengers’ mode choice preferences. Ferry services with different operation

characteristics and passengers with different preferred arrival time windows are con-

sidered in the model. The logit model is applied to determine passengers’ service

choices. The formulation then determines the best mixed-fleet operating strategy,

including interlining schemes, so as to minimize the objective function that com-

bines both the operator and passengers’ performance measures. Mathematically, this

mixed-fleet routing and scheduling problem is formulated as a mixed integer nonlin-

ear programming problem. This study then develops an iterative heuristic algorithm

to solve this problem.

Case studies of ferry services in Hong Kong were examined to demonstrate the

characteristics of the heuristic algorithm. The results showed that the solution pro-

duced by the heuristic was highly dependent on the choice of the initial solution,

due to the non-convex nature of the network design problem. Actually, the problem

stated in this study can be formulated as a bi-level programming problem, in which

the upper level determines the ferry and passenger flows while the lower level models

passengers’ service choices. One may use the method of iterative balancing to solve

this bi-level problem heuristically. However, it is known that this iterative method

does not always yield the global optimal network design (Bell and Iida (1997)). Our

current research focuses on exploring algorithmic improvements within the frame-

work developed herein.
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search Grant Council.
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Summary. Planning train movements is difficult and time-consuming, particularly on long-

haul rail networks, where many track segments are used by trains moving in opposite direc-

tions. A detailed train plan must specify the sequence of track segments to be used by each

train, and when each track segment will be occupied. A good train plan will move trains

through the network in a way that minimises the total cost associated with late arrivals at key

intermediate and final destinations.

Traditionally, train plans are generated manually by drawing trains on a train graph. High

priority trains are usually placed first, then the lower priority trains threaded around them. It

can take many weeks to develop a train plan; the process usually stops as soon as a feasible

train plan has been found, and the resulting plan can be far from optimal.

Researchers at the University of South Australia and WorleyParsons Rail have developed

scheduling software that can generate optimised train plans automatically. The system takes a

description of the way trains move through the network and a list of trains that are required

to run, and quickly generates a train plan that is optimised against key performance indicators

such as delays or lateness costs.

To find a good plan, we use a probabilistic search technique called Problem Space Search.

A fast dispatch heuristic is used to move the trains through the network and generate a single

train plan. By randomly perturbing the data used to make dispatch decisions, the Problem

Space Search method quickly generates hundreds of different train plans, then selects the best.

The automatic scheduling system can be used to support applications including general train

planning, real-time dynamic rescheduling, integrated train, crew and maintenance planning,

infrastructure planning and congestion studies.

One of the first applications of the system has been for an Australian mineral railway, to

prepare efficient train plans to match mineral haulage requirements. The product is mined at

six sites and transported by rail to a port. The numbers and sizes of train loads from each

site are determined by grading requirements to meet the product specification for shipping.

The train plan is then the orderly translation of these transportation requirements into an effi-

cient timetable which resolves meets and crosses over a long single track railway. These train

movements are thus part of an integrated mine-to-ship logistics chain.



196 Peter Pudney and Alex Wardrop

1 Introduction

Most of Australia’s long-haul rail network is single-line track that is shared by trains

travelling in different directions, with occasional refuges or crossing loops. Trains are

often delayed waiting for track to become available. Moving trains through the rail

network without incurring significant delays requires careful planning. A detailed

train plan must specify the sequence of track segments to be used by each train, and

when each track segment will be occupied. Developing such train plans is difficult

and time-consuming.

Traditionally, train plans are generated manually by drawing trains on a train

graph. High priority trains are usually placed first, then the lower priority trains

threaded around them. It can take many weeks to develop a train plan. The pro-

cess usually stops as soon as a feasible train plan has been found, and the resulting

plan can be far from optimal. Furthermore, train plans are modified many times be-

tween their first inception and the day of operation. Different planning stages often

use different – and incompatible – tools.

Researchers at the University of South Australia and WorleyParsons Rail have

developed scheduling software that can generate optimised train plans automatically.

The system takes a description of the way trains move through the network and a list

of trains that are required to run. Instead of plotting trains on a train graph, train

planners specify when they want trains to depart and desired arrival times at key

locations along the route. The system then automatically searches for a schedule that

moves the trains through the network in a way that minimises the total cost associated

with late arrivals at journey destinations and key intermediate points.

2 Problem Formulation

The problem of scheduling trains over a network of track segments is similar to

the well-known job-shop problem of scheduling jobs on machines. A rail network

comprises a set of track segments which cannot be occupied by opposing trains at

any instant, just as machines in a job-shop can process only one job at a time.

Much of the previous work on automated scheduling has concentrated on sim-

plified rail networks, such as single line track with crossing loops. We have been

careful to develop a method that uses a very general description of the rail network –

one that allows parallel tracks, alternative routes, complicated junctions, and realistic

separation rules.

A rail network can be represented by a mathematical graph – that is, a set of

vertices and a set of edges. Vertices correspond to locations on the rail network such

as junctions, line ends, diamond crossings and timing points. Edges on the graph

correspond to track segments on the rail network. There may be more than one edge

between any pair of vertices, such as at crossing loops. Balloon loops may start and

finish at the same vertex.

We represent a rail network using track segments that correspond to edges on the

mathematical graph. Extra track segments are used to represent diamond crossings,
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Fig. 1. A Rail Network can be Represented by a Mathematical Graph

stations without loops, or sets of points that form one-to-many or many-to-many

junctions. We are also able to ignore many of the smaller edges, such as crossovers

between parallel tracks. Fig. 2 shows the segments required to represent the network

graph in Fig. 1.

Fig. 2. Track Segments Used to Represent the Network in Fig. 1

Track segments have the following properties:

• a track segment may not be occupied by opposing trains;

• any point on the track at which an arrival time or departure time is required

defines the end of a track segment;

• every valid train movement can be described as a sequence of track segments;

and

• every pair of conflicting train movements shares at least one common track seg-

ment.

Track segment parameters include:

• the length of the segment;

• the directions in which the segment can be traversed (up, down, bidirectional);

• the segment type (mainline, loop, siding, diamond, junction);

• the separation required between the rear of one train and the front of a following

train; and

• the time delay required between one train clearing a point on the segment and the

next train arriving at that point

The motion of a train on the network is defined by a sequence of train movements.

A movement describes how a train moves forward from its current track segment to

another track segment on which it can stop without blocking opposing movements. A

movement is a sequence of movement segments; each movement segment specifies:

• the track segment to be traversed;

• the direction in which the track segment will be traversed;

• the time taken for the front of the train to traverse the segment; and
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• the entry and exit speeds.

Fig. 3 shows a portion of a rail network.

CAB/3

CAB/2

CAB/1

CAB-SAV/D

CAB-SAV/U
CAB-SAV

SAV/2

SAV/1

Fig. 3. Portion of a Network with a Station, Double Track, Single Track and Another Station

The possible movements on this portion of the network are:

• CAB/3, CAB-SAV/D

• CAB/2, CAB-SAV/D

• CAB-SAV/D, CAB-SAV, SAV/1

• CAB-SAV/D, CAB-SAV, SAV/2

• SAV/1, CAB-SAV, CAB-SAV/U

• SAV/2, CAB-SAV, CAB-SAV/U

• CAB-SAV/U, CAB/2

• CAB-SAV/U, CAB/1

For each movement we can also specify additional time taken if the movement

starts from rest, additional time taken if the movement finishes at rest, and the dwell

required at the end of the movement.

A trip is a set of possible movements that can be used by one or more trains;

a template for a journey that can be made by a class of train. The trip movements

specify all possible routes for a trip.

A train is an instance of a trip. Train parameters include:

• a list of track segments from which the train can start;

• the departure date and time;

• the length of the train; and

• a list of journey targets

A target is a point along the journey with a desired arrival time or where the train

is required to dwell for a specified duration. A train must include at least one target

– the final destination – but may also include intermediate targets where timing is

important, such as at crew change locations. The parameters of each target are:

• a list of track segments that may be used by the train at the target;

• the desired arrival date and time;

• a lateness cost function;

• the dwell time; and

• the earliest departure time.

If you require the train to stop at a target for 20 minutes, but do not care what time it

arrives, you can specify an arbitrary arrival time and a zero lateness cost function.
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The total cost of a timetable is the sum of the lateness costs over all targets of

all trains. If the true cost of lateness is not known, these cost functions can be set to

form objective functions such as total delay (time spent waiting for track to become

available), total weighted delay, or sum of delay squared.

The problem data specifies the network infrastructure, the way trains move on

the network, and the train requirements. The train requirements specify the earliest

time that a train may start, and desired arrival times at key locations along each

train’s journey. Our aim is to find a train plan that moves each of the trains across

the network in accordance with its trip and target requirements (and normal railway

operating constraints), and with minimum total lateness cost.

3 Problem Space Search

Realistic rail scheduling problems are often sufficiently large and complicated that

formulating and solving the problem using mathematical programming techniques is

intractable. Instead, we use a probabilistic search technique, Problem Space Search

(Naphade et al. (1997)), to search for good solutions.

The principle of Problem Space Search is simple: a fast dispatch heuristic is

used to generate a single solution to the problem, then random perturbations to the

problem data cause the dispatcher to generate alternative solutions. We evaluate each

of the generated solutions and retain the best.

We use a fast dispatch heuristic to generate a sequence of train movements that

will move each train through the network to its destination. The dispatcher considers

the trains on the network and the trains that are scheduled to move onto the network,

chooses which train movement to make next, and iterates until all trains are at their

destinations.

A first-to-start dispatcher chooses the next train to be moved as follows:

• For each train on the network, set the dispatch decision time to be the earliest time

at which the train will be ready to start its next movement. A given train may have

more than one possible next movement; in this case we select the earliest.

• Choose the train with the earliest possible dispatch decision time. If there is more

than one, pick any one.

A first-to-finish dispatcher is similar, but chooses the train movement with the

earliest finish time. Between first-to-start and first-to-finish are a range of dispatchers

that choose the movement with the earliest t = (1 − α)t0 + αt1, where t0 is the

earliest movement start time, t1 is the earliest movement finish time and α ∈ (0, 1).
We have found that α = 0.5 gives good results.

The possible movements for a class of trains is described in the trip data. How-

ever, the dispatcher also checks that movements for a particular train are feasible.

For example, it will not move a long train onto a short crossing loop.

The result of applying the dispatcher to a scheduling problem is a single train plan

– though not necessarily a good one. To find a good plan, the Problem Space Search

method makes random perturbations to the problem data used by the dispatcher to
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decide which movement to make next. By perturbing the data used to make dispatch

decisions, alternative decisions are made and alternative train plans are generated.

The randomly perturbed data is used only to make the dispatch decision; the original,

unperturbed data is still used to calculate the movements.

The desirable characteristics of the perturbations are:

• the probability of swapping the dispatch order of any two trains should be 0.5 if

the trains have the same dispatch decision time;

• the probability of swapping the dispatch order of any two trains should decrease

as the difference between their dispatch decision times increases; and

• the probability of swapping the dispatch order should be non-zero.

We use a normal distribution with zero mean and a standard deviation based on

the mean movement duration for the trains on the network.

We can bias the dispatcher to favour trains with high priority, such as passenger

trains, by reducing the dispatch time of these trains. We set the dispatch time for each

train to

tD = (1 − α)t0 + αt1 − N (0, σ) − βw

where t0 is the segment start time, t1 is the segment finish time, α ∈ [0, 1], N (0, σ)
is a random number drawn from a normal distribution with mean 0 and standard

deviation σ, β is a constant, and w indicates the importance of the train; normal

trains have w = 1, passenger trains might have w = 2. The constant β is chosen so

that for two trains with the same times (1 − α)t0 + αt1, a train with w = 2 has a

probability of about 0.8 of moving before a train with w = 1.

The ‘goodness’ of a train plan is calculated from the completed train plan. Each

plan is evaluated, and the best plans are retained.

Some sequences of dispatch decisions may end in deadlock – a network config-

uration from which it is not possible for all trains to reach their destinations. If only

a small proportion of train plans end in deadlock, these can simply be discarded.

Otherwise, it is possible to modify the dispatch heuristic to reduce the likelihood of

deadlock.

The scheduler has been tested using data from real Australian rail networks in-

cluding:

• New South Wales, North Coast, 780km, non-branching, 68 refuges or crossing

loops, 42 trains per day;

• New South Wales, Illawarra, 210km, double and single track, non-branching, 35

refuges or crossing loops, 260 trains per day;

• Sydney – Melbourne, 900km, non-branching, 47 refuges or crossing loops, 118

trains per day;

• A mineral ore network, 300km main line, 5 branch lines, 26 refuges or crossing

loops, 24 trains per day.

The scheduler generates train plans that are significantly better than the plans

generated by the dispatcher using unperturbed data. On the 900km Sydney North

Coast line, with 42 trains and 47 refuges or crossing loops, the search reduced the

total train delay by 30%.
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Fig. 4 shows a histogram of total delays from 835 train plans generated for the

mineral railway test case discussed below. A smooth histogram usually indicates that

the solution space has been searched adequately.

score range tally %

20000 – 22000 1 0.1 -

22000 – 24000 11 1.3 –

24000 – 26000 43 5.1 ——

26000 – 28000 88 10.5 ————

28000 – 30000 115 13.8 —————

30000 – 32000 177 21.2 ———————-

32000 – 34000 160 19.2 ——————–

34000 – 36000 111 13.3 ————–

36000 – 38000 71 8.5 ———-

38000 – 40000 36 4.3 —–

40000 – 42000 19 2.3 —

42000 – 44000 3 0.4 -

Total 835 100.0

Fig. 4. Histogram of Scores for 835 Train Plans

There is a significant difference between the traditional train planning method

and our method. Traditionally, entire train journeys are removed and added one-at-

a-time from an existing train plan, and must be threaded around the existing trains.

Decisions about which train should wait at a cross are made locally; but a sequence

of local decisions that each appear to be reasonable do not necessarily lead to a good

overall train plan.

We start with trains poised on the edge of an empty network and then move the

trains forwards simultaneously. To add a new train to a plan, we simply put the new

train into the train requirements and optimise again, starting from an empty network.

The train planner is no longer able to directly place a train; instead, the paths of

individual trains must be controlled via the train requirements, using targets and

lateness costs.

This application of Problem Space Search frees timetable development from

the tyranny of time and effort which bedevils manual timetable development. Our

data description and dispatch heuristic apply to a general railway network so that

timetable development can take place over a complete railway rather than an artifi-

cial portion. Our system can handle a range of railway track configurations between

control points and refuging locations. It can also handle trains which might have spe-

cific network restrictions, such as long freight trains may be over-size for particular

refuge locations. Most importantly, the speed of computation to obtain an efficient

train plan allows the user to experiment and finesse the development of a timetable.

Alternatively, this computation speed should open the way to providing real-time dis-
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patch advice to train controllers, provided that they can receive timely information

on train progress.

4 Applications

We are able to generate and evaluate hundreds of optimised train plans per minute.

Potential uses for an automated train planning tool are described below.

Train Planning

Train plans are traditionally created by drawing trains one-at-a-time onto a train

graph, either manually or using a computer. It can take many weeks to create a fea-

sible train plan. As the day of operation approaches, the train plan is extensively

revised to reflect changes in demand and in the network operating conditions. Train

planners spend most of their time trying to maintain a feasible timetable, and have

little time to look for better alternatives.

Given a system that can produce optimised train plans almost instantly, train

planners can spend more time investigating the effects of alternative departure times,

arrival times at key locations, and lateness costs. Adding and removing trains be-

comes simple – the system automatically recalculates an optimised train plan that

meets the new train requirements.

Dynamic Rescheduling

In a control centre, an automated train planning system can be used in real-time, in

the background, to revise train plans to take into account the actual state of trains on

a network. One possible objective would be to recover, as much as possible, to the

published timetable. Alternatively, the system could abandon the original train plan

and instead calculate a new plan that meets, as closely as possible, given the new

state of the network, the original train requirements.

Integrated Scheduling

Our scheduler can be used to generate many good train plans, each of which can

be assessed against additional criteria such as track maintenance requirements and

crew rostering requirements. We are also working to extend the system so that main-

tenance requirements are included in the problem specification; the system will be

extended from a train planner to become a track possession planner.

Infrastructure Planning

Using an automated scheduler, the impact infrastructure changes on train plans can

be assessed almost instantly. The system can also be used to quickly generate new

train plans suited to new infrastructure.
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Congestion Studies

The scheduler generates many good timetables. By analysing these timetables, we

could construct a ‘congestion map’ that indicates where and when the network is

congested. Congestion can be relieved by either changing the train requirements

(e.g., shifting some trains into the less congested times of the day), or by adding

infrastructure.

5 Case Study

One of the first applications of our system was for an Australian mineral railway that

is currently shipping in excess of 50 million tonnes of product annually. However,

it wants to increase production by 50% in response to increasing demand for high

quality product. The mining and shipping operations have been integrated into a

single logistics chain, of which the railway is an important part. In this environment,

the railway operations have to fit into the production and shipping schedule rather

than the other way around.

Thus, the company determines what the flow from the different mines should

be to meet both the product specification and the forthcoming shipping schedule.

This translates into mining plans and transportation plans. From the railway perspec-

tive, it is required to haul minerals in varying quantities from the different mines up

to the physical capacity of either the available wagon and locomotive fleet or the

railway network. In the short term, the company is constrained by its rolling stock

resources. However, it is ordering more wagons and locomotives in anticipation of

increased production. In the longer term, it may be constrained by its current rail-

way infrastructure. While it is able to increase single track line capacity by dividing

long sections with new crossing loops there are limits to how far this process can be

taken. In the meantime, the company needs to be able to plan for increased mineral

transportation over a long single track railway (over 300 kilometres of main line plus

more than 100 kilometres of branch lines). Fig. 5 schematically displays the current

railway network. The bottom line is the main line. Each of the other five horizontal

lines represents a branch line. The labelled points are timing points, crossing loops,

junctions or yards.

Fig. 5. Schematic Diagram of the Mineral Rail Network

Trains are ordered daily to meet weekly (and longer) production schedules. To

make best use of the train unloaders at the port, train round trips need to be dispatched
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in such a way that there is a relatively even flow of laden returns to the port. At the

same time, trains are being dispatched over a single track railway which inherently

must delay most trains somewhere in their travels. The train operations challenge is to

meet the production schedules with the minimum of rolling stock and the minimum

of en-route delays.

Table 1. Line Capacity and Corrected Usage on the Mineral Rail Network

section capacity usage (%)

Grevillea – Hovea 114 9.3 -

Gecko – Hakea 74 14.4 -

Honeyeater – Hakea 32 33.6 —

Hakea – Hovea 105 20.4 ———–

Hovea – Heron 39 95.3 ———-

Cassowary – Cockatoo 31 33.9 —

Bandicoot – Bilby 109 14.7 -

Albatross – Cockatoo 37 84.3 ——–

Cockatoo – Dingo 152 21.1 –

Dingo – Emu 62 51.7 —–

Emu – Finch 87 36.8 —-

Finch – Goanna 43 62.1 ——

Goanna – Heron 50 42.4 —-

Heron – Ibis 116 41.2 —-

Ibis – Jacana 81 52.5 —–

Jacana – Kangaroo 78 54.8 —–

Kangaroo – Lyrebird 56 85.3 ———

Lyrebird – Malleefowl 106 50.1 —–

Malleefowl – Numbat 68 62.6 ——

Numbat – Oyster 119 44.9 —-

Oyster – Possum 38 124.9 ————

Possum – Quokka 39 123.4 ————

Quokka – Rosella 39 109.6 ———-

Rosella – Shearwater 65 81.5 ——–

Shearwater – Thylacine 119 44.9 —-

Thylacine – Wallaby 86 61.8 ——

We can statically estimate sectional line capacity from what we know of the phys-

ical layout of the railway and the sectional running times of the empty and laden

trains. We can deduce sectional usage from an input list of pre-resolution train re-

quirements – in this case a hypothetical schedule with twelve round trips dispatched

each day. However, input train requirements (and output train plans) are rarely uni-
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formly distributed throughout a working day. Therefore, these train requirements

need to be corrected for their non-uniformity. The modified usage can then be com-

pared to the previously calculated line capacity and the level of sectional usage cal-

culated. Table 1 shows line capacity and the corrected usage for the rail network with

twelve round trips each day. The table indicates that the railway between Oyster and

Rosella would be severely stressed by the proposed train requirements.

Our scheduler was then applied to the input train requirements to flow over the

railway network. The objective was to minimise the total delay experienced by all the

input trains. No distinction was made between delays to empty trains and delays to

laden trains. Nevertheless, it would be quite straightforward to differentially weight

empty and laden train delays. However, differential weighting, or any other form of

objective function, will not change the way in which Problem Space Search produces

feasible train plans. Instead, the choice of objective function will change the ranking

of feasible solutions so that different types of solutions will be favoured by different

objective functions. Fig. 4 presents a frequency distribution of the total delays gen-

erated from 835 feasible solutions to this train planning problem in 28 seconds. The

problem was run over a 36 hour period to cover the lead-in and lead-out from a full

working day, and included sixty-five long distance (port–mine) and short distance

(junction–mine) trains. Fig. 6 displays a train diagram (time versus distance) of the

best train plan. Delays averaged roughly 14% of the total travel time and favoured

empty trains over laden trains.

Fig. 6. An Optimised Train Plan for the Mineral Railway Network
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Because the static capacity analysis flagged an incipient lack of capacity in a key

section of the network we also looked at the impact that increasing the numbers of

trains would have on the use of line capacity. The infrastructure was held constant

but different numbers of mainline return trips were run – 8, 10 and 12 round trips

per day. Table 2 summarises the results of these train plan resolution trials. It is clear

that increasing the numbers of trains while keeping the current infrastructure fixed

will increase the average delay experienced by each train. Delay time increased non-

linearly, as a proportion of total time, as the number of trains in the system increased.

The question for the company is how much this increase in train delay may cost it

in lost production as against the cost of relieving line capacity in three single track

sections.

Table 2. Scheduling Results from 1000 Trials with Varying Numbers of Trains per Day on the

Mineral Railway Network (The Number of Trains is the Number of Different Main Line and

Branch Line Trains in the 36-Hour Scheduling Period.)

Trains per day

8 10 12

Number of trains 51 58 65

Number of feasible timetables (/1000) 606 744 835

Best delay (min) 789.8 1279.8 2104.3

Time to complete 1000 trials (sec) 13 20 28

Total travel time (min) 10077 12631 15125

Accumulated delay (min) 790 1280 2104

Delay percentage of total time 7.8 10.1 13.9

Total distance travelled (km) 9583 12090 14333

Average travel time (min) 197.6 217.8 232.7

Average delay time (min) 15.5 22.1 32.4

Average distance (km) 187.9 208.5 220.5

Average speed (km/h) 52.9 52.1 49.9

6 Conclusion

Problem Space Search has proved itself to be a powerful tool for the development of

effective train plans over a general railway network. It offers the user good results

within a short computation time.

The key to our scheduling system is our representation of the problem. We

are able to represent train movements on general railway networks, with branch-

ing and looping and different sectional track configurations. Trains are progressed,

one movement at a time, through the network under the control of a suitable dispatch
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heuristic. Problem Space Search is invoked to randomise the decision process to pro-

duce different feasible train plans. These train plans are then scored according to a

user-specified objective function of arbitrary sophistication. The user is then free to

select the best solutions for further examination.

Our scheduling system is currently being used by a mining company to plan

train movements from its mines to the port. It has been applied to current operations

and for planning future operations using increasing numbers of physical trains. The

process is not limited to varying the numbers of trains in the input train requirements.

It has also been designed to allow for changes in railway infrastructure, the opening

of more mines, and the introduction of additional rolling stock.
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Summary. The Commonwealth of Pennsylvania has the nation’s largest rural population and

the Commonwealth plays an important role in providing transportation for students to travel

to their respective schools. State and local governments reimburse school districts for student

transportation costs in Pennsylvania. Effective policies for governing the transportation of

students can result in large cost savings for the respective governments and reduced travel

time for the students. This paper presents heuristics to solve a complex rural school bus routing

problem using digitized road networks that can lead to cost savings for both State and local

governments. The school bus routing problem addressed and solved in this paper is a mixed-

fleet, multi-depot, site-dependent, split-delivery problem with side constraints. Computation

of real road distances for the rural school district between pickup points, depots and schools,

consisting of 4200 road segments, was done using digitized road networks obtained from the

U. S. Census Bureau. Heuristic algorithms were designed and implemented to solve a school

bus routing problem with real life data obtained from a rural school district. Feasible solutions

to the complex rural school bus routing problem, consisting of 13 depots, 5 schools, 71 pickup

points and 583 students, were obtained in less than 10 minutes of CPU time.

1 Introduction

The routing of school buses in rural areas is similar to a classical vehicle routing

problem (VRP) (Christofides and Eilon (1969)). A classical VRP consists of a set

of vehicles that start from a central depot and either pickup or deliver goods to a

set of customers. The objective of the classical VRP is to minimize the total num-

ber of vehicles and distance traveled without exceeding the capacity of the vehicles.

School bus routing for a rural school district is a complex VRP. In its simplest form,

a school bus routing problem consists of a finite number of students at known pickup

locations that are to be routed to a single school while reducing the overall routing

cost. In a classical VRP an unlimited number of homogenous vehicles are available

to service customers from a central depot with each vehicle constrained by capacity



210 Sam R. Thangiah et al.

and the total distance traveled. The distance between customers is calculated in Eu-

clidean space and the capacity is measured in uniform units. The last few decades

have seen the outgrowth of powerful algorithms for solving the VRP using exact

and heuristic methods. Surveys on classifications and applications of the VRP can

be found in (Bodin et al. (1983), Laporte (1992), Fisher (1995), Laporte and Osman

(1995), Cordeau et al. (2002))

A rural school district consists of a collection of elementary, middle and high

schools that require students to be picked up from their homes and dropped off at

their respective schools. The elementary, middle and high schools can start at differ-

ent times. Due to the multiplicity of elementary, middle or high schools in a rural

school district, students end up going to different schools. School buses can start at

the bus depot, a warehouse or a bus driver’s home and pick up all the students go-

ing to one or more school(s). The concept of a central starting and ending location

does not exist in real-life school bus routing problems as each school bus can have

multiple starting and ending locations.

In the Commonwealth of Pennsylvania, the cost of transporting students is borne

by the taxpayers at the local and State level. As such, contractors of school buses are

required to bid competitively to transport students. The school district has to con-

sider multiple contractors, mix fleet, multiple depots and heterogeneous vehicles to

service a rural school district. School buses vary in capacity, length, equipment avail-

able for special needs of students and fixed and variable costs. The responsibility of

a rural school district is to select the number and type of school buses required to

transport students while minimizing the cost of transportation. The mix of students

present at each pickup point must be taken into account. Special needs of students,

such as those in wheelchairs, would require a school bus with a wheelchair lift in

comparison to a regular bus. A pickup point with a regular and a wheelchair student

may require service of multiple buses of different types. That is, more than one vehi-

cle is required to service the same pickup point. The vehicle selection process has to

consider road constraints imposed on school buses. A large capacity bus may not be

able to negotiate narrow roads or make sharp turns on locations with limited visibility

to on-coming traffic. In addition, due to sparse roads in a rural school district, com-

bined with natural obstacles such as streams, hills and pedestrian roads, Euclidean

distance is often not the right measure of the actual distances between pickup points

(Thangiah and Nygaard (1992)). Thus, unlike densely populated regions, real road

network distances between pickup points need to be used to get feasible and useable

solutions.

This paper presents a heuristic algorithm to solve a complex rural school bus

routing problem using digitized road networks obtained from the U. S. Census Bu-

reau. The road network for the rural school district consisted of 4200 road segments,

and it was used to calculate real road distances between depots, schools and student

pickup points. Heuristic algorithms were implemented to solve a real life school bus

routing problem with data obtained from a rural school district consisting of five

schools, 583 students, 71 pickup points and 13 depots. The implemented heuristic,

for the school bus routing problem, solves a mixed-fleet, multi-depot, site-dependent,
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split-delivery problem with side constraints. Solutions to the problem were obtained

in less than 10 minutes of CPU time on a 3.05GHz Pentium IV computer system.

The next section of this paper explains the school bus routing problem and its as-

sociated complexities in more detail. Section 3 describes the digitized road network

used in calculating distances and travel times. Section 4 presents the conceptual and

mathematical formulation for the complex rural school bus routing problem. Sec-

tion 5 develops the cost analysis functions of the heuristic algorithm for solving the

problem. Insertion heuristics and local optimization methods for improving the so-

lution are described in Section 6. Computational results on a data set obtained from

a school district are detailed in Section 7, with concluding remarks and future work

given in Section 8.

2 The School Bus Routing Problem

In this section we discuss the school bus routing problem, with special emphasis on

the complexities involved in solving it.

2.1 Simple School Bus Problem

The simple school bus routing problem (SSBRP) can be considered to have a col-

lection of heterogeneous vehicles starting from multiple depots and serving stu-

dents located at different pickup points. This simplification–namely, removal of site-

dependent, split-delivery options–allows us to solve the problem using a multi-depot,

mixed-fleet formulation, or a variant of it for which there are implemented heuristics

from the literature.

In solving the SSBRP we ensure that the total number of students transported

by a bus does not exceed the capacity of the bus and the total travel time of the bus

does not exceed the maximum allowable travel time for a student. The travel time of

a student is the sum total of the distance traveled by the school bus and service time

incurred at each of the student’s pickup points, from the student’s pickup point to

the corresponding school. Service time is the sum of time spent in stopping, student

boarding and departing from a student pickup location.

The mathematical model for finding optimal route assignments for the SSBRP

belongs to the class of NP-complete problems as it has components of the VRP and

the traveling salesman problem (TSP) in it. For problems in the NP-complete class,

the time taken to obtain an optimal solution increases exponentially with respect to

the size of the problem. Due to the intrinsic difficulty of the problem, search methods

based on heuristics are most promising for solving practical size problems. Real-life

school bus routing problems have a much richer set of constraints than the SSBRP

and can therefore be expected to have a much higher computational complexity.

2.2 The Complexity of Routing School Buses

The significance of the school bus routing problem is attributed to its impact on

economic and social objectives, in addition to its monetary objectives (Serna and
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Bonrostro (2001)). Pennsylvania, with 23% of the state population living in rural ar-

eas, has the nation’s largest rural population based on the census conducted in 2000.

State and local governments in Pennsylvania reimburse the cost of transportation for

students to travel to and from their respective public schools. The State and individ-

ual school districts bear the cost of transporting students in rural areas. Since each

school district is responsible for developing its own school bus routes, most school

districts have analysts who use manual methods or commercial systems to generate

school bus routes. In theory, either the analyst or the commercial programs have to

consider many of the following constraints when routing school buses in rural areas:

• One-way roads

• Hazardous roads or roads without walkways

• Speed zones

• Multiple origination points of buses

• Student pickup and drop-off points

• Students having to cross multi-lane roads to get to a student pickup point

• Deadhaul distance (the distance from the origination point of an empty school

bus to the first student pickup point)

• Linehaul distance (distance traveled by a bus with at least one student onboard)

• Presence of student pickup points on inclined roads during winter

• Transportation of handicapped students on school buses equipped with wheel-

chair lifts or special-restraint seats

• Railroad crossings

In addition to the above constraints in routing school buses, there are objective

functions that should be minimized; in particular, the number of school buses and the

travel time of the students. Commercial school bus routing systems do not support all

the factors that need to be considered when routing school buses. Therefore analysts

rely on manual methods to route the school buses or manually change the routes

generated by commercial systems to conform to the constraints.

Manual methods for routing school buses have their limitations as the human

mind overloads rapidly when working with complex combinatorial problems. An-

alysts who deal routinely with combinatorial problems tend to rely on simplify-

ing assumptions in order to lessen the degree of complexity. It has been observed

that manual solutions for complex combinatorial problems are 5-30% short of opti-

mal solutions (measured in vehicles and/or total miles traveled) (Bodin and Berman

(1979)).

The average annual student transportation cost for a rural school district, using

either its own buses or contracted buses, is approximately 40% of the annual school

district budget. A school district that manually routes buses designs routes with little

attention to the quality or “goodness” of the resulting routes. Since there are no

alternate school bus routes which may serve as a point of reference for the quality

of the analyst’s manually created bus routes, the first feasible set of routes obtained

become s the final set of routes.
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Instead of the above complex routing constraints and objective functions, the

school district takes into consideration essentially the following three important fac-

tors that affect the routing process:

1. Local/State regulations governing the transportation of students

2. Reimbursements obtained by school districts

3. Travel time of students

When routing school buses, the first priority is to ensure that local and State reg-

ulations governing the transportation of students are observed. The next step in the

process is to route the school buses such that one can obtain the maximum reimburse-

ment from the State. The reimbursements received by the school district is positively

correlated to the total linehaul, rather than on the efficiency of the routes, such as the

reduction in the number of school buses used or travel time of the students.

We now consider the above three factors and discuss how each one of them in-

fluences the routing process.

2.3 Local and State Regulations

Local and State governments have rules and regulations governing the transportation

of students. These rules and regulations are for the safety of the students. The most

important regulations that govern the transportation of students are:

• Students are assigned to pickup locations such that the path they have to take

from their home to the location should not be hazardous.

• Students within one mile of school are required to walk to school unless the path

to the school is deemed hazardous.

These rules are very subjective and cannot be easily automated. As such, the

district transportation officer’s knowledge is used for determining the assignment of

students to pickup locations.

2.4 Reimbursement for School Districts

In Pennsylvania, the State and local governments reimburse the cost of transporting

students to public schools. A high percentage of the student transportation cost is

reimbursed by the State using a complex reimbursement formula. The percentage of

transportation cost not reimbursed by the State is covered by the local government

using income from school taxes levied on the local residents of that school district.

The complex reimbursement formula used by the State is based on factors such as:

• Total number of school buses

• Year of manufacture of the bus chassis

• Capacity of each school bus

• Average number of miles traveled by the bus for the school year

• Average number of miles traveled by the bus on a single day
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• Total number of students traveling on the bus each day

• Cost Price Index (CPI) for the year. The CPI is used to determine the rate of

inflation

• An aid ratio which computes the total taxes that are collected from the residents

of the district

The formula involving the above factors, we believe, has evolved over time and

consists of incremental additions appended to the original formula over the years. In

further studying the formula using linear programming models, the primary factor

having the largest impact on the cost was the total mileage traveled by the bus. The

secondary factor was the total number of students in a bus. Transportation cost can

be minimized by maximizing the number of students in a bus and the total travel time

of the bus. As a school bus has limited capacity and needs to minimize the maximum

travel time of a student, the objective is to find a set of routes that minimizes the total

distance traveled by the buses, with each student seated comfortably in the bus.

2.5 Travel Time of Students

Fig. 1 shows the bus route for four students that are to be transported to a school.

The strategy is to pickup the student that is furthest away from the school, Student

4, and then design a route that picks up the other students as the bus winds its way

towards the school. That is, Student 4 would be picked up first followed by Student

3, then Student 2 and then Student 1, where Student 1 is closest to the school.

This would be the most efficient route from the students point of view, as the stu-

dent closest to the school has to travel the minimum distance and no student travels

any further than Student 4 who is furthest away from the school. The deadhaul dis-

tance, or the distance for which the bus travels without any students, is the distance

from the school to Student 4.

When school districts route school buses, inefficient routing principles are used

in order to increase the reimbursement. Fig. 2 shows the type of routes used by school

buses to maximize reimbursements, resulting in students traveling a greater distance.

                  Deadhaul   miles  

                  Linehaul miles  

School
Student 1

Student   2

Student   3

Student 4

Fig. 1. An Efficient School Bus Route to Minimize Student Travel Time
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The deadhaul distance for Fig. 2 is the distance from the school to Student 1.

Most school districts use a routing strategy similar to Fig. 2, even though such strat-

egy increases the travel time for most students. In order to increase reimbursement,

school bus routes are designed to minimize deadhaul miles at the cost of increas-

ing student travel time. A student who is closest to the school is usually picked up

first, to minimize deadhaul, followed by other students. Another factor contributing

to the adoption of inefficient routing strategies is that the State does not reimburse

the school district for the deadhaul miles traveled that exceed the linehaul distance.

This is counter-productive to the principle of reimbursement, resulting in the State

and local governments, as well as the students, incurring higher costs.

                  Deadhaul miles 

                  Linehaul miles 

School

Student 1

Student 2 

Student 3 

Student 4 

Fig. 2. A School Bus Route that Maximizes Reimbursement

The policy on reimbursement should be correlated to the efficiency of the travel

time of the students. This would result in efficient routes that minimize the total

distance traveled by the students.

3 Digitized Road Network Map

Pennsylvania is comprised of counties, townships and boroughs. That is, the State

is divided into counties, which are further divided into townships and the boroughs

exist within the townships. Rural school districts are comprised of multiple boroughs

and townships. The distance between two student locations in a rural school district

may be geographically short, but the traveled distance may be far off based on the

available road network and the conditions of such roads. For example, in Fig. 3 the

Euclidean or Manhattan distance between Student-1 and Student-2 is smaller than

the road network distance, which involves traversing road segments <J, I>, <I, H>,

<H, K> and <K, D>. The use of Euclidean or Manhattan distance is not a good

measure of the travel distance between two student locations especially in rural areas.
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Unlike a road network in an urban setting, the majority of rural areas do not have

grid-like road networks. Rural roads wind around natural barriers such as rivers,

streams or hills. In addition, rural areas have low density road networks with man-

made barriers such as railroads and farmlands. In order to use realistic distances

between locations one has to use the actual digitized road networks to calculate the

distance.

Fig. 3. Euclidean Distance Versus Road Network Distance for Traveling from Pickup Location

J to Pickup Location D

The cost of obtaining digitized road network data can be prohibitive. A more

value-based solution is to obtain a free copy of the Tiger maps from the U.S. Depart-

ment of Census. Most commercial companies use the digitized maps obtained from

the Census Bureau as the base and refine it using satellite imagery and physical road

surveys. For the purpose of this research the Tiger maps from the U.S. Census Bu-

reau proved more than adequate. The road networks in the Tiger files are a collection

of road segments. Each road segment is a sequence of road links that define the shape

of the road and do not have any intersections except at the starting and ending points

of the road segments. For this research, special data structures were implemented to

extract the data from the Tiger files in order to use such data for computing road net-

work distances, which were used to compute shortest-path distances between various

points on the map.

Each student has a residence and a pickup location. Depending on the location

of the student’s residence, either the residence itself could be the pickup point or the

student would have to walk to a pickup point. The transportation officer determines

the assignment of pickup points on the digitized road segments. The digitized road

network was used to compute the shortest path between student pickup points, loca-

tions of the schools, contractor depots and bus driver homes. The shortest path be-

tween two locations on the map was computed using Dijkstra’s algorithm (Horowitz

and Sahni (1988)). The shortest path distances obtained from the digitized networks

were used for solving the rural school bus routing problem.
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4 Rural School Bus Routing Problem Formulation

In this section we discuss the various facets of the rural school bus routing problem

(RSBRP), provide the conceptual and mathematical formulation of the problem, and

address the constraints of a potential solution.

4.1 Multi-Depot, Mixed-Fleet, Site-Dependent, Split-Delivery VRP

When routing school buses, heuristics based on VRP’s can be used to solve the prob-

lem. However, this reliance on VRP heuristics usually leads to an oversimplification

of the problem, as there are a number of factors that make the RSBRP more complex

than the classical VRP. Those factors that contribute to the complexity of RSBRP are

discussed in this section.

In designing routes for a rural school district, the transportation officer is required

to send out bids for the school bus companies. Multiple contractors bid to route the

students for the school year. Each contractor has a set of multiple-capacity, multiple-

cost buses to transport students. Each bus can start from a depot, warehouse, bus

driver’s home or a school. As the school buses can start from multiple locations, RS-

BRP introduces the added complexity of multiple depots into the problem. As buses

used for transporting students are mixed-fleet, i.e., vehicles of varying capacities and

sizes, the RSBRP becomes a multi-depot, mixed-fleet VRP.

School buses servicing students are constrained by the roads, turns and the needs

of students to be serviced. For example, smaller buses would be used to pickup stu-

dents on narrow roads, since the smaller buses are more capable of negotiating the

narrow turns. Students in wheelchairs would need a bus with a wheelchair lift. Stu-

dents with different needs at an assigned pickup point have to be serviced by a com-

patible bus, thus introducing site-dependency to RSBRP. That is, the type of buses

servicing a pickup point is dependent on the mix of students at that pickup point.

In addition, the students at one pickup location can be serviced by more than one

bus, even if the students have the same needs. As multiple-buses might be required

to service the same pickup location, the RSBRP has a component of split-delivery.

The combination and presence of the different components discussed above

makes RSBRP a multi-depot, mixed-fleet, site-dependent, split-delivery VRP, which

is more complex than the classical VRP.

The multi-depot VRP (MDVRP) has one more layer of complexity than a stan-

dard VRP. As the name suggests, multi-depot problems contain more than one depot.

Since any bus can be assigned to any depot, and multiple buses can start from a sin-

gle depot, each depot with its set of buses resembles a VRP (Laporte et al. (1988),

Chao et al. (1993), Renaud et al. (1996), Cordeau et al. (1997), Thangiah and Salhi

(2001)).

In a mixed-fleet VRP (MFVRP), the set of trucks used to solve the problem are

heterogeneous. Each type of truck has a limited capacity in addition to fixed and

variable costs. Each truck must still service a series of customers without exceeding

its capacity. The total cost, which is a function of the fixed cost, variable cost and

distance, is to be minimized. The goal is to find the best fleet composition that can
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service all available customers, while minimizing the cost (Gheysens et al. (1984),

Golden et al. (1984), Desrochers and Verhoog (1991), Chao et al. (1993), Salhi and

Rand (1993), Cordeau et al. (1997), Gendreau et al. (1999)). The multi-depot, mixed-

fleet VRP is a combination of MDVRP and MFVRP (Salhi and Sari (1997)).

In a site-dependent VRP the set of trucks is not only heterogeneous, but so is the

set of customers. A one-to-one relationship exists between customers and trucks. As

each type of truck can only visit one type of customer, it can be characterized as a

multilevel routing problem. At the first level, customers are mapped to trucks. At the

second level, a VRP is solved for each type of vehicle. At the final level, a TSP is

solved for each route (Nag et al. (1998), Chao et al. (1999), Cordeau and Laporte

(2001), Chao et al. (2004)).

In a split-delivery VRP a customer can be serviced by more than one vehicle.

For example, if a customer has to ship products that cannot fit into a single truck, the

products are split so that it can be distributed between two or more trucks (Dror and

Trudeau (1989), Dror et al. (1994)). Similarly, in the RSBRP, the students assigned

to a pickup point may be serviced by more than one bus.

In the RSBRP each bus starts from a depot (whose location varies from one bus-

contractor to another) or a school and terminates at one of the schools. The starting

and ending points of the school buses can be different. In addition, depending on the

starting times of the schools, a school bus route may have more than one school as

terminating points. That is, both elementary and secondary school students may be

transported on the same school bus.

4.2 Mathematical Notation

Parameters:

P = {1, . . . , pmax} set of pickup points

N = {1, . . . , nmax} set of students

T = {1, . . . , tmax} set of available school buses

U = {1, . . . , umax} set of source or depot locations

V = {1, . . . , vmax} set of destinations or schools

Y = {1, . . . , ymax} set of vehicle types

Decision Variables:

Ri,j = shortest road network distance between pickup points i and j (i, j ∈ P )

Pu
i = shortest road network distance from depot u to pickup point i (i ∈

P, u ∈ U)

Qv
i = shortest road network distance from pickup point i to destination v (i ∈

P, v ∈ V )

Rv
u = set of shortest paths from depot u (u ∈ U) to school(s) v (v ∈ V )

ruv
iy = route i, which is served by vehicle of type y (y ∈ Y ), starting from

depot u (u ∈ U) to school v (v ∈ V )

Cuv
i = least extra cost of servicing student i (i ∈ N) from depot u (u ∈ U) to

school v (v ∈ V )
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pk
i = pickup point i (i ∈ P ) serviced by the vehicle which services route

k (k ∈ {ruv
jy , ∀j})

qi = demand of the ith (i ∈ N) student, assumed to be of unit value

Sy
ip = student i (i ∈ N) requiring vehicle type y (y ∈ Y ) assigned to pickup

point p (p ∈ P )

Functions:
N(Sy

ip) = total number of students at pickup point p

CAPy = capacity of vehicle type y (y ∈ Y )
V Cy = variable cost of vehicle type y (y ∈ Y )
FCy = fixed cost of vehicle type y (y ∈ Y )

Q(ruv
iy ) = sum of demands of students in route ruv

iy

L(ruv
iy ) = length, in miles, of route ruv

iy

TT (ruv
iy ) = total travel time of route ruv

iy

TC(ruv
iy ) = total cost for servicing route ruv

iy

ACn
r = cost of appending student n to an existing route r

NCn
r = cost of inserting student n to a new route r

4.3 School Bus Assignment to Source (Depot)

School buses and drivers are associated with a contractor and can start from either

the contractor depot, a warehouse belonging to the contractor, the driver’s home or

from a school. Initially all school buses serving a particular route are assumed to

start from the same depot (a school). That is, for each route, ruv
iy , y ∈ Y,U = V

and |U | = 1. During the local optimization of the feasible solution obtained for the

RSBRP, the school buses are assigned to different starting depots to evaluate the cost

of buses starting from locations other than schools.

4.4 School Bus Assignment to a Destination (School)

Each school bus is capable of having either one single destination or multiple desti-

nations. An example of a single destination is a bus that services all students going

to an elementary school or a middle school, but not both. An example of a bus with

multiple destinations is a bus that services all students going to either an elementary

school or a middle school. In the latter case, the bus will first drop off all students go-

ing to an elementary school followed by dropping off all students going to the middle

school. The implemented heuristics for the RSBRP can handle either of these cases.

Thus in each route, ruv
iy , v ∈ V and |V | ≥ 1.

4.5 Student Assignment to Pickup Points

School buses pickup students from a designated pickup point. The pickup point to

which a student is assigned is based on safety regulations, which are enacted by

State and local governments. At the current time, there is no algorithmic formulation
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that can assign students to pickup points. Such assignment is left to the director of

transportation for the school. The assignment Sy
ip of student i (i ∈ N) to pickup

point p (p ∈ P ) is done manually such that N(Sy
ip) ≥ 1. Assignments of students to

a pickup point are constrained by:

• The location of the pickup point on a road segment. That is, the pickup point

might be located on a road segment that is too narrow for a bus with a long body

to take turns. Road constraints also include sections where a road is too narrow

or winding for a bus to traverse safely.

• The type of students at the pickup point. Students with or without additional

needs might be assigned to the same pickup point. A bus that does not have such

resources will not service students with additional needs, such as wheelchair lifts

or monitors on bus.

Though students are assigned to a pickup point on a road network, there is no

guarantee that all students at that pickup point will be serviced by one vehicle type.

That is, a student may be served by any vehicle type that satisfies the student’s mini-

mum needs.

4.6 School Bus Turn Constraints

A turn constraint represents an instance where a bus cannot travel from one road

segment to another. Blind turns before intersections and places where the crest of a

hill obstructs another driver’s view are examples of turn constraints. School buses

are much longer than cars; therefore, turns that would be safe for a car to make may

be dangerous for a school bus. School bus turn constraints, based on vehicle type,

are integrated into the routing process.

The next section details cost functions for routing school buses used in heuristics

implemented to solve the RSBRP.

5 Cost of Routing School Buses

Designing heuristics to solve the RSBRP requires a metric to measure the cost of

routing school buses. The metric has to take into consideration locations of the

pickup points, assignment of students to pickup points, type of students, total number

of school buses with fixed and variable costs, type of vehicles, and the shortest road

network distances between all points such as the depots, schools and pickup points,

in addition to road and turn constraints.

5.1 Fixed and Variable Costs in School Bus Routing

Each academic year the school district accepts bids from multiple contractors for

transporting students. Each contractor provides the total number of buses available

with the maximum and minimum capacities of each bus, the type of equipment avail-

able on the bus, such as wheelchair lifts, and the fixed and variable cost for the bus.
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The total number of school buses tendered by contractors is usually greater than the

total required by the school district. Therefore, if Q(ruv
iy ) = 0, then it is assumed that

the vehicle was not selected in the bidding process. The cost of using vehicle i in the

routing process can be computed as: FCi + (V Ci × L(ruv
iy ))

The total cost of transporting students is computed as follows:

∑

∀i∈T

FCi + (V Ci × L(ruv
iy )), ∀Q(ruv

iy ) 
= 0 (1)

In Equation 1, reduction in the total number of vehicles is done implicitly. The

primary objective is to schedule all the students while the secondary objective is to

minimize the total distance and the number of vehicles. Reduction of cost in Equa-

tion 1 will implicitly lead to reduction in vehicles and distance.

5.2 Cost of Inserting a Student into a Route

When inserting a student Sy
jp into a route ruv

iy , the least cost of insertion, Cuv
j is

computed in the following manner. A student can be inserted into a non-empty route,

with at least one student in it (Insertion Type I), or into an empty route (Insertion Type

II). When assigning a student to a vehicle on the route, the type of vehicle required

by the student and the vehicle type servicing the student must be compatible. The

implemented heuristics uses either Insertion Type I or Insertion Type II.

Inserting Students into an Existing Route: Insertion Type I

• Compute the total cost of serving before and after inserting student n

TC(ruv
iy ) = (V Cy × L(ruv

iy )) + FCy

TC(ruv
iy ∪ {n}) = (V Cy ×

	
L(ruv

iy ) + [Rpre−p,p + Rp,post−p − Rpre−p,post−p]


) + FCy

(2)

• Compute added cost of inserting student i into the existing route r = ruv
iy

ACr
n = TC(ruv

iy ) − TC(ruv
iy ∪ {n}) (3)

Student n is inserted into route ruv
iy between two successive pickup point’s pre-p

and post-p in the route with the least cost computed using Equation 3. The two points,

pre-p and post-p, can be a depot and a student pickup point, two student pickup points

or a student pickup point and a school, respectively. The vehicle type for route ruv
iy

must be compatible with the vehicle type requested by student Sy
jp. In addition, for

insertion to take place into the route ruv
iy , the constraint CAPy ≥ Q(ruv

iy ) + qn must

be satisfied.
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Inserting Students into an Empty Route: Insertion Type II

Insertion Type II inserts a student into a new bus that is empty. The new cost of

adding a bus route r = ruv
iy to service a student n = Sy

jp is calculated as:

NCn
r = (V Cy × (Ru,p + Rp,v)) + FCy (4)

The student n is inserted in route ruv
iy between a depot and a school at a cost

obtained using Equation 4 with a vehicle type capable of serving the student. That

is, the vehicle type must match the requested student type. In addition, for insertion

to take place in route ruv
iy , the constraint CAPy ≥ qn must be satisfied.

6 School Bus Routing Heuristics

A solution to the RSBRP is obtained using cost Equations 3 and 4 by first obtaining

an initial feasible solution and then improving the solution by minimizing Equa-

tion 1. The improvement of a route is achieved using intra-route and inter-route local

optimization methods.

6.1 Obtaining an Initial Solution to the Problem

In order to obtain an initial feasible solution, the following algorithm is used:

Sort all available school buses in increasing order of capacity

for each available bus t := 1 to tmax loop

for each Sx
ip ∈ N (i := 1, . . . , |nmax|) loop

if (x = y in ruv
iy and Sx

ip) and (qi + Q(ruv
iy ) ≥ CAPy) then

Insert Sx
ip into route ruv

iy using Eq. 3

else

Insert Sx
ip into empty route ruv

iy using Eq. 4

end

Execute intra-route optimization

Increment Q(ruv
iy ) by qi

Tag Sx
ip as assigned

end

end

The above algorithm gives us an initial feasible solution. Though each student is

being inserted independently into a route, students are clustered by the pickup points

to which they have been assigned. That is, the bus will visit a pickup point only once

in its route as all students belonging to that pickup point are clustered together.

Once the initial solution is obtained, both intra- and inter-route improvement

heuristics are applied to improve the solution.
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6.2 Intra-Route Local Optimization Methods

The intra-route heuristics locally optimize a single route using methods such as 1-opt

and 2-opt. Local optimization methods 1-opt and 2-opt (Lin (1965), Lin and Kling-

man (1973)) operate on a single route in order to reduce the distance traveled along a

bus route. The local optimization methods move pickup points to a different location

within a route, if the move leads to a reduction in Equation 1. The local optimization

starts with an arbitrary Hamiltonian Cycle, in this case the route under consideration.

Assuming each pickup point on the route is a node and the path between the pickup

points is an edge, the local optimizations removes links, and creates new ones. Af-

ter each switch, the feasibility of the route is checked and the cost is calculated. All

possible combinations are checked and the combination that leads to the maximum

savings is retained.

6.3 Inter-Route Improvement Heuristics

The inter-route improvement heuristic moves students between routes, relocates the

starting point of a bus and reduces the total number of buses required to transport

students in order to minimize transportation cost. These heuristics are similar to the

ones implemented by Salhi and Rand (1993) for solving the MFVRP. The Salhi-

Rand heuristics had unlimited trucks available for selection and did not have to con-

sider site-dependent and split-delivery of customers. The heuristic methods imple-

mented for the RSBRP are the Student-Interchange, Sharing, Reduction, Combine,

and Swap, which are discussed in the following sections.

Student-Interchange Heuristic Method

The student-interchange method is based on the interchange of customers between

sets of routes. This technique has also been successfully applied to solve complex

VRPs (Osman and Christofides (1994), Thangiah et al. (1993), Thangiah (1996),

Thangiah et al. (1996), Thangiah and Petrovic (1998)).

Given a solution to the problem represented by a set of routes S = {R1, . . . , Rp,
. . . , Rq, . . . , RK}, where each route is the sequence of students serviced on this

route, a student-interchange between a pair of routes Rp and Rq is defined as a re-

placement of a sequence of students S1 ⊆ Rp of size |S1| ≤ Θ by another sequence

S2 ⊆ Rq of size |S2| ≤ Θ to get two new routes R′
p = (Rp −S1)∪S2, R

′
q = (Rq −

S2) ∪ S1 and a new neighboring solution S′ = {R1, . . . , R
′
p, . . . , R

′
q, . . . , R

′
K}.

More specifically, if one of the sequences is empty, then the students of one route are

simply moved to the other route (all possible insertion places being considered). If

both sequences contain at least one student, then these sequences are swapped (i.e.,

each sequence takes the place of the other sequence in each route). The neighbor-

hood NΘ(S) of a given solution S is the set of all neighbors S′ generated in this way

for a given value of Θ. The order in which the neighbors are searched is specified as

follows for a given solution S = {R1, . . . , Rp, . . . , Rq, . . . , RK}:

(R1, R2), (R1, R3), . . . , (R1, RK), (R2, R3), . . . , (R2, RK), . . . , (RK−1, RK)
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Hence, all possible pairs of routes (Rp, Rq) are examined to define a cycle of

search. For a given pair of routes (Rp, Rq), the order of application of the student-

interchange operators must also be defined. Here we consider the case Θ = 2 that re-

sults in one or two students being shifted from one route to another or exchanged be-

tween two routes. The search in the neighborhood of the current solution applies the

operators in the following order on each pair of routes: (0,1), (1,0), (1,1), (0,2), (2,0),

(2,1), (1,2) and (2,2). The operators (0,1), (1,0), (2,0) and (0,2) on routes (Rp, Rq)
indicate a shift of one or two students from one route to another. The operator (1,1)

indicates an exchange of one student between the two routes. The operators (1,2),

(2,1) and (2,2) are defined similarly and indicate an exchange of students between

the two routes.

For a given operator and a given pair of routes, the students are considered se-

quentially and systematically along the routes in order to find a better solution. Once

the generation of the neighborhood is established, the first improvement strategy se-

lects the first solution found in the neighborhood of the current solution. The strategy

accepts the first neighboring solution that decreases the cost of the current solution.

Sharing Heuristic Method

The sharing heuristic removes all pickup points from a bus and allocates them to

other non-empty buses. All student movements consist of moving the pickup points

between buses. When a pickup point is moved, all the students that are associated

with that pickup point are moved as a block. If all the removed students cannot be

allocated into other non-empty buses, they are placed into an empty bus. After all the

pickup points from the initial bus are placed in other buses, the cost is calculated. If

the new cost is less than the initial cost, the routes are retained. If not, the original

routes are restored and the next non-empty bus is selected for sharing. The heuristic

implementation is as follows:

Let Q(ruv
iy ) ≥ 1, i = 1, . . . , m

Let Q(ruv
jy ) = 0, j = m + 1, . . . , tmax

for (i := 1 to m) loop

C1 :=
∑m

h=1 TC(ruv
hy)

for each x ∈ ruv
iy where x ∈ P loop

Transfer x to ruv
ky where k = 1, . . . , m and k 
= i using Eq. 3

if x was not transferred then

Transfer x to ruv
hy using Eq. 4

end

end

if (Q(ruv
iy ) = 0) then

C2 :=
∑m

h=1 TC(ruv
hy) where h 
= i

if (C2 < C1) then

Keep the changes

else

Restore old routes
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end

else

Restore old routes

end

end

Reduction Heuristic Method

The Reduction optimization removes all pickup points from a bus and moves them

to other non-empty buses. The Reduction optimization will not use new buses. Once

a bus has emptied, the new cost is calculated. If the new cost is less than the initial

cost, the new routes will be retained; otherwise, the original routes are restored. The

heuristic implementation is as follows:

Let Q(ruv
iy ) ≥ 1, i = 1, . . . , m

Let Q(ruv
jy ) = 0, j = m + 1, . . . , tmax

for (i := 1 to m) loop

C1 :=
∑m

h=1 TC(ruv
hy)

for each x ∈ ruv
iy where x ∈ P loop

Transfer x to ruv
ky where k = 1, . . . , m and k 
= i

if (Q(ruv
iy ) = 0) then

C2 :=
∑m

h=1 TC(ruv
hy) where h 
= i

if (C2 < C1) then

Keep the new routes

else

Restore old routes

end

else

Restore old routes

end

end

end

Combine Heuristic Method

The combine heuristic removes all the students from two buses and assigns them

into one empty bus. This heuristic tries to reduce the total cost by trading fixed and

variable costs of two bus routes for the fixed and variable cost of one larger bus. In

addition, the newly created bus route is relocated to all compatible depots in search

of a starting location for the bus that reduces the total travel time. If the newly cre-

ated route has a lower cost than the previous two routes, the new route is retained;

otherwise the two old routes are restored. The heuristic implementation is as follows:

Let Q(ruv
iy ) ≥ 1, i = 1, . . . , m

Let Q(ruv
jy ) = 0, j = m + 1, . . . , tmax
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for (i := 1 to m − 1) loop

C1 :=
∑m

h=1 TC(ruv
hy)

for (j := m + 1 to tmax) loop

for each l ∈ ruv
iy and n ∈ ruv

i+1,y where l, n ∈ P loop

Transfer l, n to ruv
jy

end

end

if (Q(ruv
iy ) = 0) and (Q(ruv

i+1,y) = 0) then

C2 :=
∑m

k=1 TC(ruv
ky )

if (C2 < C1) then

Keep the new routes

else

Restore old routes

end

else

Restore old routes

end

end

Swap Buses Heuristic Method

The swap buses heuristic relocates the starting points of buses to find new routes with

reduced travel times. Each route has a starting and ending depot. The ending depot

is the school where the student is being dropped off. The starting depot is relocated

in search of solutions that reduce the total route cost. In this heuristic, each bus is

assigned to each of the compatible depots. If the travel time and cost is reduced after

a bus is relocated to a different depot, the bus with the new depot is retained. If the

relocation leads to an increase in cost or travel time, the bus is restored to its old

starting depot. This is done for all buses. The heuristic implementation is as follows:

Let Q(ruv
iy ) ≥ 1, i = 1, . . . , m

Let Q(ruv
jy ) = 0, j = m + 1, . . . , tmax

for (i := 1 to m) loop

C1 :=
∑m

h=1 TC(ruv
hy)

for (x := 1 to umax) loop

if x is compatible with y then

C2 :=
∑m

h=1 TC(ruv
hy)

if (C2 < C1) then

Keep the new routes

else

Restore old depot

end

end

end

end
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6.4 Heuristic for the RSBRP

The RSBRP implementation utilizes the above defined heuristics to solve the prob-

lem in the following sequence:

Step 1: Obtain initial solution in Results

Step 2: Perform local 1-opt and 2-opt for each of the routes in Results

Step 3: count := 0; FoundCostImprovement := True

Step 4: while (FoundCostImprovement and count < 10) loop

Comment: Incrementally accumulate routes’ improvements in Results

FoundCostImprovement := False

Apply student-interchange heuristic with Θ = 2
Perform local 1-opt and 2-opt for each of the routes

Apply Sharing heuristic

Perform local 1-opt and 2-opt for each of the routes

Apply Reduction heuristic

Perform local 1-opt and 2-opt for each of the routes

Apply Combine heuristic

Perform local 1-opt and 2-opt for each of the routes

Apply Swap-Buses heuristic

Perform local 1-opt and 2-opt for each of the routes

Increment count by 1

comment: Optimization heuristics set FoundCostImprovement

end

Step 5: Write out Results

The above heuristic algorithm for the RSBRP was used to solve a real life prob-

lem from a rural school district.

7 Computational Results

The generalized heuristic algorithm described above was used to solve a RSBRP with

data obtained from a local school district. The problem consisted of 583 students, 71

pickup points and 13 depots. The breakdown of the depots was three contractor’s de-

pots, four warehouses, and six driver’s home depots. A total of five schools were used

as destinations. A total of 18 school buses were made available through bids from

contractors. The maximum travel time for a bus was set to 70 minutes as determined

by the school district.

The type of students that were to be serviced for the local school district consisted

of regular students, students needing wheel chair assistance, students requiring buses

with wheelchair lifts and students who have to be monitored while on the bus. The

583 students consisted of 540 regular students (93%), 15 monitored students (3%),

18 wheelchair students (3%) and 10 wheelchair/lift students (1%). The heuristic al-

gorithm was implemented in Java and executed on a 3.05 GHz Pentium IV machine

with 1GB of RAM on a Windows 2000 operating system.
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The solutions obtained by the implemented heuristics reduced the distance and

the total number of buses in comparison to the manual solutions obtained by the

school district. The solution available from the school district is not comparable to

the solution obtained by the implemented heuristics due to a gulf between the cost

function used by the school district to determine the efficiency of a bus route in

comparison to actual cost efficiency of a route.

School districts tend to maximize the reimbursement that can be obtained from

the State and local tax base. A five-minute increase in the route travel time of a

school bus may lead to an approximate savings of 0.1% in transportation cost for

each school bus, as this may help avoid adding new buses to the routing process.

Similarly, decreasing the route travel time of a school bus by five minutes may result

in an approximate increase of 0.1% in reimbursement to the school district for each

school bus. As school districts are not reimbursed for deadhaul distances that exceed

the linehaul distances, manual routes tend to either minimize or eliminate the dead-

haul distances entirely for a school bus. Reduction in deadhaul distances lead to an

increase in the travel time of a student as a school bus would pick the student closest

to the starting depot at the start of the journey.

The objective of the implemented heuristic algorithm was to reduce the trans-

portation cost. Reduction in transportation cost results in maximizing deadhaul dis-

tance, minimizing the total travel time of the students and minimizing the total num-

ber of school buses and distances traveled by the school buses. The implemented

heuristics were tested using different methods for obtaining initial solutions. The

two main methods of obtaining an initial solution were by assigning the selected

student to the first available school bus or the best available school bus in terms of

cost. For each of these assignments, the students were picked up according to three

different strategies: the order of the furthest away from the depot, the order of the

closest to the depot or in a random order.

Table 1 details solutions obtained by placing students in the first school bus in

terms of minimal cost. Table 2 details solutions obtained by placing students in the

best feasible school bus. All the school buses start from a single depot initially. The

local heuristics search for alternate starting depots for the school buses during the

implementation. In all the solutions, the results indicate that it is advantageous to

start from multiple depots when servicing the students. This is not practiced currently

by the school district.

Assignment of students to the first bus leads to feasible solutions irrespective of

how the students are selected as detailed in Table 1. All solutions in Table 2 start

from one depot but fan out to multiple depots. Selection of students, either randomly

or in the order of the furthest away from the school, leads to buses starting from six

depots compared to buses starting from five depots when selecting students in the

order of the closest to the school.

When students are assigned to the best possible bus, as in Table 2, irrespective

of how the students are chosen for placement, all solutions obtained terminate with

some of the students not assigned to any of the school buses. Assignment of students

to the best fitting school bus, initially, leads quickly to local optimization. The rapid
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convergence into a locally optimal solution, initiated by placing students in the best

fitting bus, prevents the inter- or intra-route heuristics from improving the solution.

In addition, selection of students randomly and in the order of the furthest away

also leads to a reduction in the total number of school buses used in transporting

students. Reduction in school buses does not necessarily lead to cost savings as in

a mixed-fleet problem, where two smaller buses could have been traded for a larger

bus leading to an increase in cost. Both Tables 1 and 23 list the total cost of the buses

in the Cost column, which gives the sum of the fixed and variable costs for all school

buses used for transporting students. The best solution found by the heuristic is when

students initially selected are furthest away from the school. All of the solutions

allow deadhaul to be integrated into the routes as they lead to reduction in the travel

time of students. The school buses that are used in the routing process also fill the

buses to approximately 90% of their capacity.

Table 1. Details of Solutions Obtained by Placing Students Initially into the First Bus

First Bus D B S !S PC SDPC TD TT DH MaxTT AvgTT Cost CPU

Closest Student

initial solution 1 12 583 0 88.4% 0.02 257.29 366.09 32.22 53.31 6.44 2949.54 3.75
final solution 5 12 583 0 88.4% 0.03 235.29 353.25 23.20 49.01 5.04 2805.86 405.93

Furthest Student

initial solution 1 12 583 0 79.3% 0.01 253.35 363.78 27.93 50.78 6.59 2918.97 4.20
final solution 6 11 583 0 89.4% 0.03 223.41 346.37 20.43 50.86 5.21 2629.45 466.90

Random Student

initial solution 1 12 583 0 79.3% 0.02 327.52 407.05 30.92 54.36 6.72 2968.86 4.29
final solution 6 11 583 0 89.4% 0.03 228.56 349.32 17.52 46.51 4.69 2651.74 344.73

The solutions for the RSBRP obtained by the implemented heuristics indicate a

number of factors that must be considered when routing school buses, namely:

• Deadhaul distances should be integrated into school bus routes to reduce the

maximum travel time of students. Decreasing or eliminating deadhaul distances

increases the cost of the bus routes and the maximum travel time of students.

3 Legend for Tables 1 and 2:

D Depots

B Buses

S Students Serviced

!S Students Not Serviced

PC Percent Capacity of Buses Filled

SDPC Std. Dev. of Percent Capacity of Buses Filled

TD Total Distance

TT Total Travel Time

DH Total Deadhaul Distance

MaxTT Maximum Travel Time

AvgTT Average Travel Time

Cost Total Route Cost of Buses

CPU CPU time in seconds on a 3.2 GHz Machine
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Table 2. Details of Solutions Obtained by Placing Students Initially into the Best Bus

First Bus D B S !S PC SDPC TD TT DH MaxTT AvgTT Cost CPU

Closest Student

initial solution 1 14 563 20 84.6% 0.03 285.29 377.42 36.83 53.31 5.97 3148.75 12.58
final solution 8 12 563 20 88.3% 0.03 224.77 342.11 16.63 49.01 3.61 2637.91 437.33

Furthest Student

initial solution 1 14 572 11 86.0% 0.03 281.95 377.72 38.80 50.78 5.89 3065.77 16.11
final solution 8 12 572 11 87.5% 0.04 233.22 349.29 21.84 50.86 3.05 2695.74 355.55

Random Student

initial solution 1 14 577 6 86.7% 0.03 337.56 411.41 37.32 54.36 5.78 3068.25 15.36
final solution 6 12 577 6 89.1% 0.32 224.35 345.37 17.43 46.51 4.69 2663.25 491.42

• Buses starting from one central depot result in an increase in transportation cost.

School buses should be routed from multiple depots to reduce the cost of trans-

portation and maximum travel time of the students.

• Buses should be filled to 90% of its capacity. Increasing the number of students

in a school bus to its full capacity will lead to an increase in the maximum travel

time for students. Buses filled to full capacity can lead to uncomfortable rides for

the students. Building a 10% redundancy in school bus capacity will allow for

students to be added to a route without having to reroute school buses during the

school semester.

State and local governments should look into the formula being used to reimburse

transportation cost for school districts; as such formula is not an effective measure

of minimizing either the cost of transportation or the travel time of students. State

and local reimbursement formulas should have incentives for school districts that

integrate deadhauls into their routes and reduce maximum travel time of students.

8 Conclusions and Future Directions

In this paper we have described the implementation of heuristics to solve a rural

school bus routing problem that has multi-depot, mixed-fleet, site-dependent and

split-delivery characteristics with side constraints. The heuristics were tested on real

life data obtained from a rural school district. The implemented heuristics obtain

cost effective solutions in under 10 minutes of CPU time on a Pentium IV machine

running at 3.05 GHz.

There are a number of research avenues that deserve further investigations. At the

current time all school buses start from a single depot, but it would seem that starting

buses from multiple-depots might be advantageous. That is, assign each school bus to

start from a different depot and then assign students to the bus. This would depend on

how the students are distributed in the school district. In addition, the solutions can be

further improved by using meta-heuristic search strategies such as genetic algorithms

or tabu search. Even though adding a layer of meta-heuristics to the current set of

heuristics will lead to an increase in the computational time, it would be a worthwhile

effort as these routes are computed each semester and tend to stay the same for the

entire semester. Therefore, expending extra processing time on the computational

effort to get better solutions would result in efficient routes for the school district.
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Summary. London Heathrow airport is one of the busiest airports in the world. Moreover, it

is unusual among the world’s leading airports in that it only has two runways. At many air-

ports the runway throughput is the bottleneck to the departure process and, as such, it is vital

to schedule departures effectively and efficiently. For reasons of safety, separations need to be

enforced between departing aircraft. The minimum separation between any pair of departing

aircraft is determined not only by those aircraft but also by the flight paths and speeds of air-

craft that have previously departed. Departures from London Heathrow are subject to physical

constraints that are not usually addressed in departure runway scheduling models. There are

many constraints which impact upon the orders of aircraft that are possible and we will show

how these constraints either have already been included in the model we present or can be

included in the future. The runway controllers are responsible for the sequencing of the air-

craft for the departure runway. This is currently carried out manually. In this paper we propose

a metaheuristic-based solution for determining good sequences of aircraft in order to aid the

runway controller in this difficult and demanding task. Finally some results are given to show

the effectiveness of this system and we evaluate those results against manually produced real

world schedules.

1 Introduction

London Heathrow is a busy two-runway airport which, due to its popularity with both

airlines and passengers, suffers severe aircraft congestion at certain times. Traffic in

airports is not evenly spread, for obvious reasons which pertain to airline and passen-

ger preferences. There are, inevitably, times when the departure process is congested

but the arrivals are sparse. There are also times when the situation is reversed, and

times when both are congested. London Heathrow airport is actually situated on an

extremely small plot of land in comparison to other airports around the world and

with respect to how busy the airport is.
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The airport capacity problem is concerned with estimating the capacity of an

airport in terms of arrivals and departures. It has been examined for a number of

years. Newell (1979) provided a model and showed that the capacity of the airport is

increased when arrivals and departures can be alternated on both runways. Although

mixed mode, where arrivals and departures are intermixed on a runway, is preferable

for increasing the throughput, this is not currently possible at Heathrow due to the

proximity of the surrounding residences. However, there is the future possibility of

it being considered for peak times.

The departure flow at Logan airport was analysed in Idris et al. (1998a), Idris

et al. (1998b), and Logan airport was compared to other major airports. Runway

scheduling was seen to be a bottleneck upon the departure process and the authors

concluded that it is vital to increase the throughput of the departure runway.

There are some similarities between the arrival and departure processes for the

runways at an airport. Both processes are subject to sequence-dependent separation

times between aircraft. Previous research has looked at the arrivals problem with the

goal being to order arriving aircraft for a single runway so as to either minimise the

total completion time or to minimise the total deviation from an ideal arrival time for

each aircraft. Mixed integer zero-one formulations were presented in Beasley et al.

(2000) and genetic algorithms were shown to be effective in Beasley et al. (2001).

Abela et al. (1993) looked at the arrivals problem for a set of aircraft with landing

time windows. They presented a genetic algorithm to give an approximate solution

and a branch and bound algorithm for solving the problem when formulated as a 0-1

mixed integer programming problem to give an exact solution. A heuristic approach

for an upper bound and a branch and bound algorithm for the arrivals problem were

given in Ernst et al. (1999). A network simplex method was used to assign arrival

times given any partial ordering of aircraft. The arrivals problem, as it is presented

in the literature, however, does not address the major constraints upon the departures

problem at London Heathrow airport.

A constraint satisfaction based model for the departure problem was presented in

van Leeuwen et al. (2002) for solution by ILOG Solver and Scheduler. A 15 minute

time slot was assigned to each aircraft and separations were allocated based upon the

size and speed of the aircraft and upon the exit point that the departing aircraft were

going to use.

The departure process was analysed and a departure planner proposed in Anag-

nostakis et al. (2000), Anagnostakis and Clarke (2002) and Anagnostakis and Clarke

(2003). A search tree was described and branch and bound techniques or an A* al-

gorithm were recommended for solving the departure problem in Anagnostakis et al.

(2001). A dynamic program was suggested in Trivizas (1998) to solve the departure

order problem by limiting the possible number of aircraft that are considered for any

place in the schedule, reducing the search space dramatically.

If only considering separations between adjacent aircraft and ignoring the phys-

ical constraints from the holding points, the departure problem can be seen to be a

variant of the single machine job sequencing problem where jobs have sequence-

dependent processing or set-up times. Substantial research has been undertaken into

this problem. For example, Bianco et al. (1999) looked at the generalised prob-
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lem with release dates as well as sequence-dependent processing times, showing

the equivalence to the cumulative asymmetric travelling salesman problem with re-

lease dates. To ensure safety in the departure process, however, it is not possible to

only consider adjacent pairs of aircraft and it is easy to produce schedules where all

adjacent pairs have the required separations but other aircraft pairs do not.

Craig et al. (2001) did look at the effects of one holding point structure and gave

a dynamic programming solution for scheduling take-offs. In practice, however, the

holding point structures are more flexible than the one described here and a more

general solution needs to be developed.

There are important constraints at London Heathrow airport that are not normally

considered in the departure problem as it is presented in the current scientific litera-

ture. These are identified in the problem description below.

2 Problem Description

The objective of this paper is to increase the throughput of the departure runway

subject to various constraints, with safety being paramount. There are currently only

two runways in normal use at Heathrow; however, if environmental targets are met,

there may be a possibility to add a third, parallel runway in the future. At any time

of the day, only one runway can currently be used for departures.

The direction of the wind determines the direction in which the runways are used.

The runways are labelled according to the direction in which they are employed and

whether they are on the right or the left when facing that direction. The four runway

configurations have been labelled in Fig. 1. For example, when arriving or departing

heading west, the northern runway is referred to as 27R as it has a direction of 270

degrees and is the runway on the right.

There is actually a third runway already but this is only ever used for arrivals. It

is shorter than the other two and not long enough for many Heathrow departures. It

is used no more than twice per year. It also intersects both of the other runways so

it is not practical to use it if either of the other two runways is in use. Indeed, it is

usually used as a taxiway.
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Fig. 1. The Layout of London Heathrow Airport
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There are currently four terminals at London Heathrow, labelled T1 to T4 in

Fig. 1. Three terminals are situated between the runways but the fourth is to the

south of the southern runway.

When a flight is ready to depart a delivery controller has to give permission for

engine start up. A ground controller then instructs the pilot in order to control the

movement of the aircraft around the taxiways. Once an aircraft approaches the run-

way end and is no longer in conflict with any other aircraft the ground controller will

relinquish control of the aircraft to the runway controller.

In this paper, we are concerned only with the operations of the runway controller.

We assume that the ground controller and delivery controller are currently outside of

the system and merely feed aircraft into the start of the system. Later research will

look to include these roles into the model.

There are holding points, labelled HP in Fig. 1 at each end of each of the runways,

and both north and south of the southern runway. Within these physical holding point

structures the runway controller can reorder the aircraft before they reach the runway.

2.1 Holding Point Constraints

Aircraft go through holding points to get to the runways. Holding points can be

considered to be one or more entrance queues to some maneuvering space where a

final take-off order is produced for the runway. Where there are different entrance

queues available, the ground controller will usually send an aircraft into the most

convenient queue. The runway controller can request aircraft to be sent to specific

queues but in practice, as the runway controller is very busy with the aircraft already

in the holding points, there is rarely sufficient time to also consider the aircraft the

ground controller has.

As mentioned before, Heathrow has very limited space so the holding point and

taxi space is limited. Given the initial order of aircraft in the input queues to the

holding points, the runway controller has to decide how to sequence the take-offs

in order to maximise the throughput at the runway. This can be a very difficult task

at times. Only limited amounts of reordering are possible at these holding points.

The configuration of the holding points varies greatly between runway ends and will

determine what reordering operations can take place and the costs involved in each

operation.

2.2 Minimum Separations

To ensure safety, minimum separation times are imposed between aircraft taking off.

The order of the aircraft for take-off can make a significant difference to the total

delay that needs to be imposed upon the aircraft.

The minimum separation between aircraft is determined by:

• Wake Vortex: Large aircraft leave a stronger wake vortex than smaller, lighter

aircraft and are also less affected by wake vortex. Every aircraft has a weight

category and the wake vortex separation for any pair of aircraft can be determined

by comparing their weight categories.
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• Departure Routes: Aircraft will usually have a Standard Instrument Departure

(SID) route assigned to them, giving a pilot a known departure route to follow.

The relative SID routes of any two aircraft will impose a minimum departure

interval between them. This ensures that safe minimum separation distances are

kept while in flight. At times of congestion in the airspace, a larger than normal

separation may be required between certain SID routes in order to increase the

separation between flights heading into the congestion. These separations differ

depending upon the runway in use at the time.

• Speed Group: The relative flight speeds of the aircraft can also make a differ-

ence to the separations which must be imposed upon aircraft flying the same or

similar routes. The relative speed groups of the two aircraft modify the separa-

tion required for the relative SID routes. If the following aircraft will close the

distance, then a larger initial separation is necessary. Conversely, if the following

aircraft is slower then a lower separation can sometimes be applied.

The runway controller will aim for minimum separations between aircraft wher-

ever possible. It should be noted here that a controller has some discretion as far as

some separations are concerned. In particular some of the SID route based separa-

tions can be reduced in good visibility.

2.3 Other Constraints

The departure process is a dynamic system where aircraft are added to, and removed

from, the system over time. The runway controller will have only limited knowledge

about the aircraft that are not currently at the holding points.

The runway controller has a lot of information that is very hard to capture as

hard data. In many cases a controller will be weighing the effects of contradictory

constraints such as maximising throughput while minimising overtaking, to ensure

fairness and minimising maneuvering, to reduce workload.

2.4 Overall Objective

The objective is to find candidate solutions for which the runway throughput is max-

imised and all constraints are met. We were told by one air traffic controller that the

best figure obtained for Heathrow was 54 aircraft in an hour and that this figure is so

good that it is extremely unusual.

For our research, we use a reduction in the holding point delay as a surrogate

objective. Holding point delay is measured as the amount of time the aircraft spend

in the holding point. Any objective to minimise this will have the effect of reducing

the number of large separations and also of moving larger separations later in the take

off order, so that they delay less aircraft. Moving larger separations to a later position

in the schedule means that there is more opportunity to deal with them using new

aircraft entering the system later. So a delay based objective for the problem at any

instant in time is a good surrogate for a throughput based approach for the overall

schedule. As the holding point arrival times are constant, the sum of take-off times

could be used as an equivalent, but less meaningful, objective function.
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3 Model Description

In this model we aim to maximise the throughput of the runway by minimising the

total delay, D, suffered by the aircraft at the holding points. Let hi be the arrival time

for aircraft i at the holding point, where i is an integer ≥ 1. The integer i represents

the position of the aircraft in the take-off order. If di is the take-off time for aircraft

i from the runway, then we can calculate the total delay at the holding points using

Equation (1) where n is the total number of aircraft departing.

We define a function S(j, i) to give the minimum separation necessary between

leading aircraft j and (not necessarily immediately) following aircraft i to meet all

separation requirements. Function S(j, i) incorporates all separation rules for weight

classes, SID routes and speed groups.

If we assign each aircraft a route through the holding point structure then, given

a holding point entry time, hi, and a suitable function, T (ti), for the traversal time

through the holding points along a traversal path ti for aircraft i, the earliest time the

aircraft can reach the runway can be calculated as hi + T (ti).
For the model, we assume that all aircraft take off as early as possible, so for any

aircraft, i, the take-off time, di, can be predicted as the earliest point that both allows

sufficient time to reach the runway and complies with all of the required separation

rules, Equation (2).

Function S(j, i) can be taken to be the maximum of two functions: W (wj , wi)
which will calculate the required wake vortex separation from the weight categories

wi and wj of aircraft i and j; and, R(rj , sj , ri, si) which will calculate the required

separation based upon the SID routes, ri and rj , and the speed groups, si and sj , of

the aircraft i and j (see Equation (3)). The separations for SID routes differ depend-

ing on which runway the aircraft are departing from, so R(rj , sj , ri, si), like T (ti),
is runway specific.

Both functions W (wj , wi) and R(rj , sj , ri, si) are defined to return standard

separation values in accordance with current regulations. It should be noted that the

runway controller has some flexibility in good weather to reduce the separations

given by R(rj , sj , ri, si) and a fully operational decision support system would allow

the controller to do just that.

We can express this model as follows:

Minimize

D =

n
∑

i=1

(di − hi) (1)

where

di = max(hi + T (ti),max
j �=i

(dj + S(j, i))) (2)

S(j, i) = max(W (wj , wi), R(rj , sj , ri, si)) (3)
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3.1 Holding Point Constraints

Any practical model must incorporate the holding point constraints. There is no point

in presenting candidate solutions to a runway controller if he/she cannot actually

achieve the order due to the physical constraints.

An example of a holding point structure can be seen in Fig. 2. The nodes are the

valid positions for aircraft and the arcs show moves that aircraft could make. This

network is more restrictive than the actual network at the associated holding point

at Heathrow and is deliberately so. Any solution which is feasible for this network

should be both feasible and sensible for the real network.

We investigate metaheuristic local search, as specified in Section 4. This means

that the search will move from one solution to the next. A solution could consist of

just a final take-off order or it could give details about all of the taxi movements

within the holding points and a take-off order could be derived from this.

If a solution consisted of the order in which individual moves were made within

the holding point, specifying details of how aircraft attain the reordering as well as

the final take-off order achieved, the search space would be extremely large. Many

solutions would give the same take-off order but differ in the paths used to traverse

the holding point or in the order in which moves were made. The relative order in

which many actions take place often does not matter. So, many apparently different

solutions may, in fact, be identical. Some paths take longer to traverse than others,

so some solutions will be much better than others that have the same take-off order.

This manoeuvring cost would have to be considered within the objective function.

Rather than modelling the movement within the holding points, the selected

model instead has solutions which specify only a take-off order rather than how the

order is achieved. Not all potential take-off orders will be achievable, however, so

this must be verified. The method, in which the reordering is attained, does have an

impact and some ways are obviously better than others. We use a heuristic to assign

holding point traversal paths to aircraft, then perform a feasibility check to verify

that the solution is achievable, given the holding point structure.

3.2 Path Assignment Heuristic

The heuristic to assign paths through the holding point to aircraft is holding point

specific. The first stage in the design is to identify the good paths through the hold-

ing point. This is performed by asking the runway controllers about the ease and

feasibility of using possible paths and eliminating from consideration any which are

difficult to use, leaving only good paths. Given each entrance point, multiple paths

are available.

Some paths are faster than others, but all paths are easy to use even though some

will be longer than others. The allocation heuristic allocates slower paths to aircraft

that are overtaken and faster paths to aircraft that overtake. This ensures that all

aircraft on longer, slower paths are being overtaken in the holding point and therefore

have much more time available to traverse the holding point.
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Fig. 2. An Example Holding Point Network Structure

For example, if two aircraft arriving at entrance A in Fig. 2 needed to reverse

their order before take-off, the first would be assigned path ADGH and the second

path ADH. The first would then hold at G while the second overtook it.

Once an aircraft is in the holding point the heuristic does not allow the assigned

path to be changed so it is important to attempt to maintain flexibility when assigning

paths to aircraft close to the holding point.

3.3 Directed Graph Model of the Holding Point

Once paths have been assigned to aircraft, the feasibility of the schedule is checked

by feeding aircraft into the start nodes of the directed graph for the holding point,

in the order they will arrive at the holding point. Fig. 2 shows the graph used for

the 27R holding point. Rules are used to determine which aircraft to move next and

whether moving a specific aircraft could block another aircraft. If the aircraft can exit

the graph onto the runway in the desired take-off order then the schedule is deemed

to be feasible.

Two levels of pre-processing are used. The first is based purely upon the holding

point structure and the possible paths that could be employed. This stage is performed

for each holding point graph prior to the start of the tests and can be performed off-

line. It caches information about the later structure of the holding point beyond each

node, recording for each of the paths entering the node, details of which other paths

converge with it and how many nodes are not shared between them. The second pre-

processing stage requires knowledge of the desired take-off order, so it is performed

before each feasibility check. This stage calculates partial take off orders at each

node, for sets of converging paths, ensuring that, for any pair of aircraft for which

there is no possibility of changing order beyond this node, the aircraft enter the node

in the correct order. Together, the pre-processing results provide knowledge about

whether any aircraft can move without blocking another aircraft, ensuring that the

feasibility check can be made both deterministically and quickly.
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4 Departure Scheduling Algorithms

All of the search heuristics that we investigated had the same basic format but dif-

fered in the details. They are described below.

First descent: The first descent algorithm is the most simplistic algorithm and has

the following structure.

1. Obtain initial current solution. An initial current solution will usually be a solu-

tion where the aircraft are in the order at which they arrived at the holding points.

This solution has the advantage that it will always be feasible as no reordering is

necessary within the holding points.

2. Evaluate the solution as described in Section 4.2, using the default holding point

paths as no reordering is necessary so feasibility is guaranteed.

3. Generate a new candidate solution by selecting a solution from the neighbour-

hood of the current solution, as described in Section 4.1.

4. Heuristically assign holding point paths to aircraft, as in Section 3.2.

5. Check the feasibility at the holding point structure to ensure that the order of

take-off is possible, as described in Section 3.3.

6. Evaluate the cost of the solution, as shown in Section 4.2.

7. If the candidate solution has a lower cost than the current solution then accept it

as the new current solution.

8. If the given number of evaluations have been completed, then stop the algorithm

and report the best result so far, otherwise return to Step 3.

Simulated annealing: The simulated annealing algorithm has the same structure

as the first descent algorithm except in Step 7. In Step 7, rather than only accepting

better solutions, the simulated annealing algorithm will sometimes accept moves

to worse solutions, allowing it to escape from local optima. If the cost of the new

solution is less than the cost of the current solution, then the new solution will always

be accepted. If the cost of the new solution is more than the cost of the current

solution then there is a small chance to still accept the new solution.

Let Dcurr be the cost of the current solution and Dcand be the cost of the candi-

date solution.

The candidate solution will be accepted in Step 7 if:

Dcand < Dcurr (4)

or

R < e−δ/T (5)

where δ = Dcand − Dcurr is the difference between the current and candidate solu-

tions, R represents a uniform random variable in the range [0..1] and T is a temper-

ature which is initially large, so that many bad solutions are accepted, but decreases

over time so that the simulated annealing algorithm slowly converges towards the

first descent over time.
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Steeper descent: The steeper descent and tabu search algorithms are similar to the

first descent algorithm but both generate fifty candidate solutions at a time in Step 3

rather than just one. All of the fifty candidates are evaluated simultaneously in Steps

4, 5 and 6. In Step 7 the best of the feasible candidate solutions is adopted as the new

current solution in Step 7. The best candidate is adopted even if it is worse than the

current solution, which means this is more than a strict descent algorithm. This gives

the algorithm a limited ability to move out of local optima but no method to avoid it

moving straight back to the local optimum it just left.

Evaluations of candidates are expensive so, for comparison, the searches are lim-

ited to a number of evaluations rather than a number of iterations. This means that the

first descent and simulated annealing algorithms run for fifty times as many iterations

as the steeper descent and tabu search algorithms.

Tabu search: The tabu search algorithm is similar to the steeper descent algorithm

except that it maintains a list of tabu moves. When a move is made, details of the

move are stored on a tabu list. The tabu list stores details of which aircraft were

moved and the absolute positions they were moved from, for the last ten moves

made. If a future move attempts to place all of these aircraft back at the position

from which they were moved then it will be declared tabu and rejected.

Like the steeper descent algorithm, the tabu search evaluates fifty candidate solu-

tions at once. The only difference between the two algorithms is that, in Step 7, each

candidate is evaluated and tested to see if it matches a move on the tabu list. The best

of the feasible, non-tabu candidates is adopted and the details of the move made are

stored on the tabu list. Again, the best candidate is adopted even if it is worse than

the current solution, allowing the search to escape local optima. The tabu list ensures

the search cannot quickly return to a local optimum from which it has escaped.

4.1 Neighbourhood Design

These algorithms all rely upon the selection of neighbouring solutions. Choosing

a neighbouring solution is a matter of first randomly determining the move to use

then randomly determining the details of that move. A large number of moves are

available to the search methods.

Swap single aircraft: The swap single aircraft move takes two aircraft from the

schedule and swaps the positions of the aircraft in the final take-off order. There is a

30% chance that this move will be used, selecting two aircraft at random.

Shift aircraft: The shift multiple aircraft move selects a consecutive group of one

to five aircraft and moves them to a new random position in the schedule, either

forwards or backwards. There is a 50% chance that this move will be made. Moving

multiple aircraft is especially useful once the aircraft are in a north/south alternating

pattern as, in this case, moving a single aircraft would usually make the schedule

worse.
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Randomise a set of aircraft: This move selects a consecutive set of aircraft as the

target. Each aircraft within this set is then moved to a random position in the set. This

move may emulate a shift, swap or a reversal in the order in some cases but some

of the schedules attainable through this move are not attainable otherwise. There is

a 20% chance that this move will be used. In experimental results, this move has

shown a valuable contribution in finding good schedules, when not overused.

4.2 Objective Function

It is advisable to limit the amount of deviation from the holding point arrival order as

well as to limit the delay. Reducing the number of ‘swaps’ of aircraft in the take-off

order will help to reduce the workload for the pilots and controllers and it will also

make it easier for the next iteration to build a feasible schedule.

With this goal in mind, the following objective function is used by the search

algorithms:

D = α

n
∑

i=1

(Ai − i)2 + β

n
∑

i=1

(di − hi) (6)

where n is the number of aircraft in the take-off schedule, di is the take-off time and

hi is the holding point arrival time of the ith aircraft in the take-off queue. Ai is the

position, 1, 2...n, in the initial holding point arrival order, of the ith aircraft in the

take-off queue.

With the delay measured in seconds and separation rules specifying a minimum

number of minutes separation, the constants α and β were chosen to be 1 and 5,

respectively, to ensure that reducing the delay was the primary objective and reducing

the reordering was only secondary.

4.3 Testing the Search Algorithms

We aim to determine the feasibility of a metaheuristic based approach to the real-time

scheduling of aircraft at Heathrow given the holding point constraints that must be

considered. We therefore test our algorithms by providing them with static problems

of a type that may occur in a real system, where there is limited visibility of future

aircraft and some constraints upon what can be done with the aircraft already in the

holding point. We form a series of these problems by applying a rolling window of

25 aircraft at a time to each input dataset and applying the results of each search to

the input for the next search. In a real system, not all suggested reorderings will be

accepted, as the controller has a number of other objectives to keep in mind. Here,

we are assuming that the metaheuristic order will always be accepted. It is important

to attempt to automate the system, so that it can be tested in an objective rather than

subjective manner, even though this is not how it would be used in practice.

An initial schedule was first built for the first 25 aircraft by employing the fol-

lowing procedure.

1. Add the first 20 aircraft to the system.
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2. Run the search algorithms for 10000 evaluations. Keep the best result found.

3. Fix the take-off order, take-off time and traversal paths of the first 5 aircraft to

take off. Traversal paths for aircraft overtaken by these aircraft were also fixed.

4. Add the next 5 aircraft to the system.

5. Run the algorithms for 5000 evaluations. Keep the best result found.

A second, iterated stage is then employed. This is the stage that more closely

emulates what will happen in practice, with some aircraft having take-off slots or

traversal paths already assigned. Each iteration took between 0.4 and 0.8 seconds.

The second stage can be outlined as follows:

1. Fix the take-off order, take-off times and traversal paths of the first 10 aircraft

to take off. Again, this also fixes the traversal paths of all of the aircraft they

overtake.

2. Add the next aircraft to the system.

3. Remove the first aircraft from the system.

4. Run the search algorithms for 5000 evaluations. Keep the best result.

5. If there are no more aircraft to add then stop, otherwise return to Step 1.

As aircraft are removed from the system, the take-off order is recorded and at the

end, the combined schedule of all of the departures is built and evaluated. This test

was applied ten times to each dataset for each of the algorithms.

We have two main concerns in our testing. Firstly, we must verify whether our

algorithms can find good results for the sub-problems within a very short search

time, to verify their feasibility for use in a real-time system. Secondly, although the

searches are considering only a subset of aircraft at once, it is the value of the entire

schedule as a whole which actually matters. We would like to verify that solving the

sub-problems will give good results for the entire schedule, validating the approach

for a real system. To answer both of these questions, we evaluate the final schedule as

a whole, predicting take-off times and calculating a total delay for all of the aircraft

in the dataset.

5 Results

5.1 Input Data and Assumptions

Historical recorded data was used for the evaluation. Three datasets were used with

different numbers of aircraft (123, 189 and 299, respectively).

The most convenient holding point entrance for the allocated stand was assigned

to each aircraft. The real holding point arrival times from the historic data were used.

In a real system, precise arrival times would not be known until the aircraft actually

arrived at the holding points and estimated arrival times would have to be used until

then.

Recorded data shows that it takes a minimum of just over a minute for an air-

craft to traverse the holding point structure and get airborne but this time can vary
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widely. For this paper, all holding point traversal times were assumed to be equal

and independent of the route taken, as only good paths were used. Two values for

this time were tested: one and two minutes. A traversal time of one minute has the

advantage of allowing aircraft to arrive, enter the runway and take-off very quickly,

which is what often happens in practice at quiet periods. A two-minute traversal time,

although no longer allowing fast entry at times when this is possible, seems better

suited for the model in many ways as it can be assumed to account for some of the

uncertainty in arrival time or traversal time that occurs in real life.

The real situation would have some aircraft already in the holding point. We sim-

plify these tests by always starting aircraft at the holding point entrances to avoid

having to make predictions for the positions of aircraft within the holding point. The

danger of not predicting holding point positions for aircraft already in the holding

point is that the reordering of earlier aircraft that have already taken off may have

enforced certain manoeuvring upon the aircraft that have not taken off yet. To ensure

that restarting aircraft at the holding point entrances does not increase the flexibility

of later take-offs, we leave earlier aircraft in the system until they can no longer have

any effect on the aircraft that have not yet taken off, thus re-enforcing the manoeu-

vring on the later aircraft.

Our model can easily consider aircraft already in the holding point by modifying

the earliest take-off time appropriately and starting the feasibility check with the

aircraft already in the intermediate nodes rather than at the holding point entrance.

This would considerably reduce the complexity of the feasibility check in the holding

point graph, but it would introduce a great deal of complexity into the test simulation

with the need for a position prediction system.

5.2 Total Delay on Aircraft

The test schedule was executed ten times for each of the search approaches, on each

set of data, for both one and two minute holding point traversal times. The mean

values of the total delay in seconds for the ten runs are shown in the Tables 1 and 2.

The best figures are presented in bold.

Table 1. Comparison of Mean Delays – 1 Minute Traversal Time

Algorithm Dataset 1 Dataset 2 Dataset 3

Manual schedule 55140 136168 103692

First Descent 23548 49966 51438

Steeper Descent 23511 49158 50977

Simulated Annealing 23511 48613 50788

Tabu Search 23516 48767 50661



248 Jason A.D. Atkin et al.

Table 2. Comparison of Mean Delays – 2 Minute Traversal Time

Algorithm Dataset 1 Dataset 2 Dataset 3

Manual 62244 142828 121632

First Descent 30831 59170 69377

Steeper Descent 30831 58275 68916

Simulated Annealing 30831 57815 68728

Tabu Search 30831 57504 68601

5.3 Search Times

We aim to verify the feasibility of implementing a metaheuristic based system to

provide real-time advice to a runway controller. One of the key objectives for this re-

search is that results must be returned extremely quickly from each individual search.

Although the important consideration for our research is the search time for a sin-

gle iteration, the total test time is useful for evaluating the relative speeds of the

algorithms. Tables 3 and 4 give the mean execution time, in seconds, for the tests

performed with each of the four algorithms.

Table 3. Comparison of Total Search Time – 1 Minute Traversal Time

Algorithm Dataset 1 Dataset 2 Dataset 3

First Descent 69.4 114.0 193.1

Steeper Descent 67.3 110.1 187.5

Simulated Annealing 71.6 116.5 197.8

Tabu Search 80.9 132.4 225.4

Table 4. Comparison of Total Search Time – 2 Minute Traversal Time

Algorithm Dataset 1 Dataset 2 Dataset 3

First Descent 69.2 114.7 194.5

Steeper Descent 67.7 110.9 199.1

Simulated Annealing 72.0 117.2 238.2

Tabu Search 80.9 132.0 225.4

5.4 Evaluation of the Results

The metaheuristic solutions provide much lower total delays than the manual solu-

tion and this provides significant evidence for the high value of such approaches.
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However, there are a number of reasons why our automated solutions are so supe-

rior (in terms of delay). In fact, the manual solutions are very good, with very few

separations above the minimum. These reasons are outlined below.

1. Maximising throughput is not the same as minimising delay. The controller is

trying to maximise throughput and is not directly attempting to minimise total

delay. Minimising delay will have the effect of moving larger separations as late

as possible in the schedule. Minimising the delay will maximise the through-

put but the converse is not true. For example, assume a six minute period with

only three aircraft available to take off. Two minute separations would give the

same throughput as one minute separations but a lot larger delay. Where larger

separations will be necessary, a runway controller may sometimes wish to have

them earlier to avoid delaying aircraft which take advantage of these to cross the

runway.

2. Some aircraft have a Calculated Time of Take-off (CTOT) which effectively

designates a fifteen minute take-off time slot. It is important that such aircraft

take off within this window. For the results in this paper, we have no CTOT

information so we assumed no CTOT limitations.

3. In bad weather, a Minimum Departure Interval (MDI) could be applied to some

routes. This temporarily increases the minimum separation allowed between air-

craft using certain routes and so can increase delay. We have no data for whether

any MDIs were present on the specified days so were forced to exclude MDIs

from the evaluation.

4. This is a multi-objective problem and minimising delay only looks at one objec-

tive. Many conflicting objectives need to be satisfied and this is one reason why

an automated solution can only ever be advisory.

5. Taxi times are not actually identical or predictable. We have no way of knowing

whether certain aircraft were exceptionally slow or fast in practice.

6. The metaheuristics have more knowledge about the future than the runway con-

troller did. Sometimes a good order from the metaheuristics has been a result

of knowing which aircraft are going to be arriving later. Reducing the load on

the runway controller via an advisory system should allow runway controllers to

take account of these later arrivals themselves; something they do not currently

have the time to do.

Minimising the delay is a good way to try to ensure maximal throughput of the

runway as it makes it easier to reschedule as new aircraft enter the system.

The fact that the metaheuristics give better delays than the manual solution means

that they hold significant promise for forming the basis of an advisory system. By

reducing the work load of the runway controller and allowing more aircraft to be

considered than are currently in the holding point structure, it should be possible to

reduce the delay and increase throughput in practice.

Dataset 1 was from a less busy time of the day than the other two datasets. There

were less possibilities to reorder aircraft as there were less aircraft in the holding

points at any time. All but the first descent algorithm found the same good schedule

for the aircraft in this dataset. The mean values of 23511 and 30831 were also the
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minimum values found for this dataset, by any of the algorithms. The tabu search

failed on one execution to find this good schedule hence the slightly higher mean for

the tabu search with one minute traversal time.

Datasets 2 and 3 were from busier times of the day. For both traversal times,

for both Datasets 2 and 3, student t-tests showed that tabu search performed signif-

icantly better than the steeper descent algorithm and that both simulated annealing

and tabu search performed significantly better than the first descent algorithm, with

a confidence level of 99% in each case.

The simulated annealing algorithm gave good results across the datasets. It got

the best results for Dataset 2 in Table 1 and equal best on Dataset 1 in both tables.

Student t-tests performed on the results, however, failed to show a significance in

the difference between the results for simulated annealing and tabu search, for either

of the traversal times for Dataset 2, despite the difference in the mean values of the

results.

With ten executions of the algorithms on each dataset for each traversal time,

there are forty executions that can be compared for these datasets. Tabu search gave

better results than the steeper descent algorithm on 39 of the executions and the same

result on the other execution. The only difference between the two approaches is the

presence of the tabu list so we conclude that the tabu list is contributing to the success

of the search.

Tabu search produced the best result for Dataset 3 in Table 1 and the best results

for all three datasets on Table 2, although all of the automated methods got equal

best results for Dataset 1. Student t-tests showed that tabu search performed signifi-

cantly better than simulated annealing for both traversal times for Dataset 3, with a

confidence level of 99%.

However, there is a significant cost to maintaining and checking the tabu list, this

being shown in the greater time that the tabu search takes to perform the search.

We aimed to determine whether a metaheuristic approach could solve the schedul-

ing problem fast enough to be of use to a real time system and whether an approach

which solves a number of sub-problems could attain a good overall delay for the

entire schedule. The good overall delay for the schedule obtained when applying ei-

ther the tabu search or simulated annealing algorithms to the problem assures us that

the metaheuristic approach is a promising approach for a real-time decision support

system for a runway controller as it can, with a very short search time, provide very

good results for the sub-problems with which a real controller would have to deal,

leading to very good overall delay figures.

6 Conclusions

The departure problem is a complicated one due to the many constraints upon the

schedule and the sequence-dependent separations between aircraft. Most of the ex-

isting research has looked at the arrivals problem rather than the departure problem

where the separations are based on the wake vortex categories of aircraft. In that case

it is only necessary to check the separations between adjacent aircraft. However, the



Metaheuristic Departure Scheduling 251

route and speed based separations at Heathrow are not only asymmetric, but also do

not obey the triangle inequality, so it is not sufficient merely to look at adjacent pairs

of aircraft. A schedule that provides safe separations for all adjacent pairs of aircraft

will not necessarily provide safe separations for other aircraft pairs.

Many different techniques have previously been applied to this problem yet none

account for the physical constraints upon reordering that exist at an airport like Lon-

don Heathrow. There are many constraints upon a departure system that are not nor-

mally modelled and any solution should also aim to minimise other aspects such as

controller and pilot workload and fairness.

This paper has presented a model for the system that can take account of the real

life constraints. The initial results presented here include some of the constraints that

are particularly important at Heathrow. The results show that it is feasible to check

the effects of the holding points after schedules have been generated and that the

metaheuristics will still perform well in the limited time that they have.

From the experiments carried out here we can conclude that tabu search obtained

the best delays overall, although it was the worst performer on Dataset 1 in Table 1

and it did take the longest to run due to the overheads associated with the tabu list.

Simulated annealing performed well across all the experiments but not always as

well as tabu search. Further research will include much more experimentation to see

whether these results apply in general for the Heathrow problem.

Both the tabu search and simulated annealing algorithms perform well in the very

short search time permitted. We can determine from the results that the metaheuristic

searches form a promising basis for an advisory system for a controller as they are

suggesting schedules which improve on the delay in the schedules the controllers are

currently implementing.

Further research will add to this model and evaluate the effects of the constraints

that have not yet been included. Implementation using genetic algorithms and hy-

bridised metaheuristics are also planned.
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Summary. Historically, schedulers and operations management personnel have made deci-

sions with limited information about various states of the transit system. The present study

highlights innovative uses of data collected via automatic vehicle location and automatic pas-

senger count technologies in the areas of scheduling and operations management at TriMet, the

transit provider for the Portland, Oregon metropolitan region. Two main topics are addressed

in this paper. First, we look at efforts at TriMet involving the use of archived operations data to

improve bus schedules. Second, we look at the role of operator behavior in relation to service

reliability and steps the agency is taking to reduce run time variability and maintain vehicle

headways through better management of operators. The quality, quantity, and disaggregate

nature of data at TriMet has greatly enhanced the agency’s ability to generate performance

reports as well as undertake special purpose studies targeting specific operational issues, pro-

viding essential feedback into the scheduling process.

1 Introduction

It is important for transit agencies to identify the causes of unreliable service in order

to be able to provide high quality service to passengers in the most economical man-

ner. Bus routes may exhibit poor performance due to operational problems or simply

because schedules are poorly written (Guenthner and Hamat (1983)). If buses are

consistently early or late, then this would indicate a scheduling problem and not an

operational one. Ideally, schedules should be related to the measuring and monitoring

of service performance which typically involves a comparison of actual to scheduled

service. The scheduling process requires a number of inputs including information on

passenger loads, running times, and various constraints imposed by labor rules and

timed transfers in addition to clock frequency and policy headway considerations.

The ability to measure and monitor operational performance has historically been

limited by data availability (Benn and Barton-Aschman Associates (1995), Levin-

son (1980)). Data availability varies widely among transit agencies including the
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type, amount, quality, level of aggregation, and frequency of data collection and of-

ten hampers service planning and scheduling (Boyle (1998), Casey (1999), Furth

(2000), Furth et al. (2003), Wilson et al. (1984)).

The present study highlights innovative uses of data recovered by the TriMet au-

tomated Bus Dispatch System (BDS). A detailed description of TriMet’s experience

with implementation of the BDS is presented in Appendix A of TRCP Project H-28

(Furth et al. (2003)). Two of the main components of the BDS are automatic vehi-

cle location (AVL) and automatic passenger counter (APC) technologies. At TriMet,

100% of the bus fleet is equipped with AVL technology while approximately 72%

of the vehicles are APC equipped. Like most agencies that have AVL systems in

place, TriMet polls bus location at regular time intervals and transmits this infor-

mation to dispatch centers in-real time. TriMet is somewhat unique among North

American transit properties in that its AVL system was designed to collect stop-level

information on bus operations. The data collection component of the BDS records

information each time a bus passes a stop, regardless of whether any passenger ac-

tivity occurs. The disaggregate nature of the BDS data provides unique opportunities

for measuring and monitoring service performance at multiple summary levels. The

types of data collected by the BDS at each stop include arrival and departure times,

dwell times, door openings, lift operations, and maximum speed since the previous

stop as well as boardings and alightings on APC equipped vehicles, providing the

agency with a complete picture of bus operations for each bus in the system on a

continual basis. This information is subsequently analyzed and used as inputs into

various service planning, scheduling, and operations management functions.

Historically, schedulers and operations management personnel have made deci-

sions with limited information about various states of the transit system. It has taken

approximately two decades for TriMet to fully transition from a data poor to a data

rich environment, beginning with the agency’s initial testing of APC technology in

the early 1980s. The core AVL and APC components in place today were initially

implemented as part of a major upgrade of the agency’s computerized dispatching

system which began in 1993 and became fully operational in 1998. Interestingly,

fiscal constraints related to the costs of manual data collection provided much of

the impetus for change. The design of the BDS greatly benefited from a number of

factors including 1) a dedicated project manager who was well rounded having pre-

viously served as an operator, trainer, and Section 15 data analyst, 2) the agency’s

past experience with difficulties associated with referencing APC data to trips and

time points based on time stamps and odometer readings, and 3) the identification of

the need for and potential benefits of using automatically collected operations data

for scheduling purposes (Furth et al. (2003)). The decision to collect detailed opera-

tions information at the level of the bus stop and to archive the data can be attributed

to having a diverse project team which included dispatchers as well as schedulers,

service planners, operations analysts, and maintenance personnel. By not limiting

the AVL system to real-time uses (poll-based data collection primarily benefiting

dispatchers), the agency effectively increased the number of potential users of the

data as well as the number of potential applications by several orders of magnitude.

While certain benefits such as improved performance monitoring capabilities were
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foreseen prior to implementation of the BDS, there is little doubt that the present ca-

pabilities of the system have far exceeded initial expectations. The data collected via

the BDS have greatly increased communication between various parts of the agency

including, but not limited, to operations, dispatch, scheduling, maintenance, market-

ing, customer service, training, and upper management. Each group has specific data

needs and the disaggregate nature of the data allow for summarization at multiple

spatial and temporal levels. While it is not the purpose of this report to discuss all of

the uses of AVL and APC data within the agency, it is important to provide the reader

with an understanding of the full range of potential benefits of the technologies.

Two main topics are addressed in this paper. First, we discuss efforts at TriMet

utilizing archived operations data to improve schedules. These efforts are notable be-

cause of the quality, quantity, and disaggregate nature of the data available at TriMet.

Second, we look at the role of operator behavior in relation to service reliability

and steps the agency is taking to reduce run time variability and maintain headways

through better management of bus operators.

Scheduling is a complex process that consists of matching transit service to pas-

senger demand subject to various constraints including timed transfers, policy head-

ways, clock frequency headways, and work rules. At TriMet scheduling is the imple-

mentation of the service design which is based on an urban grid system in the more

densely populated areas and a timed transfer system in lower density suburban ar-

eas. One of the aims of service planning is to match passenger demand, which varies

over time and space, with the service design through scheduling. Schedules are writ-

ten to accommodate the “typical operator,” meaning that schedule can be maintained

by most operators under normal conditions. Schedulers are careful not to add too

much scheduled run time between time points. Too much run time adversely affects

passengers in two principal ways: 1) if operators hold buses to maintain schedule ad-

herence, then persons on board vehicles are delayed; and, 2) if operators do not hold,

then buses will tend to run early, impacting passengers that arrive at their origin

stops on time. Schedulers can be somewhat more generous when setting recovery

times at the ends of trips to make up for any shortages in running times. Sched-

ulers have to confront the fact that passenger demand is subject to certain amount

of random variation and that the capabilities of individual operators vary consider-

ably. Fig. 1 shows the theoretical relationship between passenger demand, operator

behavior, traffic levels, transit service reliability, and scheduling. Passenger activity

influences the amount of scheduled running time either directly through increases

or decreases in demand over time or indirectly through service reliability impacts.

An increase in demand over time necessitates the need for either additional sched-

uled run time or perhaps the addition of a new trip. Highly variable demand results

in increased run time variation causing schedulers to add additional recovery time

into schedules. Operator behavior influences the amount of scheduled recovery time

largely through impacts on service reliability, or indirectly through service reliability

impacts on passenger demand. Background traffic levels are accounted for when set-

ting scheduled running time, although excess traffic congestion influences recovery

time through impacts on service reliability.
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Fig. 1. Theoretical Relationships

The TriMet BDS has transformed the way the agency collects, analyzes, and uses

data. Prior to implementation of the BDS, data collection proved to be an arduous

task resulting in data of limited quantity and quality. Historically, the scheduling de-

partment at TriMet was responsible for developing and implementing procedures to

systematically measure on-time performance (OTP) at regular time intervals. The use

of AVL technology has largely replaced the need to send agency personnel into the

field to collect departure time information at specific locations for service monitor-

ing applications. The agency also regularly collects information on passenger activity

including data necessary for annual National Transit Database (NTD) reporting, bi-

ennial cordon counts, and a comprehensive passenger census conducted every five

years. These activities have benefited greatly from automated data collection. It has

been shown that data collected by APCs are more accurate and subject to less bias

than data collected by manual means (Strathman et al. (2001), Kimpel et al. (2004))

although the amount of error was found to vary by bus type. Widespread deployment

of AVL and APC technologies on TriMet’s vehicle fleet has effectively eliminated

the need to assign vehicles to specific trips for data collection purposes.

2 Scheduling and Operations Research at TriMet

The quality and quantity of AVL and APC data has greatly enhanced the agency’s

ability to conduct special purpose studies that target specific operational issues and

address specific research questions. The results of many of these studies, either un-

dertaken by TriMet or in conjunction with the Center for Urban Studies at Port-

land State University, are presented here. The studies can be grouped into two broad

categories: 1) studies that focus on the relationship between run time variation and

schedule efficiency; and, 2) studies that address the relationship between operator

behavior and transit service reliability. Both researchers and practitioners are aware
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of the influence of operators on transit service reliability (Abkowitz (1978), Levinson

(1991), Strathman et al. (2002b), Woodhull (1987)). Since operators have differing

levels of experience and behaviors, this translates into run time variability which ad-

versely impacts schedules by necessitating additional run time between time points,

extra layover/recovery time, or additional resources in the form of extra bus trips to

address passenger loading problems.

Schedule efficiency is related to the amount of excess slack time in schedules.

Levinson (1991) argues that scheduled run times should be set at a value slightly less

than the mean or median run time in order to ensure that the majority of operators

do not have to kill time in order to maintain schedule adherence. Levinson (1991)

also contends that the optimal amount of layover/recovery time for a given bus trip

is the 95th percentile run time minus the mean or median running time. This notion

is depicted graphically in Fig. 2. A study by Portland State University and TriMet

analyzed schedule efficiency from the perspective of run time variation (Strathman

et al. (2002b)). A run time distribution for Route 14- Hawthorne Blvd. is presented

in Fig. 3 to illustrate the Levinson optimal standard. The run time distribution is

based on 1,026 trip level observations from the spring 2000 signup (booking). The

data show that actual run times range from 38 to 69 minutes. The median actual run

time is 50.4 minutes which is 17.2% greater than the mean scheduled run time of 43.0

minutes. The ideal recovery time of 11.1 minutes is 9.8 minutes less (46.9%) than the

average scheduled recovery time of 20.9 minutes. The graph indicates that scheduled

run time should be increased by 7.4 minutes and recovery time decreased by 9.8

minutes, resulting in an efficiency improvement of 2.4 minutes per trip. The graph

is somewhat idealized, as work rules, headway synchronization, and maintenance of

clock headways may necessitate additional layover/recovery time. Furthermore, the

analysis is based on data which is aggregated over all trips whereas the scheduling

process would benefit from analysis of multiple days of observations for individual

trips.

A separate component of the study by Strathman et al. (2002b) estimated the

annualized costs of schedule inefficiencies at the system level using information de-

rived from run time distributions developed for each individual trip in the system.

The analysis employed 281,305 trip-level observations encompassing 65 weekdays

of service. Three alternative layover/recovery time scenarios were addressed in the

analysis: 1) the Levinson optimal recovery consisting of the 95th percentile run time

minus the median, 2) 10% of the median run time which is the minimum amount

specified under the labor contract, and 3) 18% of the median run time which is rule-

of-thumb standard used by TriMet schedulers. At the system level, the study found

excess schedule time (run time plus layover/recovery time) of 7.3, 7.9, and 3.8 min-

utes per trip for the Levinson optimal, the contract minimum, and the rule-of-thumb

standards, respectively. Estimated annual costs associated with excess schedule times

ranged from a low of $5.7M for the rule-of-thumb standard to $7.1M for the Levin-

son optimal to a high of $7.7M for the contract minimum. When aggregated to the

level of the individual route, the authors found that 81 of the 104 bus routes (77.9%)

contained excess schedule time and that 23 routes (22.1%) had too little schedule

time. These findings suggest that 1) schedule adjustments are necessary, and 2) ef-
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Fig. 2. Optimal Running and Layover/Recovery Times

Fig. 3. Run Time Distribution
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forts to reduce the amounts of excess schedule time in schedules would likely yield

substantial costs savings.

The relationship between passenger loads and headway irregularity was ad-

dressed in another study conducted by Portland State University and TriMet (Strath-

man et al. (2002a)). A two stage least squares regression model was employed to ad-

dress simultaneity between headway delay and passenger loads at peak load points.

The data consisted of 12,593 observations representing ten bus routes operating dur-

ing peak time periods during the peak hour of service. Controlling for the effects of

passenger activity on headway delay, the study found that headway delays were a

primary cause of passenger overloads. Sensitivity analysis showed that small reduc-

tions in headway delay would yield large reductions in overloads. Furthermore, the

amount of headway delay at the peak load point was found to be largely determined

by the amount of headway delay at the origin. Efforts to address origin delays center

on better field supervision at the beginning of lines or, in the case of poor schedules,

corrective action.

An analysis of the effects of individual operators on bus running times was in-

cluded in the report by Strathman et al. (2002b). A fixed effects regression model

containing dummy variables for each individual operator was employed. The data set

consisted of 10,743 weekday bus trips associated with TriMet’s 15 frequent service

bus routes during the summer and fall 2000 signup periods. The study found wide

variation in the parameter estimates for the individual operators and that the operator

fixed effects were normally distributed. Sensitivity analysis based upon the 18% rule-

of-thumb standard indicated that nearly 70% of the amount of recovery/layover time

was needed to address differences in operator behavior, rather than variable operat-

ing conditions. The authors also found that operators accounted for 17% of observed

run time variation. An additional regression model was used to test the effects of

certain operator characteristics on bus running times. Each additional year of opera-

tor experience was estimated to result in a 6.8 second reduction in run time per trip.

These findings highlight the fact that run times are affected not only by differences

in operator behavior but also by operator experience.

With respect to the efficient utilization of vehicles and service hours, TriMet has

been developing methods to test whether vehicle loading problems are due to uneven

headways. The relationship between vehicle spacing and passenger loads is depicted

graphically in Figs. 4 and 5. In Fig. 4, the Y-axis displays the actual passenger load

for each bus trip in the p.m. peak period outbound direction for all of TriMet’s fre-

quent service bus routes for a three month period. The X-axis displays the headway

ratio which is actual headway divided by scheduled headway at the peak load point.

A headway ratio value greater than one indicates that bus spacing is increasing rela-

tive to schedule and a value less than one indicates that buses are too closely spaced.

The areas to the left and right of the vertical bars at 50% and 150% of the headway ra-

tio represent extreme headway variation. The horizontal lines at 20 and 55 passengers

represents a somewhat arbitrary range of acceptable passenger loads. The diagonal

line is a least squares regression line showing the effect of headway deviation on pas-

senger loads. Observations with loads greater than 55 with a headway ratio greater

than 150% of the scheduled headway (shaded- upper right) indicate overloaded trips
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Fig. 4. Headway to Load Relationship

with vehicle spacing problems. Observations with loads less than 20 with a head-

way ratio less than 50% of the scheduled headway (shaded- lower left) represent

trips with underutilized capacity due to irregular headways. Note that even when the

headway ratio is 1.0, there still exist some over- and underloads. A more sophisti-

cated way of determining to what extent vehicle spacing problems are responsible

for overcrowding was developed using trip-level regression models to determine the

percentage of trips that are overcapacity due to uneven headways. Fig. 5 shows the

results for Route14- Hawthorne Blvd. for the a.m. peak hour of service. The model

estimates the maximum load on a trip as a function of the amount of headway devi-

ation in minutes. In this example, a maximum load of 48.4 passengers is estimated

at zero minutes of headway deviation. Approximately 31% of the variation in pas-

senger loading is explained by the model. The arrows on the graph depict, based on

the slope of the regression line, what the load would have been for the specific trip if

headways had been evenly spaced. Using this methodology for all trips, the percent

of “unavoidable” overloads and underloads can be estimated using the assumption

of evenly spaced headways.

TriMet recently undertook a study comparing headway variability to passenger

loads at the maximum load point to better understand the relationship between vehi-

cle spacing and loads. Impetus for the study stemmed from a renewed interest at the

agency to better manage headways and departure delays to address operational ineffi-

ciencies. Table 1 contains various statistics compiled from data collected on TriMet’s

15 “frequent service” bus routes (route headways of 15 minutes or less seven days a
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Fig. 5. Percent Overloads Due to Headway Deviation

week) during the fall 2003 signup. The statistics were derived from 5,183 trips pass-

ing peak load points. The data show that approximately 66% of all trips fall within

a headway deviation range of 0.5 to 1.5. For an eight minute scheduled headway,

this translates to an actual headway between four and 12 minutes. If a more strin-

gent headway deviation standard of 0.75 to 1.25 were applied, only 44% of the trips

would fall within the acceptable range. For heavily loaded trips of 55 passengers or

greater, 55% of the trips were found to have a headway deviation greater than 1.5.

This value increases to 72% under the more stringent headway deviation standard of

1.25. Heavily load trips represent 7% of all trips in the analysis. For trips experienc-

ing underloads of 20 passengers or less, 35% fall below the lower headway deviation

value of 0.5. If the headway deviation standard were tightened to 0.75, the percent-

age of underloaded trips increases to 57%. Lightly loaded trips represent 11% of all

trips in the analysis. These results indicate that efforts to improve bus spacing will

yield positive efficiency benefits with respect to vehicle capacity utilization. Since

unreliable service often necessitates the need for additional bus trips due to capacity

issues, an effective headway management program has the potential to yield substan-

tial cost savings in the short term in the form of reduced trips necessary to serve the

same level of demand.

Table 1 also contains information related to late origin departures and operator

years of experience which are believed to be two of the major causes of uneven head-

ways. With respect to late departures, defined as more than three minutes late, 19%

of trips operated by drivers with three or more years of experience are leaving the

beginning of the line late. Operators with less than three years of experience are de-

parting late 25% of the time. A number of factors may be responsible for such a high



262 Thomas J. Kimpel, James G. Strathman, and Steve Callas

Table 1. Frequent Bus Headway Deviation and Late Departure Analysis

Measure Criteria %Trips

Headway adherence Ratio = 0.50 to 1.50 66%

Ratio = 0.75 to 1.25 44%

Heavily loaded trips (>= 55) Ratio >= 1.50 55%

Ratio >= 1.25 72%

Lightly loaded trips (<= 20) Ratio >= 0.50 35%

Ratio >= 0.75 57%

Late trip departures Operator experience >= 3 years 19%

Operator experience < 3 years 25%

number of late departures including operator experience and behavior, inadequate

field supervision or training, and poorly written schedules. If too much run time is

built into schedules, operators may simply be basing their departure times on knowl-

edge of actual operating conditions likely to be encountered on a given trip. Some

operators may be departing trip origins late and then speeding to make up for lost

time. Late departures may also be due to scheduling problems. If there is inadequate

run time or too little recovery time built into schedules, operators may be departing

trips late due to conditions encountered on the previous trip. Inadequate field super-

vision and training may be at fault as certain operators simply not be getting the

message about the importance of departing trip origins on time.

The results of the previous studies make clear a number of points. First, there

exists excess slack time in schedules. This time represents substantial costs to the

agency. Second, there is wide variation in operator behavior which impacts both

schedules and service reliability. The majority of recovery/layover time needed in

schedules is due to operator variability. Operator experience has been shown to im-

pact bus running times and terminal departure times. Uneven headways are largely

responsible for passenger loading problems with much of the blame attributable to

operators departing trips late. The next two sections describe performance monitor-

ing efforts at TriMet and how BDS data is used to address scheduling inefficiencies

through analysis of bus operations, service reliability, and operator behavior.

3 Monitoring Bus Operations Through Performance Reporting

Efficient schedules require ongoing monitoring and adjustment. The quality and

quantity of data collected by the TriMet BDS have greatly expanded the agency’s

ability to undertake regular performance monitoring. One of the main advantages of

the TriMet BDS is that the disaggregate nature of the data allows for the generation

of performance reports at multiple summary levels (route, trip, stop direction, time

of day, etc.) serving a number of different purposes. An excellent summary of data

needs by level of detail and agency function is presented in Furth et al. (2003). Such

monitoring may include analysis of on-time performance, vehicle headways, running
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times, passenger loads, and operator behavior. A key benefit of performance moni-

toring is the feedback loop that can lead to improvements to planning, scheduling,

and operations (Furth (2000), Levinson (1991)).

TriMet service standards require that all transit services undergo periodic review.

The Service Evaluation and Adjustment Process is an annual review of existing ser-

vices where each route is analyzed to see if it meets the agency’s standard for vehicle

loading and OTP. For routes which violate vehicle loading and OTP standards, the

first course of action is to fix any problems without adding additional vehicle hours of

service. If additional hours are necessary, all route needs are compared and are fixed

according to the budget allocated for that year. Service adjustments are informally

undertaken at TriMet on a quarterly basis. Part of the service adjustment process

includes schedule modifications to address OTP and overloading problems. Sched-

ule changes of +/- three minutes are allowed between signup periods. The agency

standards for on-time performance and schedule efficiency are both 75%. TriMet

defines on-time as a bus departure no more than one minute early and five minutes

late. Schedule efficiency is defined as the ratio of revenue hours to vehicle hours and

measures the effectiveness of service provision.

Similar to most transit agencies, level of service at TriMet is determined by policy

and demand. Consistent with observations by Furth and Wilson (1981), TriMet ser-

vice standards represent a combination of policy and rules of thumb (Coffel (1993),

TriMet (1989)). During peak periods of operation, level of service is driven by de-

mand subject to vehicle capacity considerations. Loading standards at TriMet seek

to balance passenger comfort and operating costs. Loading standards are based on

the average number of passengers per vehicle passing the peak load point during the

highest hour of passenger loadings on a per line basis. The agency calculates a load

factor for each vehicle during the peak hour of service. The load factor is simply the

passenger load divided by the seating capacity of the vehicle. The agency does not

tolerate passups due to overcrowded buses although they do occur sometimes and are

regularly monitored. Service frequencies are determined by calculating the boarding

rate which is the average number of passengers per vehicle on a per minute basis

crossing the peak load point.

TriMet produces hourly capacity reports which monitor passenger loads at the

maximum load point for the peak hour of service. Fig. 6 shows an hourly capac-

ity report by route and direction. Begin time and end time define the peak hour of

service and are presented along with the number of trips operated during the peak

hour. Hourly load is the average passenger load summed over all trips at the maxi-

mum load point. Seating capacity is the average number of scheduled seats available

during the service period. Achievable capacity is a statistic measuring the average

vehicle design capacity (seating capacity plus standees). This variable is calculated

by multiplying the vehicle design capacity by 80% at the trip level, then averaging

over all trips. TriMet sets this value at 80% of the design standard due to concerns

about passenger comfort and the number of passups. The load to seat ratio is the

amount of achievable capacity divided by the scheduled seating capacity. Load to

achievable capacity is the ratio of the passenger load divided by achievable capac-

ity averaged over all trips. A load to achievable capacity ratio of 95% indicates that
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Fig. 6. Hourly Capacity Report by Route

additional service will soon be needed. This same information is presented in Fig. 7

except that the focus is on individual routes. Fig. 7 includes additional information

for each trip operating during the peak hour. Data are presented for Route 5- In-

terstate in the outbound direction. In addition to trip start time, start location, and

train (block), the scheduled departure time at the maximum load point (TP time) is

shown. The report includes trip level variables related to passenger activity and ve-

hicle utilization including average boarding rides, average maximum load, and the

maximum load factor. The maximum load factor is similar to the load to seat ratio

mentioned previously. Percent overcapacity refers to the percentage of bus trips that

are operating at more than 130% of seated capacity. Reported passups are initiated

by operators who communicate to dispatch that passengers are being passed up due

to overload situations. This measure is used for informational purposes only as not

all operators use this feature consistently. Headway adherence represents the per-

centage of trips that are within +/-50% of scheduled headway at the peak load point.

The report also includes standard OTP measures including the percentage of trips

that are early, on-time, and late. OTP is averaged over all time points. The data show

that on-time performance problems associated with the 3:15 p.m. departure (14%

early departures) is causing passenger overloading problems for the subsequent trip

departing at 3:26 p.m. This trip experiences excessive delays (36% late departures)

resulting in poor vehicle capacity utilization for the trip departing at 3:37 p.m.
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Fig. 7. Hourly Capacity Report by Route and Direction

A number of performance reports are readily accessible by agency staff through

customized query interfaces connected to an enterprise-level database. Examples of

such interfaces are shown in Figs. 8 and 9. Fig. 8 shows the TriMet BDS Data Query

Engine interface which provides access to a number of performance reports. The

service performance Productivity Improvement Process (PIP) reports interface is dis-

played in Fig. 9. The PIP process is an interdepartmental program aimed at improv-

ing overall OTP. To a large degree, these reports focus on the performance of indi-

vidual operators and routes. Performance reports are typically generated on monthly,

quarterly, or annual bases. Summary reports are also available for the current signup

period, the previous week, and the previous service day as well. Performance re-

ports generated at the route level help identify operational problems requiring closer

scrutiny. Of particular relevance to schedulers are performance reports pertaining to

trips, time points, and peak load points.

Fig. 10 is a service delivery report showing ridership and performance statistics

at the route level. The frequent bus variable is a flag depicting one of the 15 frequent

service routes operated by TriMet. The variable trips represents the number of daily

scheduled trips. The report shows information on the number of revenue hours, ve-

hicle hours, and schedule efficiency. Schedule efficiency is calculated as the amount

of revenue hours divided by vehicle hours times 100. Also presented is the ratio of

recovery to service hours which is a measure that determines the percent of recovery



266 Thomas J. Kimpel, James G. Strathman, and Steve Callas

Fig. 8. BDS Data Query Engine

Fig. 9. Service Performance Productivity Improvement Process Reports

or layover time compared to the total number of vehicle hours. This is a comparative

measure used for identifying routes with potential excess recovery time. The recov-

ery ratio is defined as the median recovery/layover time divided by the scheduled

recovery/layover time multiplied by 100. Recovery ratio values over 100 indicate

that the typical operator is receiving more layover/recovery time than scheduled and

may point to excess running time. Actual speed is a variable based on the median run

time divided by scheduled distance. It is essentially a measure of revenue speed since
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Fig. 10. Service Delivery by Route

it includes dwell time. The report also includes measures of headway adherence and

OTP defined previously. Finally, previous year on-time percentage is presented for

comparison purposes.

Fig. 11 displays much of same information as the previous figure except that it is

broken out by time of day and direction for Route 104- Division. The route perfor-

mance report includes measures of service efficiency and service quality consisting

of the number of boarding rides, rides per revenue hour, average maximum load,

average load factor, the percentage of trips that are overcapacity as well as the num-

ber of reported passups. TriMet calculates a variable that describes the percentage

of trips that are overcapacity due to headway spacing problems. The purpose of this

variable is to determine if large loads may be attributable to unscheduled gaps in

service rather than true demand. This points towards possible schedule or operator

issues rather than vehicle loading or demand problems. Actual speed is the same as

the median speed variable presented previously. The route-level performance report

includes information related to average scheduled headway as well and the headway

adherence of all trips operating in the time period. The report also includes various

performance measures such as OTP and measures related to passenger wait time ex-

perience (excess wait time, average wait time per trip and total wait time over all

trips). Excess wait time is a measure adapted from Hounsell and McLeod (1998) and

presented in more detail in Strathman et al. (2002b). The excess wait time measure

places a heavy penalty on highly variable service and is used primarily as a basis for

comparison among routes. The report contains important information about the per-

formance of an individual route by time of day which can help the agency make more

informed decisions about where to target resources. For example, overloading due to
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Fig. 11. Route Performance Report by Direction and Time of Day

uneven headways is most pronounced during peak periods in the primary direction

of travel. Passups appear to be an important issue in the midday time period in the

outbound direction largely because of uneven headways. The percentage of trips that

are late is much higher in the outbound direction in all time periods compared to the

inbound direction. Highly variable service in the midday and p.m. peak time peri-

ods in the outbound direction forces passengers to arrive at bus stops early in order

to compensate for unreliable service. The estimated total amount of passenger wait

time for the partial signup is 96h:52m. Solutions to a number of these problems will

either require scheduling adjustments or operations control actions.

Fig. 12 is a service delivery report showing information at the level of the indi-

vidual trip for Route 104- Division. This report is primarily used by schedulers and

service planners as a more specific diagnostic tool to investigate problems identified

from higher level summary reports. Information such as train number, start location,

and the number of valid APC observations are presented in addition to the passenger

activity and OTP information. The main difference between this and the previous

figure is the inclusion of trip time information. The amount of scheduled run time

and scheduled recovery time as well as the median run time and median recovery

are presented. The run time ratio is defined as the median actual run time divided

by the scheduled run time multiplied by 100. A value greater than 100 indicates that

the typical operator requires more time to complete the trip than what is scheduled.

The run time coefficient of variation (CV) is the standard deviation of actual run

time divided by the mean actual run time times 100. The run time CV is a unit free

measure and is useful for making comparisons across trips with varying scheduled

run times. The report provides useful information to schedulers including the me-

dian speed, maximum load factor, the run time ratio, the recovery ratio, and OTP.

For example, three trips show a run time ratio greater than 100% indicating that too
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Fig. 12. Service Delivery by Trip

little run time is scheduled for the typical operator on these trips. Headway adher-

ence is particularly problematic for trips departing between 5:03 and 5:10 p.m. This

may be due to interactions between regular service vehicles and trippers (shown as

trips with no scheduled recovery times). Trippers are vehicles that are brought online

to serve periods of heavy demand and are typically operated by part-time operators.

With respect to OTP, 25% of trips associated with the 4:43 p.m. departure are leaving

time points early. The trip departing at 3:31 p.m. has the highest percentage of trips

operating late and is also the same trip with the lowest recovery ratio and the highest

run time ratio.

Figs. 13–15 represent graphs developed exclusively for scheduling purposes. The

unit of analysis is an individual trip operating between time points. Fig. 13 shows

the relationship between actual and scheduled running time for Route 4- Fessenden

from the time point at the intersection of Albina & Killingsworth to the time point

at Lombard & Interstate in the outbound direction. The Y-axis represents run time

in minutes and the X-axis shows the trip number along with the scheduled depar-

ture time. The 20th, 50th, and 80th percentile run times are presented in relation to

scheduled run time. Again, the 50th percentile run time is the time required for the

typical operator to operate the schedule. The 20th and 80th percentile run time are

somewhat arbitrary measures used to set bounds on variation in run time. The run

time graphs are used to assess whether the amount of existing scheduled run time is

adequate. If run times are set too low or too high, then scheduling adjustments are

necessary. The data show that the amount of scheduled run time is set slightly higher

than the median run time for most trips.
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Fig. 13. Run Time Graph

Fig. 14 displays the median and the scheduled run time along with the average

maximum passenger load and the average number of actual stops. The secondary

Y-axis shows the number of stops and the mean passenger load for each trip over the

segment. One can readily see the relationship between actual stops and passenger

loads in relation to scheduled run time and the 50th percentile run time. Fig. 15 is an

optimal run time graph showing the median and scheduled run times along with the

suggested optimum scheduled run time. The optimal run time procedure uses cluster

algorithms based on nonparametric density estimates applied to median run times on

an interpolated per minute basis for grouping similar observations.

Fig. 16 is a time point level run time report showing data for two trips on a radial

through-route, the 4 Fessenden/104 Division. The report shows cumulative sched-

uled run time from the origin location to the destination location. The two trips de-

parting at 3:50 p.m. and 4:01 p.m. have scheduled run times of 1h:51m and 1h:53m,

respectively. Cumulative statistics for the median, 20th, and 80th percentile run times

are presented along with the optimal run time. Passenger activity information in the

form of average ons, average offs, average maximum load, average maximum speed

and average actual stops are presented. Also shown is OTP as well as average min-

utes late at the beginning time point. Overall, both the amount of scheduled run time

and that predicted by the cluster algorithms are fairly close to the median. With re-

spect to scheduled run time, the most problematic time point is associated with the

departure at SW 5th and Oak on the first trip which is off by 4m:46s relative to the

median. The optimal run time predicted by the cluster algorithms is much closer at

0m:46s. Note that this time point is also associated with the greatest amount of pas-
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Fig. 14. Run Time Graph with Stops and Passenger Loads

Fig. 15. Optimal Run Time Graph
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senger activity. Consistent with theory, delays tend to propagate as buses proceed

along a route, then begin to decline as passenger activity drops off. Overall, OTP

is much better on the second trip compared to the first trip. As mentioned previ-

ously, the quality of a given performance measure is contingent on having accurate

schedules. Regarding the first trip in Fig. 16, it is evident that the severity of late de-

partures subsequent to the Rose Quarter Transit Center time point can be attributed

to not enough scheduled run time rather than poor performance.

Fig. 16. Time Point Level Run Time Report

TriMet has made considerable progress in the use of AVL and APC data for

scheduling purposes. These efforts are largely made possible because 1) operations

data archived at the level of the individual bus stop, 2) the extent of AVL and APC

deployment on the fleet, and 3) the willingness of the agency to continuously im-

prove the BDS system through provision of adequate resources in the areas of data

validation, database design and management, and performance monitoring.

4 Operator Behavior and Service Reliability

TriMet is keenly interested in addressing service quality issues related to operator

variability and inconsistent operator behavior. Operators are in a unique position to

adequately gauge operating conditions encountered along a route. In the absence of
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communication from operators to schedulers about inadequate or excess run time in

schedules, operators may instead choose to vary departure times and/or operating

speeds. Operators may intentionally deviate from scheduled departure times at ori-

gins in order to maximize recovery/layover time or to receive the minimum break

specified in the work contract given delays on the previous trip. Efforts to reduce the

amount of variability in departure times through better management of bus opera-

tors would ultimately lead to more efficient schedules. It should be noted that labor

agreements prohibit the ability of the agency to discipline operators based on BDS

information; however, it is perfectly appropriate for the information to be passed on

to supervisors so that remedial actions can take place. The agency is trying to iden-

tify operators who may possibly need additional training or admonishment from a

supervisor. For each of the figures which follow, the name of each operator has been

omitted and badge number has been truncated due to privacy considerations.

A graph depicting the relationship between late origin departures and OTP for

TriMet’s frequent service bus routes is presented in Fig. 17. The unit of analysis is

the individual operator. The Y-axis shows the percentage of time point departures

classified as late (averaged over all time points over all days). The X-axis shows the

percentage of trips during the signup period where an operator left the beginning of

the line late. For example, at 25% leaving late, an operator is identified as leaving the

terminal more than three minutes late 25% of the time. A high value for leaving late

with a low average percent late at time points is indicative of either fast operators

or too much run time built into schedules. A low value for leaving late with a high

average percent late characterizes either slow operators or not enough running time

built into schedules.

Operator OTP at time points for the current signup is presented in Fig. 18. In

addition to the percentage of trips on-time, early, and late, peer on-time is also pre-

sented along with the on-time difference in relation to the operator peer group. Peer

on-time is the weighted average on-time percentage of all operators driving the same

route and direction during similar time periods throughout the day. The first step in

the calculation is to determine the overall percentage of trips that are on-time for

each route, direction, and time of day component, irrespective of operator. The sec-

ond step involves calculating a weighted average on-time percentage representing

the peer group (weighted by the number of trips operated by the operator of interest).

For example, assume that a given operator operates ten inbound trips in the a.m. peak

on a given route and 15 outbound trips during the p.m. peak on a different route. If

the overall on-time percentage for the first route in is 80% and 70% for the second

route, then the estimate for peer group on-time percentage is 74%. The peer on-time

measure is important because it provides a more accurate basis for comparison of

OTP among operators. It is not appropriate to compare an operator who drives a ra-

dial trunk during the peak hour to someone who operates a low ridership suburban

feeder during the midday time period. Since the peer on-time measure is a weighted

average, it also works for extra-board operators who operate different runs from day

to day. Begin of line late represents the percentage of departures more than three

minutes late. The report also shows information related to average lifts per 8 hours

of work since some lateness can be explained by lift operation activity. The data
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Fig. 17. Relationship between Late Departures and On-Time Performance

in Fig. 18 are sorted by on-time difference. Four operators have an OTP difference

relative to their peer group of 25% or greater. Of these four, three are leaving the

beginning of the line late more than 30% of the time. Fig. 19 shows operator OTP

by month of service for an individual operator. The variables are similar to the ones

presented in the previous figure except that the percentage of trips departing late

from the beginning of the line is broken out into three and five minute intervals. The

report depicts a consistent operator who is almost never late or early, is well above

average with respect to peer OTP, and departs route origins promptly. The data pre-

sented in the operator OTP report are particularly relevant to operations management

personnel. The importance of this report is to track the performance of an individual

operator to see if the recently identified problem is a continuing trend, a new pattern,

or an isolated incident.

Of interest to the agency are operators that have a pattern of leaving their re-

spective garages consistently late. Information related to late operator pull outs is

presented in Fig. 20 including badge, name, and type of duty, percent pull out late,

average minutes late, and the number of pull out observations used in the analy-

sis. The data are sorted by average minutes late so the table is showing the worst

operators from Center Garage for a partial signup. Fig. 21 shows more detailed in-

formation about a single operator including scheduled pull out time and actual pull

out time, minutes late, pull out notes, and pull out to location. Information related

to scheduled departure time, actual arrival time, and minutes late at the first time

point are also presented. The report also includes information related to minutes late

at the second time point. Situations where operators pulled out late and were more
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Fig. 18. Operator OTP by Badge

Fig. 19. Individual Operator OTP by Month
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than three minutes late at the first two time points are denoted by a double asterisk.

Highly variable pull out delays have important scheduling implications since buses

do not operate independently from each other. Designing schedules to accommodate

extreme variability in operator behavior is a second best solution compared to better

management of operators at the beginning of the line.

Fig. 20. Pull Out Late by Operator

The question arises as to whether the data analysis capabilities afforded by the

TriMet BDS has made a difference with respect to schedule efficiency and service

reliability. Long term trends for OTP and schedule efficiency are presented in Fig. 22.

The data pertain to OTP for weekday fixed route bus service and schedule efficiency

trends for TriMet’s 15 frequent service routes. Although subject to monthly variation,

the general trend is that OTP has been increasing over time. In 2004-Jan., OTP is at

82.4% which is considerably higher than the agency standard of 75%. With respect

to TriMet’s 15 frequent service bus routes, schedule efficiency is at 75.5% which is

slightly above the agency standard of 75%. Figures were not available at the time of

this publication regarding schedule efficiency for all fixed route bus service. These

trends are encouraging given higher ridership levels and worsening traffic congestion

in the region over the past couple of years.
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Fig. 21. Pull Out Late by Operator by Stop and Date

Fig. 22. OTP and Schedule Efficiency Trends
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5 Conclusions

Scheduling and operations management have benefited from analysis of data col-

lected by the TriMet BDS. These benefits stem from a number of factors. First, the

AVL and APC system was designed to collect data at the level of the individual bus

stop. This provides a level of detail that is ideally suited to analysis of bus oper-

ations. Second, the widespread deployment of AVL and APC technologies on the

vehicle fleet generates large amounts of high quality data providing the agency with

a complete snapshot of the system at any point in time and space. Third, the agency

has key personnel in place that continuously strive to improve the efficacy of the sys-

tem and to refine data collection and analysis practices and procedures. Over time,

the number of agency personnel making direct use of information derived from BDS

data has increased substantially. While this report is limited to uses of BDS informa-

tion in the areas of scheduling and operations management, other areas of the agency

are making use of BDS data as well including service planning, finance, marketing,

and maintenance. The BDS has also played an important role in identifying corridors

and intersection locations suitable for transit signal priority.

Consistent with observations by Koffman (1992), the true value of integrated

AVL and APC technologies lies in report generation capabilities. Of note is the grad-

ual increase in performance monitoring capabilities within the agency, both in the

number of different reports being generated as well as the types of performance mea-

sures being calculated. Measures such as peer on-time performance, late pullouts and

late departures from trip origins, % of overloaded trips due to headway spacing prob-

lems, recovery ratio, achievable capacity, and excess wait time are providing a better

picture of service quality and operational efficiency compared to the standard per-

formance measures reported by most agencies. Currently, the agency is attempting

to incorporate work rules related to operator breaks and to identify operators that ha-

bitually speed or speed at excessive levels. It should be noted that the agency is not

specifically targeting operators in order to realize efficiency gains. The primary aim

is to provide better service to passengers in a more cost effective manner. At the same

time, the agency realizes that certain bus trips do not have sufficient recovery/layover

time and that additional steps are needed to ensure that operator needs are addressed.

TriMet is in a unique position with respect to the data analysis opportunities

provided by the BDS. It is not simply a question of having an AVL system in place or

having a small percentage of the vehicle fleet equipped with APCs. While poll-based

AVL systems are useful, they do not provide the level of detail necessary to undertake

comprehensive analyses of transit operations. Likewise, limited APC deployment

on vehicle fleets forces agencies to spend considerable effort assigning vehicles to

specific trips for data collection purposes. Furthermore, by relying on limited APC

deployment for collection of passenger activity information, estimates of boardings,

alightings, and loads are not nearly as robust as those based on larger quantities of

data.

The present study has highlighted many of the efforts at TriMet to improve sched-

ule efficiency and service reliability related to operator behavior through analysis of

empirical data collected by the BDS. Efforts to improve schedule efficiency center
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on reducing excess run and layover times in schedules as well as through use of su-

pervisory actions to reduce operator variability. Much of what has been presented

in this report would not have been possible without the data collection capabilities

of the BDS and an ongoing commitment by the agency to make the most use of the

information.
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Summary. When a bus on a scheduled trip breaks down, one or more buses need to be

rescheduled to serve the customers on that trip with minimum operating and delay costs. The

problem of reassigning buses in real-time to this cut trip, as well as to other scheduled trips

with given starting and ending times, is referred to as the bus rescheduling problem (BRP).

This paper considers modeling, algorithmic, and computational aspects of the single-depot

BRP. The paper develops the sequential and parallel auction algorithm to solve the BRP. Com-

putational results show that our approach solves the problem quickly.

1 Introduction

The bus rescheduling problem arises when a trip is disrupted. Severe weather condi-

tions, an accident, a traffic jam, and the breakdown of a bus are examples of possible

disruptions that demand the rescheduling of bus trips. The BRP can be approached

as a dynamic version of the classical vehicle scheduling problem (VSP) where as-

signments are generated dynamically.

Although the literature describes several different approaches to solve the VSP

(Daduna and Paixão (1995)), the BRP has not been sufficiently addressed by re-

searchers. However, when the fleet size is limited and disruptions are frequent, good

automated rescheduling tools to assist decision makers become important. As a con-

sequence of this gap in research, very few companies use automated rescheduling

policies. The objective of this research is to address this gap. In particular, the single-

depot BRP is modeled, and algorithms that solve this problem in a reasonable amount

of time are proposed.

The most pertinent decision for the BRP is on which vehicle should backup the

disrupted trip. The existence of several alternatives generates, in comparison to the

VSP, several possible feasible networks for the problem, each one corresponding to

a possible choice of backup vehicle. The selection of the backup vehicle involves

several factors, such as the time when the trip was disrupted, the position of the re-

maining vehicles, the available capacity of the potential backup vehicles, and the
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itinerary compatibility among trips. The existence of several possible feasible net-

works makes the BRP a very interesting but difficult problem to solve.

This paper has the following major objectives: (i) to model the single depot BRP;

and, (ii) based on previous algorithms developed for the VSP, to develop a parallel

auction algorithm specifically implemented to solve the BRP. The major contribu-

tions of this paper to the literature are: (i) definition of the BRP, dealing with issues

such as common itineraries, available capacities and time constraints, and backup trip

candidates; and, (ii) implementation of a fast parallel auction algorithm for solving

the BRP, using message passing to speed up communication among several proces-

sors.

2 Literature Review

Because automatic recovery from disruptions is a relatively new operational strategy,

the literature related to the topic is scarce. Most transit companies typically avoid

reassigning trips during operational disruptions because reassignment could compli-

cate crew assignment and passenger service. Nevertheless, there is a vast literature on

the VSP. Since the BRP is strongly related to the VSP, we start our literature review

discussing the state-of-the art on modeling and solving the VSP.

Overviews of algorithms and applications for the single-depot VSP (SDVSP)

and some of its extensions can be found in Bodin and Golden (1981), Ceder (2002),

Daduna and Paixão (1995). The SDVSP has been formulated as a linear assign-

ment problem, a transportation problem, a minimum-cost flow problem, a quasi-

assignment problem, and a matching problem in the literature.

Bokinge and Hasselstrom (1980) propose a minimum-cost flow approach that

uses a significant reduction of the size of the model in terms of the number of vari-

ables, at the price of an increased number of constraints. Dell’Amico et al. (1993),

Jonker and Volgenant (1986) and Song and Zhou (1990) propose an O(n3) succes-

sive shortest-path algorithm and variations for the SDVSP.

Paixão and Branco (1987) propose an O(n3) quasi-assignment algorithm that is

especially designed for the SDVSP. Haase and Friberg (1999) propose an exact al-

gorithm for the vehicle and crew scheduling problem (VCSP). Both the vehicle and

crew scheduling aspects are modeled by using set-partitioning type of constraints. A

branch-and-cut-and-price algorithm is proposed, i.e., column generation and cut gen-

eration are combined in a branch-and-bound algorithm. The column generation mas-

ter problem corresponds to an LP relaxation, while the pricing problem corresponds

to a shortest path problem for generating crew duties. Freling et al. (2001) use a

quasi-assignment model and employ a forward/reverse auction algorithm for the so-

lution. Computational results show that the approach relating to quasi-assignment

significantly outperforms approaches based on the minimum-cost flow and linear-

assignment models.

Currently, one of the best models and algorithms for the SDVSP is the quasi-

assignment with auction algorithm (Freling et al. (2001)). Bertsekas and Eckstein

(1988) also show that if ǫ-scaling is used, i.e., applying the auction algorithm starting
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with a large value of ǫ and gradually reducing it to a final value that is less than

1/n, the complexity is O(nm log nC), where n is the number of elements to assign,

m is the number of possible assignments between pairs of elements, and C is the

maximum absolute benefit.

To the best of our knowledge, the only contribution towards solving the dynamic

VSP is due to Huisman et al. (2004) who proposed an approach to the problem

by solving a sequence of optimization problems. Their work is motivated to design

robust vehicle schedules that avoid trips starting late in environments characterized

by significant traffic jams.

Whereas the above cited articles address a related research topic in considerable

depth, they do not deal with the issue of this paper – the modeling and solving of the

single-depot bus rescheduling problem (SDBRP).

3 Problem Description

We first introduce some definitions and notation to describe the bus rescheduling

problem. To relate to a cut or a broken cycle in a graph, we refer to a disrupted trip

due to a disabled bus, or a bus that is effectively inoperable, as a cut trip. Breakdown

point is the point on the cut trip where the trip is disrupted. Current trip is the trip on

which a vehicle is running. It includes both regular and deadheading (a movement of

vehicles without serving passengers) trips. Backup trip is the trip which the backup

vehicle is serving. Trips i and j are a compatible pair of trips if the same bus can

reach the starting point of Trip j after it finishes the Trip i. A route is a sequence of

trips in which each consecutive pair of trips in the sequence is compatible. Trip i is

an itinerary compatible trip with cut Trip j if Trip i shares the same itinerary of Trip

j from the breakdown point until its ending point.

The SDBRP can be defined as follows. Given a depot and a series of trips with

fixed starting and ending times, given the travel times between all pairs of locations,

and given a cut trip, find a feasible minimum-cost reschedule in which (1) each bus

performs a feasible sequence of trips, and (2) all passengers (if there are any) on the

cut trip are served. Unlike the SDVSP in which the fixed capital cost is dominant,

the SDBRP problem focuses on the operating and delay costs. Furthermore, in order

that transit crew can be reassigned on a new schedule, the computation of the SDBRP

needs to be completed as fast as possible.

There are two possible situations in the SDBRP. The first is when the cut trip is

a regular one. Unless the disruption is of a nature that it is impossible to reach the

breakdown point, the passengers of the cut trip have to be served. The solution com-

prises of sending a backup bus to the breakdown point, and from the breakdown point

completing the cut trip, and serving its passengers. However, since it is very likely

some trips have common itineraries, the passengers can also be served incidentally

by the buses that cover compatible itineraries after the breakdown point. Consider

the following situation: a backup bus changes its schedule and travels towards the

breakdown point, but all the passengers from the disabled vehicle have been inciden-

tally picked up by vehicles that cover compatible itineraries with the cut trip. This
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situation needs to be avoided. If the cut trip is a deadheading trip, the solution is to

assign a backup bus for the starting location of the next trip of the deadheading bus.

In both cases, it is very likely that the SDBRP provides new routes for a subset of the

pre-assigned buses. Also, we can expect some delays in the cut trip, mainly in the

first situation.

In the VSP, there is no need to consider assigning a specific vehicle to the trips,

since all vehicles are identical, and we can assign them arbitrarily after the schedule

is determined. However, unlike the VSP, the BRP has to take into account this issue,

since many buses are not at the depot and they are at different locations when a bus

becomes disabled. The corresponding operating costs are also different. Furthermore,

this situation creates different possible feasible networks depending on the selected

backup trip, making the BRP a collection of several VSPs.

In the VSP, a vehicle can be generally assigned from the depot to any trip before

its starting time. Nevertheless, assigning a vehicle from the depot to some future trips

in the rescheduling problem may fail if the arrival time of a rescheduled vehicle from

the depot to the starting point of a trip is later than the starting time of this trip. We

may treat the depot as a special trip (or node) and define its starting time to be the

breakdown time. This time is used to determine if a backup vehicle from the depot

will be on time to serve a future trip.

From the viewpoint of the cut trip, the remaining trips can be divided into two

categories: (1) unfinished trips that have compatible itineraries with the cut trip from

the breakdown point, and (2) the remaining unfinished trips. Fig. 1 illustrates these

two categories. The breakdown point is point X on Trip 1. The set of compatible trips

with Trip 1 from point X is {3}.

X 1

1

3

32

2

Fig. 1. Example of Itinerary Compatible Trips

Define set A to be the set of unfinished compatible itineraries with the cut trip

from the point X, ordered by the travel time from their current position to point X.

Define set B to be the remaining unfinished trips (including the trip directly from the

depot ). If the backup trip alternatives are from set A, the backup vehicles can pick up

the passengers incidentally. Although a reschedule may not be necessary, it may be

necessary to assign a bus from set B to cover unfinished trips originally assigned to

the disabled bus. If the backup trip alternatives are from set B, backup vehicles need
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to travel toward the breakdown point for picking up the passengers on the disabled

bus.

Whereas there is a unique feasible network in the VSP, the BRP may have several

feasible networks (sharing the same nodes, but with different arcs connecting them).

Suppose that a regular trip becomes disrupted, and a backup vehicle needs to go there

to pick up the passengers. The starting time of this backup trip is dependent on the

backup vehicle. The cost and compatible trips are different for alternative backup

vehicles, since the serving vehicles are in different positions of the network, rather

than at the depot, as usually assumed in the VSP. However, although there may exist

many feasible networks, the differences among them are the arcs associated with the

cut trip and the backup trip candidates.

In this paper, we make the following assumptions: (i) a bus can only change

its route after finishing its current trip; (ii) only the cut trip will suffer delays; and

(iii) there are no restrictions on the number of rescheduled buses. The next section

describes our model and solution approach for the SDBRP.

4 Modeling the Bus Rescheduling Problem

The objective of the SDBRP is to minimize operating and delay costs over all pos-

sible feasible networks. As a consequence, any solution approach needs a procedure

to explicitly or implicitly generate the set of feasible networks.

4.1 Generating Feasible Networks

The most important aspect of the SDBRP is that the solution is dependent on the ex-

isting situation and alternatives to serving the cut trip. Each possible configuration of

a recovery can be translated as a possible feasible network. These feasible networks

share the nodes (the trips), but have different arcs connecting them. The definition of

the set of all possible feasible networks is dependent on the pre-assigned configura-

tion of the trips, the available capacity of the involved vehicles, and times to carry

out deadheading and regular trips. As commented in Section 3, it is possible to have

a different feasible network for each possible backup trip. This subsection describes

a procedure to generate feasible networks based on the available capacity of the in-

volved vehicles, the times to complete the trips in the network, and the compatibility

of itineraries and trips.

A capacity problem appears if the backup trip is from set A. It is quite possible

that some passengers are in the disabled bus. If the number of passengers remaining

in the cut trip is greater than the vacant capacity of the bus serving the backup trip,

this vehicle is not enough for picking up all of the passengers. So, it is possible that

more than one bus needs to be sent to the breakdown point of the cut trip. The first

vehicle to arrive at the breakdown point picks up some passengers, the next vehicle

picks up some more passengers, and so forth until all passengers from the cut trip are

served. If the vehicle is from set B, it is an empty vehicle. In that case, we assume

that one bus is enough for picking up all passengers.
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In addition to the capacity problem, we need to consider time constraints related

to the travel time of vehicles in current trips. It is not possible to select a vehicle serv-

ing a trip in set A if it has already passed the breakdown point when the disruption

has occurred. Also, it is important to note that if a vehicle serving a trip from set B
reaches the breakdown point later than a vehicle serving on a backup trip from set

A, which has enough vacant capacity, then the bus from set B cannot backup the cut

trip.

In order to generate the set of feasible networks, we first need to determine how

many backup trips from set A are sufficient to serve all the passengers from the

disabled vehicle. Let C(i) be the empty seats of the backup vehicle from Trip i when

it reaches the breakdown point. And let T (i) be its arrival time at the breakdown

point. Actually, C(i) and T (i) are random variables, but in this deterministic model,

we use average values. Let A(n) be the subset of A that includes the first n elements

of A. Let P be the number of passengers in the disabled vehicle. Let Td be the

disruption time. We can get n∗, the number of backup trips in A that are sufficient

for picking up all passengers from the cut trip, by solving the following system of

inequalities,

∑

i∈A(n∗)

C(i) ≥ P

∑

i∈A(n∗−1)

C(i) < P (1)

T (i) ≥ Td, i ∈ A(n∗).

If these inequalities have a feasible solution n∗, and an associated time T (an∗) by

which the n∗ buses serve the passengers on the disabled bus, then, we can determine

B∗, the set of candidate backup trips from set B, by

B∗ = {m|Td ≤ T (m) < T (an∗),∀m ∈ B, ai is the i-th element in set A(n∗)}.

If B∗ is empty, all backup trips are from set A(n∗). In this situation, there is only

one feasible network, resulting from eliminating the cut trip from the original net-

work; the problem can then be treated as a VSP. If at least one backup trip candidate

is from set B∗, we can connect an arc from this backup trip to the breakdown point

in the corresponding feasible network. In this situation, we may have several feasible

networks since several backup candidates may exist.

If the Inequalities (1) do not have a feasible solution, we can set T (n∗) ← ∞,

and set B∗ as B. In this case, a vehicle from set B has to backup the cut trip although

it is possible that vehicles from set A may pick up some passengers from the disabled

bus.

A feasible network is defined formally as follows. Each regular trip is a “node”

of the feasible network, which is graphically represented as a short line segment to

indicate starting and ending points of the trip (see, e.g., Fig. 2). Let b denote the cut

trip and K be the set of possible backup trips. “Arcs” in the network correspond to

vehicle assignment to trips. For example, an arc from node 2 to node 4 implies the

same vehicle may be assigned to Trip 4 after it has served Trip 2 (e.g., see Fig. 2(a)).

Let s and t denote the same depot in the network, where s simply means the depot
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as a vehicle’s starting point, and t as its terminating point. Let N
′

= N − {b} be

the set of total remaining trips excluding the cut trip, numbered according to non-

decreasing starting times. Let P ∈ N denote the trips that existing vehicles are

currently serving. If Trip i ∈ P is a deadheading trip, its starting time and ending

time are set as the current time, since the vehicle on this deadheading trip can be

rescheduled right away. Define arc-set E(k) = E ∪ {(k, b)}, where E = {(i, j) ∈
{N∪s}×N

′ |[i < j]∧[i and j are compatible trips]} is the set of arcs that correspond

to the deadheading trips. A feasible network for backup Trip k can be defined as

G(k) = {V,X(k)} with nodes V = N ∪ {s, t} and arcs X(k) = E(k) ∪ (s ×
P ) ∪ (N × t), for k ∈ K, where k is the backup trip. Since the trip in P is currently

being served by an existing vehicle, there is no need to allocate another vehicle to

cover it. The arcs, (s × P ), are included only for modeling convenience. We define

G = {G(k)|k ∈ K} as the set of all feasible networks.

We illustrate feasible networks and our procedure with an example. Suppose we

have to complete four trips with the travel times indicated in Table 1. Suppose the

travel time from the ending point of each trip (or depot) to the starting point of a trip

is a constant (4 time units).

Table 1. Travel Times

Trip Starting Time Ending Time Duration

1 8 14 6

2 1 16 15

3 18 25 7

4 20 28 8

Suppose a vehicle breaks down on Trip 1 at the point X at time 11. Thus, the

travel time from point X to the ending point of Trip 1 is 3 units. Assume that: (a) the

cut vehicle is carrying 11 passengers at point X, (b) on the average, all vehicles have

more than 16 available seats, (c) Trip 2 is an itinerary compatible trip with Trip 1

from the breakdown point X, and the vehicle serving Trip 2 has not passed the point

X, (d) the required time for any vehicle serving a trip from the ending point of the

regular trip to the breakdown point is a constant, 3 time units, and (e) the time of a

vehicle from the depot to the breakdown point is 12 time units. Thus, set A = {2};

and set B = {0, 3, 4}, where the element 0 denotes an assignment of a bus from the

depot. Since the expected vacant capacity of the vehicle on Trip 2 is 16, this vehicle

can pick up all passengers. If the vehicles serving trips from set B reach point X later

than the deadline (time when the vehicle on Trip 2 arrives at point X), they cannot be

used as the backup vehicle candidates. Times of vehicles to reach X from set B are

as follows: for Trip 3, 25 + 3 = 28, and for Trip 4, 28+ 3 = 31.

The following cases are described in Fig. 2 to illustrate the generation of the

possible feasible networks, where Fig. 2(a) shows the initial schedule.

Case 1: Suppose the vehicle on Trip 2 reaches X at time unit 11. In this case, the

only backup trip candidate is Trip 2. Although we do not need any backup vehi-
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Fig. 2. Example of Feasible Networks

cle to go to the breakdown point, it is possible to require an additional vehicle to

cover the remaining trips assigned to the disabled vehicle. In this case, there is

only one feasible network (see Fig. 2(b)). Trip 2 is finished on time. The feasible

network can be constructed by removing Trip 1 and associated arcs.

Case 2: Suppose the vehicle on Trip 2 reaches X at time unit 13. In this case, the

backup vehicle candidates are: (i) the vehicle assigned to Trip 2, and (ii) an

extra vehicle from the depot. If the backup vehicle is the vehicle on Trip 2, the

feasible network is given in Fig. 2(b). Fig. 2(c) presents the feasible network if

the backup vehicle is the extra vehicle from the depot. The time for this vehicle

to finish Trip 1 would be 12 + 3 = 15. Then the time to the starting point of

Trip 3 is 15 + 4 =19, if this vehicle was assigned to Trip 3, which is later than the

starting time of Trip 3. Therefore, Trips 1 and 3 become incompatible (19 > 18),

and this new vehicle cannot be assigned to Trip 3 (therefore, there is no arc from

Trip 1 to Trip 3 in Fig. 2(c)).

Based on these feasible networks, we can model the SDBRP as a VSP in each

feasible network, and the SDBRP optimal schedule is the one with the minimum total

cost over all possible feasible networks. It is quite likely that the remaining vehicles

have their routes changed to accommodate the disturbances caused by the disrupted

trip. If there are a large number of feasible networks, then in order to decrease the

number of feasible networks, it is possible to define a time limit by which a bus has

to arrive at the breakdown point. If there are large number of elements in B∗, some

candidates that exceed this time limit can be deleted using this constraint.

4.2 Mathematical Formulation

The SDBRP can be modeled as a minimization problem over several SDVSPs, each

corresponding to a possible feasible network. Let yij be a binary decision variable,

with yij = 1 if a vehicle is assigned to Trip j directly after Trip i, yij = 0 otherwise.

Let cij be the vehicle cost of arc (i, j) ∈ X(k), which is a function of travel and idle
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time. Let Dk be the delay cost related to the solution of Trip k as the backup trip.

The quasi-assignment based formulation for the SDBRP is as follows:

min
G

{min
∑

(i,j)∈X(k)

cijyij + Dk}

subject to
∑

j:(i,j)∈X(k)

yij = 1 ∀i ∈ N

∑

i:(i,j)∈X(k)

yij = 1 ∀j ∈ N

yij ∈ {0, 1} ∀(i, j) ∈ X(k)

where G is the set of all feasible networks.

The objective of our formulation is to find a schedule with the minimal operating

and delay cost. The constraints in the formulation assure that each trip is assigned to

exactly one predecessor and one successor.

Freling et al. (2001) compared the efficiency of several algorithms for the VSP,

including the Hungarian algorithm (Paixão and Branco (1987)), successive shortest

path algorithm (Dell’Amico (1989)), and the minimum cost flow approach (Bokinge

and Hasselstrom (1980)) and showed that auction based algorithms are the fastest

and most stable on average. Since solving the single-depot vehicle rescheduling

problem is equivalent to solving |G| vehicle scheduling problems, the auction algo-

rithm was selected as our approach due to its excellent results for the VSP (Freling

et al. (2001)). The auction method is also well suited for implementation on parallel

machines (Bertsekas and Castañon (1991)), improving overall computational perfor-

mance. This property is important to the vehicle rescheduling problem since it needs

to be solved very quickly. The next section presents these algorithms.

5 Auction-Based Algorithms for Solving the SDBRP

Before describing the developed algorithms, we will introduce the basic concepts

related to auction algorithms.

5.1 Auction Algorithms: An Introduction

An auction algorithm was originally proposed by Bertsekas (1992) for the classical

symmetric assignment problem. Given its outstanding performance, it was further

developed for the shortest path problem, the asymmetric assignment problem, and

the transportation problem (Bertsekas (1992)). In the classical symmetric assignment

problem, we need to match n persons and n objects on an one-to-one basis. Let

aij be the benefit of matching person i and object j. The objective function is to

maximize the total benefit. In the auction algorithm, each object j has a price pj ,

and this price is updated upwards as persons bid for their best object, that is, the

object for which the corresponding benefit minus the price is maximal. The auction

algorithm is composed of two phases: the bidding phase and the assignment phase.
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In the bidding phase, every unassigned person looks for its “best” object; in the

assignment phase, the object determines the highest bid, since it may receive more

than one bid. Meanwhile, if some objects that have already been assigned to some

persons in a preceding iteration are now assigned to new persons, the persons who

lose their objects are inserted into an unassigned set. After all the persons and objects

are matched, the auction algorithm is terminated.

The combined forward and backward auction algorithm consists of forward and

backward auction iterations, where, in a forward auction iteration the persons bid

for the objects, while in a backward auction iteration objects bid for the persons.

The combined auction algorithm has also been used for quasi-assignment problems

(Freling et al. (2001)). The combined auction algorithm for these problems is simi-

lar to the combined algorithm for the classical assignment problem, except that the

person and object which represent the depot do not participate in the bidding. In the

combined auction algorithm for the VSP, the person can be seen as the trip that is for-

ward assigned, and the object can be seen as the trip that is backward assigned. The

algorithms developed in the paper to solve the SDBRP are based on the combined

auction algorithm by Freling et al. (2001).

The performance of the auction algorithm is often improved by using ǫ scaling

in Bertsekas (1992), where an integer ǫ is added to the prices, with ǫ gradually de-

creasing in subsequent iterations. As suggested by Bertsekas and Castañon (1991),

a possible implementation of ǫ scaling is as follows: the integer benefits of aij are

first multiplied by n + 1 and the auction algorithm is applied with progressively

lower values of ǫ, up to the point where ǫ becomes 1 or smaller. Using ǫ-scaling, the

complexity of the algorithm is O(nm log nC), where n is the number of elements to

assign, m is the number of possible assignments between pairs of elements, and C
is the maximum absolute benefit.

Freling et al. (2001) describes the auction algorithm as follows. The value of a

bid of Trip i (or person i) for another Trip j (or object j), which is candidate for

forward assignment, is denoted by fij = aij − pj . The value of a bid of Trip i
for the depot is denoted by fit = ait. Let N be all trips and A be all arcs in the

feasible network, respectively. Introduce πj to denote the price of object j, when the

backward auction is conducted.

Step 1: Perform the forward auction algorithm for each Trip i ∈ N (or person i)
which is currently not assigned to a Trip j (or object j) or depot.

Step 2: Determine the trip or depot ji with the maximum bid value βi = max{fij |j :
(i, j) ∈ A}. Determine also the second highest value γi = max{fij |j : (i, j) ∈
A, j 
= ji}. If Trip i (or person i) has only one arc (i, j) ∈ A, set γi = −∞; If

ji = t go to Step 4.

Step 3: Update the prices: pji
= pji

+βi−γi+ǫ = aiji
+γi+ǫ, and πi = aiji

−pji
.

Update the assignments. If Trip ji was already backward assigned, then remove

the previous assignment. Return to Step 1.

Step 4: Update the price: πi = ait, update the assignment, and return to Step 1.
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The reverse auction procedure is similar, with bids for candidates for forward

assignments replaced by bids for candidates for backward assignments (Freling et al.

(2001)).

5.2 Sequential Auction Algorithm for the BRP

The sequential auction algorithm is based on the combined forward-backward auc-

tion algorithm developed by Freling et al. (2001), considering the existence of several

possible feasible networks to be solved. The algorithm is described as follows:

Step 1: Based on the starting and ending times of trips and travel time between trips,

apply the procedure described in Section 3 to build the set of all possible feasible

networks. Calculate the costs for the compatible trip pairs and the total delay cost

of each feasible network.

Step 2: For each feasible network, apply the forward-backward combined auction

algorithm (Freling et al. (2001)) to find the minimum cost scheduling of each

feasible network as follows:

Step 2.1: Set the initial prices to 0. Set the initial ǫ = (n + 1) ∗ C, where C is

the maximum absolute benefit.

Step 2.2: Using current ǫ and prices from the last iteration, conduct the bidding

and assignment until all trips are both forward and backward assigned (see

Freling et al. (2001) for details).

Step 2.3: If ǫ ≤ 1, the auction algorithm for current feasible network terminates.

Otherwise, set ǫ = 0.5 ∗ ǫ and clear the assignment, go to Step 2.2.

Step 3: Select the minimal operating and delay cost scheduling as the solution.

As pointed out by Bertsekas and Castañon (1991), the auction method is well

suited for implementation on parallel machines, improving its computational perfor-

mance. The next section discusses our parallel implementation of the auction-based

algorithm for the SDBRP.

5.3 Parallel Auction Algorithm

A parallel synchronous model is used to implement the algorithm. The system is

composed of an assignment processor and several bidding processors, where the as-

signment processor is in charge of determining the prices and making the assign-

ment, and a bidding processor is in charge of conducting the bidding. We employ

the Jacobi method to implement the parallel auction algorithm since this method

needs less synchronization than the Gauss-Seidel method (Bertsekas and Castañon

(1991)). Suppose there are T bidding processors that conduct bidding, and in the

forward (backward) auction, the unassigned persons (objects) are partitioned into T
subsets. Every bidding processor simultaneously conducts the bidding for a different

subset. After bidding in each processor is completed, the results, including the partial

assignment and prices of persons and objects for the specific subset, are sent to the

assignment processor. When the assignment processor receives all results from the T
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bidding processors, it combines them to determine the new assignment and prices for

all the unassigned persons and objects. If some objects (persons) that have already

been assigned to some persons (objects) in a preceding iteration are now assigned to

new persons (objects), the persons (objects) who lose the objects (persons) will be

put into the unassigned person (object) set.

Then, the new assignment information is sent back to T bidding processors and

the auction continues. After all the persons and objects are assigned, the auction

algorithm is terminated. A method which partitions the unassigned trips will be pre-

sented later. Fig. 3 illustrates the parallel synchronous implementation of the Jacobi

method.

Since the forward-backward combined auction algorithm is used to solve the

SDBRP, we have to determine if the auction is forward or backward at each new

iteration. The first iteration always uses a forward auction operation. We employ

the method from Bertsekas (1992) to refrain from switching between forward and

backward auctions until at least one more person-object pair has been added to the

assignment.

In order to partition the unassigned trips and simultaneously conduct the bidding,

a simple partitioning method is used to allocate each unassigned person (object)

Assignment Processor

+Process bids
+Determine the assignment
+Determine prices of persons and objects

+Determine unassigned persons and objects.
+Determine the next operation

Bidding Processor 1

+Update the assignment and price
+Based on the current operation, select the
   unassigned persons or objects scheduled on this
   processor.

+Compute the bid for selected unassigned
   persons or objects
+Preprocess the assignment based on the bidding
   for this processor

Send assignment

results

Send
bidding results

Send assignment

results

Send
bidding results

Bidding Processor T

+Update the assignment and price
+Based on the current operation, select the
   unassigned persons or objects scheduled on this
   processor.

+Compute the bid for selected unassigned
   persons or objects
+Preprocess the assignment based on the bidding
   for this processor

Fig. 3. Parallel Synchronous Auction Algorithm
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on the bidding processors. Every bidding processor is assigned an ID, in the range

0, 1, . . . , T − 1. Considering that there are M unassigned persons (objects) stored

in a list L, the unassigned persons (objects) for the bidding processor are defined by

Q[ai] = i mod T, 0 ≤ i ≤ M − 1, where ai is the i-th unassigned person (object)

in list L, and Q[ai] is the designed bidding processor of person (object) ai.

A preprocessing technique is also employed for accelerating the computing and

reducing the data-handling traffic. Consider the following situation: If there are an

excessive number of unassigned persons for each bidding processor (this typically

happens in the early stage of auction algorithms), it is quite likely that several per-

sons bid for the same object in the same bidding processor. It is possible to make par-

tial assignments in each bidding processor rather than in the assignment processor,

considering the most dominant person requesting an object in the bidding processor.

After the partial assignment is carried out in each processor, only one person bids

for the same object in this bidding processor. This partial assignment can reduce the

amount of data sent to the assignment processor. Computational experiments show

that this method significantly reduces the running time of the parallel implementa-

tion.

The algorithm is described as follows. Steps 1 and 3 are the same as the corre-

sponding steps in the sequential auction algorithm. Step 2 is as follows:

Step 2: For each feasible network, apply the forward-backward combined parallel

auction algorithm to find the minimum cost scheduling of each feasible network

as follows:

Step 2.1: Set the initial prices to 0. Set the initial ǫ = (n + 1) ∗ C. Send the

information to bidding processors.

Step 2.2a: Upon receiving the current ǫ, assignment and prices from the assign-

ment processor, conduct the bidding for the persons or objects allocated on

each processor. Then, carry out the partial assignment and send the results

to the assignment processor.

Step 2.2b: Based on the information received from the bidding processors, de-

termine the assignment and prices. If all persons and objects are assigned,

go to Step 2.3. Otherwise, send the assignment results to bidding processors.

Step 2.3: If ǫ ≤ 1, then the current feasible network terminates. Otherwise, set

ǫ = 0.5 ∗ ǫ, clear the assignment and send the information to the bidding

processors, and go to Step 2.2.
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Table 2. Computational Results

Remaining Initial # Backup New # Objective Average CPU Time (s)
Trips of Buses Trips of Buses Value CPLEX SBRP PBRP2 PBRP4

100 28.6 2 29.0 135407 0.09 0.01 0.05 0.04
3 28.8 134516 0.13 0.02 0.08 0.05
5 28.6 133601 0.22 0.03 0.13 0.08

10 28.6 133511 0.45 0.07 0.25 0.18

300 76.0 2 76.6 356042 0.88 0.21 0.18 0.17
3 76.4 355100 1.32 0.31 0.27 0.25
5 76.2 354189 2.20 0.51 0.48 0.41

10 76.0 353284 4.42 1.01 0.91 0.75
15 76.0 353256 6.65 1.49 1.32 1.13
20 76.0 353233 8.87 1.98 1.75 1.52

500 121.6 2 122.1 564555 2.96 0.72 0.50 0.35
3 122.0 564071 4.41 1.07 0.75 0.53
5 121.9 563603 7.31 1.78 1.16 0.91

10 121.6 562277 14.55 3.50 2.29 1.82
15 121.6 562267 21.80 5.16 3.30 2.69
20 121.6 562232 29.05 6.78 4.32 3.56
25 121.6 562219 36.33 8.43 5.29 4.41
30 121.6 562214 43.58 10.08 6.34 5.24
35 121.6 562193 50.82 11.73 7.35 6.05
40 121.6 562179 58.09 13.38 8.35 6.92

700 165.2 2 165.8 767241 6.71 1.73 0.82 0.70
3 165.5 766037 10.07 2.60 1.26 1.07
5 165.3 765181 16.82 4.30 2.07 1.78

10 165.1 764322 33.56 8.33 4.06 3.53
15 165.1 764213 50.41 12.47 6.10 5.22
20 165.1 764154 67.31 16.43 8.11 6.84
25 165.1 764151 84.16 20.33 10.03 8.39
30 165.1 764141 101.03 24.21 11.94 9.96
35 165.1 764135 117.96 28.05 13.97 11.51
40 165.1 764128 134.85 31.90 15.87 13.12

900 211 2 211.0 1029542 13.15 4.16 1.45 1.18
3 210.9 1028997 19.81 6.23 2.17 1.74
5 210.9 1028957 33.16 10.31 3.55 2.87

10 210.7 1028106 66.46 20.62 7.10 5.73
15 210.7 1028091 99.85 30.86 10.46 8.52
20 210.7 1028066 133.31 41.07 13.84 11.35
25 210.7 1028059 166.81 51.19 17.16 14.07
30 210.7 921768 200.22 61.16 20.45 16.79
35 210.7 818583 233.61 71.19 23.69 19.56
40 210.7 818576 267.11 81.17 26.99 22.32

1100 253.6 2 253.5 1218215 21.54 10.99 2.84 2.03
3 253.5 1218200 32.32 16.47 4.30 3.15
5 253.5 1218162 54.12 27.23 7.02 5.35

10 253.2 1216918 108.87 54.03 13.48 10.62
15 253.2 1216906 163.53 80.40 19.82 15.73
20 253.2 1216885 217.79 106.77 26.38 20.97
25 253.1 1216458 271.89 133.17 32.80 26.11
30 253.1 1216446 325.98 159.13 39.20 31.24
35 253.1 1216446 380.22 185.34 45.63 36.43
40 253.1 1216444 434.49 211.48 51.95 41.60

1300 302.8 2 302.8 1440810 33.04 18.91 4.34 3.53
3 302.6 1439972 49.38 28.31 6.51 5.31
5 302.6 1439964 82.52 46.66 10.97 8.88

10 302.5 1439139 165.47 91.86 21.64 17.50
15 302.4 1438699 248.13 136.87 32.19 25.74
20 302.4 1438686 331.27 182.19 42.68 34.25
25 302.4 1438686 414.24 226.62 52.70 42.25
30 302.4 1438674 496.81 271.51 62.88 50.52
35 302.4 1438662 580.11 315.62 73.05 58.45
40 302.4 1438662 662.99 359.45 82.80 66.21
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6 Computational Experiments

The main objective of the computational experiments is to compare the performance

of the developed algorithms, in terms of the required CPU time, to obtain the opti-

mum solution. Therefore, for convenience, we only included the cost of reallocating

buses (including allocation cost of the bus for the backup trip) and not the cost of

delay to passengers on the disabled bus in the objective function for the SDBRP.

Since the constraint matrix is totally unimodular, the solution of the linear relax-

ation for the SDBRP provides an optimal solution. Nevertheless, solving the linear

relaxation may require longer times than the auction algorithm, since the latter was

specially designed to solve the VSP. We used CPLEX 7.0 Network Optimizer to

solve the linear relaxation of the SDBRP. CPU times of the linear relaxation and of

the auction algorithms were compared for verification purposes.

The algorithms were implemented in C++ on 900Mhz Sun Workstations. The

communication protocol used for the parallel implementation was developed based

on the Socket/Stream protocol. The following nomenclature is used to define the

implemented algorithms:

(a) CPLEX: The use of CPLEX7.0 to solve the linear relaxation of the SDBRP;

(b) SBRP: The sequential auction algorithm;

(c) PBRP2: The parallel auction algorithm using 2 processors;

(d) PBRP4: The parallel auction algorithm using 4 processors.

The experiments were designed using the random data generation method for the

VSP of Carpaneto et al. (1989). Let ρ1, ρ2, . . . , ρv be relief points (i.e., points where

trips can start or finish) of a transportation network. We generate them as uniformly

distributed random points on a (60×60) square and compute the corresponding travel

times θρa,ρb
as Euclidean distances between relief points ρa and ρb. To simulate the

trips, we generate for each Trip Tj (j = 1, . . . , n) the starting and ending relief

points, ρ
′

j and ρ
′′

j , randomly selected from ρ1, ρ2, . . . , ρv . The time between Trips Ti

and Tj is defined as θρ
′′

i
ρ
′

j
,∀i, j. The starting and ending times, sj and ej , of Trip Tj

are generated by considering first two classes of trips: short trips and long trips. For

short trips, sj is a uniformly distributed random integer in the interval (420,480) time

units, say, minutes, with probability 15%; in (480,1020) with probability 70%; and

in (1020,1080) with probability 15%. Since ending time ej for Trip Tj must include

a travel time between ρ
′

j and ρ
′′

j , and dwell time at bus stops, we generate ej as a

uniformly distributed random integer in (sj +θρ
′

j
,ρ

′′

j
+5, sj +θρ

′

j
,ρ

′′

j
+40). For long

trips, we assume they start and end at the same point, and the travel time depends

on the length of the resultant cycle and associated stops. Then we generate sj as a

uniformly distributed random integer in (300,1200) time units and ej as a uniformly

distributed random integer in (sj + 180, sj + 300). Costs cij , csi and cjt are defined

to include travel time and waiting time; we used

1. cij = 10θi,j + 2(sj − ei − θi,j), for all compatible pairs (Ti, Tj);

2. csi = 2000, for trips from the depot to route Ti; and

3. cjt = ⌊10(Euclidean distance between depot and Trip Tj)⌋ + 2000, for trips

from Tj to the depot.
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In order to compare the computational efficiency of the sequential and parallel

implementations of the auction algorithm, we consider a situation in which the total

number of trips is composed of a 40:60 combination of short and long trips.

To evaluate the performance of the algorithms, we first generated a VSP and

solved it. Then, a disruption was introduced so that an early trip is chosen as a cut

trip (Trip Tb). We assumed that vehicles break down in the middle of the cut trip in

time and distance. The arrival time to the breakdown point is calculated as follows:

(i) for a backup vehicle on a regular trip, the arrival time is the ending time of the

current trip plus the travel time from the ending point to the breakdown point; and,

(ii) for a vehicle on a deadheading trip, the arrival time is the current time plus the

travel time from its current location to the breakdown point. Euclidean distance is

used in the calculation of travel distances.

Since in real-life situations, determination of backup trips requires knowledge of

bus capacity and common itineraries, whereas in the simulation trips are generated

only by distance and travel times, we simply assumed the possible number of backup

trips to be among (5,10,15,20,25,30,35,40). For each value of G, ten instances were

generated and solved.

Table 2 (p. 294) compares the performance of algorithms SBRP, PBRP2, and

PBRP4. The first five columns give the number of the remaining trips, the original

number of buses, the number of backup trips considered, the number of new buses

required to finish the remaining trips, and the optimal cost, respectively (fractional

buses are because each entry is an average of ten instances). The remaining columns

show the average CPU seconds, excluding input and output time, for the four algo-

rithms.

The table shows that an increase in the possible number of backup trips decreases

the optimal cost, characterizing a trade-off between CPU time and optimal cost, de-

fined by the number of possible backup trip alternatives being considered. Taking

into consideration that (i) the small differences in the average optimum cost between

5 and 40 backup trip alternatives for large problems, and (ii) the considerable in-

crease in the average CPU time for these problems, it may be worthwhile to develop

heuristics to prune the number of possible backup trip alternatives, especially for a

large number of remaining trips. The idea is to select and solve the problem only for

a representative subset, in a way that we include, with a high probability, the feasible

network that leads to the optimum solution.

An extra vehicle is needed when the number of buses in the rescheduling prob-

lem is equal to the number of buses in the original scheduling. Table 2 shows that at

most one extra vehicle is needed to serve all the remaining trips. The average CPU

time for all algorithms is highly dependent on the problem size. The table shows that

for small problems (100 remaining trips) all algorithms are extremely fast, solving

the problem, even for the high value of G, in less than 1s CPU time. It seems that

parallel processing does not improve the CPU times for small problems. This fact can

be explained by the required communication cost between the different processors.

The communication time becomes relevant for small problems, but it is compensated

by the fast processing time to solve the auction algorithm for large problems. There-
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fore, the parallel implementation is more efficient for large problems, in terms of the

number of remaining trips and possible backup trips.

300 500 700 900 110 1300
0

10

20

30

40

50

60

70

80

90

100

110

Remaining Trips

C
P

U
 P

e
rc

e
n
ta

g
e
 (

%
)

SBRP

PBRP2

PBRP4

Fig. 4. Average CPU Time Percentage, Considering SBRP as the Comparison Basis

The two parallel algorithms (PBRP2 and PBRP4) become more efficient as the

problem size increases (more remaining trips and more backup trips). Fig. 4 presents

a pairwise comparison, considering SBRP as the comparison basis, on the average

CPU time percentage for the problems for 300 remaining trips onwards. The CPU

percentage is computed as follows

Percentage = 100 × CPUp

CPUSBRP

where CPUSBRP is the CPU seconds required by the algorithm SBRP, and CPUp

is the CPU seconds required by the parallel algorithms. For problems with more

than 300 remaining trips, the use of parallelism results in significant reductions on

the average CPU seconds required to solve the problems. Reductions in the CPU

seconds are more significant for larger problems.

7 Conclusions

This paper models the single depot bus rescheduling problem and presents several

algorithms to solve this problem. The solution approach is based on (i) the genera-

tion of all possible feasible networks obtained when a trip is disrupted, and (ii) the
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application of auction algorithms for solving the resultant vehicle scheduling prob-

lem. In addition, parallel processing was used as a possible approach to improve the

efficiency of the auction algorithms.

From the extensive computational experiments performed using randomly gen-

erated data, the following important observations summarize the results:

• For small problems (less than 300 remaining trips), both sequential and parallel

implementations are fast. The sequential algorithm, without using parallel pro-

cessing, provided the solutions with the smallest CPU time, due to the added

communication time between processors for parallel algorithms.

• For large problems (more than 300 remaining trips), the parallel algorithms out-

perform the sequential implementation, in terms of CPU time.

In summary, we can conclude that the developed solution approaches are com-

putationally efficient to be used in automatic schedule recovery tools. As a follow

up of this research we plan to develop a method to speed up the computational per-

formance of the auction algorithm. Since the difference among feasible networks is

small, one promising approach is to perform the algorithm in two stages. In the first

stage, the algorithm is carried out for a reduced network that does not include the cut

trip. Then an assignment close to the original one can be obtained with prices of per-

sons and objects, since this reduced network is very similar to the original feasible

network. In the second stage, we include the cut trip and backup trips to reconstruct

feasible networks and apply the auction algorithms again, taking the initial prices ob-

tained in the first stage. The second stage is performed for all possible backup trips.

Preliminary experiments are promising.

We included two major assumptions in this study: (i) only the cut trip can suf-

fer delays; and (ii) there is no restriction on the number of rescheduled trips. These

assumptions may not be true for some applications. In some cases, a vehicle break-

down may also delay other trips (e.g., when the starting point of the next trip that the

breakdown vehicle is scheduled to cover is too far from the depot and other vehicles).

As a next step, a trip cancellation strategy is being introduced to handle such cases.

The research team is also planning to include a strategy to limit the number of trips

that can be rescheduled.

References

Bertsekas, D. (1992). Auction algorithms for network flow problems: a tutorial in-

troduction. Computational Optimization and Applications, 1, 7–66.
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Summary. Bus route running time represents a key element of transit performance. An un-

derstanding of running time behavior and the factors that influence it is essential for off-line

planning and operations design purposes including fleet size planning, schedule design, and

passenger travel time performance assessment. Such an understanding is also critical for real-

time applications including bus operations control and passenger information systems. This

paper focuses on developing models of running time and estimating them using field data.

Two model structures are considered. The schedule-based model specifies the upcoming run-

ning time as a function of the most recent deviation from the schedule the bus has exhibited

at the terminus. This model characterizes the situation where a late running bus attempts to

catch up with the schedule and, hence, reflects an upcoming running time shorter than the

target running time, and vice versa. The autoregressive model specifies the upcoming running

time as a function of the most recent running time. This model characterizes one of two situa-

tions depending on the sign of the parameter estimate. On the one hand, when the most recent

running time is longer than the mean, the upcoming running time would also be longer than

the mean if the operation is dominated by exogenous factors that cause delays such as other

traffic or weather. On the other hand, the upcoming running time would be shorter than the

mean if the driver is capable of speeding up to reduce the delay in the operation. Irrespective

of the model structure, the characteristics of the driver-bus pair may also influence the extent

to which the upcoming running time will deviate from the target or the mean. To capture this

potential heterogeneous phenomenon, the fixed effects formulation is adopted whereby driver-

bus pair dummy variables are included in the model. Field data are utilized in estimating the

two types of models in the presence of driver-bus heterogeneity. In general, the schedule-based

model is superior to the autoregressive model in describing running time behavior. Moreover,

driver-bus heterogeneity is found to be a significant contributor to this behavior.

1 Introduction and Motivation

Running time is defined as the amount of time it takes a bus to complete one cy-

cle of its assigned route and represents a key element of transit performance. An



302 Rabi G. Mishalani, Mark R. McCord, and Stacey Forman

understanding of running time behavior and the factors that influence it is essential

for off-line planning and operations design purposes including fleet size planning,

schedule design, and passenger travel time performance assessment. Moreover, such

an understanding is critical for real-time applications including bus operations con-

trol and passenger information systems. A bus’s running time may not be equal to

the target or expected running time on a single run due to exogenous variables such

as vehicle and pedestrian traffic, passenger demand, weather, bus characteristics, or

driver characteristics. Nevertheless, it might be possible to more accurately predict a

future bus running time when incorporating knowledge of some of these factors and

recent information on the bus’s location.

In light of the developments in automatic vehicle location (AVL) systems, their

application to public transit, and their use for control and passenger information pur-

poses, numerous researchers including Wall and Dailey (1999), Lin and Zeng (1999),

Hickman (2001), Dueker et al. (2001), Bertini and El-Geneidy (2004), and Shalaby

and Farhan (2004) have been studying bus travel times. While various variables in-

fluencing bus travel times are considered, none of the mentioned studies examine the

effects of different driver-bus pairs – i.e., driver-bus heterogeneity – on travel times.

Moreover, none take into account the possible value of considering the most recent

running time of a particular bus in predicting the next running time of that same bus.

Furthermore, only Lin and Zeng (1999) from the above mentioned studies explicitly

take into account the effect of deviations from the schedule in modeling travel time.

The study presented in this paper focuses on the possible presence of driver-bus het-

erogeneity, considers the effect of the most recent running time of a bus in predicting

its future running time, and captures the effect of schedule deviations.

The effects of driver-bus characteristics are of particular interest. Confirming the

presence of such effects of driver and bus heterogeneity and understanding them are

valuable in various ways. In a planning context, the transit agency can take such

considerations into account in vehicle and crew scheduling or in after-the-fact eval-

uation. In a real-time operations control and traveler information context, such un-

derstanding has the potential to improve running time forecasts, an essential input to

real-time functions. This paper focuses on bus running time modeling in the presence

of driver-bus pair heterogeneity.

2 Running Time Models

Two running time model specifications are developed for three Campus Area Bus

Service (CABS) routes operated by the Ohio State University’s Transportation and

Parking Services. The developed schedule-based and the autoregressive models take

advantage of the panel nature (Greene (2003)) of the CABS data set, whereby bus

numbers represent different cross-sections each observed over several consecutive

time periods. In the case of the CABS operation, these bus numbers can be good

proxies for driver-bus pair characteristics including bus age, bus size or type, driver

experience, driver age, and driver gender.
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The bus number is expected to be a good proxy in this case because, in general,

the operator assigns the same small subset of drivers to buses (Basinger (2003)).

Thus, more often than not, a specific bus is paired with only a few possible drivers

over the course of an academic year (the data set used in this study spans a period of

time falling within a single academic year; see Section 3). Hence, bus numbers are

used as proxies for driver-bus pairs in capturing the possible heterogeneity reflected

by such a pair. Ideally, driver information would be explicitly used. However, such in-

formation is not available in the CABS data set, and its use is, therefore, reserved for

future research. It is worth emphasizing that in the context of the available data set,

any identified heterogeneity based only on bus number information would strengthen

the motivation for capturing driver information explicitly in future studies.

As discussed in Greene (2003), several specifications capturing driver-bus pair

heterogeneity are possible including the fixed and random effects formulations.

While both have been investigated, the focus of this paper is on the former. In the

developed models, the time step reflecting the time dimension of the panel data set

is an index indicating a particular running time by a particular bus. That is, the time

step does not capture a specific point or period of time, but rather is a variable index

that increases by an increment of one as soon as a bus run (across the entire route) is

complete and a new run commences.

In addition to capturing driver-bus heterogeneity, in general it is possible to at-

tempt to model the effect of time-of-day using the CABS data set. However, given

the university campus context of the service and the consequent prominent effect of

class schedules and distribution across campus, a typical peak and off-peak pattern is

not apparent. Therefore, such treatment is reserved for future research. Further dis-

cussion regarding various influencing factors is presented in the final section of this

paper.

2.1 Schedule-based Fixed Effects Specification

The schedule-based model in the absence of driver-bus heterogeneity, referred to as

the homogeneous schedule-based model henceforth, takes the following form:

rt+1 − r = β + αdt + ǫt+1 (1)

where t = time index specific to a set of consecutive running time observations (re-

ferred to as a stream), rt+1 = bus running time at time step t+1, r = mean bus running

time, dt = actual bus arrival time at a pre-specified location minus the scheduled ar-

rival time at time step t, ǫt+1 = random term representing unobserved explanatory

variables and measurement errors with a mean of zero, and β and α = parameters.

The dependent variable (rt+1 − r) is the difference between the running time at time

step t + 1 and the mean running time. The intercept parameter β is hypothesized to

represent the difference between the target running time and the mean running time.

Ideally, the target would be the scheduled running time. A positive value of β would

imply that buses are running faster on average than the target running time, and a

negative value would imply that buses are running slower on average than the target
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running time. To illustrate, consider a bus arriving precisely on schedule at time step

t (i.e., dt = 0). In this case, the next running time rt+1 is modeled to be the target

running time (r + β) plus the random variable ǫt+1.

The parameter α of the explanatory variable dt models the upcoming running

time in relation to schedule deviations. If α is negative, a bus arriving ahead of sched-

ule at time step t (i.e., dt < 0) would lead to an expected running time at time step

t + 1 greater than the target running time, and vice versa. In this way, the value of

α reflects the ability of a driver to adjust his or her running time to maintain the

schedule. A larger absolute value indicates a greater ability of a driver to maintain

the schedule. Staying on schedule is important even when the schedule is not known

to passengers, since otherwise bus bunching might occur and increase the expected

waiting time for passengers (Larson and Odoni (1981)). If α is positive, a bus arriv-

ing behind schedule at time step t (i.e., dt > 0) would lead to an expected running

time at time step t + 1 greater than the target running time, and vice versa. This

might occur due to the persistence of exogenous factors, such as the route charac-

teristics mentioned above. In this case, the value of α reflects the magnitude of this

persistence.

Introducing driver-bus pair heterogeneity, the schedule-based fixed effects speci-

fication reflects the addition of dummy variables to the homogeneous schedule-based

model as follows:

rt+1,i − r = αdti + γ1W1 + . . . + γiWi + . . . + γNWN + ǫt+1,i (2)

where i = index identifying buses (thus representing driver-bus pairs), rt+1,i = run-

ning time of bus i at time step t + 1, dti = actual bus arrival time of bus i at a pre-

specified location minus the scheduled arrival time of bus i at time step t,Wi = 1 for

bus i and 0 otherwise, N = total number of buses, ǫt+1,i = random term represent-

ing unobserved explanatory variables and measurement errors with a mean of zero,

and β, α, and γi = parameters. Notice that r reflects the mean running time over all

individual runs and is estimated by:

r =

∑N
i=1

∑Mi

j=1

∑Tji

t=1 rtji
∑N

i=1

∑Mi

j=1 Tji

(3)

where rtji = tth running time of bus i on its jth stream of consecutive runs, Tji =

total number of runs for bus i on its jth stream, and Mi = total number of streams for

bus i. Note that since a dummy variable Wi for each bus cross-section is included,

the intercept β of the homogeneous schedule-based model of (1) is dropped to avoid

collinearity (Pindyck and Rubinfeld (1998)).

Unlike the homogeneous model where the same mean running time, intercept β,

and parameter α would be used to predict a future running time for all buses over

all times, the fixed effects model allows different driver-bus pairs to have different

target running times due to differences in bus performance or driver behavior. More

specifically, this model reflects different target running times (r + γiWi) for differ-

ent buses through the introduction of bus specific dummy variables Wi. Thus, each

parameter γi in (2) represents the deviation from the mean running time r for bus i.
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2.2 Autoregressive Fixed Effects Specification

The autoregressive model in the absence of driver-bus heterogeneity, referred to as

the homogeneous autoregressive model henceforth, takes the following form:

rt+1 − r = ρ(rt − r) + ǫt+1 (4)

In this model, the explanatory variable (rt − r) is the difference between the

running time at time step t and the mean running time. Since the expectations of

both the explanatory and dependent variables (rt − r) are zero, the intercept is zero.

The parameter ρ in this model represents the correlation between the running times

at time steps t and t + 1 (Wei (1990)). If ρ is negative, then a running time at time

step t+1 would be expected to be less than the mean if the running time at time step

t were greater than the mean, and vice versa. In this way, the drivers’ attempts to

maintain the mean running time dominate, and a larger absolute value of ρ indicates

a greater ability of the drivers to correct a running time to maintain the mean. If ρ is

positive, then a running time at time step t + 1 would be expected to be greater than

the mean if the running time at time step t were greater than the mean. This might

happen if exogenous influences, such as vehicular and pedestrian traffic or passenger

demand, were high and caused a bus to continuously have a greater than the mean

running time despite any attempts on the part of the drivers to correct for such effects.

However, when the running time drops below the mean, the drivers attempt to sustain

lower running times to compensate for the previously longer running times.

Introducing driver-bus pair heterogeneity, the autoregressive model specification

is easily extended to the fixed effects formulation by again adding dummy variables:

rt+1 − r = ρ(rti − r) + γ1W1 + . . . + γiWi + . . . + γNWN + ǫt+1,i (5)

Again notice that r reflects the mean running time over all individual runs and

is estimated by (3). Just as in the schedule-based specification, without the dummy

variables, the same mean running time and parameter ρ would be used to predict a

future running time for all buses over all times. The fixed effects model, however, al-

lows different driver-bus pairs to have different expected future running times for the

same present deviation from the mean (rti−r) due to differences in bus performance

or driver behavior. More specifically, this model reflects different systematic devia-

tions from the mean running time r for different buses on their respective next runs

due to the introduction of bus specific dummy variables Wi. Thus, each parameter

γi in (5) represents that deviation for bus i.

3 Data

The Ohio State University’s Campus Area Bus Service (CABS) provides students,

staff, and guests of the university with a transit bus service whereby 15 to 20 40-foot

buses run simultaneously on several routes on and in the areas surrounding cam-

pus. Buses on these routes follow a schedule determined by the operators of CABS.
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Because the routes vary in length and characteristics, they have expected running

times that vary from route to route. CABS uses the Bus Location Information Sys-

tem (BLIS) (Bus Location Information System (2003)) to obtain AVL data for buses

on several of its routes for both real-time and planning applications. BLIS includes

Global Positioning System (GPS) receivers on each bus and wireless communica-

tions devices that send position and time data to a central computer server. The data

sent from the GPS receivers were used to determine streams of consecutive run-

ning times experienced by each bus operating on a specific route. The bus schedule

was provided by the Transportation and Parking Services (T&P) (Transportation and

Parking Services (2001–2002)).

The data used in this study cover three separate bus routes from September 17,

2001 through March 29, 2002 (i.e., two academic quarters, Fall 2001 and Winter

2002) on weekdays between 6:45 a.m. and 7:00 p.m. when the schedule remains

unchanged. Specifically, the data set includes a series of bus running times, the dif-

ference between the actual bus arrival time at a pre-specified stop and the scheduled

arrival time, the route, and the bus number. The three routes are Campus Loop North,

East Residential, and Core Circulator. These routes represent a range of characteris-

tics that are discussed in detail in the next section. The basic features of these routes

are given in Table 1.

Table 1. Bus Route Characteristics

Route Length Scheduled Run. Scheduled No. of Average Stop

[km] Time [min] Headway [min] Stops Spacing [m]

Core Circulator 2.20 12.0 6.0 11 200

Campus Loop North 8.29 30.0 10.0 20 414

East Residential 8.08 30.0 10.0 20 404

4 Results and Discussion

4.1 Estimation

The Ordinary Least Squares (OLS) estimation results of the homogeneous models

represented by (1) and (4) – the specifications assuming the absence of driver-bus

pair heterogeneity – are first presented to serve as a reference in the subsequent

discussion. These results are shown in Tables 2 and 3 for the schedule-based and

autoregressive models, respectively.

In order to capture driver-bus pair heterogeneity, the schedule-based and autore-

gressive models represented by (2) and (5), respectively, are estimated using OLS

in LIMDEP (Greene (2003)). The dummy variable parameters of these preliminary

estimations were examined. If the t-statistic of a dummy variable was large enough

(approximately greater than 1.3), suggesting that the parameter was significantly dif-

ferent from zero at the 10% level, the data for that bus were kept as an individual
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cross-section group. Otherwise, that bus’s data were grouped with data from other

buses with dummy variable parameters not significantly different from zero into a

larger cross-section group. Each of the models was then re-estimated using the new

cross-sectional groups. The results are presented for each route separately.

Table 2. Estimated Homogeneous Scheduled-Based Models

Variable Est. parameter Standard error t-statistic

Core Circulator route:

Intercept 0.13447 0.047695 2.8194

dt - 0.37880 0.026545 - 14.270

No. of observations = 850, R2 = 0.19268

Campus Loop North route:

Intercept 0.14992 0.025943 5.7508

dt - 0.25939 0.0099484 - 26.074

No. of observations = 4828, R2 = 0.12329

East Residential route:

Intercept 0.52370 0.047900 10.933

dt - 0.45844 0.018768 - 24.426

No. of observations = 2142, R2 = 0.21765

Table 3. Estimated Homogeneous Autoregressive Models

Variable Est. parameter Standard error t-statistic

Core Circulator route:

Intercept 0.077082 0.052259 1.4750

rt − r - 0.15551 0.033806 - 4.6000

No. of observations = 850, R2 = 0.02320

Campus Loop North route:

Intercept 0.019630 0.026263 0.74745

rt − r - 0.24339 0.013470 - 18.070

No. of observations = 4828, R2 = 0.06318

East Residential route:

Intercept - 0.030171 0.044769 - 0.67392

rt − r - 0.35829 0.020560 - 17.427

No. of observations = 2142, R2 = 0.12386

Core Circulator

In the preliminary estimation, five of the dummy variable parameters for each of the

seven cross-sections were significantly different from zero at the 10% level. There-

fore, the data corresponding to the two insignificant bus dummy variable parame-

ters were grouped into one cross-section, and the model was re-estimated using six
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dummy variables. The results are given in Table 4. As expected, the value of α (the

parameter of dti) is negative, implying that buses with an early arrival time on one

run (i.e., dti < 0) are on average expected to have running times greater than the

target running time on the next runs reflecting the drivers’ attempts to maintain the

schedule. This effect is similar to that of the homogeneous schedule-based model of

Table 2. However, the fixed effects model accounts for heterogeneity by allowing an

extra term for each cross-section to adjust the next running time by a fixed amount,

depending on the value of i. If the dummy variable parameter is positive, the value

of rt+1,i would be increased for all data points in cross-section i, and vice versa.

Table 4. Fixed Effects Schedule-Based Model for the Core Circulator Route

Variable Est. parameter Standard error t-statistic

dti - 0.41991 0.027304 - 15.379

W1 (bus # 220) - 0.30961 0.09526 - 3.2500

W2 (bus # 322) 0.41391 0.11624 3.5607

W3 (bus # 321) 0.23205 0.09101 2.5498

W4 (bus # 302) 0.28165 0.20170 1.3964

W5 (bus # 299) 0.40835 0.18859 2.1653

W6 (all other buses) 0.05675 0.10512 0.53988

No. of observations = 850, R2 = 0.21566

For example, on the Core Circulator route, for bus 220 the parameter correspond-

ing to the dummy variable W1 is estimated to be -0.30961. The parameter α is esti-

mated to be -0.41991. Therefore, for bus 220, the schedule-based model is as follows:

rt+1,1 − r = −0.41991dt1 − 0.30961 + ǫt+1,1 (6)

The negative dummy variable parameter implies that a reduction of 0.30961 min-

utes from the mean r in the next running time is specifically attributable to bus 220

regardless of the value of dt1. This might take into account behavioral differences due

to the driver or mechanical differences due to the bus, such as acceleration and decel-

eration capabilities. Given the statistical significance of the parameter estimates cor-

responding to the various dummy variables (except for γ6), such differences clearly

exist. Also, notice that the goodness-of-fit (corrected for the additional dummy vari-

ables) R2 improves over the case where heterogeneity is not captured (see Table 2).

For the autoregressive model for the Core Circulator route, none of the dummy

variable parameters is significantly different from zero at the 10% level. Therefore,

heterogeneity is not detected in this case, and the fixed effects autoregressive model

would be identical to the homogeneous model of Table 3.

Campus Loop North

The data for the Campus Loop North route encompassed 16 cross-sections (buses),

six of which exhibited dummy variable parameters significantly different from zero
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at the 10% level in the preliminary estimation. The estimation results for the subse-

quent model including seven dummy variables (one for each of the six buses with

dummy variables significantly different from zero at the 10% level, and one for all

the other buses) are given in Table 5.

Table 5. Fixed Effects Schedule-Based Model for the Campus Loop North Route

Variable Est. parameter Standard error t-statistic

dti - 0.26872 0.010110 - 26.579

W1 (bus # 526) 0.20046 0.04379 4.5774

W2 (bus # 527) 1.7414 0.05554 3.1356

W3 (bus # 250) 0.32967 0.15246 2.1624

W4 (bus # 322) 0.76693 0.28232 2.7165

W5 (bus # 574) 0.65221 0.17407 3.7467

W6 (bus # 314) - 0.29485 0.16726 - 1.7629

W7 (all other buses) 0.04460 0.04219 1.0570

No. of observations = 4828, R2 = 0.12740

The value of α is again negative. Also notice, for example, that bus 527 is associ-

ated with a specific increase from the mean r of 1.7414 minutes in the next running

time. Again, the parameter estimates corresponding to the dummy variables are sta-

tistically significant (except for γ7), and R2 reflects a slight increase over the case

where heterogeneity is not captured (see Table 2).

For the autoregressive model for the Campus Loop North route, only three of the

dummy variable parameters were significantly different from zero at the 10% level in

the preliminary estimation. The estimation results for the subsequent model includ-

ing four dummy variables are given in Table 6. First notice that the value of ρ (the

parameter of (rti − r)) is negative, implying that if a bus has a running time greater

than the mean running time on one run, the following running time is expected to be

lower than mean, and vice versa. This result indicates that corrections for a long or

short running time with respect to the mean (presumably resulting from the drivers’

attempts to maintain the schedule) are dominant. Also, in the autoregressive case,

positive dummy variable parameters would increase the expected value of rt+1,i for

the corresponding bus, and vice versa.

Table 6. Fixed Effects Autoregressive Model for the Campus Loop North Route

Variable Est. parameter Standard error t-statistic

rti − r - 0.24666 0.013461 - 18.324

W1 (bus # 527) 0.09572 0.05731 1.67013

W2 (bus # 299) 3.25117 0.81521 3.9881

W3 (bus # 322) 0.49351 0.29164 1.6922

W4 (all other buses) - 0.02399 0.02964 - 0.8092

No. of observations = 4828, R2 = 0.06687



310 Rabi G. Mishalani, Mark R. McCord, and Stacey Forman

For example, on the Campus Loop North route, for bus 322 the dummy variable

parameter for W3 is estimated to be 0.49351. The parameter ρ is estimated to be

-0.24666. Therefore, for bus 322 the autoregressive model is as follows:

rt+1,3 − r = −0.2467(rt3 − r) + 0.49351 + ǫt+1,3 (7)

The positive dummy variable parameter implies that an increase of 0.49351 min-

utes from the mean r in the next running time is specifically attributable to bus 322

regardless of the value of (rt3 − r). Given the statistical significance of the various

parameters (except for γ4), heterogeneity clearly exists. Furthermore, the value of

R2 reflects an improvement over the case where heterogeneity is not captured (see

Table 3).

Comparing the schedule-based model with the autoregressive model in the pres-

ence of heterogeneity, notice that the corrected goodness-of-fit of the schedule-based

model is superior. This result is revisited in more detail subsequently when the vari-

ous models are compared across the routes.

East Residential

The data for the East Residential route encompassed twelve different cross-sections

(buses), nine of which exhibited dummy variable parameters significantly different

from zero at the 10% level in the preliminary estimation. The estimation results for

the subsequent model including ten dummy variables are given in Table 7. Notice

that the value of α is again negative, the parameters corresponding to the dummy

variables Wi are statistically significant (except for γ10), and R2 reflects a slight

improvement over the case where heterogeneity is not captured (see Table 2).

For the autoregressive model only two of the dummy variable parameters were

significantly different from zero at the 10% level in the preliminary estimation. The

estimation results for the subsequent model including three dummy variables are

given in Table 8. Notice that the value for ρ is negative, the parameters corresponding

to dummy variables Wi are statistically significant (except for γ3), and R2 reflects a

slight improvement compared to the value in Table 3 where driver-bus pair hetero-

geneity is assumed absent. Also, as in the case of the Campus Loop North route, the

autoregressive fixed effects model does not fit the data as well as the schedule-based

fixed effects model based on the corrected goodness-of-fit measure. Again, this result

is revisited subsequently.

4.2 Prediction

In addition, the two model formulations for both the schedule-based and autoregres-

sive models were used to predict future running times for subsets of data randomly

removed from the three original route data sets. The predicted running times using

models estimated on the complements of these data subsets were then compared to

the actual running times. The first step in this prediction exercise was to randomly

select subsets of data constituting 10% of each of the three different bus routes’ data
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Table 7. Fixed Effects Schedule-Based Model for the East Residential Route

Variable Est. parameter Standard error t-statistic

dti - 0.50146 0.019102 - 26.252

W1 (bus # 239) 0.90307 0.10078 8.9609

W2 (bus # 574) 1.3614 0.61008 2.2316

W3 (bus # 250) 4.5481 0.69181 6.5743

W4 (bus # 322) 0.76305 0.08906 8.5681

W5 (bus # 218) 0.73392 0.48187 1.5231

W6 (bus # 319) 1.7311 0.42385 4.0842

W7 (bus # 573) 0.15424 0.10416 1.4808

W8 (bus # 321) 0.36737 0.11932 3.0790

W9 (bus # 302) 0.58556 0.09826 5.9596

W10 (all other buses) 0.17251 0.16249 1.0616

No. of observations = 2142, R2 = 0.24282

Table 8. Fixed Effects Autoregressive Model for the East Residential Route

Variable Est. parameter Standard error t-statistic

rti − r - 0.36096 0.020558 - 17.558

W1 (bus # 574) 0.91679 0.65485 1.4000

W2 (bus # 250) 1.7488 0.73192 2.3894

W3 (all other buses) - 0.01255 0.04490 - 0.27943

No. of observations = 2142, R2 = 0.12621

sets. The remaining records in the original data set (90% of the entire data set) were

used to estimate the models, while the selected records were used to predict running

times and to conduct comparisons between predicted and actual running times.

The homogeneous and fixed effects models were estimated for both the schedule-

based and the autoregressive specifications. This step was completed using each

route’s 90% data subset, producing a total of four different estimated models for

each route. Note that the estimated parameters of these models would be slightly dif-

ferent from those presented earlier, since the latter are based on the entire data sets.

In addition, a naive model was considered whereby the mean running time is used as

the predictor. Thus, five distinct models were examined in the prediction analysis.

Next, the five models were applied to each datum in the 10% subsets for each

route. This produced five different predictions of upcoming running times for each

datum. The actual running time for each datum is also available in the data set. The

differences between the predicted running times and the actual running times were

therefore computed, thus reflecting the prediction error for each of the five models.

Finally, summary prediction error statistics for each of the routes were computed

on the basis of the absolute values and the squares of the errors for each of the five

models. These statistics are examined and compared to gain an understanding of

which model performed best in terms of predicting upcoming running times for each

route. The summary statistics employed in the comparisons – standard deviation of

the prediction error, mean of the absolute value of the error, and mean of the squared
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error – are estimated as follows:

σe =
√

V ar[e] (8)

E [|e|] =
1

S

S
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|ei| (9)

E
[

e2
]

=
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S
∑

i=1

e2
i (10)

where i = index representing each element of the randomly selected subset repre-

senting 10% of the entire set, ei = predicted minus the actual running time, and S =

number of observations in the 10% subset.

As will be seen in the subsequent tables, each model discussed in this paper out-

performed the naive model for all routes. This result, though not surprising, indicates

that incorporating either the most recent deviation from the schedule or the most re-

cent deviation from the mean running time improves predictions of the next running

time, as compared with simply using the mean running time as the predictor. The

remainder of the results are discussed for each route separately.

Core Circulator

For the Core Circulator route, from the original 850 data records in the set, 765 were

used to estimate the models, while 85 were used for prediction. Table 9 summarizes

the prediction error statistics for each of the five models. In this and the subsequent

two tables, Tables 10 and 11, the naive model summary statistics are noted for both

models to make comparisons easier. Naturally, they are the same for both models.

For the schedule-based model, as highlighted in Table 9, the fixed effects model has

the lowest values for all three error statistics. For the autoregressive model, while

the fixed effects model again has the lowest mean absolute value of the errors, the

homogeneous model is superior on the basis of the standard deviation of the error and

mean of squared error. Nevertheless, the lowest error statistics for the schedule-based

model are consistently superior to those of the autoregressive model. Therefore, the

fixed effects schedule-based model was better at predicting future running times for

the Core Circulator data.

Campus Loop North

For the Campus Loop North route, from the original 4828 data records in the set,

4345 were used to estimate the models, while 483 were used for prediction. Ta-

ble 10 summarizes the prediction error statistics for each of the five models. Again,

as highlighted in the table, the fixed effects model has the lowest error statistics for

the schedule-based model. In the case of the autoregressive model, the homogeneous

model has the lowest values for all three error statistics, although the values of the

statistics for the homogeneous and fixed effects formulations are very close to one
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Table 9. Prediction Error Statistics for the Core Circulator Route

Model

Statistic Homogeneous Fixed Effects Naive

Schedule-based: σe 1.4998 1.4906 1.6527

E [|e|] 1.1525 1.1440 1.2768

E
	
e2



2.2281 2.2144 2.7003

Autoregressive: σe 1.6231 1.6357 1.6527

E [|e|] 1.2555 1.2531 1.2768

E
	
e2



2.6110 2.6444 2.7003

another. Moreover, when comparing the schedule-based model with the autoregres-

sive model, the statistics are slightly superior for the homogeneous autoregressive

model, indicating that this model was slightly better at predicting future running

times for the Campus Loop North route.

Table 10. Prediction Error Statistics for the Campus Loop North Route

Model

Statistic Homogeneous Fixed Effects Naive

Schedule-based: σe 1.8805 1.8697 1.9028

E [|e|] 1.3988 1.3951 1.4242

E
	
e2



3.5496 3.5080 3.6437

Autoregressive: σe 1.8404 1.8441 1.9028

E [|e|] 1.3825 1.3837 1.4242

E
	
e2



3.4106 3.4240 3.6437

East Residential

For the East Residential route, from the original 2142 data records in the set, 1928

were used to estimate the models, while 214 were used for prediction. Table 11

summarizes the prediction error statistics for each of the five models. Once again,

the fixed effects formulation has the lowest error statistics for the schedule-based

model, while the homogeneous formulation has the lowest values for the autoregres-

sive model. When comparing the two models, the corresponding statistics are seen to

be lower for the fixed effects schedule-based model, indicating that this model was

better at predicting future running times for the East Residential route.

4.3 Route Comparison

While the Core Circulator, Campus Loop North, and East Residential bus routes are

all operated by CABS, each has its own characteristics as partly indicated in Table 1.

The East Residential route has a scheduled running time of 30 minutes, a headway

of 10 minutes, and operates mostly off-campus in residential areas. Moreover, the
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Table 11. Prediction Error Statistics for the East Residential Route

Model

Statistic Homogeneous Fixed Effects Naive

Schedule-based: σe 1.9165 1.8899 2.2430

E [|e|] 1.4448 1.4330 1.7182

E
	
e2



3.6566 3.5562 5.0076

Autoregressive: σe 2.0992 2.1035 2.2430

E [|e|] 1.5742 1.5800 1.7182

E
	
e2



4.3873 4.4056 5.0076

distances between the bus stops are large compared to the other two routes. The

Campus Loop North route also has a scheduled running time of 30 minutes and a

headway of 10 minutes. However, it operates mostly on campus where pedestrian

traffic is relatively high. Finally, the Core Circulator route runs entirely on campus

and has the shortest scheduled running time, 12 minutes, and a headway of 6 minutes.

The distances between stops are also comparatively short.

Due to the short running time for the Core Circulator route, the 6-minute head-

way, short stop spacing, and high pedestrian traffic, drivers are expected to be less

likely to pay as much attention to the schedule. If this is indeed the case, the au-

toregressive model might capture the operating behavior more accurately than the

schedule-based model. In contrast, drivers on the East Residential route are expected

to be more effective at maintaining the schedule given its favorable characteristics.

Therefore, in this case it is expected that the schedule-based model would best cap-

ture its behavior. As for the Campus Loop North route, the longer running time and

10-minute headway might suggest that the schedule-based model would be the better

of the two. However, the effects of uncontrollable exogenous factors such as the high

pedestrian traffic might interfere with the drivers’ attempts to adhere to the sched-

ule. In this case, it is unclear on an a priori basis which of the two models would

capture the behavior more accurately. In what follows, the various models are com-

pared across the routes with a focus on the fixed effects formulation. The fixed effects

formulation is chosen because of its statistical superiority over the homogeneous for-

mation for the schedule-based model on all three routes and for the autoregressive

model on two of the three routes.

First, the fixed effects schedule-based model results are considered. The East

Residential route exhibits the highest R2 value of 0.24282, and the Campus Loop

North the lowest value of 0.12740. This result indicates that the schedule-based fixed

effects model fits the East Residential data set best, which is consistent with the a

priori expectations discussed above. As for the estimated values of the parameter

α, all three are negative and significantly different from zero at the 5% level, which

would be consistent with attempts by drivers to meet the schedule in all three cases.

In addition, the magnitude of the estimated parameters is also important. The further

the value of α is from zero, the more indicative it is that a driver has a greater ability

to correct for recent deviations from the schedule. Notice that the estimated value

of α is the furthest from zero for the East Residential route. This result is again
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consistent with the a priori expectations based on the characteristics of the route.

As for the other two routes, the value of α for the Core Circulator route is higher

in absolute value than that of the Campus Loop North route. This result is not quite

consistent with the a priori expectations. One possible explanation might relate to

differences in the level of experience of the drivers assigned to each route. This

difference could be fairly high for CABS due to the mix of professional and student

drivers. However, this information is not available for separate routes at this time

and, therefore, such considerations are reserved for future research.

Considering the autoregressive fixed effects models, the East Residential data

set again exhibits the highest R2 value of 0.12621, and the Core Circulator data

the lowest value of 0.024346. Although this result is not consistent with the a priori

expectations, it is not surprising in light of the favorable performance of the schedule-

based model in the case of the Core Circulator route. As for the estimated value of ρ,

the parameters are negative and statistically significant at the 5% level, which would

be consistent with drivers attempting to achieve regular running times from run to

run. Again, the magnitude of the estimated values is also important. A relatively

higher value in absolute terms would indicate that a driver has a greater ability to

adjust the running time. The estimated value of ρ is largest in absolute value for

the East Residential route, which is consistent with the a priori expectation that this

route’s characteristics are more amenable to adjustments in its operation. The value

of ρ is the lowest in absolute terms for the Core Circulator route. This result is not

inconsistent with a priori expectations that this route is subject to a high degree

of exogenous influences with limited opportunity to adjust operations due to the

relatively short stop spacing and route length.

When the corrected goodness-of-fit values across the schedule-based and autore-

gressive models are compared, these values are higher for the schedule-based model

for all three routes. This result indicates that the schedule-based model is better at

describing running time behavior on all three routes. While this conclusion is not

entirely consistent with the a priori expectations, it does add credibility to the above

discussed results associated with each model as it applies to each of the three routes.

The prediction results are consistent with these findings for the Core Circulator and

East Residential routes. However, on the basis of prediction performance, the au-

toregressive model is slightly better than the schedule-based model in predicting the

behavior of the Campus Loop North route. This result supports the a priori expec-

tation regarding the ambiguity associated with this route. Finally, it is interesting to

note that the differences between the naive model and the other three models with

regard to prediction errors is greatest for the East Residential route, further support-

ing the belief that favorable conditions on this route allow drivers to better adjust the

operation to meet the schedule.

5 Summary and Future Research

An understanding of running time behavior and the factors that influence it is es-

sential for off-line planning and operations design purposes. Moreover, such an un-
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derstanding is critical for real-time applications including bus operations control and

passenger information systems. In this paper, two different running time models –

schedule-based and autoregressive – were presented, estimated, and evaluated both in

the absence of (homogeneous formulation) and in the presence of (fixed effects for-

mulation) driver-bus heterogeneity. For all three bus routes considered and both the

homogeneous and fixed effects formulations, the schedule-based model fits the ob-

served manifestations of the operating behavior better than the autoregressive model.

All the schedule-based models have better corrected goodness-of-fit. While this was

expected for East Residential route with a 30-minute scheduled running time, it was

not expected for the Campus Loop North route with a 12-minute schedule running

time due to the presence of unobserved influencing factors such as high vehicular and

pedestrian traffic. Nevertheless, the results indicate that, even under such conditions,

the schedule remains an important explanatory factor. Regarding the question of het-

erogeneity of driver-bus pairs, the incorporation of dummy variables capturing this

effect in the schedule-based model consistently produced statistically significant re-

sults, indicating the presence of heterogeneity. The results of the prediction exercise

further confirm this conclusion.

Much additional research could be conducted with rich AVL-based data sets, es-

pecially as more of the issues discussed by Furth et al. (2003) are addressed. The

most obvious extension to the study presented in this paper is to examine more bus

routes on CABS and other transit systems. The analysis of additional routes might

allow for further comparisons between routes and might lead to the determination

of additional explanatory variables relating to the characteristics of bus routes. The

length of the route, distance between stops, passenger demand, pedestrian and other

vehicular traffic, and time-of-day might all be factors that affect running times. For

example, Hickman (2001), Bertini and El-Geneidy (2004), and Shalaby and Farhan

(2004) considered the effect of passenger demand. In addition, Dueker et al. (2001)

considered the effect of drawbridge interruptions. Moreover, Shalaby and Farhan

(2004) considered the effect of time-of-day. Nevertheless, studies investigating such

influencing variables in the presence of driver-bus heterogeneity would be worth-

while, especially when using empirical observations of actual bus transit operations.

Another possibility for future research might include a closer examination of

driver-bus pairs. In this research, the bus number was considered a proxy for a driver-

bus pair. However, CABS operates in three different shifts, and it is possible for a bus

to be driven by different drivers during more than one shift. This information was

not readily available from CABS, but it might be possible to obtain in future. If all

driver-bus combinations could be considered as separate cross-sections, achieving

better models might be possible. Furthermore, if specific data regarding drivers and

buses are available, it might be possible to determine how different driver socio-

economic characteristics and bus characteristics affect running times. For example, a

driver’s gender, experience, or age might be the cause of heterogeneity across cross-

sections. In a similar fashion, a bus’s age, size, or model type affecting, for example,

acceleration and deceleration capabilities, might cause heterogeneity. Both of these

types of characteristics could be evaluated, and developing better models might be

possible.
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Summary. Urban rail transit lines are subject to disruptions that can adversely affect pas-

senger level of service and routine operations. This paper focuses upon the development of a

real-time disruption response model with an emphasis on the train holding strategy. The pa-

per also discusses the short-turning control strategy which is often used in conjunction with

holding for longer disruptions. The holding problem is modeled as a non-linear mixed-integer

program and a two-step solution procedure is designed to solve it quickly, yielding solution

times of less than 10 seconds. The model is applied to a disruption scenario on a simplified

representation of the MBTA Red Line. The sensitivity of the optimal holding strategy to the

assumptions of finite train capacity and the value of in-vehicle time are also investigated. The

results show a high level of regularity in the headway distribution for the control strategy when

in-vehicle time is not considered. When accounting for in-vehicle delay, the optimal holding

strategy consists of only a few trains being held at a few stations. Overall, the results suggest

the present formulation yields control strategies that are simple enough to be implemented by

transit practitioners and that the solution times are feasible for real-time implementation.

1 Introduction

Urban rail transit lines are subject to occasional disruptions or delays that can

severely impact passenger level of service and routine transit operations. The goal

of transit operators is to limit those negative impacts by using effective operations

control strategies, given the infrastructure characteristics and operating plans of the

system.

State of the art train regulation systems strive to keep regular headways between

trains along the line: this minimizes total passenger in-station waiting time, assum-

ing a Poisson passenger arrival process and non-binding train capacities. However,

these systems do not address longer disruption durations in which train capacities

can become critical. Nor do they evaluate the exact costs and benefits of any control

action in determining the ”optimal” strategy.
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This gap has been addressed by researchers in recent years with the development

of mixed integer program formulations for the train regulation problem (O’Dell and

Wilson (1999) and Shen and Wilson (2001)). The objective of the problem is to

minimize the weighted sum of:

• the total passenger in-station waiting time, and

• the extra passenger riding time due to train holding,

subject to the system’s infrastructure and other operational constraints.

Although insightful in their findings and interpretation of the optimal response

strategies, the prior models have not been suitable for implementation within transit

agencies for several reasons. First, the formulations adopted in O’Dell and Wilson

(1999) and Shen and Wilson (2001) are based on train arrival and departure times at

stations. As dispatchers are interested in holding times–which are derived from the

difference of those two times, these formulations artificially increase the number of

variables and thus the size of the problem as well as solution times. As a result these

models cannot be counted on to produce effective strategies in a real-time compu-

tational context. Second, the aforementioned objective function is linearized from

its exact quadratic form to obtain a linear programming formulation of the problem.

While this approximation significantly decreases solution times, no investigation has

been made into its effects on the structure of the optimal control strategies. Indeed,

the resulting strategies are usually too complex to be implemented by dispatchers in

practice no matter how efficient they may be in theory at reducing the total passenger

waiting time.

The work presented in this paper is motivated by the above shortcomings and

also by recent advances in non-linear optimization software performance, allowing

optimization problems with non-linear objective functions to be solved more quickly.

The focus in this paper is the train holding strategy, which is the core strategy

for dealing with service interruptions of less than 20 minutes. For longer disruptions

trains are often short-turned in conjunction with holding, and this paper also briefly

discusses this more general problem. The core holding problem is modelled as a de-

terministic 0-1 integer program, using a different problem formulation but a similar

objective function as in Shen and Wilson (2001). This formulation is presented here

along with a solution procedure that minimizes the exact cost function with solu-

tion times comparable to those obtained in Shen and Wilson (2001). The model is

applied to a disruption scenario on a simplified transit system based on the MBTA

Red Line. The structure of the optimal control strategies is then analyzed. Finally, a

general discussion of the short-turning strategy is provided, and it is shown how the

developed holding model can be used to assess some forms of short-turning.

2 Model Description

2.1 Assumptions and Model Features

The following assumptions and limitations are made for the problem:



A Train Holding Model for Urban Rail Transit Systems 321

• The duration of the delay is a known fixed parameter. As discussed in the prior

literature this assumption is not realistic, but the resulting model may become a

module in the more efficient stochastic formulation of this problem which awaits

future research.

• Passenger arrival rates and alighting fractions are constant and station-specific.

• Train dwell-times are constant and station-specific. Dwell-times are generally a

function of boardings and alightings (see Lin and Wilson (1992)), and thus de-

pend a priori on the adopted holding strategy. Nonetheless, dwell-time standard

deviations at a station are in general under half a minute, which is a small fraction

of the mean passenger waiting time. Thus, simplifying the dwell-time component

may not be critical in developing holding strategies that seek to minimize pas-

senger waiting time.

• Inter-station running times are deterministic. This assumption is made since train

movements include variations that are difficult to model: they are a function of

many factors such as weather, track conditions and the signal system.

• The safe separation between trains is ensured by imposing a minimum safe head-

way hs between successive trains.

• Trains are considered for holding for the remainder of the current trip, plus the

next trip for trains located close to the disruption. This limits the time window for

the evaluation of any holding strategy and thus limits the capacity of the devel-

oped model to devise holding strategies whose benefits extend far into the future.

On the other hand, extending the model to include stations visited on subsequent

trips increases the size of the problem and affects its real-time tractability.

2.2 Data Requirements

The following set of data is required as input to the holding model:

• Passenger arrival rates and alighting fractions at each station for the time period

of interest.

• Train capacity.

• Disruption location and estimated duration.

• Last station departed and headways for all trains in the system. This information

is readily available from automatic vehicle location (AVL) systems.

• Maximum acceptable delay for all trains dispatched from the terminal.

2.3 Notation

The following notation is used:

λm is the passenger arrival rate at station m
αm is the alighting fraction at station m
d0 is the delay duration

hs is the minimum safe headway between trains

Ξ is the minimum turnaround time at the terminal station

hi is the uncontrolled departure headway of train i
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Ci is the capacity of train i
mi is the first station visited by train i after the disruption starts

Ωi is the scheduled layover time of train i at the terminal after the disruption

location

Ψi is train i’s maximum dispatching time deviation from schedule at the terminal

after the disruption location

M is the number of stations in the disruption direction, with station M − 1 being

the queuing location3before the terminal.

M0 is the index of the station immediately ahead of the blockage

Si is the set of stations visited by train i and included in the model

(i.e., all stations m : mi ≤ m ≤ 2M − 3)

B,A, T,R denote the sets of trains behind and ahead of the blockage in the disrup-

tion direction, at the terminal and in the reverse direction, respectively

The following variables are used in the problem formulation:4

ri,m denotes the holding time of train i at station m
Ri,m =

∑m
p=mi

ri,p, i.e., the cumulative holding time of train i up to station m.

Thus, ri,m = Ri,m − Ri,m−1, ∀m ≥ mi, ∀i
Li,m denotes train i’s passenger load arriving at station m
Pi,m denotes the number of passengers left behind by train i at station m

3 Problem Formulation

3.1 The Objective Function

The cost function to be minimized is the total passenger time, i.e., the total in-station

waiting plus the extra riding-time due to train holding. This cost function can be

written as the weighted sum of three costs, F (R,L,P) = F1(R) + µF2(R,L) +
F3(R,P), where we note R = {Ri,m}, L = {Li,m} and P = {Pi,m}.

In the above sum, F1 represents the total in-station waiting time for passengers

boarding the first train arriving at each station, F2 represents the total extra riding-

time for on-board passengers due to train holding, F3 accounts for the extra in-station

waiting time incurred by passengers who are denied boarding fully-loaded trains, and

µ is a positive coefficient that weights the negative effects of extra ride-time against

in-station waiting time.

3 In a standard stub-end terminal configuration, when both terminal platforms are occupied

and another train is about to arrive at the terminal, this train must wait until a platform is

cleared. In case the corresponding queuing location is not a station, we would then model

it using a virtual station M − 1 with no associated passenger arrivals (λM−1 = 0) or

alightings (αM−1 = 0). Hence, 2M − 3 stations are represented in the model.
4 Note that train i + 1 precedes train i in our model and that the disabled train has index

0. Also, stations are ordered consecutively starting with the disruption location. Also, we

have the initial conditions Ri,m = 0, ∀m < mi since train i is not considered for holding

before station mi.
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Fig. 1. Time-space Diagram

The expressions for F1, F2 and F3 are derived from inspection of the head-

ways from the time-space diagram shown in Fig. 1. The diagram shows that train

i’s departing headway from station m, Hi,m is (hi + Ri,m) for m < mi+1 and

(hi + Ri,m − Ri+1,m) for m ≥ mi+1. Hence, the general form of the functions Fi

can be written as follows:5

F1(R) =
∑

i∈B∪A∪T∪R

∑

m∈Si

λm

2
H2

i,m (1)

F2(R,L) =
∑

i∈B∪A∪T∪R

∑

m∈Si

Li,m

(

1 − αm

)(

Ri,m − Ri,m−1

)

, and (2)

F3(R,P) =
∑

i∈B

∑

m∈Si

Pi,mHi−1,m (3)

Since trains i ∈ A∪ T ∪R are located ahead of the blockage, the disruption has

no effect on these trains unless they are held. Thus, the capacity constraint is dealt

with by restricting holding actions for these trains such that no passenger can be left

5 Equations (1) - (3) are not suitable for implementation as is. Specifically, they do not con-

sider the possible presence of a second train at the terminal station (which has a second

platform). This also applies to the model constraints. This implementation issue is not ad-

dressed here for the sake of clarity.
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behind. In contrast, trains behind the blockage might become overloaded and leave

passengers behind as passengers trying to board these trains are accumulating during

the disruption both ahead of and behind the blockage. Therefore, the cost component

F3 (and constraint (5) below) only applies to trains in B.

3.2 Constraints

The above objective function F (R,L,P) is minimized, subject to the system oper-

ational constraints:

Load/capacity constraints for trains ahead of the blockage

Li,m+1 = (1 − αm)Li,m + λmHi,m, ∀m ∈ Si, ∀i ∈ A ∪ T ∪ R (4a)

(1 − αm)Li,m + λmHi,m ≤ Ci, ∀m ∈ Si, ∀i ∈ A ∪ T ∪ R (4b)

Load/capacity constraints for trains behind the blockage

Li,m+1 = min ((1 − αm)Li,m + λmHi,m + Pi+1,m, Ci) , ∀m ∈ Si, ∀i ∈ B (5)

Left-behind-passenger constraints for trains behind the blockage

Pi,m = (1 − αm)Li,m + λmHi,m − Li,m+1, ∀m ∈ Si, ∀i ∈ B (6)

Minimum safe headway constraints for non-terminal stations

Hi,m ≥ hs, ∀m ∈ Si : m 
= M, ∀i ∈ B ∪ A ∪ T ∪ R (7)

Terminal capacity/queuing constraints

Ri+2,M − Ri+2,M−1 ≤ hi+1 + hi + Ri,M−1, ∀i ∈ B ∪ A (8)

Queuing constraints behind the blockage

Ri,M0+i−1 = 0, ∀i < 0 (i.e., i ∈ B − {0}) (9)

Layover constraints at terminal

Ri,M ≥ Ωi, ∀i ∈ B ∪ A ∪ T (10)

Turnaround constraints at terminal

Ri,M − Ri,M−1 ≥ Ξ, ∀i ∈ B ∪ A ∪ T (11)

Maximal deviation from schedule constraints

Ri,M − Ωi ≤ Ψi, ∀i ∈ B ∪ A ∪ T (12)

Disruption duration constraint

R0,M0
≥ d0 (13)

Non-negativity constraints
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Ri,m − Ri,m−1 ≥ 0 and Ri,m, Li,m, Pi,m ≥ 0, ∀i,m (14)

Headway definition

Hi,m = hi + Ri,m, ∀m ∈ Si : m < mi+1

Hi,m = hi + Ri,m − Ri+1,m, ∀ ∈ Si : m ≥ mi+1

(15)

Most of the above constraints are self-explanatory but some deserve further ex-

planation. Terminal capacity constraints (8) require the second preceding train to

have left the terminal to allow a train to enter. Equation (9) constrains trains behind

the blockage not to be held until they reach the closest station to the blockage where

they can queue (station M0 + i, i < 0). In this case, the queuing time is incorpo-

rated into the holding variable Ri,M0+i as queuing or holding has the same impact

on headway. In the same fashion, layover times and the delay d0 are incorporated

into the cumulative holding times in Equations (10) and (13), respectively. Finally,

Equations (10) - (12) ensure that operational constraints are respected at the terminal.

4 Model Analysis

4.1 A Mixed Integer Program

We first note that the min function in Equation (5) is modeled through the use of

binary variables νi,m as follows:

Li,m+1 ≤ Pi+1,m + (1 − αm)Li,m + λmHi,m, ∀m ∈ Si, ∀i ∈ B (16a)

Li,m+1 ≤ Ci, ∀m ∈ Si, ∀i ∈ B (16b)

Li,m+1 ≥ Pi+1,m + (1 − αm)Li,m + λmHi,m − Kνi,m,

∀m ∈ Si, ∀i ∈ B (16c)

Li,m+1 ≥ Ci − K(1 − νi,m), ∀m ∈ Si, ∀i ∈ B (16d)

where K is a large constant.

Consequently, our holding problem is a 0-1 mixed integer program where train

i is at capacity at station m iff νi,m = 1. Although the problem is quite small, the

number of binary variables (several thousand) makes it difficult to solve in real-time.

Clearly, a better understanding of the problem can potentially reduce the number

of binary variables and feasible solutions to search, thus dramatically reducing the

solution times of the problem.

4.2 A Two-Step Solution Procedure

To further reduce the number of binary variables, we use the following two-step

solution procedure:
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Step 1. Solve the train control problem for (R,L,P, ν) by constraining holding

times at stations to be zero. Find a feasible solution (R0,L0,P0, ν0) to the re-

sulting linearly constrained problem.

Step 2. Solve for (R,L,P, ν) with variables νi,m for train i and station m such

that ν0
i,m 
= 0. Constrain the other νi,m to be zero.

The rationale for this procedure is simple. We first locate in Step 1 the trains and

stations for which the train capacity constraint is active (ν0
i,m = 1 iff train i is at

capacity at station m) when no train control will be applied. Given the information

from this worst-case scenario, a better solution is sought in Step 2. In particular, the

train capacity constraint should not be binding at stations where trains were not fully

loaded in the no-hold case. As a consequence, this procedure removes a significant

number of binary variables and thus dramatically reduces the number of feasible

solutions.

4.3 Execution Time

We used version 12.0 of XPRESS-MP with a branch-and-cut strategy on an 800

MHz Pentium processor to solve the disruption scenario described above with the

execution times shown in Table 1. We also present in this table the effectiveness of

the two-step solution procedure described above. For each value of µ, we show the

number of binary variables left after Step 16 of the solution procedure along with the

solution time of each step. These times do not include the time needed to generate

the model, which is independent of the model formulation.

We note that in all cases the number of binary variables, which is the bottle-

neck of the solution procedure, is considerably reduced so that less than 15 binary

variables remain at Step 2 of the procedure. The resulting solution times are signifi-

cantly smaller: less than 6 seconds is needed to achieve optimality with the two-step

solution procedure, while 56 seconds are necessary to solve the case µ = 0.1 with-

out the two-step solution procedure. For the other values of µ the decrease is less

pronounced but still significant (it is reduced at least by a factor of 2).

Table 1. Execution Times

µ # of νi,m # of νi,m Solution Time

Non-Fixed without two-step of Step 1 of Step 2

after Step 1 procedure (sec) (sec) (sec)

0.0 203 13 14 2 4

0.1 203 13 56 1 3

0.5 203 13 14 2 3

6 The solver was used here to solve the linear system of constraints. This is done by specify-

ing no objective value and recording the first (and unique) feasible solution found.
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5 Model Application

The model developed was applied to several disruptions on a simplified version of the

MBTA Red Line, which is modeled as a single loop line with two terminal stations

(Alewife and JFK) as shown in Fig. 2.7 One disruption scenario is a 20-minute block-

age at Harvard Square station (northbound) during the morning peak period. Train

location (see Table 2) and passenger loads are derived from the scheduled running

times as well as historical passenger counts. All initial train headways are assumed

to be four minutes, and sensitivity analysis is performed by resolving this disruption

for different values of the model parameter µ.

5.1 Results

Minimizing In-Station Waiting Time

The train holding model is first solved with infinite train capacities and without con-

sidering the costs to on-board passengers of holding trains (µ = 0). The resulting

optimal holding times and headways are shown in Tables 3 and 4,8 respectively.

Under these conditions, the optimal holding pattern results in nearly perfectly

even headways (at each station, across all trains). The regularity of the optimal head-

way distribution in this case is consistent with the result derived by Welding (1957),

which states that passenger waiting time at a given station is minimized when the

variance of headways between trains is minimized:

WT =
h̄

2

(

1 +
V ar(h)

h̄2

)

(17)

where:
WT = mean passenger waiting time

h̄ = mean train headway

V ar(h) = variance of train headway

By inspecting the locations and the holding times in Table 3, along with the head-

way sequences across stations, we find that the optimal holding strategy generally has

the following properties:

• No train is held at any station between stations mi and mi+1.

• The value of the constant headway decreases, as we move down the line.

• At any given station, a train’s holding time is smaller than its preceding train’s

holding time.

• For any given train traveling in a given direction, its holding time (at holding

stations) is monotonically decreasing.

7 Details of this modeling procedure are omitted here for the sake of clarity.
8 No holding action is taken for trains/stations that are not shown in the tables. Blocked

train 0 and trains queued behind the blockage are not held at stations after the blockage is

cleared, except at the terminal where they are held for the minimum turn-around time.
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Fig. 2. The MBTA Red Line (left) and Simplified Version (right)

Table 2. Initial Train Locations: Harvard Northbound Disruption Case

Station JFK AND BRW STA DTX PKS MGH KEN CEN HAR POR DAV

Train −6 *

Train −5 *

Train −4 *

Train −3 *

Train −2 *

Train −1 *

Train 0 Blockage

Train 1 *

Train 2 *

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Terminal Train T1 *

Terminal Train T2 *

Reverse Train 1R *

Reverse Train 2R *

Reverse Train 3R *

Reverse Train 4R *

Reverse Train 5R *
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Table 3. Holding Times (min): Harvard Northbound Disruption; µ = 0, Infinite Capacity

Train HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

1 10.0 3.3 0.4 2.3 2.8 0.5 0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.2 0.0
2 6.7 2.3 4.5 2.1 1.1 0.0 0.8 0.0 0.6 0.0 0.4 0.0 0.3 0.0

T1 11.0 1.4 1.6 0.0 1.1 0.0 0.8 0.0 0.7 0.0 0.5 0.0
T2 4.5 0.7 2.1 0.0 1.5 0.0 1.1 0.0 0.9 0.0 0.7 0.0
1R 2.7 0.0 1.9 0.0 1.4 0.0 1.1 0.0 0.9 0.0
2R 2.3 0.0 1.7 0.0 1.3 0.0 1.0 0.0
3R 2.0 0.0 1.6 0.0 1.2 0.0
4R 1.8 0.0 1.4 0.0
5R 1.6 0.0

Table 4. Preceding Departing Headway: Harvard Northbound Disruption; µ = 0, Infinite

Capacity

Train HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

0 24.0 14.0 10.7 10.3 10.0 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
1 14.0 10.7 8.7 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
2 10.7 13.0 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

T1 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
T2 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
1R 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
2R 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
3R 6.0 6.0 5.8 5.8 5.6 5.6
4R 5.8 5.8 5.6 5.6
5R 5.6 5.6

Nevertheless, we note from Table 3 that the above mentioned properties do not

always hold. In particular, trains are held at Davis Square Inbound (which is not a

control station mi) and the corresponding holding times are not decreasing. Also,

headways are not even at either Alewife or the queuing location. Uneven headways

are acceptable at the queuing location as there is no associated in-station waiting

time: the objective function value is not a function of the headway distribution at this

“virtual” station.

The two other points are explained by observing from Table 3 that the cumulative

holding time of train 1 at Alewife is 16 minutes.9 Since train 1’s layover time at the

beginning of the disruption is six minutes and the maximal deviation from schedule is

ten minutes, this means that the constraint on the maximal deviation from schedule is

binding, which forces it to depart from Alewife after being held for only 2.3 minutes.

Limiting the hold at Alewife results in an uneven departure headway sequence at

Alewife: train 0’s headway is ten minutes while preceding trains left this station with

six-minute headways. As the headway sequence “entering” Davis is uneven, trains

are held at this station to achieve even departure headways and smaller waiting time

even though this is not a station in the set {mi}.

Solving the same problem with finite train capacities yields quite different op-

timal holding patterns. One reason might be that the train capacity constraint at

stations with high travel demand limits the possibility of achieving perfectly even

headways. However, a relatively high level of regularity in the headway distribution

9 Train 1 is held 10 minutes at Porter Square, 3.3 minutes at Davis Square, 0.4 minutes at the

queuing location and 2.3 at Alewife.
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still exists. This supports the view that the headway distribution must still be quite

regular to be optimal.

Minimizing Total Waiting Time

The same disruption scenario is solved for two non-zero values of µ (0.1 and 0.5),

thus accounting for extra riding-time in our objective function. The results for µ =
0.1 are shown in Tables 5 and 6.

Table 5. Holding Times (min): Harvard Northbound Disruption; µ = 0.1, Capacity = 960

Passengers/Train

Train HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 10.2 0.8 0.0 4.9 1.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
2 4.9 0.0 9.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T1 12.1 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T2 5.4 0.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1R 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2R 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3R 0.0 0.5 0.0 0.0 0.0 0.0
4R 0.0 0.0 0.0 0.0
5R 0.0 0.0

Table 6. Preceding Departing Headway: Harvard Northbound Disruption; µ = 0.1, Capacity

= 960 Passengers/Train

Train HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

0 24.0 13.8 12.9 12.9 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.1 8.1 8.1 8.1 8.1
1 14.2 10.1 10.1 5.7 6.4 6.4 6.4 6.4 6.4 6.4 6.8 6.8 6.8 6.8 6.8
2 8.9 8.9 6.2 6.5 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

T1 6.8 7.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
T2 7.4 7.6 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3
1R 7.9 7.9 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
2R 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3
3R 4.0 4.5 4.5 4.5 4.5 4.5
4R 4.0 4.0 4.0 4.0
5R 4.0 4.0

The main result obtained here is the striking simplicity of the optimal holding

solutions: less than twenty train/station combinations are generally considered for

holding. This suggests that even for small values of µ (e.g., 0.1), the costs of holding

imposed on on-board passengers are large.

Moreover, trains are held only at station mi and at a few subsequent stations,

implying that early control actions yield significant benefits further down the line,

since holding a train at a station not only modifies its departure headway at this

station but also at later stations.10 Hence, holding a train at one of the earliest stations

arrived at can yield significant benefits down the line and avoid the cost of holds at

later stations. As expected, holding actions are preferably applied at stations without

high passenger through volumes to minimize in-vehicle passenger delay.

10 The preceding train’s hold also modifies it.
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The model also shows that delay recovery is preferably performed at terminal

stations to minimize the negative impacts of the disruption in the reverse direction:

trains arriving at the terminal are held beyond the scheduled layover time but incur no

(or few) later holds. Indeed, terminal holding and use of the scheduled layover time

to “buffer” against the delay are preferred as no extra ride-time cost is associated with

terminal holding.11 For instance, terminal train T1 is held 6.1 minutes more than its

scheduled layover time of six minutes, and is held for only 0.5 and 0.3 minutes at

Davis and Porter, respectively.

These observations are in line with operational practice, and can be contrasted

with the more complex holding strategies obtained in O’Dell and Wilson (1999)

and Shen and Wilson (2001). Furthermore, the resulting holding pattern is no less

efficient than the more “complicated” holding strategies obtained for µ = 0 (31.7%

decrease in the objective value for µ = 0.1 against 35.1% decrease for µ = 0). This

observation is comparable with the findings of Barnett (1978), who also highlights

the simplicity of the optimal strategies derived analytically (Barnett (1978) assumed

an infinite train capacity).

6 Comparison with a Heuristic Approach

The above solution structures may suggest that heuristics rather than a mathemati-

cal programming (MP) formulation could yield control strategies with comparable

- albeit sub-optimal - total passenger waiting time. Heuristics also typically require

significantly lower solution times. Such a solution technique was not investigated

here, but a MP formulation is better suited to our problem for several reasons.

First, although a heuristic can strive to achieve even headways when minimizing

in-station waiting time, we showed that accounting for in-vehicle waiting time pre-

sented no identifiable headway patterns. In this case, it is not clear that the knowledge

of a limited number of holds at earlier stations suffices to formulate a heuristic. Sec-

ond, our MP formulation provides greater flexibility in dealing with various disrup-

tion scenarios. For instance, in the case of two disruptions occurring simultaneously,

only another disruption duration constraint (13) needs to be added to our formula-

tion. Such a simple model modification is less evident in a heuristic-based approach.

Third, given the small execution times presented in Section 4.3 and the simple hold-

ing strategies, it is unclear that any gain in solution times is worth achieving through

heuristics, especially at the expense of control strategy optimality.

7 Model Limitations

Clearly, the model used here is limited by the number of stations included in the

model (2M − 3). Including only stations in the disruption direction and the reverse

11 Holding has no associated costs other than the incurred additional waiting time for de-

parture, since there are no through-standees at terminal stations (αM = 1 and thus,

(1 − αM )Li,M = 0).
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direction may be unsatisfactory for long disruptions. In such cases, the number of

trips needed to recover from the delay might be greater than the one trip considered

in this model.

One could attempt to correct this limitation by “unfolding” the line more than

once and setting the boundary of the system to a station with an index greater than

2M − 3. This number could depend on the delay duration. Nevertheless, this ap-

proach obviously expands the size of the model and will increase the solution time

as the delay duration increases. This would be a major impediment to the real-time

tractability of this model. Additional difficulties arise from the implied longer anal-

ysis period as the system parameters (passenger arrival rates and alighting fractions)

could probably no longer be assumed fixed.

8 The Short-Turning Control Strategy

Short-turning is essentially a complex control operation whereby, according to Wil-

son et al. (1992), “[. . . ] a train [is turned] before it reaches its terminus with the aim

of reducing headway variance in the reverse direction by filling in a large headway

gap.”

Indeed, in the case of longer disruptions, train capacity limits the possibility of

holding trains ahead of the blockage to achieve even headways. Also, spreading a

longer delay over the trains ahead results in longer headways and waiting times,

which results in possible congestion concerns at stations ahead of the blockage. In

this case, short-turning provides an effective (complementary) alternative to the hold-

ing strategy, by compensating for the loss of service in the peak demand direction.

The complexity of the short-turning strategy stems from selecting the set of trains

to be short-turned and the sequence of trains in the after-short-turn direction that

maximizes passenger time savings. The choice of the short-turned trains and their

sequence varies greatly depending on the disruption location and duration, track

configuration and train locations. Given this information, two types of short-turns

are usually considered: short-turning ahead of, or behind, the blockage.

In all interesting cases, short-turning must provide additional train capacity to

serve the Central Business District (CBD) and reduce the headway means and vari-

ances resulting from the service gap in front of the blockage. In practice, a short-

turning action generally impacts four groups of passengers as identified by Wilson

et al. (1992):

• Skipped segment boarders – passengers who, if the train had not been short-

turned, would have boarded at stations outside the short-turn loop, in both direc-

tions.

• Skipped segment alighters – those passengers who are dumped by a short-turned

train and must await a following train in order to reach their destination.

• Short-turn point boarders – those passengers who are waiting at the station before

the crossover track and would have boarded a short-turned train had it continued.

• Reverse direction passengers – those traveling to the CBD who board a short-

turned train.
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The last group benefits from a short-turn decision while the first three groups are

negatively affected. Depending on the type of short-turn, the benefits and levels of

inconvenience experienced by each of these groups are different.

In this section we present the main characteristics of the two short-turning strate-

gies and show how the previous holding model might be modified to evaluate the

benefits of each type of short-turning action.

8.1 Short-Turning Ahead of the Blockage

Short-turning ahead of the blockage is considered in the AM peak period when the

blockage is located before the CBD12 as depicted in Fig. 3. In this case, trains in

the reverse direction have already served the CBD and generally have low passen-

ger loads. Hence, provided a crossover track is available between the CBD and the

disruption, trains can be short-turned into the gap that is developing in front of the

blockage.

train

non-CBD 

station

crossover 

track

CBD station

���

����

�� �

�� ����

terminal 

(station 1)

terminal 

(station M)short-turned 

train 5R

m’stdisruption 

location

mst

increased headway

Fig. 3. Short-turning Ahead of the Blockage

In the reverse direction, at stations outside the short-turn loop, train service is

reduced, resulting in headway gaps and uneven headway sequences if no further

12 Most urban rail transit lines serve a CBD to which heavy passenger flows are focused

during the peak periods, and the CBD generally consists of only a few stations located in

the middle of the line.
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control action is taken. Yet, there are a small number of these stations with low

passenger flows (since the short-turn occurs near the terminal and passenger flows

are focused on the CBD during the AM peak period). Hence, there are few benefits

from holding trains at these stations: the uneven headway sequence would lead to

a waiting time increase for the skipped segment boarders that is likely negligible in

comparison to the time savings achieved in the peak direction.13

A similar argument – low passenger flows – holds for the negative impacts in-

curred by the skipped segment alighters and the short-turn point boarders. For each

short-turn train, few passengers travel beyond the short-turn point and are forced to

wait for another train. Moreover, due to the duration of a crossover operation, only a

limited number of trains can be short-turned, so that the overall negative impacts of a

short-turn option incurred by skipped segment alighters and short-turn point board-

ers are small, in comparison to the waiting time savings achieved in the disruption

direction.

The above analysis suggests that trains in the reverse direction need not to be

held to respond to the train service reduction.

In the disruption direction, trains are short-turned into the gap, behind the trains

located immediately ahead of the blockage (see Fig. 3). This additional train service

reduces the gap developing in front of the blockage, and thus the average headway

at stations downline from the disruption. Moreover, complementary holds might fur-

ther increase the benefits of the additional train service by evening out the headway

sequences downline from the disruption.

Therefore, given a short-turn option – i.e., the set and sequence of trains to be

short-turned – finding the complementary holds for the new train sequence simply

amounts to solving a new holding problem with new train location/headway/load

information. Since only a very few short-turn options are available –usually less

than ten– and the corresponding holding problem can be quickly solved using our

previously developed model, the best short-turning strategy can be determined in

real-time.

8.2 Short-Turning Behind the Blockage

The short-turn behind-the-blockage strategy generally arises when the blockage oc-

curs far enough beyond the CBD in the AM peak period (see Fig. 4). Trains behind

the blockage then have low passenger loads and can be short-turned to service the

reverse peak direction flow.

In the case of a short-turn behind strategy, we note that skipped segment alighters

and short-turn point boarders incur the same detrimental effects of the short-turn

decision, i.e., increased in-station waiting time. Nevertheless, removing trains from

behind the blockage has specific consequences as described below.

First, the skipped segment boarders are affected by the train service reduction

only if they would have boarded a short-turn train at a station located between the

crossover track and the blockage. At stations located downline from the blockage,

13 The results presented by Shen and Wilson (2001) provide support for such a statement.
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Fig. 4. Short-turning Behind the Blockage

passengers would board the first blocked train (train 0), assuming there is no train

capacity issue at these stations (passenger arrival rates are low at these stations since

the blockage is located near the terminal).

Second, and more importantly, train service removal can free platforms behind

the blockage and limit the propagation of the queue of trains developing behind the

blockage. If the disruption is long, this queue could propagate to the CBD area and

hinder travel to the CBD. Thus, depending on the delay duration, removing trains

from behind the blockage can yield benefits (decreased in-vehicle delay time) in

the disruption direction. This beneficial consequence of short-turning in the before-

short-turn direction was not relevant in the case of short-turning ahead since the end

of the line was located between the short-turn location and the blockage: the terminal

provided an additional platform for trains to queue behind the blockage and trains

might be pulled out of service to a yard at the terminal.

In the after-short-turn direction, the new train sequence must achieve overall ben-

efits from the additional train service. Nevertheless, this task is made more difficult

in this short-turning case because there is no natural gap into which trains can be

short-turned (see Fig. 4). Trains in the reverse direction are operating with a normal

service headway of four minutes, which means that either train 1R or train T2 might

have to be held to create a gap into which train -1 could be short-turned.

Hence, it appears that the choice of the train sequence must balance the following

elements:
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• The cost of holding trains travelling in the reverse direction to the CBD.

• The waiting time benefits from the additional trains in the peak direction.

• The negative effects of holding short-turned trains behind the blockage to achieve

the desired train sequence, as trains can queue up behind the blockage.

We note that these tradeoffs are difficult to assess in general. Moreover, we recog-

nize that, even for a given set of short-turn trains and a predetermined train sequence,

the more complicated train sequence generally achieved in the after-short-turn direc-

tion does not lend itself to a simple use of the holding model to determine the opti-

mal complementary holds. One reason is that holding trains ahead of the blockage

(in both directions) might affect the train sequence that can be achieved, as timing is

a critical factor for more complicated train sequences. Another reason is that several

trains might now be preceded by a short-turn train, which makes short-turned trains

difficult to represent in the holding model.

9 Conclusion

In this paper, we have developed a simple mixed integer programming formulation of

the train holding problem. By designing a two-step solution procedure, we addressed

the tradeoff between minimizing a linearly approximated cost function in real-time

and large solution times for the non-linear program formulation. The running time of

this procedure was comparable to the solution times obtained for a linearly approxi-

mated objective function.

Furthermore, results from the model implementation suggested that control

strategies which minimize the non-linearized cost function are sufficiently simple

to be implemented by transit practitioners.

We also presented a general analysis of the short-turn control strategy and differ-

entiated two types of short-turning: short-turning ahead of the blockage and short-

turning behind the blockage.

It was shown that the short-turn ahead strategy is generally the simplest to as-

sess and that the holding model developed in this paper can be used to determine the

complementary holds that optimize the benefits of any given short-turn ahead deci-

sion. The short-turn behind strategy was shown to be more difficult to assess for it

involves many tradeoffs that need to be made simultaneously and does not lend itself

to a simple use of the holding model.

To remedy this shortfall, a model based on modified headways similar to the

holding model could be developed, but the difficult problem of train reordering must

be addressed for this purpose. Since such a model is likely to use additional inte-

ger variables, methods based on simple logical considerations similar to the ones

developed in the holding model’s two-step solution procedure could be effective in

pruning the solution tree and reducing the solution times.
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Summary. Inherent stochasticity within the transit operating environment suggests there may

be benefits of holding vehicles at more than one holding station on a route. In this paper, the

holding problem at multiple holding stations considers holding vehicles at a given subset of

stations on the route. By approximating the vehicle dwell time as the passenger boarding

time, the holding problem at multiple holding stations can be modeled as a convex quadratic

programming problem, with the objective function as a convex quadratic function subject to

many linear constraints. This particular problem can be solved by a heuristic that decomposes

the overall problem into sub-problems which can be solved to optimality. Also, a hypothetical

numerical example is presented to illustrate the effectiveness of the problem formulation and

heuristic.

1 Introduction

Traffic congestion has become increasingly common in central urban areas, and tran-

sit ridership has been continuing to grow. As a result, public transit service has be-

come more subject to the on-street traffic environment, and transit agencies may find

it more difficult to maintain the vehicle schedule. In order to reduce the impact of

schedule disruptions and disturbances, transit agencies often employ control strate-

gies to reduce overall system cost, from the perspectives of both operators and pas-

sengers. Among these strategies, holding control is the most commonly used strategy

by transit agencies in practice. Holding involves keeping a vehicle at a station for a

period of time, in order to improve the service performance.

Barnett (1974) developed a model for holding a vehicle at a chosen control point.

He proposed a solution algorithm for constructing an approximately optimal dis-

patching strategy from the control point in terms of minimizing both at-stop and

in-vehicle passenger delay. This strategy is a threshold: if the vehicle headway is less

than the threshold, the vehicle is held until the threshold. If the vehicle headway is

greater than the threshold, the vehicle is dispatched immediately. Barnett’s algorithm
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was tested on actual operation data from a Boston subway line to propose service im-

provements. Abkowitz and Tozzi (1986) conducted a study to evaluate the sensitivity

of headway-based holding control to varying boarding and alighting profiles, head-

ways, and other characteristics of route operations. They found that profiles with pas-

sengers boarding at the middle and alighting at the end of a route produce the most

significant passenger waiting time savings with holding control. Also, increases in

the initial headway variation and the amount of parking permitted along a route leads

to worse service reliability; thus, holding strategies can be more effective in these sit-

uations. At about the same time, Abkowitz et al. (1986) investigated the effects of a

threshold-based holding control strategy on reducing the headway variation at stops

downstream of the control point. Their simulation results indicate that the headway

variation does not increase linearly along a route. Also, the study results showed that

it is preferable to locate the control point just prior to a group of stops where many

passengers are boarding. Also, the threshold headway is sensitive to the number of

passengers onboard the bus at the control point. In addition, this study concluded

that the optimal holding control could result in a 3-10 % reduction in total passenger

waiting cost. Later, Abkowitz and Lepofsky (1990) conducted a before-after study

to evaluate the effectiveness of the threshold-based holding strategy on several real-

life bus routes chosen from the MBTA in Boston. The results from this study were

not conclusive; however, it appeared that certain route segments might have bene-

fited from the holding actions. O’Dell and Wilson (1999) developed a deterministic

model of a rail system and mixed integer programming formulations for the holding

and short-turning problems. Three holding strategies, holding each train at any sta-

tion, holding each train at the first station it reaches after the disruption occurs, and

holding each train at an optimally chosen station, were considered and formulated.

Study results based on the MBTA Red Line showed that passenger waiting time can

be significantly reduced by applying the controls.

With the advent of AVL (Automatic Vehicle Location) and APC (Automated

Passenger Counting) technologies, real-time vehicle location information is incor-

porated by many researchers into their studies. Furth (1995) developed a strategy to

deal with a vehicle operating behind schedule, given the existence of an intelligent

system providing information about vehicle location, vehicle load, and number of

passengers waiting at stops. In his study, the problem is formulated as a constrained,

non-linear optimization problem to decide how many vehicles following the initially

delayed vehicles should be held; the location at which each vehicle should be held;

and, the amount by which each vehicle should be held. Study results showed that

the optimal solution is a gradual increase in the overall headway from the first vehi-

cle, whose headway is short, until the last vehicle, with headway returning back to

the base headway. Ding and Chien (2001) formulated a real-time operational control

model in which the vehicle departure time at each stop is optimized so that the head-

way variance, weighted by passengers at each stop, can be reduced. The proposed

real-time control model was tested by simulation based on a high frequency light rail

transit route in the city of Newark, New Jersey. The simulation results demonstrated

that the average passenger waiting time can be significantly reduced by applying the

proposed control model.
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Hickman (2001) presented an analytical model for optimizing the holding time

at a given control point in the context of a stochastic vehicle operations model. In

this study, the single vehicle holding problem is a convex quadratic program in a

single variable, and is easily solved using gradient or line search techniques. Eberlein

et al. (2001) also formulated an analytic model using a rolling-horizon approach,

using real-time AVL vehicle location information. The problem can be effectively

solved by a proposed heuristic. The study results showed significant reductions of

passenger waiting time at stops. Fu and Yang (2002) investigated both the threshold-

based holding control model and an optimal holding control model by considering

both a vehicle’s preceding and following headways, with the assumption that the

future bus arrival time at the control stop can be predicted with real-time location

information. Based on a simulation, the study results indicated that: the control point

should be placed at the bus stop with high demand and located close to the middle

of the route; two control points are preferable to one; holding control is fairly robust

with respect to the control parameter, control strength or headway threshold; and,

real-time bus location information can help reduce passenger in-vehicle time and

bus travel time when a number of control points are used.

Zhao et al. (2001) present a distributed control approach based on multi-agent

negotiation (between bus agent and stop agent) for addressing the holding problem.

The negotiation in this study is conducted based on the marginal cost and marginal

benefit of a hold, negotiated between a vehicle and the set of stops on the route.

Also, the comparison between the negotiation algorithm and other commonly used

strategies was conducted through simulation, and study results indicated that the

negotiation algorithm is robust to different transit operating environments.

From the literature review above, one may see that it is commonly concluded

that holding can undoubtedly improve the performance of transit service by dimin-

ishing the vehicle headway variance and schedule deviation, and hence can reduce

passenger cost, if the control location is judiciously selected. However, some of the

previous studies also pointed out either explicitly or implicitly that the transit op-

erating stochasticity still plays a role on the vehicle’s trajectories downstream from

the control point after holding is applied. Based on the equations developed in their

study, Abkowitz et al. (1986) concluded that:

The reduction in headway variation at points downstream of the control

point is not uniform. The maximum benefits of the control strategy are ac-

crued by passengers at stops immediately downstream of the control point.

Stops that are far from the control point may not be impacted significantly.

(pp. 78-79)

Furthermore, Turnquist and Blume (1980) showed that there might be multiple

points qualifying as holding point candidates along the route. Though not clearly

indicated in the study, choosing one qualified location as the control point does not

imply that the others cannot still qualify as additional control points, even when

some correlation certainly exists between the potential holding points. Abkowitz and

Tozzi (1986), Abkowitz et al. (1986) and Fu and Yang (2002) all define desirable
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conditions for a control point to hold selected vehicles. A route may have favorable

conditions on separate segments, which might justify multiple control points.

Moreover, it has been assumed by a majority of the previous studies that the tran-

sit vehicle trajectories downstream of the holding station can be predicted precisely

with the currently available information, typically from AVL technology; or, the ve-

hicle trajectories can be predicted by the best-fit probabilistic distribution calibrated

with historical data, if they are subject to random variation. However, in reality, as

the transit vehicle’s running time and dwell time may be both subject to significant

variability, it becomes fairly difficult, if not impossible, to precisely predict vehicle

trajectories far downstream from the holding station.

Seneviratne and Loo (1986) have analyzed the vehicle travel time data from two

transit routes in Halifax, Nova Scotia, Canada, and found that fundamental to a re-

alistic analysis of a bus route is proper segmentation; that is, routes may be broken

into route segments within which operations are fairly consistent. To examine this, a

preliminary analysis of bus AVL data from Tucson, Arizona is shown in Fig. 1.

Fig. 1. Schedule Deviation Correlation at Stops

Fig. 1 is based on the AVL data collected by SunTran on Route 8 in Tucson,

Arizona. The vertical axis represents the correlation coefficient between the schedule

deviation at a specific upstream stop and all other downstream stops. In the figure, the

bottom line, middle line and the top line represent the schedule deviation correlation

between the 2nd, 28th and 54th stops and all downstream stops, respectively. For the

purpose of clarity of presentation, only three lines are presented. Nonetheless, we

can still see that the correlation coefficients drop abruptly at two stops, Stop 25 and

Stop 53. Also, the correlation between the stops on route segments between these

two stops and between Stop 25 and 53 and the terminals appears relatively strong.

The reason behind this phenomenon in this particular example is due to the special

nature of the two stops. Stop 25 is the downtown transit center, Stop 53 is a short-

turn terminal, and a large amount of slack time has been built in the schedule at both

stops for service recovery. However, one may see similar phenomena at other places,
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and the underlying reasons could be varying, e.g., different traffic conditions. This

shows that the vehicle’s schedule deviation can only be predicted accurately using the

currently available information, typically the schedule deviation at the most recently

passed stop, if this stop and the stops at which the schedule deviations need to be

predicted are on the same route segment.

In summary, it appears possible that holding control can be implemented effec-

tively at multiple stations, especially when the transit route is relatively long with

many stops. This conclusion is based on the premise that separate route segments

may need separate operations control actions.

Holding vehicles at multiple holding stations can essentially be seen as a three-

dimensional decision problem: the vehicle holding time at a particular stop is one

dimension, the vehicles to control are the second dimension, and the holding stations

to use are the third dimension. Eberlein et al. (2001) presented a comparison of the

benefits from holding vehicles at multiple holding stations versus only one holding

station and concluded that holding a vehicle at more than one holding station did

not show any significant advantages, using a numerical example based on a real-life

transit route. However, the observation may not be conclusive due to the limitations

of the selected passenger loading/boarding profile.

In this paper, we examine two dimensions of the problem: the holding times

of multiple vehicles at a given set of holding stations. This problem is formulated,

and a heuristic is proposed to solve for the optimal holding times.The remainder of

the paper is organized into three sections. Section 2 formulates the general holding

problem with either a single holding station or multiple holding stations. A heuristic

based on an analytical model is also described in this section. Section 3 provides

a hypothetical numerical example designed to demonstrate the effectiveness of the

algorithm developed in Section 2. Finally, Section 4 concludes the study and presents

the direction for future research.

2 Problem Formulation and Solution

As argued in Eberlein et al. (2001), the holding control problem can be formulated

in the context of a deterministic model of transit operations. In a similar manner, the

problem formulation in this study will also use a deterministic model.

2.1 Model Formulation

For the sake of simplifying the analysis that follows, several assumptions are made:

• The passenger boarding time dominates passenger alighting time at most stops

or stations along the route. Therefore, the total passenger boarding time can be

used as the vehicle dwell time.

• Vehicle overtaking is not a factor.

• The passenger arrival rate at any stop and vehicle average travel time between

adjacent stops are given during the time period of interest.
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• The number of alighting passengers at a stop is proportional to the number of

passengers onboard.

• Vehicle capacity is not considered.

One may argue with the second assumption of no vehicle overtaking, but this

assumption can be justified when:

• Transit service is provided at a high frequency, but the average headway is still

relatively large, e.g., larger than five minutes.

• Traffic conditions do not change abruptly during the time period of interest, so

that vehicle running times only differ randomly from one trip to another.

Therefore, no vehicle overtaking can be assumed in situations likely to satisfy the

conditions above. In addition, holding control at multiple holding stations can help

regularize vehicle trajectories, which greatly reduces the chance for vehicle overtak-

ing to occur. This will be further discussed later in the paper.

Before we get to the problem formulation, major variables are defined below.

i, j, k Indicators of the holding station, vehicle, and stop, respectively

hj,k Leading headway for the jth vehicle at Stop k

dj,k Departure time for the jth vehicle at Stop k

aj,k Arrival time for the jth vehicle at Stop k

Lj,k Onboard passengers of the jth vehicle when it departs from Stop k

si Index of the ith holding station, as a stop

Hj,si
Holding time for the jth vehicle at holding station si

Bj,k Passengers boarding the jth vehicle at Stop k

Aj,k Passengers alighting from the jth vehicle at Stop k

λk Passenger arrival rate at Stop k
rk Vehicle running time between Stop k and Stop k + 1
qk Passenger alighting proportion at Stop k

DWLj,k Dwell time for the jth vehicle at Stop k

α, β Parameters defining the passenger boarding process represented by

DWLj,k = α + β · Bj,k

bi Index of the earliest dispatched vehicle among those operating on the

segment (si−1, si]

ei Index of the latest dispatched vehicle among those operating on the seg-

ment (si−1, si]

M Total number of holding stations

N Total number of stops on the route

P Total number of vehicles on the route, indexed {1, 2, . . . , P}. Vehicle P
is the last vehicle, waiting to be dispatched at the terminal.

S The set of holding stations on the route {s1, s2, . . . , sM}
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Within an entirely deterministic context, it is meaningless to consider holding one

vehicle at all holding stations within one decision-making cycle, because all effects

resulting from the hold can be achieved by holding the vehicle at the first holding

station to which it arrives. More specifically, with M holding stations available, the

transit route can be divided into M +1 segments, either bounded by two consecutive

holding stations as (si, si+1], or by a terminal and a holding station as (1, s1] or

(sM , N ]. On each segment (si, si+1], vehicles in the set [bi, ei] are the vehicles to

be considered for holding at station si. It is assumed that all vehicles within this set

will only be held at this holding station si in one holding decision. Obviously, those

vehicles operating on the segment (sM , N ] are free of any control.

In short, the multiple holding station problem can be described as:

At any decision time, the holding times are determined only for vehicles at

the immediate downstream holding station, where multiple holding stations

are available.

With the assumptions and variable definition above, the holding problem can be

formulated as follows.

Minimize Z =
1

2
·

M
∑

i=1

ei
∑

j=bi

N
∑

k=si

λk · (dj,k − dj−1,k)
2

(1)

+
1

2
·

N
∑

k=s1

λk · (dP,k − dP−1,k)
2

+

M
∑

i=1

ei
∑

j=bi

Lj,si−1 (1 − qsi
) · Hj,si

In this objective function, the first two components represent the total passenger

waiting time at stops, and the third term defines the delay experienced by the onboard

passengers at the holding stations. Though not salient, it can be seen in the objective

function that the departure times dj,k of vehicles j ∈ [bi, ei] at each holding station

k = si are the decision variables.

Each vehicle’s departure time at any stop other than the holding station to which

it “belongs” (e.g., j ∈ [bi, ei] belongs to holding station si) is entirely deterministic:

the arrival time and dwell time at these stops can be determined directly, once the

holding times are known. Also, the dwell time in turn is essentially defined by the

time when the preceding vehicle departed as well as the passenger arrival rate at the

stop.

If k /∈ S (k is not a holding stop) or if k = si ∈ S but j /∈ [bi, ei] (j is not

available for holding at si), then the departure time of j at k is given by:

dj,k = (dj,k−1 + rk−1 + α − β · λk · dj−1,k)/(1 − β · λk) (2)

Equation (2) can be directly derived from the relationship below:

dj,k = dj,k−1 + rk−1 + α + β · λk · (dj,k − dj−1,k) (3)

Otherwise, i.e., for those vehicles at the holding stations, the vehicle holding time

will together define the vehicle’s departure time. However, any vehicle j cannot be

held later than the time when vehicle j + 1 arrives, to avoid overtaking:
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dj,k = (dj,k−1 + rk−1 + α − β · λk · dj−1,k)/(1 − β · λk) + Hj,k (4)

dj,k ≤ dj+1,k−1 + rk−1 (5)

Hj,k ≥ 0 (6)

The number of onboard passengers when a vehicle departs from a stop is de-

termined by the number of passengers boarding and alighting at the stop and the

number of onboard passengers when the vehicle arrived at the stop.

Lj,k = Lj,k−1 + Bj,k − Aj,k (7)

The number of passengers boarding a vehicle is the product of the average pas-

senger arrival rate and the vehicle’s leading headway.

Bj,k = λk · (dj,k − dj−1,k) (8)

The number of passengers alighting a vehicle is assumed to be proportional to

the number of onboard passengers.

Aj,k = Lj,k−1 · qk (9)

Equations (7), (8) and (9) can be combined into a single equation:

Lj,k = Lj,k−1 · (1 − qk) + λk · (dj,k − dj−1,k) (10)

In the model formulation above, the decision variables can be either the vehicle

holding times at holding stations or equivalently the vehicle departure times at hold-

ing stations, due to the linear relationship between them. From now on, in this paper,

the decision variables are the departure times of vehicles [bi, ei] at each holding sta-

tion si, and according to Equation (4) are modified into the following inequality.

dj,k ≥ (dj,k−1 + rk−1 + α − β · λk · dj−1,k)/(1 − β · λk) (11)

In the objective function, the holding time can be replaced by:

Hj,si
= dj,si

− (dj,si−1 + rsi−1 + α − β · λk · dj−1,si
)/(1 − β · λsi

) (12)

Equations (2) – (12) together define the feasible region for each decision variable.

Specifically, inequalities (11) and (5) together set the lower bound and upper bound,

respectively, for the decision variables.

2.2 Proposed Heuristic

With the problem definition and formulation in the previous sub-section, one may

see that the departure time of a vehicle within a control vehicle group [bi, ei] at the

stops on the downstream segment [si, si+1) is determined by a subset of the decision

variables as follows.
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dbi,k = f(dbi,si
) if si ≤ k < si+1 (13)

dbi+j,k = f(dbi,si
, dbi+1,si

, . . . , dbi+j ,si
) if si ≤ k < si+1and bi + j ≤ ei (14)

f(•) is a linear function of the decision variables. Furthermore, the departure

times of vehicles [bi, ei] at the stops further downstream of the subsequent holding

station, say si+m , will be determined by more decision variables as follows.

dbi+j ,k = f(dbi,si
, dbi+1,si

, . . . , dbi+j ,si
, dk,si+1

) (15)

for k ∈ [bi+1, ei+1], . . . , [bsm
, esm

]

With the variable description in (13) – (15), it becomes clear that the problem

formulation has a general form of:

Minimize Z = F (•) + f (•) (16)

subject to: gj(•) ≤ Cj ∀j

Herein, gj(•) is also a linear function of decision variables; F (•) is a quadratic

function of the decision variables; f(•) again is a linear function of the decision

variables; Cj is constant; and, j varies from 1 up to double the number of vehicles

upstream of the most downstream holding station, since each decision variable is

subject to two constraints of the form of inequalities (11) and (5). Therefore, this

problem formulation is essentially a convex problem with a convex objective func-

tion and a set of linear constraints. Such a problem can be solved to optimality by

many classical techniques. However, the scale of the problem is not necessarily small

when the route is long with many stops and many vehicles operating at the same time.

This paper presents a solution algorithm by decomposing the overall prob-

lem into several two-dimensional problems smaller in scale. Furthermore, the two-

dimensional problem is further decomposed into one-dimensional problems, which

eventually can be solved analytically.

Before getting into the details of the algorithm, a proposition regarding vehicle

overtaking is presented.

Proposition 1 Let h2 and h3 be the real headways of Vehicles 2 (the control ve-

hicle’s first following vehicle) and 3 (second following vehicle), respectively. If

h2 ≥ h3 · β · λk/(1 − β · λk) holds, the real objective value is always less than the

model objective value on the route segment downstream of where vehicle overtaking

occurs.

The condition in the proposition is tighter than is needed. The proof of the propo-

sition is presented in the Appendix.

Since the proposed model formulation does not explicitly include overtaking,

this proposition states that a solution to the model formulation will have a larger (or

higher) objective value than would occur if overtaking were included. In this way, our

model formulation is more conservative, in that it will recommend holding actions

that result in smaller improvements than if overtaking were included explicitly.

The following sub-sections start with the simplest problem, holding a single ve-

hicle at a single holding station, then gradually add complexity to the problem to

achieve the full problem solution for multiple vehicles at multiple stations.
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Holding a Single Vehicle at a Single Holding Station (PSS)

The complexity of the holding problem lies in the fact that any adjustment to the

departure time of one particular vehicle at a stop will in turn change this vehicle’s

trajectory downstream of the stop, and also affect many following vehicles’ trajecto-

ries. Therefore, while considering holding one particular vehicle, it is also necessary

to account for the following vehicles (impacted vehicles), as well as the leading vehi-

cle, which functions as a boundary vehicle in the solution. If we expand the impacted

vehicles up to the first non-dispatched vehicle P , all vehicles upstream of the holding

station can be categorized into two groups:

• Holding Group: the vehicles within this group will be considered for holding.

• Non-Holding Group: the vehicles within this group will not be held, but define

the conditions for the holding control decisions for the holding group.

For the problem of holding one vehicle at a single holding station, only one con-

trol vehicle is within the holding group, and the non-holding group consists of all

other impacted vehicles, including the first non-dispatched vehicle and the boundary

vehicle immediately ahead of the control vehicle. Accordingly, the PSS can be seen

as a one-dimensional problem due to the unique decision variable.

Though presented for the overall problem, problem formulation (16) and (13) –

(15) can still apply to the PSS problem. Obviously, all impacted vehicle trajectories

downstream of the holding station can be derived with equations of the same form as

(15). A univariate convex problem can be easily solved by many techniques. How-

ever, since the PSS problem solution is the core of the overall heuristic, an analytical

solution is employed to solve the PSS problem in this particular study. The global

optimal solution to PSS is either at the local optimal point of the objective function,

if it exists, or at one of the extreme points.

Holding Multiple Vehicles at a Single Holding Station (PMS)

As more than one vehicle is included in the holding group for a single holding station,

the holding problem becomes the PMS problem. For a particular holding station si,

the set of vehicles [bi, ei] constitutes the holding group, and all vehicles following the

vehicle ei up to the first non-dispatched vehicle P make up the non-holding group.

Equation (11) says that the decision variables are dependent on each other (dj,k

is dependent on dj−1,k). Therefore, for the general form of the problem (16), each of

the linear constraints may include multiple decision variables. To make the concepts

clearer and to simplify the problem, some special treatment is applied to the transit

holding station.

Observing Equation (4), theoretically, holding control can be realized either by

postponing the vehicle departure time for Hj,k at the holding station, or by delaying

the vehicle arrival time by an equivalent amount of time Hj,k · (1 − β · λk).
If holding control is considered as a means to delay the vehicle’s arrival time,

the holding problem becomes an equivalent problem of how to optimize the vehicle

arrival time at the holding station. As one may know, delaying one vehicle’s arrival
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time at a stop would not affect the arrival times of other impacted vehicles. To clarify

this idea, a simple treatment on the route and station is made by introducing a dummy

stop to separate the vehicle arrival process and departure process at the real holding

station. This dummy stop is inserted just upstream of the holding station to represent

the vehicle arrival process, and will function as a surrogate for the original holding

station, as shown in Fig. 2.

Fig. 2. Typical Transit Route with Multiple Holding Stations

With this “physical” treatment:

• The original holding station becomes a regular stop. Furthermore, it is assumed

that all passenger boarding and alighting still occurs at the original control stop,

with none at the dummy stop. The dummy link connecting the dummy stop and

the original holding station has a length of zero.

• The dummy stop becomes the holding station, at which the vehicle arrival times

are identical to the departure times if no control is implemented. The vehicle

arrival times at the dummy stop then are independent of each other.

• The transit route operating process (the process of propagating arrival and de-

parture times at downstream stops) remains the same as before any treatment is

applied.

• The control vehicles’ holding times are independent of each other, since no

boarding and alighting occurs at the dummy stop and the interdependency of the

holding times has to be realized through the passenger boarding and alighting

process, as one may see from Equation (3).

However, it must be pointed out that the final observation only holds when the

assumption that vehicle overtaking does not occur is strictly satisfied, because the

dummy stop treatment can still result in vehicle overtaking at the original holding

station. The dummy stop treatment itself does not change the essential nature of

the problem, but adds a little more conceptual clarity. If the holding control at the

dummy stop does not lead to vehicle overtaking at the original holding station, the
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holding times are certainly independent of each other at the original holding station

even without the dummy stop treatment. However, as argued in Proposition 1, vehicle

overtaking will occur only rarely in the given problem context.

With all treatments introduced above, the PMS problem still has a convex ob-

jective function with linear constraints. However, within the constraints, the decision

variables are entirely independent of each other. With this additional characteris-

tic, a solution algorithm for the PMS problem is developed. The solution algorithm

basically decomposes the PMS problem into successive PSS problems, with each

problem being to hold only one vehicle which can reduce the overall objective value

the most. It finally converges at the point at which no additional holding control for

any vehicle can reduce the objective value.

Step 1: Initialization.

Set a threshold for algorithm convergence;

Predict the current departure times at the holding station for all vehicles in the

holding group, and set these current departure times as the Departure Time

Lower Limit (DTLL). At the same time, DTLL will also function as the

Departure Time Upper Limit (DTUL) for the preceding vehicles;

Set the current departure times as the Solution 1;

Compute the total passenger cost based on Solution 1, and set this passenger

cost as the Previous Passenger Cost (PPC);

Set n = 2.

Step 2: For iteration n:

Optimize the departure time for each individual vehicle within the holding group

[bi, ei] by solving the PSS problem analytically for each vehicle sequentially,

with all other vehicles’ departure times the same as in solution n − 1.

Step 3: If all optimized vehicle departure times in Step 2 are earlier than, or the same as,

in solution n − 1, go to Step 5;

otherwise,

Identify the departure time that leads to the minimum total passenger cost among

all departure times;

Update the corresponding vehicle departure time in solution n − 1 with this

identified new vehicle departure time; and, set the minimum total passenger

cost as the Current Passenger Cost (CPC);

Step 4: Check the proximity of the CPC to PPC. If CPC is within the convergence threshold

of PPC, go to Step 5; otherwise, PPC = CPC, n = n + 1, and go to Step 2;

Step 5: Stop.

Fig. 3. Algorithm H1

In more detail, solution algorithm H1 is described in Fig. 3. Following the steps

of Algorithm H1, in each iteration, each vehicle’s departure time is optimized con-

ditional on other vehicles’ departure times inherited from the last iteration, and H1

captures the most “efficient” vehicle’s departure time to conclude the iteration. The

interacting behavior between all control vehicles’ departure times is hence realized

by consecutive iterations.
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Based on the Algorithm H1, Proposition 2 is introduced.

Proposition 2 H1 solves the problem PMS to optimality.

As has already been stated, the PMS problem is convex. It is also straightforward

to show that the algorithm H1, by successive improvement of each departure time

at each iteration, satisfies the Karush-Kuhn-Tucker (KKT) conditions in the final

solution. A formal proof is given in Sun (2005).

Holding Multiple Vehicles at Multiple Holding Stations (PMM)

As a final extension of the previous two problems, the full problem is to hold multiple

vehicles at multiple holding stations (PMM). As introduced earlier, holding multiple

vehicles at multiple holding stations does not consider holding each vehicle at all

downstream holding stations in one decision-making cycle. Instead, each vehicle is

only considered to be held at the immediate downstream holding station. However,

even with such a simplification, the problem becomes more complicated since the

departure time dei,si
of the last control vehicle ei of the downstream holding station

si is always dependent on the departure time dbi−1,si−1
of the first control vehicle

bi−1 from its immediately upstream holding station si−1, and vice-versa. Recogniz-

ing this, heuristic H2 (see Fig. 4) is developed to search for a solution which can

approximate the global optimum to the full problem.

This heuristic decomposes the overall problem into PMS problems first, then

iterates to mimic the interaction among the control vehicles bi−1 and ei at different

holding stations. In more detail, the heuristic H2 is described below.

Always starting with the most downstream holding station in each iteration at

Step 2, the heuristic solves the PMS problem for each holding station sequentially in

descending order. As described in the heuristic, when the heuristic solves the PMS

problem for a particular holding station si, all trajectories of the control vehicles be-

longing to all its upstream holding stations will function either as a boundary vehi-

cle(s) or impacted vehicles. Certainly, the trajectories of the boundary vehicle(s) and

impacted vehicles affect the solution of the PMS, and the revision of these trajecto-

ries is the essence of the iterative process in H2. The heuristic eventually converges

at the point at which the objective cannot be improved significantly by changing any

vehicle’s departure time at the corresponding holding station.

Proposition 3 If no vehicle ei; i = 1, ...,M − 1, has a trajectory that is bound by

the immediately following vehicle’s arrival time, algorithm H2 solves the PMM

problem to optimality.

The proof of Proposition 3 follows a similar method as for Proposition 2, and is

presented in Sun (2005).
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Step 1: Initialization.

Set a threshold for algorithm convergence;

Check all en-route vehicles. Set [bi, ei] as the holding group and all following

vehicles up to the first non-dispatched vehicle in the non-holding group,

for each holding station si;

Predict all en-route vehicles’ trajectories without holding, and set all vehicles’

departure times at the corresponding holding stations together as Solution 1;

Compute the total passenger cost based on Solution 1, and set it as the

Previous Passenger Cost (PPC);

Set n = 2;

Step 2: For iteration n.

for i = M to 1

Solve the single holding station problem PMS by using H1 for holding station si,

based on the solution n − 1.

Update the corresponding terms in the solution n − 1 with the new optimized

departure times for [bi, ei] at holding station si.

end

Step 3: Solution n = Solution n − 1;

Compute the total passenger cost based on the solution n, and set it as the

Current Passenger Cost (CPC);

Compare CPC and PPC. If CPC is within the convergence threshold of PPC,

go to Step 4; otherwise, PPC = CPC, n = n + 1, and go to Step 2.

Step 4: Stop.

Fig. 4. Algorithm H2

3 Numerical Example

In this section, using a hypothetical example, numerical results are given to demon-

strate the problem formulation and solution. The test bus route is shown in Fig. 5.

Fig. 5. Test Transit Route

The basic characteristics of this test route are:

• It has a major terminal and a minor terminal. Vehicle layover times occur only at

the major terminal, and the minor terminal merely functions as an intermediate
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stop for the vehicle to turn around. Therefore, it is preferable to integrate the two

directions since they are highly correlated from the operating perspective.

• There are a total of 40 stops (including terminals) on the transit route, 20 in each

direction. Because the two directions are essentially treated as one continuous

route in the following analysis, the major terminal will be double-counted as

both the starting point and the end point. Therefore, a total of 41 stops will be

shown in the analysis that follows.

• The one-way trip time is about one hour in each direction, and the average vehicle

headway is ten minutes. Accordingly, there are twelve vehicles operating on the

route at the same time.

• There are a total of three holding stations evenly spaced along the route, with

one at Stop 11 (Station 1), another at Stop 21 (Station 2), and the last at Stop 31

(Station 3).

The passenger arrival profile is depicted in Fig. 6. This passenger arrival profile

can result in a relatively even passenger loading profile along the route, provided that

the headway is perfectly even everywhere.

Fig. 6. Passenger Boarding Profile Along Route

Other parameters are given in Table 1.

Table 1. Operating Factors

Operating Parameters Values

α, β (sec) 2, 2

Threshold Cost Value for PMS (Pass-Min)1 20

Threshold Cost Value for PMM with M Holding Stations (Pass-Min)1 20 ·M

Decision-Making Time Instant (Min)2 120
1 The threshold cost values are set for the purpose of checking the

convergence of algorithms H1 and H2.
2 It is assumed that the first vehicle is dispatched at time 0; after

120 min the first vehicle is returning to the dispatch terminal.
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The following analysis is only intended to demonstrate the problem formulation

and solution. Therefore, only the results from one decision making at a specific time

instant are given for illustration.

With this hypothetical route, at the time instant when the holding control decision

is made (t = 120 minutes), the vehicle trajectories and the current locations are

randomly generated: passenger boarding and alighting processes are deterministic,

but the vehicle running time between adjacent stops is subject to variation with a

coefficient of variation (COV) of 0.15. There are twelve vehicles operating on the

route, and exactly three vehicles lie in the control vehicle group [bi, ei] for each

holding station si (i = 1, 2, 3), and the other three vehicles are operating on the

segment downstream of holding station 3 (between stops 31 and 41).

By using algorithms H1 and H2, the estimated passenger cost reductions from

holding vehicles at each one and at all of the holding stations are shown in Table 2.

Table 2. Passenger Cost Reduction Comparison

Holding Strategies Passenger Waiting Cost Reduction (Pass-Min)

1 At All Holding Stations 1507

2 Only at Holding Station 1 965

3 Only at Holding Station 2 1120

4 Only at Holding Station 3 925

Again, it is emphasized here that the main purpose of this numerical example

is to demonstrate the heuristics developed in this study. It is not meaningful to use

the results in Table 2 to compare the performance of holding vehicles at each single

holding station and at all holding stations for the following reasons:

• Across strategies, the passenger cost is counted based on different route segments

and a different number of vehicles. For Holding Strategy 1, i.e., holding vehicles

at all holding stations, the passenger cost is computed over three vehicles and

the segment [11,41]; three vehicles and segment [21, 41]; and three vehicles and

segment [31, 41]. In contrast, three vehicles and segment [11, 41] are involved

for Strategy 2; six vehicles and segment [21, 41] are evaluated for Strategy 3;

and, nine vehicles and segment [31, 41] are evaluated for Strategy 4. In short, the

passenger cost reductions are not computed on a common basis.

• The results come from just one instance of a holding decision. However, in the

context of a deterministic model, results from one decision-making cycle can-

not give more than just a rough expectation, which may vary significantly from

reality. How this deterministic model approximates the operational stochastic-

ity is only realized by an adaptive decision-making process based on real-time

information. Practically, instead of a single application of the PMM model, it

would be applied frequently, with a decision made each time a vehicle arrives at

a holding station.

• In this particular example, all vehicles are assumed not to be controlled previ-

ously on the route. This over-states the likely performance of the holding control
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at multiple holding stations. With more frequent application of holding along the

route, it may not be as necessary to hold those vehicles which have been previ-

ously controlled at the upstream holding stations.

In this example, the expected passenger cost reduction from holding only three

vehicles at Station 1 (11 stops from the terminal) can be expected to be 965 passen-

ger minutes, which means that there is already significant vehicle headway irregu-

larity when vehicles arrive at Station 1 from the major terminal, where vehicles are

dispatched at perfectly even headways. Therefore, similar, or worse, vehicle head-

way irregularity may be observed at Holding Station 2 even after vehicles have been

controlled at Station 1. Such headway irregularity may justify the placement of the

second holding station, though there are fewer passengers downstream of Station 2

that can benefit from the control, and probably more onboard passengers will dimin-

ish the desirability of holding control at Station 2. Similar arguments can also apply

to the third holding station.

The effectiveness of the model formulation and solution can also be illustrated

by the vehicle trajectory change under the holding controls, as shown in Fig. 7. In the

figure, the solid lines represent the vehicle trajectories after implementing the holding

control. It can be easily seen in Fig. 7 that holding vehicles at multiple holding station

does tend to regularize the vehicle headways more than a single holding station alone.

In more detail, a number of things can be seen. In the first graph, with no control,

the vehicle headways become fairly uneven as vehicles proceed to the end of the

route, and vehicle pairing tends to occur. In the second graph, as the single holding

station is placed at Stop 11, only the last three vehicles are considered to be held

there, and eventually, their trajectories along the remaining segment of the route

(from Stop 11 to the end terminal) are regularized and their headways become more

even than would be the case without holding control. Similarly, as the only holding

station is placed further downstream (e.g., Stop 21 and Stop 31 in the third and the

fourth graphs, respectively), the vehicle headway distribution can be improved by

increasing the number of vehicles held, but only on a shorter segment of the route.

From the fifth graph, multiple station holding control seems to be able to achieve

the best tradeoff between the number of vehicles and the length of the route segment

over which the vehicle headway distribution is improved.
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Fig. 7. Vehicle Trajectory Comparison

4 Conclusions

Multiple holding stations can offer more opportunities to regularize the vehicle head-

ways, so that the overall passenger cost can be reduced further as compared to hold-

ing vehicles only at a single holding station. Certainly, the prerequisite of deploying

multiple holding stations is that transit operation is subject to a certain level of vari-

ability.

The problem of holding multiple vehicles at multiple holding stations can be for-

mulated as a convex problem with strictly convex objective function subject to linear

constraints. Some classical techniques can solve this problem to optimality; however,

this does not necessarily mean that the problem is small in scale. Therefore, heuris-
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tics are also developed in this study to solve this particular problem by decomposing

the overall problem to sub-problems which can be tackled more easily. Respectively,

the PSS problem can be solved analytically; the proposed H1 algorithm can solve

the PMS problem to optimality; and, the H2 heuristic can also help to find the opti-

mal solution to PMM problem if the assumption of no vehicle overtaking is strictly

satisfied.

Though vehicle overtaking may be allowed within the problem formulation, it

has been shown mathematically that the real objective is in most cases better than

the objective derived merely from the model when vehicle overtaking does occur.

This simply implies that the holding control decision made and the corresponding

passenger cost reduction computed based on the model in this paper may be slightly

conservative as vehicle overtaking occurs.

A hypothetical numerical example demonstrates the proposed heuristic, and

shows further evidence to support the use of multiple holding stations even when

transit operation variability is not very high (the coefficient of variation of travel

time is 0.15 and the passenger boarding/alighting process is deterministic).

However, to demonstrate how holding control at multiple holding stations can

outperform holding control at a single holding station, additional work is needed:

• One must judiciously select holding stations in terms of the number of holding

stations and their locations; and,

• One may employ the model developed in this paper to make adaptive holding

control decision based on a real-world example or a simulation study, by using

the real-time information collected by AVL technology.

This work is of primary interest for our future study.

A Proof of Proposition 1

Though the problem formulation in this paper does not explicitly include vehicle

overtaking, it essentially represents the vehicle overtaking as a negative headway.

However, this still contributes positively to the objective since the headway item is

always squared in the objective function. On the other hand, vehicle overtaking may

not be allowed in practice. Without overtaking, the trajectory of the vehicle which

tends to overtake the leading vehicle will intersect the lead vehicle’s trajectory. Other-

wise, if overtaking is allowed, these two vehicles may overtake each other alternately

without ever deviating from each other much, and thus the two vehicles’ trajectories

can still be seen as intersecting. Therefore, a difference exists between the vehicle

trajectories as formulated and the real vehicle trajectories when vehicle overtaking

does occur, as shown in Fig. 8.

As shown in Fig. 8, as Vehicle 1 overtakes Vehicle 0, the trajectory of Vehi-

cle 1 will follow the thin line after the overtaking point, according to the model.

However, the solid line represents the real vehicle trajectories if overtaking is not

explicitly modeled. Accordingly, H1,H2,H3 are defined as the vehicle headways

derived from the model formulation, and, in contrast, h1, h2, h3 as the real vehicle
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Fig. 8. Comparison of Model Trajectory and Real Trajectory

headways (h1 = 0 due to trajectory overlapping). For each stop k downstream where

overtaking occurs, such headway patterns and the magnitude of η1, η2 (the difference

between the model trajectory and real trajectory) can be easily seen and derived by

mathematical induction based on Equation (2) as:

η1 = β · λk/(1 − β · λk) · H1η2 = β · λk/(1 − β · λk) · η1 (17)

If only Vehicles 0, 1 and 2 are considered, it can be seen graphically that the

real objective value is less than the model value. As Vehicle 3 is included, the model

objective value can be expressed as:

H2
1 + (h2 + η1 + H1)

2
+ (h3 − η1 − η2)

2
(18)

= ω + h2
2 + h2

3 + 2h2 · (η1 + H1) − 2h3 · (η1 + η2)

Herein, ω is a positive value. As we can see directly from Equation (18),

2h2 · (η1 + H1) − 2h3 · (η1 + η2) (19)

= 2h2 · (η1 + H1) − 2h3 · (η1 + H1) · β · λk/(1 − β · λk)

Therefore, if

h2 ≥ h3 · β · λk/(1 − β · λk) (20)

it is always true that the model objective value is larger than the real objective value.

The term β · λk/(1 − β · λk) in the equation is essentially the departure time differ-

ence between Vehicle 2 and Vehicle 0 at Stop k. It is actually a very small number
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generally on the order of 0.1 or less. Therefore, unless the vehicle trajectory pattern

is extreme, Inequality (20) always holds.

It would be always true that the model objective value is larger than the real

objective value for the four vehicle case. Based on the same argument, it can be

easily inferred that even when more vehicles are included, the proposition is still

true.
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Summary. The line planning problem is one of the fundamental problems in strategic plan-

ning of public and rail transport. It consists in finding lines and corresponding frequencies in a

public transport network such that a given travel demand can be satisfied. There are (at least)

two objectives. The transport company wishes to minimize its operating cost; the passengers

request short travel times. We propose two new multi-commodity flow models for line plan-

ning. Their main features, in comparison to existing models, are that the passenger paths can

be freely routed and that the lines are generated dynamically.

1 Introduction

The strategic planning process in public and rail transport, i.e., the long and medium

term design of the infrastructure and the service level of a transportation network, is

usually divided into the following consecutive steps: network design, line planning,

and timetabling. In each of these steps, operations research methods can support

the planning decisions, see, e.g., the survey article of Bussieck et al. (1997a), which

discusses the case of rail traffic. This article is about line planning in public transport.

We start by briefly explaining the strategic planning process in this area to put our

work into perspective.

All steps of strategic planning are generally based on so-called origin-destination

data in the form of OD-matrices; each entry in an OD-matrix gives the number of

passengers that want to travel from one point in the network to another point within

a fixed time horizon. It is well known that such data have certain deficiencies. For

instance, OD-matrices depend on the discretization used, they are highly aggregated,

they give only a snapshot type of view, they are only valid when the transportation

demand is fixed and does not depend on the service or price level, and it is often

questionable how well the entries represent the “real” transportation demand. One

can surely hope for better data, but gathering OD-matrices currently seems to be the

best feasible choice for estimating transportation demand. Assembling such data is
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quite an art and rather costly. Public transportation companies do this routinely and

employ OD-matrices as input for strategic planning.

Based on this demand data, the first step of the strategic planning process is the

network design problem. It deals with the layout of the transportation system. Deci-

sions are made about choosing streets/providing tracks of sufficient capacity to trans-

port the number of passengers given by an OD-matrix such that construction costs

are minimized. Typically, one considers extensions of existing, historically grown

networks; designs from scratch, however, are also interesting, not only for the con-

struction of completely new systems, but also for the evaluation of existing networks.

The line planning problem (LPP) that we discuss in this article is the second

step in the strategic planning process for public transport. It consists of designing

line routes and their frequencies in a given street or track network such that a given

transportation volume, again given by an OD-matrix, can be satisfied. The lines in-

clude forward and backward directions, and they start and end at designated terminal

points in the network. With each potential line we associate a certain transportation

mode, such as tram, train, or different bus types, e.g., double-decker or kneeling bus.

Each such mode has a capacity, and the capacity of a line is computed as the product

of its mode capacity with an operating frequency; this frequency is supposed to indi-

cate a basic timetable period. Restrictions on timetable periods, such as divisibility

constraints and safety margins, may come up. Furthermore, the number of available

vehicles for a mode may result in bounds on the frequencies. There are two compet-

ing objectives: on the one hand to minimize user discomfort and on the other hand to

minimize the lines’ operating costs. User discomfort is usually measured by the total

passenger traveling time or the number of transfers during the ride, or both.

The third step is to refine the frequencies of a given line plan into a detailed

timetable. The objective is either to minimize the number of necessary vehicles or to

minimize the transfer times of the passengers. This timetable is the basis for the suc-

ceeding steps of operational planning such as vehicle scheduling, crew scheduling,

rostering, and assignment, see, e.g., the survey article of Desrosiers et al. (1995).

In the recent literature on the LPP often a distribution of the passengers is esti-

mated by a so-called system split. The system split fixes the traveling paths of the

passengers before the lines are known, see Section 2. A second common assumption

is that an optimal line plan can be chosen from a line pool, i.e., a precomputed set

of lines. Third, maximization of direct travelers, i.e., travelers without transfers, is

frequently considered as the objective. In such an approach, transfer waiting times

do not play a role.

This article proposes two new multi-commodity flow models for the LPP. These

models minimize a combination of total passenger traveling time and operating costs.

The first model is compact in the sense that it uses arc variables for both lines and

passenger paths; it can be used to compute lower bounds. The second model uses

path variables for both lines and passenger paths; it is intended to deal with con-

straints on the line routes. The model also handles frequencies implicitly by means

of continuous frequency variables. Both models allow for a dynamic generation of

lines, and they allow passengers to change their routes according to the traveling

times on the computed line system. In particular, they do not assume a system split,
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but compute a “best” passenger flow. These properties aim at line planning scenar-

ios in public transport, where we see less justification for a system split and fewer

restrictions in line design than one seems to have in railway line planning.

This paper is organized as follows. Section 2 gives an overview of the literature

on the LPP. In Section 3 we describe and discuss our models. Section 4 discusses

aspects of a column generation solution approach for the second model. We show

that the pricing problem for the passenger variables is a shortest path problem. The

line pricing problem turns out to be a longest path problem and it is, in fact, already

NP-hard to solve the LP relaxation of the second problem. However, if only lines

of logarithmic length with respect to the number of nodes are considered, the pricing

problem can be solved in polynomial time. We close with some final remarks in

Section 5.

2 Related Work

This section provides a short overview of the literature for the line planning problem.

More information can be found in the article of Ceder and Israeli (1992), which

covers the literature up to the beginning of the 1990s; see also Odoni et al. (1994)

and Bussieck et al. (1997a).

The first approaches to the line planning problem had the idea to assemble lines

from shorter pieces in an iterative (and often interactive) process. An early example

is the so-called skeleton method described by Silman et al. (1974), that chooses the

endpoints of a route and several intermediate nodes which are then joined by shortest

paths with respect to length or traveling time; for a variation see Dubois et al. (1979).

In a similar way, Sonntag (1979) and Pape et al. (1995) constructed lines by adjoining

small pieces of streets/tracks in order to maximize the number of direct travelers.

In the literature it is common to work in two-step approaches that precompute

some set of lines in a first phase and choose a line plan from this set in a second

phase. For example, Ceder and Wilson (1986) described an enumeration method to

generate lines whose length is within a certain factor from the length of the shortest

path, while Mandl (1980) proposed a local search strategy to optimize over such a

set. Ceder and Israeli (1992) and Israeli and Ceder (1995) introduced a quadratic

set covering model to choose among direct connections between destinations and

transfer connections; they also proposed a heuristic to solve their model.

An important phase of development is related to the so-called system split, which

distributes the passengers on paths in the transportation network before the lines are

known. The system split is based on a classification of the transportation system into

levels of different speed, as common in railway systems. Assuming that travelers

are likely to change to fast levels as early and leave them as late as possible, the

passengers are distributed onto several paths in the system, using Kirchhoff-like rules

at the transit points. Note that this fixes, in particular, the passenger flow on each

individual link in the network. The system split approach was promoted by Bouma

and Oltrogge (1994), who used it to develop a branch-and-bound based software

system for the planning and analysis of the line system of the Dutch railway network.
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Recently, advanced integer programming techniques have been applied to the line

planning problem. Bussieck et al. (1997b) (see also Bussieck (1997)) and Claessens

et al. (1998) both proposed cut-and-branch approaches to select lines from a pre-

viously generated set of potential lines and report computations on real world data.

They also both assume a homogeneous transport system, which can be assumed af-

ter a system-split is performed as a preprocessing step. Bussieck et al. (2004) extend

this work by incorporating nonlinear components into the model. Goossens et al.

(2004) and Goossens et al. (2002) show that practical problems can be solved within

reasonable quality and time by a branch-and-cut approach, even for the simultaneous

optimization of several transportation systems.

3 Two Models for the LPP

In this section we present two integer programming formulations for the line plan-

ning problem.

3.1 Notation and Terminology

We typeset vectors in bold face, scalars in normal face. If v ∈ �J is a real valued

vector and I a subset of J , we denote by v(I) the sum over all components of v

indexed by I , i.e., v(I) :=
∑

i∈I vi.

In line planning, we are given an undirected multigraph G = (V,E), which is

supposed to model the topology of a transportation network; this graph is used to

express line paths, which we assume to be undirected (or bidirectional). We consider

also a symmetric directed version (V,A) of this graph, where each edge e in E is

replaced by two antiparallel arcs a(e) and a(e); the directed version is used to model

passenger paths, which are not symmetric. We use the notation G to refer to both the

directed or undirected graph depending on the context, i.e., for line paths we refer to

the undirected version, while for passenger paths we use the directed version. If a =
(u, v) is an arc in the directed (multi)graph, we denote its antiparallel counterpart by

a = (v, u) and by e(a) = {u, v} ∈ E the undirected edge corresponding to a.

The nodes of G represent stops, stations, terminals (start and end points of lines),

and origins or destinations of passenger flows (OD-nodes or “centroids” of certain

traffic cells). The edges/arcs of G correspond to physical transportation links between

two stations, to the formation or termination of lines at a terminal, or to the passenger

in- and outflow between OD-nodes and stations. Associated with each edge e in E
is a mode me of transportation, such as tram, train, double-decker bus, pedestrian

traffic, etc.; we assume multiple edges between two nodes, one for each mode using

the underlying link. We denote the set of all modes by M and by Gm the subgraph

of G defined by the edges e with me = m. Furthermore, we have a traveling time τa

for each arc a ∈ A, an (operating) cost ce, and a capacity λe for each edge e ∈ E; all

three, τa, ce, and λe, are assumed to be nonnegative. The values λe bound the total

frequency of lines using edge e, as will be explained below.
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For each node pair s, t ∈ V we assume a nonnegative demand dst of passengers

to be given that want to travel from s to t, i.e., (dst) is the OD-matrix. We do not

assume this matrix to be symmetric. We let D := {(s, t) ∈ V × V : dst > 0}
be the set of all OD-pairs, i.e., node pairs with nonzero demand. For such an OD-

pair (s, t) ∈ D, an (s, t)-passenger path is a directed path in G starting at node s
and ending at node t, which visits exactly two OD-nodes, namely, s and t. Since

passenger paths will correspond to shortest paths with respect to some nonnegative

weights, we assume them to be simple, i.e., without node repetitions. Let Pst be the

set of all (s, t)-passenger paths, P :=
⋃{p ∈ Pst : (s, t) ∈ D} the set of all

passenger paths, and Pa :=
⋃{p ∈ P : a ∈ p} the set of all passenger paths that

use arc a. The traveling time of a passenger path p is defined as τp :=
∑

a∈p τa.

For each mode m there is a set of terminals Tm ⊂ V , where lines of mode m
can start or end. Let T :=

⋃{v ∈ Tm : m ∈ M} be the set of all terminals. A line

of mode m is an undirected path in Gm, starting and ending at a terminal from Tm;

we stipulate that the lines must be simple. Let Lm be the set of all lines of mode m,

L :=
⋃{ℓ ∈ Lm : m ∈ M} the set of all lines, and Le :=

⋃{ℓ ∈ L : e ∈ ℓ} the

set of lines that use edge e. We assume that there are fixed costs Cℓ and capacities κℓ

for one unit/vehicle/train of line ℓ, which depend only on the mode, i.e., Cℓ = Cm

and κℓ = κm for ℓ ∈ Lm. We further associate a frequency fℓ with every line ℓ that

is supposed to indicate the (approximate) number of times vehicles are employed to

serve the demand over the underlying time horizon T . This not necessarily has to

lead to a regular timetable period, but an estimate for such a period for line ℓ can be

computed from this frequency as T/fℓ.

3.2 Service Network Design Model

In this section we present a model for the LPP in which lines are modeled as integer

flows in the mode networks Gm; it is aimed at efficiently computing lower bounds.

In order to achieve this goal, we have to circumvent several complications that are

discussed at the end of this section. The model is related to a service network design

model by Kim and Barnhart (1997).

We assume in this model a fixed finite set of possible frequencies F ⊂ �+

for the lines of the transportation system. Furthermore, let Q be an upper bound

on the number of lines that start and end in two given terminals. For mode m, let

Rm := {(u, v, q, f) ∈ Tm × Tm × {1, . . . , Q} × F : u < v}, and let R :=
⋃{Rm : m ∈ M}. The set R represents all possible line-frequency combinations.

For convenience, define mr := m and r =: (ur, vr, qr, fr) for r ∈ Rm; r indexes

the line numbered qr of mode m with frequency fr starting at ur and ending in vr.

Moreover, we let R′
m := {(u, v, q) ∈ Tm × Tm × {1, . . . , Q} : u < v}. We handle

fixed costs by adding them to the costs on the arcs that emanate from the terminals

Tm.

There are two kinds of variables:

yst
a ∈ �+: the flow of passengers from s to t ((s, t) ∈ D) using arc a ∈ A,

zr
a ∈ {0, 1}: the flow of line numbered qr (of mode mr = me(a)) with frequency fr,

starting at ur and ending at vr, passing through arc a ∈ A.
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The model is:

(LPP1) min
∑

(s,t)∈D

τ Tyst +
∑

r∈R

cTzr

yst(δ+(v)) − yst(δ−(v)) = δst
v ∀ v ∈ V (1)

∑

(s,t)∈D

yst
a −

∑

r∈R

κmr
fr(z

r
a + zr

a) ≤ 0 ∀ a ∈ A (2)

zr(δ+(v)|Gmr
) − zr(δ−(v)|Gmr

) = 0 ∀ v ∈ V \ {ur, vr}, r ∈ R (3)

zr(δ−(ur)) = 0 ∀ r ∈ R (4)

zr(A(W )|Gmr
) ≤ |W | − 1 ∀W ⊆ V \ {ur, vr}, r ∈ R (5)

∑

r∈R

fr(z
r
a + zr

a) ≤ λe(a) ∀ a ∈ A (6)

∑

f∈F

z(r′,f)
a ≤ 1 ∀ a ∈ A, r′ ∈ R′

m (7)

zr
a ∈ {0, 1} ∀ a ∈ A, r ∈ R (8)

yst
a ≥ 0 ∀ a ∈ A, (s, t) ∈ D (9)

Here, (A(W )|Gmr
) are the arcs in Gmr

with both endpoints in W ⊆ V and similarly

for (δ+(v)|Gmr
).

The passenger flow constraints (1) and the nonnegativity constraints (9) model a

multi-commodity flow problem for the passenger flow, where the commodities cor-

respond to the OD-pairs (s, t) ∈ D. Here δst
v is zero except that δst

s = dst and

δst
t = −dst. This guarantees that the demand is satisfied. The lines are modeled

as 0/1-flows in the z-variables for each r ∈ R: the line flow conservation con-

straints (3) ensure that every line that enters a non-terminal node also has to leave it.

Constraints (4) ensure that the line-flow is directed from the start node ur towards the

end node vr of the line indexed by r. The “subtour elimination” constraints (5) rule

out isolated line circuits, i.e., circuits in the mode graphs Gmr
that are not connected

to the terminal set {ur, vr}. The frequency constraints (6) bound the total frequency

of lines using each edge. Constraints (7) ensure that at most one frequency for each

line is used. The passenger and the line parts of the model are linked by the capacity

constraints (2) in such a way that the total passenger flow on each arc is covered by

lines of sufficient total capacity.

Formulation (LPP1) models undirected line routes as directed paths in 0/1 vari-

ables, since this is the easiest way to model simple paths between terminals. Namely,

it allows to eliminate isolated line circuits by constraints of the form (5). The model

of Kim and Barnhart (1997), referred to above, does not incorporate terminals and

can arbitrarily decompose any line flow into simple paths and circuits. It can there-

fore model lines using integer variables and does not need to resort to subtour elim-

ination constraints. Note also that the discretization of the frequencies is used to

linearize the capacity constraints (2).

Formulation (LPP1) is of polynomial size except for the “subtour elimination”

constraints. These constraints are well known from the traveling salesman problem

and can be separated in polynomial time. By the equivalence of separation and opti-
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mization, see Grötschel et al. (1993), it follows that the LP relaxation of (LPP1) can

be solved in polynomial time to provide a lower bound for the line planning problem.

We also remark that the model is ready to accommodate a number of additional

constraints. We mention as an example a restriction L on the total number of lines,

which can be modeled as z(δ+(T)) ≤ L.

3.3 A Path Based Frequency Model

Our second model treats the lines by means of path and frequency variables.

There are three kinds of variables:

yp ∈ �+: the flow of passengers traveling from s to t on path p ∈ Pst,

xℓ ∈ {0, 1}: a decision variable for using line ℓ ∈ L,

fℓ ∈ �+: frequency of line ℓ ∈ L.

This allows to model the cost of line ℓ of mode m directly as xℓ Cℓ + fℓ cℓ.

Here, cℓ :=
∑

e∈ℓ ce is the total operating cost of line ℓ. Similarly, the capacity of

line ℓ ∈ Lm is κℓ fℓ = κm fℓ. The model is:

(LPP2) min τ Ty + CTx + cTf

y(Pst) = dst ∀ (s, t) ∈ D (10)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (11)

f(Le) ≤ λe ∀ e ∈ E (12)

f ≤ Fx (13)

xℓ ∈ {0, 1} ∀ ℓ ∈ L (14)

fℓ ≥ 0 ∀ ℓ ∈ L (15)

yp ≥ 0 ∀ p ∈ P (16)

As in (LPP1), the flow constraints (10) together with the nonnegativity constraints

(16) guarantee that the demand is satisfied for each (s, t) ∈ D. The capacity con-

straints (11) link the passenger paths with the line paths to ensure sufficient trans-

portation capacities on each arc. The frequency constraints (12) bound the total fre-

quency of lines using each edge. Inequalities (13) link the frequency with the deci-

sion variables for the use of lines; they guarantee that the frequency of a line is 0
whenever it is not used. Here, F is an upper bound on the frequency of a line; for

technical reasons, we also assume that F ≥ λe for all e ∈ E, see Section 4 for a

detailed discussion.

The main advantage of (LPP2) over (LPP1) is that it is easy to incorporate addi-

tional constraints on the formation of individual lines such as length restrictions, as

well as constraints on sets of lines, e.g., constraints on numbers of lines of certain

types. As such constraints are important in practice, we are currently using (LPP2)

as the basis for the development of a branch-and-price algorithm. The disadvantage

of the model is, however, that it is already NP-hard to solve the LP relaxation, as

we will show in Section 4.
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3.4 Discussion of the Models

We discuss in this section advantages and disadvantages of the two models.

Objectives: Both models have objectives with two competing parts, namely, to min-

imize total passenger traveling time and to minimize operation costs. The models

allow to adjust the relative importance of one part over the other by an appropriate

scaling of the respective objective coefficients.

Passenger Routes: Previous approaches to the LPP often fixed the traveling paths of

the passengers in advance by employing a system split. In contrast, our two models

allow to freely route passengers in the line network in order to compute an optimal

routing. To our knowledge, such routings have not been considered in the context

of line planning before. Our models are targeted at local public transport systems,

where, in our opinion, people determine their traveling paths according to the line

system and not only according to the network topology.

Models (LPP1) and (LPP2) compute a set of passenger paths that minimize the

total traveling times in the sense of a system optimum. However, in our case, with

a linear objective function and linear capacities, it can be shown that the resulting

system optimum is also a user equilibrium, namely, the so-called Beckmann user

equilibrium, see Correa et al. (2004). We do not address the question why passengers

should choose this equilibrium out of several possible equilibria that can arise in

routing with capacities.

The routing in our models allows for passenger paths of arbitrary travel times,

which may force some passengers to long detours. One approach to solve this prob-

lem is to restrict the lengths of passenger paths. For each OD-pair one computes the

shortest path in G with respect to the traveling times in advance (every path is feasi-

ble independent of the line system) and modifies the model to only allow passenger

paths whose traveling times are within a certain range from the traveling times of

the shortest paths. This turns the pricing problem for the passenger variables into a

constrained shortest path problem; see Section 4.1. Although this problem is NP-

hard, there are algorithms that are reasonably fast in practice. Note also that such an

approach would measure travel times with respect to shortest paths in the underly-

ing network (independent of any line system). Ideally, however, one would like to

compare these to the shortest paths using only arcs covered by the computed line

system.

Line Routes: The literature generally takes line routes as simple paths, with the ex-

ception of ring lines, and we do the same in this article. In fact, a restriction forcing

some sort of simplicity is necessary to solve the line pricing problems, as otherwise

the outcome will be a line that visits some edges back and forth many times con-

secutively; see Section 4.2. As a slight generalization of the concept of simplicity,

one could investigate the case where one assumes that every line route is bounded in

length and “almost” simple, i.e., when considering the sequence of nodes in a line

route, no node is repeated within a given (fixed) number of nodes. It remains to be

seen whether non-simple paths are useful in practice.
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We consider lines as undirected, which implies that there are no one-way streets

or tracks. However, it is easy to extend the model by including directed lines as they

sometimes appear in ring lines.

Transfers: Transfers between lines are currently ignored in our models. The problem

here are not transfers between different modes, which can be handled by setting up

node disjoint mode networks Gm linked by appropriate transfer edges, which are

weighted by the estimated transfer times. This does not work for transfers between

lines of the same mode. The reason is that our models do not distinguish between

lines of the same mode in the capacity constraints. In principle, this obstacle can be

resolved by an appropriate expansion of the graph. However, this greatly increases

the complexity of the model, and it introduces degeneracy; it is unclear whether such

models have the potential of being solvable in practice.

Time horizon: An important consideration in any strategic planning problem is the

time horizon that one wants to consider. In the LPP, it comes into play implicitly

via the OD-matrix. Usually, such data are aggregated over one day, but it is simi-

larly appropriate to aggregate, e.g., over the rush hour. In fact, the asymmetry of the

demands in rush hours was one of the reasons to consider directed passenger paths.

Frequencies: In a real world line plan the frequencies have to produce a regular

timetable and hence are not allowed to take arbitrary fractional values. Our first

model takes this requirement into account. The second model, however, treats fre-

quencies as continuous values. This is a simplification. We could have forced the

second model to accept only a finite number of frequencies in the same way as in

the first model, i.e., by enumerating lines with fixed frequencies. However, as the

frequencies are mainly used to adjust the line capacities, we do (at present) not care

so much about “nice” frequencies and view the fractional values as approximations

or clues to “sensible” values. We note, however, that the approaches of Claessens

et al. (1998), Goossens et al. (2004), and Goossens et al. (2002) are able to handle

arbitrary finite sets of frequencies. This feature is clearly needed in future models

that integrate line planning and timetable construction.

Additional Constraints: Several additional types of constraints can be added to the

models, e.g., capacity constraints on the total number or on the frequencies of lines

using an edge, on the number of lines of certain types, or other linear constraints.

4 Pricing Problems for (LPP2)

In this section, we discuss the solution of the LP relaxation of (LPP2). For this pur-

pose, we have to analyze the pricing problems for the passenger and the line vari-

ables. Preliminary computational experience indicates that the LP relaxation gives a

good approximation to an optimal solution of (LPP2).

The LP relaxation of (LPP2) can be simplified by eliminating the x-variables. In

fact, since (LPP2) minimizes over nonnegative costs, one can assume w.l.o.g. that the

inequalities (13) are satisfied with equality, i.e., there is an optimal LP solution such
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that Fxℓ = fℓ ⇔ xℓ = fℓ/F for all lines ℓ. Eliminating x from the system using

these equations, we arrive at the following simpler LP (LP2):

(LP2) min τ Ty + γTf

y(Pst) = dst ∀ (s, t) ∈ D (17)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (18)

f(Le) ≤ λe ∀ e ∈ E (19)

fℓ ≥ 0 ∀ ℓ ∈ L (20)

yp ≥ 0 ∀ p ∈ P (21)

Here, γℓ = Cℓ/F +cℓ denotes the cost of line ℓ resulting from the above substitution.

After the elimination, (LP2) contains inequalities fℓ ≤ F for all lines ℓ. Since we

have assumed that F ≥ λe for all e ∈ E, this exponential number of inequalities

is dominated by inequalities (19) and can be omitted. Hence, (LP2) contains only

a polynomial number of inequalities (apart from the nonnegativity constraints (20)

and (21)). We remark that the coupling between xℓ and fℓ by means of the equation

Fxℓ = fℓ is a typical weak point of IP models involving fixed costs.

Proposition 1. The computation of the optimal value of (LP2) with simple line paths

is NP-hard in the strong sense.

Proof. We reduce the Hamiltonian path problem, which is strongly NP-complete

even for planar graphs, to (LP2). Let (H, s, t) be an instance of the Hamiltonian path

problem, i.e., H = (V, E) is a graph and s and t are two distinct nodes of H .

For the reduction, we are going to derive an appropriate instance of (LP2). The

underlying network is formed by a graph H ′ = (V ′, E′), which arises from H by

splitting each node v into three copies v1, v2, and v3. For each node v ∈ V , we add

edges {v1, v2} and {v2, v3} to E′ and for each edge {u, v} the edges {u1, v3} and

{u3, v1}, see Fig. 1. Our instance of (LP2) contains just a single mode with only two

terminals s1 and t3 such that every line must start at s1 and end at t3. The demands

are dv1v2
= 1 (v ∈ V ) and 0 otherwise, and the capacity of every line is 1. For every

e ∈ E, we set λe to some high value (e.g., to |V |). The cost of all edges is set to 0,

except for the edges in δ(s1), for which the costs are set to 1. The traveling times are

set to 0 everywhere. It follows that the value of a solution to (LP2) is the sum of the

frequencies of all lines.

u v

u1 v1

u2 v2

u3 v3

Fig. 1. Example for the Node Splitting in the Proof of Proposition 1
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Assume that p = (s, v1, . . . , vk, t) (for v1, . . . , vk ∈ V ) is an (s, t)-Hamiltonian

path in H . Then p′ = (s1, s2, s3, v
1
1 , v1

2 , v1
3 , . . . , vk

1 , vk
2 , vk

3 , t1, t2, t3) is an (s1, t3)-
Hamiltonian path in H ′, which gives rise to an optimal solution of (LP2). Namely,

we can take p′ as the route of a single line with frequency 1 in (LP2) and route all

demands dv1v2
= 1 on this line directly from v1 to v2. As the frequency of p′ is 1, the

objective value of this solution is also 1. On the other hand, every solution to (LP2)

must have value at least one, since every line has to pass an edge of δ(s1) and the

sum of the frequencies of lines visiting an arbitrary edge of type {v1, v2}, for v ∈ V ,

is at least 1. This proves that (LP2) has an optimal solution of value 1, if (H, s, t)
contains a Hamiltonian path.

For the converse, assume that there exists a solution to (LP2) of value 1, for

which we ignore lines with frequency 0. We know that every edge {v1, v2} (v ∈ V )

is covered by at least one line of the solution. If every line contains all the edges

{v1, v2} (v ∈ V ), each such line gives rise to a Hamiltonian path (since the line

paths are simple) and we are done. Otherwise, there must be an edge e = {v1, v2}
(v ∈ V ) which is not covered by all of the lines. By the capacity constraints (18),

the sum of the frequencies of the lines covering e is at least 1. However, the edges

in δ(s1) are covered by the lines covering edge e plus at least one more line of

nonzero frequency. Hence, the total sum of all frequencies is larger than one, which

is a contradiction to the assumption that the solution has value 1.

This shows that there exists an (s, t)-Hamiltonian path in H if and only if the

value of (LP2) with respect to H ′ is 1. ⊓⊔
Note that Proposition 1 highlights a subtle, but important difference in the line

planning parts of the LP relaxations of the two models (LPP1) and (LPP2). In the

LP relaxation of (LPP2), the line planning part optimizes over a convex hull of

simple paths; Proposition 1 shows that this is NP-hard. As the LP relaxation of

(LPP1) is solvable in polynomial time, its line planning part must be weaker and

contain additional solutions which are not convex combinations of simple paths.

For example, an isolated circuit C in some mode graph Gm gives rise to the vec-

tor (|C| − 1)/|C| · χ(C), which fulfills all constraints of (LPP1), in particular the

subtour elimination constraints (5). But it is not a convex combination of simple

paths.

By Proposition 1, we also know that at least one of the pricing problems asso-

ciated with (LP2) must be NP-hard as well. In fact, it will turn out that the pricing

problem for the line variables xℓ and fℓ is a longest path problem; the pricing prob-

lem for the passenger variables yp, however, is a shortest path problem.

The pricing problems for the variables of (LP2) are studied in terms of the dual

of (LP2). Denote the variables of the dual as follows: π = (πst) ∈ �D (flow con-

straints (17)), µ = (µa) ∈ �A (capacity constraints (18)), and η ∈ �E (frequency

constraints (19)). The dual of (LP2) is:

(DLP) max dTπ − λTη

πst − µ(p) ≤ τp ∀ p ∈ Pst, (s, t) ∈ D
κℓ µ(ℓ) − η(ℓ) ≤ γℓ ∀ ℓ ∈ L

µ, η ≥ 0,



374 Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch

where

µ(ℓ) =
∑

e∈ℓ

(

µa(e) + µa(e)

)

.

4.1 Pricing of the Passenger Variables

The reduced cost τp for variable yp for p ∈ Pst, (s, t) ∈ D, is

τp = τp − πst + µ(p) = τp − πst +
∑

a∈p

µa = −πst +
∑

a∈p

(µa + τa).

The pricing problem for the y-variables is to find a path p such that τp < 0 or to

conclude that no such path exists. This can easily be done in polynomial time as

follows. For all (s, t) ∈ D, we search for a shortest (s, t)-path with respect to the

nonnegative weights (µa + τa) on the arcs; we can, e.g., use Dijkstra’s algorithm. If

the length of this path is less than πst, then yp is a candidate variable to be added to

the LP, otherwise we proved that no such path exists (for the pair (s, t)). Note that

each passenger path can assumed to be simple: just remove cycles of length 0 – or

trust Dijkstra’s algorithm, which produces only simple paths.

4.2 Pricing of the Line Variables

The pricing problem for the line variables fℓ is more complicated. The reduced

cost γℓ for a variable fℓ is

γℓ = γℓ − κℓ µ(ℓ) + η(ℓ) = γℓ −
∑

e∈ℓ

(

κℓ (µa(e) + µa(e)) − ηe

)

.

The corresponding pricing problem consists in finding a suitable path ℓ of mode m
such that

γℓ < 0 ⇔ γℓ −
∑

e∈ℓ

(

κℓ (µa(e) + µa(e)) − ηe

)

< 0
⇔ Cℓ/F + cℓ −

∑

e∈ℓ

(

κℓ (µa(e) + µa(e)) − ηe

)

< 0
⇔ Cm/F +

∑

e∈ℓ ce −
∑

e∈ℓ

(

κℓ (µa(e) + µa(e)) − ηe

)

< 0
⇔ Cm/F +

∑

e∈ℓ

(

ce − κm (µa(e) + µa(e)) + ηe

)

< 0.
⇔∑e∈ℓ(κm (µa(e) + µa(e)) − ηe − ce) > Cm/F.

This problem turns out to be a longest weighted simple path problem, since the

weights (κℓ (µa(e) + µa(e)) − ηe − ce) are not restricted in sign and the graph G is

in general not acyclic. Hence, the pricing problem for the line variables is NP-hard

(even for planar graphs). Note that longest non-simple path problems will often be

“unbounded”, e.g., because of repeated subsequences of the form (. . . , u, v, u, . . . ),
which will lead to paths of “infinite length”. As discussed in Section 3.4, we there-

fore restrict our attention to simple paths. In the rest of this section, we explain how

this problem can be solved in practice.

For the following we fix some mode m ∈ M and, for convenience, write G =
(V,E) for Gm and T for Tm. We let n = |V | and m = |E|. We are now given edge
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weights we (e ∈ E) as described above, which are assumed to be arbitrary (rational)

numbers. The pricing problem amounts to finding a longest weighted path in G with

respect to w from each node s ∈ T to each node t ∈ T \ {s}.

For any fixed path-length k ∈ � we can solve the problem to find a longest

simple path using at most k edges by enumeration in polynomial time. We want to

give two arguments that lines in typical transportation networks are not too long.

The first argument is based on an idea of a transportation network as a planar graph,

probably of high connectivity. Suppose this network occupies a square, in which its n
nodes are evenly distributed. A typical line starts in the outer regions of the network,

passes through the center, and ends in another outer region; we would expect such

a line to be of length O(
√

n). Real networks, however, are not only (more or less)

planar, but often resemble trees. In a balanced and preprocessed tree, such that each

node degree is at least 3, the length of a path between any two nodes is only O(log n).
We now provide a result which shows that the longest weighted simple path

problem can be solved in polynomial time in the case when the maximal number

of edges k occurring in a path satisfies k ∈ O(log n). This result is a direct gener-

alization of work by Alon et al. (1995). Their method works both for directed and

undirected graphs.

The goal of their work is to find induced paths of fixed length k−1 in a graph. The

basic idea is to randomly color the nodes of the graph with k colors and only allow

paths that use distinct colors for each node; such paths are called colorful with respect

to the coloring and are necessarily simple. Choosing a coloring c : V → {1, . . . , k}
uniformly at random, every simple path using at most k − 1 edges has a chance of

a least k!/kk > e−k to be colorful with respect to c. If we repeat this process α · ek

times with α > 0, the probability that a given simple path p with at most k−1 edges

is never colorful is less than

(

1 − e−k
)α·ek

< e−α.

Hence, the probability that p is colorful at least once is at least 1−e−α. The search for

such colorful paths is performed by dynamic programming, which leads to an algo-

rithm running in n · 2O(k) time and provides the correct result with high probability.

This algorithm is then derandomized.

We have the following result, which can easily be generalized to directed graphs.

Proposition 2. Let G = (V,E) be a graph, let k be a fixed number, and c : V →
{1, . . . , k} be a coloring of the nodes of G. Let s be a node in G and (we) be edge

weights. Then colorful longest paths with respect to w using at most k − 1 edges

from s to every other node can be found in time O
(

m · k · 2k
)

, if such paths exist.

Proof. We find the length of the longest such path by dynamic programming. Let v ∈
V , i ∈ {1, . . . , k}, and C ⊆ {1, . . . , k} with |C| ≤ i. Define w(v, C, i) to be the

weight of the longest colorful path with respect to w from s to v using at most

i − 1 edges and using the colors in C. Hence, for each iteration i we store the set of

colors of all longest colorful paths from s to v using at most i − 1 edges. Note that

we do not store the set of paths, only their colors. Hence, at each node we store at
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most 2i entries. The entries of the table are initialized with minus infinity and we set

w(s, {c(s)}, 1) = 0.

At iteration i ≥ 1, let (u,C, i) be an entry in the dynamic programming table. If

for some edge e = {u, v} ∈ E we have c(v) /∈ C, let C ′ = C ∪ {c(v)} and set

w(v, C ′, i + 1) = max
{

w(u,C, i) + we, w(v, C ′, i + 1), w(v, C ′, i)
}

.

The term w(v, C ′, i+1) accounts for the cases where we already found a longer path

to v (using at most i edges), whereas w(v, C ′, i) makes sure that paths using at most

i − 1 edges to v are accounted for. After iteration i = k, we take the maximum of

all entries corresponding to each node v, which is the wanted result. The number of

updating steps is bounded by

k
∑

i=0

i · 2i · m = m ·
(

2 + 2k+1(k − 1)
)

= O
(

m · k · 2k
)

.

The sum on the left side of this equation arises as follows. In iteration i, m edges are

considered; each edge {u, v} starts at node u, to which at most 2i labels w(u,C, i)
are associated, one for each possible set C; for each such set, checking whether

c(v) ∈ C takes time O(i). The summation formula itself can be proved by induction

(Petkovsek et al., 1996, Exc. 5.7.1, p. 95). The algorithm can be easily modified to

actually find a wanted path. ⊓⊔
We can now follow the above described strategy to produce an algorithm which

finds a longest weighted simple path in α ek O
(

mk2k
)

= O
(

m · 2O(k)
)

time with

high probability. Then a derandomization can be performed by a clever enumeration

of colorings such that each simple path with at most k − 1 edges is colorful with

respect to at least one such coloring. Alon et al. combine several techniques to show

that 2O(k) · log n colorings suffice. This yields:

Theorem 1. Let G = (V,E) be a graph and let k be a fixed number. Let s be

a node in G and (we) be edge weights. Then a longest simple path with respect

to w using at most k − 1 edges from s to every other node can be found in time

O
(

m · 2O(k) · log n
)

, if such a path exists.

If k ∈ O(log n), this yields a polynomial time algorithm. Hence, by the dis-

cussion above and the polynomial equivalence of separation and optimization, see

Grötschel et al. (1993), applied to the dual LP, it follows that the LP relaxation

(LP2) can be solved in polynomial time in this case. On the other hand we have

the following result.

Proposition 3. It is NP-hard to compute a longest path of length at most k, if k ∈
O
(

n1/N
)

for fixed N ∈ � \ {0}.

Proof. Consider an instance (H, s, t) of the Hamiltonian path problem, where the

graph H has n nodes. We add (nN − n) isolated nodes to H in order to obtain the

graph H ′ with nN nodes, which is polynomial in n. Let the weights on the edges be 1.

If we would be able to find a longest simple path with at most k = (nN )1/N = n
edges starting from s, we could solve the Hamiltonian path problem for H . ⊓⊔
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5 Conclusions

In this paper, we presented two novel models for the line planning problem, which

allow to compute optimal line routes and passenger paths, and investigated their

LP relaxations. We started to implement the second model, solving the line route

pricing problem by enumeration. Preliminary computational experience shows that

this approach is feasible to solve the LP relaxation of this line planning model for a

medium sized city. We are currently working on the solution of the integer program

and on the evaluation of the practicability of our approach.

Acknowledgements: We thank Volker Kaibel for pointing out Proposition 3. This

research is supported by the DFG Research Center MATHEON “Mathematics for key

technologies” in Berlin.
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Summary. This work describes a highly informative graphical technique for the problem of

finding the lower bound of the number of vehicles required to service a given timetable of

trips. The technique is based on a step function that has been applied over the last 20 years

as an optimization tool for minimizing the number of vehicles in a fixed-trip schedule. The

step function is called a Deficit Function (DF), as it represents the deficit number of vehicles

required at a particular terminal in a multi-terminal transit system. The initial lower bound

on the fleet size with deadheading (empty) trip insertions was found to be the maximum of

the sum of all DFs. An improved lower bound was established later, based on extending each

trip’s arrival time to the time of the first feasible departure time of a trip to which it may

be linked or to the end of the finite time horizon. The present work continues the effort to

improve the lower bound by introducing a simple procedure to achieve this improvement that

uses additional extension possibilities for a certain trip’s arrival times.

1 Background on the Deficit Function

The minimum fleet size problem may be referred to with or without deadheading

(DH) trips. When DH is allowed, we can reach the counterintuitive result of de-

creasing the required resources (fleet size) by introducing more work into the system

(adding DH trips). This approach assumes that the capital cost of saving a vehicle far

outweighs the cost of any increased operational cost (driver and vehicle travel cost)

imposed by the introduction of DH trips.

1.1 Definitions and Notations

Let I = {i : i = l, . . . , n} denote a set of required trips. The trips are conducted

between a set of terminals K = {k : k = l, . . . , q}, each trip to be serviced by a

single vehicle, and each vehicle able to service any trip. Each trip i can be represented

as a 4-tuple (pi, tis, q
i, tie), in which the ordered elements denote departure terminal,

departure (start) time, arrival terminal, and arrival (end) time. It is assumed that each
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trip i lies within a schedule horizon [T1, T2], i.e., T1 ≤ tis ≤ tie ≤ T2. The set of all

trips S = {(pi, tis, q
i, tie) : pi, qi ∈ K, i ∈ I} constitutes the timetable. Two trips i, j

may be serviced sequentially (feasibly joined) by the same vehicle if and only if (a)

tie ≤ tjs and (b) qi = pj .

A deficit function is a step function defined across the schedule horizon that

increases by one at the time of each trip departure and decreases by one at the time

of each trip arrival. This step function is called a deficit function (DF) because it

represents the deficit number of vehicles required at a particular terminal in a multi-

terminal transit system. To construct a set of DFs, the only information needed is

a timetable of required trips. The main advantage of the DF is its visual nature.

Let d(k, t) denote the DF for terminal k at time t for a given schedule. The value

of d(k, t) represents the total number of departures minus the total number of trip

arrivals at terminal k, up to and including time t. The maximum value of d(k, t)
over the schedule horizon [T1, T2], designated D(k), depicts the deficit number of

vehicles required at k.

1.2 DH Trip Insertion and Initial Lower Bound on the Fleet Size

This section follows Ceder and Stern (1981) and Stern and Ceder (1983). A DH trip

is an empty trip between two termini that is usually inserted into the schedule in order

to (i) ensure that the schedule is balanced at the start and end of the day, (ii) transfer

a vehicle from one terminal where it is not needed to another where it is needed to

service a required trip, and (iii) refuel or undergo maintenance.

Consider the example in Fig. 1. In its present configuration, according to the fleet

size formula (Ceder and Stern (1981)), four vehicles are required at terminal a, 0

at terminal b, and 1 at terminal c for a fleet size of five. That is, D(k), for all k,

determines the minimum number of vehicles required at k. The dashed arrows in

Fig. 1 represent the insertion of DH1 trip from b to a and DH2 from c to b. After

the introduction of these DH trips into the schedule, the DFs at all three terminals

are shown updated by the dotted lines. The net effect is a reduction in fleet size by

one unit at terminal a. It is interesting to examine the particular circumstances under

which this reduction was achieved. After adding an arrival point in the first hollow of

terminal a before sa
1 , the maximal interval when using DH1 is reduced by one unit,

causing a unit decrease in the deficit at a. This arrival point becomes, therefore, ea
1 .

Since the DH1 departure point is added in the middle hollow of terminal b, at

eb
1, it is necessary to introduce a second DH trip, which will arrive at the start of

the second maximum interval of b. Fortunately, this DH2 trip departs from the last

hollow of c, where it could no longer affect the deficit at c. In general, it is possible

to have a string of DH trips to reduce the fleet size by one unit: one “initiator trip”

and the others “compensating trips.”

The initial lower bound on the fleet size with DH trip insertions was found by

Ceder and Stern (1981) to be the maximum of the sum of all DFs, g(t), as shown in

Fig. 1 by G. This initial lower bound is determined as 3 before inserting DH trips

and becomes 4 after this insertion.
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Fig. 1. Description of Six-trip, Two-terminal Example in Which the Fleet Size is Reduced by

One Using a Chain of Two DH Trips (URDHC) and in Which g(t) is Changed

2 Fleet Size Lower Bound

2.1 Overview and Example

An improved lower bound to that presented in Fig. 1 was established by Stern and

Ceder (1983), based on extending each trip’s arrival time to the time of the first

feasible departure of a trip to which it may be linked or to the end of the finite time

horizon. The direct calculation of the fleet size lower bound enables schedulers and

transit decision-makers to ascertain more promptly how much the fleet size can be

reduced by DH trip insertions and allowing shifts in departure times.
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Fig. 2. Nine-trip Example With DH Trip Insertions for Reducing Fleet Size

Fig. 2 presents a nine-trip example with four terminals (a, b, c, and d). Table 1

shows the data required for the simple example used for demonstrating further im-

proved lower-bound methods. Four DFs are constructed along with the overall DF.

According to the next terminal (NT) procedure (see Ceder and Stern (1981)), termi-

nal d (whose first hollow is the longest) is selected for a possible reduction in D(d).
The DH-insertion process selects two unit reduction DH chains (URDHC) in Fig. 2;

i.e., DH1+DH2, and the second DH3. The result is that D(c) and D(d) are reduced

from 1 to 0 and from 2 to 1, respectively; hence, N = D(S) = 5, and G is increased

from 3 to 4 using three inserted DH trips.

2.2 Stronger Fleet Size Lower Bound

While Stern and Ceder (1983) extended each unlinked trip’s departure time (i.e., one

that cannot be linked to any trip’s arrival time) to both T1 and T2, it is easy to show

and prove that an extension only to T2 is sufficient. The extension to the time of the
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Table 1. Input Data for the Problem Illustrated in Fig. 2

Trip Departure Departure Arrival Arrival DH Trips

No. Terminal Time Terminal Time Between DH Time

Terminals (same for both directions)

1 a 6:00 c 6:30 a − b 20 min

2 a 6:20 b 6:50 a − c 10 min

3 b 6:40 a 7:10 a − d 60 min

4 a 7:00 a 7:20 b − c 30 min

5 c 7:10 a 7:30 b − d 30 min

6 c 7:40 a 8:10 c − d 20 min

7 d 7:50 d 8:10

8 d 8:00 c 8:30

9 b 8:30 d 9:00

first feasible departure time of a trip with which it may be linked, or to T2, results in

a schedule S′ and an overall DF, g′(t, S′), with its maximum value G′(S′).
While S′ is being created, it is possible that several trip-arrival points are ex-

tended forward to the same departure point that is their first feasible connection.

However, in the final solution of the minimum fleet size problem, only one of these

extensions will be linked to the single departure point. This observation provides

an opportunity to look into further artificial extensions of certain trip-arrival points

without violating the generalization of requiring all possible combinations for main-

taining the fleet size at its lower bound.

Fig. 3 illustrates three cases of multiple extensions to the same departure point.

Case (i) shows two extensions, Trips 1 and 2, both with the same arrival point b,

which is their first feasible connection at point a of Trip 3. Because only one of the

two trips will be connected to Trip 3, the question is, which one can be extended

further? It is clear that Trip 1 has better DH chances to be connected to Trip 4 than

to Trip 2 because of its longer DH time. Hence, Trip 1 can be further extended (2nd

extension) to the start of Trip 4 if it is feasible. Case (ii), Fig. 3, shows that Trips 1

and 2 do not end at the same point and that Trip 4 has different points than in Case

(i). The argument of Case (i) cannot hold here, since the DH time differs between

each two different points. In this case, the second feasible connection for Trip 1 is

T2. By using the Case (i) argument, one can then create three possible chains [1],

[2-3], [4], instead of two chains: [1-3], [2-4]. Case (iii) shows an opposite situation

to that of Case (ii), with multiple extensions from different arrival points. If we link,

in Case (iii), Trips 1 (longest DH time to the common departure point) and Trip 3

and extend Trip 2 to Trip 4, we have another multiple extension case like Case (i),

this one concerning the start of Trip 4 (linked to Trips 2 and 3). Following the Case

(ii) argument, Trip 3 will be linked to Trip 4, and Trip 2 will have its third extension.

This results in three possible chains: [1-3-4], [2], [5], instead of two: [1-5] and [2-

3-4]. Cases (ii) and (iii) show why it is impossible to apply any general rule to a

multiple extension of different arrival epochs. Consequently further improvement of

G′(S′) can be made only for Case (i) situations.
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Fig. 3. Part (i) Shows Why One Should Select the Trip 2 Extension; Part (ii) Shows that the Ar-

gument in (i) Cannot be Used in Case of Multiple Connections from Different Terminals; Part

(iii) Shows Another Case in Which Multiple Connections Cannot be Applied for Constructing

the Lower Bound

Following is the procedure for finding a stronger fleet size lower bound.

1. Establish S′.

2. Select a case in which more than one extension is linked to the same departure

time tjsk of trip j at terminal k. If no more such cases–STOP. Otherwise, select a

group (two or more) of extensions with the same scheduled arrival terminal, u,

and apply the following steps:

2a. Find a trip that fulfills: mini∀i∈Eu
(tjsk − tieu) , where Eu = set of all trips

arriving at u and extended to tjsk, and tieu is the arrival epoch of trip i at

terminal u;

2b. Perform the second feasible extension for all trips i ∈ Eu , except the one

selected in Step 2a. Go to Step 2.
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Using this procedure, define the overall DF of the extended S′ schedule by

g′′(t, S′′) with the maximum value G′′(S′′). The following theorem and its proof

establish that G′′(S′′) is a stronger lower bound than G′(S′).

Theorem 1: Let No(S) be the minimum fleet size for S with DH insertions. Let

G′(S′) and G′′(S′′) be the maximum value of the overall DF for S′ and S′′, respec-

tively. Then: (i) G′′(S′′) ≥ G′(S′), and (ii) G′′(S′′) ≤ No(S).

Proof: (i) The new overall DF, g′′(t, S′′), has more extensions than g′(t, S′); i.e.,

g′′(t, S′′) ≥ g′(t, S′). Therefore, G′′(S′′) ≥ G′(S′). (ii) According to the definition

of S′′, at any time t in which g′′(t, S′′) = G′′(S′′), there exist G′′(S′′) − g′(t, S′)
trip extensions over S′. The additional extensions in S′′ represent multiple extensions

(2nd, 3rd, . . .), given that each extended trip is associated with another trip having

the same arrival epoch and terminal, and has only one extension. In the optimal chain

solution, a departure time t∗s may or may not be linked to its nearest feasible arrival

epoch (t∗e) across all other points representing the same arrival terminal. Linkage

to t∗e complies with the procedure to construct S′′. Otherwise, t∗e in S′′ is further

extended either to another trip or to T2 while t∗s is linked to t∗∗e < t∗e . We should note

that t∗∗e is linked to t∗∗s when using the procedure described. Because t∗e to t∗s is the

shortest link, the additional extension of t∗e cannot be linked to a trip that starts before

t∗∗s (otherwise, t∗∗e too will be linked to it, and not to t∗s). Therefore, the additional

extension of t∗e in the optimal chain solution, No(S), results in a greater overlap

between trips (when constructing g′′(t, S′′)). Hence, G′′(S′′) ≤ No(S). Q.E.D.

Fig. 4 presents the schedule of Fig. 2, with S′ in its upper part, S′′ in its middle

part, and three overall DFs–g(t, S), g′(t, S′), and g′′(t, S′′)–in the lower part. For S′,

it may be observed that Trips 3, 4, and 5 are extended to the same departure point as

Trip 6 from the same arrival terminal a. According to the procedure for constructing

S′′, the extension of Trip 5 is selected, and Trips 3 and 4 are further extended to

the departure time of Trip 9. These additional extensions create another multiple

connection associated with Trips 3 and 4, in which Trip 4 is the selected extension

and Trip 3 is further extended (3rd time). The initial lower bound is G = 3, the

first improved lower bound is G′ = 4, and the proposed improved lower bound is

G′′ = 5, which happens to be the optimal solution (see Fig. 2).
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Summary. Systematic tabu search based meta-heuristic algorithms are designed and imple-

mented for the transit route network design problem. A multi-objective nonlinear mixed in-

teger model is formulated. Solution methodologies based on three variations of tabu search

methods are proposed and tested using a small experimental network as a pilot study. Sensitiv-

ity analysis is performed, a comprehensive characteristics analysis is conducted and numerical

results indicate that the preferred tabu search method outperforms the genetic algorithm used

as a benchmark.

1 Introduction

Public transit has been widely recognized as a potential way of reducing air pollution,

lowering energy consumption, improving mobility and lessening traffic congestion.

Designing an operationally and economically efficient bus transit network is very

important for the urban area’s social, economic and physical structure.

Generally speaking, the network design problem involves the minimization (or

maximization) of some intended objective subject to a variety of constraints, which

reflect system performance requirements and/or resource limitations. In the past

decade, several research efforts have examined the bus transit route network design

problem (BTRNDP). Previous approaches that were used to solve the BTRNDP can

be classified into three categories: 1) Practical guidelines and ad hoc procedures; 2)

Analytical optimization models for idealized situations; and 3) Meta-heuristic ap-

proaches for more practical problems. NCHRP Synthesis of Highway Practice 69

(1980) provides industry rule-of-thumb service planning guidelines. Furthermore,

in the early research efforts, traditional operations research analytical optimization

models were used. Rather than determining both the route structure and design pa-

rameters simultaneously, these analytical optimization models were primarily ap-

plied to determine one or several design parameters (e.g., stop spacing, route spacing,

route length, bus size and/or frequency of service) on a predetermined transit route

network structure. Generally speaking, these models are very effective in solving
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optimization-related problems for networks of small size or with one or two decision

variables. However, when it comes to the transit route design problem for a network

of realistic size in which many parameters need to be determined, this approach does

not work very well. Due to the inherent complexity involved in the BTRNDP, the

meta-heuristic approaches, which pursue reasonably good local optima but do not

guarantee finding the global optimal solution, were therefore proposed. The meta-

heuristic approaches primarily dealt with simultaneous design of the transit route

network and determination of its associated bus frequencies. Examples of the gen-

eral heuristic approaches can be seen in the work of Ceder and Wilson (1986), Baaj

and Mahmassani (1992), and Shih et al. (1998). Genetic algorithm-based heuristic

approaches that were used to solve the BTRNDP can be seen in Pattnaik et al. (1998),

Chien et al. (2001) and Fan and Machemehl (2004).

However, the major shortcoming of most previous approaches is that they did

not study the BTRNDP in the context of the “distribution node” (or bus stop) level

and simply aggregate zonal travel demand into a single node. This precludes them

as generally accepted applications for practical transportation networks because the

frequency-based rule for the traditional transit trip assignment model based on this

assumption is incorrect. Therefore, the BTRNDP should be considered in a more

general real world situation. Furthermore, previous research efforts mainly centered

on genetic algorithms and other potential heuristic algorithms such as tabu search

methods are seldom used to solve the BTRNDP. To search for possibly good and/or

better network solutions, these methods should be considered.

The objective of this paper is to systematically examine the underlying charac-

teristics of the optimal BTRNDP in the context of the “distribution node” level. A

multi-objective nonlinear mixed integer model is formulated for the BTRNDP. Char-

acteristics and model structures of the Tabu Search (TS) algorithms are reviewed. A

TS algorithm-based solution methodology is proposed. Three different variations of

TS algorithms are employed and compared as the solution method for finding an op-

timum set of routes from the huge solution space. A genetic algorithm is also used as

a benchmark to measure the quality of the TS methods. Numerical results including

sensitivity analysis and characteristics identification are presented using an exper-

imental network. The subsequent sections of this paper are organized as follows.

Section 2 presents the model formulation of the BTRNDP from a systematic view.

The objective function and related constraints are also described. Section 3 discusses

general characteristics of the TS algorithms. Section 4 proposes the solution method-

ology for the BTRNDP, which contains three main components: an initial candidate

route set generation procedure; a network analysis procedure and a TS procedure that

guides the candidate solution generation process. Section 5 presents the applications

of the proposed solution methodology to an experimental network and the numerical

results are also discussed. Finally in Section 6, a summary concludes this paper.
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2 Model Formulation

Essentially speaking, the transportation system is described in terms of “nodes,”

“links” and “routes.” A node is used to represent a specific point for loading, unload-

ing and/or transfer in a transportation network. Generally speaking, there are three

kinds of nodes in a bus transit network system: (a) Nodes representing centroids of

specific zones; (b) Nodes representing road intersections; and (c) Nodes with which

zone centroid nodes are connected to the network through centroid connectors. Note

that nodes could be real (identifiable on the ground) or fictitious. Furthermore, the

term “distribution nodes” is introduced especially for the third kind of node. A link

joins a pair of nodes and represents a particular mode of transportation between these

nodes, which means that if two modes of transportation are involved with the same

link, these are represented as two links, say walk mode and transit mode. This is

natural since the travel time associated with every mode-specific link is different.

A route is a sequence of nodes. Every consecutive pair of the node sequence must

be connected by a link of the relevant mode. The bus line headway on any particu-

lar route is the inter-arrival time of buses running on that route. A graph (network)

refers to an entity G = {N,A} consisting of a finite set of N nodes and a finite set

of A links (arcs) which connect pairs of nodes. A transfer path is a progressive path

that uses more than one route. Note that a typical geographical zone system may

be based upon census boundaries and all land areas are encompassed by streets or

major physical barriers. The zone centroids are located somewhere near the centers

of the zones and zone connectors are used to connect these centroids to the modeled

network. Generally, the centroid node represents the “demand” center (origin and/or

destination) of a specific traffic zone. Distribution nodes are the junctions of cen-

troid connectors and road links and might physically represent bus stops. It should

be pointed out that centroid connectors are usually fictitious and they are used as

the origins and/or destinations for implementation of the shortest path and k shortest

path algorithms. Furthermore, an important characteristic of these centroid connec-

tors is the distances that transit users have to walk to get to the routes that provide

service to their intended destinations. Note that the terms, “arc” and “link” are used

interchangeably.

Consider a connected network composed of a directed graph G = {N,A} with a

finite number of nodes and arcs. The following notations are used.

Sets/Indices

i, j ∈ N centroid nodes (i.e., zones)

rk ∈ R routes

it ∈ N t-th distribution node of centroid node i
tr ∈ R transfer paths that use more than one route from R

Data

Rmax maximum allowed number of routes for the route network
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Dmax maximum length of any route in the transit network

Dmin minimum length of any route in the transit network

dij bus transit travel demand between centroid nodes i and j
hmax maximum headway required for any route; (say, 60 minutes)

hmin minimum headway required for any route; (say, 5 minutes)

Lmax maximum load factor for any route

P seating capacity of buses operating on the network

W maximum bus fleet size available for operations on the route network

Cv per-hour operating cost of a bus; ($/vehicle/hour)

Cm value of time; ($/minute)

Ov operating hours for the bus running on any route; (hours)

Cd value of one unsatisfied transit demand in dollars; ($/person)

Ci (i = 1, 2, 3) weights reflecting the relative importance of three components

including the user costs, operator costs and unsatisfied total demand costs,

respectively; note that C1 + C2 + C3 = 1

Decision Variables

M the number of routes of the current proposed bus transit network solution

rm the m-th route of the proposed solution, m = 1, 2, . . . ,M
Drm

the overall length of route rm

drm

ij the bus transit travel demand between centroid nodes i and j on route rm

dtr
ij the bus transit travel demand between centroid nodes i and j along transfer

path tr

DRij the set of direct routes used to serve the demand from centroid nodes i and

j

TRij the set of transfer paths used to serve the demand from centroid nodes i
and j

trm

ij the total travel time between centroid node i and j on route rm

ttrij the total travel time between centroid node i and j along transfer path tr

hrm
the bus headway operating on route rm; (minutes/vehicle)

Lrm
loading factor in route rm

Trm
the round trip time of route rm; Trm

= 2Drm
/Vb

Nrm
the number of operating buses required on route rm; Nrm

= Trm
/hrm

Qmax
rm

the maximum flow occurring on the route rm

Objective Function

The objective is to minimize the sum of operator cost, user cost and unsatisfied

demand costs for the studied bus transit network. The objective function is as follows:
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min z = C1 ·
(

∑

i∈N

∑

j∈N

∑

rm∈DRij

drm

ij trm

ij +
∑

i∈N

∑

j∈N

∑

tr∈TRij

dtr
ij t

tr
ij

)

+

C2 · Cv

Cm
· Ov ·

(

M
∑

m=1

Trm

hrm

)

+

C3 · Cd

Cm
·
(

∑

i∈N

∑

j∈N

dij −
∑

i∈N

∑

j∈N

∑

rm∈DRij

drm

ij − ∑
i∈N

∑

j∈N

∑

tr∈TRij

dtr
ij

)

s.t.
hmin ≤ hrm

≤ hmax rm ∈ R (headway feasibility constraint)

Lrm
=

Qmax
rm

·hrm

P ≤ Lmax rm ∈ R (load factor constraint)
∑M

m=1 Nrm
=
∑M

m=1
Trm

hrm
≤ W rm ∈ R (fleet size constraint)

Dmin ≤ Drm
≤ Dmax rm ∈ R (trip length constraint)

M ≤ Rmax (maximum number of routes

constraint)

M,hrm
, Nrm

, Qmax
rm

, drm

ij , dtr
ij , are all integers.

The first term of the objective function is the total user cost (including the user

cost on direct routes and that on transfer paths), the second part is the total operator

cost, and the third component is the cost resulting from total travel demand excluding

the transit demand satisfied by a specific network configuration. Note that C1, C2 and

C3 are introduced to reflect the tradeoffs between the user costs, the operator costs

and satisfied transit ridership, making the BTRNDP a multi-objective optimization

problem. Generally, operator cost refers to the cost of operating the required buses.

User costs usually consist of four components, including walking cost, waiting cost,

transfer cost, and in-vehicle travel cost. The first constraint is the headway feasibility

constraint, which reflects the necessary usage of policy headways in extreme situa-

tions. The second is the load factor constraint, which guarantees that the maximum

flow on the critical link of any route rm cannot exceed the bus capacity on that route.

The third (fleet size) constraint represents the resource limits of the transit company

and it guarantees that the optimal network pattern never uses more vehicles than

currently available. The fourth constraint is the trip length constraint. This avoids

routes that are too long because bus schedules on very long routes are too difficult

to maintain. Meanwhile, to guarantee the efficiency of the network, the length of

routes should not be too small. The fifth constraint is the maximum number of routes

constraint, which reflects the fact that in solving the BTRNDP, transit planners often

set a maximum number of routes, which is based on the fleet size. This has a great

impact on the later driver scheduling work.

3 Tabu Search Algorithm

The TS algorithm has traditionally been used on combinatorial optimization prob-

lems and has been frequently applied to many integer programming, routing and

scheduling, traveling salesman and related problems. The basic concept of TS is
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presented by Glover (1977), Glover (1986) who described it as a meta-heuristic su-

perimposed on another heuristic. It explores the solution space by moving from a

solution to the solution with the best objective function value in its neighborhood at

each iteration, even in the case that this might cause the deterioration of the objective.

(In this sense, “moves” are defined as the sequences that lead from one trial solution

to another.) To avoid cycling, solutions that were recently examined are declared for-

bidden or “tabu” for a certain number of iterations and associated attributes with the

tabu solutions are also stored. The tabu status of a solution might be overridden if it

corresponds to a new best solution, which is called “aspiration.” The tabu lists are

historical in nature and form the Tabu Search memory. The role of the memory can

change as the algorithm proceeds. Intensification strategies are based on modifying

choice rules to encourage move combinations and solution features historically found

good, and to initiate a return to attractive regions to search them more thoroughly.

Diversification strategies are based on modifying choice rules to bring attributes into

the solutions that are infrequently used, or to drive the search into new regions. Inten-

sification and diversification are fundamental cornerstones of longer term memory in

TS and reinforce each other. In many cases, various implementation models of the

TS method can be achieved by changing the size, variability, and adaptability of the

tabu memory to a particular problem domain. Basic versions of TS can be found in

Glover (1989), Glover (1990), and variants ranging from simple to advanced can be

found in Glover and Laguna (1997).

In all, TS is an intelligent search technique that hierarchically explores one or

more local search procedures in order to search quickly for the global optimum. As

one of the advanced heuristic methods, TS is generally regarded as a method that

can provide a near-optimal or at least local optimal solution within a reasonable time

for the BTRNDP. Details of our BTRNDP-specific TS algorithms are presented in

Section 4.

4 Proposed Solution Methodology

The proposed solution framework consists of three main components: an Initial Can-

didate Route Set Generation Procedure (ICRSGP) that generates all feasible routes

incorporating practical guidelines that are commonly used in the bus transit indus-

try; a Network Analysis Procedure (NAP) that assigns the transit trips, determines the

service frequencies on each route and computes many performance measures; and,

a TS Procedure that combines these two parts, guides the candidate solution gen-

eration process and selects an optimum set of routes from the huge solution space.

Fig. 1 gives the flow chart of the proposed solution framework. C++ is chosen as the

implementation language in this research.

4.1 The Initial Candidate Route Set Generation Procedure (ICRSGP)

The ICRSGP configures all candidate routes for the current transportation network. It

requires the user to define the minimum and maximum route lengths. The knowledge
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  Initial Candidate Route Set Generation Procedure (ICRSGP)
� generate all candidate routes filtered by some user-defined

feasibility constraints in the current bus transit network

          STOP
� Output the optimal transit route set, associated route frequencies

and related performance measures

User Input

  Tabu Search Procedure (TSP)
� generate starting transit networks
� update proposing solution transit route

networks based on the NAP results using
the tabu search algorithm

  Network Analysis Procedure (NAP)
� assign transit trip demands
� determine route frequecies
� compute node-level, route-level and

network-level descriptors
� compute system performance measures

Fig. 1. Flow Chart of the Proposed Solution Methodology

of the transit planners has a significant impact on the initial route set skeletons, i.e.,

different user requirements result in different route solution space sets. ICRSGP re-

lies mainly on algorithmic procedures including the shortest path and k-shortest path

algorithms. Given the user-defined minimum and maximum length constraints, Di-

jkstra’s shortest path algorithm (see Ahuja et al. (1993)) is used and Yen’s k-shortest

path algorithm (see Yen (1971)) is modified to generate all candidate feasible routes

in the studied transportation network. Fig. 2 presents a skeleton for the ICRSGP.

      DIJKSTRA'S LABEL-SETTING SHORTEST PATH
ALGORITHM

� Find the shortest path between each possible
distribution node pair of any centroid node pair in the
bus transit demand network

                                          STOP
� Output the set of kept candidate routes

User Input
� Minimum route length
� Maximim route length

      FILTER ROUTES #1
� Check the route fundamental feasibility constraints for

the present paths (routes), keep all feasible routes,
and set a label to each kept route

      YEN'S K-SHORTEST PATH ALGORITHM
� Find the k-shortest path between each possible

distribution node pair of any centroid node pair in the
current transit demand network

      FILTER ROUTES #2
� Check the route fundamental feasibility constraints for

all the present generated routes, keep all feasible
routes and remove all the leftovers. Set a label to each
kept route.

Fig. 2. Skeleton of the Initial Candidate Route Set Generation Procedure (ICRSGP)
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4.2 The Network Analysis Procedure (NAP)

Fig. 3 shows the flow chart of the proposed network analysis procedure for the

BTRNDP. Essentially, the NAP proposed in this paper is a bus transit network eval-

uation tool with the ability to assign transit trips between each centroid node pair

onto each route in the proposed solution network and determine associated route

frequencies. To accomplish these tasks for the BTRNDP, NAP employs an iterative

procedure, which contains two major components, namely, a multiple transit trip as-

signment procedure and a frequency setting procedure, to seek to achieve internal

consistency of the route frequencies.

Once a specific set of routes is proposed by the TS procedure in the overall can-

didate solution route set generated by the ICRSGP, the NAP is called to evaluate

the alternative network structure and determine route frequencies. The whole NAP

process can be described as follows. First, an initial set of route frequencies are spec-

ified because they are necessary before the beginning of the trip assignment process.

Then, hybrid transit trip assignment models are utilized to assign the passenger trip

demand matrix to a given set of routes associated with the proposed network con-

figuration. The service frequency for each route is then computed and used as the

input frequency for the next iteration in the transit trip assignment and frequency

setting procedure. If these route frequencies are considered to be different from pre-

vious frequencies by a user-defined parameter, the process iterates until internal con-

sistency of route frequencies is achieved. Once this convergence is achieved, route

frequencies and several system performance measures (such as the fleet size and the

unsatisfied transit demands) are thus obtained.

It should be noted that the trip assignment process considers each zone (centroid

node) pair separately. Also, the transit trip assignment model presented in this pa-

per adapts the lexicographic strategy (see Han and Wilson (1982)) and the previous

transit trip assignment methods (see Shih et al. (1998)). However, several modifica-

tions have been made to accommodate more complex considerations for real world

application. This model considers the number of transfers and/or the number of long

walks to the bus station as the most important criterion. It first checks the existence of

the 0-transfer-0-longwalk paths. If any path of this category is found, then the transit

demand between this centroid node pair can be provided with direct route service and

the demand is therefore distributed to these routes. If not, the existence of paths of

the second category, i.e., 0-transfer-1-longwalk path and 1-transfer-0-longwalk paths

are checked. If none of these paths is found, the proposed procedure will continue

to search for paths of the third category, i.e., paths with 2-transfer-0-long-walk, 1-

transfer-1-long-walk and/or 0-transfer-2-longwalks. Only if no paths that belong to

these three categories exist, there would be no paths in the current transit route sys-

tem that can provide service for this specific centroid node pair (i.e., these demands

are unsatisfied). Note that at any level of the above three steps, if more than one path

exists, a “travel time filter” is introduced for checking the travel time on the set of

competing paths obtained at that level. If one or more alternative paths whose travel

time is within a particular range pass the screening process, an analytical nonlinear

model (i.e., the inverse proportional model) that reflects the relative utility on these
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Output

Input

Assign Initial Frequencies Fr

Set i=1 and j=1

Does 0-transfer-0-longwalk
path exist?

 Filtering process by travel time check
� Assign trip dij

� Update 0-t-0-lw

Yes

1-transfer-0-longwalk
and 0-transfer-1-longwalk

 path exist?

Yes Filtering process by travel time check
� Assign trip dij

� Update 1-t-0-lw and/or 0-t-1-lw

No Route Service Provided

j<N?

i<N?

Set j=j+1

Set i=i+1
Set   j=1
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Determine route frequencies Fnew

Frequencies converge? Set frequencies Fr=Fnew
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Compute all related
performance measures
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� Update unsatisfied demand

No
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2-transfer-0-longwalk,
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 paths exist?
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 Filtering process by travel time check
� Assign trip dij

� Update 2-t-0-lw, 0-t-2-lw and/or
1-t-1-lw

No

No

Fig. 3. Network Analysis Procedure (NAP) for the BTRNDP

competing paths is used to assign the transit trips between that centroid node pair to

the network. In addition, policy headway and the demand headway are used together

to determine the frequencies on each route in the frequency setting procedure. The

whole process is repeated until all the travel demand pairs in the studied network

are considered. Details of the transit trip assignment model can be seen in Fan and

Machemehl (2004).

4.3 Tabu Search Procedure

Since the TS provides a robust search as well as a near optimal solution in a rea-

sonable time, this approach is employed as one of the candidate solution techniques

for BTRNDP. The following subsections present a systematic description for the TS

algorithm-based implementation model for the BTRNDP.

Tabu Search Implementation Model: As with other heuristic algorithms, apply-

ing TS methods requires a significant amount of knowledge specific to the BTRNDP.
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To make TS a potentially efficient algorithm for the BTRNDP, careful attention is

required. Note that one of the significant contributions in this paper is using the TS

algorithm to solve the BTRNDP. Since it is the first time for the TS methods to be

applied for the BTRNDP, a detailed description of the BTRNDP-specific TS is pre-

sented.

Solution Representation: At any iteration t of the algorithm, let n represent the

proposed solution route set size. A candidate bus transit route solution network can

be represented by Xt = (Rt
1, R

t
2, . . . R

t
i, . . . , R

t
n), where Rt

i(i = 1, 2, . . . , n) de-

notes the i-th bus route in the proposed solution set. Although the vector Xt is treated

as ordered by the algorithm, it should be pointed out that Xt can also be treated as

a set rather than a vector, and its ordering serves as a record keeping device for

the algorithm rather than identifying a structural property of the solution itself. Let

f(Xt) represent the objective function as shown in the model formulation part for

the proposed solution network defined by this n transit route network configuration

Xt = (Rt
1, R

t
2, . . . , R

t
n).

Initial Solution: In this paper, all initial solutions for three different versions of

the TS algorithms are randomly generated, with each solution being uniformly dis-

tributed in the solution space generated by the ICRSGP.

Neighborhood Structure: Undoubtedly, how to define the “neighborhood,” i.e.,

the nearby solutions, might affect the quality of the transit route network solution. A

different definition rule could result in a different solution of different quality. In this

research, the neighborhood of a feasible solution route network set Xt is another

feasible solution obtained by replacing one of the routes in the current proposed

solution set, say the i-th route Rt
i to one of the routes that is next to Rt

i in the stored

solution space. For route 1, the neighborhood can be defined as route 2 and route N,

where N is the total number of routes in the stored solution space. For route N, the

neighborhood can be defined as route 1 and route (N-1). The neighborhood of any

route i (1 < i < N − 1) that lies somewhere in the middle of the solution route

space can be defined as the routes that are next to Rt
i . Z(Xt

ij), the objective function

value of a new solution Xt+1 that is obtained from Xt by moving Rt
i to one of its

neighbors Rt
j at generation t can be computed as follows: Z(Xt

ij) = f(Xt+1).

Moves and Tabu Status: As defined, a move consists of replacing a given route

within Xt by one of its two neighboring routes that lie outside of Xt but within the

stored solution space. It should be noted that both of these two neighboring routes

are tried. At the beginning of this process, no move is tabu (i.e., forbidden). At any

iteration with n number of routes in solution Xt, the algorithm executes the best

non-tabu move out of 2 ∗ n feasible moves to a feasible neighbor of the current

solution. In addition, if a tabu move yields a worse solution which is, however, the

best among all feasible neighbors of the current solution, it is also updated. Whenever

a move is performed, the reverse move is declared tabu for m iterations, where m is

either a user-defined parameter or a randomly generated one that follows a discrete

uniform distribution in an interval [mmin,mmax], where mmin and mmax are the

user-defined minimum and maximum parameters of the algorithm. Comparisons of
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the model performance between these two strategies including the fixed and variable

tabu tenure are performed in the numerical results part.

Diversification and Intensification: This part is developed to combine the diver-

sification and intensification procedures to further explore the solution space for a

possibly better solution. It starts from the best found solution route set and intro-

duces a major perturbation by allowing q routes (1 ≤ q ≤ n) to move w positions

up from their current solution location (say q = 2 and w = 10) in the stored solu-

tion space. Put another way, Xt is moved to another feasible solution by replacing

q routes within Xt by q other routes that each of them go up w position from their

current solution location in the stored solution space. This is called “diversification.”

Note that this is a “forced” movement no matter whether the solution improves or

not, so that the solution space can be somehow traversed more evenly. To respect

the original characteristics of the TS, this procedure is never applied more than once

during a given operation (called “intensification”). Note that tabu moves are also ap-

plied to this situation. If this move is toward one direction (say increasing direction)

of the current route, then moves toward to the opposite direction (i.e., decreasing

direction) are prevented for a certain number of iterations (say using the same m).

Model performance comparisons of the TS algorithms between using and not us-

ing this procedure are also achieved and the better approach will be identified in the

numerical results part.

Implementation Model Summary: In all, the proposed TS algorithms for the

BTRNDP in this paper include two main procedures described as follows.

Neighborhood Search Procedure: At iteration t, let Xt = (Rt
1, R

t
2, . . . , R

t
n) be

a feasible solution of value f(Xt). Let N(Xt) be the set of feasible neighbors of Xt,

as defined before. The best neighbor of Xt is a solution Xt
i∗j∗ ∈ N(Xt) obtained

by replacing one given route Rt
i∗ within Xt to its best neighbor Rt

j∗ that is one of

its two neighboring routes outside Xt but within the stored solution space. Similarly

define the best feasible non-tabu neighbor of Xt as Xt
ij

∈ N(Xt). (Xt
i∗j∗ and Xt

ij

may coincide). Let X∗ be the incumbent (the best known feasible solution) and let

Z(X∗) be its value.

If Z(Xt
i∗j∗) < Z(X∗), set X∗ = Xt+1 = Xt

i∗j∗ and Z(X∗) = Z(Xt+1) =
Z(Xt

i∗j∗). Declare the move of a route from Rt
j∗ to Rt

i∗ tabu for m iterations,

where m can be a fixed user-defined parameter or is uniformly distributed with

m ∈ [mmin,mmax]. If Z(Xt
i∗j∗) > Z(X∗) and all moves defining the solu-

tions of N(Xt) are tabu, set δ = 1 and return. Otherwise, set Xt+1 = Xt
ij

and

Z(Xt+1) = Z(Xt
ij

). Declare the move of a route from Rj to Ri tabu for m itera-

tions, where m has the same definition as used before.

Diversification and Intensification Procedure: This procedure is the same as that

in Neighbor Search but defines N(Xt) differently. It allows q routes (1 ≤ q ≤ n)
to move up to w more than the current solution location in the solution space (Note

that in this paper, this procedure is called the “shakeup” procedure. Furthermore,

for simplicity, q is set to n and w is set as a user-defined parameter). When a route

is moved (i.e., replacing this route within Xt by another route that is w positions
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up/down from its current location in the stored solution space) in one direction (say

the increasing direction), moving back in the opposite direction is declared tabu for

m iterations, where m uses the same notation as before.

Tabu Search Algorithm for the BTRNDP:

Step 1 Randomly generate an initial feasible solution route network

Xt = (Rt
1, R

t
2, . . . , R

t
n) with route size n in the proposed solution set.

Step 2 Set δ = 0, t = 1 and X∗ = Xt; While ( δ = 0 and t ≤ MAX Iterations )

Apply Neighborhood Search to the solution Xt; t = t + 1.

Step 3 Apply the “Diversification and Intensification” procedure to X∗. Apply

Neighborhood Search to the solution X∗ until δ = 1 or t > MAX Iterations.

Step 4 Output the current best solution found.

As mentioned before, since TS provides a robust search as well as a near optimal

solution within a reasonable time, this algorithm is employed as the solution tech-

nique for the BTRNDP. Before implementing the TS algorithms, a set of potential

routes, consisting of the whole solution space, has been generated by the ICRSGP.

The objective of the TS algorithm presented here is to select an optimal set of routes

from the candidate route set solution space with the sum of the total user, operator

and unsatisfied demand cost being minimized.

A flow chart that provides the typical TS algorithm-based solution framework for

the BTRNDP can be seen in Fig. 4. Note that the “neighborhood” for any route i is

defined as the route left or right of route i stored in the solution space, as described

before. At the beginning of the TS implementation, the initial solution is randomly

generated. In the second (and later) generation, the TS procedure is used to guide the

generation of the new transit route solution set and after it is proposed at each gen-

eration, the search process is started. The network analysis procedure is then called

to assign the transit trips between each centroid node pair and determine the service

frequencies on each route and evaluate the objective function for each proposed so-

lution route set. For each iteration, if a solution route set is detected to improve over

the current best one, the current best solution is updated. The new proposed solu-

tion sets are generated and are evaluated in the same way. If convergence is achieved

or the number of generations is satisfied, the iteration for a specific route set size

ends. Then, the proposed solution route set size is incremented and the processes

are repeated until the maximum route set size is reached. The best solution among

all transit route solution sets is adopted as the best solution to the BTRNDP for the

current studied network.

Moreover, in this paper, three versions of TS algorithms are used: 1) TS without

shakeup procedure (i.e., without the diversification procedure as defined before) and

with fixed tabu tenures; 2) TS with shakeup procedure and fixed tabu tenure (i.e.,

the number of restrictions set for the tabu moves are fixed); and 3) TS with shakeup

procedure and variable tabu tenure (i.e., the number of restrictions set for the tabu

moves are randomly generated). The differences underlying each TS algorithm are

self-explanatory by the names. All three variations of TS methods are implemented,

sensitivity analysis for each version are presented, and algorithm comparisons are

performed.



A Tabu Search for the Transit Route Network Design Problem 399

Construct solution route set

The Initial Candidate Route Set Generation Procedure (ICRSGP)

  Initialization
� Set n=1;
� Initialize all the performance measure parameters

� Compute all related performance measures;
� Output the solution transit route network and their associated frequencies

TS_preparation

Network Analysis Procedure

TS_objective function evaluation

Neighbor_counter++

n=n+1

n<=_MAX_ROUTES
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Network User-defined Input Data
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Shakeup++

Pick the best non-tabu solution

Fig. 4. A Tabu Search Model Based Solution Framework for the BTRNDP

5 Experimental Network and Numerical Results

5.1 Example Network Configuration

The TS algorithm-based solution methodology is implemented using a small exam-

ple network as shown in Fig. 5. This example network contains seven travel demand

zones and 15 road intersections. As noted before, the ICRSGP discussed in this pa-

per first considers the BTRNDP under the “centroid” level. The network is processed

as follows: 1) the zonal demands are distributed the same way as the highway net-

work demand; and 2) if the same road link contains two or more demand distribution

nodes from different zones, these distribution nodes are aggregated. After this pre-

liminary process, 20 centroid distribution nodes, 35 nodes, and 82 arcs are obtained
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in this example network. The minimum and maximum route lengths are defined. In

the example first phase, the ICRSGP generates 286 feasible routes whose distances

satisfy two route length constraints as mentioned before.
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Fig. 5. A Small Network With Graphical Representations for Nodes, Links and Routes

5.2 Numerical Results and Sensitivity Analysis

It is noted that the performance of the proposed TS algorithms might greatly depend

upon the chosen parameters such as the number of generations, the number of search

neighbors, the number of tabu tenures and the shakeup number. Furthermore, note

that since these parameters are basically continuous, one has to get the “nominally”

optimal parameter through sequential testing. In addition, since the objective func-

tion is a multi-objective decision making problem, a commonly used weight set (0.4,

0.4 and 0.2) is assigned to each of the three objective function components (user

cost, operator cost and unsatisfied demand cost), respectively, for demonstrating the

sensitivity analysis here. Fig. 6 presents the sensitivity analysis of these parameters

using the tabu algorithm without shakeup and with fixed tenures as an example. The

effect of generations, tabu tenures and search neighbors are examined by varying

these values within a specific range, and the results are given from Fig. 6.1 to 6.3,

respectively. Details are described as follows.

Effect of Generations: Basically, “Generation” is a user-defined parameter which

means how many iterations the transit planners want the developed solution algo-

rithm run. It therefore can be varied from 1 to ∞. However, for efficiency, the effect

of the number of generations is examined by varying this value from 5 to 100 and the
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result is given in Fig. 6.1. It can be seen from the figure that as the number of genera-

tions increases, the objective function value tends to decrease. It is also noted that the

larger the chosen number of generations, the more the computation time. When the

number of generations reaches 30, the optimal objective function is achieved, sug-

gesting that 30 should be chosen as the optimal generations for the small network.

Therefore, a generation of 30 was recommended.

Effect of Tabu Tenures: The effect of tabu tenures (i.e., the number of restric-

tions) is investigated by choosing this number ranging from 5 to 40 and the result is

provided in Fig. 6.2. As can be seen, the least objective function value occurred with

ten restrictions. Therefore, ten is chosen as the best number of tabu move tenures.

Effect of Search Neighbors: The effect of search neighbors is also studied by

varying this value from 10 to 100. The result shown in Fig. 6.3 indicates that 20

might be the best value and as a result, it is recommended.
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Fig. 6. Sensitivity Analysis for the Tabu Algorithm Without Shakeup and With Fixed Tenures

The above subsections presented the sensitivity analysis for tabu algorithm with-

out shakeup and with fixed tenures using the example network. For sensitivity
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analysis regarding the other two developed TS methods including the tabu with

shakeup/fixed tenures and that with shakeup/variable tenures, similar procedures can

be followed. In addition, the genetic algorithm is used as a benchmark in this paper

to examine the solution quality obtained from these three TS algorithms. The sensi-

tivity analysis are also performed for the genetic algorithm using the same procedure

(details about the genetic algorithm implementation model can be seen from Fan and

Machemehl (2004)). Table 1 provides a summary of these sensitivity analysis for

each algorithm for the BTRNDP. The best parameter set for each algorithm thus can

be seen and chosen.

Table 1. Summary of Algorithm Sensitivity Analysis for the BTRNDP

Genetic Algorithm Population Size 30

Generations 20

Crossover Probability 0.8

Mutation Probability 0.1

Generations 30

Tabu w/o Shakeup and with Fixed Tenures Tenures 10

Search Neighbors 20

Generations 80

Tabu Tabu w/t Shakeup and Fixed Tenures Tenures 10

Search Search Neighbors 10

Shakeup Number 50

Generations 20

Tabu w/t Shakeup and Variable Tenures Search Neighbors 40

Shakeup Number 50

5.3 Multi-Objective Decision Making and Algorithm Comparisons

As mentioned, the model performance based on each proposed algorithm might

greatly depend upon the chosen value of parameters inherent in that algorithm. In

previous sections, a set of user-defined parameters associated with each algorithm

is found by first assigning a commonly used weight set to each of the three objec-

tive function components and then running the developed programming codes based

on that algorithm several times. The sensitivity analysis are then performed and the

best parameter set is found by choosing those resulting in the least objective value

from that algorithm. In this section, these chosen parameters for each algorithm are

used and applied to the BTRNDP at different chosen weight levels. The objective is

to see how the quality of these algorithms varies across different weight levels and

one might therefore know which algorithm can be used to best solve the BTRNDP.

The following sections compare the three employed TS algorithms to examine which

variation is most suitable for the BTRNDP. Furthermore, the model performance is

also compared to the genetic algorithm as a benchmark to examine the solution qual-

ity using TS algorithms from a multi-objective decision making perspective.
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Fig. 7 presents numerical results for these comparisons using the example net-

work. For each graph, the weight of total unsatisfied demand cost is set at a specific

level between 0.1 and 0.8. The x-axis denotes the weight of total user cost and the y-

axis is the objective function value measured in minutes. Note that each point shown

for each algorithm in each graph is a decision making problem with a particular

weight set for the three components contained in the objective function, where the

weight of total operator cost can be obtained at each point by subtracting 1.0 from

the weight sum of total unsatisfied demand cost and user cost. One can see from

Fig. 7 that TS with shakeup and fixed tenures (i.e., fixed iterations) clearly seems to

outperform other TS algorithms using the example network at any weight set level.

Therefore, this tabu algorithm is chosen as the best TS algorithm for the BTRNDP.

It can also be seen from Fig. 7 that for each algorithm from any graph, as the

weight of total user cost increases, the objective function value obtained by using

that algorithm tends to increase. This is expected because the user cost is usually

greater than the operator cost and the increase in total user cost due to a 0.1 unit

increase in the weight of total user cost outweighs the decrease in total operator cost

due to a 0.1 unit decrease in the weight of total operator cost. As a result, the total

objective function value increases. One interesting phenomenon is that the genetic

algorithm seems to be more variable than any TS algorithm (except the TS with

shakeup and with variable tenures, which is also variable due to its inherent variable

nature underlying the tabu tenures) in terms of the optimal objective function value

(from Fig. 7.1 to 7.5.) This might suggest that, compared to TS algorithms, the Ge-

netic Algorithm (GA) may largely depend on the chosen parameters at any particular

level. If the chosen parameters inherent in the GA are fixed, the solution quality for

the BTRNDP might be unstable. Therefore, to achieve the best solution network at

each weight set level, one might need to run the program and get the optimal pa-

rameter set at that level although the computational burden would become larger.

Furthermore, for each graph (i.e., for each weight level for the total unsatisfied de-

mand cost), the TS with shakeup and fixed tenures seems to consistently outperform

the GA in terms of the quality of solution (i.e., it always results in the least objec-

tive function value). This might allow the conclusion that compared to the GA, this

TS method performs better for solving the BTRNDP. Furthermore, it can be seen

that the local optimal solution obtained from this TS method can provide solution

of very high quality because it is very near to the global optimum. The GA, how-

ever, seems to be the undesirable model. This might be possible because although

the GA might achieve some better solutions by learning from the previous solutions

through a genetic approach, it might take much more time inside the algorithm itself

to look for this achievement, while it does not take much more effort looking for pos-

sibly better solutions from other “neighborhood” solutions in the candidate solution

space (compared to the TS algorithms). Conversely, the TS with shakeup and fixed

tenures not only can look for a good solution with a specific origin-destination node

pair through “random search” in its early stage, but also can fully explore possibly

better neighborhood solutions. Note that the tradeoffs between route coverage and

the route directness might be well balanced between chosen shortest paths or k-th

shortest paths between specific origin-destination node pairs. It is expected that this
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inherent characteristics of the TS algorithm might make it particularly suited for the

BTRNDP and therefore outperform the GA.

5.4 Characteristics of the BTRNDP

The characteristics of the BTRNDP are very extensive due to its multi-decision mak-

ing nature and the variety of parameters and procedures involved. These character-

istics might depend upon the network size, the chosen parameters in the solution

process, the chosen algorithm and the chosen weight level for each component of the

objective function. In this sense, it is very hard to generalize all characteristics of the

BTRNDP. However, it is expected that in most cases, the BTRNDP characteristics

should be similar and the current comprehensive numerical results also show these

similarities. Since the numerical results based upon weights of 0.4, 0.4 and 0.2 for

the user cost, operator cost and unsatisfied demand cost, respectively, using the tabu

algorithm without shakeup and with fixed tenures seem to be very representative,

these are chosen here for presenting related BTRNDP characteristics.

The effect of the number of proposed routes in the transit network solution is

investigated by varying it from 1 to 10 and the values of each performance measure

of the optimal network at each route set size level including the user cost, the oper-

ator cost, the fleet size required, the unsatisfied demand cost, the percentage of the

satisfied transit demand and the total objective function value are shown in Fig. 8.1

through 8.6, respectively. Generally speaking, as the number of routes provided in

the network increases, more passengers will be served by transit and therefore, the

satisfied transit demand increases. Furthermore, since the fixed transit demand is as-

sumed, the percentage of satisfied transit demand also tends to increase as shown

in Fig. 8.5. Also as a result, the unsatisfied demand cost decreases. However, the

operator cost tends to increase because the fleet size required for the network gen-

erally increases. In addition, the user cost generally increases because more transit

users travel and the total objective function value also increases. The reason might

be that although service might be better in some sense (such as more passengers get

direct route service) as more routes are provided, the headway might be longer on

some routes. Therefore, the transit user cost as a whole might actually increase. In

conclusion, the numerical results in Fig. 8 indicate that as a whole, as the route set

size increases, the solution improved initially because more demand was satisfied

and unsatisfied demand costs decrease. However, the least objective function value

is achieved with two routes for this scenario and increases in the fleet size (i.e., op-

erator cost) produces underutilization of routes and does not result in an improved

objective function value. (Note that the optimal transit route network is shown in

Fig. 5.)



A Tabu Search for the Transit Route Network Design Problem 

7. TS and GA Comparisons for the BTRNDP 
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8. Effect of Route Set Size on Objective Function and its Components for the BTRNDP 
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6 Conclusions

This paper uses TS algorithms to solve the optimal bus transit route network design

problem at the distribution node level. A multi-objective nonlinear mixed integer

model is formulated for the BTRNDP. The proposed solution framework consists of

three main components: an Initial Candidate Route Set Generation Procedure that

generates all feasible routes incorporating practical bus transit industry guidelines;

and a Network Analysis Procedure that assigns transit trips, determines service fre-

quencies and computes performance measures; and, a TS procedure that guides the

candidate solution generation process. Three different variations of TS algorithms

are employed and compared as the solution method for finding a hopefully optimal

set of routes from the huge solution space. A C++ program is developed to implement

the TS algorithms for the BTRNDP. A small example network is successfully tested

as a pilot study. The model comparisons are performed and numerical results are pre-

sented. The TS with shakeup and fixed tenures is identified as the best TS method to

solve the BTRNDP. A genetic algorithm is also used as a benchmark to measure the

quality of the TS methods and numerical results clearly indicate that the preferred TS

method outperforms the genetic algorithm using the example network. Furthermore,

the local optimal solution obtained from this TS method can provide solutions of

very high quality because it is very near to the global optimum. In addition, related

characteristics and tradeoffs underlying the BTRNDP are also discussed.

BTRNDP is a really complex problem. One simple neighborhood rule can be the

swapping of nodes. However, the link connectivity problem can make many routes

resulting from swapping infeasible. Although one can always find routes to connect

any two nodes to make it feasible, the efficiency can be a big problem. One option for

future investigation is to examine a more flexible neighborhood definition that allows

replacement by non-adjacent routes and the tabu status would then refer to forbidding

the re-instatement of specific routes for a given period. Another possibility that may

be worth mentioning is the investigation of a different type of short term memory that

recent investigations have shown effectiveness (Glover and Laguna (1997)). Also,

further application of this model to a very large network is under the way.
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Summary. For transit services operated by competitive private companies, as in Hong Kong,

the objectives of the companies are not to minimize the total traveler and/or infrastructure

costs, but to optimize their profits. Other than engaging in a Bertrand Game, companies may

also compete via their service frequencies. As evident in Hong Kong, the intense competition

has led to a very visible phenomenon – companies putting more and more buses on major

(profitable) corridors, leading to significant increases in congestion. This study aims to analyze

externality pricing through bus tolling to manage the congestion caused by them. The result

shows that bus tolling can be a promising tool.

1 Introduction

The bus system serves a crucial role in fulfilling the transportation needs of many

transit-oriented cities. In Hong Kong, e.g., franchised buses and minibuses provided

by private companies serve over 60% of the 11 million daily trips. The other 30% of

these trips are carried by rail services, with the combined transit system serving over

90% of the daily trips. To ensure proper service provision, the Hong Kong govern-

ment regulates bus operations, controlling their routes, fares, and minimum service

frequencies. Within these regulations, private companies compete for revenue and

market share in a rather profitable business. Recently Lo et al. (2003a) and Lo and

Yip (2002) studied the possible outcomes of a competitive transit market based on

the case of Hong Kong. The studies examined how private transit operators would

act to maximize their own profits if their fares were fully deregulated. The results

showed that all transit operators would simultaneously raise their fares; to exploit

the situation, some would even double their fares. At the same time, higher transit

fares encourage mode shifts to autos and taxis, which add to congestion and worsen

network performance. The analysis showed that deregulated competition could lead

to drastic changes in fares, network congestion, and social welfare.

In a market where both fares and routes of bus services are regulated, private

companies would change their service frequencies to compete. The overall network
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congestion caused by buses is none of their concern, or, an externality. For demands

on routes that are served by multiple transit operators, a simple strategy to increase

one’s market share and/or revenue is to operate more and more buses on profitable

routes. Such a strategy would result in a net shift of rail users to the road network.

In conjunction with the service frequency competition between bus operators, these

factors lead to an oversupply of transit services and inefficient usage of the road

space. The net effect is that significant congestion occurs on major corridors. Hence,

it is important to incorporate this consideration on service competition into the transit

system management strategy and closely monitor and regulate the bus operations.

The objective of this study is to examine the effect of bus tolling to price out the

externality of excessive bus services. Essentially, a toll is charged for each additional

bus in operation that is offered above the minimum frequency. The exact tolls are to

be determined based on the locality of the route and its congestion level. The objec-

tive of this paper is to analyze how bus tolling would affect travelers, the competitive

market, and overall system performance.

2 Modeling Bus Tolling and its Impacts

In a privately operated market, the ultimate objective of the transit operator is to

maximize its profit. With fixed fares, the total revenue is simply the product of its

fare and the number of passengers; whereas the total operating cost is determined

by its marginal operating cost times the service frequency. As travelers choose their

transport modes based on their perceived utilities or service qualities, in order to

attract more passengers, an operator would improve their service quality as long as

the improvement cost does not exceed the additional revenue generated. Consider a

regulated bus market wherein only frequency is adjustable, the operator’s problem

can be formulated as:

max

f
π(f, d, τ) = wdρ − fδ − [f − fmin]+τ (1)

s.t. w =

{

∑

k

exp θ[uk(f) − ui(f)]

}−1

(2)

where π is the profit function; f is the bus frequency; fmin is the minimum bus fre-

quency required by the terms of the franchised operation; d is total travel demand; ρ
is the bus fare; δ is marginal operating cost; and τ is the bus toll. The bracket on the

right hand side of (1) means that [x]+ = x if x > 0; zero otherwise. The terms on

the right hand side of (1) are, respectively, the bus revenue, total operating cost, and

total toll charge. (2) determines the market share on bus w using the standard logit

model to capture travelers’ choice behavior. The logit model is a popular member in

the family of random utility models, the underlying principle of which is that passen-

gers would choose the alternative with the maximum utility. The utility function for
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mode k is represented by uk(·), with k = 1 for bus. The perceived utility parameter

θ, whose reciprocal is sometimes known as the scale parameter, is a measure of the

information content such that the homoscedastic variance of utility in the logit model

is given by V ar(uk) = π2/6θ2. The operator’s problem in (1)–(2) is a maximiza-

tion problem to determine the bus frequency f , subject to the equilibrium between

market share w and utility function uk(·) among the alternatives. In general, there

is no closed form solution for the optimal bus frequency so determined. In terms of

notation, we denote the solution to the operator’s problem as:

f∗(d, τ) = argmax

f
π (3)

As indicated in (3), the bus operator chooses to operate the service at different

frequencies in response to the different demand levels and bus tolls. This decision by

the bus operator not only affects its own service quality, revenue and cost, but also

the patronage of the other transit modes, their service quality, and other users who

share the roadway with the buses. That is, we study the effect of the bus toll τ on all

travelers as well as the overall system performance.

3 Illustrative Case Study

We consider an illustrative case consisting of a major corridor connecting an origin

and destination pair. Travelers choose between the bus service and the subway. This

is fairly typical in a transit-oriented city such as Hong Kong. In the current study, we

consider only a monopolistic bus service market provided by a single operator. This

simple example is adequate to demonstrate how bus tolling can be used to manage

the urban transit system. Without loss of generality, the bus tolling concept can be

extended to oligopolistic and competitive bus service markets so as to consider ex-

plicitly the competition between different transit services. This we leave to a future

study.

While the subway has exclusive rights of way and does not share congestion with

others, buses operate on the road network and share congestion with other traffic

such as trucks, company fleets, service fleets, and private vehicles. The amount of

this background traffic is taken to be fixed at x0 = 1800 pcu/hr, with an average

occupancy of 1.5 prs/pcu. The practical capacity (defined as 75% of the maximum

link capacity) of the roadway segment is c = 1500 pcu/hr. While the subway enjoys

a constant travel time at 36 minutes for the OD pair, the bus travel time follows the

BPR performance function:

t = t0

[

1 + 0.2

(

x0 + Ebf

c

)4
]

(4)

where t and t0 = 30 minutes, respectively, are the actual travel time and free flow

travel time between the OD pair on the road network. Eb is the equivalent passenger
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car unit (pcu) for buses. In order to consider the dissatisfaction from crowdedness

on a transit mode, a discomfort function is used to modify the in-vehicle travel time

(Nielsen (2000)). Generally, in transit studies conducted by the western world, as

demand rarely exceeds vehicle capacity, the discomfort function usually does not

impose any hard capacity constraint on the transit vehicle, similar to the case of the

BPR function for roadway capacity (e.g., Lo et al. (2003b)). This may not be real-

istic in the current study, however, because overloading of the transit vehicle is not

uncommon, which has implications on the frequency (and hence the line capacity)

of bus services. Therefore, we adopt a function analogous to the Davidson volume

delay function to adjust for the discomfort factor in a crowded transit vehicle. As a

result, we define the congested time Γ as the travel time multiplied by a crowdedness

factor φ, defined as:

φi =

[

1 +

(

vi

Ci − vi

)2
]0.1

(5)

where vi denotes the average patronage per transit vehicle of mode i, with corre-

sponding vehicle capacity Ci. We specify a homogeneous linear-in-parameter utility

function that depends only on transit fare and the congested time as in (6):

uk = βiρk + β2Γk (6)

where β1 = −1 and β2 = − 2
3 are the utility parameters and ρk is the transit fare

on mode k in Hong Kong (HK) dollars1. These values imply a value of time (VOT)

of HK$40/hr, which is commonly adopted in local transportation studies. The transit

fares are HK$15 for bus, HK$20 for subway. In addition, we adopt the perceived

utility parameter θ = 0.1 in the logit model as specified in (2). The marginal operating

cost δ is assumed to be HK$50/bus, and the bus fleet consists of identical vehicles

with the capacity of 100 prs/vehicle. Referring to the objective function in (1), as

the minimum frequency required, fmin, is a constant, one can drop this term without

affecting the optimal result. In other words, it is the same as setting the minimum

frequency to be zero. Though this problem is illustrated via a simple scenario, indeed

some insights can be learned on the possible impacts of bus tolling.

3.1 The Impact of Bus Tolling

By varying the bus toll, we investigate how the following measures change: (i) bus

operation – the profit, frequency, patronage, and load level; (ii) transit congestion

effect – the congested time Γ on buses and the subway; and (iii) system performance

– the crowdedness effect on both the total roadway travel time and congested transit

time. For the representative case, we consider demand d = 10,000 prs/hr, with the

pcu factor of buses fixed at Eb = 3. The capacity of the subway is Csubway = 10,000

prs/hr. We solve (3) for a range of bus tolls. That is, given a bus toll, the operator

maximizes its profit by optimally setting its service frequency. The results are shown

1 US$1 is equivalent to HK$7.8
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in Figs. 1-3. In these figures, the effect of any change in parameter is presented in

both absolute and relative terms: the left vertical axis shows the absolute scale and

the right vertical axis the percentage change relative to the case without bus toll.

Bus Operation. The parameters are shown in Fig. 1. As expected, the optimal

bus frequency drops with the bus toll. Figs. 1(b)-(d) show that the bus toll results in a

lower service frequency; fewer travelers use the bus service but the load level per bus

vehicle increases from around half-empty gradually to almost full. In this scenario,

both the operator and the existing bus passengers suffer from the introduction of the

bus toll. Therefore, from the perspective of the bus service alone, there is no winner.

Transit Congestion Effect. Fig. 2 shows the changes in transit congestion effect

with the bus toll. We plot the congested times Γ on both the bus and subway ser-

vices. They both show an upward trend. Less frequent bus services increase both the

congested time on the buses as well as that on the subway, as travelers switch to the

subway system. The increase is gradual at lower tolls but becomes more prominent

at high tolls. The only winner is the subway operator, who gains in patronage and

hence revenue without needing to improve its service.

Overall System Performance. Fig. 3(a) shows a gradual drop or improvement

in the total roadway travel time as a result of the bus toll, as some buses are priced

out of the system. Fig. 3(b) plots the total system congested time, which combines

the congested time of all transit users (on both buses and the subway) as well as

that of the background traffic including trucks, autos, etc. Initially the total system

congested time descends to a global minimum at the bus toll of τ = HK$85 and then

moves upward.

If one focuses on the profitability of the bus or transit users alone, bus tolling may

not be attractive. In fact, its primary objective is to balance the supply and demand

of bus services so that the entire system benefits, including all travelers. At low bus

tolls, improvements in the travel time on the roadway more than compensate the

slight deterioration in the congested time of the transit users, thereby driving down

the total system congested time. At high bus tolls, however, the transit crowdedness

associated with the frequency reduction outweighs the gain in the roadway travel

time, leading to increases in the total system congested time. Thus, by applying the

bus toll accordingly, one does have a way to strike the balance between different

travelers, while at the same time allowing the bus company to set its own frequency

policy to maximize its profit.

3.2 Optimal Bus Toll

As illustrated earlier, bus tolling can effectively mitigate the roadway traffic conges-

tion, at the expense of transit service quality. Nonetheless, according to the result,

we observe that with relatively low bus tolls, the deterioration in the transit system

congestion is mild; whereas the overall system congested time can be substantially

improved. By defining the objective to be the total system congested time, we can

write the optimal toll τ∗ as:
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τ∗ = argmax

τ

∑

i

xi(f
∗)Γi(f

∗) (7)

where xi is passenger volume on mode i and f∗ is obtained from (3). Together, (3)

and (7) show the interrelated process in setting the optimal bus toll and optimal bus

frequency. Given any bus toll τ , according to (3), the operator adjusts its service fre-

quency f so as to maximize its profit. Fig. 1(b) shows how the optimal bus frequency

f∗ (optimal in the view of the operator, i.e., profit maximization) varies with the bus

toll. Each instance of (τ, f∗) such determined will result in a certain total system

congested time. By appropriately selecting the bus toll, while incorporating the reac-

tion of the operator in adjusting its service frequency, one can achieve the objective

of minimizing the total system congested time. In other words, one can consider

this formulation as a leader-follower bi-level problem. The government acts as the

leader, who sets the tolls so as to minimize the total system congested time (i.e., (7)),

whereas the operator acts as the follower, who reacts to the toll and adjusts its service

frequency so as to maximize its profit (i.e., (3)).

The optimal bus frequency (for profit maximization of the operator) on one hand

depends on the bus toll; on the other hand, it affects the system performance which

in turn affects the choice of the optimal bus toll (for total system congested time

minimization). Though (3) cannot be expressed in closed form, it can be solved at

different toll levels. Fig. 3(b) shows how the total system congested time varies with

the toll. Indeed, for this case, the optimal bus toll is found to be around HK$85.

To study the sensitivity of the optimal bus toll to different traffic conditions,

we numerically solve (7) and compare the results for different values of Eb and

Csubway . Table 1 tabulates the optimal tolls and the corresponding frequencies for

the fixed travel demand of 10,000 prs/hr. For the same subway capacity, one should

charge a higher bus toll for bus operations with a higher pcu equivalent. A higher pcu

equivalent occurs if a bus occupies more road space and/or operates in a less efficient

manner than a passenger car. For example, a low speed bus with frequent stops will

have a higher pcu equivalent. In other words, the policy of allowing buses to halt and

wait for passengers at intermediate bus stops should be charged more. According

to the results, doubling the pcu equivalent, say from 2 to 4, requires approximately

a factor of 4 in the optimal toll charge. This indicates that the optimal bus toll is

nonlinear to the pcu equivalent.

Table 1. Optimal Toll and Optimal Bus Frequency (τ∗, f∗)2in Different Network Conditions

[Demand at 10,000 prs/hr]

Csubway Eb - Bus pcu-equivalent

[prs/hr] 2 3 4

7,500 (0, 92.4) (18, 79.1) (37, 69.7)

10,000 (33, 83.1) (84, 68.5) (137, 58.8)

12,500 (73, 76.5) (167, 60.9) (279, 50.0)

2 Toll in HK$, optimal bus frequency is hourly frequency.
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Table 2. Optimal Toll at Different Demand [Csubway = 12, 500 prs/hr and Eb = 3]

D [prs/hr] 7500 1000 12500 15000

τ∗ [HK$] 272 167 91 40

f∗ [hr−1] 43.5 60.9 78.7 96.7

Bus load level 0.6267 0.6014 0.5931 0.5996

Table 2 shows the optimal bus tolls for different travel demands. The optimal bus

toll declines with demand increases, which allows for more frequent services to cater

to the higher demand. Interestingly, the load level remains roughly at 60% in all the

cases. This indicates that an appropriate load level is essential in minimizing the total

system congested time.

4 Concluding Remarks

We proposed bus tolling as a market-based strategy to address the supply of bus

services to cope with demand in the presence of alternative transit services. In this

strategy, the bus operator is free to choose its service frequency so as to maximize

its profit. The government simply charges the bus toll based on the demand level and

capacity of the alternative so that the system performance rests at the minimum total

system congested time. The exact bus toll can be determined with the formulation

developed herein.

We demonstrate in this study that bus tolling can be a flexible market-based strat-

egy to strike a good balance between the objectives of transit users, for-profit oper-

ators, as well as the overall system performance, including other road users. This

study is our first attempt to investigate the concept of bus tolling for managing the

transportation system. Most of the results are based on the numerical study. In the fu-

ture, we will examine if the results can be developed analytically. Many dimensions

of this study can be extended, such as introducing the competition between multiple

bus companies, extending the study to the case of a network, and considering bus

route bundling in the competition.
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search Grants HKUST 6083/00E and HKUST6161/02E of the Hong Kong Research

Grant Council.
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Summary. A Mobility Allowance Shuttle Transit (MAST) system is an innovative concept

that merges the flexibility of Demand Responsive Transit (DRT) systems with the low cost

operability of fixed-route bus systems. It allows vehicles to deviate from the fixed path so that

customers within the service area may be picked up or dropped off at their desired locations.

In this paper, we summarize the insertion heuristic presented by Quadrifoglio et al. (2007)

for routing and scheduling MAST services, and we carry out a set of simulations to show a

sensitivity analysis of the performance of the algorithm and the capacity of the system over

different shapes of the service area. The results show that a slim service area performs better

in general, but also that the positive effects of a proper setting of the control parameters of the

heuristic is much more evident for wider service areas. In addition, a performance comparison

shows that MAST systems can provide a better service to customers than fixed-route ones

even for a slim service area.

1 Introduction

The Mobility Allowance Shuttle Transit system is an innovative concept in trans-

portation that merges the flexibility of Demand Responsive Transit systems with the

low cost operability of fixed-route bus systems, in order to satisfy the current needs

of transit agencies, which are seeking ways to improve their service flexibility in a

cost efficient manner. A MAST system is characterized by one or more vehicles driv-

ing along a base fixed-route covering a specific geographic zone, with one or more

mandatory checkpoints conveniently located at major transfer points or high demand

density zones. Given a proper amount of slack time, vehicles are allowed to devi-

ate from the fixed path to serve (pick-up and/or drop-off) customers at their desired

locations, as long as they are within a service area. Customers can make reserva-

tions before or during the service, thus the MAST system works under a dynamic

environment.

Line 646 of the Metropolitan Transit Authority (MTA) of Los Angeles County

offers a MAST nightline service. The vehicle drives nine times back and forth be-

tween two terminal checkpoints, passing by a third intermediate checkpoint in each
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trip. The vehicle is allowed to deviate from the fixed-route to serve customers as long

as their service stops are within half a mile from either side of the main route. The de-

mand of Line 646 is currently low enough to allow the bus operator to make all the

decisions concerning accepting/rejecting requests and routing the vehicle. Quadri-

foglio et al. (2007) developed a customized insertion heuristic algorithm to handle

heavier demand in a potential daytime MAST operation and several requests for de-

viations. The vehicle’s route and schedule are updated shortly after each request and

customers are notified whether their request has been accepted and are provided with

a time window for their pick-up and/or drop-off stops. The main characteristic of

their algorithm is the development of efficient control parameters as a function of the

future expected demand that, if properly set, significantly enhances the performance

of the algorithm.

The purpose of this paper is to evaluate the sensitivity to the shape of the service

area of the performance of MAST systems and of the effectiveness of the control pa-

rameters of the above mentioned algorithm. In particular we will show how a proper

setting of those parameters is able to raise the saturation demand level in each con-

figuration, allowing the system to serve more customers with a comparable service

level. In addition, we perform a simulation comparison to test the competitiveness

of hybrid systems like MAST versus conventional fixed-route types of services in a

slim service area, apparently more suitable for the latter services.

Hybrid types of transportation systems have just lately been approached by re-

searchers. Daganzo (1984) describes a checkpoint DRT system that combines the

characteristics of both fixed route and door-to-door service. Malucelli et al. (1999)

provide a general overview of flexible transportation systems. Crainic et al. (2001)

incorporate the hybrid fixed and flexible concept in a more general network setting.

Zhao and Dessouky (2004) study the optimal service capacity of a MAST system

through a stochastic approach. Quadrifoglio et al. (2006) look at MAST systems

from a design point of view, evaluating the relationship between the longitudinal ve-

locity of the vehicle and the demand density, in order to allocate slack time and set

other system parameters.

Some work approached hybrid systems in which different vehicles perform the

fixed and variable portions. Aldaihani et al. (2004) develop a continuous approxi-

mation model for designing such a service. Scheduling heuristics based on a hybrid

system include the decision support system of Liaw et al. (1996), the insertion heuris-

tic of Hickman and Blume (2001) and the tabu heuristic of Aldaihani and Dessouky

(2003). Another work studying a combination of fixed and flexible service can be

found in Cortés and Jayakrishnan (2002).

Savelsbergh and Sol (1995), Desaulniers et al. (2000) and Cordeau and Laporte

(2003) provide reviews on the Pickup and Delivery problem and Dial-a-Ride sys-

tems. Wilson et al. (1971) formulate the problem as a dynamic search procedure.

Continuing work is presented by Wilson and Hendrickson (1980). Stein (1977),

Stein (1978b), Stein (1978a) develops a probabilistic analysis of the problem and

Daganzo (1978) presents a model to evaluate the performance of a Dial-a-Ride sys-

tem. Theoretical studies of the problem case include the work by Psaraftis (1980),
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Psaraftis (1983), Sexton and Bodin (1985a), Sexton and Bodin (1985b), Sexton and

Choi (1986), Desrosiers et al. (1986) and Lu and Dessouky (2004).

Heuristics to solve multi-vehicle problems have been proposed by Psaraftis

(1986), Jaw et al. (1986), Bodin and Sexton (1986), Desrosiers et al. (1988) and

Madsen et al. (1995). Parallel insertion heuristics are proposed by Toth and Vigo

(1997), Diana and Dessouky (2004) and Lu and Dessouky (2006). Diana (2006) as-

sesses by simulation the effectiveness of the latter algorithm. Horn (2002a) develops

an algorithm for the scheduling and routing of a fleet of vehicles that is embedded

in a modeling framework for the assessment of the performance of a general public

transport system with the latter being presented in Horn (2002b).

This paper is organized as follows. In Section 2 we describe the model for a

MAST system. In Section 3 we briefly summarize the insertion heuristic algorithm

described by Quadrifoglio et al. (2007), that we utilize to perform the simulation

analysis described in Section 4, where a sensitivity over the shape of the service area

is presented. Section 5 provides a MAST/fixed-route comparison and Section 6 the

conclusions.

2 MAST System Model

The MAST system model is described by a service area shaped as a rectangular

region L×W. C checkpoints are distributed along the x axis in the middle of the

rectangle with a y coordinate W/2. Checkpoints 1 and C are at the extremities of

the rectangle and the remaining C-2 checkpoints are within it (see Fig. 1). A single

vehicle is assigned to this service area. A trip r begins at checkpoint 1 (or C) and

ends at checkpoint C (or 1), after visiting in a predefined order all the intermediate

checkpoints, which have fixed departure times. If R is the total number of trips,

the total number of stops at the checkpoints is TC = (C-1)R+1. Hence, the initial

vehicle’s schedule is represented by an ordered sequence of stops from 1 to TC. We

assume that the vehicle follows a rectilinear metric and has infinite capacity.

L

W/2

W/2

r

r+1

1 C

x

y

2 3 c C-1

Fig. 1. MAST System Model
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The demand is defined by a set of requests, which can be of three types: “hy-

brid” (having one service point at a non-checkpoint location in the service area and

the other one at the checkpoints), “regular” (both service points at the checkpoints)

or “random” (both service points located at non-checkpoint stops). We assume that

the total demand rate θ is constant over time and that the non-checkpoint stops are

uniformly distributed in the service area. At any moment a customer may call in

(or show up at the checkpoints), specifying the locations of pick-up and/or drop-off

points. “Regular” customers do not need a booking process to use the service.

In order to allow deviations from the main route to serve non-checkpoint re-

quests, there needs to be a certain amount of slack time in the schedule. The initial

slack time between any pair of consecutive checkpoints in the schedule is given by

the difference between their scheduled departure times minus the time needed by the

vehicle to travel from one to the other. The slack time is dynamically consumed by

the insertion procedure when the demand arises. The amount of it to be allocated

depends on the amount and type of demand and it may be adjusted properly to fit

particular situations; see Quadrifoglio et al. (2006) and Zhao and Dessouky (2004)

for more detailed analyses on the matter. In this paper we assume a slack time larger

than the actual one in the MTA Line 646, where the demand is very low.

3 Algorithm Description

In this section we summarize the main features of the insertion heuristic algorithm

described in Quadrifoglio et al. (2007) that will be utilized to perform the sensitivity

analyses described in the following Section 4.

A bucket of a checkpoint c is the portion of the schedule beginning at one oc-

currence of c in the schedule and the following one. Since “hybrid” customers rely

on a checkpoint c for either their pick-up or drop-off stop, the algorithm checks the

schedule for possible insertion of their non-checkpoint stop “bucket by bucket” of c,

until feasibility is found (for “random” requests, buckets are represented by trips).

The following flowchart in Fig. 2 summarizes the insertion procedure.

All customers, once their request is placed in the schedule, are provided with

time-windows for both their pick-up and drop-off stops. These time-windows depend

on the current schedule at the time of the request and are naturally bounded by the

hard time constraints of the checkpoints.

The cost function needed to select the best insertion among the feasible ones is

given by

COST = w1 × ∆t + w2 × ∆RT + w3 × ∆WT (1)

where ∆t is the slack time consumed by the insertion. ∆RT is the sum over all

passengers of the additional ride time, including the whole ride time of the request-

ing customer, caused by the insertion. In fact, a new inserted request would cause

the passengers onboard to be delayed if the insertion takes place before and within

the same pair of consecutive checkpoints of their drop-off. Also “regular” onboard

passengers may be affected by this caused delay, because the arrival time at their
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Fig. 2. Insertion Algorithm for MAST Systems, Quadrifoglio et al. (2007)

checkpoints is not fixed (the departure time at the checkpoints is) and depends on

how much slack time is consumed in that portion of the schedule. ∆WT is the sum

over all passengers of the additional waiting time caused by the insertion. In fact,

customers that are already scheduled and are waiting for their pick-up at the time

initially agreed might have to wait longer if the new insertion is placed before them

and in between the same pair of consecutive checkpoints. w1, w2 and w3 are the

weights, which can be modified as needed to emphasize one factor over the others.

Insertion feasibility and control parameters The “myopic” consumption of the

slack time could prevent future requests to be properly satisfied, worsening the over-

all performance of the system. In order to prevent and solve this problem the heuristic

makes use of two control parameters that are a function of the expected future de-

mand and the relative position of the new request with respect to the already sched-

uled stops. The control parameter π(0) ≤ 1 is multiplied by the initial slack time and

sets a cap on how much slack time each insertion may require. The BACK parameter

(in miles) defines the maximum allowable backtracking distance available for each

insertion. A proper setting of these two parameters (to be determined by simulation

analysis) allows the system to control the consumption of slack time and improves

the overall performance significantly, especially reducing the total mileage driven

and allowing the system to serve more demand, raising the saturation level.

Thus, a candidate insertion is feasible if the customer precedence constraints are

met, the slack time consumed is less than the current available and less than the

maximum allowed (controlled by π(0)), and the potential backtracking distance is

less than the maximum allowed (controlled by BACK).
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4 Sensitivity Over Service Area

In this section we perform a simulation analysis to observe the behavior of the system

when modifying the shape of the service area, maintaining constant the total square

mileage. In particular we want to observe the effect of the control parameters in each

configuration over their saturation level.

The service area considered is described by Fig. 1. The time interval between

the scheduled departure times of the two terminal checkpoints is assumed to be 50

minutes. We consider two different cases: C = 3, as for the MTA Line 646, therefore

with only one intermediate checkpoint placed in the middle of the area (25 minutes

between each pair of consecutive checkpoints) and C = 5, with three intermediate

checkpoints (12.5 minutes between each pair of consecutive checkpoints). The initial

slack time available between any pair of consecutive checkpoints will vary depending

on the assumed proportion between W and L. With smaller L, the amount of slack

time is larger because the checkpoints are closer.

The vehicle is riding back and forth between the two terminal checkpoints for a

total simulated time of 50 hours, without interruption and therefore the total number

of trips is R = 60. The simulation time has been chosen to ensure that the system

reaches a steady state. The speed of the vehicle is assumed constant and equal to 25

miles/hour.

Demand is arising dynamically during the trip; we assume that the demand rate

θ (customers/hour) is constant over time and that the customer types are distributed

as shown in Table 1, as it is for MTA Line 646. In addition, we assume that check-

point requests (P for pick-up and D for drop-off) are uniformly distributed among the

checkpoints and that non-checkpoint requests (NP and ND) are uniformly distributed

over the service area.

Table 1. Customer Type Distribution

Type PD PND NPD NPND

% 10% 40% 40% 10%

The weights in the COST function are w1 = w2 = 0.25, w3 = 0.5, reasonably

assuming that customers would rather stay onboard (w2) than waiting (w3) at the

bus stop and assigning the same value to w1 (slack time consumed) and w2. These

values can be modified accordingly depending on the objective function of the transit

agency.

The main purpose of the analysis is to determine the demand saturation level of

the system for each configuration, by running several simulation experiments: first,

with no control (BACK = L and π(0) = 1, which allow for any backtracking and any

consumption of slack time, if available; therefore, giving the maximum freedom to

the algorithm when checking for insertion feasibility); then, with the best setting of

the control parameters that we could find, in order to maximize the saturation de-

mand level. In addition, we compute the following performance parameters (directly
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related to the corresponding terms in the COST function) to compare the efficiency

of the algorithm and the service level among the cases:

• M: total miles driven by the vehicle

• RT: average ride time per customer

• WT: average extra waiting time per customer

Configuration A: W = 1; L = 12 The first analysis is done over a slim service

area with L = 12 and W = 1, both in miles. The distance between checkpoints is 6

miles and the slack time available between any consecutive pair is therefore about

10.5 minutes for C = 3 and 5 minutes for C = 5. The saturation levels of this system

configuration with BACK = L and π(0) = 1 (no control) and with the best setting of

the parameters to maximize demand are shown in Table 2.

Table 2. Configuration A – Saturation Demand Levels: No Control / Best Control

C 3 5

Control None Best None Best

BACK (miles) L 0.2 L 0.2

π(0) 1 0.3 1 0.6

θ (customers/hour) 18 21 15 18

WT (min) 0.99 1.43 0.34 0.46

RT (min) 25.33 25.42 27.04 25.97

M (miles) 1049.8 1018.2 1020.5 981.9

The system becomes unstable with θ greater than the values shown, that are ap-

proximately the saturation levels of these configurations.

For C = 3, the system is able to handle up to about 21 customers/hour, with a

proper setting of the control parameters, namely BACK = 0.2 and π(0) = 0.3. For C

= 5 instead, the system capacity is about 18 customers/hour, with BACK = 0.2 and

π(0) = 0.6. The improvement on the capacity of the system is only 3 customers/hour

for both cases (about 15-20% increase), but the improved efficiency of the algorithm

is evident on the total mileage M as well, that has decreased by approximately 30-

40 miles despite the increased demand. Note that the cases with C = 5 have lower

capacities than the ones with C = 3, because of the additional constraints of the two

extra checkpoints. From “None” to “Best” control cases, the ride time (RT) remains

about the same, while the extra waiting time at stops (WT) slightly increases, due

to the heavier demand that leads to an increased number of insertions and postpone-

ment of NP pick-ups. Also, the WT is lower for the cases with C = 5, because the

number of possible insertions between consecutive checkpoints is smaller due to the

checkpoints that are closer to each other and less slack time is allocated between

each pair.

Configuration B: W = 2; L = 6 A similar analysis is performed over a service

area with W = 2 and L = 6, always referring to the model in Fig. 1. The total square
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mileage is still 12 and all the other parameters of the system are kept the same. How-

ever, given the different shape of the area, checkpoints are closer to each other and

therefore the initial slack time available between any pair of consecutive checkpoints

is larger, namely equal to about 18 minutes for C = 3 and about 9 minutes for C = 5.

Table 3 shows the figures for the saturation levels of this configuration.

Table 3. Configuration B – Saturation Demand Levels: No Control / Best Control

C 3 5

Control None Best None Best

BACK (miles) L 0.3 L 0.2

π(0) 1 0.3 1 0.6

θ (customers/hour) 12 20 10 18

WT (min) 1.36 1.94 0.20 0.54

RT (min) 20.59 22.81 25.04 29.57

M (miles) 1054.5 933.5 909.8 917.8

In this case the improvement due to control parameter adjustment is more signif-

icant: the saturation level jumps from 12 to 20 customers/hour for C = 3 and from

10 to 18 for C = 5 (65-80% increase). The mileage (M) is reduced by about 120

miles for C = 3 and slightly increases for C = 5, even with the increased demand.

The values of RT increase slightly more than in Configuration A.

Configuration C: W = 3; L = 4 We consider now a service area with W = 3

and L = 4. The total square mileage is again still 12 and all the other parameters of

the system are kept the same, but checkpoints are even closer to each other and the

initial slack time available between any pair of consecutive checkpoints is now about

20 minutes for C = 3 and about 10 minutes for C = 5. Results are in Table 4.

Table 4. Configuration C – Saturation Demand Levels: No Control / Best Control

C 3 5

Control None Best None Best

BACK (miles) L 0.5 L 0.2

π(0) 1 0.5 1 1

θ (customers/hour) 12 18 10 15

WT (min) 1.73 1.68 0.38 0.51

RT (min) 17.37 22.17 21.62 24.86

M (miles) 1047.3 964.0 955.4 896.8

The increase in the saturation level due to control parameter adjustments is sig-

nificant, from 12 to 18 customers/hour for C = 3 and from 10 to 15 for C = 5 (50%

increase) and the mileage (M) also is reduced by about 80 and 60 miles, respectively.

As for Configuration B, a more significant increase of the RT value is observed.

Fig. 3 summarizes the findings shown in the previous tables.
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Fig. 3. Saturation Levels (Customers/Hour)

The analysis shows that a proper setting of the control parameters could signif-

icantly improve the performance of the system for every configuration. The results

also show that the slim Configuration A performs better with or without the involve-

ment of the control parameters, even though with different emphasis in the two cases.

With no control (BACK = L and π(0) = 1) Configuration A outperforms Configu-

rations B and C in terms of system capacity (18 vs. 12 customers/hour for C = 3 and

15 vs. 10 for C = 5), meaning that the insertion procedure is able to perform better in

case of a slimmer service area and consequently a lesser amount of slack time. This

is due to the fact that a “wild” consumption of the slack time is less likely to happen

when there is a smaller amount of it available to begin with and the system is able to

control itself better.

When properly setting the control parameters, every configuration benefits from

it, but the improvements shown in Configurations B and C are much more evident

than those in Configuration A, and while the slim case still performs better, the three

“controlled” systems are comparable in terms of capacity and performance.

In addition, we note that the longitudinal velocity (along the x axis in Fig. 1) of

the vehicle decreases with the widening of the service area (Configurations B and

C), because of the increased amount of time needed by the vehicle to serve points

along the larger width. Customers traveling to/from checkpoints could perceive this

slowness unfavorably because on average they would experience ride times increas-

ingly larger than the direct time needed to travel between their pick-up and drop-off.

Therefore, only slimmer service areas, such as Configuration A, would be suitable

for public transportation purposes where the longitudinal velocity of the vehicle is

not much slower than a fixed route line traveling between checkpoints. However,

configurations with wider service area could very well be appropriate for transporta-

tion of goods instead of people.

5 MAST/Fixed-Route Comparison

It could be noted that slimmer service areas, such as Configuration A, would be more

suitable for a regular fixed-line service. For this purpose we perform a comparison
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between the MAST service (Configuration A, with C = 3) and a fixed-route bus

service serving the same service area. Both systems serve the same demand of 21

customers/hour; with the distribution of Table 1. We assume the same vehicle speed

v = 25 miles/hour and a service time of 18 seconds at each stop for both systems.

The fixed-route line has C = 25 fixed stops evenly distributed along the x axis (one

stop every 0.5 miles), therefore the headway is 72 minutes and the scheduled/actual

travel time between two consecutive stops is 1.5 minutes. We assume that there is

no variability in the travel time between two consecutive stops for the fixed line. The

only variability for the MAST system is due to the random locations of the non-

checkpoint demand. Fig. 4 illustrates the geometry and the features of the systems.

L

0.5 miles

MAST – Configuration A (C = 3)

Fixed-route

W

W

Fig. 4. MAST/Fixed-route Comparison

In order to perform the comparison we define WKT, being the average walking

time per passenger (assumed walking speed = 3 miles/hour). While the MAST sys-

tem serves its customers point to point and no walking occurs, a fixed-route system

forces non-checkpoint requests to walk to/from the nearest fixed stop in order to use

the service. Note that checkpoint requests could have a certain amount of walking

time associated with it, but considering the same demand it would be equivalent for

both systems and consequently we assume it to be zero.

We observe that for headways larger than 12-13 minutes the majority of the cus-

tomers are aware of the schedule (Okrent (1974)) and this is true for all requests

showing up at bus stops (for both systems). Therefore, we do not consider the wait-

ing time until the pick-up as a valid parameter for this comparison. WT measures

instead the extra waiting time that MAST customers have to wait at their stops, be-

cause of other insertions occurring after their requests.

Thus, the overall performance Z (in time units) is defined as follows:

Z = w1 ×M/v + w2 ×RT ×NC + w3 ×WT ×NC + w4 ×WKT ×NC (2)
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where NC is the total number of customers served by the system and the last term

represents the contribution to Z of the amount of walking time. We assume that the

weight for walking time (w4) is conservatively equal to w3 (even though customers

would probably perceive walking time with more discomfort than waiting time at a

bus stop, especially during nighttime for safety reasons). Hence the weights in Z are

set as follows: w1 = w2 = 0.25 and w3 = w4 = 0.5.

We ran the simulations (using Common Random Numbers for the two systems)

for 45 hours, so that for the fixed-route service R = 75 and for the MAST system R

= 54 (since the headway is 100 minutes). The results are shown in Table 5.

Table 5. MAST/Fixed-route Comparison

θ (customers/hour) 21

System MAST Fixed

Conf. A (C = 3)

WT (min) 1.56 0

RT (min) 25.53 16.6

WKT (min) 0 7.5

M (miles) 926.3 900

Z 6.804 7.831

The figures show that the MAST system compared to the fixed-route results has

a small WT (< 2 minutes) and a RT bigger by approximately 10 minutes, but M is

lower and there is no walking for the customers as opposed to the fixed-route system

where on average customers walk 7.5 minutes.

6 Conclusions

In this paper we summarize the insertion heuristic algorithm developed for the Mo-

bility Allowance Shuttle Transit services presented by Quadrifoglio et al. (2007) and

we utilize it to carry out a sensitivity analysis of its performance over the shape of the

service area. The algorithm makes use of proper control parameters, aiming to cher-

ish the consumption of the slack time. A proper setting of them allows the system

to increase its capacity, maintaining an analogous service level for the customers. In

particular, we show that this positive control effect is more evident in a wider service

area with more slack time. The results also show that slimmer configurations perform

better in terms of capacity and are more suitable for public transportation purposes.

In addition, the findings show that MAST services are competitive with fixed-route

ones and perform better under certain demand distributions, even for slim service

areas.
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